TRIANGULATION ALGORITHMS
FOR SIMPLE, CLOSED,
NOT NECESSARILY CONVEX,
POLYGONS IN THE PLANE

JOHN H, HALTON

The University of North Carolina
Department of Computer Science
New West Hall 035 A
Chapel Hill, NC 27514 USA

MARCH 31, 1985

TR 85.008



TRIANGULATION ALGORITHMS
FOR SIMPLE, CLOSED, NOT NECESSARILY CONVEX

POLYGONS IN THE PLANE

John H. Halton

Professor of Cemputer Science
The University of North Carolina
Chapel Hill, NC 27514 USA

ABSTRACT

This paper presents three algorithms for dissecting the interior of an
arbitrdry simple, closed, not necessarily convex polygon'in the plane, The
simplest algorithm 1s shown to have time complexity 0(»n3) and the two others,
derived from it, while more complicated, have complexity 0(»2). The triangu-
lations obtained are econmomical, in the sense that the number of triangles
obtained is as small as possible; but no effort is made to reduce the diameters
of -the component triangles. '

Keywords: Algorithms; data structures; triangulation; polygons; graphics
{computers; techniques; performance analysis; complexity}

March 1985



Triangulation Algorithms for Simple, Closed, Not Necessarily Convex Polygons in the Plane

John H. Halton, Chapel Hill, North Carolina, US A

1. * Introduction

The problem is a classical one. We are given n points Pl’ PZ’ e Pn

in the Euclidean plane and interpret other indices modulo n, so that Py =P
Pl = Pn+1’ and in general P. = Pj+kn' The points are supposed to be so ordered
that

Iz P1P2 coe Pn’ _ : (1j

H

the polygon with vertices Pj (4 =1, 2, ..., n), consisting of the »n line-
segments Pij+l j =1, 2, ..., n), issimple (i.e., all the Pj are distinct and

no two sides P.P, . and P.P., . have points in common, except when 7 = j [of
1 1+ g g+1 ; ;

course] or 7 = J ~11 [only Pj in common] or ¢ = j + 1 [only Pi in common]),
In common parlance, we would say that a simple polygon does not cross itself.
We wish to identify a set of iriangles, whose interiors are digjoint, and '
whose union is the interior and boundary of the poiygon . This process is

referred to as the triangulation of the polygon,

_ The removal of a simple polygon from the plane leaves exactly two connec-
ted. open sgﬁs, ;alled its interior Iﬂ and-its exterior Eﬂ’ with the interior
identitied in that it is bounded (i.e., there is a circle in the plane which
entirely contains IH}' We re-number- the vertices fif‘necessary) so that, as

we traverse the polygon pIPZ . es Pﬁ’ the interior is on the left,

Vertices may be divided into three mutually-exclusive classes, according
to the angle by which one turns from the direction of pj—ipj to that of'Pij+1_
1f this angle ej satisfies O_< ej < 7, we say that Pj is a econvex vertex; if
the angle satisfigs -1 < ej < 0, we call Pj a re-entrant vertex; and if ej = {,
P. is called redundant or collineqr (and will later be eliminated). If the
pelygon §# is such that the Iine-segment joining any two points in its interior

or boundary is entirely contailned in the union of § and Iy, we shall say that



P is a convexr polygon. We shall not limit ourselves to this simple case.

Figure 1,

INTERIOR

A ¥ = P1P2P3P&P5P6P7 is a convex polygon [or

P heptagon, since.n = 7]; line-segments such as

"AB or XY are entirely in or on 1. On the con-
trary, @ ='Q1Q2Q3Q4QSQ6Q7 is not convex; while
the Segment AB is in or on @, segments such as
XY are not (the dotted portion is exterior to
the heptagdn), All vertices of I are convex,
as are Q2’ QS’ Q4, Q6’ and Q7; but Q1 and Q5
are re-entrant vertices of @. In the third "
iliustrafion, is re-entrant (-m < 815 <0y,

< 1 and

P17.

‘while P18 and on are convex (0 <o

. 7
0 < 620 < m). What are P

18

19 and PZI?

