
THREE-DIMENSIONAL 

DEPTH PERCEPTION ENHANCEMENT 

BY DYNAMIC LIGHTING · 
Technical Report 85-011 

by 

David H. Holmes 

A Thesis submitted to the faculty of The 
of North .Carolina. at Chapel Hill 
fulfillment of the requirements for the 
Master of Science in the Department 
Science. 

Chapel Hill 

1985 

Approved by: 

University 
in pa.rtia.l 
degree of 

of Computer 

/lta~'~ 
Advisor: Henry Fuchs 

~\ 
Reader: Frederick P. Br oks, Jr . 

• 

~ ~!Jr ~ 



DAVID HENDRICKSON HOLMES. Three-Dimensional Depth 
Perception Enhancement by Dynamic Lighting. (Under 
the direction of HENRY FUCHS.) 

ABSTRACT 

The production of computer-generated pictures of 
rendered. 3~D. objects with hidden surfaces removed is a 
time-consuming process on conventional computer graphics 
display systems. Thus, because of the computational 
complexity involved, it· is very difficult to rotate or 
otherwise transform 3-D shaded images in real-time. 
Nevertheless, comprehension of 3-D objects from a single 2-D 
image is difficult·. There have been many attempts to 
enhance the 2-D view for better 3-D comprehension, through 
such techniques as hidden surface removal and modeling of 
lighting and through depth cues such as rotations, depth 
intensity modulation, and stereo. 

I have undertaken a project to explore the use of an 
actual light source as a light source orientation control to 
produce real-time changes in shading, or more appropriately, 
in "lighting". The user employs a hand-held light source to 
"light up" the scene from arbitrary orientations within a 
video camera's field of view. This use of an actual light 
source to control the light source orientation is a natural 
interface and does not have to be learned. The project 
shows that ·such dynamic changes in the shading (or 
"lighting") of an object provide useful depth cues for the 
viewer and enhance the realism of the display. 



THREE-DIMENSIONAL DEPTH PERCEPTION ENHANCEMENT 
BY DYNAMIC LIGHTING 

David H. Holmes 

TABLE OF CONTENTS 

1 INTRODUCTION . . . . . . . . . . . . . . . 
1.1 
1.1.1 
1.1.2 
1.1. 3 
1.2 
1.2;1 
l. 2.2 
1.3 

Background . . . . . . . . . . . . . . . 
Other Methods Of 3-D Depth Perception · 
Introduction To The Problem 
Related Work . . . . 

Objectives . ·.. . . . . 
· Statement Of Thesis 

Scope Of The Problem 
Applications . . . . . 

2 
2.1 
2.2 

MATHEMATICAL AND COMPUTER MODELS 
The Reflectance Model 
Surface Normal Encoding 

3 
3.1 

THE OPERATIONAL ENVIRONMENT 

3.1.1 
3.1.2 
3.1.2.1 
3.1.2.2 
3.1.2.3 
3.2 
3.2.1 
3.2.1.1 
3.2.1.1.1 
3.2.1.1.2 
3.2.1.2 
3.2.1.3 
3.2.2 
3.2.2.1 
3.2.2.2 

Hardware . . . . . . . . ·. 
The Host Computer System 
The Graphics System 

The Graphics Display Device 
The Bipolar Microprocessor . 
The Image Digitizing Subsystem 

Software . . . . . . . . . . . . . 
Preparation Of The Image . . . . 

Molecular Models . . . . . . . 
Sphere Prototype Generation 
Z-buffer Algorithm For Molecules 

General Polygonal Objects 
Video Look-up Table Generation . 

Display And Dynamic Lighting . . . 
Light Source ·Detection . . . . . 
Video Look-up Table Manipulation 

1 
3 
3 
4 
6 
7 
7 
8 
9 

11 
11 
13 

15 
15 
16 
16 
18 
20 
21 
21 
22 
22 
23 
24 
24 
25 
25 
26 
27 



4 
4.1 
4.2 
4.3 
4.3.1 
4.3.2 

5 
5.1 
5.2 
5.2.1 
5.2.2 
5.2.3 
5.3 

A 
A.1 
A.2 
A.3 
A. 3.1 
A.3.2 
A.4 
A.5 

PRINCIPLES OF OPERATION . . . 
System Resource Requirements 
Image Preparation 
Image Display 

Calibration Mode . . 
Display Mode . . . . 

RESULTS AND CONCLUSIONS 
Evaluation Of The System 
The Future . . . . . . . 

Improvements . . . . . 
Suggestions For Future 
My Ideal System . . . 

Summary And Conclusions 

Research 

0 • 0 0 ",•_, 

Appendices 

SYSTEM USER'S MANUAL .. 
Introduction - Purpose 
System Initialization 
System Execution . . . 

Calibration Mode . . 
Display Mode . . . 

Demonstration Software 
System Termination And 

Of The System 

Exit 

Page 2 

29 
29 
29 
30 
30 
30 

32 
32 
34 
34 
36 
37 

'38 

40 
40 
40 
41 
41 
42 
43 
43 

B SYSTEM HARDWARE CONFIGURATION (WIRING DIAGRAM) 44 

C PROGRAMMER'S MANUAL . . . 45 
C.l Important Data. Structures 45 
C.2 Software Overview . . . 45 
C.3 Computer Program Listings 47 

D BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . 48 



Page 1 

1 INTRODUCTION 

The production of computer-generated pictures of shaded 
3-D objects with hidden surfaces removed is a time-consuming 
process on conventional computer graphics display systems. 
The process requires a sequence of process steps similar to 
the following: 

1. Model building. In this step, the viewer prepares 
mathematical models of the desired elements. The 
method employed for this work is the construction of 
object models from convex polygons and spheres in 
3-D. 

2. Rendering. 

1. All relevant geometric transformations of the 
object must be made. Such transformations 
typically include .translations, rotations, 
scaling, clipping, and (optionally) perspective 
of the objects, which collectively transform the 
object models from 3-D object space into 3-D 
image space. 

2. Hidden surfaces must be determined and removed. 
In other words, one must determine what parts of 
the objects are visible and display only those 
parts. 

3. All visible surfaces must be shaded. 

1. The normal of the surface at each particular 
pixel of an object must be calculated. This 
normal may be represented as a triple of 
coordinate values for the unit normal (i.e., 
Cartesian coordinates) or as a pair of 
angles: an azimuth and an elevation (i.e., 
spherical coordinates). 

2. The color and intensity of each pixel must 
be calculated. That is, one must determine 
the appropriate intensity of each pixel 
associated with the visible objects, given 
the viewing angle, the normal of the surface 
at the particular pixel in question, and the 
direction of the light source. (For this 
application, as for many, all light rays 
from the single light source hit all objects 



Page 2 

at the same angle, just as if the light 
source were an infinite distance away; thus, 
its· orientation is relevant, but its 
position is not.) In addition, the viewer is 
assumed to be facing the screen head-on. 
The shading, then, becomes a function of two 
factors: the light source(s) that 
illuminate the scene and the surface 
properties of each object. 

Figure 1-1·graphically depicts these processing 
indicates the most common form of re-display: to 
steps in the sequence except model building. 

steps and 
repeat all 

HODEL RENDERING 
BUILDING 

GEOMETRIC HIDDEN . SHADING 
TRANSFORHA TIONS SURFACE 

~ " r~ "" H " 
DETERMINATION. H ' -

- I FINO H CALCULATE I 
' NORHALS ' ' INTENSITIES • 

Figure 1-1. 

Due to computational constraints, it is extremely 
difficult to perform the functions described above in 
real-time on a conventional graphics display system. 
Nevertheless, comprehension of 3-D objects from a single 2-D 
image is difficult. There have been many attempts to 
enhance the 2-D view for better 3-D comprehension, through 
such techniques as hidden surface removal and mo~eling of 
lighting and through depth cues such as rotations, depth 
intensity modulation, and stereo. 

Some alternatives to these techniques exist which also 
provide the user with useful depth cues. This paper reports 
on a project which explores one of these alternatives. 

I have undertaken a "dynamic lighting" project to 
explore the use of an actual light source as a light source 
orientation control to produce real-time changes in shading, 
or more appropriately, in "lighting". The user employs a 
hand-held light source to "light up" the scene from 
arbitrary orientations within a video camera's field of 



Page 3 

view. This use of an actual light source to control the 
light source orientation is a natural interface and does not 
have to be learned. The project shows that such dynamic 
changes in the shading (or "lighting") of an object provide 
useful depth cues for the viewer and enhance the realism of 
the display, so that the viewer can understand better the 
structure of the 3-D objects being displayed. 

1.1 Background 

Before evalutating the success of the dynamic lighting 
technique, it is useful to explore related work as 
background material. In the following sections, both 3-D 
depth perception techniques and a dynamic lighting technique 
will be discussed. 

1.1.1 Other Methods Of "3-D Depth Perception 

James Lipscomb, in his PhD Dissertation "3-D Cues for a 
Molecular Computer Graphics System", evaluated a number of 
techniques for enhancing the depth perception of 3-D objects 
presented on a 2-D display, namely rotation, intensity 

___ modulation, and stereo. - These techniques represent the more 
common methods for attempting to enhance depth perception. 
One of his conclusions is that smooth rotation appears to be 
the single best depth cue, as supported by the following 
statements that he cites: 

"It is apparent that the kinetic depth effect will 
readily yield a perception of a rigid spatial 
arrangement of unconnected objects." [8] 

"The human visual system has special processors for 
motion that help the user understand what he sees." 
[6] 

These same "special processors for motion" may make dynamic 
lighting (with its "moving" illumination) a viable depth 
cue. 

Most of the discussion of Lipscomb's work pertains to 
refresh line-drawing displays. The greater realism of the 
shaded hidden surface raster display enhances the overall 
comprehension of 3-D objects, and spatial arrangements of 
objects may be discerned through the added information 
provided by dynamic lighting. Moreover, in a conventional 
raster-scan display system, it is too computationally 
expensive to rotate a scene of arbitrary complexity in high 
resolution in order to achieve the kinetic depth effect as a 
3-D depth cue. 



Page 4 

1.1.2 Introduction To The Problem 

Recall the sequence of processing steps to render a 
shaded geometric model with hidden surfaces removed: 

l. All relevant 
models must 
object space 

geometric transformations 
be made to transform 

to 2-D image space. 

of the object 
them from 3-D 

2. Hidden surfaces must be determined and removed. 

3. All visible surfaces must be shaded . 

l. The normal of the surface 
pixel of an object must 
normal is represented as a 
azimuth and an elevation.) 

. ·,, 
at each particular 

be calculated. (This 
pair of angles: an 

2. The color and intensity of each pixel must be 
calculated. That is, one must determine the 
appropriate intensity of each pixel associated 
with the visible objects, given the viewing 
angle (assumed to be constant), the normal of 
the surface ~t ~he particular pixel in question, 
and the direction of the light source. 

In raster graphics, the frame buffer (a separate piece 
of memory hardware that can store and retrieve picture 
information one pixel at a time) must be loaded with all the 
individual pixel values that make up the displayed scene. 
The frame buffer can be quite large (e.g., the Ikonas system 
I used provided for a 512 by 512 (= 250 K pixels) and a 1024 
by 1024 (= 1 Meg. pixels) resolution mode). Therefore, it 
may take a great deal of time to compute the intensity of 
each pixel. Thus, major changes to the frame buffer 
contents will not approach real-time on a conventional 
graphics display system. 

In most raster-scan graphics display systems, the 
values stored in the frame buffer are addresses into the 
video look-up table (VLT) (also known as the color look-up 
table, compensation table, color map, or color table). The 
original intent of this mechanism was to provide a means of 
offsetting the non-linearity of the display device. 



FRAME BUFFER 

!IMAGE MEMORYl 

VIDEO LOOK-UP 

TABLE CVLTl 

Figure l-2. 

Page 5 

DISPLAY 

However, the video look-up table may be used to 
accomplish any desired mapping. We can take advantage of 
this fact by placing the calculated pairs of angle values 
(encoded surface normal vectors) into the frame buffer 
instead of the intensity values. Then only the intensity 
associated with each normal must be determined to obtain a 
different display of the model under a different orientation 
of the point light source. This step may be accomplished 
very quickly and conveniently by mapping directly from an 
angle pair to an intensity value by virtue of the video 
look-up table and its addressing scheme. 

The assumptions required for this mechanism to be 
effective are as follows: 

The frame buffer contents remain· static (i.e., the 
surface normals don't change in time): 

The position of the observer is fixed. 

The single point light source is assumed to be 
located at an infinite distance (i.e., all light 
source rays are parallel). 

Based on these assumptions, the shading becomes a function 
of the light source th~t illuminates the scene and the 
surface orientation properties of each object. 

For any constant orientation of the user's eye, only 
the intensity calculation step must be repeated for a change 
in the orientation of the light source. Therefore, only the 
video look-up table values must be re-calculated to bring 



Page 6 

about changes in shading as a function of the light source 
orientation. The much larger frame buffer need not be 
changed at all. This organization thus requires the 
calculation of only 3072 values (one video look-up table per 
primary color and 1024 entries per table) in the Ikonas 
raster display system for each new image as compared to the 
far greater number of values (262144) in the frame buffer. 
(Note: This work was accomplished on an Ikonas RDS2000; 
however, Ikonas has been bought by Adage and the successor 
to this machine is the Adage RDS3000.) Figure 1-3 
graphically depicts these processing steps. 

HODEL REIIJERING 
BUILDING 

GEOMETRIC HIDDEN SHADING 
TRANSFORMATIONS SURFACE 

--; I -) ~ DETERMINATION t-: 

~I ~~~~;~I 
. 

Figure 1-3. 

This scheme has the effect of permitting the fast,. 
dynamic display of a wide variety of lighting conditions for 
a static scene. It is hoped that the calculation of these 
video look-up table values can be performed quickly enough 
to bring about smooth changes in the shading in real-time. 

1.1.3 Related Work 

Previous work in the area of dynamic 
concentrated primarily on evaluating the 
look-up tables to alter quickly the perceived 
orientation in a displayed scene. 

lighting has 
use of video 
light source 

Daniel Bass concentrated on comparing different surface 
normal quantization schemes and on investigating the display 
of objects under different lighting and reflectivity 
conditions. "We want to quantize the surface normals for 
two reasons: 

1. to save time. 



Page 7 

2. to take advantage of the use of the VLT to perform 
the mapping of normals to intensities; the VLT has 
only 256 discrete mappings possible." [1] 

Because of the discretization caused by the limited number 
of entries in the video look-up table, the notion of 
equivalence classes of normals is a requirement. The 
challenge is to assign equivalence classes in an efficient 
fashion. 

I spent a good deal of time trying to determine an 
efficient solution for this problem. This topic is dicussed 
in greater detail in section 2. 2. . ... 

Bass lists the following drawbacks to the video look-up 
table scheme that he implemented: 

1. "Quantizing surface normals produces artifacts in 
the final image unlike those resulting from the 
usual approach of quantizing the surface brightness. 

· 2. Lighting effects must be independent of object 
position; therefore shadowing can't be done. 

3. The process is still not quite fast enough to allow 
real-time rotating lights." [1] 

Limitations in the display device posed some problems for 
Bass in his attempts to enhance the realism of the scene . 

. Specifically, Bass had only one 256-color video look-up 
table, whereas the Ikonas system I used provided three 
separate video look-up tables, each consisting of 1024 

·entries. The 256-color limitation in Bass's system resulted 
in "banded" displays of curved surfaces. Also, my 
implementati·on of dynamic lighting can operate much faster 
(16Hz.) than Bass's implementation, which did not approach 
real-time. 

1.2 Objectives 

The 
statement 
problem. 

objectives of this work are presented 
of thesis and a specification of the scope 

These objectives are defined below. 

1.2.1 Statement Of Thesis 

as a 
of the 

I have designed and implemented a system in which the 
direction of a light source can be modified dynamically to 
provide real-time changes in intensity based on the 
orientation of a hand-held light source. The thesis of this 
work is that such dynamic changes in the intensity and 
position of the shading (a more appropriate term might be 



Page 8 

"lighting") will provide valuable depth cues, thus enhancing 
the viewer's comprehension of object structure. In 
addition, this method appears to provide a higher degree of 
realism for the viewer and the real-time nature of this 
technique is a fundamental part of the viewer's realistic 
perception of the modeled scene. 

1.2.2 Scope Of The Problem 

This work emphasizes the use of a hand-held light as an 
input device and fast response to provide realistic feedback 
of the user's orientation of the light sou,.rce. Furthermore, 
this work addresses the first and thira of the drawbacks 
listed by Bass: the quantization error and performance 
respectively. In addition, I have evaluated this technique 
on the basis of its potential use as a depth cue. 

I improved on the artifacts resulting from quantization 
of normals by using larger video look-up tables and by 
trying to create a judicious set of normal equivalence 
classes. I addressed.the performance drawback by using the 
bipolar microprocessor to detect the orientation of the. 
light source.in a small digitized region of the frame buffer 
and by using a VAX minicomputer and approximately 1 Meg. of 
main memory to allow.the user to "poke" one of 33 by 33 = 

1089 different pre-calculated video look-up tables 
dynamically (i.e., in real-time). This approach provides an 
apparently smooth transition between successive (adjacent) 
light source orientations. 

In keeping with the goals of providing realism and fast 
response in the use of this system, a pen-light is used as 
the user's input device. A video camera digitizes the area 
in front of the display screen, placing the digitized image 
in a dedic~ted region of the frame buffer, and the Ikonas 
bipolar m~croprocessor quickly detects the orientation of 
the light source by searching that region. 

Such added features as a calibration mode and a dynamic 
"out-of-bounds" indicator enhance the ease of use of the 
software. The calibration mode enables the user to 
calibrate the video camera lens settings, the distance of 
the point light source from the camera, the size of the 
point light source, and threshold values for light source 
detection. If the light source is out of the video camera's 
field of view, the out-of-bounds indicator, a border around 
the displayed image, is turned from black to green. 

Originally, the driving problem for this work was a 
representation of a molecule · in which each atom is 
represented as a shaded sphere. The results of this work 
eventually may be incorporated into a future GRIP system, a 
molecular graphics display system at the University of North 



Page 9 

Carolina at Chapel Hill. 

This project models objects as spheres or 
polygon-defined objects. In the initial implementation, I 
limited my attention to objects which consisted only of 
spheres that could intersect. Since spheres are easily 
represented as an x-, y-, and z-coordinate in space and a· 
length (radius), the initial problem was simplified by 
restricting my attention to spheres. Furthermore, some 
additional simplifications were found to increase the speed 
of generating scenes consisting only of spherical objects. 
Since most objects can not be represented by spheres alone 
and are more· appropriately represent~4. by polygons, I 
extended the scope of the system to include provisions for 
polygons in later stages. 

Also in the· initial implementation, I developed the 
software on a PDP 11/45; when a VAX became available, 
however, I converted the software to run there and performed 
the remaining software and hardware development on the VAX. 

Initially, video look-up table calculations were 
performed "on the fly", but the performance considerations 
dictated. that the VLT's be pre-calculated. This 
pre-calculation of VLT's resulted in an order of magnitude 
improvement in performance. However, a better resolution of 
light source orientation is possible if the VLT's are 
calculated after rather than before a specific light source 
orientation has been identified. 

In the beginning, I used a black and white 30 Hz. 
monitor, but I extended the scheme to a color 30 Hz. 
monitor, in which eight colors (and up to 256 shades of each 
color) were provided. The reason for the eight color 
limitation had to do with the fact that originally the 
system had only 256-entry video look-up tables. I extended 
the scope of the system in later stages to. support 64 colors 
by utilizing the Ikonas crossbar and 1024-entry video 
look-up tables. 

Initially, I set the system up to accept keyboard 
commands for light source orientation changes. This mode_ is 
still supported as an alternative to the pen-light detection 
interface. 

1.3 Applications 

The 
graphics 
graphics 
lighting 
features 
surface 

dynamic lighting technique may be applied to other 
software. In this manner, the GRIP-75 molecular 

system at UNC may be extended to include a dynamic 
feature. Furthermore, various realistic display 

that are commonly included as part of the hidden 
rendering process may be included in the image 



Page 10 

preparation phase of the dynamic lighting process. These 
extensions and various other applications are discussed in 
section 5.2.1. 



Page 11 

2 MATHEMATICAL AND COMPUTER MODELS 

The mathematical models and computer models required 
for the dynamic lighting technique are presented in this 
chapter. The basic concepts associated with the dynamic 
lighting technique depend on an understanding of the 
reflectance ("lighting") model. After thE! discussion of the 
reflectance model, the role of surface normals and the use 
of video look-up tables is discussed. 

2.1 The Reflectance Model 

A reflectance (or "lighting") model is used to 
determine appropriate intensities for each pixel once 
visible surfaces have been determined by a hidden surface 
algorithm. In this section, a description of the 
commonly-used reflectance model developed by Bui-Tuong Phong 
is presented. 

"The shading model has two ingredients, 
properties of the surface and properties of the 
illumination falling on it. The principal surface 
property is its "reflectance", which determines how 
much of the incident light is reflected ... 

An object's illumination is as important as its 
surface properties in computing its intensity. The 
scene may have some illumination that is uniform 
from all directions, called "diffuse illumination". 
In addition, there may be "point sources" of light 
in the scene; they differ from diffuse lighting in 
that specular reflections, or "highlights", appear 
on surfaces . 

... The shading model can be decomposed into 
three parts, a contribution from diffuse 
illumination, contributions for one or more specific 
light sources, and a transparency effect. Each of 
these effects contributes shading terms E, which are 
summed to find the total light energy coming from a 
point on an object. This is the energy a display 
should generate to present a realistic image of the 
object." [5] 

For the purposes of this work, the contribution from 
transparency is ignored. 



Page 12 

Diffuse illumination may be specified by the equation: 

Epd = Rpid 

"where Epd is the energy coming from the point P due to 
diffuse illumination, Id is the diffuse illumination falling 
on the entire scene, and Rp is the reflectance coefficient 
at P, which ranges from 0 to 1. Thus the reflectance 
coefficient relates the energy leaving point P to that 
arriving. To model colored surfaces, the reflectance 
coefficient and illumination have separate components in a 
color coordinate system ... 

Shading contributions from specific iight sources will 
cause the shade of a surface to vary as its orientation with 
respect to the light source changes and will also include 
specular reflection effects. The first of these effects is 
due to Lambert's law, which states that the energy falling 
on a surface varies as the cosine of the angle of incidence 
of the light ... 

... Treating specular reflection requires us to 
calculate the relationship between the observer, the light 
source, and the surface ... " [5) The equation for the light 
source illumination (for each light source) is: 

Eps = [Rpcos(i) + W(i)(cos(s))**n)Ips 

where: Rp = reflectance coefficient at P 
i = angle of incid~nce (angle between 

incident ray and normal) 
W(i) = specular reflection coefficient, 

a function of i 
s angle between refle.cted ray and 

viewer's line of sight . 
n value in range 1-10; controls 

how "shiny" the surface appears 
Ips = energy arriving from the light 

source 

This formula contains a diffuse reflection component and a 
specular reflection component. 

"The angles required in the shading model can be 
determined entirely from the "normal" vector for a 
surface ..... Angular calculations are simplified if we 
assume that the viewpoint and all light sources are 
infinitely far away from the object in the world coordinate 
system. Thus a vector to one of these points has a constant 
direction throughout the scene. For convenience, these 
vectors are normalized to have unit length." [5) 



Page 13 

In the implementation of this dynamic lighting project, 
a shading parameters file is provided at image preparation 
time to enable the user to make changes in the relative 
contributions of specular and diffuse components and in the 
exponent (n) which controls how "shiny" the surface appears. 

2.2 Surface Normal Encoding 

Because of the discretization caused by the limited 
number of entries in the video look-up table, the notion of 
equivalence classes of normals is a requirement. The 
challenge lies in the efficient assig~~ent of equivalent 
classes. · 

" we must determine the set of vector equivalence 
classes into which all visible vectors may be grouped to 
quantize the infinite number of visible surface normals into 
a finite set of vector equivalence classes. Each 
equivalence class is represented by a single vector which is 
an approximation of those vectors in that equivalence 
class." [1] 

The schemes for deriving equivalence classes of normals 
that Bass [1] tried included the following: 

1. Choice of X and Y as independent variables; 6 bits 
for X and 6 bits for Y; therefore equal area patches 
for a sphere. 

2. Choice of Z and theta (~ 
variables; 6 bits for 
rings and pie slices; 
substructure, flat top. 

arctan(Y/X)) as independent 
each; therefore concentric 
problems: "pie-shaped" 

3. Choice of phi and theta (spherical coordinates); 6 
bits each; therefore flattening of sphere is 
removed, and surface of sphere is more evenly 
partitioned into equivalence classes. 

4. Choice of phi and theta, but number of theta 
intervals per ring increases with phi. [1] 

I explored both options 3 and 4 and found that 
visually, option 4 is a much better distribution of 
equivalence classes than option 3. After trying many 
schemes to optimize option 4, the method which emerges as 
the best is to calculate the actual normals that represent 
the equivalence classes based on some appropriate spacing 
criteria. 



Page 14 

The most appropriate spacing criteria appear to be (a) 
concentric rings representing the visible side of a sphere, 
with "equal cosines" spacing between rings (i.e., the 
spacing is a function of the cosine of the angle between the 
normal at the center of the sphere and any normal along the 
ring in question), and (b) the calculation of the number of 
normals to be placed along the concentric ring as a function 
of the circumference of each particluar ring. The first 
criterion has the effect of generating concentric rings at 
the periphery of the sphere that are more closely spaced 
than at the center. 

The question of generating a sphere prototype becomes 
one of establishing its equivalence classes. Once the 
spacing criteria for the actual normals that represent the 
equivalence classes have been determined, the equivalence 
classes themselves may be established by: 

1. calculating all 256 normals that represent the 
equivalence classes, 

2. determining the normal at the center of each pixel 
in the sphere, 

3. determining the closest "equivalence class normal" 
to the given normal, and · 

4. using that equ.ivalence class normal to represent the 
pixel in question. 

To minimize computations, we may determine how close 
two normals are by determining their dot product instead of 
using the distance formula. In the case of general 
polyhedra, the same mechanism is used; however, instead of 
determining equivalence classes once for a prototype, the 
calculations must be performed "on the fly". 



Page 15 

3 THE OPERATIONAL ENVIRONMENT 

The system consists of hardware and software 
components. The hardware environment consists of a host 
computer system (VAX) and an Ikonas graphics display system. 
Within the graphics display system,· we are primarily 
concerned with the graphics display device itself, a video 
digitizer, and a bipolar microprocessor. ·· · · 

The software component of the system consists of two 
sets of software: 

image preparation software, which models objects, 
performs hidden surface rendering, calculates 
normals, and generates video look-up tables in 
preparation for dynamic lighting, and 

dynamic 
changes 
source 
look-up 

lighting display software which dynamically 
the lighting o~ the scene by detecting light 
orientation and manipulating the video 
tables. 

Details of the operational environment are discussed in the 
following sections. 

3. 1 Hardware 

The hardware required for this work consisted of the 
following items: 

* IKON AS advanced 24-bit color graphics system; 
includes: 

frame buffer 
video look-up table 
cross-bar 
raster-scan display logic 

* 30 Hz. Color monitor (initial work was on a 30 Hz. 
b&w monitor) 

* VAX 11/780 (initial work was on a PDP 11/45) 



• 

Page 16 

User interface (to input light source orientation) 
Video digitization subsystem 

Digitizer 
Bipolar microprocessor with scratchpad 
memory 
Video camera 
Pen-light 

Alphanumeric terminal (keyboard commands) 

The configuration of hardware is depicted in Figure 3-1. 

I performed my early software development on a PDP 
11/45 and converted the software to a VAX 11/780 when that 
system became available. In later stages, I implemented a 
more convenient, more "natural" light source direction 
indicator than keyboard commands: a pen-light, whose 
orientation is detected from its digitized image from a. 
video camera. Furthermore, I extended the initial work on a 
30 Hz. black and white monitor to a 30 Hz. color monitor. 

3.1.1 The Host Computer System 

A Vax 11/780 with 2 Meg. of main memory functioned as 
the host computer for this system. Whereas access to 33 x 
33 x 1024 x 3 = 1.11 Meg. for video look-up tables was 
required, the large amount of main memory was extremely 
important to the real-time aspect of the dynamic lighting 
process (to inhibit page faults in the virtual memory 
system). 

3.1.2 The Graphics System 

The Ikonas graphics system at UNC-CH consists of an 
advanced 24-bit color graphics system, with a 24-bit frame 
buffer, a 60 Hz. high resolution monitor, a 1024-entry 
video look-up table for each primary color (red, green, and 
blue), a. "cross-bar" (described below), a. bipolar (i.e., 
bit-sliced) microprocessor with its own "scra.tchpad" memory, 
and a. digitizer, which could digitize signals from a video 
camera a.t the rate of 30 Hz. Although the Ikonas system 
drives a. 60 Hz. monitor, it must run in 30 Hz. mode, 
driving a. 30 Hz. monitor, to allow continuous 30 Hz. video 
digitiza.tion. 



'z:l 
1-'· 

~ 
m 
CH 
I ..... 

CAMERA 

I 
30HZ. 

MONITOR 

-

I' 
ALPHANUMERIC 

TERMINAL 

-J, 

DIGITIZER 

~ I>* t--

BIPOLAR 
MICROPROCESSOR 

IBHPI 

LEGENOo 

IKONAS RASTER DISPLAY DEVICE 

I'' 
r- r-

I' ,J -;l ' 
' '--

FRAME CROSSBAR VIDEO LOOK-UP 
DUfFER IX BAR• TABLE IVLn 

VAX 

---7 PROCESSING STEPS 

~ DOWNLOAD DATA INTO MEMORY 

' I--

RASTER SCAN 
DISPLAY LOGIC 

r-

' 

'U 
Ill 

oq 
m 
..... 
-'2 



Page 18 

3.1.2.1 The Graphics Display Device 

The principal components of the graphics display device 
are the 24-bit frame buffer, the video look-up table, the 
cross-bar, and raster-scan display logic. The monitor and 
frame buffer memory were configurable to two distinct 
resolutions: 

low resolution: 512 by 512 display with 24 bits per 
pixel 

high resolution: 1024 by 1024 display with 6 bits 
per pixel 

Due to the requirements for encoding normal 
information, color information, and digitized image 
information in the frame buffer, I performed all work 
pertaining to the dynamic lighting application in low 
resolution mode; hence each pixel may be considered to be 24 
bits "deep". 

For the initial implementation of color display, only 
256 value video look-up tables were available. By using the 
normal value to specify.the presence of each primary color 
and the value 0 to specify its absence, eight colors were 
provided: the three primaries, the 3 secondaries, black, 
and white. This mechanism is depicted in Figure 3-2. 

A 1024-entry video look~up table was established for 
each primary color (red, green, and blue) when the hardware 
1024-entry video look-up tables became available. Note that 
full addressability of the three video look-up tables 
requires 30 bits (10 bits for each primary color). Since 
the pixel is at most only 24 bits deep, a "cross-bar" is 
provided to allow arbitrary mapping of frame .buffer bits 
into video look-up table addresses. 

The cross-bar is used to advantage in this work by 
using 8 of the 24 bits to represent an encoded normal, using 
3 pairs of bits to represent red, green, and blue 
contributions, and saving 4 bits for use in the light source 
digitization process. This video look-up table mapping is 
illustrated in Figure 3-2. 



