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Recently, attention has been focussed on temporal databaaea, representing an enterprise 
over time. We have developed a new language, TQuel, to query a temporal database. 
TQuel was designed to be a miminal extension to Que!, both syntactically and semanti
cally, of Que!, the query language in the Ingres relational database management system. 
This paper discusses the language informally, t)len provides a tuple relational calculus 
semantics for the TQuel statements that differ from their Que! counterparts, including 
the modification statements. The three additional temporal constructs defined in TQuel 
are shown to be direct semantic analogues of Quel's where clause and target list. We 
also discuss reducibility of the semantics to Quel's semantics when applied to a static 
database. 
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Syatema (Snodgrass 1984] and in the Proceedings of the ACM SIGMod Conference on the 
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1. Introduction 

Most conventional databases represent the stat~ of a.n enterprise at a. single moment of time. 

Although the contents of the database continue to change as new information is added, these changes are 

viewed as modifications to the state, with the old, out-of-date data. being deleted from the database. The 

current contents of the database may be viewed as a. snapshot of the enterprise. 

Recently, attention has been focussed on temporal databases, representing the progression of states 

of a.n enterprise over a.n interval of time. In such databases, changes are viewed as additions to the infor

mation in the database. Temporal da.ta.ba.ses (TDBs) are thus generalizations of conventional (termed 

static) databases. 

We h&ve developed "new language, TQt&d (Temporal QUEry Language), to query a TDB. TQuel 

is a derivative ()r Que! [Held et a.l. 1975[, the query language for the !ogres relational database manage

ment system [Stonebraker et al. 1976[. TQuel was designed to be a. minimal extension, both syntactically 

&nd sem&ntica.lly, or th&t language. This design decision has three important ramifications: all legal Que! 

statements are also valid TQuel statements, such statements have an identical semantics in Que! and 

TQuel when the time domain is fixed, and the additional constructs defined in TQuel to handle time 

have direct analogues in Que!. TQuel is, then, a natural extension of a. static relational query language to 

a. temporal 'relational query language. 

Major portions or the language have been formalized and implemented. This paper will focus on the 

syntax and semantics of TQuel; the implementation will be described in a later paper. This paper first 

introduces the concept or temporal databases in SeCtion 2, and provides an overview of the language in 

the third section. A formal definition and semantics or TQuel is the subject of the next two sections. The 

final section summarizes the results, compares TQuel to other query languages, and indicates future 

work. An appendix gives the complete syntax or the augmented TQuel statements. 
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2. Temporal Databases 

Temporal information has been stored in computerized information systems for many years; payroll 

and accounting systems are typical examples. In these systems, the attributes involving time are manipu

lated solely by the application programs; the DBMS interprets dates as values in the base data types. 

For example, the ENFORM database management system encodes dates and times in character arrays 

[Tandem 1983j; the Query-by-Example system supports both date and time domain types directly [Bon

tempo 1983j; and Ingres has been extended to convert dates to and from an internal format and to per

form comparisons and arithmetic operations on these domains [Overmyer & Stonebraker 1982, Relational 

Technology 1984j. However, none of these systems interpret temporal domains when deriving new rela

tions. 

The need to handle time more comprehensively surfaced in the early 1970's in the area of medical 

information systems, where a patient's medical history is particularly important. The model supported 

by the Time Oriented Databank [Wiederhold et al. 1975J and several other medical DBMSs (e.g., 

CLINFO jPalley et al. 1976j) views the database as a set of entity-attribute-value-time quadruples, where 

the time portion indicates when the information represented by the tuple became valid. In these systems, 

the query language is used to select subsets of quadruples from the three dimensional database of entities 

(i.e., patients), attributes, and times . 

In the last five years, interest in the area of TDBs has increased. In a recent, extensive bibliography 

[Bolour et a!. 1982j, containing 69. articles from the period 1960 to June, 1982, over half of the referenced 

articles were published since 1978. This activity may be classified loosely into three emphases: the formu

lation of a semantics of time at the conceptual level, the development of a model for TDBs analogous to 

the relational model for static databases, and the design of temporal query languages. However, the prob

lems inherent in the modeling of time are not unique to information processing; a significant literature 

exists on related issues in artificial intelligence (c.f., [Allen 1983, Allen 1981, Allen 1984, Cheeseman 1983, 

Fagan 1980, Findler & Chen 1971, Kahn & Gorry 1975, Long & Russ 1983, McDermott 1982, Tsotsos 

1981, Vilain 1982j), linguistics (c.f., [Dowty 1972, Hirschman & Story 1981, McCawley 1971, Montague 
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1973]), logic (c.f., !McArthur 1976, Prior 1967, Rescher & Urquhart 197lj), philosophy (c.r., jWhitrow 

1980]), and physics (c.r., !Taylor & Wheeler 1966j). 

Bubenko jBubenko 1976, Bubenko 1977j, specified a TDB and examined two possible implementa

tion strategies, in the binary and n-ary relational models. Since the appearance of these papers, various 

semantic models have been proposed that incorporate the temporal dimension to varying degrees !Ander

son 1981, Anderson 1982, Breutmann et al. 1979, Bubenko 1980, Codd 1979, Hammer & McLeod 1981, 

Klopprogge 1981j. 

At least two possible approaches to the development of a model for TDBs have been suggested. One 

\ is to extend the semantics of the relational model to incorporate time directly. The other is to base 

TDBs on the static model, with time appearing as additional attribute(s). The first has been applied suc

cessfully by Clifford and Warren !Clifford & Warren 1983J, with the entity-relationship model used to for

mulate the intensional logic n.,. This logic serves as a formalism for the temporal semantics of a TDB 

much as the first-order logic serves as a formalism for the static relational model. Sernadas has taken 

the same approach in defining the temporal process specification language DMTLT, which incorporates a 

special modai tense logic jSerna.das 1980j. 

In the second approach, the static relational database model jCodd 1970J serves as the underlying 

model of the TDB. Each temporal relation is embedded in a static relation containing additional tem

poral attribute(s). In this approach, the logic of the model does not incorporate time at all; instead, the 

query language must translate queries and updates involving time into retrievals and modifications on the 

underlying static relations. In particular, the query language must provide the appropriate values for 

these attributes in the relation being derived. In Ben-Z vi's Time Relational Model, for example, five addi

tional attributes are appended to each relation jBen-Zvi 1982j. Other researchers have also utilized this 

technique jAriav & Morgan 1981, Copeland & Maier 1984, Gadia & Vaishnav 1985, Jones & Mason 

1980j. 

Several query languages incorporating time have been designed ovu the last decade. In Section 7.2, 

TQuel is compared with these other proposals. 

3 
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' Most databases incorporating time support only one aspect of time-the time when the information 

is valid. This aspect is termed valid time.· Two other aspects of time should be supported by a temporal 

query language: transaction time and user-defined time. The remainder of this section will characterize 

these al!pects briefly; a more complete discussion may be found in /Snodgrass & Ahn 1985/. The presenta-

tion is more of an intuitive nature than a formal characterization of temporal databases; Seetin 5 will 

show how to embed a temporal relation in a static relation, thereby providing a precise definition. We 

take the second approach to modelling TDBs: utilizing the static model. 

Z.l. Static Databases 

Conventional databases model the dynamic real world, as a snapshot at a particular point in time. 

A state or an instance of a database is its current contents, which does not necessarily reflect the current 

status of the real world, since changes to the database will always lag behind changes in the real world. 

Updating the state of a database is performed using data manipulation operations such as insertion, dele-

tion or replacement, taking effect as soon as it is committed. In this process, past states of the database, 

and those of the real world, are discarded and forgotten completely. We term this type of database a 

static database. 

In the relational model, a database is a collection of relations. Each relation consists of a set of 

tuples with the same set of attributes and is usually represented as a 2-dimensional table (see Figure 1). 

As changes occur in the real world, changes are made in this table. 

Figure 1: A Static Relation 

''1--t----f---t--1 
........ 
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:t.::l. Statle Rollback Databues 

Static databases relying on snapshots are inadequate for many situations. For example, they cannot 

answer queries on past states. Without system support in this respect, many applications were forced to 

maintain and handle temporal information in an ad-hoc manner. One approach to resolve these 

deficiencies is to store all past states, indexed by time, of the static database as it evolves. Such an 

approach requires a. representation of lr4n84clion time, the time the information was stored in the data-

base. A relation under this approach can be illustrated conceptually in three dimensions (Figure 2) with 

transaction time serving as the third axis. The relation can be regarded as a sequence of static relations 

indexed by transaction time. One can get a snapshot of the relation as of some time in the past (a static 

relation) and make queries upon the static relation by moving along the time axis and selecting this rela-

tion. The operation of selecting a static relation is termed rol/b4ck, and a database supporting it is 

termed a ol41ic rollb4ck d4lah4ae. A rollback to a time I, where t is between two transaction times 1
1 

and 

1
2 

represented in a static rollback database, selects the most recent static relation in effect at that time 

(i.e., the one at trJ. Changes to a static rollback database may only be made to the most recent static 

state. The (single) relation illustrated in Figure 2 had three transactions applied to it, starting from the 

null relation: (1) the addition of three tuples, (2) the addition of a tuple, and (3) the deletion of one tuple 

(which was entered in the first transaction) and the addition of another tuple. Each transaction results in 

a new static relation being appended to the right; once a transaction has completed, the static relations in 

the static rollback relation may not be altered. 

~=I < <, 

t:l: 1Jl 

Figure ::1: A Static Rollback Relation 

transaction 
t1me 
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2.3. Historical Databaaes 

One limitation of supporting transaction time is that the history of database activities is recorded, 

rather than the history of the real world. A tuple becomes valid as soon as it is entered into the data

base as in a. static database. Retroactivefpostactive changes are not recorded and errors in past tuples 

cannot be corrected. Errors can sometimes be overridden (if they are in the current state) but they can

not be forgotten. 

While static rollback databases record a sequence of static states, historical databases record a sin

gle historical state per relation, storing the history as is best known. As errors are discovered, they are 

corrected by modifying the database. Previous states are not retained, so the database may not be 

viewed as it was in the past. No is record kept of the errors that have been corrected; historical data

bases are similar to static databases in this respect. Thus historical databases must represent valid time, 

the time that the stored information models reality. Historical databases support historical queries, which 

may utilize information from the past. 

Historical databases may also be illustrated in three dimensions (see Figure 3) [Ariav 1984, Ben-Z vi 

1982, Clifford & Warren 1983, Lum et al. 1984]. Although the illustration as a series of static relations 

indexed by a time parameter is similar in some aspects to that for static rollback databases, the label of 

the time axis has been changed to valid time and the semantics are more closely related to reality, rather 

than update history. The state of the world being modelled remains unchanged between the individual 

static relations found in the historical relation; this is termed the step function continuity assumption 

[Clifford & Warren 1983[ or the principle of temporal density [Ariav 1984[. The information present in the 

static database slice at one valid time v 1 is assumed to be valid for all times between that valid time and 

the next one, v2• Hence, the tuples in the relation are valid for the interval of time [v
1
, u

2
). 

