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An important characteristic of the FFP machine is its ability to create a.n 

autonomous virtual computer for eacb of the reducible applications in the ma­

chine. This work investigates creating these independent computers for purposes 

other than evaluating primitive FFP function applications; these purposes include 

supporting features available in other functional languages and improving the par­

allelism available to taaJcs. 

Introduetion 

The Functional Programming languages of Backus [Ba78) provide obvious parallelism 

in their model of program execution. Function applications can be nested and are eval­

uated from the inside outwards. Innermost applications may be evaluated in any order, 

possibly at the same time, and hence are called reducible application~ or RAs. The FFP 

machine (MM84J is a parallel, language-directed computer based on the Formal Functional 

Programming language, which is a low level language for implementing FP languages. The 

machine creates, for each of the RA 's it contains, an isolated network of processors dedi­

cated to evaluating that single RA. During execution, the machine continually creates new 

networks to match the changing innerm~ applications. 

We are interested in exploiting the creation of independent virtual computers to obtain 

parallelism in more ways than just simultaneously evaluating RAs. The simplest use 

is evaluating a single RA using more than one virtual computer. There is a tradeoff 
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because while the computen do not interfere with each other'a operation, they also cannot 

communicate. Next, we deacribe a. atream-like mechanism, in which a. composition of 

functions to be applied to a. aequence of values is re-organized ao that later functions can 

begin operation before earlier functions have finished generating a. complete result. The 

third mechanism proposed for the FFP machine is a. non-deterministic choice operation 

which a.llows innermost applications to be preempted by external events. The innermost 

reduction rule in FP yields eager rather than lazy evaluation, and a.n important capability 

of lazy evaluation is the opportunity to search for an answer with a. number of procedures, 

some of which may not terminate. 

Extensions to FP languages may affect both the semantics of FP and its algebra of 

programs. None of these proposals are concerned with such FP language issues. Rather, 

these are facilities which the FFP machine can provide with no fundamental change to the 

hardware design. 

1. Partitioning the PPP machine 

The FFP machine consists of a linear array of processors called L cell~ into which an 

FFP program is written as a string of symbols. This L array is connected by a tree of 

communication nodes ca.lled T cells. One aspect of the parallelism in the FFP machine 

is that it creates for each RA a separate virtual computer, that is, an isolated subset of 

the physical machine resources. The FFP machine operates in a three phase machine 

cycle. First the machine is decomposed into separate virtual computers. Next, the virtual 

computers generate decriptiona of the FFP structures they contain, receive microprogram 

segments appropriate to their FFP functions and operate independently to evaluate the 

RAs. Then the program text ia shifted through the L-array to provide empty space where 

it is needed. 
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At any stage of execution, FFP programa can contain a. number of aubcompubtions 

ready to be performed. The virtual computera allocated from the physical machine are con­

ceptua.lly linear groups of proceuora connected by a. communication network. The virtual 

and physical networks are deaigned around different goa.ls: the virtual networks should 

provide high throughput and low contention, and the physical network should provide 

physical closeness and low engineering complexity. These goals are not independent; the 

physical machine must be able to re-a.lloca.te its resources rapidly to the virtual computers 

as the subcomputa.tions they are to support change during execution. As a. consequence 

of this constraint, tree networks have been chosen for both the virtual computers and the 

physical machine. In general, the two networks need not be identical, and the two types 

of trees can be seen to be independent in Figure 1. The virtual trees are not aligned with 

the physical tree hierarchy, and more than one virtual tree may involve a particular T cell. 

The evaluation rule for FP a.llows for simple recognition of the RAs. An ana is a 

string of text not containing any parentheses other than its enclosing ones. Because non­

innermost applications are broken into many areas, separated by the RAs, some areas may 

not have a. parenthesis at each end. An innermost application is an area which does have 

a matching pair of parentheses. The physical machine partitions itself so that each area 

is identified with its own virtual computer; those virtual computers associated with areas 

that are not innermost applications do not perform any computation. Those T cells that 

occur between the L cells holding an area (in an inorder traversal of the physical tree), 

contribute a node to the virtual tree supporting that area. Connections between these 

virtual nodes may exist in the physical tree outside this inorder relationship. 