NORMAL NORMAL NORMAL 
CBLUEJ CGAEENJ CAEDl 

1-- B --11-- B --11--8--1 

CROSSBAR 
CXBAAJ 

B 
L 
u 
E 

G 
A 
E 
E 
N 

m m 

24 

~L 

-

A 
E 
0 

m 
14 

,.:;.L 

~ 

/ 

B 

' ' / / 

24 8 

' 7 

8 

NORMAL 

1--a--1 

' / 
llil 

' ' / / CROSSBAR 
CXBAAJ 3lil llil 

' - 7 
Ill 

Figure 3-2. 

REO VLT 
C256 VALUESJ 

GREEN VLT 
C256 VALUESJ 

BLUE VLT 
C256 VALUESJ 

REO VLT 
Cllil24 VALUESJ 

GREEN VLT 
UI'J24 VALUES) 

BLUE VLT 
C!lil24 VALUESJ 

Page 19· 



Page 20 

Thus, each video look-up table may be subdivided into 4 
sub-tables, one each to represent full intensity. 2/3 
intensity. 1/3 intensity, and no intensity contributions of 
a primary color. One of these four intensities is assigned 
to each given object for each primary color at object 
creation time in order to specify the object's color. In 
this manner, we have increased the number of colors we may 
represent simultaneously to 64. These values are not the 
intensities that change as a function of the lighting, but 
are the e.ncoded color information for each object. Figure 
3-3 is an example of the variety of colors available with 
this method. 

Figure 3-3. 

One entry in each video look-up table is reserved for 
the screen border, which is toggled as feedback to the user 
for success or failure of the light source detection, as 
when the light source leaves the camera's field of view. 

3.1.2.2 The Bipolar Microprocessor 

In this application, the programmed bit-sliced bipolar 
microprocessor is used exclusively to track the hand-held 
light source by searching a portion of the frame buffer 
memory into which an image has been continuously digitized 
for the purpose of detecting the orientation of the light 
source. The bipolar microprocessor has proven to be 
critical to the goal of providing a real-time user interface 
that was easy to use and whose effects were easy to 
understand, providing timely and useful feedback. 

For processing speed, the video camera image is 
digitized sparsely. Specifically, every eighth pixel in 
every eighth scan-line (resulting in a 64 by 64 pixel image) 



Page 21 

is digitized in the frame buffer and searched by the bipolar 
microprocessor. Only four bits of intensity per pixel are 
used because a four-bit pixel depth is sufficient for the 
simple thresholding of the light source intensity if the 
room is darkened. Through the-use of the cross-bar, this 
region may be made non-displayable so that it will not 
interfere with the dynamic lighting display, or displayable 
as in the case of the calibration mode for the digitization 
process. 

3.1.2.3 The Image Digitizing Subsystem 

In addition to the digitizer, th·e- light source 
detection mechanism requires a video camera (to transmit the 
signals to be digitized) and a point light source of 
sufficient size to be detected by the digitizer in a 
reasonable amount of tim~. but not so large as to cause 
detection accuracy problems. A small hand-held fluorescent 
lamp with electrical tape covering all but a small square 
window proved to be the best point light source for this 
application. 

3.2 Software 

In this section, the organization of the software and 
many of the software details are described. 

All host programs were written in C, since it 
be the language of choice for Unix environments, 
well-suited for the task in question. All Ikonas 
programs (which run on the bipolar microprocessor) 
written in GIA, an assembly language developed 
Bishop at UNC. 

tends to 
and it is 

assembly 
have been 

by Gary 

For each pixel, an encoded normal is stored in the 
frame buffer instead of the intensity. The approach enables 
us to vary the intensity as a function of these angles with 
respect to the orientation of the light source. The mapping 
of these angles to intensities is accomplished by encoding 
the explicit intensity values in the video look-up table for 
each of the encoded normals. These video look-up table 
values are changed whenever the orientation of the light 
source changes. 

I have written a dynamic lighting routine to calculate 
the intensity of a given pixel, given the orientation of the 
light source, for each azimuth/elevation value pair (i.e., 
encoded normal). A constant value may be added to the 
calculated intensity at this stage to simulate the effects 
of ambient light on the surfaces. 



Page 22 

Methods for quickly changing the values of the video 
look-up table as a function of the light source orientation 
have been explored and have been implemented where feasible. 
(Such methods as "rolling up/down/left/right" the series of 
values stored in the video look-up table were found to be 
unnecessary, since I found that the update rate without such 
a change was sufficient.) 

Initially, I limited the scope of this work to 
spherical objects in order to determine feasibility of 
approaches with a simplified scheme. However, I extended 
this approach to include polygon-defined objects and such 
options as clipping and perspective. 

Also, two input mechanisms are provided to orient the 
light source: (a) the use of a pen-light (or other point 
light source) and digitized images from a video camera and 
(b) simple keyboard commands which enable the user to move 
the light source up, down, left, or right by pressing the 
appropriate arrow keys. 

3.2.1 Preparation Of The Image 

Before the dynamic-lighting process may be invoked, a 
scene must be prepared so that as much as possible of the 
rendering process has been performed. This requirement is 
in keeping with the idea that image data will be placed in 
the frame buffer only once (with the exception of the data 
from the digitization process) and changes will be limited 
to the video look-up tables, in order to achieve real-time 
updates in the display. 

3.2.1.1 Molecular Models 

Initially, only molecular models were studied in order 
to simplify the scope of the problem to dealing with the 
well-behaved nature of normals on the surfaces of spheres. 
In addition, I treated the GRIP-75 molecular graphics system 
as a potential driving problem for this work. 

In order to display spheres realistically and yet 
simplify the process of displaying spheres, I divided the 
hidden surface rendering process into two stages: a sphere 
prototype generation stage and a simple "spheres only" 
z-buffer algorithm. These two stages are discussed in the 
following sections. 



Page 23 

3.2.1.1.1 Sphere Prototype Generation 

By limiting the scope of the problem to molecular 
models (initially), I was able to limit my attention to 
spheres. Instead of converting such spheres to polyhedral 
approximations, therefore, the problem could be solved once 
for a reasonably large sphere, with the result stored in a 
raster buffer, allowing the software to index into the 
sphere based on the scale of each new sphere to be 
displayed. 

Many techniques for obtaining an optimal representation 
of the sphere were explored. The limitations for the 
spherical representation were such · that only 256 unique 
normals were available to represent the visible portion of 
the sphere; hence the problem became one of determining the 
optimal placement of normal "equivalence classes". 

The best scheme determined consisted of optimizing the 
placement of equivalence classes on concentric circles of 
the sphere's visible surface. I specified the number of 
equivalence classes on a concentric circle to be a functio.n 
of the cosine of the angle between the normal at the center 
of the, sphere and the normal at a particular point on the 
sphere's surface. 

The exception to this rule occurs for equivalence 
classes along the perimeter of the sphere, relative to the 
line of sight. For these classes, the number of actual 
pixels represented by the equivalence class might be 
extremely small relative to the other classes, so by w~y of 
compensation, the farthest concentric circle from the center 
is placed far enough away from the perimeter of the sphere 
to ensure that a "reasonable number" of pixels is thereby 
represented. This technique is employed in the sphere 
prototype generation module. 

I selected the sphere prototype size to cover 10% of 
the area of the screen, since in general, most molecular 
models (initially, the driving problem of this work) would 
not be viewed such that atoms would appear larger than that 
size. Figure 3-4 shows a sample 26 by 26 sphere prototype 
with three rings and a center. 



Page 24 

0 (o 0 0 0 0 0 0 0 17 17 17 17 16 16 16 16 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 18 17 17 17 17 17 16 16 16 16 16 15 0 0 0 0 0 0 0 
0 0 0 0 0 18 18 18 7 17 17 17 6 6 6 6 6 15 15 15 15 0 0 0 0 0 
0 0 0 0 18 18 18 7 7 7 7 6 6 6 6 6 6 15 15 15 15 IS 0 0 0 0 
0 0 0 19 19 18 7 7 7 7 7 :! 6 6 6 6 6 6 IS IS 15 5 14 0 0 0 
0 0 19 19 19 7 7 7 7 7 7 :! ;z ;z 6 6 6 5 5 5 5 5 14 14 0 0 
0 0 19 19 19 19 7 7 7 7 2 :! ;z :! ;z :! 2 5 5 5 5 5 14 14 0 0 
0 19 19 19 8 8 7 7 7 7 2 :! ;z 2 2 2 2 5 5 ' 5 5 14 14 14 0 
0 20 8 8 B 8 e B 7 2 ;z 2 2 2 2 2 2 5 5 5 5 5 14 14 13 0 

20 20 B 8 B B 8 8 8 2 :! :! 2 2 :! 2 2 5 5 s s s 13 13 13 13 
20 20 a 8 8 8 8 8 I I I I I I I I I I s s 4 4 4 13 13 13 
.;o 20 20 8 .a 8 8 8 I I I I I I I I I I ·4. 4 4 4 4 4 13 13 
20 20 20 8 8 8 8 8 I I I I I I I I I I 4 4 4 4 4 4 4 13 
21 21 21 9 9 9 9 9 I I I I 1 1 1 1 I 1 4 4 4 4 4 4 4 28 
21 21 21 9 9 9 9 9 I I I I I I I I I I 4 4 4 4 4 4 ;!9 28 
21 21 9 9 9 9 9 9 I I I I I I I I I I 12 12 4 4 4 28 28 28 
21 21 9 9 9 9 9 9 9 3 3 3 3 3 3 3 3 12 12 I:! 12 12 :::!8 28 ~8 28 

0 21 9 9 9 9 9 9 10 3 3 3 3 3 3 3 3 12 12 12 12 12 27 :;!7 28 0 
0 22 22 2:2 9 9 10 10 10 10 3 3 3 3 3 3 3 12 12 12 I:Z 12 27 27 :!7 0 
0 0 22 22 :22 22 10 10 10 10 3 3 3 3 3 3 3 12 1:! 12 12 12 27 27 0 0 
0 0 22 22 22 10 10 10 10 10 10 3 3 3 11 11 11 12 12 12 12 12 ':J.7 ';1.7 0 0 
0 0 0 2:! 2.;! 23 10 10 10 10 10 3 II II II 11 II 11 26 26 26 12 27 0 0 0 
0 0 0 0 23 23 23 10 10 10 10 II II 11 II 11 11'26 26 26 26 26 0 0 0 0 
0 0 0 0 0 23 23 23 10 24 24 24 II II 11 11 11 26 26 26 26 0 0 0 0 0 
0 0 0 0 0 0 0 23 24 24 24 24 24 25 25 25 25 25 26 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 24 24 24 0!4 0!5 0!5 0!5 25 0 0 0 0 0 0 0 0 0 

Figure 3-4. 

3.2.1.1.2 Z-buffer Algorithm For Molecules 

I modified a. simple z-buffer algorithm to index 
directly into the sphere prototype and obtain the specific 
normal equivalence class which represents each particular 
pixel and. to store the resulting normal encoding in the 
frame buffer. The z-buffer is maintained a.s a. separate 
internal data structure and is not part of the frame buffer. 
This software was a modification of software developed by 
Mike Pique at UNC-CH. • 

3.2.1.2 General Polygonal Objects 

Eventually, the techniques for dynamic lighting were 
extended to handle any scene defined by polygons. I 
implemented this capability by modifying Eric Grant's 
implementation of the Eina.ry Space Partitioning Tree (ESP 
Tree) algorithm, described in (3]. This visible surface 
algorithm enables the user to modify orientations 
conveniently and streamline the visible surface 
determination process. 



Page 25 

The advantage of this particular algorithm is that it 
provides quick modification of the scene as part of the 
set-up sequence for the dynamic lighting procedure. For the 
purposes of this work, however, any hidden surface algorithm 
that deals with general geometric models would suffice. 

I modified this software to permit encoding of surface 
normals and placement of the corresponding normal 
equivalence class directly into the frame buffer. In 
addition, I modified the software to support the 64-color 
encoding scheme and to accomodate variable parameters for 
lighting conditions. 

3.2.1.3 Video Look-up Table Generation 

In order to achieve real-time modification of the video 
look-up tables, values for the tables are calculated ahead 
of time and are loaded into the hardware video look-up table 
whenever needed. In order to accomplish a realistic 
transition between two adjacent lighting equivalence 
classes, at least 32 by 32 distinct video look-up tables 
were found to be necessary. 

I established a selection of 33 by 33 video look-up 
tables in order to provide an extra measure of flexibility 
at the extremes. Specifically, I established an extreme 
lighting angle at the borders of light source detection to 
underscore the fact that the borders have been crossed. To 
further enhance the realism of the display, the video 
look-up table values have built-in compensation for the 
non-linearity of the display device. 

3.2.2 Display And Dynamic Lighting 

Once the hidden surface rendering process has 
completed, an "image" remains in the Ikonas frame buffer. 
Until the dynamic lighting process has begun, however, this 
image appears as an unusual rendering of the original scene 
(as shown in Figure 3-5 below), since the information stored 
in the frame buffer is not intensity information, but normal 
information. 



Pa.ge 26 

----,---- -------- -. 

r 

····-

Figure 3-5. 

3.2.2.1 Light Source .Detection 

- The algorithm employed in the search for the light 
source is as follows. The video camera. image is digitized 
sparsely for processing speed. Specifically, every eighth 
pixel in every eighth scan-line (resulting in a. 64 by 64 
pixel image) is digitized in the frame buffer and searched 
by the bipolar microprocessor. Only four bits of intensity 
per pixel are used because a. four-bit pixel depth is 
sufficient for the simple thresholding of the light source 
intensity if the room is darkened. Through the use of the 
cross-bar, this region may be ma.de non-displayable so tha.t 
it will not interfere with the dynamic lighting display, or 
displayable as in the ca.se of the calibration mode for the 
digitiza.tion process. The light source detection code 
running in the bipolar microprocessor was provided by Gary 
Bishop, a former gradua~e student a.t UNC-CH. 

A border is established around the displayed image 
which contains encoded normals tha.t refer to a unique entry 
in the video look-up tables. In this manner, a. special 
feedback mechanism is provided to indicate to the user tha.t 
the light source is not being detected at a particular point 
in time. Specifically, only tha.t unique video look-up table 
entry will be modified when the digitizer reports that the 
light source could not be detected. The most common reason 
for this "not detected" indication occurs when the light 
source is outside the field of view of the video camera.. 



Page 27 

3.2.2.2 Video Look-up Table Manipulation 

Since the video look-up tables have already been 
calculated and are stored in a large array in ma~n memory on 
the host computer system, the process is essentially one of 
address calculation and video look-up table loading once the 
address has been computed in the bipolar microprocessor.· 
The bipolar microprocessor accomplishes this address 
calculation by scanning the digitized image of the light 
source in the frame buffer. The host computer maintains the 
large video look-up table array and loads a specific video 
look-up table associated with the location in the digitized 
image where the bipolar microprocessor . found the light 
source. 

Figure 3-6 illustrates the dynamic lighting system in 
operation. 



Page 28 

- . . ' 
. ·-

Figure 3-6. 



Page 29 

4 PRINCIPLES OF OPERATION 

In order to use the dynamic lighting system (DYNALITE), 
it is important for the user to grasp some preliminary 
points. The system is complex in its interrelationships and 
all components of the system depend heavily on the workings 
of other components. Thus, the most critical item is to 
verify that all aspects of the system are functional and 
able to communicate with the rest of the system. 

This verification may be accomplished by means of the 
checklist that appears in section A.2 of the Appendices. 

4.1 System Resource Requirements 

The system requires at least 1.5 Meg. of main memory. 
In addition, the system requires dedicated access (or high 
priority access) on the.host computer to be able to achieve 
a display rate and light source detection rate that 
approaches real-time. 

4.2 Image Preparation 

The user of the system may run either of two hidden 
surface programs to set up a frame buffer "image" for 
dynamic lighting: a "spheres only" z-buffer algorithm which 
indexes directly into a sphere prototype to obtain the 
desired normals, or an implementation of the Binary Space 
Partiti.oned Tree algorithm, in which the user writes a 
program based on the graphics package approach that is 
established by this implementation. (As an example of the 
latter graphics package approach, consider the "wellbench" 
program in Appendix C.) 

Alternatively, i!" the user has a disk file of raster 
data which has already been generated in the proper dynamic 
lighting format (i.e., with encoded surface normals and 
color representing each pixel), then a utility may be called 
that merely transfers the data from the file to the frame 
buffer. 

In addition, utilities are availale 
prototype for a sphere represented as 
normals for use in the z-buffer algorithm, 
a 33 by 33 grid of color tables based 
sixteen screen pixels apart (at 512 by 512 

to generate a 
encoded surface 

and to calculate 
on normals spaced 
resolution). 



Page 30 

4.3 Image Display 

A calibration mode and a display mode enable the user 
to calibrate the light source detection process or to run 
the dynamic lighting display process, respectively. It is 
strongly recommended . that the calibration mode be invoked 
before the display mode unless the system has been recently 
calibrated. 

4.3.1 Calibration Mode 

Due to the nature of 
process, it is necessary 
order 

the light source digitization 
to invoke a calibration mode in 

1. to prevent the accidental detection as the light 
source of other illuminated or illuminating items in 
the room, 

2. to guarantee the detection of the light source, and 

3. to familiarize the user with the field of view 
limits of the video camera's lens. 

When the calibration mode is invoked, a grid of dots is 
displayed which indicate the individual light source 
detection locations, or equivalence classes. The user must 
make sure that the video camera lens settings, the distance 
between th~ light source and the camera, the darkness of the 
room, and the threshold value in the light source detection 
process are calibrated so that only the light source is 
digitized above the threshold intensity and displayed. 
Furthermore, the user must ensure that the light source is 
always digitized into at least one grid dot (so that the 
light source won't "fall through the cracks" of the 
digitized image), but no more than four. If the light 
source is digitized into two to four adjacent grid dots, the 
closest grid dot to the previous value is chosen as the 
light.source orientation. 

The light source is being digitized at a coarse 
resolution to simplify the detection process, to optimize 
the speed of the detection process, and to minimize the 
impact on the frame buffer in terms of the number of bits 
that are required to digitize an image. 

4.3.2 Display Mode 

When the display mode is invoked, the Ikonas digitizer, 
bipolar microprocessor, video look-up table, and crossbar 
are initialized, an "out-of-bounds" frame is set up around 



Page 31 

the image, and BMP and Vax software are invoked to perform 
the dynamic lighting display. Alternatively, the user may 
invoke Vax software to perform the dynamic lighting display 

·based on keyboard "arrow keys" as input. The primary input 
technique emphasized in this. work, however, is the 
digitization system, and the remainder of this section is 
devoted to its features. 

In the display mode, the user is interacting with the 
dynamic lighting process in order to modify the display. It 
is therefore useful to discuss both the input required from 
the user and the kinds of output that the user may expect to 
see. 

"·-· 

The user employs the hand-held light source to "light 
up" the scene from arbitrary orientations within the 
camera's field of view. The most important aspect of the 
system is simply what the user sees. 

The reaction time of the system to detect the 
orientation of the light source and update the video look-up 
tables is approximately 1/16 of a second. Therefore, the 
feedback to the user is almost instantaneous and provides 
the user with a very natural mechanism for specifying light 
source orientations. 

A border is established around the displayed image that 
contains encoded normals that refer to a unique entry in the 
video look-up tables. In this manner, a special feedback 
mechanism is provided to indicate to the user that the light 
source is not being detected at a particular point in time. 
Specifically, only that unique video look-up table entry 
will he modified when the digitizer reports that the light 
source could not he detected. Thus, the system will alter 
the color of. the border (from black to green) to give the 
user feedback when the light source is "out of hounds", 
i.e., out of the field of view of the video camera. 



Page 32 

5 RESULTS AND CONCLUSIONS 

.I have designed and implemented a. system in which the 
direction of a. light source can be modified dynamically to 
provide real-time changes in intensity based on the 
direction of the light source. My thesis is that such 
dynamic changes in the intensity and position of the shading 
(a more appropriate term might be "lighting") provide 
valuable depth cues, thus enhancing the depth perception of 
the viewer. In addition, this method appears to provide a 
higher degree of realism for the viewer and the real-time 
nature of this technique is a fundamental part of the 
viewer's realistic perception of the modeled scene. 

5.1 Evaluation Of The System 

In discussing the results of this implementation of 
dynamic lighting, several findings may be identified: 

1. The kinetic dept~ effect (an extremely valuable 
depth cue) requ~res 3-D rotation of a scene. For 
scenes of arbitrary complexity, this task is too 
computationally. expensive in a conventional shaded 
raster display environment to provide reasonable 
performance and therefore reasonable depth cues for 
the viewer. 

2. A more practical approach is to leave the contents 
of the frame buffer as static and modify the much 
smaller video look-up table. This scheme allows 
significant mapping flexibility to alter the display 
of a.rbi trarily complex scenes. ·This work takes 
advantage of the mapping to enable dynamic 
modification of a light source's orientation to 
result inreal-time changes in "lighting". 

3. With this approach, an object must be stationary, 
but the user may vary the orientation of a. light 
source about the object to discover information 
about the depth relationships within a scene. (See 
Figure 5-l.) 



~·------·-

\ /\ 
\. 

---7 

-.-----

Figure 5-1. 

Page 33 

------

,·-., 

4. Since depth information is not encoded in the frame 
buffer for this implementation, no shadows (which 
require depth information) may be · generated 
dynamically using the video look-up table. However, 
even if depth information were maintained, the 
computational expense of calculating the shadows 
would degrade the real-time performance. 

5. Real-time changes in the display (at a rate of 1/16 
seconds per video look-up table update) dramatically 
improve the perception of depth relationships by the 
viewer. 

6. The user interface employed in this work, involving 
a more natural mechanism for entering and detecting 
the orientation of a light source, provides a higher 
degree of realism for the viewer. 



Page 34 

This project's results are an improvement over the 
previous state-of-the-art for the video look-up table 
mapping technique. The user interface is a significant 
improvement, since the user employs an actual hand-held 
light source as a light source orientation control to "light 
up" the scene in real-time from arbitrary orientations 
within a video camera's field of view. This use of an 
actual light source to control the light source orientation 
is a natural interface and does not have to be learned. By 
contrast, Daniel Bass did not employ a facile user interface 
to assist in the human factors aspect of the process. In 
addition, performance drawbacks in Bass's work detracted 
from the perception of the user, since slower feedback (1 
sec. per VLT update as opposed to 1/16 sec. per VLT update 
in this work) exacerbates the problem the user has in 
conveniently perceiving differences in successive frames. 

This work also extended the realism of the lighting 
model by utilizing larger video look-up tables. Limitations. 
in the display device posed a problem for Bass in his 
attempts to enhance the realism of the scene. Specifically, 
the small color table he was forced to use resulted in large 
quantization errors in the establishment of surface normal 
equivalence classes. Bass's work was limited to monocolor 
due to the nature of his display device. 

5.2 The Future 

It is useful to discuss the problems that exist with 
the implemented system, the future changes that are possible 
as enhancements to or extensions of the existing system, and 
the areas of major new work. · 

5.2.1 Improvements 

The major problems with the existing implementation are 
the system usage requirements, the memory requirements, and 
the hardware interrelationships. Dedicated (or 
high-priority) system usage is required to insure dynamic 
(almost real-time) performance. Furthermore, large amounts 
of virtual memory and disk space are required to save 
pre-calculated video look-up tables (in excess of 1 
Megabyte). Also, the dependence on so much interrelated 
hardware that is used for other purposes constitutes a 
problem. It is not uncommon, for example, for several of 
the system components to be cannibalized for other purposes, 
making progress extremely frustrating at times. 

The main memory requirements for my implementation of 
the dynamic lighting system seem expensive. My interest was 
to emphasize human factors of depth perception and realism 
in visualization accomplished in real time, and not to build 



a cost-effective system. 
imposed on the use 
improvements in reducing 
possible. 

Page 35 

Hence, no restrictions 
of available resources. 
resource utilization may 

were 
Some 

be 

Extensions to improve the accuracy of the light source 
detection could be implemented. Specifically, dual video 
camera light source detection could be implemented to 
evaluate the precise location of a light source in the room. 

Some experiments were undertaken to evaluate the 
feasibility of this approach. I determined that for dual 
camera tracking using the hardware available at the time, 
the upper limit on the speed of light source detection would 
be 7.5 Hz. This limit existed because there were two 30Hz. 
cameras between which the system was switching and a frame 
Cor cycle) was lost each time the cameras switched since the 
Vax was in charge of the video multiplexer and was running 
asynchronously to the digitizing system. A rate of 7.5 Hz. 
is much slower than the 16Hz. rate that I achieved with a 
single video camera, so I abandoned the dual camera tracking 
approach. 

In the area of depth cues, a number of additional 
techniques may be attempted to supplement the existing 
dynamic lighting depth cues. For example, intensity depth 
cues, where the intensity of- objects is a function of their 
depth, as well as their illumination, could be implented. 
Under the current 64-color scheme, only 3 levels of 
intensity are allowed (since black would be excluded) and an 
alternative technique would need to be developed if finer 
intensity resolution than three values is required. 

In addition, we could display Orthogonal projections as 
a depth cue. More specifically, the display of several 
orthogonal parallel projections simultaneously allows the 
user to comprehend better the 3-D structure. This mechanism_ 
may be implemented in a straightforward manner in the 
current software. However, the light source orientation is 
screen-oriented, so simultaneously there will be four 
separate lighting conditions for four orthogonal views. 
Furthermore, the technique may have limited usefulness in 
the display of molecules, which consist of spherical 
components. 

Mechanisms which enable the user to store multiple 
pre-calculated images in the frame buffer and to cycle 
quickly among the images might be employed to animate a 
scene. In this manner, we may provide some means of kinetic 
depth effects in addition to dynamic lighting. This 
technique seems like a viable consolidation of two depth 
perception techniques, although there is a notable trade-off 
in resolution in some instances for the sake of animated 
motion. Jim Lipscomb, a former graduate student at UNC, has 



Page 36 

implemented such an approach at UNC, with some success. 

In addition, the techniques employed in fractal surface 
generation might easily be extended to support the dynamic 
lighting technique. Another extension that would enhance 
the realism of the displayed scene and could be incorporated 
easily into this work is the idea of "texture mapping". 

"Texture mapping is a technique which creates a shaded 
representation of a 3-D texture (leather, ceramic, fur, 
etc.) which is then applied to an object model. A variation 
on texture mapping, known as bump mapping, was invented by 
JPL's Blinn. This technique simulates low-relief wrinkles 
and bumps on a surface by means of lighting and shading 
effects. The bump map does not actually change the shape of 
the model; it merely stores normal vectors (the direction 
perpendicular to the surface at each point), which are 
compared with the light source to yield shading values. By 
"wiggling" the normal vectors to produce light and dark 
areas, the bump map creates the illusion of a 3-D texture. 
In contrast to a texture map, the shading values are not 

·stored but must· be recalculated when the model moves 
relative to the light source." [7] 

The bump mapping technique can be incorporated into 
dynamic lighting by storing, for some of an object's pixels, 
the encoded normals from adjacent equivalent classes as 
opposed to the calculated encoded normal. 

5.2.2 Suggestions For Future Research 

Continuing research .on new algorithms that combine 
image complexity with speed of generation will always be of 
high priority for much of the work in computer graphics. 
The following suggestions for major work as extensions of 
this work provide an insight into some of the remaining 
problems in this area.. 

An alternative to the scheme of using an array of 
pre-calculated video look-up tables would be to use a 
dedicated processor to calculate video look-up tables "on 
the fly". However, I implemented this scheme using the Vax 
as a dedicated processor, and the processing requirements 
were sufficient to degrade the performance. Nevertheless, 
alternative architectures for processors (e.g., parallel 
processors) might be developed to make this approach more 
viable. 

A more accurate lighting model would improve the 
realism of the display. In this work, I modeled the light 
source as if it were infinitely far away, so that all of the 
incoming light rays are parallel to each other. This 
assumption greatly simplified the calculations but limited 



Page 37 

the quality of the images. 

Modeling the position of the light source within the 
object space, however, would enable better comprehension of 
3-D models, by enabling the user to move the light source 
through a crevice, for example. However, the mechanism of 
using the video look-up tables to accomplish a mapping from 
a particular encoded normal to an intensity depends upon the 
notion that all normals of a common equivalence class will 
have the same intensity, which is not necessarily true if 
the light rays are not parallel. Hence, the combination of 
the video look-up table mapping technique with the mechanism 
of specifying a light source position (with non-parallel 
light rays) is not feasible. " 

Besides the hardware "frame cycling" technique 
discussed in the previous section, other techniques in the 
area of animation in conjunction with dynamic lighting might 
be an area for fruitful and interesting research. Brute 
force approaches, such as mapping frame buffer rasters from 
disk to · the frame buffer •. · appear to be too slow for 
appropriate animation speeds. However, it may be possible 
to · change only the portion of the frame buffer that has 
changed from the previous frame, so that we take advantage 
of frame coherence, and may provide significant performance 
gains. 

For the dynamic lighting technique. shadows may be 
calculated relative to a particular light source at image 
preparation time, but those shadows may not be dynamically 
changed when the light source changes. A method might be 
established for generating shadows based on the opaque 
visible portions of the model if depth information is 
stored. 

Currently, in the 64-color scheme employed in this 
work, there are 6 bits in the frame buffer that are not 
used. However, 6 bits worth of depth information (64 depth 
values) may not be sufficient to generate realistic looking 
shadow effects. Additional research is recommended in this 
area to see if the very useful addition of shadows as part 
of the dynamic lighting depth cues might"be included. 

5.2.3 My Ideal System 

My ideal system would: 

1. have a dedicated Vax with lots of main memory 
(possibly a micro-Vax) to support a larger number of 
color tables, enabling smoother lighting transitions 
or a wider range of lighting angles. 



Page 38 

2. have an extra Megabyte of frame buffer memory in the 
Ikonas. 

3. have a pair of dedicated 30 Hz. video cameras 
(running synchronously with the Vax so the digitizer 
can digitize a pair of images in 15Hz.) 

4. have a toggle switch to a dedicated set of cables 
for the video cameras (as opposed to re-wiring most 
of the cables in the video multiplexer each time). 

5. have a high resolution 30 Hz. monitor or a 60 Hz. 
digitizer and video cameras. 

6. have permanent wall mounts for 
relative to the placement of the 
an official workstation). 

5.3 Summary And Conclusions 

the video cameras 
30 Hz. monitor (as 

The · dynamic lighting (DYNALITE) system has the 
potential to be very useful in a viewer's visualization 
process to asses depth cues and to improve the realism of a 
scene. More specifically, the user may find the system 
especially useful in evaluating "crevices" and collections 
of objects that are oriented approximately along the line of 
sight. 

The real-time changes in intensity provide the user 
almost instantaneous feedback and therefore more control 
over what he desires to see. In addition, the "natural 
movements" associated with the user's dynamic orientation of 
the light source directly correspond to real life movements 
and are comfortable and easy to comprehend. 

This implementation of dynamic lighting (DYNALITE) (a) 
is useful in providing depth cues, (b) provides a higher 
degree of realism, and (c) is easy to use (it is "natural" 
in the sense that it models natural single light source 
lighting conditions in real-time). This claim is based in 
part on my own impressions after observing users of the 
system. The sequence of steps employed by a first-time user 
often proceeds as follows: 

1. The user expresses some measure of enthusiasm at the 
. "natural" manner in which the user interface works, 
the closeness of the model to the "real world", and 
the realism of the perceived display. 

