Technical Report 85-014

The Terak Tester User’s Guide

Vernon L. Chi

Microelectronic
Systems

Laboratory

The University of North Carolina at Chapel Hill
Department of Computer Science

New West Hall 035 A

Chapel Hill, N.C. 27514




V. Chi Terak Tester User’s Guide page 1

1 Introduction

This document is an introduction to writing programs for chip testing using the Terak tester at the Micro-
electronic Systems Laboratory {MSL), at the University of North Carolina, Chapel Hill. It is intended to
belp you understand the testing environment and, more important, the use of the software tool Geel,

An appendix is included which introduces the use of the hardware as well. These tools include 2 VAX host
computet running UNIX, a Terak microcomputer running UCSD Pascal, the special tester interface and test
head, and communications facilities between the VAX and the Terak.

2 Scope

This document illustrates the basics needed for using the Terak tester and how the tools are used. No
attempt is made to illustrate the entire Geel language; many test programs will only need to use a small part
of it. An example is given, however, which illustrates how heavy use of Geel can accelerate the execution of

a test enormously.

For those needing the full power of Geel, an appendix is included which presents a complete BNF description
of the Geel syntax, along with semantic annotations. A reasonable familiarity with programming and with
reading of BNF should be sufficient for a user to make full use of Geel.

3 How the software 1s organized
To test your chip using the Terak tester you must write a test program. This program performs the following
basic steps:
1. prepares a set of stimulus vectors (test patterns},
2. presents the stimulus vectors to the DUT (device under test) pins,
3. reads response vectors (test results) from the DUT pins,
4. stores and/or evaluates the response vectors.
These steps are performed cocperatively by a driver program and a special interface subroutine.

The driver program, written in Pascal, performs step 1 and step 4. The special subroutine, written in Geel,
performs steps 2 and 3. This subroutine is declared to be an external procedure in the driver program. These
entities are compiled/assembled independently, then linked together to create a complete test program.

In the following sections we discuss the Gcee] language in detail and how the driver program and gcel
subroutine communicate with each other. Those needing instruction in Pascal are referred to Jensen and
Wirth [1], Wilson and Addyman [2], and in particular for UCSD Pascal, UCSD {3].

4 What is Geel and Why?

4.1 What Is Geel?

Basically, Geel is a simple programming language, developed specifically for use with the Terak Tester. A
Geel program implements the body of an external procedure of a Pascal driver program. The Geel procedure
provides an interface between the driver program and the tester hardware as follows:

1. the driver passes an array of test vectors as a parameter to the geel procedure;

2. Geel “assert” statements transfer the test vectors to the ontputs of the tester hardware which are
connected to the DUT socket.

3. Geel “read” statements transfer the response vectors from the inputs of the tester, which are also
connected to the DUT socket, to an array.

4. Upon returning, Geel passes the response vector array back to the driver program as a parameter.
A Geel program consists of a sequence of geel statements, For example, some Geel statements, and
their associated actions are: '

* “assert”: present a stimulus vector to the DUT pins.
* “Io", “hi": modify the states of selected DUT pins.

MSL UNC Department of Computer Science 29 May 1985



V. Chi Terak Tester User’s Guide page 2

* 4f". conditional execution of other statements.
¥ Hwhile”: looping and loop closure.
* tpead™: capture a response vector from the DUT pins.

4.2 Why Geel?

Implementing meaningful tests for complex circuits is at best an arduous task. One would like to use the
strncture and facilities of a high level language in expressing the test. On the Terak hardware, UCSD Pascal
is an available tool to address needs for managing the complexity of the testing task.

On the other hand, many tests are speed-critical, or at least have critical segments, Therefore, one would like
to be able to run the tester hardware as fast as possible. For this reason, one is tempted to write assembly
code to implement speed-critical test seginents.

Geel was designed to provide bigher level programming structures while generating high performance object
code. It was also designed to hook nicely into a Pascal environment to take advantage of its available tools,

Thus, a highly complex, but non speed-critical test can be written almost entirely in Pascal, with a “one-
liner”™ Geel program as an interface. Alternatively, a speed-critical segment of a test can be extensively
programmed in Geel, and executed in its entirety by a single call to the Geel procedure.

In this way, Gcel attempts to offer the user all the power of a high level programming language, while
providing a structured escape hatch to achieve the speed performance typical of assembly code.

5 Communication between the Driver Program and the Geel Routine

A test program consists of a driver program and a Gceel program. The driver program exercises the chip
by calling the Geel interface subroutine. The Geel subroutine is just an external subroutine of the driver
program. The communications are done through the normal parameter passing mechanism.