AT cell is concerned with at most three areas, as shown in Figure 2. AT cell views 

the machine as three pieces reached through its left child, its right child, and its parent, 

and it is only concerned with those areas lying in more than one of these pieces. Areas 

entirely contained within one child's subtree or the outside machinery do not involve this 
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cell. Figure 3 shows the four pouible paUerna for areas in the L array than can involve 

a particular T cell, along with the corresponding configurations of the T cell for these 

cases. The T cell configurations are accompliahed by the setting of two channel switches 

connecting the cell to ita parent. A more detailed explanation is given in IMM84], but 

the correlation can be aeen between a subtree containing a parenthesis and the setting 

of the channel switch on that aide. Partitioning is accomplished in the FFP machine, 

by each subtree, starting with the individual L cella, sending a one bit message meaning 

•My leaf cella hold a parenthesis• . Each T cell sets its two channel switches on the basis 

of the two bits it receives, and sends the logical sum to its parent. A further two bits 

are sent from each subtree describing the outside parentheses in that subtree, in order to 

determine which areas contain RAs. In the current FFP machine, an L cell generates its 

one bit message by examining the FFP symbols that it contains. In order to create virtual 

computers for other purposes, an L cell needs to generate the messages using different 

information. 

There are two kinds of costa associated with continually creating virtual computers to 

match the changing programs during execution: the cost of accomplishing the partitioning, 

and the costs of the resulting system. The hardware required for partit ioning is negligible, 

and, in isolation, the time required to perform it is logarithmic in the size of the machine, 

However, since each T cell is configured upon receiving its partitioning messages, it can 

immediately participate in its virtual computers. This pipelining results in an apparently 

constant time cost of three gate delays for the machine to accomplish partitioning. The 

fundamental benefit of partitioning is that the virtual computers are isolated. Thus, in 

contrast with the majority of tree-structured parallel computers, there is no bottleneck at 

the root of the physical machine, and very little contention of any kind between separate 

computations. Within an area this contention at the root of a virtual computer remains. 

The choice of a tree for a virtual computer network sacrifices low content ion in situations 
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where that would be useful, to better satisfy other constraints. As a result, communication 

between proceuon evaluating FP primitive applications takes time which is linear in the 

number of messages transferred. 

Partitioning takes effectively constant time to create isolated virtual computers which 

can then perform independent computations simultaneously. The simplicity of this opera­

tion suggests that isolated (and therefore non-communicating) computers may be exploited 

for other purposes. 

2. Using many virtual computen to reduce one application 

The FFP machine creates a disjoint machine for each available subtask. These virtual 

computers do not interfere, but this is at the cost of their not being able to communicate. 

This does not hinder the evaluation of FFP programs, since RAs are independent. This 

lack of interference suggests the possibility of evaluating a single RA using more than one 

• virtual computer, so long as they can be given tasks that are be isolated. As a simple 

example, we consider grid operations of the eort used in the method of finite differences 

by Pargas [Pa82]. Each point in a rectangular grid has an associated value that is to 

be updated on the basis of the values in its four neighbors, shown in Figure 4. In the 

current FFP machine, this communication is performed in a single tree-connected virtual 

computer, as shown in Figure Sa. In ann x n grid, it costs O(n2 ) time to move the messages 

through the root of the virtual computer. FigureS (parts b, c and d) shows an alternative 

scheme in which three sets of virtual computers, used consecutively, accomplish the same 

communication in only O(n) time. In the first stage, each row is placed in an isolated 

machine that handles the communication between horizontal neighbors. In the second 

• stage, each even row and the lingle row below is placed in an isolated machine. Points in 

even rows can now communicate with their aouthern neighbors, and points in odd rows 

can communicate with their neighbor to the north. In the third stage, each even row is 

grouped with the row above to finish the data movement. During these three stages, the 
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RA is supported by O(n) virtual computel'l, each handling O{n) messages, instead of one 

virtual computer handling O(n1 ) messages. 

