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Abstract -

Recently, attention has been focussed on temporal databases, representing an enterprise
over time. We have developed a new language, TQuel, to query a temporal database.
TQuel was designed to be a miminal extension to Quel, both syntactically and semanti-
cally, of Quel, the query language in the Ingres relational database management system.
This paper discusses the language informally, then provides a tuple relational calculus
semantics for the TQuel statements that differ from their Quel counterparts, including
the modification statements, The three additional temporal constructs defined in TQuel
are shown to be direct semantic analogues of Quel's where clause and target list. We
also discuss reducibility of the semantics to Quel's semantics when applied to a static
database.

A prelimipary version of the material in-the first third of this paper appeared in the
Proceedings of the Third ACM SIGAct-SIGMod Symposium on Principles of Database
Systems [Snodgrass 1984] and in the Proceedings of the ACM SIGMod Conference on the
‘Management of Dats [Snodgrass & Ahn 1985]. This paper is a major revision of technical
report TR 84-008, July, 1984. This work was supported in part by National Science
- Foundation grant DCR-8402339 and by an IBM Faculty Development award.
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1. Introduction

Most conventional databases represent the state of an ‘enterprise at a single moment of time.

Although the contents of the database continue to change as new information is a.d‘d'ed,': these changes are

viewed as modifications to the state, with the old, out-of-date data being deleted from the database. The

current contents of the database may be viewed as a snapshot of the enterprise.

‘Recently, attention has be_en focussed on temporal databases, representing the proére_ssion of ‘states
of an enterprise .over an interval of ti.me. In su_ch databases, chén'ges are viewed as addiﬁons té rthe infor-
mation in the database. Temporal databases {TDBs) are thus generalizations of c_c')nve.ntioila! (termed
static) databases. |

| ‘We have developed a new language, TQuel (Temporal QUEry Language), to query a TDB. TQﬁei
is a derivative of Quel [Held et al. 1975, the query language for the Ingres re!a.ltional da.ta;ba;s.e manage-
ment system [Stonebraker et al. 1976]. TQuel was desigﬁéd to be a minimal extension, both. syx;t,;;.tically

and semantically, of that language. This design decision has three important ramifications: all legal Quel

statements are also valid TQuel statements, such statements have an identical semantics in Quel and

‘'TQuel when the time domain is fixed, and the additional constructs defined in TQuel to handle time’

have direct analogues in Quel. TQuel is, then, 2 natural exfensipn of a static relatio.na,l query language to
a.'temp.ora;l'ifela.tiona.l quéry language. |

‘ Ma;jbr_j-portions of the Iahguage have been formalized and implemented. This papér .wili focus on the
syntax and semantics of TQuel; the implementation will be deseribed in a later paper. This paper first

introduces the concept of temporal databases in Section 2, and provides an overview of the language in

the third section. A formal definition and 'Semé.ntics of TQuel is the subject of the next two sections. The

final section summarizes the results, compares TQuel to other query languages, and indicates future

work. An appendix gives the complété syntax of the augmeﬁted TQuel statements.



2. Temporal Databases

Ten"lpora.! information has been stored in computerized information systems for many years; payroll
and accounting systems are typical examples. In these systems, the attributes involvir-lg time are manipu-
lated solely by the application programs; the DBMS interprets dates as values in the base data types.
For example, the ENFORM database management system encodes dates and times in character arrays
[Tandem 1983]; the Query-by-Example system supports both date and time domain types directiy [Bon-
tempo 1083); and Ingres has been extended to convert dates to and from an internal format and to per-
form compatisons and arithmetic operations on these domains |Overmyer & Stonebraker 1982, Relational.
Teéhnology 1884]. However, none of thesé systems intérpret temporal domains when deriving new rela-

tions.

The need to handle time more comprehensively surfaced in the early 1970’s in the area of medical
informa.tiép systemns, where a patient;s medical history is particularly important. The model supported
by the Time Orientéd Databank [Wiederhold et al. 1975 and several . other medical DBMSs {e.g.,
CLINFO [Palley et al. 1976]) views the database as a set of entit;y-attribute‘va.lue-time quadruples, where
t.he tim?_ portion indicates when the information represented by the tuple became valid. In these systerns,
the query language is used to select subsets of quadruples from the three dimensional database of entities

(i.e., patients), attributes, and times.

In the Ia._sf. five years, int.e;_‘e_s? in the area of TDBs has increased. In a recent, extensive bibliography
[Bolour- et a.l '1982|, containing 69 articles from the period 1960 to June, 1982, over half of the referenced
articles were published since 1975.‘. This activity may be classified Iéosely into three emphases: the formu-
lation of a semantics of time at the coneceptual level, thé development of a model for TDBs analogous to
the relational modél for static database;'s, and the deéign of temporal query languages. However, the prob-
lems inherent in t.ﬁe modeling of time are not unique to information processing; a significant literature
exists on related issues in'artiﬁci-al‘ intelligence (c.f., [Allen 1983, Allen 1981, Allen 1984, Chéeéé‘man 1_983,-
- Fagan 1980, Findler &VChen 197%, Kahn & Gorry 1975, Long & Russ 1983, McDermott i§82, Tsotsos

1981, Vilain 1982]), linguistics (c.f., {Dowty 1972, Hirschman & Story 1981, McCawley 1871, Montague



. 1973|), logic (c.f., [McArthur 1976, Prior 1967, Rescher & Urquhart 1971}), philosophy (c.f.; {Whitrow

1980]), and physics {c.f., [Taylor & Wheeler 1966]). -

Bubenko [Bubeﬁko 1976, Bubenko 1977, specified a TDB and examined two possible implementa-
tion strategfes, in the binary and n-ary relational models. Since the appearance .of these papers, vﬁ.rious
semantic modeis have been pr_oposed that inlcorporate the temporal dimension- to varying degrees [Ander-
son 1981, Anderson 1982, Breutmann et al. 1979, Bubenko 1980, Codd 1979, Hé.mmer & McLeod 1981,
Klopprogge 1981]. |

At least two possible appro#ches to the development of a model for TDBs have been suggested. One
is to extend the semantics of the relational model to incorporate time directly. The other is to base
"’I'“l).Bs on the static model, .with time a.ppéaring as additional attribute(s). The ﬁrst. has been applied suc-
cessfully by Clifford and Warren [Clifford & Wa.rreﬁ 1983}, with the entity-relationship fnodel used to for-
mulate the intensional logic IL_. This logic serves as a formalism for the temporal semantics of a TDB_.
much as the first-order logic serves as a formalism for the static relational model. Sernadas has taken
the same approach in defining the terﬁpéral proce'ss”speciﬁcabion lénguage DMTLT, which incorpora.te's a
special modal tense logic [Sernadas 1930]. | |

in the second approach, the static relational database model [Codd 1970} serves as the unde;'lying
model of the TDB. Each temporal relatjon is embedded in a static relation containing a.dditiqna,l tem-
poral attribute(sj. In this'approach,_the_lo’gic of the model does not incorporate time at ali; i_nstea.d, the
query language must _t.ra,ns!a.te queries and upda.t.es in'volving time into retrievals and modifications on the
underlyingﬁrsta.tic relations. Iﬁ Vp;articulalf,' the query _langﬁage must prqvide the appropriate values for.
these attribuﬁes in the relation being de_rived. In Ben-Zvi’s Time Relational Model, for example, five addi-
tional a.ttrib;"x.tes are appended tb each rel#tion {Bén—Zvi 1982]. Other researchérs have a.l_so"'htilized this
technique [Ariav & Morgan 1981, (.L'opn;.ié,'nd ‘& Maier 1984, Gadia & Vaishnav 1085, Joﬁes & Mason

1980].

Several query languages ineorpdra.ting' time ha&e been designed over the last decade. In Section 7.2,

TQuel iS coxﬁpéred with these other propoéa.ls.



Most databases incorporating time support only one aspect of time—the time when the informa-t.ion_
is valid. This aspect is. termed valid time. Two other aspects of time should be supported by a temporal
query language: fransaciion lime and uszer-defined time. The remainder of this section will characterize
these aspects briefly; a mbre comblete discussion may be found in [Sﬁodgrass & Ahn 1985, ’I:‘he presenta~
tion is more ;)f an intuitive nature than a formal characterization of tempor.a.l databases; Sectin 5 will
shoﬁv how to embed a temporal relation in a static relation, thereby providing a precise definition. Wé

take the second approach to modelling TDBs: utilizing the static model.

2.1. Statle Data_buga

Conventional databases model thé dj.na.mic real world, as a sna.pshot.' at a particular pbint_ in time.
A slate or an instance of a database is its current contenté, which does not necessarily reflect the current
status of the real world, since changes to the da.ta,ba'.se. will é.lwa,ys lag thind changes in the real world.
Updating the state of 2 database is performed using data manipulation operations such as insertion, dele-
‘tion or replacement, taking eflect as soon as it is committed. In this process, past states of the databa.ée,
and those of the real woﬂd, are discarded and l'orgétten completely. We term this type of databése a
static dctaba.ee.

In the relational model, a database is a collection of relations. Each relation consists of a set of
tuples with the same set of aftﬁ'butea and is gsuvally represented as a é—dimensional table (see Figure 1).

As changes occur in the real world, .cha.nges are made in this table.

Figure 1: A Static Relation




2.2. Statie Rollback Databases

Static databases relying on snapshots .are inadequate for many situations. For exafﬁp‘le, the}} cannot
answer queries on. past states. Without system support in this respect, many a,pp.lica.ti'o_nsr were foreed to
maintain and handle temp§ral information in an ad-hoc manner. One approach to resolve these
deficiencies is to store all past stateé, iﬁdexed by time, of the stagic database as it evolves. Such an
approaéh requires 2 representation ol; transact:_'zlm time, the timé the information was stored in the data-
base. A relation ulnder this approach can be fllustrated conceptﬁaliy in three dimensions (Figure 2) with
transaction time serving as the third axis. The relation can be regarded as a sequence of static relations |
in&exeﬂ by transaction time. One can get a snapshot of the relation as of some time in the past (a static
rela.t;ién) and make queries upon the static relation by moving a}ong the time axis and selecting th.is rela-
tion. The operation of selecting a static relation is termed roﬂbﬁck, and a da..tabase s.uppoi'ting it is
termed a stalic rollback database. A rollback to a time t,-whe're t is between two transaétion times ¢, and
ty ;epresented ina sta;ti_t: rollback database, selects the erst recent static relation in effect at that time
(i.e., the one at 'tl).- Changes to a static r_ollba.ck database may only be made to the most recent static
state. The (single) relation illustrated in Figure 2 had three transactions applied to it, starting from the
null relation: (1) the addition of three tuples, (2} the addition of a tuple, and (3) the deletion of cu_e- tuple

' (wﬁich was entered in the first transaction) a.hd the addition o.f another tuple. Ea.c;h- transaction results in.
a new static relation being appended to the right; once a I_:ransa,ction has completed, the static relations in

the static rollback relation may not be altered.

Figure 2: A Static Rollback Relation

&

transaction
time




2.3. Historlcal Databases

' One limitation of supporting transaction time is that the history of database activities is recorded,
father thﬁ.n the history of the real world. A tuple becomes valid as soon as it is entered into the data-
base as ip a static database. Retroactive/postactive changes are not recorded and errors in past tuples
cannot be corrected. Errors can sometimes be overridden (if they are in the current state) but they can-
not be forgotten. |

While static roliback databases record a sequence of static states, historicel databases record a sin-
gle historical state per relation, storing the history as is best known. As errors are discovered; they are
.corrected by modifying the database. Previous states are not retained, so the databa;e may not be
viewed as it was in the past. No is reco-rd kept of the errors that have been corrected; historical déta-
bases are similar to static databases in t.his'respect. Thus historical databases must represent valid time,

the time that the stored information models reality. Histofica!_ databases support historical gueries, which
may utilize information from the past.