2. The user then becomes more exploratory in his 
efforts to see what he can learn about the model, 
e.g., crevices, and becomes immersed in the process 



of working directly with the model. 
general, appears to be unaware of 
interface, and his adjustment time 
interface seems very fast. 

Page 39 

The user, in 
the user 

to the user 

·There is strong evidence that this dynamic lighting. 
technique (including the "natural" user interface) provides 
a higher degree of realism for the user than a system 
without dynamic lighting and constitutes a powerful 
visualization and conceptualization tool. The real-time 
nature of this technique is a fundamental part of the 
viewer's realistic perception of the modeled scene. 

···.· 

Users of the dynamic lighting system do not have enough 
collective experience, however, to give a definitive answer 
as to its significance in providing depth cues. It appears 
that, while dynamic lighting is useful in that regard, the 
kinetic depth effect remains a more powerful technique for 
providing depth cues. The problem remains of how to 
accomplish such an effect on . raster-scan devices in 
real-time for arbitrarily complex objects and scenes. 



Page 40 

A SYSTEM USER'S MANUAL 

The purpose of this section is to assist the user in 
understanding the options available with the system and the 
mechanisms to invoke them. 

A.l Introduction- Purpose Of The System 

A system has been designed and implemented in which the 
direction of a light source can be modified dynamically to 
provide real-time changes in intensity based on the 
direction of the light source. The real-time nature of this 
technique is a fundamental part of the viewer's realistic 
perception of the modeled scene. 

A.2 System Initialization 

In order to use the dynamic lighting system 
effectively, the user must understand the basic 
characteristics of the system. The system is complex in its 
interrelationships and all components of the system depend 
heavily on the workings of other components. Thus, the most 
critical item is to verify that all aspects of the system 
are functional and able to communicate with the rest of the 
system.· 

This verification may be accomplished by means of the 
following checklist: 

a functional point light source is 
useable condition (note: such 
provided with the system) 

available and in 
a light source is 

a video camera is available and functioning, and 
wiring to the digitizer is intact (the wiring in the 
UNC graphics lab is such that it is often 
reconfigured to support other applications on an 
as-needed basis); lens settings: f-stop = 8, focus 
= infinity. 

the digitizer is working and able to communicate to 
the frame buffer 

the frame buffer is in working order 



Page 41 

the monitor is turned on 

the bipolar microprocessor is working, able to read 
the frame buffer memory, and able to report to the 
host. 

Vax 11/780 with a main memory complement of at least 
1.5 Meg. in working order. Need dedicated access 
(or high priority access) to be able to achieve a 
display rate and light source detection rate that 
approaches real-time. 

~. _, 

After logging onto the system, the user must perform 
the partial rendering step in preparation of dynamic 
lighting display. More specifically, raster data with 
encoded surface normals and color representing each pixel 
must be downloaded to the frame buffer prior to execution of 
the dynamic lighting software. This partial rendering 
(i.e., performance of all steps except for the shading 
itself) may be accomplished by: 

1. running the program "shade" , .which is the "spheres 
only" z-buffer implementation; it takes GRIP-75 
MOLCARDS format as input and calculates a- "normals" 
image, 

2. running a program written by the user (such as 
"wellbench") based on the tree-structure graphics 
package implementation; it takes polygon data as 
input and calculates a "normals" image, or 

3. running the program "ikrdwr", which transfers stored 
raster data to the frame buffer. 

A.3 System Execution 

Once the frame buffer has been loaded, the user runs 
the c shell file "dynalite" to invoke the dynamic lighting 
software. In the initial state of the system, a simple 
prompt indicating the two system modes, calibrate or 
display, is displayed. The user may select either mode, but 
it is strongly recommended that the calibration mode be 
invoked before the display mode unless the system has been 
recently calibrated. 

A.3.1 Calibration Mode 

Due to the nature of 
process, it is necessary 
order 

the light source digitization 
to invoke a calibration mode in 



Page 42 

1. to prevent the accidental detection as the light 
source of other illuminated or illuminating items in 
the room, 

2. to guarantee the detection of the light source, and 

3. to familiarize the user with the field of view 
limits of the video camera's lens. 

When the calibration mode is invoked, a grid of dots is 
displayed which indicate the individual light source 
detection locations, or equivalence classes. The user must 
make sure that the video camera lens settings, the distance 
between the light source and the camera, the darkness of the 
room, and the threshold value in the light source detection 
process are calibrated so that only the light source is 
digitized above the threshold intensity and displayed. 
Furthermore, the user must ensure that tlie light source is 
always digitized into at least one grid dot (so that the 
light source won't "fall through the cracks" of the 
digitized image), but no more than four. If the light 
sourceis.digitized into two to four adjacent grid dots, the 
closest grid dot to the previous value is chosen as the 
light source orientation. 

The light source is being digitized at a coarse 
resolution to simplify the detection process, to optimize 
the speed of the detection process, and to minimize the 
impact on the frame buffer in terms of the number of bits 
that are required to digitize an image. 

A.3.2 Display Mode 

In display mode the user is interacting with the 
dynamic lighting.process in order to modify the display. It 
is therefore useful to discuss both the input required from 
the user and the kinds of output that the user may expect to 
see. 

The user employs the hand held light source to "light 
up" the scene from arbitrary orientations within the 
camera's field of view. The most important aspect of the 
system is simply what the user sees. 

The reaction time of the system is approximately 1/16 
of a second to detect the orientation of the light source 
and update the video look-up tables. Therefore, the 
feedback to the user is almost instantaneous and provides 
the user with a very natural mechanism for specifying light 
source orientations. 



Page 43 

In addition, the system will alter the color of the 
border (from black to green) to give the user feedback when 
the light source is "out of bounds", i.e., out of the field 
of view of the video camera. 

A.4 Demonstration Software 

The user may wish to run some demonstrations using 
pre-computed raster data to familiarize himself with the 
system. The user may invoke the C shell file "demol" to run 
a demonstration on a neurotoxin molecule using a "script" of 
function keys as input. The C shell files "demo2a" and 
"demo2b" may be invoked to download an image of the UNC well 
and benches and perform dynamic lighting based on the 
pen-light input. 

A.5 System Termination And Exit 

The user must issue a break command (by depressing a 
break key at the terminal from which the software is 
running) to terminate the dynamic lighting software and 
allow the user to exit. The user should then log off the 
terminal, and turn off the following equipment: 

point light source 

video camera 

30 Hz. moni t9r 



Page 44 

B SYSTEM HARDWARE CONFIGURATION (WIRING DIAGRAM) 

and 
The diagram below illustrates 

wiring of the principal system 

"' :l 
> 
"' c 

li 
..I .. .. 
0 
0: 

"' ,_ .. 
"' 0: .. 
"' i!i 
l! 

... 
--:~, r . c !i 

!i3 .. 
0: 

i~-..,;;; "' ~ffi ~ ,_ 6=~ .._u a e:~e 

;3§! ;:; '"li! 
T 

u 
. "' " 'i ::s,_ 

l;;!!j 
<Do 

' 
c,. 

"'" ~f u' 
~::l > 
,_« .,::s 
e 

}_ '-
/ 

~ = 
C« .!j 
~ffi N,_ 
;;~ 

:1:-

NUl ~a u .... " "' 0: 
I~ "' .. 
I' ~ 
'/ -o-
/' ....... 
Z:I:U 
ES§ 
O.-'o .. 

.. 
~ 
"' u 

.. 

Figure B-1. 

the relative Flacement 
hardware components. 

.. 

" "' > 

r" " 

:l 

~ 
O:..J 

"'"' i! .... 
;£ 

-,. 

0: 

9 ... , 



Page 45 

C PROGRAMMER'S MANUAL 

The purpose of this section is to provide the reader 
with the information necessary to modify the software for 
the purpose of enhancing it. 

C.1 Important Data Structures 

The important data structures in this work include the 
following: 

frame buffer (pixel map of encoded normals) 

digitized raster · (array 
digitized image) 

of pixels containing 

array of 33 
(need 1.1 
array) 

by 33 
Meg. 

complete video look-up tables 
for storing video look-up tab+es 

array of pre-processed sphere prototype (with all 
normal equivalence classes assigned); dimensions are 
162 by 162 pixels (10% of screen area) 

z-buffer (512 x 512 x 10) or tree for hidden surface 
processing 

C.2 Software Overview 

The "nlite2" program calculates and stores a 33 by 33 
grid of color tables based on normals spaced at 16 pixels 
apart (at 512 by 512 screen resolution). The grid of color 
tables are stored in the file "nclrtbls.d". A shading 
parameters file is provided at color table calculation time 
to enable the user to make changes in the relative 
contributions of specular and diffuse .components and in the 
exponent (n) which controls how "shiny" the surface appears. 
More specifically, the following values may be modified in 
the shading parameters file (shading.h): 

the diffuse illumination component, Id 

the illumination from the point light source, Ip 



Page 46 

the reflectance coefficient, Rp, at point P 

the exponent, n, of the cos(s) term in the intensity 
calculation 

the maximum possible intensity, MAXINTENS 

To generate and store a prototype for a sphere as 
encoded normals for use in the "spheres only" z-buffer 
algorithm, the program "progen" is invoked. Parameters such 
as the total number of equivalence classes for normals and 
the number of rings for a prototype may be modified in 
"protoargs.h". The sphere prototype is'stored in the file 
"proto.d". 

The program "shade" (main program is cshade.c) samples 
into the sphere prototype array and stores sphere images as 
encoded surface normals in the frame buffer using a z-buffer. 
technique. Input of molecules to the system consists of a 
specification in MOLCARDS format (standard GRIP-75 input), 
and sphere radii are calculated from a table of ideal bond 
lengths given the connectivity information of the atoms. 
The color of the atoms is determined by the type of atom; a 
simple table is used for this purpose. 

Programs such as "wellbench" represent simple programs 
based on a graphics package. The hidden surface processing 
is accomplished by virtue of a tree-structure. See the 
documentation in the program listings for more details. 

The utility "ikrdwr" is provided to save and restore 
the contents of a frame buffer. The raster data file is 
"pictfile". 

The program "nflite3a" performs all dynamic lighting, 
whether from keyboard input or from light source detection 
through the digitization system. 

The BMP program "bo:x:3asearch.g" works in conjunction 
with the c program "locate2.c" to search a portion of the. 
frame buffer (into which the video camera is digitizing an 
image) in order to detect the location of the point light 
source. 

Such c shell files as "calibrate" and "display" 
initialize the Ikonas digitizer, bipolar microprocessor, 
video look-up table, and crossbar for the calibration and 
display modes. 



Page 47 

C.3 Computer Program Listings 



/* makefile * / 

CFLAGS = -0 

Juncjdhjsurf2/proto.d : Junc/dhjsurf2/prodesc.h progen.o 
cc progen.o -lm --Q progen 
progen 

clean: 
,'bin/rm -f * .o a.out core mon.out 



/* progen.c *I 

#defme DBG 0 /* off *I 
#defme DEBUG if (DBG) printf 
#include <stdio.h> 
#define PI 3.14159265 
#defme PZERO 0 
#defme BLACK 1 
#defme X (intl (x+offsetl 
#defme Y (int (y+offset 
main (){ J* progen - shading and depth prototype generator. Holmes. 7 Nov 80* I 

#include <math.h> 
#defme ACOS(A) ((y)>=(O) ? (acos(A)) : (2*PI-acos(A))) 
#defme MIN(A,B) ( (A)<(B) ? (A) : (B) ) 
#defme MAX(A,B) ( (A)>(B) ? (A) : (B) ) 
#include "luncldh/surf2lprodesc.h" 
FILE *pfile, *nfile, *fopen(); 
register int ij,k; 
int rho, rhosq, 

rmg; 
static int numpts[NUMRINGS+l], 

ptnum[NUMRINGS+ 1j[MAXPTS+ 1], 
pointnum[3]; . 

float offset, 
x, y; 

double avg, 
temp, tempstep, 
maxangle, 
angle, anglestep, 
rad, radsq; 

static double r[NUMRINGS+3], 
xa[NUMRINGS+ 1l[MAXPTS+ ll, 
ya[NUMRINGS+1 [MAXPTS+l, 
theta[NUMRINGS+ lj[MAXPTS+ 1], 
phi[NUMRINGS+ 1), 

ZTYPE 
double 

np[3]; 
int sum; 

distsq[3J, 
angdiff[3); 

za[NUMRINGS+l]; 
sin phi, 

J* initialize constants *I 
rho=PSIZEI2; 
rhosq=rho*rho; 
offset=rho+ 1; /* used to convert from origin at center of array *I 

/* (conceptual) to origin at lower left corner (actual) *I 
if (NULL == (pfile = fopen(PNAME, "w"))) 

fprintf(stderr, "prototype file open err.\n"); 
if (NULL == (nfile = fopen(NORMLTBL, "w"))) 

fprintf(stderr, "normal table file open err.\n"); 

/* zero prototype s and z *I 



/* progen.c *I 

for(i=O; i<PSIZE; i++) 
for(j=1; j<=PSIZE; j++) 

proto[i][j].ps = proto[i][j].pz = PZERO; 

/* set up sphere prototypes for angles and depths *I 

/* For the angle prototype, the no. of "actual" pts. for which angles 
are specified may be less than the number of array elements; 
thus an algorithm which maps array elements to the "actual" pts. 
~~ *I 

/* The no. of "actual" pts. on a ring differs: the inner rings have the 
fewest pts. and the outer rings have the most pts. "The algorithm 
starts with 1l4*(ave. no. of pts.lring) for the 1st (innermost) 
ring and procedes to 7 l4*(ave. no. of pts.lring) for the last ring 
in (NUMRIN GS-1) equal intermediate steps. *I 

numpts[0]=1; 
avg=l.*TOTALPTSINUMRINGS; 
tempo~( avgl 4.l + .5; 
tempstep=l.5 (avgi(NUMRINGS-1)); 
sum = 0; 
for (i=1; i<NUMRINGS; i++) { 

numpts[i]=(int) (temp); 
sum = sum + numpts[i]; . 
temp•. ·temp+tempstep; 
} 

numpts[NUMRINGS] = TOTALPTS - sum; /* put remaining pts. on last ring *I 

/* determine the radii for the rings as a function of the sine of the angles 
given by equal angle intervals *I 

r[OJ=O.O; 
maxangle=asin((rho-.5)lrho); /* last ring at r=rho-.5 *I 
anglestep=maxangleiNUMRINGS; 
angle=anglestep; 
DEBUG("angle1=%f\n", angle); 
for (i=1; i<=NUMRINGS; i++) { · 

r[i]=(((double)(i)l(double)(NUMRINGS)) * ((double)(rho) - .5) + 
((double)(rho) * sin(angle)))l2.0; · 

DEBUG("r[%d]=%f\n", i, r[i]); 
angle=angle+anglestep; · 
} 

r[NUMRINGS+ 1J=rho; 
r[NUMRINGS+2=(rho*sqrt(2.))+1.; J* max. d~t.=dist. from center to a *I 

I* corner of the square *I 
DEBUG("last 2 r[]'s: %f %f\n", r[NUMRINGS+l], r[NUMRINGS+2]); 

J* determine characteristics of "actual" pts. *I 
k=1; 
for (i=O; i<=NUMRINGS; i++) { 

anglestep=2*PI1numpts[i]; 
if (il2!=il2.) angle=anglestepl2.; /* 1st pt. NOT on y=O *I 
else angle=O.O; /* 1st pt. on y=O *I 
DEBUG("angle2=%f anglestep2=%f\n", angle, anglestep); 
for (j=1; j<=numpts[i]; j++) { 



/* progen.c *I 

xaf!jl~ =rf!j*c?B( angle); 
ya 1 U =r 1 *sm(angle); 
theta iJUF=angle; 
ptnum[iJlj]=k; 
angle=angle+anglestep; 
k++; 
} 

phili]=asin(r[i]/rho); 
za[i =(ZTYPE)(rho*cos(phi[i])+.5); 
} 

/* determine the closest "actual" pt. to ea. of the prototype pixels 
for (y=rho--.5; y>-rho; y-) { · 

for (x=.5-rho; x<rho; x++J { 
radsq=(x*x)+(y*y ; 
rad=sqrt(radsq); 
for (i=1; rad>r[i]; i++); 
I* pixel center lies between rings i-1 and i *I 
if (i<NUMRINGS+2) { /* pixel center is in circle *I 

angle=ACOS(xlrad); . 
/* determine 2 closest pts. on the 2 nearest rings *I 
ring=i-1; 

*I 

for (k=1; k<=2; k ++) { /* for ea. of the 2 rings *I 
. . /* fmd the closest 2 "actual" angles *I 

for (j=1; j<=numpts[ring]; j++) { 
if (angle< =theta[ring][j]) break; 
} 

I* determine which angle is closest *I 
if 0==1) { 

distsq[k] = (x-xa[ring][ 1]) * ~x-xa[ring][ 1]) 
+(y-ya[ring][ 1 ) * (y-ya[ring][ 1]); 

pointnum[k]=ptnum[ring]1]; 
} 

else if (j==numpts[ring1+1) ~ 
angdiff 1 =(theta[ring]1]+ 2 PI))-angle; 
angdiff!2l=angle-theta rin~ [numpts[ring]]; 
if ( angdiff[ 1] < =angdiffJ2J) { 

distsq[k]=(x-xa[ring][1Jl*~x-xa[ring][1]) 
+(y-ya[ring][1 ) * (y-ya[ring][ 1]); 

pointnum[k]=ptnum[ring]1]; 
} 

else { 
distsq[k]=(x-xa[ring][numpts[ring]])* 

ix-xa ring numpts ring l+ 
y-ya ring numpts ring * 
y-ya ring numpts ring ; 

pointnum[k]=ptnum[ring][numpts[ring]]; 
} . 

} 
else { 

angdifff1j =theta[ ring] [j~-angle; 
angdiff 2 =angle-theta ring][j-1]; 
if ( angdiff[ 1] < =angdiff[ 2]) { 



j* progen.c *I 

} 

distsq[k] = (x-xa[ring] [j]) * (x-xa[ring] [j]) 
+ (y-ya[ ring][jl) * (y-ya[ ring][j]); 

pointnum[k]=ptnum[ring [j]; 
} 

else { 
distsq[k]=(x-xa[ring] ~-1]) * 

} 

ix-xa r~g ~--1l+ 
y-ya rmg J-1 * 
y-ya ring j-1 ; 

pointnum[k]=ptnum[ring][j-1]; 
} 

ring++; } . 

if ( distsq[ 1] < =distsq/2]) 
proto/Y][X .ps=pointnum[1]; 

else proto[Y][X .ps=pointnum[2]; 
proto[Y][X].pz=(ZTYPE)(sqrt(rhosq-radsq)+.5); 
DEBUG("x=%f y=%f z=%f s=%d\n" ,x,y,proto[Y][X].pz, 

proto[Y][X].ps); 
} /* if (i<NUMRINGS+2) *I 

} /* for (x= ... ) * / 
/* for (y= ... ) *I 

/* set bounds marking elements used *I 
for(i=l; i< ~PSIZE; i++) { 

pboundsfil.low = PSIZE+l; 
pbounds i .high = 0; 
for( j=1; j<=PSIZE; j++) if (proto[i][j].ps > (unsigned char)(O)) . { 

pboundsfil.low = MIN(j, pbounds[i].low); 
pbounds i .high = MAX(j, pbounds[i].high); 
} . 

} 
/* write in lines to standard output *I 

fprintf(pfile, "%4d%4d%4d\n", PSIZE, BLACK, PSIZE); 
for(i=1; i <= PSIZE; i++ ){ 

fprintf(pfile, "%d %d\n", pbounds[i].Iow, pbounds[i].high); 
for(j=1; j <= PSIZE; H+){ 

fprintf(pfile, (j==O ?"%d":" %d"), (unsigned)(proto[i]U].ps)); 
} 

putc('\n', pfile); 
for(j=O; j < PSIZE; j++){ 

fprintf(pfile, (j==O ?"%d":" %d"), (ZTYPE)(proto[i][j].pz)); 
} 

putc('\n', pfile); 
} 

fprintf(nfile, "%d\n", TOTALPTS+1); 
for (i=O; i<=NUMRINGS; i++) { 

sin phi = sin(phi[ij); 
np[2] = cos(phi[i] ; 
for (j=1; j<=numpts[il; j++) { 

npfOl = sinphi * cos(thetali][jj); 
np 1 = sin phi * sin(theta ifD]); 



/* progen.c * / 

. } 
exit(O); 
} 

fprintf(nfile, "%d %.8f %.8f %.8f\n", ptnum[i]U], 
np[O], np[l], np[2]); 

} 



I* prodesc.h *I 
#include n protoargs.h" 
#define PXOK(x) (x>=O &&. x<PSIZE) 
#define PYOK(y) (y>=O && y<PSIZE) 
#define STYPE unsigned char 
#define ZTYPE unsigned char 

struct { 
STYPE ps; 
ZTYPE pz; 
} proto [PSIZE+1j[PSIZE+l]; 

-;truct{ 
int low; 
int high; 
} pbounds [PSIZE+1]; 

/* protoargs.h *I 

#defme PSIZE 162 
#defme TOT ALPTS 252 
#defme NUMRINGS 8 
#defme MAXPTS 150 

/* no. "actual" pts.; excludes center & background *I 



/* makefile * / 

CFLAGS = -0 -p 

nflite3a: nflite3a.o locate2.o startik.o 
cc nflite3a.o locate2.o startik.o -lk ${CFLAGS} -o nflite3a 

nlite2: nlcalc2.o normltbl.o getang.o mathf.o 
cc nlcalc2.o normltbl.o getang.o mathf.o -lm -lk ${CFLAGS} -o nlite2 

frame: frame.o 
cc frame.o -lk ${CFLAGS} -o frame 

redout: redout.o 
cc redout.o -lk ${CFLAGS} -o redout 

litecalc2.o : color3.h 

litecalc2.o nflite3a.o normltbl.o : normal.h 

normltbl.o 

litecalc2.o 

clean: 

/unc/dh/surf2/prodesc.h 

: shading.h 

/bin/rm ·-f *.o a.out core mon.out 



/* nf!ite3a.c * / 

/* continuously read a light orientation angle & use it to set the color map * j 
/* - dh, 12/80 . */ 
/* this routine currently runs at 30 updates/sec. * j 
#defme DEBUG if(O) printf 
#defme DBUG if(O) printf 
#include <math.h> 
#include "normal.h" 
#include <stdio.h> 
#include <ikdefs.h> 
#defme DIG WIDTH 63 /* width of digitized image * j .. 
#defme PSP ACING 2 /* no. of pixels betw. grid pts. iri' digitized image * j 
#define HLFPSP AC PSP ACING/2 

typedef struct { 
unsigned rcmapi : 10; 
unsigned gcmapi : 10; 
unsigned bcmapi : 10; 

} CMAPITEM; 
CMAPITEM (*clrmap)[TOTALPTS+3]; 
CMAPITEM (*clrbuf)[TOTALPTS+3]; /* clrbuf is buffer for calculating middle */ 

. /* 2 quadrants of color table, given the * / 
/* last (full intensity) quadrant * / 

CMAPITEM *mptr, j * pointer to a location in clrmap * j 
*bptr; /* pointer to a location in clrbuf * / 

CMAPITEM outbnds, /* color when out-Qf-bounds border is turned "on" * / 
inbnds; /* color when out-Qf-bounds border is turned "off'*/ 

quit () { 
fprintf (stderr, "Normal termination.\n"); 
system ("date"); 

} 
exit(O); 

main () { 
#include <signal.h> 
#include <sgtty.h> 

register int x, y; 
/*register int newx, newy;* / 
int foundflag, 

xfound, yfound; j*vals[2], * / 
int zero; 

signal (SIGINT, quit); 
setcmask (INVIO I RUNPROC I IKRESET); /* invisible i/o: set to inhibit * / 
setcmask (INVIO RUNPROC); 

/* transfers except during non-visible picture time (blanking) * / 
/* - setcmask (INVIO I RUNPROC I 02000) also allows processor to run * / 

j*startik ();* / (* start ikonas - from gda, 3/27/82 * / 
setorig (TORIG); 



/* nflite3a.c *I 

zero = 0; 
X= y = 31; 
xfound = yfound = 31; 
foundflag = 0; 
outbnds.rcmapi = 0; 
outbnds.gcmapi = OxOff; 
outbnds.bcmapi = 0; 

/* 114 of full intensity green (511) *I 
inbnds.rcmapi = inbnds.gcmapi = inbnds.bcmapi = 0; J* inbnds always off *I 
ctinit(); 
rnsg(); 
lightcalc (x, y); 
system ("date"); 
for (;;) { 

/* read found flag from scratchpad *I 
!* 
ikread ( &foundflag, 1, 0106, 020200); 
*I 

#ifdef DBG 
fprintf(stderr, "Calling locate ... \n"); 

#endif 

locate(&xfound, &yfound, &foundflag); 

#ifdef DBG 

.. ,, 

fprintf(stderr, "xf,yf,foundflag: %d %d %d\n" ,xfound,yfound,foundflag); 
#endif 

/* if found *I 
if (foundflag l= 0) { 

#ifdef DBG 

#endif 

/* read xfound & yfound, & reset found flag *I I* . . 
ikread (vals, 2, 0107, 020200); 
ikwrite (&zero, 1, 0106, 020200); 
newx = valsfOl/2; 
newy = vals 1 /2; 
*I 
/* determine which color map to "poke" into VL T *I 
if ((xfound != x) II (yfound != y)) { 

x = xfound; 
y = yfound; 

fprintf (stderr, "x,y: %d %d\n", x, y); 

Jightcalc (x, y); 

} I* if (roundflag ... ) *I 
else { /* turn on "out of range" border *I 

ikwrite (&outbnds, 4, IKADDR(CMAPADDR, 1023)); 
} /* else *I 

} I* for (;;) *I 



/* nflite3a.c *I 

} /* main() *I 
lightcalc(x, y) 

register int x, y; 
{ 

#ifdef OLDSTUFF 
x = DIG WIDTH - x; /* correction due to video camera pointing toward *I 

·I* user, not away from user *I . 
x = (x+HLFPSPACl/PSPACING; /*floor of ... (integer divide) *I 
y = (y+HLFPSPAC /PSPACING; 
ikwrite( clrmap+(y*33 + x), sizeof(*clrmap)lsizeof(CMAPITEM); 0, CMAPADDR); 
#endif . 

#define OFFSET 0 

x = (OFFSET + DIGWIDTH) - x; 
!* 

y = y - OFFSET; 

/* correction due to video camera pointing *I 
toward user, not away from user *I 

x = (x+HLFPSPACl/PSPACING; /* floor of ... (integer divide) *I 
y = (y+HLFPSPAC /PSPACING; 

#ifdef DBGLOC 
fprintf(stderr,"x,y: %d %d \n" ,x,y); 

#endif 

!* 
ikwrite( clrmap+(y*33 + x), sizeof(*clrmap)lsizeof(CMAPITEM), 0, CMAPADDR); 
*I 
#ifdef DBGW . 

fprintf(stderr,"writing ... \n"); 
fprintf(stderr,"clrmap,x,y,clrmap+(y*33+x): %x %d %d %x \n", 

clrmap,x,y,clrmap+(y*33+x)); 
fprintf(stderr,"sizeof(*clrmap),IKADDR(CMAPADDR,O): %d %x \n", 

sizeof(*clrmap),IKADDR( CMAP ADDR,O) ); 
#endif 

I* poke the "full intensity" colorrnap into the top quadrant of the *I 
/* physical Ikonas color map *I 
ikwrite( clrmap+(y*33 + x), sizeof(*clrmap), IKADDR(CMAPADDR,768)); 

I* calculate the "113 intensity" colorrnap & poke it into the 2nd *I *I 
I* quadrant of the physical Ikonas color map 
mptr = &clrmap!(y*33 + x)J[O]; 
bptr = &clrbuf[O [0]; 
while (bptr < &clrbuf[OJ[TOTALPTS+3]) { 

bptr->rcmapi = bptr->gcmapi = bptr->bcmapi = (mptr->rcrnapi I 3); 
++bptr; 
++rnptr; 
} 

ikwrite( clrbuf, sizeof(*clrbuf), IK.ADDR(CMAPADDR,256)); 

j* calculate the "2/3 intensity" colormap & poke it into the 3rd *I 



/* nflite3a.c *I 

/* quadrant of the physical Ikonas color map *I 
bptr = &clrbuf[O][O); 
while (bptr < &clrbuf[O][TOTALPTS+3)) { 

bptr->rcmapi = bptr->gcmapi = bptr->bcmapi = (2 * bptr->rcmapi)l 
++bptr; 
} 

ikwrite( clrbuf, sizeof(*clrbuf), IKADDR(CMAPADDR,512)); 

/* the "no intensity" (i.e., black) colormap has already been poked *I 
I* by a shell file & will never be changed, except the out-of- *I 
/* bounds border, which is turned off here *I 
ikwrite (&inbnds, 4, IKADDR(CMAPADDR, 1023)); 
} 

msg () { 

printf("\nUse penlight to specify the orientation of the light source.\n"); 
printf("Hit SHIFT & DEL key to quit.\n"); 
} 

ctinit() { 
#defme CTNAME "/uncldh/cmap8/n3clrtbls" 
CMAPITEM *malloc(); 
FILE *ctfile, *fopen(); 
register int x, y; 

fprintf(stderr, "Loading color tables into core ... \n"); 
if (NULL == (ctfile = fopen(CTNAME, "r"))) 

fprintf(stderr, "nclrtbls file open error.\n"); 
setbuf(ctfile, malloc(BUFSIZ)); 
clrmap = (CMAPITEM **) malloc (33 * 33 * sizeof(*clrmap)); 
for (y=O; y<=32; y++) { 

for (x=O; x<=32; x++) { 
fread (clrmap + (y * 33 + x), sizeof(CMAPITEM), 

sizeof(*clrmap) lsizeof( CMAPITEM), ctflle); 

} 

/* set location 768 in r, g, and b color maps (Oth entry *I 
/* in top quadrant) to full intensity ( 255); this assign-*/ 
/* ment allows a range of 64 colors (2 bits r, 2 bits g, *I 
I* 2 bits b) for the background *I 
clrmap [y*33 + xl 0 .rcmapi = Ox3ff; 
clrmap y*33 + x 0 .gcmapi = Ox3ff; 
clrmap y*33 + x 0 .bcmapi = Ox3ff; 
} 

clrbuf = (CMAPITEM **) malloc (sizeof(*clrbuf)); 
} 

/* allocate clrbuf *I 



/* locate2.c * J 

struct { int mask, 
x1Cx:, 
Yloc, 
found; } interface; 

#define SP(a) ((0202<<16)la) 
#defme LO{a) {(a) & Ox3ff) 
#define HI(a) ((a) >> 10) 
#define IA SP(OlOO) · 
#defme DONE SP(0200) 
#include <ikdefs.h> 
#defme ENPROC 02000 
#defme MASK Ox80; 
#include <stdio.h> 

locate (x, y, f) 
int *x *y *f· , , , 
{ 

int done, reads; 

setcmask(O); 

#ifdef DEBUG 
fprintf(stderr, "Beginning locate ... ; x,y,f: %d, %d, %d\n", *x, *y, *f); 

#endif 

/* initialize interface *I 
interface.mask ~ MASK; 
interface.Xloc = *x; 
interface.Yloc = *y; 
ikwrite( &interface, sizeof(interface), IA); 
done = 0; 
ikwrite(&done, sizeof(done), DONE); 