This creation of extra virtual computel'l ia accomplished by inserting fake po.renthuu 

during the evaluation of the RA, and delaying the operation of the microprogram until 

the next physical machine cycle. That is, the L cells send up a partitioning message, 

not on the basis of the FFP parenthesis symbols they contain, but rather on the basis of 

their position within the internal structure of the RA. These fake parentheses are shown 

in Figure 5 (parts b, c and d) as hollow parentheses. No other changes are required; the 

loading of microprogram segments, and generation of local structure descriptions are not 

repeated. 

a. A Stream-like meehanlam 

Lazy evaluation means computing only part of a resuU and seeing whether that is 

sufficient for the situation. Some parallelism may be gained by allowing this partial result 

to be used, while more of the result is being computed. This is in contrast with eager 

evaluation in FFP where all results must be completely evaluated before any part of them 

may be used. The following mechanism provides this form of parallelism, and still allows 

the enclosing FFP programs to receive constant objects as operands. A framework is built 

up in which an assembly-line of user provided functions operate on individual elements of 

a sequence. The final sequence accumulates until the stream computation has completed, 

and then passes as a completely evaluated object to the surrounding FFP program. This 

conveyor-belt model matches well to the machine structure consisting of a linear array of 

processors. The user-provided functions are required to behave in an incremental fashion. 

The basic units of the assembly-line are called filtt.r8, reflecting the sense of modifying 

values as they pass by. The user supplies for each filter, a transition function and an initial 

state. The filter applies the transition function to an initial state and input value, to yield 
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an output value and a new ab.te. Since a filter might remove values from a stream, the 

values passed along will be eequences of sero or more elements of the etream. In Figure 

6b, a eequence of virtual computere are applying the filters to the objects on their right . 

The result, shown in Figure 6c, ie a eequence of object-filter pairs. (The primes show that 

both the objects and the internal states of the filtere may have changed.) This apparent 

movement of objects past filters ie accompliehed locally. 

At some level, an FFP program wants to begin a stream computation and receive a 

fully evaluated result. The stream shown in Figure 6 is controlled by a terminator. Once 

the stream computation is begun, the terminator repeatedly regroups values and re-applies 

the component filters. This continues until a predicate, also provided by the user, indicates 

that the computation should terminate. At this point the terminator deletes itself, the 

filters, and any further partial results, and returns a fully evaluated result. 

This mechanism is powerful enough to accomplish operations like the Sieve of Eratos­

thenes implemented with filters and generators in KRC/SASL by Turner [Tu82J. Each 

filter would remove values from the stream that were divisible by a number it kept inter­

nally. The terminator, on receiving a value, would save it in an accumulating sequence of 

primes and also start up a new filter with this number as its internal gauge, as shown in 

Figure 6f. The predicate inside the terminator might count the number of primes set, and 

upon reaching some limit, prompt the terminator to finish. 

4. A Non-determinlatlc choice mechaDism 

It is often desirable to obtain results from a eet of function applications, others of 

which may not terminate. One example arises in searching for a value in a tree or graph. 

A left to right depth-first eean:h may encounter an infinite branch of a tree, missing the 

desired value if it occurs to the right of that branch. The choice mechanism proposed 

here resembles the •aJternative• command of Hoare's CSP (Hoar78]. Given a sequence 
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of function applications, it returna a sub~equence of the values of those that successfully 

terminate. There is no guarantee that allsucceuful function applications will be included. 

Two non-deterministic choice functional forms are natural for FP: one resembling the 

wn,trud functional form, the other resembling the apply-to-all functional form. 

Figure 7a shows a pouible execution trace for a computation involving FP's construct 

functional form. The function 8 depends on the values returned by all four f 1 functions on 

the argument x. In this case, (f1 x) and (r. x) yield non-terminating computations, and 

so the values returned by (f3 x) and (fs x), 5 and 6 respectively, can not be used. For the 

the function b shown in Figure 7b, any of the four values would suffice. Evaluating the 

expressions (f1 x) one at a time, however, will not, in general, help. In this case, searching 

either from left to right or from right to left will encounter a non-terminating, inner-most 

application. 