Again in commen parlance, if the pelygon is traversed as defined above, then one
turns left at o convexr vertex (i.e., towards the intericr) and turng right at a

reg-gntrant vertex.
We seek a iriangulation algorithm which:

(i} always yields a complete triangulation in a finite number of steps;
(11} 1is as fast as possible (i;e., each step is fast, and the total

number of steps required is least);



(1ii) 1is as economical as possible {i.e., the final set of triangles has
no more than » - 2 members ——— less than n - 2 when certain vertices are collin-

ear, as in the polygon ¥ (vertices P4 and ?S) in Figure 1).

In some cases, a fourth criterion is used also: it is sought to increase the

minimum internal angle of the triangles as much as possible, so as to avoid
‘long-thin triangles, which are not desirable for computational triangulations.
We shall not consider this criterion here.

Two workable algorithms will be described here, Each has some merits,

Both are édequately fast, as will be demonstrated,

2. ' Preliminary Results

Denote the coordinates of each vertex PJ by (xj, yj’ 03.

.

LEMMA 1., The passage from Pj~1 through Pj to pj+1 18 a turn to the left

of

(HJ+1 T Hga) iy - ) 2y 13{7+1 B S LIRS

Proof, {Proofs will be enclosed in ﬂ...ﬂ'from now on, |
[ The vector P (. ~ 2. +, v. - 1. ., ) and the vector P.P. . =
S R LR R ) Jodrl
(xj+1 - xj,_y.+1 - yj, 0), so that the vector [or cross] product
P. 1P A PiPoy = (0,0, 2), 7 (3

where

and this quantity will have the same sign as sinej, where aj is the angle
defined earlier, from the vector P. lpj to the vector Pij%l. Thus, the turn
is to the left (D < 8 <7) if 2 > 0. It remains to rearrange terms to give
the inequality (2).] - .

The importance of this result is that it is an easy matter to determlne

whether there is a turn to the left or to the right at any given vertex

COROLLARY. The passage through PJ ig a turm to the right if">' ig
replaced by '<’ in (2},



LEMMA 2, A conmvex polygon has only convex vertices.
[ Define § as in (1). Suppose it is conwex; then any line-segment joining two
points in or on P [we use this phrase to indicate that the points are either in
¥or in Iﬁ} is emntirely in or on . Let Pj be a re-entrant verter of I; then

there is a right turn from P, P. to P.P. ., with the interior of ¥ on the Zeff.

=147 J g+l
It follows that any segment XY, with X interior to the segment Pj-lpj and Y in-
terior to P.P. . crosses the exterior E
Figure 2 J I+l ¥
LS of I (at least next to X and to Y; there

could be vertices of I in the triangle

INTERIOR

PjXY). This is illustrated inIFigure 2,
where the exterior portign of XY is shown
dotted {as in Figure ! {®@]). This result
contradicts the definition of convexity
for the polygon_ﬂ. Therefore there cannot

be any re-entrant vertex of a convex poly-

gon.]

LEMMA 3, A polygon with only convex vertices is conver.
[Define ¥ as in (1). Suppose it is not convex; then there is a line-segment
joining two points X and Y which are in or on I, such that not all of the
segment XY is in or on . Therefore we can find a point C betﬁéen X and Y on
the segment XY, such that C-is exterior te P. Since X and Y-are interior and
C is exterior, XY must cross therpolygon an even number of times (at least

 twice}. Let A and B be the neareét intersectioﬁs of XY and ¥ on éither‘side
of C (see Figure 3. Then let APfPf ... P. P.B be the [proporly directed)

i+l J-1
poelygonal sub-arc of § from A to B, The

Figure 3,

linear segment ACB must be to the right
of the vector pi-lpi’ since € is exterior.
‘Thus, the net turn from P. .P. to P.P.
_ -1 2 J g+l
nust be to the right; and therefore not

L ""'ej—l’ Bj can

be positive; whence at least one of the

all angles ei, 8

vertices Pi’ Pi+1, ey pj—l’ Pj is re-

entrant, This contradicts our hypothesis;

EXTERIOR .so I must be convex.]|

P
7+3



E}gure 4, LEMMA 4. Given a convex polygon X
and a general polygon ¥ entircely in or on
X, if a vertex Pj of ¥ lies on K, then Pj
i8 g convex vertex of Y.

fThe situation is iilustrated in Figure 4,
where ® is a convex hexagon and J is a
decagon; with Pl, P4, and PS lying'pn K.
If Pj-lies on X, then it is either coin-

cident with a vertex of ¥ (iike P4 in Fi-

gure 4} or is interior to a side of ¥
{like PS and P1 in Figure 4). In either
case, we can uniquely ldentify vertices

K and K , such that K P. and P.K_ are
r 8 r g8

parts of sides of ¥ {for Pl in Figure 4,
4. - - oy b . 4 . P
we have K6 and Ki’ for }4, Kl and_kS, and
for PS’ K2 and Ks), there being no other
vertex of ¥ between Kr and Pf or between

€.