#ifdef DEBUG 
fprintf(stderr, "Resetting & starting processor ... \n"); 

#end if 

/* reset and start processor * / 
setcmask(IKRESETIRUNPROC); 
setcmask(RUNPROCIINVIO); 

#ifdef DEBUG 
fprintf(stderr, "Beginning wait for search complete signal ... \n"); 

#endif · 

/* wait for search complete signal *I 
reads=O; 
do { 

ikread (&done, sizeof(done), DONE); 

#ifdef DEBUG 



/* locate2.c *I 

fprintf(stderr, "reads - %d, done 
#endif 

%d\n", reads, done); 

reads++; } 
while (done == 0); 

#ifdef DEBUG 
fprintf(stderr, "Finishing wait ... ; reads 

#endif 

I* report location and value found *I 
ikread( &interface, sizeof(interface), IA); 
*x = interface.Xloc; 
*y = interface.Yloc; 
*f = interface.found; 

#ifdef DEBUG 

%d\n", reads); 

fprintf(stderr, "Finishing locate ... , x,y,f: %d, %d, %d\n", *x, *y, *f); 
#imdif 

} 
return( reads); 



/* startik.c *I 

/* start ikonas bmp at location 0 *I 

#include <ikdefs.h> 

startik() { 
int null; 

. } 

setcmask(IKRESETIRUNPROC); /* reset processor *I 
ikwrite( &null, 0, 0); 
setcmask(RUNPROC); I* enable processor and let it go *I 
ikwrite(&null, 0, 0); 

/* normal.h *I 

/* there are TOTALPTS+2 normals of dimension VECTSIZE *I 
#include "luncldhlsurf2/protoargs.h" · 
#defme VECTSIZE 3 

double np[TOTALPTS+2JIVECTSIZE], 
nptemp[VECTSIZE]; • 



/* nlcalc2.c * / 

/* continuously read a light orientation angle & use it to set the color map * j 
!* - dh, 12jso *I 
/* this routine currently runs at ~3.0 updates/sec.; 30 updates/sec. ideal * j 
#define DEBUG if(O) printf 
#defme DBUG if(O) printf 
#defme DISKWR 1 
#include <rnath.h> 
#include "normal.h" 
#include <stdio.h> 

#ifdef DISKWR 
#defme CTNAME "/unc/dh/cmap8/n3clrtbls" 
char *malloc(); 
FILE *ctfile, *fopen(); 
#endif 

static int compens[TOTALPTS+2JI3]; 

main () { 
register double lightang[4]; 
#include <ikconsts.h> 
#include <sgtty.h> 
#defme MAXC 511 
#defme MINC 0 
#defme DELTAC 16 

register int x, y; 

norm!init(); 
compinit(); 
#ifdef DISKWR 

/* ideally, 4 for 1 degree resolution * j 
/* currently set to ~(30/3.0)*4 for speed * / 

if (NULL == (ctfile = fopen(CTNAME, "w"))) 
fprintf(stderr, "nclrtbls file open error.\n"); 

setbuf(ctfile, malloc(BUFSIZ)); · . 
#endif 
for (y=O; y<=MAXC; y=incr(y)) { 

for (x=O; x<-MAXC; x=incr(x)) { 
getang (lightang, x, y); 
lightcalc (lightang); 
} 

} 
} 

incr(i) 

{ 
register int i; 

if (i+DELTAC == MAXC+1) return (MAXC); 
else return (i+DELTAC); 
} 

decr(i) 
register int i; 



I* nlcalc2.c *I 

{ 
if (i-DELTAC >= MINC) return (i - DELTAC); 
else return (MINC); 
} 

lightcalc(lightang) 
register double *lightang; 

{ 
#include "shading.h" 
#include "color3.h" 
#include <ikconsts.h> 
#defme HALFPI 1.57079632 
#defme CORRECT(C) ((C >= 0.0) ? (C) : (0.0)) 
static double l[VECTSIZE], 

npprime[VECTSIZE], 
spprime[VECTSIZE], 
vprime[VECTSIZE]; 

register int ptnum, 
k; 

register double cos1, 
coss; 

typedef struct { 
unsigned rcmapi : 10; 
unsigned gcmapi : 10; 
unsigned bcmapi : 10; 

} CMAPITEM; 
.CMAPITEM clrrnap[TOTALPTS+3]; 
register in t in tens; 
double normalp (); 
double w(), 

powr(); 

/* cos( theta) = lightan,O] * / 
I* sin( theta) = lightang 1 I * / 
/* cos(phi) = lightang[2 *I 
/* sin(phi) = lightang[3 *I 

I 0 = lightang 3 * lightangfOJ; 
11 = lightang 3 * lightang 1]; 
I 2 = lightang 2 ; 

vprime 0 = -lightang[3]; 
vprime 1 = 0.0; 
vprime 2 = lightang[2]; 

#if (REDON) 
clrmapfOJ.rcmapi = compens[BACKGRJ[O]; 
clrmap TOTALPTS+Z].rcmapi = compens[BACKGRJ[Ol; 

I 
#else 
clrrnapfOJ.rcmapi = compens[RDEFAULTJ[Oj; 
clrrnap TOTALPTS+2J.rcmapi = compens]RDEFAULTJ[OJ; 
#endif 

···.· 

/* reserved for "out of *I 
range" border *I 



/* nlcalc2.c *I 

#if (GREENON) 
clrmap[O].gcmapi = compens[BACKGR][l]; 
clrmap[TOTALPTS+2].gcmapi = compens[BACKGR][l]; 
#else 
clrmap[O].gcmapi = compens[GDEFAULT][l]; 
clrmap[TOTALPTS+2].gcmapi = compens[GDEFAULT][l]; 
#endif 
#if (BLUEON) 
clrmap[O].bcmapi = compens[BACKGR][2]; 
clrmap[TOTALPTS+2].bcmapi = compens[BACKGR][2]; 
#else . 
clrmap[O].bcmapi = compens[BDEFAULT]\2]; 
clrmap[TOTALPTS+2].bcmapi = compens BDEFAULT][2]; 
#endif 

for (ptnum=l; ptnum<=TOTALPTS+l; ptnum++) { 
for (k=O; k<VECTSIZE; k++) { 

nptemp[k] = normalp(ptnum, k); 
} 

npprime[O] = (nptemp[O]*lightang[O]*lightang[2]) + 
(nptemp[lj*Iightangflj*Iightang[2]) -
( nptemp[2 *Iightang 3 ) ; 

npprime[l] = -(nptemp[O]*Iightang[l]) + 
( nptemp[ l]*Iightang[O]); 

npprime[2] = (nptemp[O]*Iightang[O]*lightang[3]) + 
( nptemp[ll *lightangfll *lightang[3]) + 
(nptemp[2 *Iightang 2 ); 

spprime 0 = 2.*npprimef2l*npprime[Ol; 
spprime 1 = 2.*npprime 2 *npprime[l; 
spprime 2 = (2.*npprime[2]*npprime[2]) - 1.; 

#ifdef DBG 
for (k=O; k<VECTSIZE; k++) { . 

printf("%.8f %.8f %.8f o/o.8f %.8f\n", 1\k],nptemp[k],npprime[k], 
spprime[k], vprime[k ); 

} . 

#endif 

/* calculate dot products *I 
cosi = (![OJ * nptemp[O]) + (1[1] * nptemp[l]) + (1[2] * nptemp[2]); 
/* i = acos(cosi); *j 
coss = (spprime[O] vprime[O]) + (spprime[l] * vprime[l]) + 

(spprime[2] * vprime[2]); 

cosi = CORRECT(cosi); 
coss = CORRECT(coss); 

DEBUG("** %f %f\n", cosi, coss); 

intens = ((int)((R*ID)+((R*cosi + w(cosi)*powr(coss,N)) * IP) + .5)); 
DEBUG("* %'d\n", intens); 



I* nlcalc2.c *I 

#if (REDON) 
clrrnap[ptnum].rcmapi = compens[intens][O]; 

#else 
clrrnap[ptnum].rcmapi = compens[RDEFAULT][O]; 

#endif 
#if (GREENON) 

clrrnap[ptnum].gcmapi = compens[intens][l]; 
#else 

clrrnap[ptnum].gcmapi = compens[GDEFAULT][l]; 
#endif 
#if (BLUEON) 

clrmap[ptnum].bcmapi = compens[intens][2]; 
#else 

clrrnap[ptnum].bcmapi = compens[BDEFAULT][2]; 
#endif 

} 
#ifdef IKWR 
ikwrite( clrrnap, sizeof(clrmap)lsizeof (CMAPITEM), 0, CMAPADDR); 
#endif 
#ifdef DISKWR 
fwrite ( clrrnap, sizeof( CMAPITEM), sizeof( clrrnap) I sizeof( CMAPITEM), ctfile); 
#endif 

} 

double w(i) 
register double i; 

{ 
if (i >= 0.0) return (1.0 - (0.5 * i)); 
else return (0.0); 
} 

compinit () { 
#defme CNAME "luncldhlcmap4llin.ctbl" 
register int i, j; 
int temp; 
FILE *cfile, *fopen(); 

if (NULL == (cfile = fopen (CNAME, "r"))) 
fprintf (stderr, "compensation table file open err.\n"); 

for (i=O; i<=TOTALPTS+l; i++) { 
for (j=O; j<3; j++) { 

fscanf (cfile, "%d", &temp); 
DBUG j"%d ", temp); 
compens i][j] = temp; 
DBUG "o/od ", compens[i][j]); 

DBUG ("\n"); 

} } 



/* normltbl.c *I 
/* maintain prototype normal table *I 
#include <stdio.h> 
#include "luncldhlsurf2lprodesc.h" 
#include "normal.h" 

normlinit () \ 
FILE *nfile, fopen(); 
int tblsize; 
int ptnum; 
double x, 

y, 
z; 

register int i; 

if (NULL == (nfile = fopen (NORMLTBL, "r"))) 
fprintf (stderr, "normal table open error.\n"); 

fscanf (nfile, "%d", &tblsize); 
if (tblsize != TOTALPTS+I) { 

fprintf (stderr, "normal table size error.\n"); 
return; 
} 

for (i=l; i<=TOTALPTS+l; i++) { 
fscanf (nfile, "%d %F %F %F", &ptnurn, &x, &y, &z); 
if (i != ptnurn) { 

· fprintf ( stderr, "normal table read error at ptnurn = %d. \n", 
ptnurn); 

return; 

np ptnurn jo = x; 
np ptnurn 1 = y; 
np ptnurri 2 = z; 

} } 

double normalp (i, j) 
register int ij; 

{ 
if ((i>=l) && (i<=TOTALPTS+I)) return (np[i][j]); 
else return (0.0); I* ???? *I 
} 



/* getang.c * / 

/* return a value for the current light orientation angle * / 
#include <math.h> 
getang (lightang, x, y) 

register double *lightang; 
register int x, y; 

{ 
#defme Z 128. 
#define ZSQUARE 16384. 
#defme OFFSET 255 

register double r; 
register double rho; 

X = X - OFFSET; 
y = OFFSET - y; 
r = sqrt((double)(x*x + y*y)); 
rho = sqrt((double)(r*r + ZSQUARE)); 
JightangO = lr>O.Ol ? ((doublel(xl/rl : (l.Oll; 
lightang 1 = r>O.O ? ( (double (y /r : (0.0 ; 
lightang 2 = rho>O.Ol ? (Z/rho) : {1.0)); 
lightang 3 = rho>O.O ? (r /rho) : (0.0)); 

} 

····· 



/* mathf.c * / 
double 
powr (base, expon) 

register double base; 
register int expon; 

{ 
register double tempi, 

temp2; 
switch ( expon) { 

case 0: 

case I: 

case 2: 

case 3: 

case 4: 

case 5: 

case 6: 

case 7: 

case 8: 

case 9: 

case IO: 

default: 

return (1.0); 
break; 

return (base); 
break; 

return (base * base); 
break; 

return (base * base * base); 
break; 

tempi = base * base; 
• return (tempi * tempi); 

break; 

tempi = base * base; 
return (tempi * tempi * base); 
break; 

tempi = base * base; 
return (tempi * tempi * tempi); 
break; 

tempi = base * base; 
return (tempi * tempi * tempi * base); 
break; 

tempi = base * base; 
.temp2 = tempi * tempi; 
return (temp2 * temp2); 
break; 

tempi = base * base; 
temp2 = tempi * tempi; 
return ( temp2 * temp2 * base); 
break; 

tempi = base * base; 
temp2 = tempi * tempi; 
return (temp2 * temp2 * tempi); 
break; 



---···' .. "-' 

/* mathf.c * / 

return (base); 

} 
} 

.... 



/* color3.h *I 
' 
/* intensity and point number constants 
/* REDON, etc. : indicate whether the particular color is turned "on" 
/* PTBACKGR : background value for point number 
/* BACKGR : background value for intensity 
I* RDEFAULT, etc. : indicate the default value for intensity for the 
I* particular color 

/******* 
/**note* last 4 values have NOT been shifted left twice 
/******* 
#defme REDON 1 
#defme GREENON 1 
#defme BLUEON 1 
#defme PTBACKGR 0 
#defme BACKGR 1 /* 40 originally *I 
#defme RDEFAULT 0 
#defme GDEFAULT 0 
#defme BDEFAULT 0 
#defme ZERO 0 

/* shading.h *I 

#define R . 7 /* reflectance coefficient; ranges from 0 to 1 *I 
#defme N 3 /* exponent of cos(s) term in intensity calculation *I 
#defme MAXINTENS 220. I* 255 originally *I . 
/* ID + 2*IP = MAXINTENS *I 

*I 

*I 

*I 

#defme ID 20. /* diffuse illumination; MAXINTENSI1L *I 
#define IP 100. /* illumination from point source; 5*MAXINTENSI11. * / 

*I 

*I 
*I 

*I 

*I 

*I 



I* box3asearch.g *I 
search { 

origin 10; 
register mcsi=rO, left, right, mask, ystep, x, y, control, doneflag; 
register yoffset; 
constant NXTCOM=2, STEP=2, YIASK=O, XLOC=l, YLOC=2, FLAG=3; 
constant FND=Oxffff, NOTFND=O, DONE=03, DONELFT=Ol, DONERGT=02; 
constant LFTLMT=2, RGTLMT=l26, HE1GHT=63, YOFFSET=2; 

# get address of control words from mcsi parameter 
mar = mcsi++; 
mcsi++; 
read control = bus; 

# load control words 
load(mask, control+MASK); 
load( right, control+ XLOC); 

# initialize left and right search addresses 
right SLL= right; 
left = right; 
left += STEP; 
ystep = STEP; 
,Ystep = ystep.hr; 

# initialize yoffset 
yoffset = YOFFSET; 
yoffset = yoffset.hr; 

# search columns progressing to the left and to the right 
doneflag = 0; 
loop 

# search left 
mar = left -= STEP; 
left - LFTLMT; 
mar += yoffset 
if(pos) 

else 

fi; 

!read mash 
mar += ystep; 
mdr = bus; 
mdr & mask 
do HEIGHT times 

!read mash 

repeat; 

mar += ystep 
if(! zero) 

goto found; 
fi; 
mdr = bus; 
mdr & mask 

doneflag I= DONELFT; 



/* box3asearch.g * / 

# search right 
mar = right += STEP; 
RGTLMT - right; 
mar += yoffset 
if (pos) 

!read mash 
mar += ystep; 
mdr =bus; 
mdr & mask 
do HEIGHT times 

!read mash 
mar += ystep 
if(! zero) 

goto found; 
fi; 
mdr =bus; 
mdr & mask 

repeat; 
else 

doneflag I= DONERGT; 
fi; 

# check .for completion 
doneflag • DONE; 

while(! zero); 

# if we arrive here the point was not found 

store(NOTFND, control+FLAG); 
goto NXTCOM; 

found: 

} 

# we come here to report the location of the dot 
x SRL= mar.low; 
y =mar; 
y SRL= y.hs; 
y -= 2; 

storefx, control+XLOC); 
store y, control+ YLOC); 
store FND, control+FLAG); 
goto NXTCOM; 



/* frame.c *I 
/* before Mar. '82 ... 
#defme TWIDTH 56 
#defme L WIDTH 28 
#defme RWIDTH 1 
#defme BWIDTH 48 
*I 
#ifdef OLDSTUFF 
#defme TWIDTH 36 /* 76 without moned settings in NEWRUN *I 
#defme L WIDTH 46 
#defme RWIDTH 30 
#define BWIDTH 78 /* 38 without moned *I 
#endif 
#defme TWIDTH 36 
#defme L WIDTH 42 
#defme RWIDTH 30 
#defme BWIDTH 40 

#include <ikdefs.h> 
#include <stdio.h> 
main () { 

pixeU dot; 
pixeU line[512]; 
register int x, y; 

setorig (TORIG); 
dot.r = 255; 
dot.g = dot.b = 255; 
for (x=O; x<512; x++) { 

line[x] = dot; 
} 

for (y=O; y<TWIDTH; y++) { /* top edge *I 
ikpwrite(line,512* 4,0,y); 

} 

... , 

for (y=TWIDTH; y<512-BWIDTH; y++) { 
ikpwrite(line,L WIDTH* 4,0,y); /* left edge *I 
ikpwrite(line,RWIDTH*4,512-RWIDTH,y); /* right edge *I 

} 
for (y=512-B"\YIDT~; ~<512; /++) { /* bottom edge *I 

ikpwnte(lme,512 4,0,y); 
. } 

} 



/* mcsi.k * / 

default nanop ccnop ldnop sb aluz yd caril ssO alubr mdrikd marika 

org 0 

mcsi - microprogram command string interpreter 

this routine manages microprogram execution and parameter 
transferal. the routine uses the scratchpad memory (loc 
202,0-:202,1777) as a command/parameter list. register 0 
is used as the command list pointer, and should not be destroyed 
by user routines. the command pointer points to the· location 
in the scratch pad containing the address of the 
next microprogram to execute. the scratchpad locations follow­
ing this are the parameters for the given routine. each 
microprogram is responsible for updating the command pointer 
for the next routine (when necessary). the last routine 
to execute should be either 'nulproc', which loops on the 
current command address (its own), or 'mcsi' (resulting in 
continuous passes through the command list). 

to break out of 'nulproc', the host may either change 
the current address, or pulse the mps16 reset line 
(resulting in another pass through the command list). 

global mcsi, nxtcom, nulproc, NXTCOM 

mcsi: ldudr 0202 ; scratchpad high address 
set rO (command pointer) rimm 0 pr bd bO 

' 

nulproc - null process; if next command address is this, 
routine will loop here until interrupted 

nulproc: 
NXTCOM: 
nxtcom: 

go: ikrd 
jmpib 

end 

bOps alumar get next command 



/* waitsig.k * / 
Wait for location addressed by parameter 1 to equal parameter 2. 

Gary Bishop 01/26/81. 

Called by MCSI 

org 3000 

default nanop ccnop ldnop sb aluz yd carO ssO alubr mdrikd marika 

NXTCOM = 2 

wait: ldudr 0202 
incrs bO alumar 
ikrd ikbr bl bd 
incrs bO alumar 
ikrd ikbr b2 bd 
incrs bO 

pr ra1 alumar 

loop: ikrd ikbr b3 bd 
reos ra2 b3 
ncczero jmpdf loop 

jmpdf NXTCOM 

; MCSI mixt routine address 

; get flag address 
; into reg 1 
; get flag value 

into reg 2 
inc bO to point at next routine 

setup mar to read flag 

; read flag into reg 3 
; compare flag with value given 
loop until flag is equal 

; Return to MCSI 

Signal by writing value in parameter 2 into address given in parameter 1 

Gary Bishop 01/26/81 

Called by MCSI 

org 3100 

signal: ldudr 0202 

end 

mcrs bO alumar 
ikrd ikbr bl bd 
incrs bO alumar 
ikrd ikmdr 
incrs bO 
pr ra1 alumar 
ikwr 

jmpdf NXTCOM 

; Get flag address 
; into reg 1 

; Get flag value into MDR 
inc reg 0 to point to next routine 
Put flag value into flag 

Return to MCSI 



/* makefile * / 

CFLAGS = -0 

dots: dots.o 
cc dots .o -lk -Q dots 

clean: 
/bin/rm -f * .o a.out core mon.out 



J* dots.c *I 

#include <ikdefs.h> 
#include <stdio.h> 
#defme DSP ACING 8 /* no. pixels between dots * j 
#defme NUMDOTS 64 /* no. dots per line *I 
main () { 

pixeLt zilch, dot; 
pixe!_t blank[NUMDOTS*DSP ACING], grid[NUMDOTS*DSP ACING]; 
register int · x, y; 

zilch.r = zilch.g .= zilch.b = 0; 
dot.r = dot.g = dot.b = 255; 
for (x=O; x<512; x++) { 

blank[x] = zilch; 
if (x%DSP ACING == 0) { 

grid[x] = dot; 
} 

else { 
grid[x] = zilch; 

} } 
for (y=O; y<512; y++) { 

if (y%DSP ACING == 0) { 
ikpwrite(grid,NUMDOTS*DSP ACING*4,0,y ); 
} 

else { 
ikpwrite(blank,NUMDOTS*DSP ACING*4,0,y ); 
} 

} 
} 



/* calibrate * / 

/unc/dh/bin/fodk 
/usr/ikonas/moned << EOF. > /dev/null 
4 454 1014 
50 62 
s 
q 
EOF 
# /usr/ikonas/color 
junc/dh/video/dots 
jusrjikonasjwmask fO 
/usr/lib/iktest/imed << EOG > /devjnull 
4 4 0 
#56220 
2 200 200 
1 1 2 
0 33 0 
s 
q 
EOG 
/usr/ikonas/color r 
# fusr/ikonas/cmap < /unc/dh/video/cmapc 
# /usrjikonas/xbar < /unc/dh/video/xbarc 
# *** the following is inserted just to use left wall-mount camera *** 
/uncjgb/bin/ldvm.tst << EOH > /dev/null 
vO 
q 
EOH 



/* display * / 

/usr/ikonas/xbru: < xbru:d . 
/usr/ikonas/imed << EOF > /dev(null 
4 0 0 
s 
q 
EOF 
/usr/ikonas/wmask ffffffff 
/ usr/ikonas/ crnapsetup I fusr /lib /iktest / cmap 
/usr /ikonas /black 
/unc/dh/surf4/ikrdwr2 1 . 
/usr/ikonas/wmask f 
/usr/ikonas/imed << EOG > /devfnull 
0 33 0 
1 1 2 
2 200 200 
4 4 0 
5 62 20 
s 
q 
EOG 
/unc/dh/bmpfpoker 
/unc/dh/bmp/il junc/dh/bmpfsrch.obj 
/unc/dh/bmp/go · 
/unc/dh/cmap6/nflite2 

··,_. 



/* demo1 */ 

/unc/dh/cmap8/:'I!EWRU;\l 

I* NEWRUN *I 
jusr likonas/ikreset 
/usrlikonaslmoned << EOF > ldevlnull 
4 454 1014 
5 0 62 
s 
q 
EOF 
# /usr/ikonaslikset 30hz > jdevjnull 
# /usrlikonasjcolor b 
juncjdh/surf4jikrdwr 3 
luncjdh/cmap8jframe 
juncjdhjcmap8jblackout 
jusr/ikonasjvvnaask fO 
jusrllibjiktestjimed << EOG > ldevlnull 
0 0 0 
1 7 16 
2 0 0 
4 4 0 
#56220 
s 
q 
EOG 

,--... 

# *** the following is included just to use left wall-mount camera *** 
juncjgbjbinlldvm.tst << EOH > jdevlnull 
vO 
q 
EOH 
june/ dhj cmap8 lload3a 
lusr /ikonas /ikgo 
# sdb luncldhlcmap8jnflite3a 
june I dhj cmap8 I nflite3a 



/* demo2a */ 

juncjdh/surfgpjwellbench << EOF 
20 
8 
100 150 150 
0 0 50 
.5 
0 0 100 
5 
0 
EOF 



/* demo2b */ 

/unc/dh/surfgp/LIGHT 

I* LIGHT */ 

,'usr /ikonasjmoned < < EOF > /dev /null 
4 454 1014 
5 0 62 
s 
q 
EOF 
# Jusr/ikonasjikset 30hz > /devfnull 
# jusr/ikonasjcolor b 
junc/dh/cmap8/frame 
/ unc / dh/ cmap8 /blackout 
jusrjikonasjwmask fO 
/usr/lib/iktest/imed << EOG > /devjnull 
0 0 0 
1 7 16 
2 0 0 
4 4 0 
#56220 
s 
q 
EOG 
# initialize lowest quadrant of physical Ikonas color map to O's - won't change 
/usr/ikonas/ikset ncmap(0-255] = on . 
# set up xbar; 0-7 in frame buffer represent normal; 8-9 select a quadrant in 
# the red color map; 10-11 for green; 12-13 for blue 
/usr/ikonas/-ikset << EOI > /devjnull 
xbar 0-9] = 0 1 2 3 4 5 6 7 8 9 
xbar 10-19) = 0 1 2 3 4 5 6 7 10 11 
xbar 20-291 = 0 1 2 3 4 56 7 12 13 
q 
EOI 
# *** the following is included just to use left wall-'mount camera *** 
junc/gb/binjldvm.tst << EOH > /devfnull 
vO 
q 
EOH 
junc/dh/cmap8/load3a 
j usr jikonas /ikgo 
# sdb /unc/dh/cmap8/nflite3a 
junc/dh/new.work/nflite3a 



/* makefile *I 
CFLAGS = -0 

shadel: cshade.o zbputsl.o zbikl.o proto.o 
cc cshade.o zbputsl.o zbikl.o proto.o -li -o shadel 

shade2: cshade.o zbputs2.o zbik2.o proto.o 
cc cshade.o zbputs2.o zbik2.o proto.o -lk --o shade2 

shade3: cshade.o zbputs3.o zbik3.o proto.o 
cc cshade.o zbputs3.o zbik3.o proto.o -lk -o shade3. 

ikrdwr: ikrdwr.o 
cc ikrdwr.o -lk --o ikrdwr 

ikrdwr2: ikrdwr .o 
cc ikrdwr.o -li --o ikrdwr2 

zbikl.o zbputsl.o 

zbik2.o zbputs2.o 

zbik3.o zbputs3.o 

proto.o : prodesc.h 

luncldhlcmap4lcolorl.h 

luncldhlcmap5lcolor2.h 

I uncI dhl crnap8l color3.h 

prodesc.h : protoargs.h 

cshade.o zbputsl.o zbputs2.o zbputs3.o : sphere.h 

clean: 
lbinlrm -f * .o a.out core mon.out 



I* cshade.c *I 
#define DEBUG if(O) 

#define ZMAX 255 

#indude <stdio.h> 
#include "sphere.h" 
main ( argc, argv) 
int argc; 
char *argv[J; 
{ 
int i; 
struct sphere spherein; 
static int snum; /* sphere number *I 
register int xlim, ylim; 
register struct sphere *sp; 
double origin[6J; /* x, y, z z-buffer origin, scale (input parameters ) *I 
#define scale origin[4] 
#defme shear origin[5] 
double atof(); 

sp = &spherein; 
for (kl; i<~3; i++) origin[i] = 0.0; 
scale~ 1.0; 
shear~, 0.0; 
for( i-=1; i<argc; i++) · 

origin[i] = atof( argv[i]); I* set origin from argument: default zero *I 
printf("Scale %.8f, shear %.8f\n", scale, shear); 

/* read prototype angle and depth file *I 
pinit(); 
mess("Pinit done\n"); · 
/* clear depth buffer to background 'color' *I 
zbinit(); 
mess("zbinit done\n"); 

/* ask size of z-buffer *I 
xlim = xzbsize(); 
ylim = yzbsize(); 

/* read spheres until end of file *I 
snum= 0; 
while( scanf("%d%d%d%d%d", &sp->spx, &sp->spy, &sp->spz, &sp->spr, 

&sp->spcolor) != EOF ) { 
snum++; 

DEBUG printf("SPHERE %4d %4d %4d %4d %4d (original) \n", 
sp->spx, sp->spy, sp->spz, sp->spr, sp->spcolor); 
sp->spx = ! [double?sp->spx - originf11) * scale; 
sp->spy = double sp-:>spy - origin 2 ) * scale; 
sp->spz = double sp->spz - origin[3] * scale; 
sp->spr = double) sp->spr * scale; 



/* cshade .c *I 

if((sp->spx >= - sp->spr) && ((sp->spx - sp->spr) <=xlim) && 
(sp->spy >= - sp->spr) && ((sp->spy - sp->spr) <=yliml && 

(sp->spz >= 0) && ((sp->spz + sp->spr) <=ZMAX ) { 
/* apply stereo shear and draw it : *I 
sp->spx += (sp->spz -128)*shear; 
zbputs( sp); 

} 
DEBUG printf("SPHERE %4d %4d %4d %4d (shifted) \n", 

sp->spx, sp->spy, sp->spz, sp->spr); 
} 

/* synchronize z buffer ( tell it we want to read it back ) *I 
mess(" Shade calling zbsync\n"); ·"' 
zbsync(); 

/* write z buffer to standard output. *I 
/* 

mess("Shade calling zbdump\n"); 
zbdump(stdout); 
*I 

exit(O); 
} /* end main */. 
mess(s) 
char *s· 

' { 
DEBUG 

} 
while(*s) putc( *s++, stderr); 



/* zbputs3.c *I 
/* zbputs.c - z-buffer put sphere. Floating point vers1on. M Pique. *I 

#defme DEBUG if(O) printf 
#defme NEW CLR 1 
#defme RTHRESH 50 
#defme GTHRESH 50 
#defme BTHRESH 50 
#include "sphere.h" 
#include "ikdefs.h" /* defmition of color passed to coverzb *I 
#include "luncldhlcmap8lcolor3.h" 
zbputs (ps) 
register struct sphere *ps; 
{ 
register int xoffset, yoffset; 
int protorad; 
register int xproto; 
register int yproto; 
register double ratio; /* prototype sphere radius I argument sphere radius *I 
int news, newz; 
#ifdef NEWCLR 
int redi, greeni, bluei; /* working vars for unpacking from decimal *I 
#endif 
pixeLt color; 
register lnt pbx; /* prototype x-bound for this y-value *I 

if(ps->spr <= 0) ps->spr = 1; 

protorad = pradius(); 

ratio = (double)(protorad ) I (double)(ps->spr); 

#ifdef DBG 
printf("Sphere %4d %4d %4d %4d ratio %4f\n" 

, ps->spx, ps->spy, ps->spz, (ps->spr), ratio); 
#endif 

#ifdef NEWCLR 
/* set color fractions for this sphere *I 
redi= ps->spcolorl10000; 
greeni= (ps->spcolorl100) - redi*lOO; /* middle two digits *I 
bluei= (ps->spcolor - greeni*lOO - redi*10000); 
#endif 

/* Fill in frame buffer circle by sampling into prototype *I 

for( yoffset = -ps->spr; yoffset < ps->spr; yoffset++){ 
yproto = (int) (ratio * yoffset); 
pbx = pbound(yproto); 
for( xoffset = -ps->spr; xoffset < ps->spr; xoffset++) { 

xproto = (int )(ratio * xoffset); 
if( xproto > pbx - 1 ) break; /* do not process the 0 *I 
if (xproto >= -pbx) { /* elements of the prototype array *I 



/* zbputs3.c *I 

#ifdef DBG 

#endif 
printf(" xo=%3d yo=%3d", xoffset, yoffset); /* debug *I 
news = protos( xproto, yproto); 
DEBUG("news %d\n", news); 
/* build color from news *I 

#ifdef OLDCLR 

#endif 

color.r = (\REDON==l) ? (unsigned char)(news) : (RDEFAULT)); 
color.g = ( GREENON==l) ? (unsigned char)(news) : (GDEFAULT)); 
color.b = ( BLUEON==l) ? (unsigned char)(news) : (BDEFAULT)); 

#ifdef NEWCLR . 
color.r = ((redi >= RTHRESH) ? (unsigned char)(news) : (ZERO)); 

#endif 

color.g = ((greeni >= GTHRESH).? (unsigned char)(news) : (ZERO)); 
color.b = ((bluei >= BTHRESH) ? (unsigned char)(news) : (ZERO)); 

newz = ps->spz + (int)(protoz(xproto,yproto)lratio); 
/* select z-buffer blend for the outer edge *I 
/* blendzb( (xproto>= pbx) ); */ 

coverzb( ps->spx + xoffset, ps->spy + yoffset, newz, &color); 

} } 
} j* end yoffset loop *I 

} j* end zbputs * / 



/* z bik3.c *I 
I* ZBIK - Z-buffer management: 

in-core version with intens in core, 
but written to Ikonas from time to time. 