5.1 - How to use Geel in the driver
In the driver progtam, you should declare an external procedure with four parameters, as follows:

proceduire exercise ( var control: array[l.MAXCONTROL)] of integer;
var stimulus: array[{l.MAXINPUTS] of integer;
var response : array|l.MAXOUTPUTS] of integer;
var termed : integer);
external;

The name of this procedure must be “exercise™. The driver calls this procedure in the ordinary way.

5.2 Meanings of the Parameters

A description of the semantics of the parameters passed to the procedure “exercise” follows.

5.2.1 control[i]

This parameter allows the driver progrﬁm to parameterize the execution behavior of the Geel procedure,
“exercise”. An example is the use of the values of “controli]” as loop closure counts in the Geel code. This
is just one example of many ways in which “controlfi]” values can be used to control the execution of a Geel
program.

MSL UNC Department of Computer Science 29 May 1985



V. Chi Terak Tester User’s Gulde page 3

/* This is a Geel code fragment +/

repeat control times [+ execute statement 1 control[l] times =/

<statement 1>
repeat control hold times [+ execute statement 2 control[2] times %/

<statement 2>
repeat control times [* execute statement 3 control[2] times */

<statement 3>

Use of the Geel “control” statement to access a “control[i]” value will anto-increment through the “control”
array passed by the driver program, unless prevented by the “hold” statement.

5.2.2 stimulus(i]
Stimulus signals for the DUT are contained in “stimulusfi]”, the test vectors passed to the procedure “ex-
ercise”. The Geel “assert” statement performs the transfer of a test vector to the DUT pins via the tester

ports.

/* Geel code fragment +/

assert; [+ send stimulus|1] to tester port 0 {pins 1..16) */
assert hold @ 2; [+ send stimulus|2] to tester port 2 {pins 33..48) */
assert @ I; /* send stimulus|2] to tester port 1 (pins 17..32) =/

Autoincrementing is the default here, as well. The “@” construet establishes a base pin address for transfer
of the stimulus vectors. The default base is zero.

5.2.3 responseli]
The response signals of the DUT are returned in “responseli]” by the procedure “exercise”. The Geel “read”

statement performs the transfer of the response signal to the “responseli]” array.

/* Geel code fragment. */

read; [+ copy tester port O (pins 1..16} into response(l] /
read hold @ 3; [+ copy tester port 3 (pins 33..48) into response[2] #/
read @ 2; [+ copy tester port 2 (pins 17..32) into response[2] */

This behavior is symmetric with that of the “assert” statement. The “@” and “hold” constructs behave the
same way.

5.2.4 termed
This is the return status of the procedure “exercise”. A value of 0 indicates a normal return, whereas a value
of 1 indicates an error return.

[+ Gcel code fragment /

if {pin 9)
exit; /¢ normasl return if pin 9 of DUT is high =/

MSL UNC Department of Computer Science 29 May 1985



V. Chi Terak Tester User’s Guide page 4

else
error; J* error return otherwise «/

6 The Software Environment

This section introduces the software environment in which the test program is developed and run.

Testing is performed on the Terak at MSL. The Terak tester is an LSI-11 bzsed microcomputer system with
a modified four-port parallel 1/0 interface connected to a test head (DUT testing fixtare) by ribbon cables.
The Terak runs under UCSD Pascal System V2.0; see UCSD {3]. For Terak specific documentation, refer to
TERAK [4].

The Pascal driver program is compiled on the Terak under the UCSD system. The driver source code may
be written and maintained either on the Terak, or on a VAX under UNIX; communications facilities for file
transfer are necessary to support Geel code, in any event,

. The Geel program must be compiled under UNIX, typically on the Department VAX {Dopey} or the MSL
VAX (John), as Geel is only supported under UNIX. Refer to the manual entry for geel(local), for details
on using the geel compiler. The object code generated by the geel compiler must be assembled and linked
to the driver program on the Terak, using the UCSD tools,

A utility program called “terminal”, running on the Terak, can transfer files to and from a UNIX system,
as well as acting as a terminal.

6.1 The general procedure
1) Write your drivers, Geel programs, (and test input files, if any} on the Dvax;
2} compile the Geel program on the DVax;
3) transfer the driver source code, compiled Geel code, and test input files to the Terak;
4) compile the driver program on the Terak;
5) assemble the Geel code on the Terak;
6) link the driver and the Geel modules together on the Terak;
7) perform tests on the Terak;
8) transfer results back to the Dvax.
Appendix B works through an example of compiling, transferring and linking.

8.2 UCSD Pascal fools
Each user of the Terak tester should create and maintain a personal working disk. The Terak disk drives
are single-sided double-density drives accepting 7 inch soft-sectored floppy disks.