As the model now stands, only states that exist for a finite interval of time may be represented. One 

representation of events is tuples that exist for exactly one valid time, with the static relations of the pre

vious and next valid times not containing the tuples. This representation is problematic because time is 

continuous: it is misleading to talk about the previous and next time values. or course, any implementa-



tion will encode valid time in some discrete fashion; the proposed representation for events then reduces 

to an interval of the granularity of the valid time encoding (say, seconds, or microseconds). Static rela-

tions, in modelling current reality, cannot represent events at all, precisely because they are instantane-

ous. 

Since an update to an historical relation must specify the valid time it concerns, more sophisticated 

operations are necessary to manipulate and query valid time adequately, compared to the simple rollback 

operation, since they apply to the entire historical relation, rather than a. single static slice. 

Figure 3: An Historical Relation 

~ time 

~~r--..1 I I I I 

~~r-... " " ' 
' ' 

lid 

2.4. Temporal Databases 

Benefits of both approaches can be combined by supporting both transaction time and valid time. 

While a static rollback database views tuples as being valid at some time as of that time, and a historical 

database always views tuples as being valid at some. moment as of now, a temporal DBMS makes it possi-

ble to view tuples as being valid at some moment relative to some other moment, completely capturing 

the history of retroactive/posta.ctive changes. 

We use the term temporal database to emphasize the need for both valid time and transaction time 

in handling temporal information. Since two time axes are now involved, four dimensions are required to 

represent a temporal relation (Figure 4 shows a single temporal relation). A temporal relation may be 

thought of as a sequence of historical states, each of which is a complete historical relation. The rollback 

operation on a temporal relation selects a particular historical state, on which an historical query may be 

7 



performed. Each transaction creates a new historical state; hence, temporal relations are append-only. 

However, the transaction must specify the valid time(s) it concerns, as in an historical database. The 

temporal relation in Figure 4 is the result or four transactions, starting from a null relation: (1) three 

tuples were added, (2) one tuple was added, (3) one tuple was added and an existing one deleted, and (4) 

a previous tuple (with an earlier valid time) was deleted (presumably it should not have been there in the 

first place). Each update operation involves copying the historical relation, then applying the update to 

the newly created historical relation. 

~51 •• ~ 

t!: Ill 
va~ 
time 

Figure 4: A Temporal Relation 

.~ ., •. ,. 
time time time 

transac.tion 
time 

User-defined time [Jones & Mason 1980[ is necessary when additional temporal information, not 

handled by transaction or valid ,time, is stored in the database. As an example, consider the Promotion 

relation, with the three attributes name, rank, and effective_date. The effective date is a user-defined 

temporal attribute, and values of this attribute would appear in one of the columns of Figures 1-4. This 

date is the date that the promotion was to take effect, as shown on the promotion letter; the valid time is 

the moment the promotion letter was signed, i.e., the date the promotion was validated; and the transac-

tion time is the moment the information concerning the promotion was stored in the database. The 

effective date is application-specific: it is merely a date which appears on the promotion letter. The values 

or user-defined temporal attributes are not interpreted by the DBMS, and are thus the easiest to support; 

all that is needed is an internal, representation and input and output functions. The transaction and valid 

times are needed in any case in temporal relations. 

In this model, four types or databases were defined: static, static rollback, historical, and temporal. 

Each may be associated with a class of query languages. A static query language supports queries over 

8 
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multiple static relations. A static rollback query language also supports rollback. An historical query 

language does not support rollback, but it does support historical queries, which combine information 

from multiple valid times and possibly multiple relations. A temporal query language supports both roll-

back and historical queries. The next section will informally introduce the temporal query language 

TQuel. 

3. Overview of TQuel 

TQuel is a superset or Que! [Held et al. 1975[, the query language for lngres [Stonebraker et al. 

1976[. Que! was chosen for several reasons: it is well known and implementations are widely available; it 

is particularly simple but rather powerful; and it has a simple and well defined semantics. The leading 

contender, SQL [SQL/DS 1981[, is more complex and has a rather complicated semantics [Ceri & Gottlob 

1985, Kim 1982[. An important goal in the design or TQuel was that it be a minimal extension, both syn-

tactically and semantically, or Que!. This objective has three important ramifications: all legal Que! 

statements are also valid TQuel statements, such statements have an identical semantics in Que! and 

TQuel when the time domain is fixed, and the additional constructs defined in TQuel to handle time 

have direct analogues in Que!. 

TQuel will be illustrated using example queries on the database shown in Figure 5. The Faculty 

relation lists the faculty members and their ranks (one or the values Assistant, Associate, or Full); the 

Submitted relation lists those papers submitted. In the discussion that follows, the reader is assumed to 

be familiar with Que!. 

.. 
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Figure 5: A Static Database 

Faculty (Name, Rank): 

Submitted (Author, Journal): 

Name Rank 
Jane Full 

Merrie Associate 
Tom Associate 

Author Journal 
Jane CACM 

Merrie CACM 
Merrie TODS 
Tom JACM 

Figure 6: Result of a Query on a Static Database 

Associates (Name): 

Name 
Merrie 
Tom 

The Que! retrieve statement consists of two basic components, the target list, specifying how the 

attributes of the relation being derived are computed from the attributes of the underlying relations, and 

a where clause, specifying which tuples participate in the derivation. The query 

range of f lo Faculty 
retrieve Into Associates (Name = f.Name) 

where f.Rank- "Associate" 

Example 1: List the associate professors. 

produces in the relation shown in Figure 6 when applied to the sample database. The range statement 

associates tuple variables with relations; this binding remains in effect until a new range statement with 

the same tuple variable is executed. 

The relations shown in Figures 5 and 6 are static relations. While the graphical representation of a 

temporal relation as a sequence of three-dimensional structures is conceptually elegant, it is not con-

venient for displaying the contents of a temporal relation. For the purposes of this section, the temporal 

10 
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relations will be embedded in a static relation by appending two additional temporal attributes. The 

value of the first attribute specifies the valid time: when that tuple was valid. For event relations, which 

consist of tuples representing instantaneous occurrences, this attribute contains a single time value (at). 

For interval relations, which consist of tuples representing a state valid over a time interval, the attribute 

contains two time values delimiting the interval (from, to). The second temporal attribute specifies the 

transaction time: when the information was entered into the TDB. Two time values are always associ

ated with the transaction time: the time the tuple was entered into the TDB (start), and the time it was 

removed (stop). Hence data is current from the start time to just before the stop time, when it becomes 

no longer current. Figure 7 illustrates the Faculty relation extended to become an interval relation, and 

the Submitted relation extended to become an event relation. Note that Tom was entered into the data

base as a.n associate professor in August, 1975; this error was corrected two months later. No errors have 

been corrected in the Submitted relation, since the stop time for all tuples is "oo". Both intervals, for 

valid and transaction time, are closed on the left a.nd open on the right. The granularity of time values 

is arbitrary; in this section we assume Cor simplicity a granularity of one month. 

11 



Figure 7: A Temporal Database 

Faculty (Name, Rank): 

Name Rank Valid Time Transaction Time 
i (From) (To) ! (Start) (Stop) 

Jane Assistant 9-71 12-76 9-71 00 

Jane Associate 12-76 11-80 12-76 00 

Jane Full 11-80 00 10-80 00 

Merrie Assistant 9-77 12-82 8-77 00 

Merrie Associate 12-82 00 12-82 00 

Tom Associate 9-75 00 8-75 . 10-75 
Tom Assistant 9-75 12-80 10-75 00 

Tom Associate 12-80 00 11-80 00 

Submitted (Author, Journal): 

Author Journal Valid Time Transaction Time 
(At) I (Start) (Stop) 

Jane CACM 11-79 11'79 00 

Merrie CACM 9-78 9-78 00 

Merrie TODS 5-79 5-79 00 

Tom JACM 12-82 12-82 00 

Since TQuel is a. strict superset of Que!, the identical query, executed in September, 1985, on this 

sample TDB, produces the relation shown in Figure 8. The transaction time specifies when the relation 

was created; subsequent updates will alter the transaction time of individual tuples. 

Figure 8: The Same Query on a Temporal Database 

Associates (Name): 

Name Valid Time Transaction Time -
(From) (To) I (Start) (Stop) 

Jane 12-76 11-80 9-85 00 

Merrie 12-82 00 I 9-85 00 

Tom 12-80 00 9-85 00 

( 
\ 

Since the additional temporal attributes are an artifact of embedding a temporal relation in a static 

one, users' must be constrained in how which they use these attributes. The query language must be 

designed so that temporal attributes are used correctly. The approach taken here is to make the tern-

pora.l attributes implicit in the query language (except in one very restricted case), and to provide facili-

ties in the language for manipulating this implicit attribute. That these additional attributes are implicit 
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is indicated in the figures by a double vertical line and parentheses surrounding the names of the attri· 

butes. To manipulate these attributes, TQuel augments the retrieve statement with three components, 

analogous to the components of the Que! retrieve statement, one specifying how the implicit valid tern· 

poral attribute is computed, and two specifying the temporal relationship of the tuples participating in 

the derivation. 

3.1. The When Clause 

The when clause is the temporal analogue to Quel's where clause. This clause consists of the key-

word followed by a temporal predicate on the tuple variables, representing the implicit time attributes of 

the associated relations. The syntax is similar to pafh expressions, which are regular expressions aug-

mented with parallel operators (Andler 1979, Habermann 1975J. 

The overlap operator specifies that the events and/or intervals overlap in time: 

range of a Is Associates 
retrieve Into FirstDayAssociates (Name = a.Name) 

when a overlap "September" 

Ezample 2: List the associate professors in September. 

In this case, the query specifies that the interval when the faculty member was an associate professor 

should include September, which is also a time interval (strings, enclosed in double quotation marks, are 

temporal constants). As another example, 

range of a Is Associates 
range of sIs Submitted 
retrieve Into AssocPapers (Name ~ s.Author, Journal= s.Journal) 

where a.Name = s.Author 
when s overlap a 

E:tample 9: What papers were written by associate professors! 

The time that the paper was submitted must overlap with the time interval when the faculty member 

was an associate professor. 

Intervals include two time values in the implicit attribute; a starting time and a stopping time. 

These values may be indicated by the unary operators start of and end of: 

13 



range of n Ia Faculty 
range of a Is Associates 
retrieve Into Full (Name - fl.Name) 

where a.Name = Tom and fl.Rank = "Full" 
when n overlap start of a 

E:zampie ,j: Who were the full professors when Tom was promoted to associate? 

Sequentiality may be tested with the precede operator: 

range of a Ia Associates 
retrieve Into Disgruntled (Name = a.Name) 

when (start of a) precede "January, 1980" and "January, 1985" precede (end of a) 

E:zample 5: Who has been an associate professor for the last five years? 

This example also illustrates the and operator; the or and not operators are allowed as well. 

Given the precede operator, the extend operator may be introduced. This operator is similar to 

the overlap operator. The overlap operator may be thought of as a temporal intersection operator, in 

that it returns true when both arguments are true: the predicate 

(a overlap b) precede c 

is true when the overlap of the intervals represented by the tuple variables a. and b precedes the event or 

the start of the interval represented by c. However, the extend operator is more like a temporal union, 

in that it returns true when either of the arguments are true; the predicate 

(a extend b) precede c 

is true when the end of both a and b precede the start of c. The difference between overlap and extend 

is illustrated with the time lines in Figure 9. 