*I 
#defme XZBSIZE 512 
#defme YZBSIZE 512 
#defme ZMAX 255 
#include <ikdefs.h> 
#include <stdio.h> 
#defme I( C) ( 0377 & (C)) I* integer from character, unsigned *I 
#defme SQR(x) ((x)*(x)) I* square of x *I · 
#define OK(x,y) ((x>=O && x<XZBSIZE) && (y>=O && y<YZBSIZE)) 
int blendsw =0; /* blend new intensity into old if ==1 *I 
static pixeLt *fb; /* pointer to beginning of in-core frame buffer *I 
#define fbaddr(x,y) (fb+((x)+(YZBSIZE-1-(y))*XZBSIZE)) 
#defme z fill 
#defme FBSIZE (XZBSIZE*YZBSIZE*sizeof(*fb)) 
static updtecount; static char rowused[YZBSIZE]; 
#defme IKBATCH 25000 /* pixels changed between ikonas updates *I 
#include "luncldhlcmap8lcolor3.h" 
char *malloc(); 

zbinit() 
{ 
register int x,y; 
register pixeLt *pixel; 

fb= (pixel_t *) malloc( FBSIZE); 
if(fb==NULL){fprintf(stderr,"zbinit: ·not enough core");exit(-1);} 
for (y=O; y<YZBSIZE; y++) { 

for(x=O; x< XZBSIZE; x++) { 
pixel= fbaddr(x,y); 

} 
zbsync(); 

} 

putzb( x, y, z, s) 
register int x,y; 
char z, s; 
{ 

pixel->r = (\REDON==1) ? (PTBACKGR) : (RDEFAULT)); 
pixel->g = ( GREENON==1) ? (PTBACKGR) : (GDEFAULT)); 
pixel->b = ( BLUEON==1) ? (PTBACKGR) : (BDEFAULT)); 
pixel->z = 0; /* depth (O=far) *I 
} 

if( OK(x,y) ){ 
fuaddr(x,yl->z = z; 
fbaddr(x,y ->r = s; 
} 

} 

coverzb(x, y, z, colorp) 
int x,y; 



/* zbik3.c *I 

char z; 
pixel_t *colorp; 
{ 
static int oldy; 
register int zval, oldzval; 
register pixel_t *pixel; 
register float zfract; /* fraction 1.0 to 0.0 normalized distance from rear* I 
pixel_t new; 

if(! OK(x,y)) return; 

pixel= fbaddr(x,y); 
oldzval= I( pixel->z ); 
zval = I(z); 

if ( zval > oldzval) { /* closer *I 

new = *colorp; 

#ifdef MPBLEND 
I* color depth cueing: *I 
zfract= {float) zval I (float) ZMAX; 
new.r = (int) ( (float) I(new.r). * zfract); 
new.g = {int) { {float) (I(new.g)) * zfract); 

if( blendsw ) oldzval = zval; 

switch( zval - oldzval ) { 

case 0: 

case -2: 

pixel->g = { new.g + I(pixel->g) ) I 2; 
pixel->b = ( new.b + I(pixel->b) ) I 2; 
pixel->r = ( new.r + I(pixel->r) ) I 2; 
pixel->z = zval; 
break; 

/* new is somewhat farther *I 
pixel->r = ( new.r + 7 * I(pixel->r) ) I 8; 
pixel->g = ( new .g + 7 * I(pixel->g) ) I 8; 
pixel->b = ( new.b + 7 * I(pixel->b) ) I 8; 
pixel->z = oldzval; 
break; 

case 2: 
/* new is somewhat closer *I 

pixel->r = \ 7 * new.r + I(pixel->r) ) I 8; 
pixel->g = 7 * new.g + I(pixel->g) ) I 8; 
pixel->b = 7 * new.b + I(pixel->b) ) I 8; 
pixel->z = zval; 

case -1: 
/* new 

break; 

is slightly farther *I 
pixel->r = ( new.r + 3 * I(pixel->r) ) I 4; 
pixel->g = ( new.g + 3 * I(pixel->g) ) I 4; 



I* zbik3.c *I 

#endif 

1*###121 
1*###121 

case 1: 

default: 

pixel->b = ( new.b + 3 * I(pixel->b) ) I 4; 
pixel->z = oldzval; 
break; 

pixel->r = \ 3 * new.r + I(pixel->r) ) I 4; 
pixel->g = 3 * new.g + I(pixel->g) ) I 4; 
pixel->b = 3 * new.b + I(pixel->b) ) I 4; 
pixel->z = zval; 
break; 

pixel~>r = new.r; 
pixel->g = new.g; 
pixel->b = new.b; 

member of structure or union required %%%*I 
warning: illegal combination of pointer and integer, 

pixel->z = zval; 
op = %%%*1 

rowused[y] = 1; 

if( ++updtecount > IKBATCH ) { 
int firstyrow; 
y= YZBSIZE-1; 

while(y>=O){ . 
I* Skip unused (unchanged) rows *I 

while( y>=O && ! rowused[y]) y-; 

/* Search over used rows for next unused *I 
fiTStyrow=y; 
while(y>=O && rowused[y] && firStyrow-y<8) 

{rowused[y~]= 0; } 
#ifdef DEBUG 

#endif 

} 
} j* end coverzb *I 
getzb(x, y, zp, sp) 
register int x,y; 
char *zp, *sp; 
{ 

fprintf(stderr,"wr rows %d to %d %d bytes\n", 
firstyrow, y+ 1, 
(firStyrow-y) *sizeof(pixel_t) *XZBSIZE); 

I* Write out the used block *I 
ikpwrite( fbaddr(O, fiTStyrow), 

(firStyrow-y) *sizeof(pixeU) *XZBSIZE, 
0, firStyrow); 
} 

updtecount = 0; 
} 

if( OK(x,y) ){ 
*zp = fbaddr(x,y)->z; 
*sp = fbaddr(x,y)->r; 



J* zbik3.c * / 

} If end getzb *I 

xzbsize () 
{ 

return( XZBSIZE ); 
} I* end xzbsize *I 
yzbsize () 
{ 

return( YZBSIZE ); 
} /* end yzbsize *I 
blendzb(sw) 
int sw; 

~* blendsw= sw; 

zbsync() { 
register int y; 

set blend switch on or off... see coverzb *I 

fprintf( stderr," sync \n" ); 
for(y=YZBSIZE-1; y>=O; y-) { 

updterow( y); 

} 

static 
updterow(y) 
register int y; 

} 

{ 
ikpwrite( fbaddr(O,y), XZBSIZE*sizeof(pixeU), 0, y); 
} 

z bdump ( ofile) 
/** 
FILE *ofile; 

{ 
**I 

} I* end zbdump *I 



/* proto.c *I 
#define DEBUG if(O) printf 
#define DBG if(O) printf 
#include <stdio.h> 
#include "prodesc.h" 
#define I( C) ( 0377 & (C)) /* integer from character, unsigned *I 
#defme abs(a) ((a)<O? -(a):(a)) 
int prad; 
prad = PSIZEI2; 

pinit() { 
FILE *pfile, *fopen(); 
int pblack, pzmax,i, j, temp; 
int psize; 
/* read prototype angle and depth file *I 
/* format is header line: size, blackness, max depth, followed by *I 
/* 'size' repetitions of: ( 

lowbound, highbound of data, 
( PSIZE (angle), PSIZE(depth)) *I 

DEBUG("pinit started\n"); 
if( NULL == (pfile = fopen( PNAME, "r")) ) 

mess( "Prototype file open err.\n"); 
fscanf( pfile, "%d%d%d", &psize, &pblack, &pzmax); 
if( psize != PSIZE) {printf("Prototype file size error.\n"); return;} 
DEBUG("starting to read ... \n"); 
for (i=O;i<PSIZE; i++ ){ 

fscanf( pfile, "%d %d", &pbounds[i].Iow, &pbounds[i].high); 
for (j=O; j<PSIZE; j++){ . 

fscanf( pfile, "%d", &temp); proto[iJU].ps = temp; } 
for (j=O; j<PSIZE; j++ ){ 

} 
fscanf( pfile, "%d", &temp); proto[i][j].pz = temp; } 

DEBUG("angle and depth prototypes read\n"); 
fclose(pfile); 
} /* end pinit *I 
pbound (y) 
register int y; 
{ 

y=y+prad; 
if ( PYOK(y) ) return ( pbounds[y].high - prad ); 
else return ( -1 ) ; 
} I* end pbound *I 
psize () { 
return ( PSIZE ) ; 
} /* end psize *I 

pradius () { 
return ( prad ) ; 
} /* end pradius *I 



/* proto.c * j 

protoz ( x, y) 
register int x, y; 
{ 

x = x+(pradl; 
y = y+(prad; 
if( PXOK(x) && PYOK(y) 
else return ( 0 ); 
} 

protos ( x, y) 
register int x, y; 
{ 

) return ( I(proto[y][x].pz )); 

x = x+(pradl; 
y = y+(prad; 
DBG("protos:x %d; y %d; prad %d; ps %d\n", x, y, prad, proto[y][x].ps); 
DBG("ps++ %d\n", proto[y+l][x+l].ps); 
if( PXOK(x) && PYOK(y) ) return ( I(proto[y][x].ps )); 
else return ( 0 ); 
} /* end protos * / 



/* sphere.h *I 

/* sphere.h Version of 30 Oct 80 *I 
struct sphere{ 

int spx, spy, spz, spr, spcolor; 
}; 



/* ikrdwr.c *I 
/* IKRDWR - Ikonas frame buffer management: 

read or write 
*I 

#define XFBSIZE 512 
#define YFBSIZE 512 
#include <ikdefs.h> 
#include <stdio.h> 
static pixel_t *fb; /* pointer to beginning of in-core frame buffer * / 
#defme fbaddr(x,y) (fb+( (x)+(YFBSIZE-1-(y )J *XFBSIZE)) 
#defme FBSIZE (XFBSIZE*YFBSIZE*sizeof( fb)) 
#define PNAMED "/unc/dh/surf4/pictfile" 
#define PNAME1 "/uncjdhjsurf4/pictfil1" 
#defme PNAME2 "/unc/dh/surf4/pictfil2" 
#defme PN AME3 "june/ dh/surf4/pictfil3" 
char *malloc (); 
FILE *pfile, *fopen(); 

main (argc, argv) 
int argc; 
char *argv[J; 

{ 
int arg; 

arg = atoi(argv[1]); 

"··· 

fb = (pixe!_t *) malloc (FBSIZE); 
if (fb==NULL) {fprintf(stderr,"fbinit: not enough core.\n"); exit(-1);} 
if (arg >= 1) wrsync(arg); 
else rdsync (); · 
} 

rdsync() { 
register int y; 

/* 

*I 

} 

if (NULL == (pfile = fopen(PNAMED, "w"))) 
fprintf(stderr, "pictfile open error.\n"-); 

setbuf(pfile, rnalloc(BUFSIZ)); 
fprintf(stderr,"Reading from frame buffer ... \n"); 
for(y=YFBSIZE-1; y>=O; y-) { 

ikpread( fbaddr(O,y), XFBSIZE*sizeof(* fb), 0, y); 

fwrite( fbaddr(O,y), XFBSIZE*sizeof(* fb), 1, pfile); 

} 
fprintf(stderr,"Writing to disk ... \n"); 
fwrite (fb, XFBSIZE*sizeof(* fb), YFBSIZE, pfile); 

wrsync(fnurn) 
int fnurn; 

{ 
register int y; 



I* ikrdwr .c *I 

if (fnum == 1) { 
if (NULL == (pfile = fopen(PNAMEl, "r"))) 

fprintf(stderr, "pictfile open error.\n"); 

else I if (fnum == 2) { 
if (NULL == (pfile = fopen(PNAME2, "r"))) 

fprintf(stderr, "pictfile open error.\n"); 
} 

else { if (fnum == 3) { 
if (NULL == (pfile = fopen(PNAME3, "r"))) 

} 
fprintf(stderr, "pictfile open error . .\n"); · 

else {fprintf(stderr,"Wrong filenum: %d\n", fnum); exit(-1);} } } 
setbuf(pfile, malloc(BUFSIZ)); 
fprintf(stderr,"Reading from disk ... \n"); 
fread (fb, XFBSIZE*sizeof(* fb), YFBSIZE, pfile); 

#ifdef SW APRB 
/* exchange red & blue pixel values *I 
swaprb(fb, XFBSIZE, YFBSIZE); 

#endif 

} 

fprintf(stderr,"Writing to frame buffer ... \n"); 
for(y~YFBSIZE-1; y>=O; y-) { 

ikpwrite( fbaddr(O,y), XFBSIZE*sizeof(* fb), 0, y); 
} 

#ifdef SW APRB 
/* exchange red & blue pixel values *I 
swaprb (fb, xsize, ysize) 

pixel_t * fb; 
int xsize, ysize; 

{ 
register pixel_t *p; 
pixel_t tpix; 

for (p=fb; p < fb+(xsize*ysize); p++) { 
tpix.r = p->r; 
p->r = p->b; 
p->b = tpix.r; 

} 
} 

#endif 



/* makefile * / 

CFLAGS = -0 

3cubes: 3cubes.o clip.o gp.o gpak.o hidden.o init.o movie.o normltbl.o \ 
shade.o shapes.o 

cc 3cubes.o clip.o gp.o gpak.o hidden.o init.o movie.o normlt bl.o \ 
shade.o shapes.o -lk -lm ${CFLAGS} -o 3cubes 

boxes: boxes.o clip.o gp.o gpak.o hidden.o init.o movie.o normltbl.o \ 
shade.o shapes.o 

cc boxes.o clip.o gp.o gpak.o hidden.o init.o movie.o normltbl.o \ 
shade.o shapes.o -lk -lm ${CFLAGS} '-'-0 boxes 

cylinder: cylinder.o clip.o gp.o gpak.o hidden.o init.o movie.o normltbl.o \ 
shade.o shapes.o 

cc cylinder.o clip.o gp.o gpak.o hidden.o init.o movie.o normltbl.o \ 
shade.o shapes.o -lk -lm ${CFLAGS} -o cylinder 

logo: logo.o clip.o gp.o gpak.o hidden.o init.o movie.o normltbl.o \ 
shade.o shapes.o 

cc logo.o clip.o gp.o gpak.o hidden.o init.o movie.o normltbl.o \ 
shade.o shapes.o -lk -lm ${CFLAGS} -o logo 

sphere: sphere.o clip.o gp:o gpak.o hidden.o init.o movie.o normltbl.o \ 
shade.o shapes.o 

cc sphere.o clip.o gp.o gpak.o hidden.o init.o movie.o normltbl.o \ 
shade.o shapes.o -lk -lm ${CFLAGS} -o sphere 

wellbench: wellbench.o clip.o gp.o gpak.o hidden.o init.o movie.o n<irmltbl.o \ 
shade.o shapes.o 

cc wellbench.o clip.o gp.o gpak.o hidden.o init.o movie.o normltbl.o \ 
shade.o shapes.o -lk -lm ${CFLAGS} -o wellbench 

oldcylinder: cylinder.o Juncjeric/lib/libg.a 
cc cylinder.o Junc/eric/lib/libg.a -lk -lm ${CFLAGS} -o cylinder 

normltbl.o : normal.h 

clip.o gp.o gpak.o hidden.o init.o movie.o shade.o shapes.o cylinder.o gp.h 

clean: 
/bin/rm -f *.o a.out core mon.out 



/* cylinder.c *I 

I* 
#include <gp.h> 
*I 
#include "gp.h" 
#include <math.h> 

main() 
{ 
int r,g,b,nsides; 
char s[132); 
init(); 
translate(0.0,0.0,-5.0); 
rotate(XAXIS,4 *PII7); 
r = 255; g = b = 0; 
printf("Enter color [%d %d %d]: ",r,g,b); 
if (gets(s)&&s[O]) 

sscanf(s,"%d %d %d" ,&r,&g,&b); 
set_ color( r ,g,b); 
nsides = 10; 
printf(" Enter nsides [%d]: ",nsides); 
if (gets(s)&&slo]) 

sscanf(s,"%d" ,&nsides); . 
cylinder( 3.0,10.0,nsides); 
movie(); 
} 

... , 



I* wellbench.c *I 
#include <math.h> 
#include <stdio.h> 
I* 
#include "lunclericlinc!udelgp.h" 
*I 
#include "gp.h" 

/* Draws a picture of the "Old Well" on the UNC campus. *I 
/* Written by Eric Grant 9-6-81. *I 
#defme COLUMNHEIGHT 70.0 
#define BASEHEIGHT 6.0 
#defme TILES 20 
#define BASERADIUS 45.0 

#defme DEGCON (3.1415926541180.0) 

.. ,_, 

/* Draws a column with specified number of sides. Also includes 
the square ends on the columns. *I 

column(nsides) 
int nsides; 
{ 
set_color(255,255,255); 

~:t:~~; 
translate( -3.0,-3.0,0.0); 
rect(6.0,6.0,1.0); 
pop_m(); 
translate( 0.0,0.0,1.0); 
cylinder(3.0,COLUMNHEIGHT -2.0,nsides); 
translatelO.O,O.O,COL UMNHEIGHT -2.0); 
push_m(; 
translate -3.0,-3.0,0.0); 
rect(6.0,6.0,1.0); 

:~=:B; 
} 

/* Draws the eight columns equally spaced apart in a circle. *I 
columns(nsides) 
int nsides; 
{ 
int angle; 
float x,y, theta; 

push_m(); 
translate(O.O,O.O,BASEHEIGHT); 
for (angle=O; angle<360; angle += 45) 

{ 
theta = (float)angle * DEGCON; · 
x = (BASERADIUS-15.0)*sin(theta); 



I* wellbench.c *I 

y = (BASERADIUS-15.0)*cos(theta); 
push_m(); 
translate(x,y ,0.0); 
column(nsides); 
pop_m(); 
} 

pop_m(); 
} 

/* Draws the two cylinders which make up the "base" or steps. *I 
welLbase(nsides) 
int nsides; 
{ 
set_color(200,200,200); 
push_m(); 
cylinder(BASERAD IUS,BASEHEJG HT 12.0,nsides); 
translate(O.O,O.O,BASEHEIGHT 12.0); 
cylinder(BASERAD IU S-5.0,BASEHEIGHT l2.0,nsides); 
pop_m(); 
} 

/* Draws the drinking fountain in the center of the structure. *I 
fountain() 
{ . 

set_ color( 175,175,175); 
push_m(); 
translate(-9.0,-9.0,BASEHEIGHT); 
rotate( ZAXIS,PII2.0); 
rect(18.0,18.0,2.0); 
pop_m(); 
set_color(200,200,200); 
push_m(); 
translate(--6.0,--6.0,BASEHEIGHT +2.0); 
rect(12.0,12.0,20.0); 
pop_m(); 
} 

/* Draws the roof. The roof consists of a couple of white . 
cylinders, and then the actual blue roof "tiling" itself. *I 

roof( nsides) 
int nsides; 
{ 
float theta,theta2,phi,phi2,radius; 
float incr ,x1,yl,x2,y2,x3,y3,x4,y4,zl,z2; 
int ij; 

set_ color( 255,255,255); 
push_m(); 
translate(O.O,O.O,BASEHEIGHT+COLUMNHEIGHT); 
cylinder(BASERADIUS-10.0,2.0,nsides); 
translate(0.0,0.0,2.0); 
cylinder(BASERAD IUS-8.0,2.0,nsides); 
pop_m(); 
set_ color( 0,200,255); 



/* wellbench.c * / 

push_m(); 
translate(O.O,O.O,BASEHEIGHT +COL UMNHEIGHT -8.0); 
incr = 2.0*PI/TILES; 
phi = 0.0; 
radius = BASERADIUS-6.0; 
for (i=O; i<TILES/4-1; i++) 

{ 
phi2 = phi+incr; 
zl = cos(phi) *radius; 
z2 = cos(phi2) *radius; 
theta = 0.0; 
for (j=O; j<TILES; j++) 
{ 

theta2 = theta+incr; 
xl = float cos(theta)*sin(phi)*radius); 
yl = float sin(theta)*sin(phi)*radius); 
x2 = float cos(theta)*sin(phi2)*radius); 
y2 = float sin(theta)*sin(phi2)*radius); 
x3 = float cos(theta2)*sin(phi)*radius); 
y3 = float sin(theta2)*sin(phi)*radius); 
x4 = float cos(theta2)*sin(phi2)*radius); 
y4 = float sin(theta2)*sin(phi2)*radius); 
theta = theta2; 

plate~x3,y3,zl,x4,y4,z2,x2,y2,z2,xl,yl,zl); 

phi = phi2; 
} 

pop_m(); 
} 

well() 
{ 
int bsides,csides; 
char s[80]; 

bsides = 20; 

~- .. · 

fprintf(stderr,"Enter number of sides for base [%d]: ",bsides); 
if (gets(s)&&s[O])sscanf(s,"%d" ,&bsides); 
we!Lbase(bsides); 
csides = 8; 
fprintf(stderr,"Enter number of sides for columns [%d]: ",csides); 
if (gets(s)&&s[O])sscanf(s,"%d" ,&csides); 
roof(20); 
columns ( csides); 
fountain(); 
} 

bench() 
{ 
set_color(255,200,200); 
push_m(); 
translate( -2.0,--4.0,0.0); 
scale(2.5,5.0,2.5); 



/* wellbench .c * / 

push_m(); 
translate(0.0,0.0,4.0); 
rect( 4.0,8.0,1.0); 
pop_m(); 
push_m(); 
translate( .5,0.5,0.0); 
rect(3.0,0.5,5.0); 
pop_m(); 
push_m(); 
translate( .5, 7.0,0.0); 
rect(3.0,0.5,5.0); 
pop_m(); 
pop_m(); 
} 

main() 
{ 
init(); 
well(); 
push_m(); 
translate(75.0,0.0,0.0); 
bench(); 
pop_m(); 
push_m(); 
translate(75.0,0.0,0.0); 
rotate( ZAXIS,PI/2.0); 
bench(); 
pop_m(); 
push_m(); 
translate(75.0,0.0,0.0); 
rotate( ZAXIS,PI); 
bench(); 
pop_m(); 
movie(); 
dump_data(); 
} 



/* gp.c * / 

#include <stdio.h> 
!* 
#include <gp.h> 
*I 
#include "gp.h" 
#include <math.h> 

#defme EPS .0001 

!*· 

Graphics Package 
Written by Eric Grant 

This package is based on a graphics package written by Bob Sproull for 15-462. 
Some of the documentation contained in this file is taken from class handouts. 

This package provides functions for 3-dimensional viewing and modeling 
transformations. It has built in functions for vector drawing ('line_to' and 
'move_to'). Additionally, the caller may transform individual points by 
calling 'vec_mul'. Thus this package may be used to transform faces and, . in 
conjunction with a shading package, may be used to produce three dimensional 
images on a raster display device. 

The package uses a matrix 'm', which 
one coordinate system to another. 
perspective transformation. 

may be used to transform coordinates 
Additionally, this matrix may perform 

from 
the 

For vector applications, 'm' ·will generally be set up to achieve both modeling 
and viewing transformations; thus m MV, where M is the modeling 
transformation and V is the viewing transformation. It is up to the client of 
the package to arrange that this concatenation is performed. 

For other applications, the client may wish to have an intermediate step in the 
transformation. It may be necessary to first transform points to world 
coordinates, and then perform the transformation to screen coordinates. A 
number of routines have been provided to facilitate these transformations. 

The modeling transformation M is generally composed by concatenating primitive 
transformations that describe the instance transformation. This is the 
instance transformation that transforms points to world coordinates. For more 
information see Newman and Sproull, sections 9-4 and 1G-1. · 

The matrix V is usually the concatenation of two parts: W, the transformation 
from world to eye or camera coordinates, and P, the perspective transformation 
(see Newman&Sproull eq. 23-4). The world-to--eye transformation is usually also 
a concatenation of several primitive transformations; usually the last such 
transformation forms the left-handed eye coordinate system (Newman&Sproull eq. 
22-12). If you want to create a non-square viewport for viewing, this can be 
done by inserting a scaling transformation just before P that has the inverse 
effect of the viewport scaling. For example, suppose the height (y) of the 



/* gp.c *I 

viewport is twice the width (x). In addition to setting the viewport 
parameters appropriately in the geometry pipeline, we insert before P a matrix 
that scales all x values by 2, while leaving y and z values untouched. 

*I 
static float 

vxl, 
vxr, 
vyb, 
vyt, 
vsx, 
vex, 
vsy, 
vcy; 

static float . 
ex, 
cy, 
cz, 
cw; 

static float 

/* Left edge of viewport *I 
/* Right edge of viewport *I 
/* Bottom edge of viewport *I 
/* Top edge of viewport *I 
j* Viewport x--scaling factor *I 
/* Viewport x center coordinate * / 
/* Viewport y--scaling factor *I 
/* Viewport y center coordinate *I 

/* Current position - untransformed *I 

cxo, /* Current position - in screen coordinate system *I 
cyo, 
czo; 

static s_transform 
*m_stack, 
*m_free; 

static transform 
q, 
m, 
camera, 
preper; 

/* Pointer to top of stack *I 
/* Pointer to beginning of free list *I 

/* World to screen transformation *I 

static boolean 
q_identity; I* True if q is identity matrix *I 

static inquiry _response 
v; 

/* 

I* Display characteristics *I 

This package may contain certain flags associated with a transformation. 
If the client makes changes to elements in the transformation matrix, 
the flags may need to be updated. This routine will examine the 
transformation and update the flags. Currently there is only one 
flag used. This package can be tailored for two dimensional use. 
In that case, another flag can be used to indicate if the transformation 

*I 
chk_transform( t) 
transform *t; 
{ . 
t->w_identity = FALSE; 
if ((t->m[0/[31==0.0) && (t->m[1][3]==0.0) && (t->m[2][3]==0.0) && 

(t->m 3]3]==1.0))t->w_identity = TRUE; 
} 



I* gp.c *I 

/* 
This procedure sets the supplied matrix 't' to the identity matrix. 
*I 
make_identity(t) 
transform *t· , 
{ 
int IJ; 

for (i=O; i<=3; i++) 
for (j=O; j<=3; j++) 
t->m[i][j] = (i= j ? 1.0 0.0); 

} 

/* 
This· procedure sets the supplied matrix 't' to the identity matrix, 
and also sets any flags that may be associated with the matrix. 
*I 
idn_transform(t) 
transform *t; 
{ 
make_identity( t); 
chk_transform(t); 
} 

/* 
This procedure sets 't' to a scaling transform. 'sx','sy', and 'sz' 
correspond to the scaling factors for the x,y, and z axes. 
*I 
sci_ transform( sx,sy ,sz,t) 
float sx,sy ,sz; · 
transform *t· , 
{ 
make_identity(t); 
t->mO 0 = sx; 
t->m 1 1 = sy; 
t->m2 2 = sz; 
chk_transform( t); 
} 

I* 
This procedure sets 't' to a transformation transform. 'tx','ty', and 
'tz' correspond to translations in the x,y, and z directions. 
*I 
trn_transform(tx,ty ,tz,t) 
float tx,ty ,tz; 
transform *t · , 
{ 
make_identity(t); 
t->m3 0 = tx; 
t->m3 1 = ty; 
t->m3 2 = tz; 
chk_transform(t); 
} 



/* gp.c * / 

/* 
This procedure sets 't' to a primitive transformation of 'theta' 
radians about the axis specified by 'axis'. Axis is either XAXIS, 
Y AXIS, or ZAXIS, as defined in gp.h. 
*I 
rot_transform( axis,theta,t) 
axis_id axis; 
float theta; 
transform *t· 

' { 
int a,b; 

switch (axis) 
{ 
case XAXIS: a=2; b=l; break; 
case Y AXIS: a=O; b=2; break; 
case ZAXIS: a=l; b=O; break; 
}; 

make_identity( t); 
t->mra a~ = (float) cos((double) theta); 
t->m b b = t->m[a][a]; 
t->m a b = (float) sin((double) theta); 
t->m b a = -t->m[a][b]; . 
chk_transform(t); 
} . 