Historical databases may also be illustrated in three dimensions (see Figure 3) [Ariav 1984, Ben-Zvi

1982, Clifford & Warren 1983, Lum et al. 1984]. Although the illustration as a series of static i'elations

indexed by a time parameter is similar in some aspects to Lhat..for static rollback database.s, the label of

the time axis has been changed to valid time and the semantics are more closely related to reality, rather

than update history. The state of the world being modelled remains unchanged between the individual

static relations found in the historical relation; this is termed the step function confinuity assumption

[Clifford & Warren 1983] or the principle of temporal density [Ariav 1984]. The information present in the

_ sta:tic_ database slice at one valid time v, is assumed to be valid for ail times between that valid time and

the next one, v,. Hence, the tuples in the relation are valid for the interval of time |v,, v,).

As the model now'stands, only states that exist for a finite interval of tim'e'ma.y be represented. One
representation of events is tuples that exist for exactly one valid time, with the static relations of the pre-
vious and next valid times not containing the tuples. This representation is problematic because time is

continuous: it is misleading to talk about the previous and next time values. Of course, any implement_a.-



tion will encode valid time in some discrete fashion; the proposed representation for events then reduces
to an interval of the granularity of the valid time encoding (say, seconds, or microseconds). Static rela-

tions, in modelling current reality, cannot represent events at all, precisely because they are ins_ta.nt.ahe-

ous.

_ Since an update to an historical relation must specify the valid time it concerns, more sophisticated
: operations are necessary to manipulate and query valid time adequately, compared to the simple rollback

operation, since they apply to the entire historical relation, rather than a single static slice.

'Figure 3: An Historical Relation

N N

time

2.4. Ten;poral Databases

Benefits of both approaches can be combined by supporting both transaction time and valid time.
W}hile a static rollback database views tuples as being valid at some time as of that time, and a historical -
&a.t.a.base a.lwq.ys views tuples as being valid at some. moment as of now, a temporﬁl DBMS makes it possi-
ble to view:_tuples as being valid at some moment relative to some other moment, co'mpletj,e.ly capturing
tﬁe history::::of retroactive/ post_a-g@_i:v,g ch'anges. .

We use the term temporal &étqbaag to empha.size the need for Bbt]:f‘xl.va!i.d time and transaction time
in handling temporal information. Since two time axes are now .invoivedz,r four dimensions are required to
re;;resen_t a tempéra,l relation (Figure 4 shows a sz'n;;le temporal relation). A terﬁporal reiation may be"
thought of as a sequence of historical sﬁates, each of which is a complete historical relation. The roliback

operation on a temporal relatiqn-selécts a particular historical state, on which an historical query may be



pérformed. Each transaction creates a new. historical state; hence, temporal relations are append-only.
Hoﬁever, the tfansiction must specify the valid timé(s) it concerns, as in an historical database. The
temporal relation in Figure 4 is the result of four transactions, starting from a null relation: (1) three
tuples were added, (2) one tuple was added, (3) one tuple was added and an existing one deleted, and (4) -
a previous tuple (with an earlier valid time) was deleted {presumably it should not have been there in t';he
first #Iace). Each update operation involves copying the historical relation, then applying the upda.te to

the newly created historical relation.

Figure 4: A Temporal Relation

vah\ vam va.h\ v_aﬁi\

time time : ‘ time time
transaction
time

User-deﬁned time [Jones & Mason 1980] is necessary when additional temporal information, not
handled by ‘transaction or vaiid.-stimt-e, is stored in the database. As an example, consider the Promotion
relation, with the three attributes name, rank, a.nd effective_date. The effective date is a user-defined
temporazl attribute, zind values of this attribute would'appear in one of the columns of Figures 1-4. This
date is the date that the promo.tion was to ;ake effect, as shown on the prbmotion [ette.r; the valid time is
the moment the promotion letter was signed, i.e., the dat; the promotion was yal';dated; and the transac-
tion time is the moment the information concerning the promotion was stored in the da,ta.base.. The
eflective date is applfcat.ion-speciﬁc: it is merely a date which appears on the promotion lepter. The values
of user-defined _temporal attributes are not interpreted by the DBMS, and are thus the easiest to support;
all that is ne_eded is an internal;__rgpres.entat.ion and input and outﬁut functions, The transaction and valid

times are needed in any case in temporal relations.

In this model, four types of databases were d_eﬁned: static, static rollback, historical, and temporal.

Each may be associated with a class of query languages. A stotic guery language supports queries over.



multiple static relations. A static rollback guery '!anguage also supports rollback. An historical gquery
{angusge does not support rollback, but it does support historical queries, which combine information -
from multiple valid times and possibly multiple relations. A temporal query language supports both roll-

back and historical queries. The next section will informally introduce the temporal query language

TQuel,

3. Overview of TQuel

TQuel is a superset of Quel [Held et a._l.. 1975], thf_: query language for Ingres [Stonebraker et al.
1976]. Quel was choseh for several reasons: it is well known and irriplementations are widely a.vaila.bl.e; it
is particularly simple but rather powerful; apd it has a simple and well defined semanties. The leadi_ng |
contender, SQL [S.Q'L/DS 1981], is more complex and has a rather complicated semantics [Ceri & Gottlob
1985, Kim 1982}, .An important goal in the design of TQuel was that it be 2 minimé.l extension, b.ot;h syn-
tac.tica.ll.y and .semantica.lly, of Quel. This objecf;iv.e has three impor'tant ramifications: all legal Que.l
statements are also valid TQuel statements, such statements have an identicﬁl semantics in Quel and
TQuel when the time domain is ﬁxed,.and ‘the additional constructs deﬁﬁed in TQuel to handle time

have direct analogues in Quel:

TQuel will be illustrated using example queries on the database shown in Figure 5. The Fa.cu.Itj
relation lists the faculty members and their ranks (one of the values Assistant, Associate, or Full); the
Submitted relation lists those papers submitted. In the discussion that follows, the reader is assumed to

be familiar with Quel,



Figure 5: A Static Database

P

Faculty (Name, Rank}:
Name Rank

Jane Full
Merrie | Associate
Tom | Associate

Submitted (Author, Journal):

Author | Journal

Jane CACM
Merrie | CACM
Merrie TODS

Tom JACM

Figure 6: Result of 2 Query on a Static Database

Associates (Name):
Name i
Merrie
~Tom

The Quel retrieve statement consists of two basic components, the target list, specifying how the
attributes of the relation being derived are computed from the attributes of the underlying relations, and

a where clause, specifying which tuples participate in the derivation. The query

range of { Is Faculty
retrieve Into Associates (Name == f.Name)
where [.Rank = "Associate”

~ Ezample 1: List the associate professors.

produces in the relation shown in Figure 6 when applied to the sample database. The range statement
associates tuple variables with relations; this binding remains in effect until 2 new range statement with

the same tuple variable is execﬁiéd.

The relations shown in Figures 5 and 6 are static relations. While the graphical representation of 2
temporal relation as a sequence.of three-dimensional structures is conceptually elegant, it is not con-

venient for displaying the contents of a temporal relation. For the purposes of this section, the temporal

10



relations will be embedded in a static relation by appending two additional temporal attributes. The
value of the first attribute specifies the valid time: when that tuple was 'valid. For event relations, which
consist of tuples representing iﬁstantaneous occurrences, thié attribute contains a single time value .(at).
For interval relations, which consist of tuples representing a state valid ovre.r a time interval, the g,ttribute
contains two time values delimiting the interval (from, to). The second temporal attribute specifies the
transaction time: wheﬁ the information was.ent.ered; into the TDB. Two time values are always associ-
ated with the transaction time: the time the t._ﬁple was entered into thel TDB (start), and the ti:ﬁe it was
removed (stop). Hence data is current from the a!qr! time to ju;?,t. before the stop time, when it becomes
no longer current. Figure 7 illustrates the Faculty relation extended to become an interval relation, and
the Submitted rélatioﬁ ektended. to hecbme,_ -an'éven:t. _reiat.ion. Note that Tom was entered into the data-
base as an associate professor in August, 1975; this error was corrected two rﬁonths laf.er. No erl;ors have
beeﬁ corrested in the Submitted relation, since the stop time for all tupleé.is “oo”. Both intervals, for
valid and transaction time, are closed'on.the left and open on the right. The granularity of time values

is arbitrary; in this séction we assume for simplicity a granularity of one month.
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Figure 7: A Temporal Database

Faculty (Name, Rank):

Name Rank Valid Time Transaction Time
(From) | (To) [l{Start) { (Stop)
Jane Assistant 9-71 12-76 9-71 0
Jane Associate || 12-76 | 11-80 j{ 12-76 0o
Jane Full 11-30 ) 10-80 oo
Merrie | Assistant 9-77 12-82 8-77 o0
Merrie | Associate 12-82 o0 12-82 o0
Tom | Associate 8-75 | oo 8-75 . 10-75
Tom Assistant g-75 12-80 || 10-75 o0
Tom Associate 12-80 ) 11-80 o0

Submitted {Author, Journal):

Author | Journal || Valid Time || Transaction Time
(At) (Start) | (Stop)
Jane CACM O 11-79 11-79 00
Merrie | CACM | 9-78 9-78 oo
Merrie TODS 579 579 oo
Tom JACM 12-82 12-82 0.

Since TQuel is a strict superset of Quel, the identical query, executed in September, 1985, on this
sample TDB, produces the relation shown iﬁ Figure 8. The transaction time specifies when the relation

_ was created; subsequent updates will alter the transaction time of individual tuples.

Flgure 8: The Same Query on a Temporal Database

Associates (Name):

Name Valid Time Transaction Time *
(From) | (To) |l{Start) | (Stop)

Jane || 1276 11-80-|. 9-85 S

Merrie 12-82 o l -85 00

Tom 12-80 0 9-85 )

Since the additional temporal attributes are an artifact of émbedding a temporal relation in a static
one, usersf:'must. be constra.in;eid in how which they use these attribute-s. The query language must be
designed s.o_ ﬁhat temporal atfrii)utes are used correctly. The ap.proac_h,taken here is to make the tem-
poral attributes implicit in the query language (except in one very restricted case), and f.o ;;rovide facili-

ties in the language for manipulating this implicit attribute. That these additional attributes are implieit
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is indicated in the figures by a double vertical line and parentheses surrounding the names of thé attri-
.butes. To manipulate these attributes, TQuel augments the retrieve statemént with th.reericdr;lponents,
analogous to the components of the Quel'ret,rieve statemént, onie specifying how the implicit vé._l_id tem-
poral attribute is computed, and two specifying the temporal relationship of the tuples participating in

the derivation.

3.1. The When Clause

The when clause is the temporal analogue to Quel's where clause. This clause consists of the key-
word _foﬂowed by a temporal predicate on the tuple variables, representing the implicit time attributes of
the associated relations. The syntax is similar to pafk ezpreseions, which are regular expressions aug-

mented wit}x parallel operators [Andler 1979, Habermann 1975].
The overlap operator specifies that the events and /or intervals overla.p in time:

range of 2 Is Associates '
retrieve into FirstDayAssociates (Na.me = a.Name)
when 2 overlap "September”

Ezample 2: List the associate professors in September.
In this case, the query specifies that the interval when the faculty member was an associate profeséor
should include September, which is also a time interval (strings, enclosed in double quotation marks, are

' temporé.l constants). As another example,

" range of a Is Associates
range of s Is Submitted
retrieve Into AssocPapers (Name = s.Author, Journal = s. Journal)
where a.Name = s.Author
when s overlap 2

Ezample 3: What papers were written by associate profes'sors?

The time that the paper was submitted must overlap with the time interval when the faculty member

was an associate professor.

Intervals include two time values in the implicit attribute; a starting time and a stopping time.

These values may be indicated by the unary operators start of and end of:"

13



range of {1 is Faculty

range of a Is Associates 7

retrieve into Full (Name = f1.Name)
where a.Name = Tom and {1.Rank = "Full"
when {1 overlap start of a

Ezample 4: Who were the full professors when Tom was promeoeted to associate?

Sequentiality may be tested with the precede operator:

range of z 1s Associates
retrleve into Disgruntled (Name = a.Name) _
when (start of a) precede "January, 1980" and "January, 1985" precede {end of 2a)

Ezample 5: Who has been an associate professor for the last five years?
" This example also iliustrates the and operator; the or and not operators are allowed as well.