Pj and Ks’ the direction being the same as

that in which ¥ is traversed. Since P. . and Pj+ are both in or on X, the

J-1 1

1 is contained in the angle LKrijs and is therefore of the

same sign, namely, positive [¥ 1s convex,; so, by Lemma 2, its vertices are

angle LPj_IPij

convex, while points in its straight sides subtend angles of 7 (= 180°); and
 and ¥ are traversed in the same (counterclockwise) direction]. Thus, Pf is

4
d o Cconvex vurtex.ﬁ

COROLLARY. If the vertices of a simple, closed polygon ¥ have coordinates

P, = (x,, o 0 '=1; 2, vae, M), (5
p (JyJ ) : ) (57

then the vertices satisfying

x, = min.x. L= max .. - mip =
s T or iz deJxJ oT Yy mlnjyj or Y. maxjyj, (6}

are all convex vertices.



Figure 5,

IThe notation is that used in proving Lemma 1. The rectangle R with vertices

min. 2., win, ., 0), (max. x., min. y., 0}, {(max. x., max. ., 0),
( Jd d J yJ )o Jdod J 7 Jd o J T

min, x., max. y., O 7
(JJ JyJ) (7

is a convex polygon containing all of #. Thus, by Lemma 4, vertices satis-

fving any of the equations {6) lie on the sides of the rectangle and so must

be convex vertices,]

LEMMA 5. Every polygon with a non-empty interior must have at least
three convex vertices. .
[ Polygons with one or two vertices have no interior. Polygons with all their

vertices collinear have no interior. Thus, for a polygon to have a non-empty

“interior, n 2 3, If the interior In of I is non-empty, it is defined as an

open set; that is, every point X of Iﬂ is surrounded by a circular neighborhood
entirely contained in Iﬁ (such a neighborhood is the set of all points Y distant

less than some radius p > 0 from X); and it feollows that
min. x. < max. x, and min, y. < max, y.. (8
Jdd Jod Jd Td J T

fherefore the rectangle R defined above, withvertices (7), has sides of positive

length (opposite sides are distinct). It takeé at least two distinct vertices

of ¥ on the boundary of the rectangle to define it (see Figure 5}, Now either
there are three such vertices on the rect-

g angle, and we are through; or there are

only two. In the latter case, rotate the
cocrdinate axes of 2 and y about- the z-axis

so that the line through the two ecxtreme

vertices of §I is parallel to the new x'-axis,

-Make a new rectangle R' as before, in terms

of the new coordinates x' and y'; then, since

the interior of J is non-empty, at least one

more vertex of I is on B!, (The two extreme

vertices from R are extremes of x' in R'.)]




We shall call the triangle Pj_lePh1 formed by three consecutive verti-

ces of a polygon ¥ the triad Aj at Pj. It is a conwex triad if Pj is a con-

€.

vex vertex of I.

LEMMA 6. If A = PJ—lpgpj 1 is a convex triad of a polygon ¥, and if
AJ contains any Uertex of ¥, then it must contazn at least one re-entrant

verter of 1.

. [ The situation is illustrated in Figure 6,
Figure 6, :

The argument is similar to that used in
proving Lemma 3, Pj is a convex vertex,

with a Zeft turn from P, P, to P.P.
J-14 Jog+lt

If a vertex Pk of F is inside the triad Aj’
it must bring with it a part of the exterior

Eﬂ of . Let A and B be adjacent points in
which J crosses the side P. .P, of the
Jg=1 g+1

triad, traversed from A to B.t Then the side’
of §¥ through A must. turn right in net effect,

E for the sub-arc of ¥ from A toe B to reach B,

Y

_ which is on the right of the side of ¥ through
A, It follows that at least one vertex of J! between A and B (and therefore inside
Aj) must involve a right turn; that is, must be re-entrant, [* Here, we mean

that P, is part of the sub-arc of ¥ traversed from A to B entirely inside A..]B

k

LEMMA 7. The vertex P, lies inside the convex triad A 1f and onZy Zf

k
e R R L i R Tie T S )
Tra Wy T ) VB m ) > By s, (10)
and L L PR G D G P P “ e (1)