Before being useful, a new disk must be formated. If it is to be used “stand-zlone”, it must have a bootstrap
program written on its first two blocks. To support the tester, it must bave at minimum the following files

written on it:

SYSTEM.PASCAL
SYSTEM FILER
SYSTEM.8510.QB
SYSTEM.CHARSET
SYSTEM.EDITOR
SYSTEM.COMPILER
SYSTEM.LIBRARY
SYSTEM.MISCINFO
SYSTEM.LINKER
SYSTEM.ASSMBLER

MSL UNC Department of Computer Science ' 29 May 1985



V. Chi Terak Tester User’s Guide page 5

TERMINAL.CODE
FORMAT.CODE
11.0PCODES
11.ERRORS

Appendix B contains a cockbook procedure for configuring a new disk for use with the Terak tester.

6.8 Geel and UNIX

Geel is a compiler which is resident on a host computer running UNIX, such as the UNC Computer Sci-
ence Department VAX (Dopey). A Geel source code file, “flename.g” is compiled to an object code file,
“flename.t". The object module is actually L5I-11 assembly code which is human-readable.

All of the standard UNIX tools are available, such as the editors, version control, makefiles, etc. are available
to write and maintain the Geel source and, if desired, the Pascal source code,

Refer to Appendix B for a detailed example of the entire process of generating a complete test program.

7 Hardware Environment
This section introduces the hardware environment for chip testing.

7.1 Description of the Terak Tester hardware

The Terak, test fixture, and the DUT (your chip) are the three basic components of the hardware confign-
ration. The test fixture consists of a test interface card in the Terak and an external test head containing
the DUT socket. The test head is connected to the interface with ribbon cables.

There are several interchangeable test heads to accommodate different packages such as 24-, 40-, and 64-pin
DIPs, and 84-pin PGA packages. Standard test heads for these packages are available, while custom test
keads can be built by contract to the MSL. The standard test heads map the logical tester pins sequentially
onto the physical pins of the DUT socket, i.e., tester pin 1 to DUT pin 1, tester pin 2 to DUT pin 2, etc.
Custom fixturing with different mappings may be used if the ultimate performance is required of the tester.

The Terak is the control station on which the test program is executed. The test interface is a four port
bidirectional parallel interface to the Terak Q-bus. It is accessed by the Terak as eight consecutive 16-bit
words in memory; thus chips with up to 128 pins can be tested. The test program in the Terak sends signals
to the interface ports. These signals then pass through the ribbon cables to the test head and finally to the
pins of the DUT socket.

The DUT socket on a standard test head is a zero-insertion-force (ZIF) socket. It is typically green, and
has a release lever to allow easy inserticn and removal of the DUT. The lever should always be in the up
position while inserting or removing a chip. Moving the lever to the down position will firmly lock the chip
in place, ready for testing. 3

The standard test heads can accommodate any chips packaged in DIP’s up to 64 pins, and 84-pin PGAs,
The heads available at this time are for 40-pin (can be used for 24-pin packages) and 64-pin DIPs, and for
84-pin PGAs. For DIPs, the standard head pins are numbered sequentially, starting with pin 1 being nearest
the release lever of the ZIF socket, an proceeding counter-clockwise. For PGAs, the pins are numbered
sequentially according to the MOSIS bond-out pad specification.

Five volt power and ground are available on the test head on two banana jacks. The red jack is +5 volt
power, and the black is ground. On some test heads, further provision is made for a second (“V.hot”) power
supply. Each standard test head has a set of access points corresponding to the pins of the ZIF socket.
Power and ground connections must be made by the user by connecting the appropriate access point to
these banana jacks and/or to external power source(s).

Note that the actual pin numbers as used in the testing programs are referring to the pins of the test interface.
They do not refer to the pins of the ZIF socket. The mapping between these sets of pins is established by the
test head wiring. The standard test heads have hidden this distinction by providing an identity mapping.

Some applications will need a custom mapping, for which a custom test head is required. If at all possible,
however, the user should use the available standard test heads. ZIF sockets are in the $75 range, and there

MSL UNC Department of Computer Science 29 May 1985



V. Chi Terak Tester User’s Guide page §

is & cost in building a special test head. While it is up to the user to cover the costs, MSL personnel can
build a custom test head to specifications, or help the aser to build one,

7.2 Procedure for Setiting up the Chip for Testing

1} Connect the cables from the Terak to the test head: the JI cable to the JI socket and the J2 cable
to the J2 socket, etc., making sure that the pin 1 marks of the cable plugs match those of the
sockets,

2) Set the switch on the test head to the “off” position and set the release lever on the ZIF socket to
the “open” {up) position.