Given the precede operator, the extend operator may l.ae.introduced. This operator is similar to
the overiap o'pérator. The overlap Operatér may be thought of as a tem;;oral intersection operator, in |
that it returns true when both arguments aré true:_the predicate

| | (a overlap b) precede ¢ .
is true when the_. overiap of t_hé intervals rep'resent‘;ed‘ by the tuﬁie variables 2 and b precedes the event <.)r
the _stért of the interval represented by c. However, the extend operator is more like a temporal union,
in t.haf it returns true when either of t.hr.; arguments aré_tfue; the predicate
(2 extend b) precede ¢

is true when the end of both 2 and b precede the start of ¢, The difference between overlap and extend

is illustrated with the time lines in Figure 9.
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Figure 0: The Difference between overlap and extend

time

| 2overlap b |

(a oirer‘lap b) precede ¢ = True

| ' a extend b’ . f
P | | I

(a extend b) precede ¢ = False

3.2. The Valld Clause

. The valid clause serves the same purpose as the target 1ist:_speéifying the value of a atiribute in the
derived rela_.tiqn. In this case,__t',_the attribute in question is the implicit time attribute. There a,fe two vari-
ants to this clause. If the derived relation is to be an event relation, the valld at variant specifies the

value of the single time in the temporal attribute,

range of a Is Associates .
retrieve Into AssociatePromotions (Name = a.Name)
valid at start of 2 '

Ezample 6: When were the associate professors promoted to this rank?

In this query, the underlying relation, 'Associa.tes, is an interval relation. One time value, the start time,
was selected as the time value in the derived (event). relation. The valid clause contains an e- ezpression,

also syntactica.lly_similar to path expressions. The operators start 8!, end of, overlap, extend, and
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precede may be used in E-expressions. The binary boolean operators and and or and the unary boolean

operator not are nof allowed, since they introduce ambiguity as to which time value is desired.

The second variant of the valid ¢lause, also containing e-expressions, is used when the derived rela-

tion is to be an interval relation:

range of 1 is faculty
range of {2 Is faculty -
range of a Is Associates
retrieve Into Stars (Name = {1.Name)
valid from start of 1 to start of 2 ' :
where {1.Name = f2.Name and f1.Rank = "Assistant” and {2 Rank = "Full"

when (f1 overlap 2) and (2 overlap a)

Ezample 7: Who got promoted from assistant to full professor while at least one other faculty remained at the ass

Tuples in the derived relation Stars indicate the interval of time from"joining the faculty as assistant pro-

fessors to becoming full professors.

The operators found in temporal predicates and e-expressions may be applied more generally than

shown abave; as an example, the e-expression

valid at start of {A overlap B}

speci_ﬁés that the time value returned should be the first instant when both tuples are valid. E-expressions

 must, have start of or end of as top level operators.

As with other languages, there are several ways to write most queries. As an example, the and

operator in the when clause can considerably simplily matters:

range of {1 is Faculty

range of 12 Is Faculty

range of 2 is Associates . ‘

retrieve into Stars (Name = f1.Name)
valid from start of {1 to start of 12
where {1.Name = f2.Name and f1.Rank = "Assistant” and f2.Rank = "Full".
when ({1 and [2) overlap a

Ezample 8: A Variant of Example 7.
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3.3. The As of Clause
The when and valid clauses are used to express historical queries. To express rollback, the as of
clause is used:

range of {1 is Facuity
range of {2 is Faculty
range of = Ia Associates o
retrieve into Starsof1984 (Name = f1.Name)
valid from start of {1 to start of 2 :
where 1. Name = f2Name and 1. Rank = "Assxsta.nt. and f2.Rank = "Full"
when (1 and {2) overlap a
es of end of "1984"

Ezample 9: What stars were known at the end of 19847
The as-of clause roils back the database to the state it was at midnight on Decemb‘er 31, 1984, and evalu-
ates the rest of the query using the information known only to that point. Additions and error corrections

: ma’de.afte_r that time would not be included in the resulting relation.

Th.e as-of clause is similar to the wfxeré and when'cla}uses, .in that it provides an additionél‘ con-
str.aint on the uﬁderlyi-ng tupies pa.rficipa.tin'g in the query. Most of the time the user will be interested in
the most up-fo-dat.e information i.n the d.a.t,ébase, and will rely on'.the default for the as-of clause: as of
"now"_. To rollback to a previous historiéal- database, the as-of cl.'a.use as illustrated_a.bové would be psed.
To examine a sequence of transat.;tions occurring over 2 period of time, a third variant is used:

as of & through 8-

3..4.. Temporal Data Type

- TQuel provides a temporal data type té support user defined time. “As discussed previously, the
values of user-defined temporal attributes are not interpreted by the TDBMS; only the internal represen-

_ tation, the input and output functions, and the comparison operators are provided.'

3.5. Modification Statements

Quel has three modification statements: append, delete, and replace. These statements in TQuel do

not have an a.s.'-'oi_‘. clause, because the transaction time is computed automatically by the TDBMS as the
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current (;ime {recall that TDB's are append-only). However, the valid and when clauses may be eniplbyed
in these statements. In October, 1985, it was learned that Tom had submitted a paper not to JACM, but

to TOPLAS, a month later than previously thought.

range of s is Submitted

replace s (Journal = "TOPLAS") _
where s.Author = "Tom" and s.Journal = "JACM"
valid at start of "January, 1983"

Ezample 10: Tom submitted a paper to TOPLAS, not to JACM,

resulting in the relation shown in Figure 10, which should be compared with Figure 7.

Figure 10: An Updated Temporal Relation

Submitted {(Author, Journal):

Author Journal |{jValid Time |{ Transaction Time
{At) (Start) | (Stop)
Jane CACM 11-79 11-7 | | oo
Merrie CACM |} 9-78 9-78 o0
Merrie TODS 5-79 579 00
Tom | JACM 12-82 12-82 | 10-85
Tom | TOPLAS 1-83 10-85 oo

4. Formal Definition

The jdescription of TQuel in the px;evious section was presented informally t;o help‘the reader
~develop an intuitive underst.a.n’dihg of the language. This section and the next will provide a more precise
definition and semantics for the- laﬁgﬁage.

Quel has some fourteen statements; TQuel augments five of them: f;he create; retrieve, append,
delete, and replace statements. The sté,tements' will be discussed in stl;is order. The syhta.x for the
retrieve statement will be ﬁresepted in a bottom up fashion, discusSing. expressions before cla';uses, in con-
trast to the top down presentation of the previous section, whefe the clauses were emphasized. The

appendix includes the syntax of the five statements.
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4.1, Schema Definition - .

The create statement defines 2 new relation and provides a scheme for that relétion; the statement

create persistent interval Faculty (Name = c20, Rank = c10)

. Wou!d‘deﬁng the Faculty relation shown in Figure 7 (the contents of this relation would have to be pro-
| vided tﬁroﬁgh the éopy or appeﬂd .statements). The Quel create statement does not inc!ﬂude the per-
sistent, Interval, or event keywords. Each of these keywords is o_pi_:ioﬁa.l in TQuel (see the appendix for
details on the synt.é.x). If the persistent keyworﬂ IS used, then the.rela.tion is eiiher a static rollback or 2
temporal relation, and the as-of .cia.use may be used in qu;aries. If the inte.rva.l or event keyword is used,
t_h.e rel_a.tion is either an histqrica.l or temporal rel;tion., and the when and valid clauses m_.ay-be used.. Ir
none of these keywords are used, th;-. reiatioﬂl is a éomentidnai static relation. 'fhe :f‘o.u”r ﬁypes of relations
(static, static rollback, historical, temporal) are t._hereby specified. The domain's;ﬁeciﬁcations are similar to
those in Quel (integers, floating point numbers, and fixed length cha.ra.ct';er strings, as used above, are sup-

| pofted), with the addition of 2 temporal data tjpe.

o ASsogiat.ed with all st;atic rollback and temporal relations is 2 pair of transaction time values, stort
and stop. Although thes_e values are closel_;,r ‘associated with r.;!,ock time, they are actually transaction
ident.i'ﬁérs. Tuples c_reated or __rer_noved by two diﬂere.nt( transactions will have different transaction times,
éven_if thg‘-rﬁransactions startec} and compIéted at igjentical moments in tima,

__As.%oé_i;ted with all histc;rical and temporal event relations is a single valid time valu_e, af, and with
all'histgr’ical and temporal intefval r.é!a.ti‘ons, a p';,ir of valid time -va.lue's, fraﬁ and lo. These v_alués are
equal to §he clock time when the tuplg;w’a_s valid. In contra&sb to transaction time, two tuples entered into

the database at different times may have the same valid times.

4.2. Constaits and Predeﬂ:_ied Dom.ains R

Quel supports numeric and character string constants. TQuel augments these with temporal con-
stants. Strings appearing_' in the valid, when, and as-of clauses a'r"e interpreted as temporal constants

' derz_mtizxg a particnlar time interval.” The string "Sept. 1, 1983" denotes an interval from midnight of
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- 9/1/83 to midnight of 9/2/83; "Sept, 1983" denotes the entire meonth; and "4:00pm September 1, 1983"
denotes a sixty second interval. Events may be approxirﬁated with very short intervals. The constants
"now” and "infinity” are also available. The exact format of these constants is similar to that specified

for the time expert [Overmyer & Stonebraker 1982 or the Ingres system [Relational Technology 1984].

The implicit tempbral attributes are available as the predeclared attribute names “validat”, “valid-
from” and ‘“validto” (valid time), and “transactionstart” and “transactionstop’ (transaction time), for
use only in the target list and where clauses. These special attributes, as well as the temporal data type,

are provided in part for auditing purposes [Bjork 1975); a simple example is

range of { Is Faculty _ . :
retrieve into Mistake (MistakeDate = {.TransactionStart, CorrectedDate = f.TransactionStop)

where [ Name = "Tom" and f.Rank = "Associate”
as of "1975"
Ezample 11: When was Tom entered incorrectly as an Associate Professor?
The MistakeDate and CorrechedDa.!;.e attributes cannot be used in subsequent when, valid, or as-of
_ clauses; to the TDBMS these attributes are just other user-defined attributes. Perhaps the tempdral data

type’s most useful function is to be displayed with the other user-defined attributes (as in the example

above). TRM also provides restricted access to the time attributes [Ben-Zvi 1082].

As the other statements, retrieve, append, delete, and replace, all incorporate the when, valid, and

as-of c-laus_és, we will first discuss the expressions found in these clauses.

4.3. Temporal Expressions

A lemporal constructor is a unary or binary operator that takes one or two eveﬁbs or intervals as
arguments gnd returns an event or intervgl. If either of the arguments to the temporal constructors ié an
évent., then it is coerced into an interval which starts a.nd ends at ﬁhe event’s time value. The unary
prefix temﬁoral const.ructors. are atart of and end of, .both returni.ng events. The binaryrinﬁx temporal
- construets are 6verlap and e#énd, both returning intervals. o.verlap is undefined if there are no time

values which are in both underlying intervals. Figure 9 illustré,tes the difference between overlap and

" axtend.
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An e-expression is simply an expression containing tuple variables, temporal constants, and tem-
poral constructors, with the constraint that the expression must result in an event. E-expressions are used
in the valid and as-of clauses. Since thé as-of clause spéciﬁes roilback to a particular transaction time, the

e-expression in an as-of clause must evaluate to a temporal constant. An equivalent constraint is that an

‘e-expression within an as-of clause must not contain a tuple variable,

A temporal predicate 'apé'rat'ér is a binary infix operator that takes events or intervals as arguments . -
and returns a boolean value. The two temporal predicate 'operators are precede and overiap. The

reader will notice the semantic overloading of the overlap operator. This overloading also occurs in

English: one may ask whether two intervals overlap, or may ask for the overlep of two intervals, expect-

ing a yes or no to the first query and an interval for the second request. o precede B is true if the event

{end of a) is before the event {start of J). One event is befor_—e'a second event if the time value of the
first, expressed as an integer or real value, is less than or equal to (<) the time value of the second. In

~ this formulation, an event ovefla.ps_ itself. a overlap 4 is true if the event (start of «) is before the '

event (end of A) and the event (start of 8) is before the event (end of a). An equivalent formulation is
{end of'(nt-art of o extend start of 5)) precede {start of (end of @ extend end of 5))
A ten;poral predicate is an expression containing logical operators (and,. or, not) operating on

expressions containing a tempgra.l predicate operator (precede, overlap), operating on e-expressions. As.