[We argue exactly as in proving Lemma 1, Pk is inside Ak if and only if it is

to the left of each of the vectors P P.P , and P. Thus, we ob-
1 g g g+l g+ 1 g-1°

tain the conditions (9), (10), and (11) by respectively replac1ng the indices

(J'—l_,, j, J+1) b}’ (J’_ls J: k}: (J; J+1: k)! and (J+1’ J_]" k)'ﬁ



As with Lemma 1, the importance of this result is in showing how it is

quick and easy to determine inclusion of a vertex in a triad.

ALGORITHM 0. Given a simple, closed polygon J, defined by the coordi-
nates of its vertices in the xy-plane (as in (5)), we prepare 1t for triangu-
lation as follows: for each vertex Pj G =1, 2, ..., n}, '

)

0.1. compute the disecriminant,

r. = xj(yj+l -y - yj($j+l S B ) T Ee ¥t Ty (12)

0.2. <f Fj > 0, enter the index j into a list A,

0.3. <f Pj < 0, enter the index j into a list B,
0.4. if'Fj = 0, omit the index J, reducing higher indices by ome,

0.5. beginning with h = 1 and M = T if'xj > M, put B = j and
M= 255 if x; = Mand y. > Uy DUE h = 4, otherwise do nothing (note Fh);

0.6. <if Ty < 0, re-nunber the vertices in lists A and B so that

Pi becomes P where N ig the number of'verﬁices remaining (last index

y-Zi+1?
value entered in one of the two ligts), and interchange the lists A and B.
Explanation, The discriminant I', is just the z-component Z of the vector
uo .

product {3} (compare (4)). Thus, by Lemma 1, Fj = 0 when the-vertices Pj—l’
P., and P.

] J+1 .
omitted in 0.4, 1If T, > 0, the polygoen makes a leff turm at P,, while if

: - o - _ o
Fj < 0, it makes a right turn therc; hence the lists A and A generated by

are collinear, so that Pj is redundant; 1n this case, Pj is

0.2 and 0.3 are lists of left-turn and right-turn vertices, However, the

intertor of the polygon is not known yet. In 0.5, we progressively seek the
vertex with maximum z-coordinate, and in case of a tie, that with maximum y-
-coordinate ameng them, and call it Ph' By Lemma 4, Ph is a convexr vertex;
thus, if {1 is being traversed properly (by our convention), with its interior
on the left, T, > 0; otherwise, we reverse the numbering and the roles of the
lists A and £ in 0.6; so that 4 is the list of indices of convez Verfices and

B is the list of re-entrant vertices of ¥,



LEMMA 8. No simple, closed polygon has an emply interior.
[ This case is, in fact excluded by the definitions given in the [ntroduction
above, If all the vertices P, {j =1, 2, ..., n) are distinct and nc two sides

1%

(£, 5 =1, 2, ..., n, with Pﬁ = P ) have points in common,

P.P. and P .P.

1 1¥l J g+l _ . +1 .
unless 7 = j or 7 = J - 1 (Pj only) or ¢ = F + 1 (Pi only); then it is impossible
for a polygon to have less than three vertices or for a polygonal arc (even a
single side) to be traversed in both directions (or in the same direction) twice,
The passage from any vertex Pi to another Pj in each direction must be along
entirely disjoint paths; so the interior of the polygon must be non-empty.

Therefore the provision of Lemma 5 is unnecessary.]

3. ' The First Algorithm

THEOREM 1, FEvery simple, closed polygon W has at least iwo convex triads

s, and b each containing no other vertexr of ¥

IBy Lemmas 5 and 8, ¥ must have at least three three convex vertices, and so

at least three convex triads. By Lemmas 2, 3, and 6; first, 1f a convex triad
contains no re-entrant vertex, then it contains no vertex of ¥ at all; and aiso,
if § is convex (or equivalently has only convex vertices) every triad 1s convex
and contains no other vertices of I, Thus our thecrem presents a problem only

cens P

when § is not convex., (i) Let Pi, P g Pj be consecutive convex
7)

i+1’

-1’
vertices (as in Figure ;