3) Connect power supply and ground to the appropriate access pins. (Note: the power supplied by
the Terak through the J1 and J2 cables is +5 volts). Be sure to make the connections to the
correct pins or you can fatally damage the chlp.

4) Plug the chip into the test socket, making sure the chip is seated properly, and that pin 1 (marked
with a dot on the DIP, or at the notched end of the DIP) is adjacent to the release lever; then lock
the chip in place by moving the release [ever to the “closed” position. Handle the chip with
care to avold damage; a static discharge from your body to a chlp®s pin can kill it.

5) Turn on the power switch.

6} Perform your tests.
7} Turn off the power switch, open the release lever, and remove the chip from the test socket.

8 Programrn!ng Examples

The exarmples in this section are intended to introduce geel constructs and driver program techniques. These
examples are all real in the sense that they actually operate as advertised on the Terak tester. The geel
compiler as implemented under 4.2BSD UNIX will generate code which can be assembled and linked to the
driver program by the Terak under the UCSD Pascal system.

The simple driver programs in examples 1 and 2 illustrate how to assemble and analyze stimulus and response
vectors, and how these vectors are passed to and from the gcel procedure, “exercise™.

Example 3 introduces some geel control flow facilities which allow one to move speed-critical test segments
out of the driver program, whick is slow, and into the geel procedure, which is relatively fast. A listing of
the compiled gcel code, i.e. an LSI-11 assembly code segment which is linkable as a UCSD Pascal procedure,
is provided for the benefit of hackers desiring to analyze the gcel code generator.

Examples 4 and 5 are taken from tests which were performed on real custom VLSI cirenits. Example 4 shows
only the gecel code, and emphasizes how geel was used to maximize the speed of the Terak tester. Example
5 represents how a simple geel program can be used with a very baroque driver to enable very complex and
intricate tests to be performed. .

MSL UNC Department of Computer Science 29 May 1985



V. Chi Terak Tester User’s Guide page 7

8.1 Example 1

This example consists of a geel program and its associated PASCAL driver program. It implements a check
of the tester drive and sense electronics and associated device fixturing. The response analysis is intentionally
kept minimal; just sufficient to illustrate bow to access response vectors. This test will detect stuck-at fanlts
and inter-pin shorts, reporting only that a fauli was detected in a given port.

The Geel Program

R R R R Y
/+ The geel program is executed by each call of the procedure “exercise” in the driver */
[* program. In this case, stimulus and response vectors are passed as parameters, as is */
[+ (automatically), a termination condition code. The control parameter is not used in this +/
[+ example. During compilation, the gcel program is passed through the C preprocessor, */

/* so comments such as this one can be included in the geel text. «/
/*******#******#####t#*##***##t##**t**t*t*l***#!

{

assert @0;
assert @F;
assert @2;
assert ©3;
read @0;
read @1;
read G2;
read @3;

}

Ezplanation:

Each “assert” sends signals to a different word and each “read” reads from a different word. Each word is
sixteen bits and is mapped onto sixteen pins of the DUT. The standard test head maps bits 0..15 of word[0]
to pins 1..16 of the DUT, bits 0..15 of word|1] to pins 17..32 of the DUT, etc.

The order of the statements must be related to the order of the test vectors stored in the stimulus array.
That is, the first vector in the array will be asserted at word|0], the second at word]i], etc. Similar comments
apply to the response vector array.

The Driver Program

/###**###**#**t***#*###t**t#**tttt*#tt***tt#i*t/
/* A useful feature of this driver program is the use of a variant record to specify a pin +/
[+ within a given port, and to cast this into an integer type for communication to the =/
[+ procedure “exercise” This is a convenient way to circumvent the tendency for UCSD #/
/* PASCAL to interpret a most-significant pin (bit} specification as an integer sign-bit.  */
/***‘****t*****t$*¥#*t**t*t***#t**##*tt**t*****/

{$5+} /+ UCSD compiler directive to enable swapping */

program porttest{input,output);

type control = array[1..1] of integer;
vector = array|l..4] of integer;
pintype = record
case integer of
0: (int: integer);
1: (bit: set of 0..15)
end;