/* 
Sets 't' to a perspective transformation (see eq. 23-4 in Newman and 
Sproull), using S=d*tan(alpha), D=d, and F=l/onLover_f. For a 
straightforward viewing pyrarr:rid, without "hither" and "yon" clipping, 
set d and one_over_f to 0. 
*I 
per_transform( alpha,d,one_over_f,t) 
float alpha,d,one_over_f; 
transform *t· 

' { 
float tn; 

tn = (float) tan((double) alpha); 
make_identity ( t); 
t->m 2 2 = tn/(l.o--d*one_over_f); 
t->m23 =tn; 
t->m 3 2 = -(tn*d)/(1.0--d*one_over_f); 
t->m 3 3 = 0.0; 
chk_transform(t); 
} 

/* 
Sets 't' to a scaling and translation transformation that maps the 
region xl<-x<=xr, yb<=y<=yt into the region -w<=x<=w,-w<=y<=w. In 
conjunction with clipping to the standard viewbox, this transformation 
is pre-dipping part of the window-viewport transformation. 
*I 



/* gp.c * / 

wnd_transform(xl,yb,xr,yt,t) 
float xl,yb,xr,yt; 
transform *t; 
{ 
float sx,sy; 

sx = 2.0/(xr-xl); sy = 2.0/(yt-yb); 
ma.ke_identity ( t) ; 
t->m[Ol[Ol = sx; t->m[l][l] = sy; 
t->m[3 [0 = -t>x*xl-1.0; t->m[3][1] 
chk_transform(t); 
} 

/* 

= -t>y*yb-1.0; 

This procedure prints the transformation 't' on the standard output. 
*I 
pm_transform(t) 
transform *t; 
{ 
int iJ; 

printf("Transform (%s)\n" ,(t->w_identity ? "w-identity":"")); 
for (i=O; i<=3; i++) 

{ -

for (j=O; j<=3; j++l 
printf{" %f ",t->m[i][j ) ; 
printf{" \n"); 

} } 

/* 
This procedure copies the contents of matrix 'from' into matrix 'to'. 
*I 
mat_copy(from,to) 
transform *from, *to; 

f .. 
mt !Ji 

for (i=O; i<=3; i++) 
for (j=O; j<=3; j++) 
to->m[ij[jl = from->m[i][j]; 

chk_transform to); 
} 

/* 
This procedure sets c = a*b. The transform 'c' may be the same 
transform as 'a' or 'b'. 
*I 
mat_mul( a,b,c) 
transform *a *b *c· 
{ 
transform d; 
int iJ,k; 
float s; 

' ' ' 



/* gp.c * / 

for (i=O; i<=3; i++) 
for (j=O; j<=3; j++) 
{ 
s = 0.0; 
for (k=O; k<=3; k++) 

s = s + a->m[i][k]*b->m[k][j]; 
d.m[i]p] = s; 
} 

mat_copy(&d,c); 
chk_transform( c); 
} 

I* 
This procedure sets [xo yo zo wo] to the result of post-multiplying 
the vector [x y z w] by the transformation 't'. 
*I 
vec_mul(x,y ,z,w ,t,xo,yo,zo,wo) 
flt ****· oa x,y,z,w, xo, yo, zo, wo, 
transform *t; 
{ 
float xtemp,ytemp,ztemp,wtemp; 

;~::~ : ~=;=~:lg11~1 ~ ~=~=~:/i)f~1 ~ ::;:=~:1;11~1 ~ ~=~=;:1~11~1; 
ztemp = x*t->mo/z/ + y*t->mdz/ + z*t->m2/2/ + w*t->m3/2/; 
wtemp = (t->w_identity ? w : x*t->m[OJ[3] + y*t->m[1][3] + z*t->m[2J[3] + w*t->m[3][31) 
*xo = xtemp; *yo = ytemp; *zo ztemp; *wo = wtemp; 
} 

I* 
This procedure updates the 'm' matrix by concatenating 'q' and 'm'. 
*I 
static update_m( concat) 
boolean concat; 
{ 
if (concat)mat_mul(&q,&m,&m); 
idn_transform( &q); 
q_identity = TRUE; 
} 

I* 
This procedure sets 'm' to the matrix 't'. 
*I 
set_m(t) 
transform *t· 
{ ' 
mat_copy(t,&m); 
update_m(F ALSE); 
} 

I* 
This procedure returns 'm' in the matrix 't '. 
*I 



/* gp.c * / 

get_m(t) 
transform *t; 
{ 
if (!q_identity)update_m(TRUE); 
mat_copy(&m,t); 
} 

/* 
This procedure pushes the current value of 'm' onto the stack. 
*I 
push_m() 
{ 
s_transform *p; 

if (m_free != NULL) 
{ 
p = m_free; 
m_free = m_free->next; 
} 

else p = (s_transform *)malloc(sizeof(s_transform)); 
p->next = m_stack; 
get_m(&(p->t)); 
m_stack = p; 
} 

/* 
This procedure pops a transform off of the stack and puts it m 'm'. 
*I 
pop_m() 
{ 
s_transform *p; 

set_m( &(m_stack->t) ); 
p = m_stack; 
m_stack = m_stack->next; 
p->next = m_free; 
m_free = p; 
} 

/* 
This procedure computes a scaling transformation 't', and then 
sets q = q*t. 
*I 
scale( sx,sy ,sz) 
float sx,sy ,sz; 
{ 
transform t; 

sci_ transform( sx,sy ,sz,&t); 
rnat_mul( &q,&t,&q); 
q_identity = FALSE; 
} 

/* 



/* gp.c * / 

This procedure computes a translation transform 't', and then 
sets q = q*t. 
*I 
translate( tx,ty,tz) 
float tx,ty ,tz; 
{ 
transform t; 

tm_transform( tx,ty, tz,&t); 
mat_mul( &q,&t,&q); 
q_identity = FALSE; 
} 

/* 
This procedure computes a rotation transform 't ', and then sets 
q = q*t. 
*I 
rotate( axis, theta) 
axis_id axis; 
float theta; 
{ 
transform t; 

rot_transforrn(axis,theta,&t); 
mat_mul( &q,&t,&q); 
q_identity = FALSE; 
} . 

/* 
This procedure sets q - q *t. 
*I 
concatenate(t) 
transform *t· , 
{ 
mat_mul( &q,t,&q); 
q_identity = FALSE; 
} 

/* 
Sets the current viewport parameters of this package: 

xi: x coordinate of left edge of window 
yb: y coordinate of bottom edge of window 
xr: x coordinate of right edge of window 
yt: y coordinate of top edge of window 

*I . 
set_ viewport ( xl,y b ,xr ,yt) 
float xl,yb,xr,yt; 

~ . mqmry _response v; 

vxl = xl; vyb = yb; vxr = xr; vyt = yt; 
vex = (vxl+vxr)/2.0; vcy = (vyb+vyt)/2.0; 
vsx = (vxr-vxl)/2.0; vsy = (vyt-vyb)/2.0; 
show _inquire( &v); 



I* gp.c *I 

vsx = vsx*v.xadjust; vsy = vsy*v.yadjust; 
} 

I* 
This procedure reads the current viewport parameter m this package. 
*I 
get_ viewport ( xl,y b,xr ,yt) 
float *xi, *yb, *xr, *yt; 
{ 
*xi = vxl; *yb = vyb; *xr = vxr; *yt - vyt; 
} 

I* 
This -procedure sets the package for 'vector' mode. This means that 
the matrix 'm' will contain the matrix for the complete transformation 
to screen coordinates, rather than the intermediate transformation 
to world coordinates that is needed to compute surface normals. 
This previous matrix 'm' is saved on the stack. 
*I 
vec_mode{) 
{ 
push_m(); 
mat_mul( &m,&camera,&m); 
} -

/* 
Sets the matrix 'm' to a transformation which transforms objects 
to the camera's coordinate system and performs the perspective transformation. 
The previous matrix 'm' is saved on the stack. 
*I 
cam_mode() 
{ 
push_m(); 
set_m( &camera); 
} . 

/* 
Ends the current 'mode' by popping the previous transformation 
off of the stack. 
*I 
end_mode() 
{ 
pop_m(); 
} 

/* 
Sets 'm' to the matrix 'camera'. 
*I 
set_ camera() 
{ 
get_m( &camera); 
} 

save_preper() 



/* gp.c *I 

{ 
mat_mul( &q,&m,&preper); 
} 

I* 
Move the package's idea of the current location to the specified position. 
*I 
move_to(x,y,z) 
float x,y ,z; 
{ 
cxo = x; cyo = y; czo = z; 
if (!q_identity)update_m(TRUE); 
vec_mul(x,y ,z,l.O,&rn,&cx,&cy ,&cz,&cw); 
} 

I* 
Draw a vector from the current position to the specified position and 
update the current position. 
*I 
line_to(x,y ,z) 
float x,y ,z; 
{ 
float xl,yl,zl,wl; 

cxo = x; cyo = y; czo = z; 
xl = ex; yl = cy; zl = cz; wl = cw; 
if (!q_identity)update_m(TRUE); 
vec_mul(x,y,z,l.O,&m,&cx,&cy,&cz,&cw); 
show_line(vsx*xllwl +vcx,vsy*yllwl +vcy ,vsx*cxl cw+vcx,vsy*cy lcw+vcy ); } . 

I* 
Sets [xl yl zl wl] to the result of post-multiplying the vector 
~ y z w] by the matrix 'm'. 
I 

trans_point(x,y ,z,w ,xl,yl,zl,wl) 
float x,y ,z,w, *xl, *yl,*zl, *wl; 
{ 
float x2,y2,z2,w2; 

if (!q_identity )update_m(TRUE); 
·vec_mul(x,y,z,w,&m,&x2,&y2,&z2,&w2); 
*xl = x2lw2; 
*yl = y2lw2; 
*zl = z2lw2; 
*wl = 1.0; 
} 

I* 
This procedure converts the g1ven coordinate [x y z w] to screen coordinates. 
*I 
to_screen(x,y ,z,w ,xs,ys,zs) 
float x,y ,z,w, *xs, *ys, *zs; 
{ 



/* gp.c * / 

float xl,yl,zl,wl; 
vec_mul(x,y,z,w,&m,&xl,&yl,&zl,&wl); 
*xs = (int) vsx*xl/wl+vcx; *ys = (int) vsy*yljwl+vcy; *zs zl; 
if (zl <3.0)return( -1); 
else return(O); 
} 

I* 
This procedure returns this package's idea of the current position. 
*I 
get_pos ( x,y ,z) 
float *x *y *z· 

' ' ' { 
*x = cxo; *y cyo· *z = czo· ' , 
} 

/* 
This procedure initializes the pipeline. It sets the viewport to the largest 
square that fits on the screen, sets 'm' to the identity matrix, and empties 
the 'm' stack. It must be called before any of the other procedures are used. 
*I 
pipe_init() 
{ 
int siz; 

m_stack = m_free = NULL; 
idn_transform( &m); 
update_m(F ALSE); 
show_inquire(&v); 
siz = v.xmax - v.xmin; 
if ((v.ymax-v.ymin)<siz)siz = v.ymax - v.ymin; 
seLviewport((float) v.xmin,(float) v.ymin,(float) v.xmin+siz,(float) v.ymin+siz); 
} 

vecl( a, b, c, d, e, f, g, h) 
float a, b, c, d; 
float *e, *f, *g, *h; 
{ 
register int iJ; 

#ifdef DBGVEC 
fprintf (stderr, "%f %f %f\n", a, b, c); 
#endif 

vec_mul ( a,b,c,d,&preper ,e,f,g,h); 

#ifdef DBGVEC 
for (i=O; i<4; i++) { 

for (j=O; j<4; j++) 
fprintf (stderr, "# %f ", preper.m[i][j]); 

fprintf (stderr, "\n"); 
} 

fprintf (stderr, "%f %f %f\n", *e, *f, *g); 
#endif 



*I /* gp.c 1 

} 



I* gpak.c *I 
#ifdef GRINNELL 
#include <grinnell.h> 
#include <iusconfig.h> 
#endif 

#include <stdio.h> 
I* 
#include <gp.h> 
*I 
#include "gp.h" 

#ifdef IKONAS 
#include <ikdefs.h> 
#endif 

/* This file contains all of the device dependent graphics commands. 
Additional devices may be added here as they become available. Note: 
some of these routines may not be compatible with other devices if 
the devices do not use the RGB color convention or have more than 
8 bits per primary color. *I 

/* Modified clear(} so that it generates the appropriate background color *I 
/* format for dynamic lighting . --Dh 8122182 *I 

#ifdef GRINNELL 
static int frm; 
#endif 

#ifdef IKONAS 
typedef struct 

{ 
char red; 
char green; 
char blue; 
char fill; 
} pixel; 

#endif 

/* Grinnell frame number *I 

static inquiry _response v; /* Environment information *I 
/* Initialize graphics display *I 
int initgraphics() 
{ 
#ifdef GRINNELL 
int duml,dum2,dum3; 
if (g_init(G_ VISION_IFVC)==G_GMRERROR)exit(-1); 
/* The following is a hack to make sure that the bad memory channel 

is not allocated. This can be removed if the bad chip is ever replaced. *I 
duml = g_allocfrm(G_.MAPPED,8l; dum2 = g_allocfrm(G_MAPPED,8); 
dum3 = g_allocfrm(G_MAPPED,8; 
g_freefrm(duml); g_freefrm(dum2); 
frm = g_allocfrm( G_RGB,8); /* Allocate RGB with 8 bits per primary *I 



/* gpak.c *I 

g_freefrm( dum3); 
g_chgdisp(frm); 
#endif 

I* Make Grinnell display this frame *I 

#ifdef IKONAS 
setorig(BORIG); 
#endif 
#ifdef DEBUG 
fprintf( stderr ,"Initializing graphics. \n"); 
#endif 
show _inquire( &v); 
#ifdef GRINNELL 
return(frm); 

/* Get environment information *I 

/* Return frame if needed by user of package *I 
#endif 
#ifdef RAMTEK 
openpl(); 
#endif 
} 

/* Set pixel (x,y) to color (r g b) *I 
write pixel( x,y ,r,g,b) 
int x,y ,r ,g,b; 
{ 
#ifdef GRINNELL 
g_setcpixel(frm,511-y ,x,r,g,b ); 
#endif 
#ifdef DEBUG 

.·,,-

fprintf(stderr,"Writepixel: (%d,%d) - (%d %d %d)\n" ,x,y,r,g,b); 
#endif 
} 

/* Read pixel (x,y) and return color (r g b) *I 
readpixel ( x,y ,r ,g,b) 
int x,y,*r,*g,*b; 
{ 
#ifdef GRINNELL 
g_getcpixel(frm,511-y ,x,r ,g,b ); 
#endif 
#ifdef DEBUG 
fprintf(stderr,"Readpixel: (%d,%d)\n" ,x,y); 
#endif 
} 

/* Return device characteristics *I 
show_inquire(v) 
inquiry _response *v; 
{ 
#ifdef DEBUG 
v->xmin = 0; 
v->ymin = 0; 
v->xmax = 511; 
v->ymax = 511; 
v->imax = 255; 
v->xadjust = 1.0; v->yadjust = 1.0; 
#endif 



/* gpak.c *I 

#ifdef GRINNELL 
v->xmin = 0; 
v->ymin = 0; 
v->xma.x = 511; 
v->yma.x = 511; 
v->ima.x = 255; 
v->xadjust = 1.0; v->yadjust = 1.0; 
#end if 
#ifdef IKONAS 
v->xmin = 0; 
v->ymin = 0; 
v->xma.x = 511; 
v->yma.x = 511; 
v->ima.x = 255; 
v->xadjust = 1.0; 
v->yadjust = 1.0; 
#endif 
#ifdef RAMTEK 
v->xmin = 0; 
v->ymin = 0; 
v->xma.x = 1023; 
v->yma.x = 1023; 
v->ima.x = 255; 
v->xadjust = 1.0; 
v->yadjust = 1.0; 
#end if 
} 

/* Draw a line from (x1,y1) to (x2,y2) *I 
show_line(x1,y1,x2,y2) 
float x1,y1,x2,y2; 
{ 
#ifdef GRINNELL 

:t :''~~tblx:J;; 
ay = int (511-y1); 
bx = int x2; 
by = int (511-y2); 
g_linedraw(frm,ay ,ax, by ,bx); 
#endif 
#ifdef DEBUG 
fprintf(stderr,"Line from (%d,%d) to (%d, %d) \n" ,(int )x1,(int )y1,(int )x2,(int )y2); 
#endif 
} 

/* Erase the screen * / 
show_erase() 
{ 
#ifdef GRINNELL 
g_ersfrm(frm); 
#endif 
#ifdef DEBUG 
fprintf ( stderr ,"Erasing screen. \n"); 
#endif 



I* gpalcc * I 

#ifdef RAMTEK 
erase(); 
#endif 
} 

/* Set portion of scan line y from xl to x2 to color ( r g b) *I 
hline(y ,xl,x2,r,g,b) 
int y ,xl,x2,r,g,b; 
{ 
#ifdef IKONAS 
pixel pbuf[512]; 
int i; 

for (i=xl; i<=x2; i++) 
{ 
pbuf i .red = r; 
pbuf i .green = g; 
pbuf i .blue = b; 
} 

ikpwrite( &pbuf[x1],4*sizeof(char) *(x2-xl + 1) ,xl,y); 
#endif 
#ifdef GRINNELL 
g_setcblkpix(frm,511-y ,511-y ,xl,x2,r,g,b); 
#endif 
#ifdef DEBUG 
fprintf(stderr,"hline: Line %d from %d to %d in (%d %d %d) \n" ,y ,xl ,x2,r,g,b); 
#endif 
#ifdef RAMTEK 
ram_color(r,g,b); 
box(xl,y ,x2,y); 
#endif 
} 

/* Set scan line y using supplied arrays *I 
write_raster(y ,rarray ,garray ,barray) 
int y; 
char *rarray, * garray, *barray; 
{ 
#ifdef IKONAS 
pixel pbuf[512]; 
int i; 

for (i=O; i<512; i++) 
{ 
pbuf i .red = rarray[i]; 
pbuf i .green = garrayli]; 
pbuf i .blue = barray[i ; 
} 

ikpwrite(pbuf,sizeof(pixel) *512,0,y); 
#endif 
#ifdef GRINNELL 
g_blkcset (frm,511-y ,511-y ,0,511,rarray ,garray ,barray); 
#endif · 
#ifdef DEBUG 



I* gpak.c • I 

fprintf(stderr,"setting raster %d\n" ,y); 
#endif 
} 

/* Set portion of scan line y from xl to x2 using supplied arrays *I 
segment (y ;xl;x2,rarray ,garray ,barray) 
int y ;xl;x2; 
char *rarray, * garray, *barray; 
{ 
#ifdef IKONAS 
pixel pbuf[512]; 
int i; 
#m~ .. 
#ifdef GRINNELL 
g_blkcset(frm,511-y ,511-y ;xl;x2,&rarray[xl] ,&garray[xl] ,& barray [xl]); 
#endif 
#ifdef IKONAS 
for (i=xl; i<=x2; i++) 

{ 
pbuf i .red = rarray[i]; 
pbuf i .green = garrayli]; 
pbuf i .blue = barray[i ; 
} 

ikpwrite( &pbuf[x1],4*sizeof( char) *(x2-xl + 1) ;xl,y); 
#endif 
#ifdef DEBUG 
fprintf(stderr,"Setting raster %d from (%d to %d)\n" ,y;xl,x2); 
#endif 

.} 

/* Read scan line y into supplied arrays *I 
read_raster(y ,rarray ,garray ,barray) 
int y; 
char *rarray, *garray, *barray; 
{ 
#ifdef GRINNELL 
g_blkcget (frm,511-y ,511-y ,0,511,rarray ,garray ,barray); 
#endif 
#ifdef DEBUG 
fprintf(stderr,"Reading raster %d\n" ,y); 
#endif 
} 

/* Clear screen using specified color *I 
clear(r,g,b) 
int r,g,b; 
{ 
int colorformat; /* used to re--format color for dynamic lighting - dh *I 
#defme CUTOFF! 42 /* cutoff of desired intensities at 1/6 of max. *I 
#defme CUTOFF2 128 /* cutoff of desired intensities at 3/6 of max. *I 
#defme CUTOFF3 213 /* cutoff of desired intensities at 5/6 of max. *I 
#ifdef IKONAS 
face *f· 
I* , 



I* . gpak.c *I 

pixel pbuf[512]; 
int i; 

for (i=O; i<512; i++) 
{ 
p buffi .red = r; 
pbuf i .green = g; 
pbuf[i .blue = b; 
} 

for (i=O; i<512; i++) 
ikpwrite(pbuf,sizeof(pbuf) ,O,i); 

*I I* fast polygon fill is faster than method above *I 
f = (face *)malloc(sizeof(face)H*sizeof(point)); 
f->v list 0 .sx = 0.0; 
f->vlist 0 .sy = 0.0; 
f->vlist 1 .sx = 0.0; 
f->vlist l.sy = 511.0; 
f->vlist 2 .sx = 511.0; 
f->vlist 2 .sy = 511.0; 
f->vlist 3 .sx = 511.0; 
f->vlist,3 .sy = 0.0; 
f->num = 4; 

/* Change r, g, and b to appropriate format for dynamic lighting - db 8122182 *I 
/* Re-format the color and store it in the green byte *I 
if (r < CUTOFF!) colorformat = 0; 
else if (r < CUTOFF2l colorformat = 1; 
else if (r < CUTOFF3 colorformat = 2; 
else colorformat = 3; 
if (g < CUTOFF!); 
else if (g < CUTOFF2l co]orformat = colorformat + 4; 
else if (g < CUTOFF3 co]orformat = colorformat + 8; 
else colorformat = colorformat + 12; 
if (b < CUTOFF!); 
else if (b < CUTOFF2l colorformat = colorformat + 16; 
else if (b < CUTOFF3 colorformat = colorformat + 32; 
else colorformat = colorformat + 48; 
r = 0; /* normal is stored in red byte - Joe. 0 represents background *I 
g = colorformat; /* reformatted color info. is stored in green byte *I 
b = 0; /* blue byte is unused - set it to zeros *I 

po_ write( r ,g,b,f); 
free( f); 
#end if 
#ifdef GRINNELL 
g_setc blkpix( frm,511,0,0,511 ,r ,g,b); 
#endif 
#ifdef DEBUG 
fprintf(stderr ,"Clearing screen \n"); 
#endif 
#ifdef RAMTEK 
ra.m.__color(r,g,b); 
box(O,O,l023,1023); 



j* gpak.c *I 

#endif 
} 

/* Set a rectangular area on screen to ( r g b) *I 
set_ block (xl,yb,xr,yt,r ,g, b) 
int xl,yb,xr,yt,r,g,b; 
{ 
#ifdef GRINNELL 
g_setc blkpix(frm,511-yt,511-y b,xl,xr,r,g, b); 
#endif 
#ifdef DEBUG 
fprintf(stderr,"Setting block: xl=%d yb=%d xr=%d yt=%d to (%d %d %d)\n" ,xl,yb,xr,yt,r,g,l 
#endif 
} 



/* init.c *I 

I* 
#include <gp.h> 
*I 
#include "gp.h" 
#include <math.h> 
#include <signal.h> 

/* This file contains the initialization procedure for graphics package. *I 
/* Modified to include call to read in normal table - dh 8121182 *I 

/* Main initialization call *I 
int init() 
{ 
int frm,handler(); 
inquiry _response v; 
char st[ 132]; 

init_shade(); 
frm = initgraphics(); /* Initialize Grinnell *I 
show _inquire( &v); /* Get display characteristics *I 
clipwindow( (float )v .xmin,(float )v .xma.x,(float )v .ymin,(float )v .yma.x); 
set_smooth(F ALSE); . /* Default to no smooth shading *I 

set_color 0,255,0); /* Make green default color *I 
pipe_init~); /* Initialize matrix package *I 
/* signal SIGQUIT,handler); *I /* Catch quits so that when making 

a movie we have some way to 
temporarily halt the program if 
someone turns on the lights! *I 

normlinit(); 
return(frm); 

/* read in table of 254 "ideal" normals *I 

} 

/* Interrupt handler *I 
handler() 
{ 
char c; 

signal( SIGQUIT ,handler); 
printf(" Do you really wish to quit? "); 
scanf("%c" ,&c); 
if (c=='y')exit(-1); 
} 



/* clip.c *I 

I* 
#include <gp.h> 
*I 
#include "gp.h" 

/* Modified version of Bob Ron's routines *I 

!* package to clip a polygon against a window 
*I 

stat ir point 
lfil'l' t ,rfirst , tfirst, b first , 
lsave,rsave,bsave,tsave; 

/* first pts *I 
/* prev pts *I 

static float left,right,bottom,top; /* window to clip against *I 

static char lflag,rflag,tflag,bflag; 

static unsigned int vcount; 

static face *ans· 
' 

clipwindow(I,r ,b,t) 
float l,r,b,t; 
{ 

} 

left = I; 
right = r; 
bottom = b; 
top = t; 
return(O); 

fa:ce *clippoly(f) 
face *f· 

' { 
unsigned int i; 

lflag = rflag = bflag = tflag = 1; 
if (f >num < 3) return(O); 
if ((ans = (face *) malloc(2*f->num*sizeof(point)+sizeof(face)))==O)return(O); 

vcount = 0; 
for (i = 0; i < f->num; i++) clipleft(f->vlist[i]); 
fmish(); 
ans->num = vcount; 
ans->smooth = f->smooth; 
ans->red = f->red; 
ans->green = f->green; 
ans->blue = f->blue; 
ans->bred = f->bred; 
ans->bgreen = f->bgreen; 



/* clip.c * / 

} 

ans->bblue = f->bblue; 
return(ans); 

static clip left (p) 
point p; 
{ 

} 

if (lflag) 
{!save = p; !first = p; !flag = 0;} 

else 
{if ( (Isave.sx < left && p.sx > left) II 

(lsave.sx > left && p.sx < left)) 
{point temp; 

float alpha; 
alpha = ((float) (lsave.sx - left))/(float) (lsave.sx - p.sx); 
temp.sx = left; temp.sy = (lsave.sy + alpha*(p.sy-:-lsave.sy)); 
temp.sz = lsave.sz + alpha* (p.sz-lsave.sz); 
cliptop( temp); 

} 
!save = p; 

} 
if (lsave.sx >= left) cliptop(lsave); 

static cliptop(p) 
point p; 
{ 

} 

if (tflag) 
{ tsave = p; tfirst = p; tflag = 0;} 

else 
{if ((tsave.sy < top && p.sy > top) II 

(tsave.sy > top && p.sy < top)) 
{point temp; 

float alpha; 
alpha = ((float) (tsave.sy - top))/(float) (tsave.sy - p.sy); 
temp.sx = (tsave.sx + alpha*(p.sx-tsave.sx)); temp.sy = top; 
temp.sz = tsave.sz + alpha* (p.sz-tsave.sz); 
clipright (temp); 

} 
tsave = p; 

} 
if (tsave.sy <= top) clipright(tsave); 

static clipright (p) 
point p; 
{ 

if (rflag) 
. {rsave = p; rfirst = p; rflag = 0;} 
else 

{if ( (rsave.sx < right && p.sx > right) II 
(rsave.sx > right && p.sx < right)) 

{point temp; 
float alpha; 



/* clip.c * / 

} 

alpha = ((float) (rsave.sx ·· right))/(float) (rsave.sx - p.sx); 
temp.sx = right; temp.sy = (rsave.sy + alpha*(p.sy-rsave.sy)); 
temp.sz = rsave.sz + alpha*(p.sz-rsave.sz); 
clipbot(temp); 

} 
rsave = p; 

} 
if (rsave.sx <= right) clipbot(rsave); 

static clipbot(p) 
point p; 
{ 

} 

if (bflag) 
{bsave = p; bfiTSt = p; bflag = 0;} 

else 
{if ((bsave.sy < bottom && p.sy > bottom) II 

(bsave.sy > bottom && p.sy < bottom)) 
{point temp; 

float alpha; 
alpha = ((float) (bsave.sy - bottom))/(float) (bsave.sy - p.sy); 
temp.sx = (bsave.sx + alpha*(p.sx-bsave.sx)); temp.sy = bottom; 
temp.sz = bsave.sz + alpha*(p.sz-bsave.sz); 
send(temp); . 

. } 

} 
bsave = p; 

if (bsave.sy >= bottom) send(bsave); 

static fmish() 
{ 

float alpha; 
point temp; 

if (!tflag && ((lsave.sx < left) && (lfiTSt.sx > left) II 
. (lsave.sx > left) && (lfiTSt.sx < left))) 

{alpha = ((float) (lsave.sx - left))/(float) (lsave.sx - Jfirst.sx); 
temp.sx = left; temp.sy = (Jsave.sy + alpha*(lfirst.sy-lsave.sy)); 
temp.sz = lsave.sz · + alpha* (lfrrst.sz-lsave.sz); 
cliptop(temp); 

} . 

if ( !rflag && ( ( tsave.sy < top) && ( tfirst.sy > top) II 
(tsave.sy > top) && (tfiTSt.sy < top))) 

{alpha = ((float) (tsave.sy - top))/(float) (tsave.sy - tfirst.sy); 
temp.sx = (tsave.sx + alpha*(tfirst.sx-tsave.sx)); temp.sy = top; 
temp.sz = tsave.sz + alpha*(tfirst.sz-tsave.sz); 
clipright(temp); 

} 
if ( !bflag && ((rsave.sx < right) && (rfrrst.sx > right) II 

( rsave.sx > right) && ( rfirst.sx < right))) 
{alpha = ((float) (rsave.sx - right))/(float) (rsave.sx - rfirst.sx); 

temp.sx = right; temp.sy = (rsave.sy + alpha*(rfirst.sy-rsave.sy)); 
temp.sz = rsave.sz + alpha* ( rfirst.sz-rsave.sz); 



/* clip.c *I 

} 

clip bot (temp); 
} 

if ( vcount != 0 && ((bsave.sy < bottom) && (bfrrst.sy > bottom) II 
(bsave.sy > bottom) && (bfirst.sy < bottom))} 

{alpha = ((float) (bsave.sy - bottom)) I (float (bsave.sy - bfrrst.sy); 
temp.sx = (bsave.sx + alpha*(bfrrst.sx-bsave.sx) ; temp.sy = bottom; 
temp.sz = bsave.sz + alpha*(bfrrst.sz-bsave.sz); 
send( temp); 

} 

static send(p) 
point p; 
{ 

} 

if (vcount != 0) 
if ((ans->vlist[vcount-l].sx == p.sx) && (ans->vlist[vcount-l].sy 

ans->vlist[vcount++] = p; 
p.sy)) return; 



/* hidden.c *I 

I* 
#include <gp.h> 
*I 
#include "gp.h" 
#include <math.h> 
#include <stdio.h> 
#defme VERSION 2.0 

/* This file contains all of the routines associated with the hidden 
surface algorithm. This package uses an algorithm presented by 
Fuchs, et al. at SIGGRAPH '80. See the conference· 'proceedings for 
more info. *I 

#defme EPSILON .05 

I* List element record *I 
typedef struct listeLstruct 

{ 
face *f· 

' struct listel_,struct *next; 
} listel; 

/* Head of list record *I 
typedef struct 

{ 
int count; 
listel *pointer; 
} head; 

static head main; 
static node *root = NULL; /* Pointer to root of binary tree *I 
static boolean tree built = FALSE; 
static int input =0; /* Polygon counts * / 
static int total =0; 
static FILE *fd; 
static int file; 
static int testnum; 

static float ex,ey ,ez; /* Viewpoint (eye position) *I 
/* Test whether or not "clipf" will split source *I 
boolean willsplit( clipf,source) 
face * clipf, *source; 
{ 
boolean intersect,positive,negative; 
float *val; 
point *v; 
int i; 

intersect = positive = negative = FALSE; 
/* Allocate an array of floats - one for each vertex *I 
val = (float *)malloc(source->num*sizeof(float)); 



I* hidden.c *I 

for (i=O; i<source->num; i++) 
{ 
v = &source->vlist[i]; 
/* Compute distance (positive or negative) from clipping plane *I 
val[i] = v->x*clipf->ni + v->y*clipf->nj + v->z*clipf->nk + v->w*clipf->d; 
/* Determine whether this vertex lies on positive side, negative side, 

or within splitting plane *I . 
if (fabs(val/iJ)<EPSILON)val[i] = 0.0; 
else if (val i >O.O)positive = TRUE; 
else negative = TRUE; 
if (positive && negative) 
{ 
intersect = TRUE; 
break; 

f 
free(val); 
return(intersect); 
} 

I* This routine uses polygon 'clipf' to potentially split polygon 'source' 
into two polygons, 'pos' and 'neg'. If the source polygon lies 
entirely on one side of the clipping polygon, then either 'pos' or 
'neg' will be set to NULL. * j 

split( clipf,source,pos,neg) 
face *clipf *source **pos **neg· 

' ' ' ' { 
int i,siz,negcount,poscount; 
face *fpos,*fneg; 
boolean intersect,positive,negative; 
point new,*prev,*curr,*v; 
float alpha,one_minus_alpha, *val,val2; 

intersect = positive = negative = FALSE; 
/* Allocate an array of floats - one for each vertex *I 
val = (float *)malloc(source->num*sizeof(float)); 
for (i=O; i<source->num; i++) 