; then, if any of the corres-

ponding convex triads Ai’ A£+I’

no other vertex, we are ahead by that triad., If, on

ceay AL o, AL contains
J-17 77

the contrary, each of them contains at least one vertex
(and so at least one re-entrant vertex), we must sSearch
elsewhere. Note that the polygonal arc of J containing
these re-entrant vertices may itself have cone or more
empty convex triads {which would put us ahead), but it
does not have to. (In Figure 7, © = 7, J = 10, re-en-

trant vertices are ringed, and only A is explicitly

24
shown as convex and empty,) In the worst case, from

the peint of view of our theorem, a string of convex




-10-

vertices is flanked by a corresponding string of re-entrant vertices, as in
Figure 8, with no hranching, such as occurred in Figure 7. (In both figures,
the dotted lines indicate the third sides of con-
Figure 8. vex triads and ringed vertices are re-entrant.)
It will be seen that this worst-case arrangement
preserits a "ribbon' of peolygonal interior, if not.
quite parallel-sided, then bounded by poiygonal arcs
running alongside each other., The less-than-worst
case 1s then either a broadening of the ribbon,
which immediately ylelds empty convex triads, or -
a branching of the ribbon, which does not change
our argumenf and indeed yields more Empfy convex
triads than does the worst case, (ii) This worst-

case ribbon construct is bounded on either side hy

polygonal sub-arcs of ¥, and, since ! is a simple,
closed pelygon, these two arcs must join at their ends, This can happen only
in two ways, as iliustrated in Figure 9, and the first is not permissible,

since it separates J into several disjoint loops. (We may think of AB and XY

as polygonal ''sides" of the ribbon, and
Figure 9. _ : then the first way 1s to join B to A and
FIRST Wa¥Y SECOND waY Y to X, completing an annular ribbon,
while the 5econd —— and only legitimate
hﬂ?ﬂway is to join B to X and Y to A,)
The question then reduces to whether the
"ends" of the ribbon must have empty

convex triads; and clearly this is so;

for the point Q must lie in the triad

ALM (with L a convex and Q a re-entrant
vertex; Or their roles are reversed) and
either A is convex and the empty convex triad is YAL, or Y
is convex and the empty convex triad is QYA (at least one of
A and Y is convex, since otherwise A would be inside LQM,

contradicting our assertion that Q is inside AIM)., This is

illustrated in Figure 10. (iii) Since a ribbon construct



-11-

Figure 10.
. such as we have defined above must
have at least two ends [more, if
thgre are branches), it follows
that any simple, closed pelygon
must have at least two empty

convex triads.]

ALGORITHM 1, We suppose that
the simple, closed polygon ! has
heen prepared for triangulation by

means of Algorithm 0, yielding a

Y convesx [QYAl reduced set of vertices, properly
ordered (so. that the interior of ¥
is on the left as we traverse the
polygon) and without redundant ver-
tices with angle w (= 180°), and
partitioned into lists A and £, the
first containing all convex vertices

and the second all re-entrant verti-

ces. Now proceed as follows: ireating

A as a cireular 1ist (i.e., last member

A and ¥ both convex A and Y both re-entrant is immediately followed by first), for
[ YAL and QYAl [Q@ mot in ALM] . .
each successive vertex P. whose index
[

ig in the list A,

1.1. for every vertex PR whose index k is in the list £, compute the

inequalities (9}, (10), and (11) of Lemma 7,

1.2. if all three inequalities hold for any re-entrant vertex ﬁk from

iist B, go on to the next convex vertex from list A (i.e., iterate to }:}j;

1.3, <if one or more of the inequaiities fail, for every P;l< from 1ist R,
then {(a) put the triad Aj = Pj_lePj+l into a list C of empty conver triads,
(b) remove the index of P. from list A, (¢) test Ty and Fj+1 as in 0,1-0,4 and

adduet lists A and B accordingly, and then go on to the next vertex from list A;

1.4, continue wuntil 1ist A has only two indices in it.