Figure 9: The Difference between overlap and extend 

time 

a 

b 

e I 
a overlap b 

(a overlap b) precede e - True 

a extend b 

(a extend b) precede e =False 

3.2. The Valid Clause 

The valid clause serves the same purpose as the target list: specifying the value of a attribute in the 

derived relation. In this ease, t~he attribute in question is the implicit time attribute. There are two vari-

ants to this clause. If the derived relation is to be an event relation, the valid at variant specifies the 

value of the single time in the temporal attribute; 

range of a Is Associates 
retrieve Into AssociatePromotions (Name = a.Name) 

valid at start of a. 

E::ample 6: When were the associate professors promoted to this rank! 

In this query, the underlying relation, Associates, is an interval relation. One time value, the start time, 

was selected as the time value in the derived (event) relation. The valid clause contains an e-e::pression, 

also syntactically similar to path expressions. The operators start or, end or, overlap, extend, and 
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precede may be used in &expressions. The binary boolean operators and and or and the unary boolean 

operator not are not allowed, since they introduce ambiguity as to which time value is desired. 

The second variant of the valid clause, also containing e-expressions, is used when the derived rela-

tion is to be an interval relation: 

range of f1 Ia faculty 
range of f2 Ia faculty 
range of a Ia Associates 
retrieve Into Stars (Name = fl.Name) 

valid from start of fl to start of f2 
where fl.Name = f2.Name and fl.Rank ="Assistant" and f2.Rank ="Full" 
when (fl overlap a) and (f2 overlap a) 

Example 7: Who got promoted from assistant to full professor while at least one other faculty remained at the ass 

Tuples in the derived relation Stars indicate the interval of time from joining the faculty as assistant pro-

fessors to becoming full professors. 

The operators found in, temporal predicates and e-expressions may be applied more generally than 

shown above; as an example, the e-expression 

valid at start of (A over lap B) 

specifies that the time value returned should be the first instant when both tuples are valid. &expressions 

must have start of or end of as top level operators. 

As with other languages, there are several ways to write most queries. As an example, the and 

operator in the when clause can considerably simplify matters: 

range of f1 Ia Faculty 
range of f2 Ia Faculty 
range of a. Ia Associates 
retrieve Into Stars (Name = fl.Na.me) 

valid from start of fl to start of f2 
where fl.Na.me - f2.Name and fl.Rank = • Assistant" and f2.Rank = "Full" 
when (fl and f2) overlap a 

Example 8: A Variant of Example 7. 
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3.3. The As ot Clause 

The when and valid clauses are used to express historical queries. To express rollback, the as of 

clause is used: 

range of fl Ia Faculty 
range of f2 Ia Faculty 
range of a Ia Associates 
retrieve Into Starsof1984 (Name= fl.Name) 

valid from start of f1 to start ot f2 
where fl.Name - f2.Name and fl.Rank = "Assistant" and f2.Rank = "Full" 
when (fl and f2) overlap a 
aa of end of "1984" 

Ezomple 9: What stars were known at the end of 1984? 

The as-of clause rolla bac.l: the database to the state it was at midnight on December 31, 1984, and evalu-

ates the rest of the query using the information known only to that point. Additions and error corrections 

made after that time would not be included in the resulting relation. 

The as-of clause is similar to the where and when clauses, in that it provides an additional con-

straint on the underlying tuples participating in the query. Most of the time the user will be interested in 

the most up-to-date information in the database, and will rely on the default for the as-of clause: aa ot 

"now". To rollback to a previous historical database, the as-of clause as illustrated above would be used. 

To examine a. sequence of transactions occurring over a period of time, a third variant is used: 

as of a through fJ 

3 . .£. Temporal Data Type 

TQuel provides a temporal data type to support user defined time. As discussed previously, the 

values of user-defined temporal attributes are. not interpreted by the TDBMS; only the internal represen-

tation, the input and output functions, and the comparison operators are provided. 

3.5. Modlftcatlon Statements 

Que! has three modification statements: append, delete, and replace. These statements in TQuel do 

not have a.n as-of clause, because the transaction time is computed automatically by the TDBMS as the 
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current time (recall that TDB's are append-only). However, the valid and when clauses may be employed 

in these statements. In October, 1985, it was learned that Tom had submitted a paper not to JACM, but 

to TOP LAS, a month later than previously thought. 

range of sla Submitted 
replaces (Journal- "TOPLAS") 

where s.Author- "Tom" and s.Journal ="JACM" 
valid at start of "January, 1983" 

Ezample 10: Tom submitted a paper to TOPLAS, not to JACM, 

resulting in the relation shown in Figure 10, which should be compared with Figure 7. 

Figure 101 An Updated Temporal Relation 

Submitted (Author, Journal): 

Author Journal Valid Time Transaction Time 
(At) (Start) (Stop) 

Jane CACM 11-79 11-79 00 

Merrie CACM 9-78 9-78 00 

Merrie TODS 5-79 5-79 00 

Tom JACM 12-82 12-82 10..85 
Tom TOPLAS 1-83 10..85 00 

4. Formal Definition 

The description of TQuel in the previous section was presented informally to help the reader 

develop an intuitive understanding of the language. This section and the next will provide a more precise 

definition and semantics for the language. 

Que! has some fourteen statements; TQuel augments five of them: the create, retrieve, append, 

delete, and replace statements. The statements will be discussed in this order. The syntax for the 

retrieve statement will be presented in a bottom up fashion, discussing expressions before clauses, in con· 

trast to the top down presentation of the previous section, where the clauses were emphasized. The 

appendix includes the syntax of the five statements. 
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4.1. Schema Definition 

The create statement defines a new relation and provides a scheme for that relation; the statement 

create persistent Interval Faculty (Name = c20, Rank = clO) 

would· define the Faculty relation shown in Figure 7 (the contents of this relation would have to be pro

vided through the copy or append statements). The Que! create statement does not include the per

sistent, Interval, or event keywords. Each of these keywords is optional in TQuel (see the appendix for 

details on the syntax). If the persistent keyword is used, then the relation is either a static rollback or a 

temporal relation, and the as-of clause may be used in queries. If the Interval or event keyword is used, 

the relation is either an historical or temporal relation, and the when and valid clauses may be used. If 

none of these keywords are used, the relation is a conventional static relation. The four types of relations 

(static, static rollback, historical, temporal) are thereby specified. The domain specifications are similar to 

thos.e in Que! (integers, floating point numbers, and fixed length character strings, as used above, are sup

ported), with the addition of a temporal data type. 

Associated with all static rollback and temporal relations is a pair of transaction time values, start 

and stop. Although these values are closely associated with clock time, they are actually transaction 

identifiers. Tuples created or removed by two different, transactions will have different transaction times, 

even if the transactions started and completed at identical moments in time. 

Associated with all historical and temporal event relations is a single valid time value, at, and with 

all historical and temporal interval relations, a pair or valid time values, from and to. These values are 

equal to the clock time when the tuple was valid. In contrast to transaction time, two tuples entered into 

the database at different times may have the same valid times. 

4.2. Constanta and Predefined Domains 

Que! supports numeric and character string constants. TQuel augments these with temporal con

stants. Strings appearing in the valid, when, and as-or clauses are interpreted as temporal constants 

denotbg a particular time interval. The string "Sept. 1, 1983" denotes an interval from midnight or 
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9/1/83 to midnight of 9/2/83; "Sept, 1983" denotes the entire month; and "4:00pm September 1, 1983" 

denotes a sixty second interval. Events may be approximated with very short intervals. The constants 

"now" and "infinity" are also available. The exact format of these constants is similar to that specified 

for the time expert [Overmyer & Stonebraker 1982J or the lngres system [Relational Technology 1984J: 

The implicit temporal attributes are available as the predeclared attribute names "validat", "valid-

from" and 11Validto" (valid time), and "transaetionstart" and "transactionstop" (transaction tiffie), for 

use only in the target list and where clauses. These special attributes, as well as the temporal data type, 

are provided in part for auditing purposes [Bjork 1975J; a simple example is 

range off Is Faculty 
retrieve Into Mistake (MistakeDate - f. TransactionS tart, CorrectedDate - f. TransactionS top) 

where f.Name ="Tom" and f.Rank ="Associate" 
aa of "1975" 

Ezample 11: When was Tom entered incorrectly as an Associate Professor? 

The MistakeDate and CorrectedDate attributes cannot be used in subsequent when, valid, or as-of 

clauses; to the TDBMS these attributes are just other user-defined attributes. Perhaps the temporal data 

type's most useful function is to be displayed with the other user-defined attributes (as in the example 

above). TRM also provides restricted access to the time attributes [Ben-Zvi 1982J. 

As the other statements, retrieve, append, delete, and replace, all incorporate the when, valid, and 

as-of clauses, we will first discuss the expressions found in these clauses. 

4.3. Temporal Expressions 

A temporal constructor is a unary or binary operator that takes one or two events or intervals as 

arguments and returns an event or interval. If either of the arguments to the temporal constructors is an 

event, then it is coerced into an interval which starts and ends at the event's time value. The unary 

prefix temporal constructors are start of and end of, both returning events. The binary infix temporal 

constructs are overlap and extend, both returning intervals. overlap is undefined if there are no time 

values which are in both underlying intervals. Figure 9 illustrates the difference between overlap and 

ext.end. 
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An e-ezpression is simply an expression containing tuple variables, temporal· constants, and tem

poral constructors, with the constraint that the expression must result in an event. E-expressions are used 

in the valid and as-of clauses. Since the as-of clause specifies rollback to a particular transaction time, the 

e-expression in an as-of clause must evaluate to a temporal constant. An equivalent constraint is that an 

.•-expression within an as-of clause must not contain a tuple variable. 

A temporal predicate operator is a binary infix operator that takes events or intervals as arguments 

and returns a boolean value. The two temporal predicate operators are precede and overlap. The 

reader will notice the semantic overloading of the overlap operator. This overloading also occurs in 

English: one may ask whether two intervals overlap, or may ask for the overlap of two intervals, expect

ing a yes or no to the first query and an interval for the second request. a precede fJ is true if the event 

(end of a) is before the event (start of fJ). One event is before a second event if the time value of the 

first, expressed as an integer or real value, is less than or equal to ($:)the time value of the second. In 

this formulation, an event overlaps itself. a overlap fJ is true if the event (start of a) is before the 

event (end of fJ) and the event (start of fJ) is before the event (end of a). An equivalent formulation is 

(end of (start of a extend start of fJ)) precede (start of (end of a extend end of fJ)) 

A temporal predicate is an expression containing logical operators (and, or, not) operating on 

expressions containing a temporal predicate operator (precede, overlap), operating on •-expressions. As 

and and or distribute over all temporal constructors and temporal predicate operators, it is only neces

sary that the expressions obtained by distributing and and or operators over the temporal operators 

obey the ~hove constraint (i.e., logical operators on a temporal predicate operator operating on •

expressions). For example, the temporal predicate 

((a and b) overlap c) preceded 

by distributing and over overlap, is equivalent to 

((a overlap c) and (b overlap c)) precedE'd 

which, by distributing and over precede, is equivalent to 

((a overlap c) precede d) and ((b overlap c) precede d) 
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This last expression obeys the constraint if the overlap operator is interpreted as a temporal construe-

tor, implying that the original expression was a valid temporal predicate. Temporal predicates are used 

only in when clauses. 

f.4. Augmented Que! Statements 

The TQuel retrieve statement and the three TQuel modification statements, append, delete, and 

replace, augment their Que! counterparts with (optional) valid clauses and when clauses; the retrieve 

statement also allows an optional as-of clause. See the appendix for details on the syntax. 

f.5. Defaults 

The defaults assumed in the language will be important for the semantics to be presented shortly. 