- and and or distribute over all temporal constructors and temporal predicate operators, it is only neces-

sary that the expressions obtained by di‘stributing; and 2nd or operators over the temporal operators
obey the above constraint (i.e., logical operators on a temporal predicate operator operating on e-
e_xpreséions). For example, the tgrnbora.l predicate P o ‘ -

(2 and b). overlap c) ﬁrecede d

by distributing and over overlap, is equivalent to

({2 overlap c) and (b overlap c)) prece'déid'

- which, by distributing and over precede, is equivalent to

((a overlap c) _preeede d) and ((b overlap ¢) precede d) '.
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This last expression obeys the constraint if the overlap operator is interpreted as a temporal construc-
tor, implying that the original expression was a valid temporal predicate. Temporal 'predicates are used

only in when clauses.

4.4. Augmented Quel Statements
_.The TQuel retrieve statement and the three TQruel modification statements, append, deiete., and

replace, augment their Qﬁel_ counterparts with (optional) valid clauses and when clauses; the retrieve

statement also allows an optional as-of clause. See the appendix for details on the syntax.

4.5.I Defaults_' .

The _d'ef%.ults assumeci in pﬁe:'language'will be impIOrta.nt. for the semantics to be pfeéeﬂted shortly.
Quel défaults the where clause go ‘where true. The defaults for the additioha.l clauses in TQt_:el should be
natural té the user. The retrieve statement wi_Il be handled ﬁrst.. If only one tuple variable (say, I) is

used, and it is associated with an interval relation, then the defaults are

valld from start of I to end of |
when true
as of "now"
These defauits say that the result tuple is to start when the underlying tuple started and stop when the

undeﬂying tuple stopped and that the query is to be executed on the current historical state. When an

event rél_a.tion is associated with the one tuple variable (say, E) the default is

valldatE
when true
as of "now”

specifying simply that the result tuple was valid at the same instant the underlyiﬁg_ tuple was valid. The

first TQuel query given (Example 1) thus has the following default clauses, .
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range of { is Faculty -

retrieve Into Associates (Name = f.Name)
valid from start of [ to end of {
where f.Rank = "Associate”
when true
as of "now"

~ Ezample 12: The previous query, with defaults.

When two or more tuple variables are used, the situation is more complex. If the tuple vai'i_ables
associated with interval relations involved in the query are t,, by s by then the default'temporal' ciauses
are
valid from start of (t, overlap ... overlap t,) to end of (t, overlap ... overlap t,)
~when (t, overlap ... overlap t,) o
asof "now" ' o
These clauses state that the underlying tuples must be consistent, that is, they are all valid for the entire
interval the resulting tﬁple is valid.

For the append statement, the defaults are

valld from "now” to “infinity”
when (¢, overlap - - - overlap ¢,) overlap "now”

Informally, this means that the tuples used to supply values for the new tuples to be appended should be
currently valid, and that the new tuples should be considered to have become valid immediaﬁer. For'ﬁhe

delete statement, the defaults are

delete s
valid from start of s to end of s
when true '

These defaults imply that the iuple be deleted entirely from the current'historiéai relation. And finally,
for the replace st.atem.ent. the defaﬁlts_ar.e

replaces

valid from start of s to end of s .

when (¢, overlap - - - overlap .} overlap "now"

‘These defaults follow from the fact that a replace is equivalent to a delete followed by an append.
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Note that when only one of these clauses is provided by the user, the other clause is assumed to be.

as discussed above. The user should be eareful in this situation, because the defaulted clause may be

inappropriate.

5. Formal Semantics

TQuel statements manipulate information in a TDB composed of a sequence of historical relations
indexe_d by transaction time, with each historical relation consisting of a sequence of st;t.ic relations
indéxed by valid time (i.e., the four dimensional structure). The semantics of TQuel must specify how
this relation is modified through an update command or .is created through a retrieve commrand. The
semantics of TQuel uses the staﬁc relational database mddel as the underlying model of the TDB (Sec-
tion 2 discussed one alternative: ektending the semantics of t;he' relaﬁiorﬁa! model to direetly incprporate
bime)._Several benefits accrue from using the static relational model. The relational daﬁaba.se: mode] is
simple and is based on the well-developed formalisms of set theory and predicate c@!culus; database
models directly incorporating time are significantly more complex, and are based on ne_w& and less
developed logics such as Montague, multiple transition, and temporal logics. Extensions involving aggre-
gates and indeterminacy are easief to formu!a.t_e in the standard model] (thes,_e extensions will be discussed
ina Iaier pa.ber). Finally, a bempo_ra.l database based on the relatioﬁal mod‘el can be irﬁplemented directly
on co;i-ventiéna.l relational da.tabase man#gement sy'st.e.ms.l Many of the same adﬁ;antages resulted from a
similar app_;'oach ini the design of GEM, a query and update language for a {static).sema'ntic data médel_

|Zaniclo 1983 and in the specification of the semantics of the static query language SQL [Ceri & Gottlob

1985).

5.1, Embedding a Temporal Relation in a Stét!c Relation

The static relational database model is utilized as the underlying model of the TDB by embedding
the four dimensional temporal relation in a two dimensional static relation. The semantics of operations
on four dimensional temporal relations will be specified by stating their effect on the two dimensional

static relations. In this way, the semantics can be expressed in a traditional tuple calculus formalism.
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| This embedding can be.accomplished in several ways. The most straightforward is to append two
attributes, each containing a singie' tirﬁe value, to t..he user defined attributes, thereby specifying the valid .
2nd transéction times for each tuple. 'Figure" 11 ShOVJ’S a portion of the temporal relation in Figﬁre 7
under this representation. In this figure, t.he tuples cqmprising an historical relation at a particular tran-
saction time are geparated by horizontal lines, and the tuples comprising a static relation at a particular
valid time are separated by dots. The static rela.t._ion jig Figure 11 contains a temporal reiation comprised
of five historical relations (each é,ssociated with a ﬁnique ;rans#ction time), each comprised of static rela- '
tions (each associated ﬁth a unique valid'time). The last‘ historical ‘reIa,tion, with a transaction time
valge of 877, is comprised of 4 static relations, totaling of 8 tuples, That each pransacti_on creates Ia. coby
of the most feceﬂt historical relaﬁion, menﬁioﬂed m S'_ection ‘2.4, ¢an be séen clea.rly in this _representation.
The full embedding of Figure 7 w.ould' contain eight historical rel.'a.tions, since thé temporal relation was
the r:esuit. of eight trausactioné. The ia_.st. historical rela;tion would contain seven static relations and a
total of thirty bubles. The entire static_.relatio'n embedding the temporal relation in Figure 7 would con-
ta;in 4102't_upl§s(!). The historical relations of Cliford and Warren are similar to this embedding IClifford
& Wa.fren.1983]. Their rela.t,ions-'a.fe even inore verbosé, since all keys mlis_t lﬁ felpresented in all static

slices.
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Figure 11: Embedding a Temporal Relation, Version 1
Faculty (Name, Rank):

Name Rank Valid Time || Tramsaction Time

Jane Agssistant 3-71 g-71
Jane Aszistant g-T1 275
Jane Assistant 9-75 875
Tom Associate 9-75 8-75
Jape Assistant 871 10-75
Jape | Assisiant 75 10-75
Tom . | Assistant 8-75 10-75
Jane Assistant’ 8-71 1276
Jane Assistant 9-75 12-76
Tom Assistant 9-75 12-76
Jane | Associate [[ = 12-76 12-78
Tom ! Assistant | 12-78 12-78
Jane | Assistant 9-71 877
Jane Assistant 975 877
Tom Assistant 75 8-77
J.a.ne Associate 12-76 877
Tom Asmistant 12-78 ‘877
Jane Associate 977 877
Tom Aszigtant 877 877
Mernie | Assistant 9-77 8.77

Anothe}' way to embed a téﬁporﬂ r_elatio.n in 2 static relation is. to append two attributes, each con-
_taining twe -time values, denotir;; intervals of valid and transaction time. .This is the way temporal rela--
tions were illustrated in Figures 7 and 8, Such a representation was proposed by Ariav in his Temporally
Oriented Data Management System [Ariav :1984]. Still a third way is to add a total of five additional
domains: the time the tuple became valid (T, fhe eﬁective-;ime-start)i the time T, was recorded in the
database (T, the régistfation-time-sta.rt), the time the tuple became invalid (T,,, the effective-time-end),
the time T,; was recorded in ‘the database (Tu, the registration-time-end), and the time the entire tuple
‘was removed from the database, as it was no longer correct (T',, the deletion time). Such a representa-
tion was péoposec; by Ben-Zvi in his Time Relational Model [Ben-Zvi 1082). Figure 12 illustrates the
canonical e)_(ample in this representation. Thié ex-ample contains ﬁhe: same number of tupleé as the
repre_sent.a.tion illustrated in Figure 7; generally it will cont.ain.some-what fewer tuples. The effective time

in the TRM is equivalent to valid time in our model; the three registration and deletion times encode the
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“same

information as our two transaction times.

Figure 12: Embedding a Temporal Relation, Version 3

Faculty (Name, Rank):

Name Rank T, T, T, T, T,
Jane | Assistant || 9-71 { 12-76 [| 9-71 | 12-76 || -
Jane Associate '[{12-76 | 11-80 {{12-76 | 10-80 -
Jane | Full - [|11-80 — i|10-80 - -
Merrie | Assistant || 9-77 | 12-82 || 877 | 12-82 -
Merrie | Associate {}12-82 - {182 | - i -
Tom | Associate || 9-75 - 875 - 10-75
Tom | Assistant || 9-75 | 12-80 {|10-75 | 11-80 -
Tom | Associate il12-80 - 11-80 - -

A fourth way to embed a temporal relation in a static relation is to associate time values with the

attributes themselves [Gadia 1985,.Ga.dia & Vaishnav 1985]. Within a tuple, the value of an attributé_ is

‘no Ioriger restricted to be a singIe value, but may take on different values at different points in time. Fig-

ure 13 illustrates the ‘same temporal relation in this'representatibn, without considering the transaction

“time. In this representation the static relation is no longer in first normal form.

Figure 13: Embed-diﬁg a Temporal Relation, Version 4

Faculty (Name, Rank):

Name

"Rank

Jane [9-71, o0}

' ?Merrie [9-77, 00)

. Tom (675, o0)

Assistant
Associate
Full

Assistant
Associate

Assistant
Associate

[0-71, 12-.76)
[12-76, 11-80)
~[11-80, oo}

[9-77, 12-82)
[12-82, o)

[0-75, 12-80)
[12-80, co)

Finally, the most space efficient representa.tioﬁ was proposed by Kimball in:the DATA system; only

the transactions are recorded [Kimball 1978]. Valid time was not considered but may be added as

another domain (see F igure 14). Determining the tuples valid at a particular time as of another time
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involves .replla.ying the transactions in order from the beginning (optimizations are of course possible).

Updates on the other hand are easy to formalize and to implement using this representation.

Figure 14: Embedding 2 Temporal Relation, Version 5

Faculty (Name, Rank):

Type Transaction | Name Rank Valid
' Time Time
Add g-71- Jane | Assistant | 6-71
Add 8-75 Tom | Associate | 9-75
Modify 10-75 Tom | Assistant | 9-75
Modify 12-76 Jane | Associate | 12-76
Add 877 - | Merrie | Assistant | 9-77
Modify 10-80 Jane Fuil 11-80
Modify 11-80 Tom | Associate | 12-80 .
Modify 12-82 Merrie | Associate | 12-82

We have chosen the second representation, with each tuple containing four additional time values, .
upon which to base our semantics. The advantages of this representation include ease ofrformal manipu-
la.tion and the promise of rapid prototyping a TDBMS. on top of a conventional static DBMS. We
emphasize, however, that an equivalent semanties could be generated for the other representations (this
is discussed further in Section 6). The semantics of T'Quel originates from the mOdel'éf temporal data-

bases developed in Section 2, not from any particular representational scheme.

Since TQuel is a superset of Quel, its semantics will be based on the semantics for Quel, We first

1 review how Quel's semantics has been specified, then show how this treatment can be applied to TQuel.