-12-

Explanation. By Lemma 7, the vertex ?k lies inside the triad A: it and only if
all three inequalities tested in step 1.1 hold. We seek empty convex triads;
so we need only consider j in list 4. By Lemma 6, a convex triad will be empty
if it contains no re-entrant vertex; S0 we.need only test k% in list A, As soon
as we find a re-entrant vertex in a convex triad, we may go on to the next
‘convex triad; hence 1,2, As stated in 1.3, if ali reFentfant verticeé fail the
test, the convex triad being tested is indeed empty. By Lemmas 5 and 8, the
list # will not be initially empty. By Theorem 1, each pass of the list will
yield at least two empty convex triads, so that the list will be reduced at
each iterative pass by at.least 2; but then as many as four indices may be
transferred from list £ td list 4. (Re-entrant vertices may become convex by
removal of a triad's apex, but the reverse cannot happen, See Figure 11.) -

Nevertheless, each time a triad is found and put

Figure 11,

in the list @, at least one vertex is removed
{if a flanking vertex becomes redundant, by 0.4,
when an apex vertex 1s removed, it too is removed)

from the union of the two lists 4 and 2. Thus
the process will eventually terminate (since,

e S,

i1 when the list A is empty, all triads become

empty and convex (by Lemma 6).

Convex vertices
become more so

THEQREM 2, Algorithm 1 (1) always yilelds a
compléte itriangulation in a finite number of steps;
(ii) takes 9 arithmetic operations (additions, sub-
tractions, and multiplications) Zo compufbe a Jdiscri-

minant [of the form (12)], altégether W arithmetic

P,
P, J-1
! Some re-entrant

vertices remain preparatory Algovithm 0, and less than
re-entrant - - )

operations and 0{n) other operations to execute the

P, -

' 9 3 32 -
—— z .2, o 22y = 13
4(n 5 noo+ Tn 2} O™ ( )

QO thers become convex

7 arithmetic operations and O[ns) other operations to
perfbfm; (1ii) Zs as econom?caz as possible (i.e., yields at most n - 2_tridds).
[ (i) This result is indicated in the Explanation above; indeed, when (ii) is
proved, we get (1)} as a conclusion. (i1} Examination of (12} verifies that it

takes 9 arithmetic operations ["a.o.'" hereinafter] to compute a discriminant.



13-

Suppose that # has p, indices of convex vertices listed and that £ has 9,

indices of re-entrant vertices listed, after p triads have been put in C,

Then p.+tq =n_SNn, -1, M. S n, 14)

since Algorithm 0 may remove some redundant vertices (at 0.4), and whenever an
empty convex triad has been identified and its apex removed, the same 0.4 test
may lead to the removal of more redundant vertices. ' The inclusion test perfor—.
med in 1,1-1.3 takes the checking of three discriminants [none may be omitted)
and tﬁerefore takes 27 a.o. each time. S$ince, by Theorem 1, the list # must
contain the indices of at least two empty convex triads, it takes at the very
most (p?1 - l)qw inclusion tests to reach success (at 1.3). Given the total
number n, of vertices in A and B combined, we seek an upper bound for this
expression, Now, {(p + 1) - 1J(¢g - 1) - (p-1g=pg-p-pg+q=q-~p

2> 0 when g > p; so that (p —‘l)q increases when p is increased, so long as

g > p. Thus, (pl1 - 1)qr is greatest, for given ., when

e, =Ly, =T 3.7, (15)

r

where L_..._] and r-..._] respectively denote the "floor" and "roof'" func-
tions [the integer infimum and supremem}. Let us consider the worst case,
when 0.4 never leads to the elimination of redundant vertices and success in
finding an empty convex triad always takes the maximum number of failures
first, Then we may put

n,=n-or. (16)

Further suppose that the working of 1.3(¢) so balances pp‘nnd 1, that (IST
holds for all ». Then the total number of inclusion tests required by the

algorithm is (for » even)

FE-D G0 GoDG- D G - DT e e 5x2 v 22k 2

=~é-[‘_(n S (- 2) 4 (- 3)(m - 4) 4 ..+ TX6 4 5x4] 4+ 2

n/2 . 1 )
=2 §7 (h-3)h-1) -1 =w2n(n+2)n+1) - 9mm+2) + 120 ~ 1
ns 2 | 24 -
- 500 - 3o n -, | (17)



-14-

or (for n odd)
(??-u-%ljz + (?1%.}.)(?1%3 S 1)+ (”55 S 1% e .+ 3x2 e 2x2 % 2x1,

which is the same as before, with » replaced by » - 1 and the addition of
2
] .