Que! defaults the where clause to where true. The defaults for the additional clauses in TQuel should be 

natural to the user. The retrieve statement will be handled first. If only one tuple variable (say, I) is 

used, and it is associated with an interval relation, then the defaults are 

valid from atart of I to end of I 
when true 
aa of"now" 

These defaults say that the result tuple is to start when the underlying tuple started and stop when the 

underlying tuple stopped and that the query is to be executed on the current historical state. When an 

event relation is associated with the one tuple variable (say, E) the default is 

validatE 
when true 
as of"now" 

specifying simply that the result tuple was valid at the same instant the underlying tuple was valid. The 

first TQuel query given (Example 1) thus has the following default clauses, 
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range of f is Faculty 
retrieve into Associates (Name = f.Name) 

valid from start of f to end of f 
where f.Rank ="Associate" 
when true 
aa of "now" 

Example 12: The previous query, with defaults. 

When two or more tuple variables are used, the situation is more complex. If the tuple variables 

associated with interval relations involved in the query are t 1, t
2

, ••• , tk' then the default temporal clauses 

are 

valid from start of (t
1 

overlap ... overlap tk) to end of (t
1 

overlap ... overlap tk) 
when (t

1 
overlap ... overlap tk) 

as of "now" 

These clauses state that the underlying tuples must be consistent, that is, they are all valid ~or the entire 

interval the resulting tuple is valid. 

For the append statement, the defaults are 

valid from "now" to "infini~y· 
when (1 1 overlap · · • overlap t,) overlap "now" 

Informally, this means that the tuples used to supply values for the new tuples to be appended should be 

currently valid, and that the new tuples should be considered to have become valid immediately. For the 

delete statement, the defaults are 

deletes 
valid from start of s to end of s 
when true 

These defaults imply that the tuple be deleted entirely from the current historical relation. And finally, 

for the replace statement, the defaults are 

replaee s 
valid from start of s to end of s 
when ( 11 overlap • · · overlap t,) overlap "now" 

These defaults follow from the fact that a. replace is equivalent to a delete followed by an append. 
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Note that when only one of these clauses is provided by the user, the other clause is assumed to be 

as discussed above. The user should be careful in this situation, because the defaulted clause may be 

inappropriate. 

5. Formal Semantics 

TQuel statements manipulate information in a TDB composed of a sequence of historical relations 

indexed by transaction time, with each historical relation consisting of a sequence of static relations 

indexed by valid time (i.e., the four dimensional structure). The semantics of TQuel must specify how 

this relation is modified through an update command or is created through a retrieve command. The 

semantics of TQuel uses the static relational database model as the underlying model of the TDB (Sec

tion 2 discussed one alternative: extending the semantics of the relational model to directly incorporate 

time). Several benefits accrue from using the static relational model. The relational database model is 

simple and is based on the well-developed formalisms of set theory and predicate calculus; database 

models directly incorporating time are significantly more complex, and are based on newer and less 

developed logics such as Montague, multiple transition, and temporal logics. Extensions involving aggre

gates and indeterminacy are easier to formulate in the standard model (these extensions will be discussed 

in a later paper). Finally, a temporal database based on the relational model can be implemented directly 

on conventional relational database management systems. Many of the same advantages resulted from a 

similar approach in the design of GEM, a query and update language for a (static) semantic data model 

jZaniolo 1983] and in the specification of the semantics of the static query language SQL JCeri & Gottlob 

1985]. 

5.1. Embedding a Temporal Relation In a Static Relation 

The static relational database model is utilized as the underlying model of the TDB by embedding 

the four dimensional temporal relation in a two dimensional static relation. The semantics of operations 

on four dimensional temporal relations will be specified by stating their effect on the two dimensional 

static relations. In this way, the semantics can be expressed in a traditional tuple calculus formalism. 
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Figure 11: Embedding a Temporal Relation, Version 1 

Faculty (Name, Rank): 
Name Rank Valid Time Transaction Time 

Jane As~i.na.nt !1-71 !1-71 

Jane Allsista.nt !1-71 1!-75 
.................. ·························· 

Jane Assistant !1-75 8-75 
Tom Associate !1-75 8-75 

Jane Allsistant !1-71 10-75 

·····•············ ····················-·-······ 
Jane A.seistant !1-75 10-75 
Tom Assistant !1-75 10-75 

Jane A!sistant !1-71 12-76 

·····--··········· ···················· 
Jane Assistant !1-75 12-76 
Tom Assistant !1-75 12-76 

.................. 
Jane A!socia.te 12-76 12-76 
Tom Assistant 12-76 12-76 

Jane A.uista.nt !1-71 8-77 

·················· 
Jane Assistant !1-75 8-77 
Tom Assi!ta.nt !1-75 8-77 

··--·············· .......................... 
Jane A.8socia.te 12-76 8-77 
Tom .A!sist&nt 12-76 8-77 

............... .................. ····················· 
Jane Associate !1-77 8-77 
Tom A3sistant !1-77 8-77 

Merrie A!sistant 0.77 8-77 

Another way to embed a temporal relation in a static relation is to append two attributes, each con-

taining two time values, denoting intervals of valid and transaction time. This is the way temporal rela-

tions were illustrated in Figures 7 and 8. Such a representation was proposed by Ariav in his Temporally 

Oriented Data Management System [Ariav 1984J. Still a third way is to add a total of five additional 

domains: the time the tuple became valid ( T,, the effective-time-start); the time T, was recorded in the 

databa.se (T.,, the registration-time-start), the time the tuple became invalid (T,., the effective-time-end), 

the time T., was recorded in the database (T.,, the registration-time-end), and the time the entire tuple 

was removed from the databa.Se, a.s it was no longer correct (Td, the deletion time). Such a representa· 

tion wa.s proposed by Ben-Zvi in his Time Relational Model [Ben-Zvi 1S82J. Figure 12 illustrates the 

canonical example in this representation. This example contains the same number of tuples a.s the 

representation illustrated in Figure 7; generally it will contain somewhat fewer tuples. The effective time 

in the TRM is equivalent to valid time in our model; the three registration and deletion times encode the 
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same information as our two transaction times. 

Figure 12: Embedding a Temporal Relation, Version 3 

Faculty (Name, Rank): 

Name Rank T,. T,. T., T,. Td 

Jane Assistant 9-71 12-76 9-71 12-76 -
Jane Associate 12-76 11-80 12-76 10-80 -
Jane Full 11-80 - 10-80 - -

Merrie Assistant 9-77 12-82 8-77 12-82 -
Merrie Associate 12-82 - 12'82 - -
Tom Associate 9-75 - 8-75 - 10-75 
Tom Assistant 9-75 12-80 10-75 11-80 -
Tom Associate 12-80 - 11-80 - -

A fourth way to embed a temporal relation in a static relation is to associate time values with the 

attributes themselves JGadia 1985, Gadia & Vaishnav 1985[. Within a tuple, the value of an attribute is 

no longer restricted to be a single value, but may take on different values at different points in time. Fig-

ure 13 illustrates the same temporal relation in this representation, without considering the transaction 

time. In this representation the static relation is no longer in first normal form . 
. · 

Figure 13: Embedding a Temporal Relation, Version 4 

Faculty (Name, Rank): 

Name 
Jane J9-71, oo) 

Merrie J9-77, oo) 

Tom ' [9-75, oo) 

Assistant 
Associate 
Full 

Assistant 
Associate 

Assistant 
Associate 

Rank 

19-71, 12-76) 
[12-76, 11-80) 
J11-80, oo) 

J9-77, 12-82) 
J12-82, 00) 

[9-75, 12-80) 
[12-80, oo) 

. 

Finally, the most space efficient representation was proposed by Kimball in the DATA system; only 

the transactions are recorded !Kimball 1978[. Valid time was not considered but may be added as 

another domain (see Figure 14). Determining the tuples valid at a particular time as of another time 
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involves replaying the transactions in order from the beginning (optimizations are of course possible). 

Updates on the other hand are easy to formalize and to implement using this representation. 

Figure 14: Embedding a Temporal Relation, Version 5 

Faculty (Name, Rank): 

Type Transaction Name Rank Valid 
Time Time 

Add 9-71 Jane Assistant 9-71 
Add 8-75 Tom Associate 9-75 

Modify 10-75 Tom Assistant 9-75 
Modify 12-76 Jane Associate 12·76 

Add 8-77 Merrie Assistant 9-77 
Modify 10-80 Jane Full 11-80 
Modify 11-80 Tom Associate . 12-80 
Modif y 12-82 Merrie Associate 12-82 

We have chosen the second representation, with each tuple containing four additional time values, 

upon which to base our semantics. The advantages of this representation include ease of formal manipu-

lation and the promise of rapid prototyping a TDBMS on top of a conventional static DBMS. We 

emphasize, however, that an equivalent semantics could be generated for the other representations (this 

is discussed further in Section 6). The semantics of TQuel originates from the model of temporal datac 

bases developed in Section 2, not from any particular representational scheme. 

Since TQuel is a superset of Que!, its semantics will be based on the semantics for Que!. We first 

review how Quel's semantics has been specified, then show how this treatment can be applied to TQuel. 

&.Z. Que! Semantics 

Although no complete formal semantics of Que! has been specified, Ullman has defined a tuple rela-

tiona.! calculus semantics for Que! statements without aggregates [Ullman 1982J, and Klug has treated 

aggregates in the more gener'!l case [Klug 1982J. The tuple calculus semantics for TQuel associates a 

tuple calculus statement with each TQuel retrieve statement, ensuring that each construct has a clear 

and unambiguous meaning. 
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Tuple relational calculus statements are of the form 

{I (i) I 1/1(1)} 

.. 
where the variable I denotes a tuple of arity i, and 1/1( I) is a first order predicate calculus expression con· 

taining only one free tuple variable I. 1/1(1) defines the tuples contained in the relation specified by the 

Que! statement. The tuple calculus statement for the skeletal Que! statement 

range of 1, Is R, 
retrieve (I, .D1, ••• , t, .D,) 

1 ' where· 1/1 

is 

1\ u]l]- t, ]11]/\ ···I\ u]r]- 1, If,] 
1 ' 

1\"' ')} 

which states that 10 is in R,, that the result tuple u is composed of r particular components, that the 

m-lh attribute of u is equal to the i,. -lh attribute (having an attribute name of D ,.) of the tuple vari· 

able 1, , a.nd tha.t the condition 1/1 1 (1/1 trivially modified for attribute names and Que! syntax conven· .. 
tions) holds for u. The first line corresponds to the relevant range statements, the second to the target 

list, and the third to the where clause. The skeletal Que! statement is not quite correct syntactically, 
,-_-. 

since domain names for the derived relation must be provided in the target list, and domain values may 

be expressions. We ignore such details for the remainder of the paper. 