MSL UNC Department of Computer Science 20 May 1985



V. Chi

Terak Tester User’s Gulde page 8

ctrl: control;

stimulus: vector;

response: vector;

portno, pinno, termcode: integer;

pin: pintype;

procedure exercise (var ctrl: control; var stimulus: vector;

var response: vector; var termed: integer);
external;

procedure initialize;

begin [+ initialize #/

stimulus[l] := 0; stimulus|2} := 0; stimulus{3] := 0; stimulus|4] := @;
writeln(*This is a program to test the test head and pin drive');
writeln(’electronics. You may select any (port-number, pin-sumber)’);
writeln('pair to test, within valid range {ports: 1..4; pins: 1..16}.’);
writeln(’To terminate test, select out of range (e.g. port 0).');

writeln;

end; [+ initialize */

procedure dotest;

var i integer;
begin [+ dotest #/
stimulus[portno] := pin.int;
exercise{ctrl, stimulus, response, termcode};
if termcode <> 0 then
writeln(’Geel execution error.’)
else
fori:=1toddo
if stimulus{i] <> response]i] then
writeln(’ Fault detected in port’, i, .");
end; [+ dotest *f

begin [+ porttest */

mitialize;

write(’Enter port number and pin number to be tested: ’); readln(portno, pinno);
while (portro >= 1) and (portno <= 16) and (pinno >= 1) and (pinno <= 16) do

end.

begin

pin.bit := [pinno - 1};

dotest; '

pin.bit = [ |;

dotest;

writeln;

write{’Enter next port and pin number: ’); readin(portno, pinno);
end; '
[+ porttest #f

8.2 Example 2

This is a geel program used to test a 40-pin test head. It is similar to example 1, but shows another feature
of the geel language: declaration of ensembles of pins to be driven or sensed as groups.

The Geel Program

MSL

UNC Department of Computer Science _ 20 May 1985



V. Chi

Terak Tester User’s Gulde

page 9

R Y
/+ I we were to delete the “assert @3” and “read @3" of the Gcel program in example 1, «/

[+ it would become equivalent to this program.
/*#*#**t#*‘*t*tt‘**‘#*********#*t*i#*#‘**t***#*/

Ezplanction:

stimulus 40 pins;
response 40 pins;

{

asgert;
read;

h

+/

The example here shows the “stimulus® and “respomse” declarations. These declarations tell the Geel
compiler that when we use an assert or read statement, we want to operate on all 40 pins together. Without

these declarations, we must sssert 3 times and read 3 times to accomplish the same thing.

While we assert signals to all 40 pins by one geel “assert” statement, the driver program must assemble a
2-byte array of fest vectors in the correct order in the stimulus array. Similarly, the single gcel “read” passes

a 3-byte array back to the driver program.

The Driver Progrem

/*#*tt*****#***tt**##t*t**i**#t#######*****#*#*/
[+ The use of the variant record is extended here to aid in the formatting of signals for =/

[+
/*
/*

{$5+}

the entire 40-pin group.
implementation-dependent behavior.

“set” type onto the “integer array” type in the appropriate order.
/****t**t**t*********‘*t**#*****tt*t****t******/

program tst40pin{input,output});
const msb =39; [+ bit corresponding to pin 40 =/

type control = array[1..1] of integer;

vector = array|l..3] of integer;
pintype = record
case integer of
0: (vect: vector);
1: (bits: set of 0..msb)
end;
ctrl: control;
stim, resp: pintype;
bitnum, termcode: integer;

procedure exercise (var ctrl: control; var stimulus: vector;

var response: vector; var termed: integer};
external;

procedure initialize;

MSL

begin [+ initialize */

writeln{’This program tests a 40-pin test head and pin drive’);
writeln{’electronics. It uses a "marching one/zero™ test’);
writeln("pattern to detect stuck-at and other faults.’);

UNC Department of Computer Science

~Note that use of the variant record to cast types exhibits +/
On the Terak tester, UCSD Pascal maps the */

+/

29 May 1985



V. Chi Terek Tester User’s Gulde page 10

writeln;
end; [+ initialize #/f

procedure dotest;

procedure binwrite {pin: pintype);
var i integer;

begin [+ binwrite »/

for i := 0 to msb do
begin
#f i mod 8 = 0 then write(’ *);
if i in pin.bits then write(’1')
else write(’0');
end;

writeln;

end; [+ binwrite «/

begin [+ dotest =f
exercise(ctrl, stim.vect, resp.vect, termcode);
if termcode <> O then
writeln('Geel execntion error on pin ’, bitnum, °.’)
else if resp.bits <> stim.bits then
begin '
write('stimulus:’);
binwrite(stim);
write('response;’);
binwrite(resp);
writeln;
end;
end; [+ dotest sf

begin [+ tst40pin */

initialize;

for bitnum := ¢ to msb do
begin
stim.bits := [bitnum);
dotest; .
stim.bits := [0..msb] - [bitnum];
dotest;
end;

end. [+ tst4Opin */

8.3 Example 3

The previous examples involved calling the geel procedure “exercise” once for each stimulus-response vector
pair. This is exceedingly slow for two reasons. First, because a procedure call involves significant overhead;
second, because UCSD Pascal is implemented oa & p-machine emulator, which incurs even more overhead.
Gcel provides an escape hatch akin to writing assembler code for the LSI-11 processor in the Terak, allowing
the user to migrate speed-critical code segments from the driver program to the gee] program, where they
can be executed at the full speed of the LSI-11.