{ 
v = &source->vlist[i]; 
/* Compute distance (positive or negative) from clipping plane *I 
val[i] = v->x*clipf->ni + v->y*clipf->nj + v->z*clipf->nk + v->w*clipf->d; 
/* Determine whether this vertex lies on positive side, negative side, 

or within splitting plane *I 
if (fabs(val/iJ)<EPSILON)val[i] = 0.0; 
else if (val i >O.O)positive = TRUE; 
else negative = TRUE; 
/* Source plane must intersect splitting plane (vertices lie on opposite sides.) *I 
if (positive && negative)intersect = TRUE; 
} 

if (!intersect) /* No intersection - this makes things easy *I { . 

if (positive) 

J• Source lies entirely on positive side of clipping plane *I 



I* hidden.c *I 

*pas = source; 
*neg = NULL; 
} 
else 

J* Source lies entirely on negative side of clipping plane *I 
*neg = source; 
*pas = NULL; 
} 
free( val); 
return; 

. I* Release space allocated for val array *I 
/* All done! *I 

} 
siz = sizeof(face) + ((3*source->num)l2)*sizeof(point); 
/* Allocate new face structures for the two new polygons *I 
fpas = (face *)malloc(siz); 
fneg = (face *)malloc(siz); 
*pas = fpas; 
*neg = fneg; 
pascount = negcount = 0; 
prev = &source->vlist[source->num-1]; 
val2 = val[source->num-1]; 
for (i=O; i<source->num; i++) 

{ 
curr = &source->vlist[i]; . 
/* If this vertex is in splitting plane, copy to both polygons *I 
if (val[i]==O.O) 
{ 
fneg->vlistfnegcount++J = *curr; 
fpas->vlist pascount++] - *curr; 
} 
else if (val[i]<O.O) 

)• If this vertex is on negative side and previous was also 
on negative side, copy to negative polygon. *I 

if (val2 <= O.O)fneg->vlist[negcount++] = *curr; 
/* If this vertex is on negative side and previous was on 

positive side, we must compute intersection and copy 
to both polygons. Include this vertex in negative polygon. *I 

else 
{ 
alpha = val[i]l(val[i]-val2); 
one_minus_alpha = l.G-alpha; 
new.x = one_minus_alpha*curr->x + alpha*prev->x; 
new.y = one_minus_alpha*curr->y + alpha*prev->y; 
new.z = one_minus_alpha*curr->z + alpha*prev->z; 
new.w = one_minus_alpha*curr->w + alpha*prev->w; 

#ifdef SMOOTH 
if (source->smooth) 

#endif 

{ 
new.ni = one_minus_alpha*curr->ni + alpha*prev->ni; 
new.nj = one_minus_alpha*curr->nj + alpha*prev->nj; 
new.nk = one_minus_alpha*curr->nk + alpha*prev->nk; 
} 



/* hidden.c *I 

} 
else 

fneg->vlistfnegcount++J 
fneg->vlist negcount++ 
} 

fpos->vlist[poscount++] -
*curr; 

new; 

}• If this vertex is on the positive side and previous was also 
on positive side, copy to positive polygon. *I 

if (val2 >= O.O)fpos->vlist[poscount++] = *curr; 
/* If this vertex is on positive side and previous was on 

negative side, we must compute intersection and copy 
to both polygons. Include this vertex in positive polygon. *I 

else 
{ 
alpha = val[i]l(va![i]-val2); 
one_minus_alpha = 1.0-alpha; 
new.x = one_rninus_alpha*curr->x + alpha*prev->x; 
new.y = one_minus_alpha*curr->y + alpha*prev->y; 
new.z = one_minus_alpha*curr->z + alpha*prev->z; 
new.w = one_minus_alpha*curr->w + alpha*prev->w; 

#ifdef SMOOTH 
if (source->smooth) 

{ . 
new.ni = one_minus_alpha*curr->ni + alpha*prev->ni; 
new.nj = one_rninils_alpha*curr->nj + alpha*prev->nj; 
new.nk = one_minus_alpha*curr->nk + alpha*prev->nk; 
} 

#endif 

} 

fneg->vlistlnegcount++] = fpos->vlist[poscount++] 
fpos->vlist poscount++f = *curr; · 
} 

prev = curr; 
val2 = val[i]; 

new; 

} 
if (negcount <= 2) 

{ 
I* Degenerate source polygon *I 

else 

free(fneg); 
*neg = NULL; 
} 

{ 
fneg->num = negcount; 
I* Information from source polygon must be copied to new polygon. *I 
fneg->red = source->red; 
fneg->green = source->green; 
fneg->blue = source->blue; 
fneg->bred = source-> bred; 
fneg->bgreen = source->hgreen; 
fneg->bblue = source->bblue; 
fneg->smooth = source->smooth; 
fneg->ni = source->ni; 
fneg->nj = source->nj; 
fneg->nk = source->nk; 



/* hidden.c *I 

fneg->d = source->d; 
/* 

printf("Negative side:\n"); 
if (negcount>2)for (i=O; i<negcount; i++) 
printf(" neg[%d]= (%f, %f ,%f, %f) \n" ,i,fneg->v list[i].x,fneg->vlist[i].y ,fneg.v},vlist [i].z,fneg->vlist 

*I 
} 

if (poscount <= 2) 
{ 

/* Degenerate source polygon *I 

else 

/* 

*I 

free(fpos); 
*pos = NULL; 
} 

{ 
fpos->num = poscount; 
/* Information from source polygon must be copied to new polygon. *I 
fpos->red = source->red; 
fpos->green = source->green; 
fpos->blue = source->blue; 
fpos->bred = source->bred; 
fpos-> bgreen = source-> bgreen; 
fpos->bblue = source->bblue; 
fpos->smooth = source->smooth; 
fpos->ni = source->ni; 
fpos->nj = source->nj; 
fpos->nk = source->nk; 
fpos->d = source->d; 

printf("Positive side:\n"); 
if (poscount>2)for (i=O; i<poscount; i++) · 
printf(" pos[%d]=(%f, %f ,%f ,%f) \n" ,i,fpos->vlist[i].x,fpos->vlist[i].y ,fpos~},v list[i].z,fpos->vlist[i 

}. 
I* If this package is used for animation, program size will grow 

considerably if we don't free source polygon here. The problem 
is, there is no way to know if the user of this package will 

· still need this polygon. *I 
free (source) ; 
free(val); 
} 

/* Insert the given face into the specified polygon list *I 
insert ( f ,listh) 
face *f; 
head *Iisth; 
{ 
listel *I; 

if (f) 
{ 
listh->count++; 
I = (Iistei *)malloc(sizeof(Iistei) ); 
]->next = Iisth->pointer; 
listh->pointer = I; 



/* hidden.c *I 

1->f = f; 

} 
} 

/* Save the polygon for later tree building *I 
tree_enter(f) 
face *f· 
{ ' 
insert(f,&main); 
input++; 
} 

/* Choose a good polygon for this node in tree *I 
/* The method used below is to check several polygons at random 

do see which splits the fewest polygons. This method is not 
optimal but seems to work very well. * / 

listel *choose(h) 
head *h; 
{ 
listel *p,*next,*choice; 
int *splitcount; 
boolean *checked; 
int scount[5001; 
boolean check 500]; 
int i,j ,count,min,num,random; 

if (h->count>500) 
{ 

else 

splitcount = (int *)malloc(h->count*sizeof(int)); 
checked = (boolean *)malloc(h->count*sizeof(boolean)); 
} 

{ 
splitcount = scount; 
checked = check; 
} 

for (i=O; i<h->count; i++ )checked[i] FALSE; 
min = 999999; 
choice = h->pointer; 
num = testnum; 
if (num==O II num>h->count)num h->count; 
for (i=O; i<num; i++) 

{ 
if (num!=h->count) do random rand()%h->count; while (checked[random]); 
else random = i; 
checked[random] = TRUE; 
p = h->pointer; 
next = h->pointer; 
for (j=O; j<random; j++)next - next->next; 
count = 0; 
while (p!=NULL) 
{ 
if (next!=p)if (willsplit(next->f,p->f))count++; 
p = p->next; 



I* hidden.c *I 

} 
splitcount[i] = count; 
if ( count<min) 
{ 
min = count; 
choice = next; 
} 
if (count==O)break; 

/* } 
printf("Entries=%d min=%d\n" ,h->count,min); 
*I 
if {h->count>500) 

{ 
free{ splitcount); 
free( checked); 
} 

return{ choice); 
} 

/* Build a BSP tree for stored polygon list *I 
build{) 
{ 
char s[30]; 
int seed; 

treebuilt = TRUE; 
· testnum = 5; 
/* Number of polygons to check at each node *I 
fprintf{stderr,"Enter number of polygons to check [%d]: ",testnum); 
if (gets{s)&&s[O]) 

sscanf(s,"%d" ,&testnum); 
seed = 0; 
/* Seed for random number generator *I 
fprintf(stderr,"Enter seed [%d]: ",seed); 
if (gets(s)&&s[O]) 

sscanf(s,"%d" ,&seed); 
srand (seed) ; 
fprintf(stderr,"Building tree ... "); 
buildtree( &root,&main); 
fprintf(stderr," done\n"); 
fprintf(stderr,"Seed: %d Test: %d In: %d Out: %d Ratio: %.2f\n" ,seed,testa~tlJ;(floa 
} 

/* Build a tree returning pointer in tree using polygons pointed to by h *I 
buildtree(tree,h) 
node **tree; 
head *h; 
{ 
listel *choice,*p,*temp; 
head *poshead, *neghead; 
face *pos, *neg; 

*tree = (node *)malloc(sizeof(node)); 



I* hidden.c *I 

(*treeJ->pos NULL; 
(*tree ->neg = NULL; 
poshead = (head *)malloc(sizeof(head)); 
neghead = (head *)malloc(sizeof(head)); 
poshead->count = neghead->count = 0; 
poshead->pointer = neghead->pointer NULL; 
choice = (listel *)choose(h); 
(*tree)->f = choice->f; 
total++; 
p = h->pointer; 
while (p!=NULL) 

{ 
if (p!=choice) 
{ 
split( choice->f,p-->f,&pos,&neg); 
insert(pos,poshead); 
insert ( neg,neghead); 
} 
temp = p; 
p = p-->next; 
if ( temp!=choice )free( temp); 
} 

free(h); free(choice); 
if (poshead->coilnt) buildtree ( & ((*tree)-> pas) ,poshead); 
if ( neghead->count) buildtree( &((*tree)->neg) ,neghead); 
} 

/* Traverse this tree in back to front order based on eye position. *I 
back_to_front( tree) 
node *tree; 
{ 
face *f· , 

if (tree) 
. { 

· f = tree->f; 
/* If eye is on positive side of this face, then recursively traverse 

negative subtree, dr11w this face, and recursively traverse 
positive subtree. *I 

if ((f->ni*ex + f->nj*ey + f->nk*ez + f->d)>O.O) 
{ 
back_to_front( tree->neg); 
draw(f); 
back_to_front(tree->pos); 
} 
j* If eye is on negative side of this face, then recursively traverse 

positive subtree, draw this face, and recursively traverse 
negative subtree. *I 

else 
{ 
back_to_front(tree->pos); 
draw( f); 
back_to_front(tree->neg); 
} 



/* hidden.c *I 

} 
} 

/* Get eye position then traverse entire binary tree. *I 
travers-e() 
{ 
if [!treebuilt && input)build(); 
if input)fprintf(stderr,"In: %d Out: %d Ratio: %.2f\n" ,input,total,(float)totall(float)input); 
if !input)fprintf(stderr,"%d polygons.\n",total); 
get_ eye( &ex,&ey ,&ez); 
back_to_front(root); 
} 

/* Free up space used by entire binary tree *I 
free_ all() 
{ 
free_tree(root); 
root = NULL; 
input = 0; total = 0; 
} 

/* Free up space used by given binary tree *I 
static free_tree(t) 
node *t· 

' { 
if (t) 

{ 
free tree(t->pos); 
free_tree(t->neg); 
free(t->f); 
free(t); 
} 

} 

/* Dump tree information in ASCII *I 
adump_data() 
{ 
long t; 
char s[l32]; 

fprintf(stderr,"Enter ascii tree file name: "); 
scanf("%s" ,s); 
getchar(); 
fd = fopen(s,"w"); 
if (fd==NULL) 

{ 
fprintf(stderr,"Cannot write file\n"); 
return; 
} 

t = time(O); 
fprintf(fd,"; Created by AGP Version %.lfe on %s" ,VERSION,ctime(&t)); 
fprintf(fd,"; This file contains %d polygons, created from %d polygons. \n" ,total,input); 
do 

{ 



/* hidden.c *I 

fprintf( stderr ,"Enter comment: "); 
if (gets(s)&&s[O])fprintf(fd,"; %s\n" ,s); 
} 

while (s[O]); 
aout_tree{root); 
fclose(fd); 
} 

/* Dump tree information to file *I 
static aout_tree(tree) 
node *tree; 
{ 
int i; 
float w; 

if (tree) 
{ 
fprintfffd,"%d %d\n" ,(tree->pos ? l:O),(tree->neg ? 1:0)); 
fprintf fd,"%d %d %d %d\n" ,tree->f->num,tree->f->red,tree->f->glitf;tir;&ed;t;fOO>blfie:;tl: 
fprintf fd,"%f %f %f %f\n" ,tree->f->ni,tree->f->nj,tree->f->nk,tree->f->d); 
for (i=O; i<tree->f->num; i++) 
{ 
w = tree->f->vlist[i].w; 
fprintf(fd,"%f %f %f\n" ,tree->f:->vlist[i].xlw,tree->f->vlist[i].y lw, 

· tree->f->vlist[i].zlw); 
} 
aout_tree(tree->neg); 
} 

aout_tree( tree->pos ); 

} 

/* Read in a tree stored in ASCII *I 
aread_data() 
{ 
char s[70]; 

fprintf(stderr,"Enter ascii tree file name: "); 
scanf (" %s" ,s); 
getchar(); 
fd = fopen(s,"r"); 
if (fd==NULL) 

{ 
fprintf(stderr,"Cannot open file\n"); 
return; 
} 

free_all(); 
ain_tree(&root); 
close(fd); 
} 

/* Read in ASCII tree information *I 
static ain_tree( t) 
node **t· 
{ ' 
int pos,neg; 



/* hidden.c *I 

int red,green,blue,bred,bgreen,bblue,nverts,i; 
face *f; 
char s[132]; 

reads(s); 
sscanf(s,"%d %d" ,&pos,&neg); 
reads(s); 
sscanf(s,"%d %d %d %d" ,&nverts,&red,&green,&blue,&bred,&bgreen,&bblue); 
f = (face *)ma!loc(sizeof(face)+nverts*sizeof(point)); 
f->red = red; f->green = green; f->blue = blue; 
f->bred = bred; f->bgreen = bgreen; f->bblue = bblue; 
total++; 
reads(s); 
sscanf(s,"%f %f %f %f',&f->ni,&f->nj,&f->nk,&f->d); 
f->num = nverts; 
for (i=O; i<nverts; i++) 

{ 
reads(s); 
sscanf(s,"%f %f %f" ,&f->vlist[i].x,&f->vlist[i].y,&f->vlist[i].z); 
f->vlist[i].w = 1.0; 
} 

*t = (node *)malloc(sizeof(node)); 

~
*t~->f = f; . 
*t ->pas = NULL; 
*t ->neg = NULL; . 

if (neg)ain_tree(&(*t)->neg);. 
if (pos)ain_tree(&(*t)->pos); 
} 

/* Dump tree information in binary to a file *I 
dump_data() 
{ 
char s[132]; 

if (!treebuilt)build(); 
fprintf( stderr ,''Enter binary tree file name: "); 
scanf(" %s" ,s); 
getchar(); 
file = creat ( s,0644); 
if (file==-I) 

{ 
fprintf(stderr," Cannot write file \n"); 
dump_data(); 
return; 
} 

out_ tree( root); 
close (file); 
} 

/* Output binary tree information to file *I 
static out_tree(tree) 
node *tree; 
{ 
int i; 



/* hidden.c *I 

if (tree) 
{ 
write( file,&tree->pos,sizeof( tree->pos) ); 
write(file,&tree->neg,sizeof( tree->neg)); 
i = sizeof(face)+tree->f->num*sizeof(point); 
write(file,&i,sizeof(i)); 
write(file,tree->f,i); 
out_tree(tree->pos); out_tree(tree->neg); 

} } 

/* Read binary tree information from file *I 
read_ data() 
{ 
char s[70]; 

fprintf(stderr,"Enter binary tree file name: "); 
scanf(" %s" ,s ); 
getchar(); 
file = open(s,O); 
if (file==-1) 

{ 
fprintf(stderr,"Cannot open file\n"); 
read_data(); 
return; 
} 

free_all(); 
in_ tree( &root); 
close( file); 
} 

/* Read in tree information * / 
static in_tree(t) 
node **t; 
{ . 

node *pos, *neg; 
int i; 
face *f· , 
char s[ 132]; 

read[file,&pos,sizeof(pos) g 
read file,&neg,sizeof(neg)); 
read file,&i,sizeof(i)); 
f = (face *)malloc(i); 
read(file,f,i); 
total++; 
*t = (node *)malloc(sizeof(node)); 

[ *t~->f = f; 
*t ->pos = NULL· 
*t ->neg = NULL; 

if (pos)in_tree(&(*t)->pos); 
if· (neg)in_tree(&(*t)->neg); 
} 



/* hidden.c * / 

static reads( s) 
char *s; 
{ 
do fgets(s,132,fd); while (s[O]==';'); 
} 



I* movie.c *I 

I* 
#include <gp.h> 
*I 
#include "gp.h" 
#include <stdio.h> 
#include <math.h> 

I* This file contains the routines for interactively specifying a 
view of the current scene. Once the necessary information is 
specified it calls the hidden surface module to traverse the BSP tree. *I 

#define EPSILON .000001 

/* Creates matrix which converts to eye's coordinate system and performs 
the perspective transformation. Note: this routine always orients 
the object so that positive Z is up. This may cause problems if one 
attempts to use it for animation. *I 

view( ex,ey ,ez,cx,cy ,cz,scl) 
float ex,ey ,ez,cx,cy ,cz,scl; 
{ 
transform t; 
float phi, theta,xdiff ,ydiff ,zdiff ,dist; 

xdiff = ex--ex; ydiff = ey--cy; zdiff = ez--cz; 
idn_transform( &t); 
set_m(&t); 
translate( --ex,--ey ,--ez); . 
if ( (fabs(xdiff)> EPSILON) !!(fabs(ydiff)> EPSILON)) 

{ 
rotate(XAXIS,PI/2.0); 
dist = sqrt(xdiff*xdiff + ydiff*ydiff); 
if (ydiff < O)theta = asin(-xdiffldist); 
else theta = asin(xdiff I dist) + PI; 
rotate(YAXIS,-theta); 
phi = (float) atan((double) (zdiffldist)); 
rotate(XAXIS,-phi); 
} 

else rotate(XAXIS,PI); 

I* save pre-perspective transformation *I 
save_preper(); 

scale(scl,scl,-1.0); 
per_transform( (float) atan( (double )0.25) ,O.O,O.O,&t); 
concatenate( &t); . 
set_camera(); 
idn_transform(&t); set_m(&t); 
} 

I* Ask user for view information *I 
movie() 
{ 



/* movie .c * / 

float ex,ey ,ez,cx,cy,cz,lx,ly ,lz,scl; 
float a,d,sp; 
char s[128]; 
int r,g,b; 

sci = 1.0; ex = cy = cz = 0.0; 
ex = 100.0; ey = 150; ez = ZOO; 
r = -1; g = b = 255; 
a = 20.0; sp = 0.0; d = 80.0; 
for (;;) 

{ 
fprintf(stderr,"Viewpoint [%.2f %.2f %.2f]: ",ex,ey,ez); . 
if (gets(s)&&s[O]) 
sscanf( s," %f %f %f" ,&ex,&ey ,&ez); 
fprintf(stderr,"Center point [%.2f %.2f %.2f]: ",cx,cy,cz); 
if (gets(s)&&sro]) 
sscanf(s,"%f %f %f" ,&cx,&cy,&cz); 
if ((ex==cx)&&(ey==cy)&&(ez==cz))retum; 
fprintf(stderr,"Scale factor [%.2f]: ",sci); 
if (gets(s)&&s[O]) 
sscanf(s,"%f" ,&sci); 
1x = ex; ly = ey; lz = ez; 

#ifdef ERICSTUFF 
fprintf(stderr,"Light position [%.2f %.2f %.2f]: ",lx,ly,lz); 
if (gets(s)&&s[O]) 
sscanf(s,"%f %f %f" ,&lx,&ly,&lz); 
fprintf(stderr," Ambient, diffuse, specular [%d %d %d]: ",(int)a,(int)d,(int)sp); 
if (gets(s)&&sro]) 
sscanf(s,"%f %f %f",&a,&d,&sp); · 

#endif 
set_ambient( a); set_diffuse( d); set_specular(sp ); 
fprintf(stderr,"Enter background color ["); 
if (r>=O)fprintf(stderr,"%d %d %d" ,r,g,b); else fprintf(stderr,"Don't erase"); 
fprintf(stderr,"l: "); 
if (gets(s)&&s OJ) 
sscanf(s,"%d %d %d" ,&r,&g,&b); 
if (r>=O)clear(r,g,b); 
set_eyepoint( ex,ey ,ez); 
light_ vector(lx-a:,ly-cy ,lz-cz); 
view( ex,ey ,ez,cx,cy ,cz,scl); 
traverse(); 

#ifdef IKONAS 
ikflush(); 

#endif 
#ifdef RAMTEK 

ramflush(); 
#endif 

} } 



/* normltbl.c *I 

/* maintain prototype normal table *I 
#include <stdio.h> 
#include "luncldhlsurf2lprodesc.h" 
#include "normal.h" 

double normalp (i, j) 
register int ij; 

{ 
if ((i>=l) && (i<=TOTALPTSH)) return (np[i][j]); 
else return (0.0); /* ???? *I 
} . 

norrnlinit () \ 
FILE *nfile, fopen(); 
int tblsize; 
int ptnum; 
double x, 

y, 
Zj 

register int Ij 

if (NULL == (nfile = fopen (NORMLTBL, "r"))) . 
fprintf (stderr, "normal table open error.\n"); 

fscanf (nfile, "%d", &tblsize); 
if (tblsize != TOTALPTSH) { 

fprintf (stderr, "normal table size error.\n"); 
return; 
} . 

for (i=l; i<=TOTALPTSH; i++) { 
fscanf (nfile, "%d %F %F %F", &ptnum, &x, &y, &z); 
if (i != ptnum) { 

fprintf (stderr, "normal table read error at ptnum = 
ptnum); 

return; 

np ptnum ~0 = x; 
np ptnum 1 = y; 
np ptnum 2 = z; 

#ifdef DEBUG 

%d.\n", 

fprintf (stderr, "%f %f %f\n", normalp(ptnum,O), normalp(ptnum,l), 
normalp(ptnum,2)); 

#endif 

} } 



/* shade.c *I 

/* 
#include <gp.h> 
*I 
#include "gp.h" 
#include <math.h> 
#include <ikdefs.h> 
#include <stdio.h> 

#defme NEWPOL Y 

/* Routines associated with shading and scan conversion *I 
I* Modified to store color and normal info. into frame buffet (instead *j 

I 
I
I: of intensity data) in appropriate format for dynamic lighting 

(Only compute_color is actually modified.) - dh 8121182 

#defme EPS 0.001 
extern face *clippoly(); 

typedef struct 
{ 
float ni,nj,nk,dni,dnj ,dnk; 
int x,ystart,endy,next; 
float fx,dx; . 
float fx1,fy1; 
int slope; 
} edge; 

#defme UP 1 
#defme DOWN -1 

static float red,green,blue; 
static float bred,bgreen,bblue; 
static float li,Jj ,lk; 
static float ei,ej,ek; 
static float hi,hj ,hk; 
static float ex,ey ,ez; 

/* The current object color *I 
J* Back side of current object *I 
I* Vector to light source f 

/* Vector to eye point * 
I* Direction of max highlight *I 
I* Eye position *I 

/* Note: ambient plus 
static float ambient, 

diffuse, 
specular; 

diffuse should equal 100. specular should be Q--100. *I 
/* Ambient light in scene *I 

I* Diffuse reflection coefficient *I 
/* Specular reflection coefficient *I 

*I 

static boolean smooth; 
static boolean backf acing 

/* Whether or not to smooth shade *I 
- FALSE; /* Draw backfacing polygons? *I 

init_shade() 

~ifdef NEWPOL Y 
ikup(); 
#endif 
} 



/* shade.c * / 

/* Normalize a yector to unit length * / 
normalize ( x,y ,z) 
float *x *y *z· , , , 
{ 
float size; 
size = (float) sqrt((double) (*x * (*x) + *y * (*y) + *z * (*z))); 
if (fabs(size)<.OOOOl)size = 1.0; 
*x = *x/size; *y = *y /size; *z = *z/size; 
} 

/* Turn on/off smooth shading * / 
set_smooth( val) 
boolean val; 
{ 
smooth = val; 
} 

/* Turn on/off display ~f backfacing polygons * j 
set_backfacing(val) 
boolean val; 
{ 
backfacing = val; 
} 

/* Set face normal and plane equation * j 
static set_normal(f) 
face *f· { , 
int i,sub; 

f->ni = f->nj = f->nk = 0.0; 
for (i=O; i<f->num; i++) 

{ 
sub = (i==(f->num-1) ? 0 : i+l); 
f->ni = f->ni + (f->vlist[sub\.y-f->vlistlit.y )*~~->vlist[subi.z+f->vlistli\.z); 
f->nj = f->nj + (f->vlist!sub .z-f->vlist i .z)*~->vlist[sub .x+f->vlist i .x); 
f->nk = f->nk + (f->vlist[sub].x-f->vlist i].x) (f->vlist[sub].y+f->vlist i].y); 
} 

normalize( &f->ni,&f->nj ,&f->nk); 
f->d = -(f->ni*f->vlist[OJ.x + f->nj*f->vlist[O].y + f->nk*f->vlist[O].z); 
} 

/* Set coefficient for amount of ambient light in scene * / 
set_ambient (percent) 
float percent; 
{ 
ambient = percent; 
} 

/* Set coefficient of diffuse reflection * / 
set_diffuse(percent) 
float percent; 
{ 
diffuse = percent; 



/* shade.c *I 

} 

/* Set coefficient of specular reflection *I 
set_specular(percent) 
float percent; 
{ 
specular = percent; 
} 

/* Set the vector to light source *I 
light_ vector(x,y ,z) 
float x,y ,z; 
{ 
li = x; lj = y; lk = z; 
normalize( &li,&lj ,&lk); 
} 

/* Set the source color of subsequent objects *I 
set_color(r ,g,b) 
int r,g,b; 
{ 
red = (float) r; 
green = (float) g; 
blue = (float) b; 
} 

/* Set color of back side of subsequent objects *I 
set_bcolor(r,g,b) 
int r,g,b; 
{ 
bred = (float) r; 
bgreen = (float) g; 
bblue = (float) b; 
} 

I* Set the eyepoint ( a.k.a. viewpoint, camera) *I 
set_eyepoint(x,y ,z) 
float x,y ,z; 
{ 
ex = x; ey = y; ez = z; 
} 

/* Return eye position *I 
get_eye(x,y ,z) 
float *x,*y,*z; 
{ 
*x = ex; *y = ey; *z = ez; 
} 

/* Set light vector given light position and center point *I 
set_light_source(lx,ly ,lz ,cx,cy ,cz) 
float lx,ly ,lz,cx,cy ,cz; 
{ 
light_ vector(lx --{;X,Iy-ey ,lz--{;z); 



/* shade.c *I 

} 

j* Return true if face is front-facing based on current eye position *I 
static boolean visible( f) 
face *f· { , 
if ((f->ni*(ex-f->vlist[O].x) + f->nj*(ey-f->vlist[O].y) + 

f->nk*(ez-f->vlist[O].z)) <O)return(F ALSE); 
else return(TRUE); 
} 

/* Set the vector from given point to eye position *I 
eye_vector(x,y,z) 
float x,y ,z; 
{ 
ei = ex-x; ej = ey-y; ek = ez-z; 
normalize( &ei,&ej ,&ek); 
hi = ei+li; hj = ej+lj; hk = ek+lk; 
normalize(&hi,&hj,&hk); 
} 

I* Return val to the nth power *I 
static float power(val,n) 
float val; 
float n; 
{ 
float result; 

if (vai<=O)return(O.O); 
result = (float) exp((double) (n*log((double)val))); 
return( result); 
} 

I* Compute the highlight coefficient based on given surface normal *I 
static float compute_highlight(ni,nj,nk) 
float ni,nj ,nk; 
{ 
float dot; 

I* Take dot product of vector of maximum highlight and surface normal *I 
dot = hi*ni + hj*nj + hk*nk; 
I* Return coefficient raised to 30th power to assure rapid drop off *I 
return(power( dot,30.0) ); 
} 

/* Compute the appropriate format (in the frame buffer) for the color 
/* and the supplied surface normal in order to do dynamic lighting 
/* - dh 8121182 
static compute_colorlni,nj,nk,r,g,b) 
float ni,nj,nk; I supplied surface normal *I 
int *r,*g,*b; I* color specified *I 

*I 
*I *I 

{ 
#include "luncldhlsurf2lprotoargs.h" /* where TOT ALPTS is defmed *I 



/* shade.c *I 

#defme CUTOFF I 42 /* cutoff of desired intensities at 1/6 of max. * / 
#define CUTOFF2 128 /* cutoff of desired intensities at 3/6 of max. * / 
#defme CUTOFF3 213 /* cutoff of desired intensities at 516 of max. */ 

int ptnum, 
closest; 

/* loop index - coded number for a normal *I 
I* coded number for "ideal" normal that is closest *I 

I* to given normal 
double dotprod, 

maxdotprod; I* 
double normalp(); 

float tnx, tny, tnz, tnw; 
float tox, toy, toz, tow; 

current max. calculated dot product *I 
/* returns 1 component of 1 "ideal" normal *I 

/* Transform normals using all transformations but scaling to screen *I 

*I 

/* coordinates & perspective 
vecl {ni, nj, nk, 1.0, &tnx, &tny, &tnz, &tnw); 
vecl (0.0, 0.0, 0.0, 1.0, &tox, &toy, &toz, &tow); 
tnx = tnx-tox; 

*I /* transform normal endpt. *I 
/* transform origin *I 

tny = tny-toy; 
tnz = tnz-toz; 

/* Calculate the "ideal" normal that is closest to the given surface normal *I 
/* and store its number in the red byte 
closest = 1; 
maxdotprod = tnx*normalp(l,O) + tny*normalp(1,1) + tnz*normalp(1,2); 
#ifdef DBGDOTP 
fprintf (stdout, "%f %f %f, %f %f %f, %f\n", tnx, tny, tnz, normalp(1,0), 

normalp(1,1), normalp(1,2), maxdotprod); 
#endif 
for (ptnum=2; ptnum<=TOTALPTS+l; ptnum++) { 

dotprod = tnx*normalp(ptnum,O) + tny*normalp(ptnum,l) 
+ tnz*normalp(ptnum,2); 

#ifdef DBGDOTP 
fprintf (stdout, "%f %f %f, %f %f %f, %f\n", tnx, tny, tnz, normalp(ptnum,O), 

. normalp(ptnum,l), normalp{ptnum,2), dotprod); 
#endif 

if {dotprod > ma.xdotprod) { 
maxdotprod = dotprod; 
closest = ptnum; 

} 
} 

#ifdef DBGDOTP2 
fprintf {stdout, "%f %f %f, %f %f %f, %f\n", tnx, tny, tnz, normalp(closest,O), 

normalp(closest,l ), normalp( closest,2), max dot prod); 
#endif 
*r = closest; 

/* Re-format the color and store it in the green byte *I 
if (red < CUTOFFl) *g = 0; 
else if (red < CUTOFF2) *g = 1; 
else if {red < CUTOFF3) *g = 2; 
else *g = 3; 
if (green < CUTOFFl); 

*I 



/* shade.c *I 

else if (green < CUTOFF2l *g = *g + 4; 
else if (green < CUTOFF3 *g = *g + 8; 
else *g = *g + 12; 
if (blue < CUTOFF1); 
else if (blue < CUTOFF2l *g = *g + 16; 
else if (blue < CUTOFF3 *g = *g + 32; 
else *g = *g + 48; 

/* The blue byte is unused - set it to zeros *I 
*b = 0; . 