§.2. Quel Semantics

Although no comi)lete formal semantics of Quel has been speéiﬁed, Ullman has defined 2 tuple rela-
tioﬁa.l calculus semantics for Quel statenieut‘s without aggregates [Ullman 1982|, and Klug has treated
. aggregates in the more gene-rgz,l' case [Kiug 1982]. The tuple calculus semantics for TQuel associates 2
tuple ca.lcu}l-ﬁ's statement with each TQuel retrieve 'stateﬁlent, ensuring thaﬁ each construct has a clear

‘and unambiguous meaning.
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- Tuple relational calculus statements are of the form

L”:Mn}-

where the variable ¢ denotes a tuple of arity {, and ¥(¢) is a first order predicate calculus expression con-
taining only one free tuple variable ¢£. ¥(¢) defines the tuples contained in the relation specified by the

Quel statement. The tuple calculus statement for the skeletal Quel statement

range of ¢, Is R,

rangeof { Is R,

retrieve (¢, .D,, ..., t..D )
1

)
r

where ¢

is
{ﬁ”uam-~eannﬁJA~-Ammy.'

Al = L[5 Al =g li]

Aﬁo}

which states that ¢ is in R, that the result tuple u is composed of r particular components, that the
m—th attribute of u is equal to the j_—th attribute (having an attribute name of D) of the tuple vari-

able ¢, , and that the condition ¢ ' (¥ trivially modified for attribute names and Quel syntax conven-
m : .- .

tions) holds for u. The first line corresponds to the relevant range statements, the second to the target
list, and the third to the where clause. The skeletal Quel statement is not quite correct syntactically,
since domain ‘names for the derived relation must be provided in the target list, and domain values may

be expressions. We ignore such details for the remainder of the ‘paper.

The semantics of a query on a TDB will be specified by providing a tuple calculus statement that

denotes a static relation embedding a temporal relation which is the result of the query. The tuple cal-
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culus statement for 2 TQw el retrieve statement is very similar to that of a Quel retrieve statement: addi-
tional components cbrresponding to the valid, when, and as-of clauses are also present. Although the
expressions é.ppea,ring in all three clauses are similar syntactically, having their origins in path expres-

sions, their semantics is quite different.

As an ﬂt.erna.tive, the semanties could have been specified by showing how any TQuel query can be
transformed into an equivalent relational algebra expression, for which a semantics has been defined
(Klug 1982]. This method has bee.n used to express the semantics of SQL statements [Ceri. & Gottlob
1985]. The tuple calculus was used instead for several reasons. Thé first is pragmatic: since TQuel is a
minimal extension of Quel, its semantics should also be a minimal extension of Queis semantics, which

has been partially specified in tuple calculus, as dxscussed a.bove The second reason is that the tuple eal-
culu$ expressions resulting from the transformation can themselves be easily transformed into relational
algebra expressions, so no generality has been lost. Third, the tuple calculus statements are closer in
form to statements in the query language, making the semantics more comprehenmble Finally, if an alge-
bra is desnred it should probab!y be a temporal algebra There is no generally accepted temporal aIgebra

proposals mclude [Ga.dlassB Chﬁ'ord85]

The next subsection will provide the semantics of e-expressions as function on time falues OT pairs
ol_' time v.a.lues, ultimately yielding a time value, The Foi!owing subsection examines the steps necessary to
traﬁéform"a temporal predicate into a conventional prédicate for the when clause; th.e next .subsecbion '_wil-I
do the .same for the as-of clause. Section 5.6 uses these results to provide a tuple caleulus s:éﬁxantics for

the retrieve statement. The final subsections consider the modification statements and demonstrate a

reduction to the Quel semantics..

5.3. The V;Ild Clause

As discussed previously, the valid clause specifies the time during which the derived tuple is valid.
For derived intervals, the valid-from-to variant is used; for derived events, the valid-at variant is used.
In both cases, an e-expression is used to sbecify a time value. The time value returned by the e-

expression will in fact be one of the time values contained in one of the tuples associated with the
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‘variables involved in that expression. Hence, the e-expression is not actually deriving a new timé value
from the given time values; rather, it is selecting one of the given time values. Of course, the selection

criteria can, and indeed usually do, depend on the relative temporal ordering of the original events.

Several _resea,rchers have proposed a formal semantics for pa.rti.cu.la.r vari.a.tions oﬁ péth expressions,
involving .denotational aﬂd axiomatic definitions [Berzins & Kapur 1977, Jayaraman 1982}, or transforma-
tions inio ._Petri nets [Lauer & Campbell 19‘(5]., parallel programs |[Andler 1879, Ja.ﬁa.raman 1983], or even
V:‘LSI c_ifcuits [Anantharaman et a.l.. 1985.]. Since th;se semantics express the active nature of pathr expres-
sioﬁs, that of constraiﬁing the occurrence of the relevant eﬁents, they are not applicable in the context of
TQuel. The approach taken here ‘associates each tempbral constructor with a functioh oﬂ one or two
intervals, returning an interval. Tuple varia;bleé are replaced with theil; éssociated valid time values. The
result of an e-express.ion will heqce be one of these timé values. Individual tirﬁe values will be representéd
as integers (a mapping f’rom times and dates to integers is assumed); int_ervzls will be-represented as

ordered pairs of integers. Anderson has developed a model of tiiﬁe at the conceptual lefel which is

slightly more restrictive yet has several nice properties {Anderson 1982). .

We define the temporal constructors after first defining a few auxiliary functions on integers {First,

Last) or tuple variables (event, interval): -

_ o if Befarc(b:, B)
First(a, f) = { o

8 otherwise

8 if Before(a, )

Last{c, f) = {

@ otherwisfz ':'

went-(t) - <fw ty>

.interu'a!(t) - <tﬁm,-tt;>

startof(<a, F>) = <a, a>
endof(<a, f>) = <4, £>

overlep (<, >, <1, §>) %-<Last(a, ), First{B, 5)>

estend(<La, >, <7, &) = <Firet(c, 8), Last(B, 7)>
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-A few.' comments are in order. First, if the e-expression is a cdrrect. one, i.e., if it results in an event, then
the denotation of the exprgssion will be defined to he the time value appearing as the first element of tﬁe
.ordered pair resulting from the application of these functions on the underlying tuples. The constraints
a.ssure.us that the first element will be identical to the secénd element. The reader should verily that
these definitions do indeed result in the‘ correct time valﬁe. Secondly, as mentioned in Section 4.3, the
Bef ﬁre predicate is the “<'" predicate on integer time values. However, we wish to retain the Before
ﬁred_icé_.te‘, because its semantics will be altered.when ind’etermina'cy is considered (in a later haper).
.T.h_ird, the translation is syntaz-directed: the semantic functions are in correspondence with- the produc-
tions of the grammar (given in the Appendixj for‘e-expres‘sions [Ceri & Gottlob 1985]. And ﬁna,lly,. the
r deﬁn?tion of the overlap function a.ssumeé that; the intervals do indeed overlap; if this constraint is
satisfied, then the ordered pairs <a, 3> generated by these functions will always represent intervals, i.e.,
the ordered pairs will satisfy Befa’re(a, B). Invalid e-expressions will be handled with an ﬁdditional clause

in the tuple calculus statement p‘i'-esented' in Section 5.6,
Asan éxample, the e-expression
start of (a overlap b) .

is transformed into
atartof (overlap(interval(a), intervai(b)))

(we assume that the tuple variables a and b are associated with interval relations). Applying the functions

defined above results in

» by>))

— startof (overlap(<a 'm,qa.tb'>, <bm :
( bta)>) -

= startof (<Last{a, b ), First(a,

‘Tram? © fram.

— <.L“‘ (a.ffm, b Laat(%m, b,

Hence the denotation of this expression is Last(a,, , b,,m)- The use of this time value will be discussed

shortly.
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5.4.. The When Clause

The when clause-is the temporal analogue of the where cl_ause_. The temp.oi'al predica.t.é in the when |
clause determines whether the tuples may participat'_e in the derivation by examining their relative order.
Expressing this férma!ly involves generating a conventional predicate on the temporal domains of the
tuples in the underlying relations. This predicate is generated in three steps, First the a.nd and or ldgiml
operators are distributed over the temporal operators. Then the tuple variables and the tefnpora.l con-
structors are -rep!a.ced by the functions defined in the preyious subsection. Finally, the and, or, and not
O]IJEI'E.tOfS. are replaced by the logica;l predicateé, aﬁd the temporal predicate operators by analogous
predicates on ordered pairs of integers: | o .

p:;ecede(?(a,'ﬂ), <%, §>) = Before(B, 7)

overlap(<a, 8>, <7, 6>) = Before(a, §) /\ Before(y, §)
'lf‘]:_xe_resuit. is a conventional predicate on the valid times of the tuple variables appearing in the when
cla_uSe.

As an example, the temporal predicate

(start of (2 overlap b)) precede ¢ or {c .precede a)

remains unchanged after the first step. The second step results in

— (atartof (overlap (interval(a), interval(b))) precede interval(c)) or (interval(c) precede interval(a))

= {atartof (auer!ap((aﬂm, a,>, <b, ., b,>)) precede <c, . ¢, >)
or [<c o Cro> Precede <a, . a, >f .
~ (startof (<Lasi(a By m‘) First(a,, b,)>) precede <c,,,, ¢,>)

. or <°mmr ¢,,> precede <a.m“, )

= (<L§83(&!"', bfruu)’ Las‘(a‘jre{u’ b]rén)> precedé‘ <cfrnm’ cto>) 01'-(((!],’0‘.“, > precede <a’fra ? é>)
The third step results in

' Before{L.G“(a!fam' fram fnm) \Y Befare( Cipr 2 rom)-
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5.5. The As Of Clause

The tempbra.l constructors appearing in the as-of clause can be replaced with their functions on
ordered pairs of integers and the temporal constants (strings) can be replaced by theif corresponding
6rdered pa.ir.s of integerrs.. The result can be evaluated at “compile-time”, resulting in a single integer, for |
the as of variant, and two integers in the as of through variant. For conVeaie_nce, these times will ber

converted into an interval by interpreting thl;ough as extend.
s of start of "1984" through "October, 1984"
will, by using the functions defined in Section 5.3, be converted to

eztend(startof (<1009, 1021>), <1018,1018>)
—eztend (<1008, 1009>, <1018,1019>)

—< First{<1009, 1018>>), Last(<1009, 1019>>)>
—<1009, 1019>

Here, we have quite arbitrarily mapped months into the ihteger specifying the number of months since.

" January, 1900.

5.8, The TQuel Retriev?'Stafement

A formal semantics for the TQuel retrieve statement can now be ‘speci.ﬁed. Let & be the function
corresponding to the e-expression € as generated in the process discussed in Section 5.3. Let II be the
predicate éor_responding t§ the temporal. predicate 7 as generated by the process discussed in Section 5.4.
Note that ¢“and II wil contain only the functions First a.ﬁd Last and the predicates Before, A\, V, -;
~ the rest of the functions, and ?Da entifely {where a appears in an as-of clause), can be evaluated at
“compife-time". Of course, the defa.ulﬁs provide the. apﬁropriate expressions when a clause is not preéent

_in the query. Given the query
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range of ¢, Is R,
rangeof ¢, is R,
retrieve ({ D, ..., t,.D)

vaildlfrom vito x
where :
when

as of @ through 2

the tuple caleulus statement has the following form
{.;"“’ | @6) @ EREA- -.'./\Rk(tk)

A ulil_- -f,-J:‘,l A---Nulr)= t;,[f,]
Aufr+l] = @u)\ ulr+2 = be A éefore(u [r+1], u[r+2])
Aulrs3] = # Aulrsd] = o
Ay’
AT
A (W)(AZIZk.(Before(®,, t[stop|) N\ Before(t[start], @)

)

The first line states that each tuple va;iable ranges over the correct relation, and is from the'Quel
semantics. The fesulting t-uple_ is of arity r+4, aﬁd is compriséd of r e'x‘p.liréit._ domains and four implicit
domé.ins (frorﬁ, to, start, and etop). The second line, a!go from the Quel semantiéé_, states the origin of
the values in the. explicit domains of the defii'ed relation. The third line originates in the valid clause,
and s_peciﬁes‘. the valués of the fro'r'n and fo valid times. Notice that these times must obey the specified

ordering. The fourth line speciﬁes't‘he values of the start and séop tfansaction times. “#" is re':pla.ced with
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the integer corresponding to the current transaction; this integer must be monotonically increasing. “oo™

is replaced with a distinguished integer, say 0, which must not correspond to a valid transaction. The

next line originates in the where clause, and is from the Quel semantics. The fifth line is the predicate
from the when clause. The last line originates in the as-of clause, and states that the tuple associated

with each tupie vezriable must have a transaction interval that overlaps the interval specified in the as-of

clause (¢, and $, will be constant time values, i.e., specific integers).