Geel allows for long high-speed sequences by implementing loop constructs, Several loop closure mechanisms
are featured, as delineated in Appendix A, This example will introduce the use of loops in geel using the
“repeat” statement and the “control” parameter for loop closure.

MSL UNC Department of Computer Science 29 May 1985



(y

V. Chi " Terak Tester User’s Gulde page 11

The Geel Program

[tos a8t st sttt stssssssssrssssssssssssssrenssf
[+ Line numbers are used in this listing for purposes of discussion. The actual gcel code «/
[+ cannot have line numbers. Remember that this entire gcel program is executed once +/
[+ for every call of “exercise” by the driver program. s/
/##"t““‘““...““.“.“.“‘.‘.““““‘t‘t/

1: push sp;
2:  repeat control times {
s Pop sp;
4: push sp;
5: repeat control hold times {
6: assert O 0;
7. assert O 1;
8: read @ 2;
9: }
10 } .
Ezplanation:
line 1: Save the stimulus array index, pointing to “stimulus[1]”. This allows us to re-use stimulus|l] and

line 2:

line 3:
line 4:
line 5:
line 6:
line 7:

line 8:

stimulus|2] on each pass around the subsequent loop.

Repeat the execution of lines 3 through 8 “control[l]” times. Since “hold” is not specified, the next
control parameter will be “control[2]”.

Reset the stimulus array index to “stimulus|1]”,

and save it again for the next pass through the loop.
Repeat the execution of lines 6 through 8 “control{2]” times.
Assert signals from stimulus(1] on pins 1 through 16.

Assert signals from stimulus[2] on pins 17 through 32. Since “hold” wasn’t specified in line 6, we
know it’s now stimulus|2].

Read the outputs from pins 33 through 48, and store them in response[X]. X auto-increments; X = 1
the first time through. Thus, the test results will be stored into the array “response|[l]” through
“response|control[1]«control|2]]".

Gecel compiles its source code to generate an LSI-11 assembly code module. The code generated by compiling
the above program is shown here:

PROC EXERCISE, 4

; lNTERFACE
EXERCISE(VAR CONTROL_ARRAY: ARRAY|1..?] OF INTEGER;
; VAR STIMULUS_ARRAY: ARRAY(1..?] OF SET OF 1..STIMULUS PINS;
: VAR RESPONSE_ARRAY: ARRAY|1..?] OF SET OF 1.RESPONSE PINS;
H VAR TERM._CODE: BOOLEAN);
CNTLADR EQU 8. ; CONTROL BUFFER ADDRESS :
STIMADR .EQU 6. ; INPUT BUFFER ADDRESS : SET OF 1..STIMWIDTH
RESPADR .EQU 4. ; OUTPUT BUFFER ADDRESS : SET OF 1.RESPWIDTH
TERMCD EQU 2. ; TERMINATION CODE 0=0K, 1=ERROR
RETN EQU o ; RETURN ADDRESS IS ON TOP
NPARMS EQU 8. ; 10 BYTES OF PARAMETERS

UNC Department of Computer Science 29 May 1985




V. Chi

MsL

Terak Tester User’s Gulde

; PARALLEL PORT ADDRESS
PPORT .EQU 0176540

s EMT TRAP ADDRESSES
EMTPC .EQU 030
EMTPS [EQU 032

;s INITIALIZATION CODE

MOV  R5,G#SR5 : SAVE REGISTERS
MOV  R4,0#SR4
MOV  R3,@#SR3
MOV  R2,@#SR2
MOV  SP,O#OLDSP  ; SAVE STACK POINTER

MOV  CNTLADR(SP),6#CP

MOV  STIMADR(SP),R5 ; INITIALIZE REGISTERS

MOV  RESPADR(SP)R4

page 12

MOV  #PPORT,R1I  ;KEEP PPORT ADDRESS IN R1 FOR SPEEDY ACCESS
; SET PRIORITY UP

MOV  #START,@#EMTPC
MOV #0340,Q#EMTPS
EMT O

; CLEAN UP CODE

MOV  @#SR5RS5 ; RESTORE REGISTERS
MOV  @#SR4R4
MOV  @#SR3R3
MOV  @#SR2R2

MOV  RO,@TERMCD(SP) ; RETURN STATUS IN TERMCD

MOV  (SP)+,R0  ; RETURN ADDRESS
ADD  #NPARMS,SP  : DISCARD PARMS
IMP  @RO

START:

MOV  SP,@#OLDSP  ; SAVE SP
MOV R5-(SP)

MOV @#CP,RO

MOV (RO)+,@#CN1

MOV RO,8#CP

MOV (SP)+,RS5
MOV RS,-{SP}
MOV @#CP,RO
MOV (R0),@#CN2

MOV (RS5)+,(R1)

MOV (R5)+,8#PPORT+2
MOV @#PPORT+4,(R4)+
DEC @#CN2

BEQ JSKP2

JMP RB1

JSKP2:

DEC @#CNI1
BEQ JSKP3
IMP RBO

UNC Department of Computer Science

29 May 1985



V. Chi Terak Tester User’s Gulde
JSKP3:
MOV  #0R0O
EXIT:
MOV  @#0OLDSP,SP ; RESTORE THE SP
RTI
: DATA AREA
QOLDSP .WORD
SRS .WORD
SR4 .WORD
SR3 .WORD
SR2 .WORD
CN1 .WORD
CN2 .WORD
CN3 .WORD
CN4 .WORD
CN5 .WORD
T .WORD
CP .WORD
.END

8.4 Example 4

This example is an actual test. It was used to check the operation of Bishop’s Self-Tracker{7]. This system
is composed of a photo-sensor array integrated on the same chip with a processor; therefore, some of the

inputs to the DUT were optical and therefore not visible, per se, in the test program code.

page 13

The purpose of this example is to illustrate how to use geel to get the highest speed performance possible

from the Terak tester. Secondarily, it introduces more features of the gcel language.

Notice that the geel code in this example performs many clock eycles of activity for each call of “exercise”
by the driver program (not included in this example).

R R Y
[* The geel features introduced here are a macro facility for symbolic references, the direct »/
/* pin setting statements “hi” and “lo”, the phase declarations “phil” and “phi2”, and #/
[+ their associated “clock”™ statement.
R R O N R R R )

MSL

F#Edefine halfcells 108
#define shift pin 3
#define strobe pin 4
#define reset pin 5
##define top pin 6
F#define bot pin 7

phil pin 1;
phi2 pin 2;
response 7 pins;
lo shift strobe;
ki reset;

clock 20;
lo reset;

UNC Department of Computer Science

+/

29 May 1985



V. Chi Terak Tester User’s Guide page 14

clock control;

hi strobe;

clock 10;

lo strobe;

clock 10;

repeat halfcells times
{
read;
hi shift;
clock 10;
lo shift;
clock 10;

}

bi reset:

Ezplanation:

Macros: Geel code is first passed through the C pre-processor. Thus, all of its macro facilities are available.
This example shows the use of the “define” facility to provide mnemonic references to pins of the DUT.
Other facilities, such as file inclusion, parameterized macros, and conditional definitions are also provided.
Refer to the UNIX manual [5] entries for “cc(1}” and “m4{1)" and to Kernighan and Ritchie[6], for detailed
information regarding the pre-processor,

Setting pins: Geel allows immediate, in-line specifications for setting specific pins high and low. A “hi”
(“lo”) command followed by a pin list {terminated by a “;"} will set the listed pins high (low) without
affecting any unreferenced pins.

Clocking: Geel provides antomatic clock generation for two phase non-overlapping clocks. The clock phases
are bound to pin numbers using the “phil™ and “phi2” declarations. The “clock” statement causes phase 1
to be driven high, then low, then phase 2 high, then low. The value following “clock™ specifies the number
of repetitions of this clock cyele to exeeunte.

MSL UNC Department of Computer Science 29 May 1985



V. Chi Terak Tester User’s Guide page 15

8.5 Example 5

This a complete working example, It was used to test Pixel-Planes chips preparatory to integration of the
chips into the {now functioning) experimental system. While much of the driver program may not be of
general interest, it is included both for completeness, and to give the reader a flavor of how a very complex
and involved test can be supported by the Terak Tester.

In this case, a simple Geel procedure is used. The test is designed to demonstrate logical correctness, and
was not speed-eritical. The complexity of the test itself was therefore managed better in the Pascal driver,
. which is exactly how it was done.

This strategy separates test data generation from the actual testing. The stimulus array is read from external
files. The test responses along with the input vectors are written onto an output file. This mechanism allows
communication between a simulator and the tester. The simulator generates pre-processed test data, while

the driver program performs the running of the test.