#ifdef ERICSTUFF 
float hfactor,factor,cosine; 
inquiry _response v; 

show_inquire(&v); 
I* Get highlight factor *I 
hfactor = compute_highlight( ni,nj,nk) *specular* ((float )v .irnax) 1100.0; 
/* Cosine of angle between surface normal and vector to light source *I 
cosine = ni*li + nj*Ij + nk*lk; 
if ( cosine<O)cosine = 0; 
/* Compute diffuse reflection factor *I 
factor = (ambient+cosine*diffuse)/100.0; 
/* Compute colors * / · 
*r = (int~ (red*factor + hfactor); 
*g = (int (green*factor + hfactor); 
*b = (int (blue*factor + hfactor); 
if {*r > v.irnax)*r = v.irnax; 
if *g > v.irnax)*g = v.imax; 
if *b > v.irnax)*b = v.irnax; 
#endif 
} 

/* Set face information and enter face into BSP tree *I 
poly_write(f) 
face *f· · , 
{ . 
if (!smooth)f->smooth = FALSE; 
set_normal(f); 
f->red = red; f->green = green; f->blue == blue; 
f->bred = bred; f->bgreen = bgreen; f->bblue bblue; 
tree_enter(f); 
return( OJ; 
} 

/* Same as poly_write, but draws face instead of entering into BSP tree *I 
display(£) 
face *f; 
{ 
if (!smooth)f->smooth = FALSE; 
set_normal (f) ; 
f->red = red; f->green = green; f->blue = blue; 
f->bred = bred; f->bgreen = bgreen; f->bblue = bblue; 
draw(f); 



/* shade.c *I 

} 

/* Draw face on display *I 
draw~) 
face f; 
{ 
int r ,g,b,i; 
face *temp; 

/* Set vector from this polygon to eye point . *I 
eye_ vector(f->vlist[O].x,f->vlist[O].y ,f->vlist[O].z); 

if (!visible(f)) 
{ 

else 

if (!backfacing)return; 
set_color(f->bred,f->bgreen,f->bblue); 
compute_color(-f->ni,-f->nj,-f->nk,&r,&g,&b); 
} 

{ 
set_color(f->red,f->green,f->blue); 
compute_color(f->ni,f->nj,f->nk,&r ,&g,&b); 
} 

/* Convert polygon to screen coordinates *I 
ca.IILmode(); 
for (i=O; i<f->num; i++) 
{ 

} 

if ( to_screen(f->v list[i].x,f->vlist[i].y ,f->vlist[i].z,f->vlist[i].w ,&f->vlist[ijl.is;t~ijd->vlist[i].sy ,&f-; 
{ 
end_mode(); 
return; 
} 

end_mode(); 

/* Clip to display window *I 
temp = clippoly(f); 
I* Scan convert to display *I 
po_write(r,g,b,temp ); 
if (temp )free( temp); 
return( D); 
} 

int round(x) 
float x; 
{ int ans = x<O ? (-x)+0.5:x+0.5; 

return(x<O ? -ans:ans); 
} 

#ifdef OLD POLY 
#ifdef SMOOTH 
/* Smooth shade a sca.n._line based on edge information supplied *I 
static scan_line(y,el,e2) 



/* shade.c * / 

int y; 
edge ei,e2; 
{ 
int i,r,g,b; 
float !_dot_ vi,Ldot_ v2,vi_dot_ v2,h_dot_ vi,h_dot_ v2,dx; 
char rbuf[5I2],gbuf[5I2],bbuf[5I2]; 
float fact,facti,fact2,fact3,factor,hfactor,arg,root; 
float a,da,one_minus_a; 
inquiry _response v; 

normalize( &el.ni,&el.nj ,&el.nk); normalize( &e2.ni,&e2.nj ,&e2.nk); 
Ldot_vi = li*el.ni + ij*ei.nj + lk*el.nk; 
Ldot_v2 = li*e2.ni + lj*e2.nj + lk*e2.nk; 
vl_dot_v2 = el.ni*e2.ni + el.nj*e2.nj + el.nk*e2.nk; 
h_dot_vi = hi*el.ni + hj*el.nj + hk*el.nk; 
h_dot_v2 = hi*e2.ni + hj*e2.nj + hk*e2.nk; 
dx = (float) (e2.x - el.x); 
a = 1.0; 
da = (dx==O.O ? 0.0 : 1.0/dx); 
fact = 2.0*(1.Q-vl_dot_v2); 
show_inquire( &v); 
for (i=el.x; i<=e2.x; i++) 

{ 
one_minus_a = l.D-a; 
arg = fact*a*a - fact*a + t.O; 
root = (float)sqrt((double)arg); 
facti = (a*Ldot_vi + one_minus_a*Ldot_v2)1root; 
if (facti <O.O)factl = 0.0; 
fact2 = (a*h_dot_vi + one_minus_a*h_dot_v2)1root; 
fact3 = power(fact2,30.0); 
factor = (ambient+ facti* diffuse) IIOO.O; 
hfactor = fact3*specular*((float)v.imax)IIOO.O; 
r = \intJ ~red *factor + hfactor); 
g = int green *factor + hfactor ); 
b = int blue*factor + hfactor); 
if [r>v.imaxJr=v.irnax; 
~ g>v.~ax g=v.~ax; 
if b>v.IIDax b=v.IIDax; 
rbuf[i] = r; gbuf[i] = g; bbuf[i] 
a=a-da; 
} 

segment(y,ei.x,e2.x,rbuf,gbuf,bbuf); 
} 
#endif 

b· , 

I* Scan conversion routine. This routine is based on a scan conversion 
routine written by Bob Hon. Instead of rounding vertices to the nearest 
integer, however, it carries through floating point values to assure 
"exact" scan conversion. *I 

po_ write( r,g,b,f) 
int r,g,b; 
face *f; 
{ 

int i,numedge,nvertex; 



/* shade.c *I 

point prev; 
edge *edgearray; 
int curr,active,fol,save; 
int ycur; 
int wind; 
edge start; 

nvertex = f->num; 
if ((edgearray = (edge *) calloc(nvertex,sizeof(edge))) == 0) return(-1); 

/* go through vertex list, deal with horizontal edges, figure slopes *I 
prev = f->vlist[nvertex-1]; 
numedge = 0; 
for (i = 0; i < nvertex; i++) 

{ 
int ldy; float fldx,fldy; 
ldy = round(f->vlist[i].sy)-round(prev.sy); 
if (ldy==O) 

{prev = f->vlist[i]; continue;} I* Ignore horizontal lines *I 
fldx = f->vlistfil.sx - prev.sx; 
fldy = f->vlist i .sy - prev.sy; 

#ifdef SMOOTH . 
if (f->smooth) 

{ 
edgearray1numedge .dni - (f->vlist[il.ni-prev.ni)lfldy; 
edgearray numedge .dnj (f->vlist[i .nj-prev.nj)lfldy; 
edgearray numedge .dnk = (f->vlist[i].nk-prev.nk)lfldy; 
} 

#endif 
edgearraylnumedgel.slope - ldy · < 0 ? DOWN:UP; 
edgearray/numedge).dx = fldxlfldy; 
if (fldy < 0.0) 

{/* draw from current to prev *I 
edgearray numedge].ystart = round(f->vlist[i].sy); 
edgearray numedgel.endy = round(prev.sy)-1; 
edgearray numedge .fx1 = prev .sx; 
edgearray numedge .fxl = f->vlistfil.sx; 
edgearray numedge .fyl = f->vlist i .sy; 
edgearray numedge .fx = ( (float )edgearray [numedge].ystart+0.5--edgear~!nuum1Jwllf~ )!! ... 
edgearray1numedge .x = round(edgearray[numedge].fx); 

#ifdef SMOOTH 
if (f->smooth) 

#endif 
} 

else 

{ 
edgearray numedge .ni = f->vlist[i].ni; 
edgearray numedge .nj = f->vlist[i].nj; 
edgearray numedge .nk = f->vlist[i].nk; 
} 

{/* draw from prev to current *I 
edgearraylnumedge .ystart = round(prev.sy); 
edgearray numedge .endy = round(f->vlist[i].sy)-1; 
edgearraylnumedge .fx1 = prev.sx; 



/* shade.c * / 

edgearray numedge .fy1 = prev.sy; 
edgearray numedge .fx = ((float)edgearray[numedg<c].ystart+0.5-edgear~P,wi!Hi!wj)f#)t~ 
edgearray numedge .x = round(edgearray[numedge].fx); 

#ifdef SMOOTH 
· if (f->smooth) 

{ 
edgearray[numedge .ni = prev.ni; 
edgearray

1

numedge .nj = prev.nj; 
edgearray numedge .nk = prev .nk; 
} 

#endif 
} 

prev = f->vlist[i]; 
numedge++; 

} 

if ~numedge<2) 

free(edgearray); 
return(-1); 
} 

/* sort list by y *I 
sort ( numedge,edgearray); 

CUIT = 0; 
ycur = edgearray[OJ.ystart; 
active = -1; 
while (1) 

{ 
while (curr < numedge && ycur == edgearray[curr].ystart) 

{active = insert(curr,active,edgearray); /* insert into active list *I 
curr++; 

} 
/* draw lines between intersections *I 
fol = .active; 
while (fol != -1) 

{ 
start = edgearray[foll; 
wind = edgearraY.[fol .slope UP ? 1:-1; 
while (wind != 0) 

{ 
fol = edgearray[fol].next; 
if (edgearray[fol].slope == UP) wind++; else wind-; 

} 
if (fabs(start.fx-edgearray[fol].fx) > EPS) 

{ 
if (!f->smooth)hline(ycur,start.x,edgearray[fol].x,r,g,b); 

#ifdef SMOOTH 

#endif 

fol 

else scan_line(ycur ,start,edgearray[fol]); 

} 
= edgearray[fol].next; 
} 



/* shade.c *I 

fol = active; 
ycur++; /* update y location *I 
while (fol != -1) /* do dda *I 

{ 
edgearray[folj.fx = ((float )ycur+O.Hdgearray[fol].fy1) *edgearray[fol].dx+edgearray[fol].fx1; 
edgearray fol.x = round(edgearray[fol].fx); 

#ifdef SMOOTH 
if (f->smooth) 

{ 
edgearray fol .ni += edgearray[folj.dni; 
edgearray fol .nj += edgearray[fol .dnj; 
edgearray fol.nk += edgearray[fol].dnk; 
} 

#endif 
fol = edgearray[fol].next; 

} 
J* drop dead edges and resort *I 
fol = active; active = -1; 
while (fol != -1) 

{save = edgearray[fol].next; 
if (edgearray[fol].endy < ycur) {fol = save; continue;} 
active = insert(fol,active,edgearray); 
fol = save; 

} 
if (active == -1 && curr >= numedge) 

{ 
free(edgearray); 
break; 

1 
retlirn(1); 
} 

static sort(n,array) 
int n; 
edge array[]; 
{ 

int ij ,nsorted; 
edge current; 

nsorted = 1; 

while (nsorted < n) 
{ 

current = array[nsortedl; 
for (i = 0; i < nsorted; i++) 

{ 
if (array[i].ystart <= current.ystart) continue; 
I* found where it goes *I 
for (j = nsorted; j >i; j-) array[j] = array[j-1]; 
array[i] = current; 
break; 

} 
nsorted++; 



/* shade.c *I 

} 
} 

static insert(index,head,array) 
int index,head; 
edge array[]; 
{ 

} 

int prev ,curr; 
if (head == -1) 

{array[index].next = -1; 
return(index); /* new head of list *I 

} 
prev = -1; curr = head; . 
while (curr != -1 && array[index].x > array[curr].x) 

{prev = curr; curr = array[curr].next;} 
array[index].next = curr; 
if (prev == -1) return(index); 
else array[prev].next = index; 
return(head); 

#end if 

#ifdef NEWPOL Y 

/* this file contains three routines used in painting *I 
/* polygons on the ikonas using the bsp tree algorithm *I 

#defme SP(a)(0202<<16[(a)) 
#defme RECIP SP(50) 
#define MCSI SP(O) 
#defme LIST SP(600) 
#defme PFILL 10 
#defme BUFFSIZE 3300 
#defme WAIT 3500 
#define SIGNAL 3600 
#defme FLAG SP(599) 

int poly[BUFFSIZE], next=O, flag; 

/* program to load bmp and initialize ikonas *I 
ikup() 
{ 

int i, recip[5121; 
static int mcsi ]={WAIT,FLAG,O,PFILL,LIST,SIGNAL,FLAG,-1,0}; 
extern int flag; 
int zero; 

/* reset ikonas, load default color map *I 
if (127==system(" lusrlikonaslikreset")) abort(); 

/* leave ikonas at 30hz *I 
if (127==system(" lusrlikonaslikset 30hz")) abort(); 



/* shade.c * / 

/* load mcsi and polygon fiil routine into bmp *I 
if (127==system(" lusr/ikonas/ril (unc/eric/lib(mcsi.obj lunc(eric(lib/Pt~j"Mne.~lib(w 

/* initialize reciprocal table * ( 
recip!Ol = 0; 
recip 1 = Ox7fff; • 
for(i=2; i<512; i++) 

if (i <= 128) recip[i] = ((float)(1<<15))/i + 0.5;. 
else if (i <= 256) recip[i] = ((float)(1<<16))/i + 0.5; 
else recip[i] = ((float)(1<<23))/i + 0.5; 

ikwrite(recip, sizeof(recip), RECIP); 

ikwrite(mcsi, sizeof(mcsi), MCSI); 

flag= -1; 
ikwrite(&flag, sizeof(flag), FLAG); 
setcmask(IKRESET\RUNPROC); 
ikwrite( &zero,O,O); 
setcmask(RUNPROC); 
ikwrite( &zero,O,O); 

} /* end of ikup *I 

/* routine to accept a polygon and buffer it. *I 
/* on buffer overflow, write buffer to ikonas *I 

po_write(r,g,b,f) 
int r,g,b; 
face *f· 
{ . ' 

• extern int poly IJ, next; 
int jjind; 

/* if this polygon would overflow buffer, then write buffer *I 

#ifdef DEBUG2 
fprintf(stderr, "in ikfastfill. pgon.numpoints is: %d\n", 

pgon.numpoints); 
#end if 

if (f->nu'm + next > BUFFSIZE/2) { 
if (f->num > BUFFSIZE/2) abort(); 

#ifdef DEBUG2 
fprintf(stderr, "before calling ikflush from ikfastfill\n"); 

#endif 
ikflush(); 
} 

for(j=O; j<f->num; j++) { 
jind = f->num - j - 1; 
poly!next+2*jind+l]==O; 
poly next+2*jind] = ( 5U-round(f->vlist[.i].sy)) < <16\round(f->vlist[j].sx); 



/* shade.c *I 

if ~jind==Ol if jind==1 
if jind==2 

poly next+2*jind+ 1 
poly next+2*jind+ 1 
poly next+2*jind+ 1 

= r<<16; 
= g<<16; 
= b<<16; 

#ifdef DEBUG2 
fprintf(stderr, "x is %d, y is %d, and next is 

pgon.pointsUJ.x,pgon.points[j].y ,next); 
#endif 

} 

next += f->num * 2; 
poly[next-1] I= 1<<30; 

} /* end of po_write *I 

/* routine to flush buffer to ikonas *I 
ikflush() 
{ 

extern int poly[], next; 
int zero=O; 
extern int flag; 

#ifdef DEBUG2 
. fprintf(stderr, "just entered ikflush\n"); 

fprintf(stderr, "next = %d\n" ,next); 
#endif 

%d\n", 

.· ... 

. if (next != 0) { 
poly[next-1] I= 1<<31; /* set next poly flag *I 

#ifdef DEBUG2 
fprintf(stderr, "before ikwrite\n"); 

#endif 
do ikread(&flag, sizeof(flag), FLAG); 

· while (flag == 0); I* wait for BMP to be done *I 
ikwrite(poly, next*sizeof(int), LIST); 
ikwrite (&zero, sizeof (zero), FLAG); 
next=O; 

} 
} 

#endif · 



/* shapes.c *I 

/* 
#include <gp.h> 
*I 
#include "gp.h" 
#include <math.h> 

/* This file contains assorted primitive shapes *I 

extern char *malloc (); 

/* A plate with four specified vertices *I 
plate{x1,y1,z1,x2,y2,z2,x3,y3,z3,x4,y4,z4) 
float x1,y1,zl,x2,y2,z2,x3,y3,z3,x4,y4,z4; 
{ 
face *f· , 

f = (face *)malloc(sizeof(face)+4*sizeof(point)); 
f->smooth = FALSE; 
f->num = 4; 
trans_po~t~x1,y1,z1,l.O,&f->vl~t 0 .x,&f->vl~t 0 .y,&f->vl~t 0 .z,&f->vl~t 0 .w : 
trans_pomt x2,y2,z2,l.O,&f->vlist 1.x,&f->vhst 1.y,&f->vhst 1 .z,&f->vhst 1 .w , 
trans_point x3,y3,z3,l.O,&f->vlist 2 .x,&f->vlist 2 .y,&f->vlist 2 .z,&f->vlist 2 .w ; 
trans_point x4,y4,z4,1.0,&f->vlist 3 .x,&f->vlist 3 .y,&f->vlist 3 .z,&f->vlist 3 .w ; 
poly_write(f; 
} . 

/* A curved plate given four specified vertices and vertex normals *I 
cplate(x1,y1,z1,x2,y2,z2,x3,y3',z3,x4,y4,z4,. 

ni1,nj1,nk1,ni2,nj2,nk2,ni3,nj3,nk3,ni4,nj4,nk4) 
float x1,y1,z1,x2,y2,z2,x3,y3,z3,x4,y4,z4; 
float ni1,nj1,nk1,ni2,nj2,nk2,ni3,nj3,nk3,ni4,nj4,nk4; 
{ 
face *f· , 
float x,y ,z,w; 
float xp,yp,zp,wp; 

f = (face *)malloc(sizeof(face)H*sizeof(point)); 
f->smooth = TRUE; 
f->num = 4; 
trans_point(x1,y1,z1 ,l.O,&f->v list[O].x,&f->vlist [O].y ,&f->vlist[O].z,&f->vlist[O].w); 
#ifdef SMOOTH 
trans_point(ni1,nj1,nk1,1.0,&x,&y,&z,&w); 
trans_point( O.O,O.O,O.O,l.O,&xp,&yp,&zp,&wp); 
f->vlist 0 .ni = xjw - xpjwp; 
f->vlist 0 .nj = ylw - ypjwp; 
f->vlist 0 .nk = zlw - zpjwp; 
normalize( &f->vlist[O].ni,&f->vlist[O].nj ,&f->vlist [O].nk); 
#endif 
trans_point(x2,y2,z2,l.O,&f->v list[ 1].x,&f->vlist[ 1].y ,&f->vlist[ 1].z,&f->vlist[1].w); 
#ifdef SMOOTH 
trans_point(ni2,nj2,nk2,1.0,&x,&y,&z,&w); 
trans_point(0.0,0.0,0.0,1.0,&xp,&yp,&zp,&wp); 



/* shapes.c * / 

f->vlist 1 .ni = xjw - xpfwp; 
f->vlist 1 .nj = y /w - ypjwp; 
f->vlist 1 .nk = zlw - zplwp; 
normalize( &f->v list[ 1].ni,&f->vlist[1].nj,&f->vlist[ 1].nk); 
#endif 
trans_point(x3,y3,z3,l.O,&f->vlist[2].x,&f->v list [2].y ,&f->vlist[Z].z,&f->v list[2].w); 
#ifdef SMOOTH 
trans_point( ni3,nj3,nk3,1.0,&x,&y ,&z,&w); 
trans_point( 0.0,0.0,0.0,1.0,&xp,&yp,&zp,&wp); 
f->vlist 2 .ni = xjw - xpfwp; 
f->vlist 2 .nj = yjw - ypfwp; 
f->vlist 2 .nk = zlw - zplwp; 
normalize( &f->vlist[2].ni,&f->vlist[2].nj,&f->v list[2].nk); 
#endif 
trans_point(x4,y 4,z4,l.O,&f->vlist[3].x,&f->vlist[3].y ,&f->v list [3].z,&f->vlist[3].w); 
#ifdef SMOOTH 
trans_point(ni4,nj4,nk4,1.0,&x,&y,&z,&w); 
trans_point(0.0,0.0,0.0,1.0,&xp,&yp,&zp,&wp); 
f->vlist 3l.ni = x/w - xplwp; 
f->vlist 3 .nj = yjw - ypjwp; 
f->vlist 3 .nk = zlw - zplwp; 
normalize( &f->vlist[3].ni,&f->v list[ 3].nj ,&f->vlist[3].nk ); 
#endif 
poly _write(f); 
} 

/* An approximation to a circle with specified radius and number of sides *I 
/* Circle is drawn in XY plane with center at (0.0,0.0) *I 
circle ( radius,nsides) 
float radius; · 
int nsides; 
{ 
float theta,incr; 
face *eire· 

' int i; 

eire = (face *)malloc(sizeof(face) + (nsides+l)*sizeof(point)); 
eire->smooth = FALSE; 
circ->num = nsides+1; 
incr = Z.O*PII (float )nsides; 
theta = 0.0; 
for (i=O; i<=nsides; i++) 

{ 
trans_point(radius*(float )cos( theta) ,radius*( float )sin( theta) ,0.0,1.0, 

&eire->vlist[i].x,&circ->vlist[i].y ,&eire->v list[i].z,&circ->vlist[i].w); 
theta = theta-incr; 
} 

poly_ write( eire); 
} 

/* An approximation to a cylinder with specified radius, height, and # of sides *I · 
/* Cylinder is drawn centered on ZAXIS with base at Z=O and top at Z=height *I 
cy Iinder( radius,height ,nsides) 
float radius,height; · 



/* shapes.c *I 

int nsides; 
{ 
double theta,theta2; 
float incr ,xl,yl,x2,y2; 
int i; 

incr = 2.0*PII(float)nsides; 
theta = 0.0; 
for (i=O; i<nsides; i++) 

{ 
theta2 = theta+incr; 
xl - radius* floatlcos(theta); 
yl = radius* float sin(theta); 
x2 = radius* float cos(theta2); 
y2 = radius* float sin(theta2); 
theta = theta2; 
cplate(xl,yl,O.O,xl,yl,height,x2,y2,height,x2,y2,0.0, 

xl,yl,O.O,xl,yl,O.O,x2,y2,0.0,x2,y2,0.0); 
} 

push_m(); translate( O.O,O.O,height ); circle( radius,nsides); pop_m(); 
push_m(); rotate(XAXIS,PI); circle(radius,nsides); pop_m(); 
} 

I* An approximation to a sphere with specified radius and # of sides per strip *I 
/* Sphere is drawn with center at the origin *I 
sphere(radius,n) 
float radius; 
int n· 
{ ' 
double theta,theta2,phi,phi2; 
float incr ,xl,yl,x2,y2,x3,y3,x4,y4,zl,z2; 
int iJ; 

if (n%2 == l)n++; 
incr = 2.0*PII(float)n; 
phi = 0.0; 
for (i=O; i<nl2; i++) 

{ 
phi2 = phi+incr; 
zl = (floatlcos(phi)*radius; 
z2 = (float cos(phi2) *radius; 
theta = 0.0; 
for (j=O; j<n; j++) 
{ 
theta2 = theta+incr; 
xl - float cos(theta)*sin(phi)*radius); 
yl - float sin(theta)*sin(phi)*radius); 
x2 - float cos(theta)*sin(phi2)*radius); 
y2 = float sin(theta)*sin(phi2)*radius); 
x3 float cos(theta2)*sin(phi)*radius); 
y3 = float sin(theta2)*sin(phi)*radius); 
x4 = float cos(theta2)*sin(phi2)*radius); 
y4 = float sin(theta2)*sin(phi2)*radius); 
theta = theta2; 



/* shapes.c *I 

} 

cplate(x3,y3,zl,x4,y4,z2,x2,y2,z2,xl,yl,zl, 
x3,y3,zl,x4,y4,z2,x2,y2,z2,xl,yl,zl); 

} 
phi 
} 

= phi2; 

/* Draws an outline of a rectilinear solid *I 
outline(x,y,z) 
float x,y ,z; 
{ 
vec_mode(); 
move_to( 0.0,0.0,0.0); 
l!ne_to[x,O.O,O.Ol; l!ne_to(x,O.O,zl; l!ne_to(O.O,O.O,z); line_to(O.O,O.O,O.O); 
lme_to O.O,y,O.O ; lme_to(O.O,y,z ; lme_to(x,y,z); lme_to(x,y,O.O); 
line_to O.O,y ,0.0 ; 
move_to[O.O,O.O,z); line_ to( O.O,y ,z); 
move_to x,O.O,O.O);_ line_to(x,y,O.O); 
move_to x,O.O,z); lme_to(x,y,z); 
end_mode(); 
} 

/* A rectilinear solid drawn in positive-x, positive-y, positive-z *I 
rect(x,y ,z) 
float x,y ,z; 

?• outline(x,y,z); *I 
plate O.O,O.O,O.O,x,O.O,O.O,x,y ,O.O,O.O,y ,0.0); 
plate O.O,O.O,O.O,O.O,O.O,z,x,O.O,z,x,O.O,O.O); 
plate x,O.O,O.O,x,O.O,z,x,y,z,x,y,O.Ol; . . 
plate x,y,O.O,x,y,z,O.O,y,z,O.O,y,O.O; 
plate O.O,y ,O.O,O.O,y ,z,O.O,O.O,z,O.O,O.O,O.O); 
plate O.O,O.O,z,O.O,y ,z,x,y ,z,x,O.O,z ); 
} 

/* An approximation to a cone with specified radius, height, and # of sides *I 
/* Cone is draw centered on ZAXIS with base at Z=O and top at Z=height *I 
cone(radius,height,n) 
float radius,height; 
int n; 
{ 
float theta, theta2,xl ,y 1 ,x2,y2,incr; 
int i; 

incr = 2.0*PII (float) n; 
theta = 0.0; 
for (i=O; i<n; i++) 

{ 
theta2 = theta - incr; 
xl = radius* float cos(theta); 
yl = radius* float sin(theta); 
x2 = radius* float cos(theta2); 
y2 = radius* float sin(theta2); 
plate(xl,yl,O.O,O.O,O.O,height,O.O,O.O,height,x2,y2,0.0); 



/* shapes.c * / 

theta = theta2; 
} 

} 



/* gp.h *I 
#define IKONAS 

#define XAXIS 1 
#defme Y AXIS 2 
#defme ZAXIS 3 

#define TRUE -1 
#defme FALSE 0 

#defme NULL 0 

#define PI 3.141592654 

#defme SMOOTH 

typedef short int boolean; 
typedef short int a.xis_id; 

typedef struct trans_struct 
{ 
float m[4][4]; 
boolean w_identity; 
} transform; 

typedef struct s_t_struct 
{ 

/* Structure for transformation matrix *I 

/* The 4x4 matrix *I 
. /* Whether or not 'w' will be chjl.nged by this matrix 

/* Structure for matrix node in stack *I 

struct s_t_struct *next; 
transform t; 

/* Pointer to next node in stack *I 
/* The matrix itself *I 

} s_transform; 

typedef struct 
{ 
int xmin,xma.x,ymin,yma.x; 
int ima.x; 

/* Info about current environment *I 

I* Boundaries of display device *I 
/* Maximum pixel intensity *I 

adjust for non-square aspect ratios *I float xadjust,yadjust; /* To 
} inquiry _response; 

typedef struct 
{ 

#ifdef SMOOTH 
float ni,nj ,nk; 

#endif 
float x,y ,z, w; 
float sx,sy ,sz; 
} point; 

typedef struct 
{ 
int red,green,blue; 
int bred,bgreen,bblue; 
float ni,nj,nk; 

/* Surface normal at this point *I 

/* The point itself *I 
/* The screen coordinates of the point *I 

/* The color of the face *I 
I* The color of the backside of face *I 
/* Normal to face *I 



!* gp.h *! 

float d; 
boolean smooth; 
int num; 
point vlist[l]; 
} face; 

/* d component of plane equation * j 
J* Whether or not to smooth shade this face *I 

/* The number of vertices making up the face *I 
I* The vertices themselves *I 

typedef struct node_struct 
{ 
face *f; 
struct node_struct *pos; 
struct node_struct *neg; 
} node; 

/* Binary tree node *I 

/* Pointer to face structure *I 
/* Pointer to positive sub-tree * £ 
/* Pointer to negative sub-tree I 



Page 48 

D BIBLIOGRAPHY 

1. Bass, Daniel H. , !lsing 1M 
BefleQ~iYi~ calQYla~~ 
G~~phiQ Results, Department 
University of Rochester, 1979, 

YideQ LQQkYP Iable for 
SpeQifiQ IeQhniqyes and 

of Computer Science, 
[unpublished paper]. 

2. Bui-Tuong, Phong, "Illumination for Computer Generated 
Pictures" , CommyniQa~iQnS Qf ~he MSQQia.~iQn f.Q~ 
CQIDpY~ing MaQhine~~. 18(6), June 1975, pp. 311-317. 

3. Fuchs, Henry, Abram, Gregory D., and Grant, Eric D., 
"Near Real-Time Shaded Display of Rigid Objects", 
C.Qmput~ G~aphiQS, 17(3), July 1983, pp. 65-72. 

4. Lipscomb, James S., Ihree-DimensiQMl ~ for a 
MQleQYla~ CQmpY~e~ ~aphi.Qs S~s~em. Department of 
Computer Science, University of North Carolina at Chapel 
Hill, 1979. 

5. Newman, w. and Sproull, R., E~inQiples Qf Inke~Q~iye 
!:;QmpY~~ ~phi.Qs. New York, McGraw-Hill, 1979, pp. 
389-390. 

6. Sekuler, R. and Levinson, E., "The Perception of Moving 
Targets", SQien~ifiQ American. 236(1), January 1977, pp. 
60-73. 

7. Tucker, Jonathan B., "Computer Graphics Achieves New 
Realism", ~ IeQhnQlQg~. 4(6), June 1984, pp. 40-53. 

8. Wallach, H. and O'Connell, D. N., 
Effect", s!Qllrna.l Qf E:~!:petlmen~l 
April 1953, pp. 205-217. 

"The Kinetic 
~Qh.QlQg~. 

Depth 
45( 4). 