Note that &, ‘I’;, ¢/, and II_are functiqns over the frém, to, and explicit domains of a subset of
the tuple variables. If { is a tuple variable associated with an interval relation and appears in an e-
_expression or temporal predicate, then the from-a,ndr to time values are passed td the relevant function; if
tr is associated with an event relation, 'tﬁen only the at timg value is used. The superseript (r+4) indi-
cates that the tuple u has r explicit SOm-ains and 4 implicit domains, the starting and stopping time
values for the valid and transaction intervals; e_vents will have only three implicit domains. The entire
trapsfofma.bion from a TQuel query to a tuple calculus expression may be clonsidered to be syntax-

directed, as discussed briefly in Section 5.3.

‘We complete the discussion of the semantics of the retrieve statement with two examples, one real-
istic but somewhat simple; the other contrived yet more comprehensive. The first is the semantics of the

qdery_ shown in Example 9.
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{u‘““’ § (A 11) (2 12) (3 a) (Faculty(f1) A Faculty(f2) A Associat;s(a) -
A u(t] ;nm |
Aol =118 A uis] = 208] A Before(u[2], ufs)
/\-#{4] =123 A ufs] =0
A (1] - £2[1) A £1{2] = "Assistant” A rz[é] = "Full”
A Before(fi[s], a[3)) A Before(af2, 11) A Before (t2(3], al3)
N Beforefaiz], t2s)
N\ Before(1020, ri[s]) A (Béfore(flllsl% 1020) |
A Before(1020, 12i6]) A (Before (f2]5], 1020)
A\ Before(1020, 215]) A (Be'fa_re(a.[ﬂ, 102.0) |
) } -
iTh_e second example, which includes several temporal expressions used as examples in previous sec-

tions, is given below.
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range of a is A

rangeof bis B

range of ¢ is C

retrieve (.M, 5.0, ¢.Q)
valid from start of {a overlap b) to end of (2 overlap b)
where aN = b.P and b.P = c.R

when (start of (a overlap b)) precede c or (c precede a)
as of start of "1984" through "October, 1984"

Ezsmple 13: A Contrived Ex.arr'lpie
. This query references relations containing the following domains:

A [M N {from to start stop)]
B [O P {from to start stop)|
C [Q R (from to start stop)]

The implicit temporal domains are in parentheses (A, B, and C are all interval relations). The query then

has the following semantics,

{u‘m’ | @ a) (@0 c)(A (&) AB(B)AC (e)
/\ ufl] = a1 A u(2] = 5[1] A u[3] = c[l]
N\ u[4] = Last(a(3|, b[3|} /\ u[b! = First(a[4], b[4]) \ Before{u[4], u[5])
Aul6] =124 Auf7i=0
A2 = b2 AN B2 =2
N\ (Before{Last(a[3], §[3])}, c[3]} \/ Before(c[4], 2|3]})
N\ .Befare(1009, a|6]) A\ Before(a|5], 1019)
N\ Before(1009, 516} A\ Before(}[5], 1019)
)

N\ Before{1009, ¢[6]) A\ Before{c{5], 1019}

The correspondence between the Quel and T.Quel tuple caleulus semanticé is striki-ng:. The tuple
calculus statement for the Quel retfieve s£atement consists of a component associated with the tuple vari-
ables appearing in the query (the first line), a component associated with the target list (the second line),
-and a component associated with the where clause (the fifth line). The tuple calculus statement for the
" TQuel retrieve statement adds four additional lineé, one each associated with the valid clause (the third
line), the when clause (the sixth line), the as-of cla.pse' {the la.:st. line), and one speciflying the transaction

time for the derived tuples (the fourth line). The additional lines in the -f.uple caleulus statement are also
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similar in form to those associated with the analogous Quel statements: the where, when, and as-of

clauses all generate predicates, and the target list and valid clause generate equalities.

5.'(. Modifleation Statements

In specifying the semantics of the TQuel modification statements, we will again proceed by examin-
ing the tuple calculus semantics of the analogous Quel statements.‘ These have never appeared in the .:'
" literature; fortunately, they are easy to derive (such is not the case for the other major static relational

query language SQL [Ceri & Gottlob 1985]). The skeletal Quel append statement,

.append toR(t,.D,..., 1 .D)
1 .

- where ¥

;hra:s the tuple calculus semanties
| -RU{ ™y @) (3 tt)(RI(tl)/\.---/\R;(‘;)
Aslt] = 51 A - Aulr] =1 17
Ay }

The set being a.ppended is 1dent.1ca.l to that for the Quel retrieve statement (see Section 5.2). Note that
the set bemg appended may contain tupies already in R. We assume that the integrity constramts par-
ticularly those relating to keys, have already been checked and that the resulting relation R ' will satlsfy

these constraints.
The semantics for the skeletal TQuel append statement,

range oft 1s R,

range of tis R, .
append to R (t D , 4.D)

valld from vto x
“where ¥
whenr
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is somewhat complicated, because the set to be unioned with the existing relation should only contain

* - tuples that are not valid in the existing relation. We cannot depend on the union working correctly when

the tuples being appended zre identical to tuples in the current historical relation. For example, if on 9-85

we execute

range of { Is Faculty
append to Faculty (Na.me = Merne Rank = Asmstant")
valid from "8-77" to "12-82" :

Ezample 14: Merrie actually joined the department a month earlier.

then we will have to append the following tuple:

Name | Rank Valid Time Transaction Time
{From) | (To) {[{Start) | (Stop)
Merrie | Assistant || 877 l 9-77 H 9-85 l oo

th_e that the fo time is §-77, since a tuple already exists in the.relation valid from 9-77 to 12-82 (c.I.,
Figure 7).

We now give the tuple calculus st.a.tement‘for the skeletal TQuel append statement. As-before, we
assume that the integrity constraints have been checked previously'; 1In the case of a temporal relation,
this implies that for a tuple T with ataé = 00, 1f‘ T matches an appended' tuple A 6:1 the ke} a.tt;rifmtes
and is_valid at any point in the interval speci’ﬁed in the ‘v-a.lid cla.use‘,_-then T will also match A on the

non-key attributes, and the union will not affect the presence of A,
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N

: \R =R Y {u(f-H) NEIA R EEN! & a)‘ (R;(tl_) ./\ A Rk(tk)r

T

Aull =t [ A= Aulrl =4[5

A ulr+3) = # A drtd] = o

Ag!

AT,

A (o) (1ILE.¢ fstop] = o)

A (3 s)R(s) A (VZ(IS!'S")--?[‘]_% wlifA(CV G,V €LV C)

V(=3 8)R(s) A (v:(lgtgr).s[_q = u[) A ulr+1] = &, A ur+2 = @)

)

where

C, = (Before(a[r+1], &} \ Before(®,, af;:l-ZI) N Befé;'e(s{r+2], ¢ ) ;
N ulr+l] = s[r+1] A ufr+2] = )

C, = (Before(®,, e[r+1]) \ Before(s[r+2|, @) .
A{slr+l] =2, A u[r+2] = slr+1)) V{e[r+1] = s{r+2| /\_u[r+2] = @x)))

Cy = (Before(®,, s[r+1]) A Before(s[r+1}, @) /\'.Befare(tb.x, sr+2})
Aufr+l] =& A ujr+2] = g[r+1)) _ '

C, = (Before(s[r+1], ®,) A Before(®., sr+2])
"~ N\ False

Again, the set being appended is similar to the TQuel retrieve statement (see the previous section), with

two major changes. The first is that the as-of clause is assumed to be as of "now", since the statement °

should only modify the current historical relation (e.f.,, the sixth line). The second change is the rather
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cdmplicated computation of the valid times for the tuples to be added, a.ppea.riﬁg as the last two lines of
the tuple calculus statement, which replace the third .!ine in the tuple calculus statement for the retri_e\lre
statement. The four clauses €|, ..., C, in the seventh line h#nd]e the varlious overlap situations
between the tupies to be added and the tuples identical in the explicit domains that already exist during
this valid interval. In particular, C, states that if the tuple already exists in R over the entire v.a.iid time,
there is no need to add it. The last line states that the valid times are as specified in the valid clause if
no sucE tuples exist during this va,l_id interval. Figufe 15 shows the overlap handled by each clause, and
the r&zulﬂng valid interval(s). Note that one, two, or no tuples are added, depending on the V';a.iid clause

' specified and the tuples already present in the relation.

Figure 15: Calculating the Va.Ii.d Time in an Append Statement

c c, e, c, -

1
-Existing s[r+1]  elr+2]  e{r+le{r+2] slr+1] sfr+2]  s[r+1]  #[r+2]
tuple pm—— o — P

Tuple to e, LI L ® o o
b oddod | Foo ¢ * O

Actual tuple(s)

added i H | H - l—l ~ (none added)

The semantics of the delete statement shows a similar inerease in complexity. The Quel statement

rangeof r s R
delete T
where ¢

has the tuple caleulus semantics

| ‘R’ = {um | R(s) A = (1) }

Note that the predicate can only reference the one tuple variable. .

42



We first look at an example of the TQuel delete statement before delving into its semantics.

range of [ is Faculty
" delets f ;
where [ Name = "Jane"
valld from "3-81"

Ezample 15: Jane left the department in March, 1981..
This stztement will modify the transaction stop time of the last tuple in Figure 7, and will append an

additional tuple (we give both here):

Name | Rank * Valid Time Transaction Time -
(From) | (To) | (Start) | {(Stop)

Jane | Full :11_-30_ ‘ oo" 10-80 ’ 9-85

Jane | Full 11-80° | 3-81 il 9-85 o0

Hence, the delete statement will perhaps change some transaction stop times from “c0” to "now”, and
will perhaps also add tuples with a transaction start time of "now", For the skeleton TQuel delete state-

ment
rangeofsIs R
delete s '
valid from vto x
where ¥ '
when 7

t;.he. tuple calculus statement is
R'= {a"“’ |  (R(s) A (¥ V/ a[r-+4] ¢ o0V Before(slr+2}, 8,)V Before(8,, s|r-+1])) }
U {u"“’ ' @) REAY A s[rﬂ] = % A\ Before(slr+1], ®,) A Before(®,, sir+2})
A (Qi.is_zgr.-u l§] -‘s(s.])
A (cly C,V ¢, V()

where
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C, = (Before(s[r+1], @ ) \ Before(d,, sir+2]} /\ Before( [r+2]
A{(ufr+1] = a[r+1] Aulr+2] =@ Au[r+3] = s[r+3| A u[r+4] = 00)
V(u[r+l] = & A uir+2] = a[r+2] A uir+3] = s{r+3| A u{r+4| = "now")}

C,= (Befare( , 8lr+1]) A\ Before(s[r+2|, &
N u[r+1] = slr+1| A\ 8[r+2] = slr+2} 7\ [r+3] = s{r+3] A u[r+4] "now")

Cy= (Before g|r+1]) A\ Before( [r+1] ) I\ Before(®, s[r+2)
A ((s [r+1] = ofr+l| A slr+2| =& A u{r+3] = 8[r+3] A\ u[r+4] = "now")
(u[r+1] =@, N ulr+2| = 3[r+1] N u[r+3| = s[r+3] A u|r+4] = co})
C, = (Before(s[r+1], ® ) \ Before(® , 2(r+2])
N ((u[r+1] = a[r+1] N u[r+2] & NAulr+3] = oir+3] A uir+d4] = oo)

(ulr+t] = A ulr+2] = =3 A u[r+3] = 2[r+3]{ A\ u|r+4] = "now")
V (u[r+1[ = @x Nulr+2} = srr+2] N ufr+3l = a[r+3| A\ u[r+4] = o0))

"The first set contains all tuples in past historical relations of R and all_tuples in the current historiéal
.rela.tion of R which do not satisfy the. predica.té in the where clause or whose valid intérva.ls do not over-
lap with the specified valid interval. These tuples are not affected by t.ﬁe delete statement. The second set
deals with the remaining tuples, in a ma.nnef similar to that employed in the semantics of the a.ppend‘
statement. In the situation covered by C,, the tuple to‘ be deleted starts after the existing tuple starts,
but still overlaps the existing tuple (see Figure 15) The existing tuple is broken into two intervais, the
first which remains {sfop = oo) and the second which is removed {sfop = "now"). This is the situation
illustrated in the example above of. the delete.statemer.it. In the situation covered by C,, tﬁe tuple to be
deleted overlaps the existing tuple completely, so the existing tuple is deleted (stop = "now"). C‘,; is simi-
lar to Gl' In the situation covered by C,, the existing tuple is partitioned into three intervals, and only

the middle one is deleted.