The semantics of a query on a TDB will be specified by providing a tuple calculus statement that 

denotes a static relation embedding a temporal relation which is the re.sult of the query. The tuple cal· 

( 
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culus statement for a TQ"et retrieve statement is very similar to that of a Que! retrieve statement: addi

tional components corresponding to the valid, when, and as-of clauses are also present. Although the 

expressions app•aring in all three clauses are similar syntactically, having their origins in path expres

sions, their semantics is quite different. 

As an alternative, the semantics could have been specified by showing how any TQuel query can be 

transformed into an equivalent relational algebra expression, for which a semantics has been defined 

JK!ug 1982J. This method has been used to express the semantics of SQL statements JCeri & Gottlob 

1985J. The tuple calculus was used instead for several reasons. The first is pragmatic: since TQuel is a 

minimal extension of Que!, its semantics should also be a minimal extension of Quel's semantics, which 

has been partially specified in tuple calculus, as discussed above. The second reason is that the tuple cal

culus expressions resulting from the transformation can themselves be easily transformed into relational 

algebra expressions, so no generality has been lost. Third, the tuple calculus statements are closer in 

form to statements in the query language, making the semantics more comprehensible. Finally, if an alge

bra is desired, it should probably be a temporal algebra. There is no generally accepted temporal algebra; 

proposals include JGadia85B, Clifford85J. 

The next subsection will provide the semantics of e-expressions as function on time values or pairs 

of time values, ultimately yielding a time value. The following subsection examines the steps necessary to 

transform a temporal predicate into a conventional predicate for the when clause; the next subsection will 

do the same for the as-of clause. Section 5.6 uses these results to provide a tuple calculus semantics for 

the retrieve statement. The final subsections consider the modification statements and demonstrate a 

reduction to. the Que! semantics. 

6.3. The Valid Clauae 

As discussed previously, the valid clause specifies the time during which the derived tuple is valid. 

For derived intervals, the valid-from-to variant is used; for derived events, the valid-at variant is used. 

In both cases, an e-expression is used to specify a time value. The time value returned by the •· 

expression will in fact be one of the time values contained in one of the tuples associated with the 
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variables involved in that expression. Hence, the e-expression is not actually deriving a new time value 

from the given time values; rather, it is selecting one of the given time values. Of course, the selection 

criteria can, and indeed usually do, depend on the relative temporal ordering of the original events. 

Several researchers have ·proposed a formal- semantics for particular variations on path expressions, 

involving denotational and axiomatic definitions [Berzins & Kapur 1977, Jayaraman 1982[, or transforma-

tions into Petri nets [Lauer & Campbell 1979[, parallel programs [Andler 1979, Jayaraman 1983[, or even 

VLSI circuits [Anantharaman et al. 1985J. Since these semantics express the active nature of path expres-

sions, that of constraining the occurrence of the relevant events, they are not applicable in the context of 

TQuel. The approach taken here associates each temporal constructor with a function on one or two 

intervals, returning an interval. Tuple variables are replaced with their associated valid time values. The 

result of an e-expression will hence be one of these time values. Individual time values will be represented 

as integers (a mapping from times and dates to integers is assumed); intervals will be represented as 

ordered pairs of integers. Anderson has developed a model of time at the conceptual level which is 

slightly more restrictive yet has several nice properties [Anderson 1982[. 

We define the temporal constructors after first defining a few auxiliary functions on integers (First, 

Lost) or tuple variables (event, intervo0: 

. . {a if Before(a, /J) 
First(a, /J)- · 

fJ otherwise 

{
{J if Before(a. , tJ) 

Lost( a, {J)- •· 
a otherwise 

event(t)- <t,,, t,,> 

interval( I)- <11,.,., t,,> 

atorlof (<a, fJ>) - <a, a> 

endof(<a, fJ>)- <fJ, fJ> 

overl•p(<a, {J>, <'t, 6>) ~ <L•st(a, 't), Firsi({J, 6)> 

eztend(<a, fJ>, <'1, 6>) = <First(a, 6), Loat(/J, 't)> 
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A few comments are in order. First, if the e-expression is a correct one, i.e., if it results in an event, then 

the denotation of the expression will be defined to be the time value appearing as the first element of the 

ordered pair resulting from the application of these functions on the underlying tuples. The constraints 

assure us that the first element will be identical to the second element. The reader should verify that 

these definitions do indeed result in the correct time value. Secondly, as mentioned in Section 4.3, the 

Before predicate is the ":::;:" predicate on integer time values. However, we wish to retain the Before 

predicate, because its semantics will be altered. when indeterminacy is considered {in a later paper). 

Third, the translation is qyntaz-directed: the semantic functions are in correspondence with the produc· 

tions of the grammar {given in the Appendix) for e-expressions JCeri & Gottlob 1985J. And finally, the 

definition of the overlap function assumes that the intervals do indeed overlap; if this constraint is 

satisfied, then the ordered pairs <a, fJ> generated by these functions will always represent intervals, i.e., 

the ordered pairs will satisfy Before(a, {J). Invalid e-expressions will be handled with an additional clause 

in the tuple calculus statement presented in Section 5.6. 

As an example, the e-expression 

( 
start ot (a overlap b) 

is transformed into 

•tarto f (overlap (interval( a), interval (b))) 

(we assume that the tuple variables a and b are associated with interval relations). Applying the functions 

defined above results in 

Hence the denotation of this expression is La•t(a1,,., b1,.). The use of this time value will be discussed 

shortly. 
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5... The When Clause 

The when clause is the temporal analogue or the where clause. The temporal predicate in the when 

clause determines whether the tuples may participate in the derivation by examining their relative order. 

Expressing this formally involves generating a conventional predicate on the temporal domains of the 

tuples in the underlying relations. This predicate is generated in three steps. First the and and or logical 

operators are distributed over the temporal operators .. Then the tuple variables and the temporal con-

structors are replaced by the functions defined in the previous subsection. Finally, the and, or, and not 

operators are replaced by the logical predicates, and the temporal predicate operators by analogous 

predicates on ordered pairs or integers: 

precede(<a, IJ>, <'"1, 6>)- Before({J, '"/) 

ouerlap(<a, {J>, <'"1, 6>)- Before(a, 6) 1\ Before('"/, /J) 

The result is a conventional predicate on the valid times or the tuple variables appearing in the when 

clause. 

& an example, the temporal predicate 

(start of (a overlap b)) preeede cor (c preeede a) 

remains unchanged after the first step. The second step results in 

-+ (•t•rtof(ouerl•p(inlerval(a), inleru•l(b))) preeede interu•l(c)) or (interval( c) preeede interual(a)) 

-+ (startof(ouerl•p(<a1,.,., a1,>, <b1,.,., b1,>)) preeede <c("'"' c1,>) 
or (<ctnm' cto> precede <a/rom' ato>J 

-+ (•l•rtof(<Last(a1,.,., b1,.,.),First(a1,, b1,)>) preeede <c1,.,., c1,>) 
or l <c /rom' cto> precede <a./rom' a. to>) 

The third step results in 
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5.5. The Aa Of Clause 

The temporal constructors appearing in the as-of clause can be replaced with their functions on 

ordered pairs of integers and the temporal constants (strings) can be replaced by their corresponding 

ordered pairs or integers. The result can be evaluated at "compile-time", resulting in a single integer, for 

the as of variant, and two integers in the as of through variant. For convenience, these times will be 

converted into an interval by interpreting through as extend. 

as of start of "1984" through "October, 1984" 

will, by using the functions defined in Section 5.3, be converted to 

eztend( startof( <1009, 1021> ), <1018,1019>) 
-+eztend(<1009, 1009>, <1018,1019>) 
-<First(<1009, 1018>), Last(<1009, 1019>)> 
-+<1009, 1019> 

Here, we have quite arbitrarily mapped months into the integer specifying the number of months since 

January, 1900. 

5,8, The TQuel Retrieve Statement 

A formal semantics for the TQuel retrieve statement can now be .specified. Let ~, be the function 

corresponding to the •-expression E as generated in the process discussed in Section 5.3. Let rr, be the 

predicate corresponding to the temporal predicate r as generated by the process discussed in Section 5.4. 

Note that~, and II, will contain only the functions First and Last and the predicates Before,/\, V, -.; 

the rest of the functions, and ~a entirely (where a appears in an as-of clause), can be evaluated at 

"compile-time". or course, the defaults provide the appropriate expressions when a clause is not present 

in the query. Given the query 



( range of It Ia R t 
retrieve (I; .D 1, ••• , t, .D,) 

1 ' valid from u to X 
where r/1 
when r 
aa of a through fJ 

the tuple calculus statement has the following form 

1\ u ]1]- t, li1]/\ • • · 1\ u ]r] - t, li,] 
1 ' 

1\ u ]r+l] - 4>u 1\ u ]r+2J - 4> x 1\ Before( u [r+lj, u [r+2J) 

1\ u ]r+3] = # 1\ u jr+4] = oo 

(\ VJ I 

1\ n, 

The first line states that each tuple variable ranges over the correct relation, and is from the Que! 

semantics. The resulting tuple is or arity r+4, and is comprised or r explicit domains and four implicit 

doma.ins (from, to, Blart, and slop). The second line, also from the Que! semantics, states the origin or 

the values in the explicit domains or the derived relation. The third line originates in the valid clause, 

and specifies the values or the from and to valid times. Notice that these times must obey the specified 

ordering. The fourth line specifies the values or the start and stop transaction times. "#" is replaced with 
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the integer corresponding to the current transaction; this integer must be monotonically increasing. "oo" 

is replaced with a di,•!nguished integer, say 0, which must not correspond to a valid transaction. The 

next line originates ir. the where clause, and is from the Que! semantics. The firth line is the predicate 

from the when clause. The last line originates in the as-of clause, and states that the tuple associated 

with each tupit vuiahle must have a transaction interval that overlaps the interval specified in the as-of 

clause (41
0 

and 4\P will be constant time values, i.e., specific integers). 

Note that 41", 4\x, ¢ 1
, and n, are functions over the from, to, and explicit domains of a subset of 

the tuple variables. IT t is a tuple variable associated with an interval relation and appears in an e

expression or temporal predicate, then the from and to time values are passed to the relevant function; if 

t is associated with an event relation, then only the at time value is used. The superscript (r+4) indi

cates that the tuple u has r explicit domains and 4 implicit domains, the starting and stopping time 

values for the valid and transaction intervals; events will have only three implicit domains. The entire 

transformation from a TQuel query to a tuple calculus expression may be considered to be syntax

directed, as discussed briefly in Section 5.3. 

We complete the discussion of the semantics of the retrieve statement with two examples, one real

istic but somewhat simple; the other contrived yet more comprehensive. The first is the semantics of the 

query shown in Example 9. 
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{ u(t+<) (::l fl) (::l f2) (::l a.) (Fa.culty(fl) 1\ Fa.culty(f2) 1\ Associates( a.) 