8.5.1 The Geel program

ftdefine phil pin 31
Fdefine phi2 pin 30
#tdefine px! pin 29
#define px2 pin 28

stimulus k3| pins;
response 9 pins;

repeat control times

{

assert;

hi phil pxI;
lo phil px1;
hi phi2 px2;
lo phi2 px2;
read @2;

|5

8.5.2 The Driver Program

/********#****t**#******t##**i*********tt**'***t/
[+ Driver Program for chip testing: accepts data from an input data file, gencrates control */
[* and stimulus vector arrays with proper values, executes the “exercise” procedure, reads */

[+ back response vectors and prints the input data and the test results in a useful format +/
/**t******#**t*#**tt****tt***3******#***‘3*****/

program pxpl30test();

const ArraySize = 2000;

HalfSize = 1000;
CASize = 800;
ComLine = 50;

type CntlArray = array|l..1} of integer;

MSL . UNC Department of Computer Science ' 29 May 1985



V. Chi Terak Tester User’s Gulde

StimArray = array[l..ArraySize] of integer;
RespArray = array{l..HalfSize] of integer;

var  control: CutlArray;
stimulus: StimArray;
response: RespArray;
termed: integer;
fin: text; /* input file pointer +/
fout: text; /* output file pointer */
filename:  string; /+ user-entered file name «f
ComArray: array[l..CASize] of char;
inputl: array[1..4] of char;

GlobalTOut: char;
TempCom: integer;

procedure exercise( var control: CntlArray;
var stimulus: StimArray;
var response: RespArray;
var termed: integer);
external;

[+ returns the integer value of a hex character «/

function hexdec{ch: char): integer;
var i: integer;

begin /+ hexdec */

case ch of
W= i=1,2%1:=2,31:=3;
Y= 40 1:=5,6 1:=6;'T:1:=T,
8 = 89" 1= 9 'A% = 10; ' 1= 10
B:i:=11'b" i:=11;'Chi:= 12;'¢" i :=12;
Dhi:=13;'d" 1:=13;’E"1:=14;¢"1 i := 14;
F:i:=15"1:i:=15

end;

hexdec := i

end; /+ hexdec */

[+ gets the input data file name from the terniinal, reads and converts hex data from file, */

/* and puts data into stimulus vector.
procedure getdata{var control: CntlArray; var stimulus: StimArray);

var i, j, count: integer; [* temporary storage «/
ch: char; [+ temporary */

begin [+ getdata +/

[+ get test input data file name +/
writeln; :
writeln;
write{ 'Enter name of data file please: ’);
readIn(filename);
if pos(’.’, filename)=0 then
filename := concat(filename, ".TEXT’);

MSL UNC Department of Computer Science

+/

page 16

29 May 1985



Y. Chi

MSL

Terak Tester User's Gulde
reset(fin, filename);

writeln;
write ('processing begins .’);

=k
while not eof{fin) do
begin
[+ avoid looping */
if (j > ArraySize} then
begin
close(fin);
exit(getdata)
end;

[+ skip comments =/
if (j = 1) then read(fin, ch);
while {ch ="]') do
begin °
readIn(fin);
read(fin, ch)
end;

[+ read in the first stimulus vector, put into inputl| | */
inputd|1] := ch;
1:=2;
while not eoln(fin} do
begin
read{fin, ch);
inputl[i] := ch;
i=i4+1
end;

/* convert hex input vector in inputl| ] to integer
and put it into stimulus| | */
stimulusfi] := 0;

i:=1
while (i < 8} do
begin _
stimulus[j] := stimulusfj] * 16 + hexdec{inputili]);
i=i+1
end;

/* read in the second stimulus vector, put into input2{| =/
=1
readin(fin);
while not eoln(fir} do
begin
read(fin, ch);
input2i] := ch;
=i+l
end;

UNC Department of Computer Science

page 17

20 May 1985



V. Cti Terak Tester User’s Guide

=i+

stimulus(j} := 0;

[+ convert hex input vector in input2| | to integer
and put it into stimulus| ] «/

ii=1
while (i < 5) do
begin
stimulus[j] := stimulusj} * 16 + hexdec(input?2 [i});
i=i+1
end;

[+ ignore the response vector — a string of integers */
readln(fin);

while not eoln(fin) do read{fim, ch};

readln(fin}; :

read(fin, ch);

i=itL

end;
write ' processing complete');
close(fin);

controll] := j div 2;
end; [+ getdata */

function dechex{number : integer): char;
var ch:  char
begin
case pumber of
© 0:ch:='0 1 ch:="1"; 2: ¢h