The ND functional form in Figure 7b shows one way of implementing a non­

deterministic choice. Like construct in Figure 7a, ND creates four independent, inner-most 

applications. Each, however, ia surrounded by an application of ND • , and all four RAs 

are surrounded by a pair of hollow braces. When (f3 x) and (f s x) terminate, ND • places 

a pair of outward-pointing hollow braces around each value. During a special machine 

cycle (in the box), these braces become fake parentheses, like the ones described in section 

2, and create virtual computers whose task is to erase the virtual computers evaluating 

The regular parentheses, which would normally prevent the evaluations of (f
1 

x) and (f
6 

x) 

from being preempted, do not participate in partitioning in this special •non-determinism 

cycle". During partitioning in normal machine cycles, on the other hand, the hollow braces 

are treated as ordinary FFP symbols, and ignored. 

To prevent the whole computation from being erased during an earlier non-determinism 

cycle, the fake parentheses generated by the outer pair of hollow braces cannot match each 

other. The rule for matching, during this cycle, is that at least one parenthesis must be 
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a •prime•. Also, if applications of ND are to be nested, then the fake parentheses must 

also be tagged with a level number. The aimpleat answer t o when non-determinism cycles 

should occur is to have them occur with some fixed period, say every 100 machine cycles. 

For this reason, it is not necessarily true that the values returned will be from the first 

function evaluations to terminate. 

Conelualona 

This work has shown some of the possibilities for exploiting reconfigurability in the 

FFP machine. Its ability to rapidly create independent networks of processors allows it to 

support efficiently a number of mechanisms that have been proposed for various functional 

languages. 

(Ba78) 
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1) (t1 < 1 2 3> (t1 (t1 < 1 4 5 3> ) (t1 < 1 6 

L cells, at the bottom of the tree, hold FFP symbols, e.a. 'tl', the tail function. 
T cells, shown as dashed circles, contain the internal nodes of the virtual 
machines, shown as solid circles. 

Figure 1. ParUllonlng the physical machine lnlo 
disjoint virtual machines. 
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, ' • • • • • • ( ) , ' , ' ( • • • • • • • • ' . ' , . ) , ' • • • • ' , ( ) , ' • • • • ' , 

For the enlarged T cell, the solid parentheses show all the areas that can 
need support. Areas shown by dashed parentheses are entirely supported 
either within one of the children, or by hardware e1terior to this T cell. 

Figure 2. A T cell must support at most three areas. 

( )( )( ) ( )( ) ( ) ( ) ( ) 

a b c d 

Figure 3. Internal configuration of T cellS. 
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l 1 

'- ---~- '------------ -----------~ ~---- ~ ~ ~ =-v---
row i-1 row i row i+f 

-ta shows element AU,i) and its four neighbors, whose values-will affect its 
next value. -tb shows how a matrix is represented as a text string. 
Nearest neiahbors in a two dimensional structure are no Jonaer adjacent 
in the one dimensional representation. 

Figure 4. Communications In a grtd and In the FFP format 
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d) 
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Sa shows the interference between independent grid communications 
laid out in a linear representation. 5b. 5c and Sd show the separation 
of this communication into a series of less congested stages. 5b 
isolates communication to within rows. 5c and 5d, respectively, 
Isolate communication to within adjacent even-odd and odd-even rows . 

Figure 5- Separating communication Into multiple 
stages reduces Interference. 
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6a is the start of a cycle. T makes each pair into an application (6b) and 
replaces itself with r·. After their parallel evaluation (6c), T' re-associates 
each modified value with the next filter (6d). The leftmost value is isolated, 
and is available forT" to incorporate into its accumulating result, r. 
T" may either terminate, returning r·, or else it may continue tbe stream 
computation, either with the same set of filters (6e), or with an added filter 
on the left. 

Figure 6. Stream-like mechanism. 
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Figure 7 . Non-deterministic choice. 