1\ u [1[ - fl[l[ 

1\ u[2J- fl[3J 1\ u[3J = f2[3[ 1\ Before(u[2[, u[3[) 

1\ u[4[- 1231\ u[5J = 0 

1\ fl[l[ = f2[1[ 1\ fl[2[ ="Assistant" 1\ f2[2[ ="Full" 

1\ Be! ore(fl[3J, •[31) 1\ Be! ore(a.[Z[, fl[4[) 1\ Be! ore (f2[3[, a.[3[) 

1\ Before(a.[2[, f2[4[) 

1\ Before(1020, fl[6[) 1\ (Before(f1[5[, 1020) 

A Before(1020, f2[6[) 1\ (Before(f2[5[, 1020) 

1\ Before(1020, a[5J) /\(Before(a[4[, 1020) 

The second example, which includes several temporal expressions used as examples in previous sec

tions, is given below. 
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range of a Ia A 
range of b Ia B 
range of c Ia C 
retrieve (a.M, b.O, c.Q) 

valid from start of (a overlap b) to end of (a overlap b) 
where a.N = b.P and b.P - c.R 
when (start of (a overlap b)) precede cor (c precede a) 
as ot start of "1984" through "October, 1984" 

E::ample 19: A Contrived Example 

This query references relations containing the following domains: 

A [M N (from to start stop)[ 
B [0 P (from to start stop )J 
C [Q R (from to start stop )J 

The implicit temporal domains are in parentheses (A, B, and C are all interval relations). The query then 

has the following semantics, 

{ 
(3+2) I 

U I (::! a)(::! b) (::l c) (A (a) /\ B (b)/\ C (c) 

/\ u[lJ- a[lJ /\ u[2J- h[lJ /\ uJ3J = c[lJ 
/\ u J4J - Last( a[3J, b [31) /\ u [5J = First( a[4J, b [41) /\ Be! ore( u [4J, u [51) 
/\ u[6J- 124/\ u[7[- 0 
/\ •121 - b [21 /\ b [21 - c [21 
/\ (Be! ore(Last( •[3J, b [31), c [31) V Before( c [4J, a [31)) 
/\Before(l009, a[6J) /\ Before(a[5J, 1019) 

/\ Be! ore(1009, b [61) /\ Be! ore ( b [5J, 1019} 
/\ Before(1009, c[6J) /\ Before(c[5J, 1019) 

The correspondence between the Que! and TQuel tuple calculus semantics is striking. The tuple 

calculus statement Cor the Que! retrieve statement consists or a component associated with the tuple vari-

abies appearing in the query (the first line), a component associated with the target list (the second line), 

and a component associated with the where clause (the fifth line). The tuple calculus statement Cor the 

TQuel retrieve statement adds four additional lines, one each associated with the valid clause (the third 

line), the when clause (the sixth line), the a.s-or clause (the last line), and one specifying the transaction 

time Cor the derived tuples (the fourth line). The additional lines in the tuple calculus statement are also 
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similar in form to those associated with the analogous Que! statements: the where, when, and as-of 

clauses all generate predicates, and the target list and valid clause generate equalities. 

5. 7. Modification Statements 

In specifying the semantics of the TQuel modification statements, we will again proceed by examin-

ing the tuple calculus semantics of the analogous Que! statements. These have never appeared in the 

literature; fortunately, they are easy to derive (such is not the case for the other major static relational 

query language SQL [Ceri & Gottlob 19851). The skeletal Que! append statement, 

append toR (t, .Dl' ... , t, .D,) 
1 ' 

where¢ 

has the tuple calculus semantics 

1\ u[l[- t, [i1[ 1\ · · · 1\ u[rJ = t, [i,J 
1 ' 

/\¢')} 

The set being appended is iden.tical to that for the Que! retrieve statement (see Section 5.2). Note that 

the set being appended may contain tuples already in R. We assume that the integrity constraints, par-

ticularly those relating to keys, have already been checked and that the resulting relation R 1 will satisfy 

these constraints. 

The semantics for the skeletal TQuel append statement, 

range ot It Ia Rt 
append toR (I, .Dl' ... , t, .D,) 

1 ' 
valid from v to X 
where¢ 

. when r 
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is somewhat complicated, because &he set &o be unioned with the existing relation should only contain 

tuples &hat are no& valid in &he existing relation. We cannot depend on the union working correctly when 

&he tuples being appended are identical to tuples in &he current historical relation. For example, if on 9-85 

we execute 

range of f Is Faculty 
append to Faculty (Name= "Merrie", Rank= "Assistant") 

valid from "8-77" to "12-82" 

Ezample 14: Merrie actually joined &he department a month earlier. 

&hen we will have &o append the following tuple: 

Name Rank 

Merrie Assistant 

Note that the to time is 9-77, since a tuple already exists in the relation valid from 9-77 to 12-82 (d., 

Figure 7). 

We now give the tuple calculus statement for the skeletal TQuel append statement. As before, we 

assume that the integrity constraints have been checked previously. In the case of a temporal relation, 

this implies that for a tuple T with atop - oo, if T matches an appended tuple A on the key attributes 

and is valid at any point in the interval specified in the valid clause, then T will also match A on the 

non-key attributes, and the union will not affect the presence of A. 
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A u[lj- t, [i,J A··· A u[rJ- t, [i,J 
1 ' 

A u[r+3J- #A u[r+4[= oo 

A"' I 

An, 

A ('VI) (1SI:::;k.t1[stopj- oo) 

A ((::ls)(R(s) A ('VI(l:::;!Sr).s[IJ = u[IJ) A (C1 V C2 V C3 V C4)) 

V ( -.(::Js)(R(s) A ('VI(l:::;!Sr).s[lj = u[lj)) A u[r+l[ = .Pv A u[r+2[ = 4>J) 

where 

C
1

- (Before(s[r+l[, <P) A Before(.P", s[r'.t2J) A Before(s[r+2[, <Px) 
A u[r+lj- s[r+lJ A u[r+2[ = 4>) 

C2 - (Before(<P", s[r+lj) A Before(s[r+2J, .Px) 
A ((u[r+lJ- 4>" A u[r+2J = s[r+lj) V (u[r+l[ = s[r+2J A uJr+2[ = <Px))) 

C!- (Before(<P", s[r+lJ) A Before(s[r+lj, <Px) A Before(4>x, s[r+2j) 
1\ uJr+l[- 4>" A u[r+2J = sJr+lj) 

C4 = (Before(s[r+l[, .Pv)A Before(<P;,, s[r+2j) 
A False 

Again, the set being appended is similar to the TQuel retrieve statement (see the previous section), with 

two major changes. The first is that the as-of clause is assumed to be as of "now", since the statement 

should only modify the current historical relation (e.f., the sixth line). The second change is the rather 



\ 

complicated computation or the valid times for the tuples to be added, appearing as the last two lines or 

the tuple calculus statement, which replace the third line in the tuple calculus statement for the retrieve 

statement. The four clauses Cl' ... , C4 in the seventh line handle the various overlap situations 

between the tuples to be added and the tuples identical in the explicit domains that already exist during 

this valid interval. In particular, C 4 states that if the tuple already exists in R over the entire valid time, 

there is no need to add it. The last line states that the valid times are as specified in the valid clause if 

no ;;uch tuples exist during this valid interval. Figure 15 shows the overlap handled by each clause, and 

the reoulting valid interval(s). Note that one, two, or no tuples are added, depending on the valid clause 

specified and the tuples already present in the relation. 

Figure 15: Calculating the Valid Time in an Append Statement 

cl 
Existing s[r+l[ 

I tuple 

Tuple to 
be added 

Actual tuple(s) 
added 

• I" 

Cz 

s[r+2J 
I 

s[r+1Js[r+2J 
I I 

• • • IX I" IX 

H H H 

c, c . • 
s[r+l[ 

I 
s[r+2J 

I 
s[r+lJ 

I 
s[r+2J 

I 

.u •x • • Hx 

H (none added) 

The semantics of the delete statement shows a similar increase in complexity. The Que! statement 

range of r Ia R 
delete'r 

where 1/1 

has the tuple calculus semantics 

{ (•) } R 1
- u I R(u) 1\-.¢ '(u) 

Note that the predicate can only reference the one tuple variable. 
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We first look at an example of the TQuel delete statement before delving into its semantics. 

rang" ot rIa Faculty 
delete i 

wh2re f.Name - "Jane" 
valid from "3-81" 

Ezomp/e 15: Jane lert the department in March, 1981. 

This statement will modify the transaction stop time of the last tuple in Figure 7, and will append an 

additional tuple (we give both here): 

Name Rank Valid Time Transaction Time 

Jane 
Jane 

Full 
Full 

(From) (To) (Start) .(Stop) 

11-80 00 10-80 
11-80 3-81 9-85 

9-85 
00 

(, Hence, the delete statement will perhaps charige some transaction stop times from "oo" to "now", and 

will perhaps also add tuples with a transaction start time of "now". For the skeleton TQuel delete state· 

ment 

range of s Ia R 
deletes 

valid from u to X 
where 1{1 
when r 

the tuple calculus statement is 

{ 
(•+<) } R '- B I (R(s) 1\ (-.¢' V s[r+4J ~ oo V Before(s[r+2J, <P") V Before(<Px• s[r+1J))) 

{ 
(•+<) ... U u I (:::1 s) (R(s) 1\ t/11\ s[r+4J- oo 1\ Before(s[r+1J, <Px) 1\ Before(<P", s[r+2J) 

1\ ('v'i.1$15r.u [iJ - s[iJ) 

where 
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C
1

- (Before(•[r+l], 4>.) 1\ Before(4>., •[r+2]) 1\ Before(s[r+2[, 4>) 
1\ ((u[r+l]- s[r+l]/\ u[r+2] = 4> 1\ u[r+3] = s]r+3J/\ u[r+4J = oo) 

V (u]r+l] = 4>v 1\ u[r+2] = ~[r+2]/\ u[r+3] = •[r+3]/\ u[r+4] ="now")) 

C2 - (Before(4> , •[r+lJ) 1\ Before(s[r+2], 4> ) 
1\ u[r+l(= s[r+lj/\ u[r+2J = s[r+2] 1\ u[r+3] = s[r+3]/\ u[r+4] = "now") 

C3 =(Before( <I>, •[r+lJ) 1\ Before(•[r+l], 4>J 1\ Before(4>, s[r+2J) 
u ,... X " " 1\ ((u[r+lJ- •[r+l]/\ u[r+2] = 4>, 1\ u[r+3] = s[r+3]/\ u]r+4] = now) 

V (u[r+l] = 4>. 1\ u[r+2] = s[r+l]/\ u[r+3J = •[r+3]/\ u[r+4] = oo)) 

C4 = (Before(s[r+l], 4>.) 1\ Before( <I>,, •[r+2J) 
1\ ((u[r+lJ = s[r+l]/\ u[r+2J = 4>. 1\ u[r+3J = •[r+3]/\ u[r+4] = oo) 

V (u[r+l]- 4>. 1\ u[r+2] = 4> 1\ u[r+3] = s[r+3]/\ u]r+4] ="now") 
V (u[r+l] = 4>x 1\ u[r+2] = •lr+2]/\ u[r+3] = s[r+3]/\ u[r+4] = oo)) 

The first set contains all tuples in past historical relations of R and all tuples in the current historical 

relation of R whieh do not satisfy the predicate in the where clause or whose valid intervals do not over-

lap with the specified valid interval. These tuples are not affected by the delete statement. The second set 

deals with the remaining tuples, in a manner similar to that employed in the semantics of the append 

statement. In the situation covered by c., the tuple to be deleted starts after the existing tuple starts, 

but still overlaps the existing tuple (see Figure 15). The existing tuple is broken into two intervals, the 

first which remains (stop - oo) and the second which is removed (stop = "now"). This is the situation 

illustrated in the example above of the delete statement. In the situation cov·ered by C 
2

, the tuple to be 

deleted overlaps the existing tuple completely, so the existing tuple is deleted (stop = "now"). C 3 is simi-

lar to c .. In the situation covered by C
4

, the existing tuple is partitioned into three intervals, and only 

the middle one is deleted. 