The semantics of the replace statement is even more complex. However, since the replace statement ’
has a semantics identical to a delete statement followed by' an append statement, the tuple calculus state-

ment. follows rom the two just presented.

5.8. Reduction to the Quel Semantics

“If a TQuel statement does not contain a valid; when, or as-of clause, then it looks identical to the
analogous standard Quel retrieve statement; thus it should have an identical semantics. However, an

Ingres database is not temporal; it is a static database. Hence, the tuples participating in a Quel

44



statement are in the static relation that is the result of the last transaction performed on the database
(i-e., are current) and are valid at the time the statement is executed. Note that the statement must not

rafer to any tuple variables associated with event relations. The tuples in such relations are valid fot only

an instant, and hence would not ever appear in a static database.

. We will show that the TQuel se'maﬁtics just 'presex;ted reduces to the standard Qqel semantics -
when applied to a siatic database slice (all current tuples valid at a particular time) of the TDB. A static
d.ata.base slice at time 7 is formed by first eliminating the event relations (in Section 2.3 we argued that
static relations cannot represent events at all), eliminating all tuples with a start time greater thaﬁ rand
with a st;p time less than 7, eliminating all tuples not valid at 7, and finally removing the implicit time
domains.

The. reduction proof will be il]ustra.ted_ on a simple retrieve statement; the interactions are illus-
trétéd in Fig-ure_lﬁ. Assume that Q is a syntactically correct Quel retrie_ve sﬁatement. (Example 1'is
such a s_tatement.) Then Q is also a syntaétically corerect TQuel statement. Q may be applied to a TDB
'(fOr example, the one given in Figure 7) to define a derived temporal relation R, (the one in Figure 8).
In proc’lessin'g the quéry Q, the defaults for the valid, when, and as-of clauses discussed in Section 4.5 will
be applied.” A static .da.t.abase slice at time 7 of this derived b’e.mpora.l relation :_'es.ults in a conventional
relation, R. For example, assume that the query Q is executed on January 1, 1984. The database slice at
7= January 1, 1984 oft the Associates relation of Figure 8 is shown in Figure 17. Now, the qiery Q may
also be applied to a static datdﬁase slice at the same time 7 of the entire TDB {shown in Figure 18} to
arrive at ﬁnpther static réla.t.ion, Rs'. To show that the TQue! semantics reduces to the st‘a.nda.rd Quel
;ema.nbics \_';r‘i:l“en applied t.é a Stg.t%c database slice, we ﬁmst. show that |

-y

The reduction implies that Figures 6 and 18 are identical.
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Figure 18: Outline of the Reduction Proof

slice at 7

TDB ' 3 static DB
{TQuel (Quel
Q Q -
semantics) semantics)
Y , y
R, slice at 7 —= R =R,

Figure 17: Slice of the Associates Relation at January 1, 1984

Associates (Name}): , .
Name
Merrie

- Tom

Fligure 18: A Database Slice at January 1, 1984

Faculty (Name, Rank):
Name I Rank

Jane Full
Merrie | Associate
Tom Associate

The proof of this equality revolves around the defaults for the valid, when, and as-of clauses

specified in Section 4.5. The defaults effectively take a database slice at T = ™now"”, which is the time the

query is executed. The default when clause states that all the underlying tuples are valid and the default

valid clause states that the underlying tuples are valid. The resulting tuples are guaranteed to be

current by the tuple caleulus semantics of the retrieve statement. This intuition supports the easily
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shown equality (actually, identity) of the tuple caleulus semantics for Rgand R, Similar reductions can
be argued concerning the modification statements, as their defaults were specifically chosen to ensure

| their reducibility to the standard Quel semantics.

The benefit of this reduction is that the intuition 2nd understanding gained by using Quel on a

static database applies to TQuel on a TDB.

8. Implem_entatlon

The formulation of the TQuel semantics as tuple relational calculus expressions offers a straightfor-
ward means to implement a TDBMS. A TQuel query (or update statement) can be mapped into a tuple

calculﬁs statément, which may then be mapped into a Quel statement on the static relations which

embed the temporal relations. The TQuel query in Example 9 would be mapped into the equivalent Quel
query
range of {1 1s Faculty
range of {2 {s Faculty
. range of a Is Associates
-retrieve Into Starsof1984 {Name = f1.Name, validfrom = f1.validfrom,
validto = f2.validfrom, transactionstart = 123, transactionstop = 0)
where 1. Name = {2 Name and {1 Rank = "Assistant” and f2.Rank = "Full”
and fl.validfrom <= a.validto and a.validfrom <= {1.validto
and f2.validfrom <= a:.validto and a.validfrom <= f2.validto
and 1020 <= fl.transactionstop and fl.transactionstart <= 1020

and 1020 <= f2.transactionstop and f2.transactionstart <= 1020
- and 1020 <= a.transactionstop and a.transactionstart <= 1020

using the formal semantics as given in Section 5.6, on the following static schemas:

‘Faculty (Name, Rank, validfrom, validto, transactionstart, tfansa.ctionstop)
Associates (Name, Vaiidfrom, validto, transactionstart, transactionstop)

'fhis cqnversion -ca.n. always be. done if two functions, First-a.nd Last, both- taking two integers as argu-
ments, are added to Quel (Example 13 would require the ﬁse of these functions). It should be emphasized
that t.he. éonvlersion from TQuel to Quel is an entirely seﬁara_t.e prbcess from the reduction to the Quel'
semantics discussed in Section 5.8,

We have extended the Ingreé DBMS [Stonebraker et al. 1976] a.l'oﬁg these lines: temporal relations

are stored as static relations, and the TQuel statements are converted.to Quel statements and processed

47



normaily by Ingres (the implementation differs from this explanation in certain details). We are instru-
menting the prototype to gather performance measures. We expect performance to degrade to unacc'epb—
able levels as updates are made and the static relations grow monotonically. However, the prototype will

serve as a testbed for further study and as a datapoint for &omparison on the performance of new access

methods and optimization strategies.
7. Conclusion

7.1.. Summary

This paper has pres;.nt.ed the syntax and formal semantics for the augmented statements in TQuel.
The discussion proceeded"iﬁ an incremental fashion for both the syntax and semantiés. First.,'the _Quei
synté.x was presented informally. Temporai analogues for the where clause a.ﬁd thé target list were exam-
iﬁed. A more formal presenta.tiﬁn, including a digression on constants a._nd ‘de!'a,ult's, completed the presen-
tation of TQuel‘s syntax.

After a short review of tuple calculus, the semantics of e-expressions was described as funetions on
ti_me- values or pairs of time values, ultimately yié!&ing a time vralue. A transformation system provided
the semantics of tempéra,l expressions, yielding ;4 conventional predicate on the tuples participating in the
expression. At that point, 2 tuple caleulus expression for TQuel retrieve .statements without aggregates
was presented. The semantics of the modiﬁcapién si;atements were discussed. The semantics reduces to
the standard Quel semantics ‘when t.ﬁe time doﬁain is fixed at a particul:;r time. To the author’s
knowledge, the complete sema_n_tjcs of no other Qﬁery language,' stati¢ or temporal, ‘has been presented in-

the literature, Finally, a prototype implementation was described.

7.2. Other Temporal Query Languages

In this section we compare TQuel to other query languages that reference time. Two basic
approaches are found in the litérature. The most straightforward approach augments a static query
- language with a2 construct to project a static database slice of a TDB; examples include TOD, DATA,

TRM, and Gemstone. Such la.ng;uages: do not fully support historical queries, though they may support

48



g

rollback. The Time Oriented Databank (TOD), one of the earliest database systems to incorporate time,
fgcords dynamic attributes, whose values may change over time, in a relation in ﬁhicﬁ each tuple has a
time attributes specifying when the properties were observea [Blum 1982, Wiedefhold et al. 1975]. Query-
ing is accomplished using analysis and reporting procedures written in PL/1; thg.sysi_:.em supports these
procedures by creating auxiliary files, which can optionally be ordered by date. The Dynamic Alerting
Transaction System (DATA) extends the re'lati_onal model to iﬁclude time by viewing the data.ba_.se a.s .
t;ime-ord'ered lists of transactions, each consisting of a tuple and a time when‘tha.t tuple became valid
|Ariav & Morgan 1981]. The database can be queried at previous points of time, or a seq‘ugr;ce of
recorded ¢vents between two times may be displayed. The Time Relational Model. (TRM) is no_teworbhy
in that the query language references both' valid :and transaction time [Bngvi 1982]. TRM augments

SQL [SQL/DS 1981] with a time~m'ew éonstrucb identifying the valid and tra.nsaction times for the static

data,base shce to which the remamder of the SQL query is to be apphed Henece the rollback operatzon is

prov1ded but historical queries are not posmble Gemstone is the most recent of the query Ianguages in
thls category; it supports only transaction time, and hence only therrollback operatlon [Copela.nd & Maier
1984]. |

The second approach .is to in_clude in the ;;uery.la.nguag-e temporal constructs that allow historical
queries (queri_es over tuples con_taining different vaiid';imes). Thrge re.la.tional query languages, in.:lzddition ‘
to TQuel, have taken this approach. Qf course, natural languages also fall intp this category [Clifford &'

Warren 1983].

Th;e first, LEGOL 2.0, involved formalizing legislation, where t.he his.tory- of a case is particularly
reievant [Jones et al. 1979, Jones & Mason 1980. The model su_pportedr_by this system allows time attri-
but_és specilying the period of time each tuple is valid_; event;s may not b; stored, and transa;.étion time is
nq_t supported, Hence LEGOL 20 is an historical query language. LEG_C:)L 20 is based on the relational
al.gebra |Codd 1972]. The la.ng‘ua.ée was never implemented, although .an earl_ierr version of the language
ﬁa.s i.mpiemented _{St.a.m_per 1976[ using ISBL [Todd 1976]. In additi.c'm,‘ no attempt at a formalization

either of the language or of the way the temporal constructs of the language were to be implemented has
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been made.

The query language a.ssociat.ed with the Temporally Oriented Data Management System (TODMS)
is_ similar to that of TRM .in that it is an extension of SQL and it supports both valid and transaction
tirﬁe [Ariav 1984]. Unlike TRM, it is 2 true temporal query language, supporting rollback with an as-of -
clé.use quite sil%nil.a.r_ to that of TQuel, and supporfing historieal queries through the additional AT,
WHILE, DURING, BEFORE and AFTER constructs. The major limitation is that only. one relation may
be re!'eren.ced in a query; hence the laﬁguage has less expressive power than most static query languages,
which support queries over multiple relations. The query language has not been formalized, and no imple-

~ mentation has been attempted for TODMS.