The semantics of the replace statement is even more complex. However, since the replace statement 

has a semantics identical to a delete statement followed by an append statement, the tuple calculus state-

ment follows from the two just presented. 

5.8. Reduction to the Que! Semantlca 

If a TQuel statement does not contain a valid, when, or as-of clause, then it looks identical to the 

analogous standard Que! retrieve statement; thus it should have an identical semantics. However, an 

Ingres database is not temporal; it is a static database. Hence, the tuples participating in a Que! 



statement are in the static relation that is the result of the last transaction performed on the database 

(i.e., are current) and are valid at the time the statement is executed. Note that the statement must not 

\ refer to any tuple variables associated with event relations. The tuples in such relations are valid ior only 

an instant, and hence would not ever appear in a static database . 

. We will show that the TQuel semantics just presented reduces to the standard Que! semantics 

when applied to a static database slice (all current tuples valid at a particular time) of the TDB. A static 

database slice at time r is formed by first eliminating the event relations (in Section 2.3 we argued that 

static relations cannot represent events at all), eliminating all tuples with a start time greater than rand 

with a stop time less than r, eliminating all tuples not valid at r, and finally removing the implicit time 

domains. 

The reduction proof will be illustrated on a simple retrieve statement; the interactions are i!lus-

trated in Figure 16. Assume that Q is a synt?.ctically correct Que! retrieve statement. (Example 1 is 

such a statement.) Then Q is also a syntactically correct TQuel statement. Q may be applied to a TDB 

(for example, the one given in Figure 7) to define a derived temporal relation R r (the one in Figure 8). 

In processing the query Q, the defaults for the valid, when, and as-of clauses discussed in Section 4.5 will 

be applied. A static database slice at time T of this derived temporal relation results in a conventional 

relation, R s· For example, assume that the query Q is executed on January 1, 1984. The database slice at 

r- January 1, 1984 of the Associates relation of Figure 8 is shown in Figure 17. Now, the query Q may 

also be applied to a static database slice at the same time T of the entire TDB (shown in Figure 18) to 

arrive at another static relation, R s'- To show that the TQuel semantics reduces to the standard Que! 

semantics w~en applied to a static database slice, we must show that 

The reduction implies that Figures 6 and 18 are identical. 
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Figure 16: Outline of the Reduction Proof 

TDB 
slice at T ____ ...;;,;;.:..;...:..;.. ____ • static DB 

(Quel (TQuel 
Q Q 

semantics) semantics) 

slice at T 

Figure 17: Slice of the Associates Relation at January 1, 1984 

Associates (Name): 

Name 
Merrie 
Tom 

Figure 18: A Database Slice at January 1, 1984 

Faculty (Name, Rank): 

Name Rank 
Jane Full 

Merrie Associate 
Tom Associate 

The proof of this equality revolves around the defaults for the valid, when, and as-of clauses 

specified in Section 4.5. The defaults effectively take a database slice at T = "now", which is the time the 

query is executed. The default when clause states that all the underlying· tuples are valid and the default 

valid clause states that the underlying tuples are valid. The resulting tuples are guaranteed to be 

current by the tuple calculus semantics of the retrieve statement. This intuition supports the easily 
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shown equality (actually, identity) of the tuple calculus semantics for R5 and R/ Similar reductions can 

be argued concerning the modification statements, as their defaults were specifically chosen to ensure 

their reducibility to the standard Que! semantics. 

The benefit of this reduction is that the intuition and understanding gained by using Que! on a 

static database applies to TQuel on a TDB. 

11. Implementation 

The formulation of the TQuel semantics as tuple relational calculus expressions offers a straightfor-

ward means to implement a TDBMS. A TQuel query (or update statement) can be mapped into a tuple 

calculus sta.tement, which may then be mapped into a Que! statement on the static relations which 

embed the temporal relations. The TQuel query in Example 9 would be mapped into the equivalent Que! 

query 

range of fl Ia Faculty 
range of f2 Ia Faculty 
range of a Ia Associates 

. retrieve Into Starsof1984 (Name= fl.Name, validfrom- fl.validfrom, 
validto- f2.validfrom, transactionstart- 123, transactionstop = o) 

where fl.Name - f2.Name and fl.Rank ="Assistant" and f2.Rank ="Full" 
and fl.validfrom <- a.validto and a.validfrom <= Cl.validto 
and f2.validfrom <= a.validto and a.validfrom <= f2.validto 
and 1020 <- n.transactionstop and fl.transactionstart <- 1020 

and 1020 <= f2.transactionstop and f2.transactionstart <= 1020 
and 1020 <= a.transactionstop and a.transactionstart <= 1020 

using the formal semantics as given in Section 5.6, on the following static schemas: 

Faculty (Name, Rank, validfrom, validto, transactionstart, transactionstop) 
Associates (Name, validfrom, valid to, transactionstart, transactionstop) 

This conversion can always be done if two functions, First and Last, both taking two integers as argu-

ments, are added to Que! (Example 13 would require the use of these functions). It should be emphasized 

that the conversion from TQuel to Que! is an entirely separate process from the reduction to the Que! 

semantics discussed in Section 5.8. 

We have extended the Ingres DBMS [Stonebraker et al. 1976[ along these lines: temporal relations 

are stored as static relations, and the TQuel statements are converted to Que! statements and processed 
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normally by lngres (the implementation differs from this explanation in certain details). We are instru

menting the prototype to gather performance measures. We expect performance to degrade to unaccept

able levels as updates are made and the static relations grow monotonically. However, the prototype will 

serve as a testbed for further study and as a datapoint for comparison on the performance of new access 

methods and optimization strategies. 

7. Conclualoo 

1.1. Summary 

This paper has presented the syntax and formal semantics for the augmented statements in TQuel. 

The discussion proceeded in an incremental fashion for both the syntax and semantics. First, the Que! 

syntax was presented informally. Temporal analogues for the where clause and the target list were exam

ined. A more formal presentation, including a digression on constants and defaults, completed the presen

ta.tion or TQuel's syntax. 

Arter a. short review or tuple calculus, the semantics of •-expressions was described as functions on 

time values or pa.irs of time values, ultimately yielding a time va.lue. A tra.nsformation system provided 

the semantics or tempora.l expressions, yielding a conventional predicate on the tuples participating in the 

expression. At tha.t point, a. tuple calculus expression for TQuel retrieve statements without aggregates 

was presented. The sema.ntics of the modification statements were discussed. The semantics reduces to 

the standard Que! semantics when the time domain is fixed at a particular time. To the author's 

knowledge, the complete semantics of no other query language, static or temporal, has been presented in 

the literature. Finally, a. prototype implementation was described. 

7.:1. Other Temporal Query Languages 

In this section we compare TQuel to other query languages that reference time. Two basic 

approaches are round in the literature. The most straightforward approach augments a static query 

language with a. construct to project a static database slice of a TDB; examples include TOD, DATA, 

TRM, and Gemstone. Such languages do not fully support historical queries, though they may support 

48 



,. 

rollback. The Time Oriented Databank (TOD), one of the earliest database systems to incorporate time, 

records dynamic attributes, whose values may change over time, in a relation in which each tuple has a 

time attributes specifying when the properties were observed [Blum 1982, Wiederhold eta!. 1975[. Query

ing is accomplished using analysis and reporting procedures written in PL/1; the system supports these 

procedures by creating auxiliary files, which can optionally be ordered by date. The Dynamic Alerting 

Transaction System (DATA) extends the relational model to include time by viewing the database as 

time-ordered lists of transactions, each consisting of a. tuple and a. time when that tuple became valid 

[Aria.v & Morgan 1981[. The database can be queried at previous points of time, or a. sequence of 

recorded events between two times may be displayed. The Time Relational Model (TRM) is noteworthy 

in that the query language references both valid and transaction time [Ben-Zvi 1982[. TRM augments 

SQL [SQL/DS 1981[ with a. time-view construct, identifying the valid and transaction times for the static 

da.ta.ba.se slice to which the remainder of the SQL query is to be applied. Hence the rollback operation is 

provided, but historical queries are not possible. Gemstone is the most recent of the query languages in 

this category; it supports only transaction time, and hence only the rollback operation [Copeland & Maier 

1984[. 

The second approach is to include in the query language temporal constructs that allow historical 

queries (queries over tuples containing different valid times). Three relational query languages, in addition 

to TQuel, have taken this approach. Of course, natural languages also fall into this category [Clifford & 

Warren 1983[. 

The first, LEGOL 2.0, involved formalizing legislation, where the history of a case is particularly 

relevant [Jones eta.!. 1979, Jones & Mason 1980[. The model supported by this system allows time attri

butes specifying the period of time each tuple is valid; events may not be stored, and transaction time is 

not supported. Hence LEGOL 2.0 is a.n historical query language. LEGOL 2.0 is based on the relational 

algebra [Codd 1972[. The language was never implemented, although a.n earlier version of the language 

was implemented [Stamper 1976[ using ISBL [Todd 1976[. In addition, no attempt at a formalization 

either of the language or of the way the temporal constructs of the language were to be implemented has 



been made. 

The query language associated with the Temporally Oriented Data Management System (TODMS) 

is similar to that or TRM in that it is an extension or SQL and it supports both valid and transaction 

time [Ariav 1984[. Unlike TRM, it is a true temporal query language, supporting rollback with an as-of 

clause quite similar to that of TQuel, and supporting historical queries through the additional AT, 

WHILE, DURING, BEFORE and AFTER constructs. The major limitation is that only one relation may 

be referenced in a query; hence the language has less expressive power than most static query languages, 

which support queries over multiple relations. The query language has not been formalized, and no imple

mentation has been attempted for TODMS. 

Finally, the Homogeneous Temporal Query Language (HTQuel) supports historical queries but not : ""' 

rollback [Gadia & Vaishnav 1985[. This relational calculus language is based on the representation of an 

historical database where the time intervals are associated with attributes (this representation is dis-

cussed in Section 5.1). HTQuel is a more substantial extension to Que! than is TQuel. Whereas expres-

sions in Que! and TQuel involve only constants and tuple variables, HTQuel introduces temporal 

domain•, which are finite unions of intervals, and instants for use in expressions. HTQuel also introduces 

identifiers that can have temporal. domains or instances as values, an assignment statement, a statement 

to define the type of a tuple variable, and a collection of functions which extract individual intervals or 

instants from a temporal domain. Such complexity may not be necessary; equivalent TQuel queries exist 

Cor all or the HTQuel examples given in [Gadia & Vaishnav 1985[ that do not utilize the extraction func-

tions. These functions support temporal navigation; we agree with Ariav that such functionality should 

be supported not by the query language but at the programming language-DBMS interface [Ariav 1984[, 

as navigation in general is not consistent with the non-procedural nature of predicate calculus oriented 

query languages. Although augmented update operations are defined, they destructively modify the 

database, so HTQuel supports historical databases; no constructs for manipulating transaction time are 

provided. No formal semantics.is given, and no implementation has been attempted for HTQuel. 
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In summary, we note that, while the languages examined above differ greatly in their details, a con-

sensus seems to be emerging concerning the basic features of an acceptable temporal query language: it 

should be based on the relational calculus, support queries over multiple relations, support both rollback 
• 

and historical queries, incorporate in some manner common temporal concepts such as before, while, and 

at, handle both instants and time intervals, and have a simple structure. As a final note, we agree with 

Clifford and Warren that a formal semantics is a necessary requirement for any proposed query language 

JCiifford & Warren 1983]. 

. ., 
7.3. Further Work 

.. 
Almost every issue raised in the context of static relational database must be addressed anew in the 

context oC temporal databases. This paper has made a start by defining a temporal query language and 

providing a formal semantics for this language. However, much more research is necessary before a viable 

TDBMS can be developed. 

Many additions are possible to the language itself. The operators available for e-expressions and 

temporal predicates are certainly not exhaustive, and new ones could be added easily to both the 

language and its semantics. Another possible addition concerns temporal constants. The temporal con-

stants used in this paper are abBolute, in that they denote a particular time interval. Relative constants 

would also be quite useful. The following is a variant or Example 5, 

range of a to Associates 
retrieve Into Disgruntled (Name = a.Name) 

when (otart ot a) precede "5 years" precede (end of a) 

E:zample 16: Who has been an associate professor for at least 5 years? 

The semantics Cor relative constants is still under study. 

Que! supports three domain types, in multiple sizes: integer (1, 2, and 4 bytes long), floating point (4 

and 8 bytes long), and character data (1 to 255 bytes long). One necessary extension is a data type with 

values that vary over the period oC time the tuple was valid (this data type is distinct from the temporal 

data type discussed in Section 3.4, which has a constant value for the entire valid interval). As was 
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stressed in Section 3, caution is needed to ensure that such domains are used correctly. Que! also sup

ports scalar functions such as abe, mod, and sin. Scalar temporal functions, such as duration, which 

compute time varying domains, are needed in the language. 

Que! includes the aggregate operators count, aum, avg, min, max, and any to aggregate a com

puted expression over a set of tuples. Aggregate operators are more complicated in TQuel, due to the 

time-varying behavior of relations. The standard aggregate operators have been included in TQuel 

[Snodgrass 1984[. Temporal aggregate functions should also be made available to the user. These func

tions would select tuples from a set of tuples based on criteria involving the valid or transaction time. 

Temporal aggregate functions would support temporal navigation [Gadia & Vaishnav 1985J in a limited 

fashion, yet would lie consistent with the declarative nature of TQuel. Various temporal aggregate 

operators have been proposed in the context of other query languages [Ariav 1984, Ben-Z vi 1982[. 

The issue of completeness naturally arises whenever a new query language is proposed. A query 

language is said to be complete if it can simulate tuple relational calculus, as defined by Codd [Codd 

1972[. TQuel is complete under this definition, since it is an extension of Que!, which has been shown to 

be complete [Ullman 1982J. However, a more satisfying concept would be that of temporal completeness, 

for which there is no generally accepted definition. Gadia and Vaishnav have proposed a particular tem

poral relational algebra[Gadia 1985J as a benchmark [Gadia & Vaishnav 1985J; however, the issue of why 

the is an appropriate benchmark for completeness was never discussed. Two reasons why the algebra is 

perhaps inappropriate are that it is a multisorted algebra over relations and temporal domains, and that 

it only concerns valid time. Nevertheless, if this definition of completeness is adopted, then TQuel is tem

porally complete. 

A host of other issues must be considered in the design of a. temporal query language. How should 

time granularity (e.g., hour, work week) be handled [Anderson 1982J. Temporal constants, as discussed in 

Section 4.2, provide only a. partial answer. Should valid and transaction time be linear or branching! 

Branching time, while more complex than linear time, does have some interesting properties[Ariav 1984, 

Stonebraker & Keller 1980J. How should changes to the schema be incorporated into the language! How 
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should indeterminacy be incorporated? How should temporal relations be displayed? High resolution 

display devices look quite promising [Ariav 1984, Shannon 1985[. Should periodic or cyclic events and 

intervals (e.g., fiscal year, monthly payments) or causality be incorporated [Ariav & Morgan 1982, Ariav 

1984[? How does TQuel correspond to the user's temporal perception? Further work is necessary in all of 

these areas. 

The prototype described in Section 6 will exhibit unacceptable performance as updates are made to 

this database. Much more research is needed, particularly in the areas of new access methods, query 

optimization techniques, and use of novel storage devices such as optical disks. 

Temporal database management systems in general are at approximately the same stage as static 

relational systems were in the early 1970's [Kim 1979[: several high-level, nonprocedural query languages 

have been designed, at least one query language has been formalized, and a prototype implementations 

exist. All the questions asked concerning static relational databases, including those that have already 

been answered, must be asked (and answered) anew in the contextof temporal databases. 
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10. Appendix: Syntax of the Augmented TQuel Statements 

This appendix lists the syntax for the statements where Que! and TQuel diller. Since TQuel is a 

strict superset of Que!, all legal Que! statements are also legal TQuel statements. TQuel augments five 

Que! statements: create, retrieve, append, delete, and replace. The Que! statements left unaltered are 

copy (data into/from a relation from/into a Unix file), define (subschema: view, permissions, or integrity 

constraints), destroy (a relation), help, index, modify (the storage structure of a relation), -print, range, 

and save (a relation until a date). The following non-terminals are not included in the syntax description 

because they are identical to their Que! counterparts. 

<boo! expression> 
<expression> 
<domain> 
<relation> 
<string> 

returns a value of type boolean 
returns a value of type integer, string, floating point, or temporal 
the name of a domain 
a relation name 
a string constant 
the name of a tuple variable <tuple variable> 

<domain specs> a list of the names and types for the user specified domains 

Also not shown are the additional temporal functions and predefined relations found in TQuel. 

<TQuel augmented> ::= <create stmt> 
l <retrieve stmt> 
l <append stmt> 
l <delete stmt> 
l <replace stmt> 

<create stmt> ::= ereate <persistent> <history> <domain specs> 

<persistent> ::- e l persistent 

<history> ::= e l Interval l event 
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<retrieve stmt> 

<retrieve head> 

<retrieve tail> 

<into> 

<larget list> 

<t-list> 

<trelem> 

<is> 

<append stmt> 

<to> 

<delete stmt> 

<replace stmt> 

<mod stmt tail> 

<valid clause> 

<valid> 

<from clause> 

<to clause> 

<at clause> 

<where clause> 

<when clause> 

<as-or clause> 

<through clause> 

<•·expression> 

<•·interval> 

::= <retrieve head> <retrieve tail> 

::= retrieve <into> <target list> <valid clause> 

::= <where clause> <when clause> <as of clause> 

::= ' I unique I <relation> I Into <relation> I to <relation> 

::= ' I ( <tuple variable> . all ) I ( <trlist> ) 

::= <trelem> I <trlist> , <trelem> 

::= <domain> <is> <expression> 

::== la : = l by 

::= append <to> <target list> <mod stmt tail> 

::= <relation> I to <relation> 

::= delete <tuple variable> <mod stmt tail> 

::= replace <tuple variable> <target list> <mod stmt tail> 

::= <valid clause> <where clause> <when clause> 

::= <valid> <from clause> <to clause> I <valid> <at clause> 

::='I valid 

::= < I from <•·expression> 

::~ f :to <e·expression> 

::- at <e-expression> 

::= ' I where <boo! expression> 

::= ' I when <temporal pred> 

::= ' I aa ot <•·expression> <through clause> 

::- ' I through <e-expression> 

::- <event element> 
I start ot <e-either> 
I end ot <e-either> 
I ( <•·expression> ) 

::= <interval element> 
I <e-either> overlap <e-either> 
I <e-either> extend <e-either> 
I ( <e-interval> ) 
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<e-either> 

<event element> 

<interval element> 

::= <e-expression> / <e-interval> 

::= <tuple variable> associated with an event relation 

::= <tuple variable> associated with an interval relation 
/ <temporal constant> 

<temporal constant> ::= <string> 

<temporal pred> ::= <interval element> 
/ <event element> 
l <temporal pred> precede <temporal pred> 
l <temporal pred> overlap <temporal pred> 
/ <temporal pred> extend <temporal pred> 
/ <temporal pred> and <temporal pred> 
/ <temporal pred> or <temporal pred> 
/ ( <temporal pred> ) 
/start of <temporal pred> 
l end of <temporal pred> 
/ not <temporal pred> 

Event elements are tuple variables associated with event relations. Interval elements are either tuple 

variables associated with interval relations, or are temporal constants (all temporal constants are inter-

vals). 

The where, when, and valid clauses in the delete statement can only refer to one tuple variable, 

that referenced at the beginning of the statement. The unary operators (start of, end of, not) have the 

highest precedence, followed in order by the binary temporal constructors (extend, overlap), the tern-

poral predicate operators (precede, overlap), and finally the binary logical operators (and, or). Opera-

tors of equal precedence ar.e left associative. extend and both variants of overlap are commutative; 

precede is not. 

Note that the distinction between <interval element> and <event element> makes the grammar 

context-sensitive. In practice, this distinction is ignored in the LALR parser, and the resulting parse tree 

is type-checked in the semantic analysis phase. Similarly, checking that the top level operator of a tern-

poral predicate, after the logical operators have been distributed over the temporal ones, must be pre-

cede or overlap is relegated to the semantic analysis phase (this is the reason that no distinction is made 

in the BNF between temporal predicates and •-expressions ). 



In keeping with the path expression origins or temporal predicates and e-expressions, the keyword 

overlap may be abbreviated with a comma, precede may be abbreviated with a semicolon, and or may 

be abbreviated with a vertical bar. Since non-temporal attributes are designated by "<tuple-variable>. 

<domain>", the prefix unary operators start ot and end of may be preplaced by the postfix operators 

".from" and ".to". The following is an example. 

range ot n Ia Faculty 
range of r2 Ia Faculty 
range of a Ia Associates 
retrieve Into Stars (Name = n.Name) 

valid from fl.start to rz.start 
where n.Name - rz.Name and ri.Rank = • Assistant" and r2.Rank = "Full" 
when (n and r2) , a 

E:t4mple 17: Another Variant or Example 7. 
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