Finally, the Homogeneous Temporal Query Language (HTQuel) supports hisboric;zl queries but not
rollback [Gadia & Vaishnav 1985|. This relational calculus language isrbased on the répresentat‘;on of an
historical database where the time intervals are associated with attributes (this representation is dis-
cussed in Section 5.1). HTQuel is a more substantial extension to Quel than is TQuel, ‘Wher_eas expres-
sions in Quel and TQuel involve only constants and tuple variables, HTQuel introduces temporal
ddmm'n_a, which are finite unions of intervals, and insiants for use in expressions. HTQuel also introduces
identifiers that can have temporal domazins or instances as values, an a.ssighment statement, a statement
to deﬁné tﬁe type of a tuple variable, and a coi'lec_tion of functions which extract individual intervals or
instq.nts frbm a temporal doma:,i.;;. Such complexity may not be necessary; equivalent TQuel queries exist
for all of the HTQuel examples given in [Gadia & Vaishnavr 1985] tha.t.-dQ not utilize the extraction func-
l 'fsi_on_s. These _fuﬁétioﬁs.support tcmporall navigaiton; we agree with Ariav that such functionality should
. be supported not by the query language but.a.t the programming language-DBMS interface [Ariav 1984,
as navigation in general is not c.onsistent with the non-procedural nature of predicate calcuius oriented
_ query languages. Although augmented update operations are defined, they destructively modify the
da.ta.base,I 736 HTQuel supports historical databases; no construc&; for manipulating transaction time are

provided. No formal semantics is giveh, -and no implementation has been attempted for HTQuel.
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In summary, we note that, while the languages exa.mined above differ greatly in their dét.a,ils, a con-
sensus seems to be emerging concerni.ng the basic features of an acceptable 'tempo.ra,l query language: it
sho.uld be based on the relational calculus,’support queries over multiple relations, support both rollﬁack_ :
an& historical queries, incorporate in some manner-common temporal concepts sucﬁ as before, while, ‘.and
at, handle both instants and time intervals, and have a simple structure. As a final nobe; we agree'wi_th.
Clifford and Warren that a formal se_ma.-ntics is a necessary requirement for any proposed query Ia.ngu_age _

Clifford & Warren 1983].

7.3. Further Work .

* Almost every issue raised in the context of static relational database must be addressed anew in th_e
context of temporal databases. This paper has made a start by defining a temporal query language and
providing a formal semantics for this Iangﬁage. However, much more research is necessary before a viable

TDBMS can be developed.

Maﬁy additions are possible to the language itself. The operators a.va.iIaBle for e-expressions and
texﬁporal predicates are certainly no.t. e:ﬁha.ﬁst.ive, and new ones. could be é.dded easily to both th.e-‘
Ian_@age and ité semantics. Anothe_r possible addition concerns temporal constants. The temporal _cori-
shanﬁs used in this paper are a.ﬁaolute, in that they denoie a particular tirﬁe interval. Relative ;:onsta,nts

would. also be quiie useful. The following is a variant of Exé.mpIe 5;

range of a Is Associates
retrieve Into Disgruntled (Name = a.Name)
when (start of 2) precede "5 years” precede (end of a}

Ezample 16: Who has been 2n associate pro_f_eSsor for at least 5 years?
Th_e_sema.ntics for relative constants is still under study.

. Quel supports three domain types, in multiple sizes: integer (1,2, and 4 bytés long), floating point (4
~ and 8 bytes long), and character data (1 to 255 bytes long). One necessa.r.y extension is a data..type with
values that vary over the périod‘ of time the tuple was valid (this data type is distinct from the temporal

. data type discussed in Section 3.4, which has a constant value fbr‘_ the entire valid interval). As was
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stressed in Section 3, cautior is needed to ensure that such domains are used correctly. Quel also sup-

ports scalar functions such as abs, mod, and sin. Scalar tamporal functions, such as duration, which

compute time varying domains, are needed in the language.

Qtiel inclu_des fhe aggregate operators count, sum, a.vg,' min, max, and any to aggregate a com-
puted expression over a set of tuples. Aggregate operé.tors are more complicated in TQuel,'due to the
tirﬁe-va.rying behavior of relations. The standard aggregate operators have been included in TQuel
]Snddgra.ss 1984|. Temporal aggregate func.tions should als;o bg made available to the user. These fune-
tions ﬁrould select, tuples from a set of tuples based on criteria involving the valid or transaction time.
- Temporal aggregate functions would support temporal navigation [Gadia & Vaishnav 1985] in a limited
fashion, yet would be consistent with the declarative nature of TQuel. Various t.emborai aggrega;te

operators have been proposed in the context of other query languages IAriav 1984, Ben-Zvi 1982].

The issue of completeness naturally arises whenever a new query language is proposed. A query
language is said to be carﬁplete if it can simulate tuple relational calculus, as defined by Codd [Codd
1972|. TQuel is compiete under this definition, since it is an extension of Quel, which has been shown tq
be complete jUllman 1982]. However, a more satisfying concept would be that of temporal completeness,
for which there is no generally accepted d-eﬁnition.. Gadiz and Vaishnav have proposed a particul-;r terﬁ-
bora.l relational algebra [Gadia 1985] as a benchmark {Gadia & Vaishnav 1985]; howéver, the issue of why
tﬁe is an appropriate benchmark for completeness was never discusse-d.l Two reasons why the aigebra is
pefhaps inaﬁpropriate are that it is 2 multisorted algebra over relations and temporal domains, and that
it only concerns valid time. Nevertheless, if this definition olf completenesé is adopted, then TQuel :'s-tem-
porally cdmélete. |

A host of other issues must be considered in the des.ign of a temporal query language. How should
tinie granularity {e.g., houf, work week} be handled [Anderson 1982]. Temporal consté.nts, as discussed in
Section 4.2, provide only a partial answer. Should valid a.n.d transaction time be linear or branching?
Bra.ﬁching tifne, while more complex than linear time, does have some épterésting properties’[Ariav 1984,

Stonebraker & Keller 1980]. Htjﬁ should changes to the schema be incorporated into the language? How
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‘should - indeterminacy be incorporatéd? How should temporal relations be displayed? High resolution
display devices look quite promising [Ariav 1984, Shannon 1985]. Sh.o.uid periodic or cyclic eve.nts and
intervals (e.g., fiscal year, monthly pa.ymen‘ts)r or causality be iﬁcdrporat.ed [Ariav & Morgan 1982, Ariav
1984|? How doés TQuel correspond to the user's temporai perception? F.l;rther ﬁork is necessary in all of

these areas.

The prototype described in Section 6 will exhibit unacceptable performance as updates are made to
this database. Much more research is needed, particularly in the areas of new access methods, query

~ optimization techniques, and use of novel stofage devices such as optical disks.

Temporal database r;;ana.gement. systems in general are at approximately the s#me stage as ;ta,tic
reia.tiona.l systems were in the early '1.970’3 [Kim 1979]_: several high-levél,' nonprocedural query ‘languages
h.ﬁve.bee_n designed, at least one query languaglé i‘las' been fqr’ma.lizéd, and a prototype implementabiéhé
exist. All the questions asked concerning s't‘;a.ticr relational datgbas_es,_'iricluding those thaf, Have already

been answered, must be asked (and answered) anew in the context of temporal databases.
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10. Ap.pendixz Syntax of the Augmented TQuel Statements

This appendix lists the syntax for the statements where Quel and TQuel differ.. Since TQuel is 5
' str'ic_f. superset of Quel, all legal Quel statements are aiso legal TQuel statements. TQuel augments five
Quel statements: create, retrieve, append, delete, and replace. The Q\lle! statements left una.l.tered are
copy. (data into/from a relation from/into a Unix file), define (subschema: view, permissions, or integrity
constraints), destroy (a relation), help, inﬂex. modify {the étorage structure of a relation), ‘print, range,
and save (2 relafion until a date). The'fo!lowing- non-terminals are not includéd in the syntax Qéscript;ion

~ because they are identical to their Quel counterparts.

<bool expression>> returns a value of type boolean

<expression>> returns a value of type integer, string, floating point, or temporal
<domain> the name of a domain : ‘

<relation> a relation name

<string> a string constant

<tuple variable>  the name of a tuple variable

< domain specs> a list of the names and types for the user specified domains

Also not shown are the additional texﬁporal functions and predefined relations found in TQuel.

<TQuel augmented> = <create stmt>
| <retrieve stmt>
| <append stmt>
{ <delete stmt>
| <replace stmt>

<create stmt> = ¢reate <pérsistent> <history> <domain specs>
<persistent> = ¢ | persistent

<history> == ¢ | Interval | event .
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<retrieve stmt>
<retrieve head>
<retrieve tail>
<into>
targes list>
| <t-list> |
<t-elem>>
<is>
<append stmt>
<to>
{delete stmt> |
<fepl3ce-stmt>
<rﬁod stmt tail>
<valid clause>
<Lvalid>
<frofn clause>
<to clﬁuse) _
<af;-<;l§.use>
<where clause>
<when cla.uée)
<as-9f clause>
_ <t§;r§ugh clange>

<e-expression>

: <e-intervél>

e <retri§ve head> <ret.riev<_e tail>

;= retrieve <into>> <target list> <valid clause>

1= <where clause>> <when clause> <as of clause>

u= ¢ | unlque ] <relation>> | Into <relation> | to <relation>>
n= €| ( <tuple variable> . all } | { <t-list> } |

na <t-elem> | <t-list> , <t-elem>

u= <domain>> <is> <expression>>

n=1s| = by

= append <to> <target !i_ét> <mod stmtrta'.ii>

u= <relation> ] to <relation> | -

== delete <tuple variable> <mod stmt tail>

= replace {tuple variable> <target list> <mod stmt tall>
u= <valid cla-use> <where clause> <when clause>

u= <valid> <from clause> <to claﬁse> } <valid> <at clause>
= ¢ | valld

= ¢ | from <e-expression>

= ¢ | to <e-expression>

n== b < e-expression>

== € [wlherg <bool expression>

= ¢ | when <temporal pred>

© == ¢ | a8 of <e-expression> <through clause>

= ¢ | through <e-expression>

= event element>
| start of <e-either>
| end of <e-either>

1 <e-expression> )

1= <interval element> -

| <e-either> overlap <e-either>
| <e-either> extend <e-either> .
}( <e-interval> )
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<e-either> = <Le-expression>> | <e-interval>
<event element> e <t1£ple variable> gesocited with an event relation

<interval element> u= <tuple variable> sssociated with an interval relation
| <temporal constant>

<temporal constant> = <string>"
<temporal pred> = <interval element>>
| <event element>
{ <temporal pred> precede <temporal pred>
! <temporal pred> overlap <temporal pred>
| <temporal pred> extend <temporal pred>
| <temporal pred>> and <temporal pred>
| <temporal pred>> or <temporal pred>>
! ( <temporal pred> )
| start of <temporal pred>
| end of <temporal pred>
i not <temporal pred>

Event elements are tuple variables associated with event relations. Interval elements are either tuple
variables associated with interva_l relations, or are temporal constants {all temporal constants are inter-
va.ls);

T‘he. where, when, and valid clauses in the delete statement can c;nly refer to one tuple variable,
that referenced at the beginning bf the statement. The unary opérators (start of, end of, not) have the
highest precedence, followed in order by the binary temporal constructors (extend, overlap), the tem-
poral predicate operators {precede, overlap), and finally the binary logical operators (and, or). Opera-
tors of equal precedence are left associative. extend and both variants of overlap are commutative;
precede is not.

Note t.l:tat the distinction between <interval element> and <event eleﬁent> makes the grammar
context-sensitive. In practice, this distinction is ignored in the LALR parser, and the resu!bix;xg parse tree
is type-checked in the semantic analysis phase. Similarly, chécking that Ithe top level operator of a tem-
poral predicate, after t;he'logicaLl operators have been distributed over the temporal ones, must be pre-
cede or overlap is relegated to the semantic analysis phase {this is the reason that no distinction is made

in the BNF between temporal predicates and e-expressions).



- In keeping with the path expression origins of temporal predicates and e-expressions, the keyword
overlap may be abbreviated with 2 comma, precede may. be abbreviated with a semicolon, and or may
be abbreviated with a vertical bar. Since non-temporal‘ attributes are designated by “<tuple-variable> .
.<domain>”, the prefix unary operaiors start of and end of may be preplaced by the postfix operators

“from"” and “.to”. The following is an example.

range of 1 1s Faculty
range of 2 is Faculty
range of a Is Associates
retrieve into Stars (Name = f1.Name)
valld from fl.start to f2.start
where f1.Name = {2.Name and {1.Rank = "Assistant” and {2.Rank = "Full"
" when (f1 and 2}, 2

Ezample 17: Another Variant of Example 7.
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