3

the first term, [%{n -1 this yields the sum, therefore,

| 3 3 N2 7 1 2
T§{(n - 17 - E{n -7 - (n - 1) - 12] + Z{(n - 1)7]
_ 1.3 32 L 3
= Ti{n - - - 12 2), (18]

just slightly more (by é} than (17}. The total number of a.o. required for

the inclusion tests is thus not greater than

2’ - 3? - n - 2. (19)

We must add to this the number of a.o. required to.compute the two discrimi-
nants in 1.3(c), namely 18, for each success {except the last), for a total
of 18{m - 3) a.o. The sum of this and (19)-is (13). (iii) Finally, to sec
that the algorithm is economical, we need only observe that all triads put. in
list G_have vertices of the polygon § as their vertices, and in addition, any

redundant vertices occurring along the way are omitted.]

4, ' The Second Algorithm

This algerithm was prompted by the feeling that much of the scanning of
list 4 in Algorithm 1 might lead to failures (i.e.,, convex triads containing
re-entrant vertices of the polygon ), when, in fact, empty convex triads
could be found inside such non-empty triads, still with economy as defined
above (i.e., triangulation does not generate additional vertices). It was
felt that greater_spéed could thus be generated at the cost of rather more

complex programming (without excessive computation).

First, we note that, if we write the discrimivant Fj in {12} as

—
]
]
n

|p P.)

. P P.P. = .

] J g+l

=yl - L 4, 7+ 10, (20)

J._lPJ.I 8P g P

where || denotes the magnitude of the vector ¥ and &(C, 45) is the distance

from the peint ¢ to the line A5, then the discriminants in the inequalities



-15-

{9y, (10), (11) may be writtem as v[j - 1, 4, k], v[s, J + 1, k], and
vlg + 1, J - 1, k], respectively; and, indeed, the incqualitices (2), (9),
(107, and (11) then become
vl7 -1, 4,4+ 11>0, (21)
y[i -1, 4, k] >0, ylj, 7+ 1, k] >0, v[j+1,4 -1, k] >0, (22)
respectiﬁely. Thus, for'fixed 17 and j, as k varies, y[Z, J, k] 1s propor-

tional to the distance from the point Pk to the line_Pipj._

LEMMA 9.

If'the convex triad AJ =P,

G175 341

does contain certain vertices,

then the vertices Py~ and Ph+ among them, respectively havzng the least values of

v[f -1, 4, R and v[j, 5+ 1, &1,

triads P.
J-..

fSince the discriminants v[J - 1, J, %] and yv[Jj, J + 1,

proportional to the distances from vertices Pk to the lines P l

are

re~-entrant, and the corresponding

lePh- and Pij+1Ph+ are empty convex triads,

%] are respectively

bl )]
. and | lj+l’

‘we see that the vertices th and Ph+ are respectively the closest to these lines

among vertices interior to the triad PJ

Figure 12,
P,
G ¥ N/ H
7R
4 '\‘ 2
.... . \P -
g K
4 2
& C’
& X
& O
e © T~ ‘\
> X S R ’0'
& R
A XS
.' ‘u\ .Q.\
Py &Y v Ny
-~ U X Y . -1
.‘ F oSy
7 o
a" _.——"'"D
“v %) A —
& T e
.o. ;' ’_...—--'."_— B
A \
J+1—-' }
{ //
\\_ —
- —— i
- .
-

both empty and convex,

LKih+H = m, 50 that both Ph

P.P.
1 j

Finally, the angles prh

- triads P.
' o

el Figure 12 illustrates the situ-

atlon: the polygon ¥ invades the in-

terior of the triad in one or more

polygonal sub-arcs (here, two: A...

U...vV...B and C,..X...Y...B; enter-

ing the triangle {across the side

} at A and again at C and
J+l J=1
emerging at B and again at D\ Ph"
3
and [h

that the dotted lines FG and HK,

+ are defined as above; so
respectively parailel to pj—lpj and
Pj+1PjA through Ph_ and Ph+ can have
no vertices of Pinterior to the triad
and between the parallel pairs. It
follows immediately that the shaded
P.Ph, and P P 1Ph+ are

..]_J
Y < LGPh_F =7 and LUPh+V <

- and P + must be re-entrant, in view of the direction

of traversal (marked in Figure 12 by arrow- heads) H



-16-

ALGORITHM 2. We suppose, as for_Algorithm 1, that the polygon hés been
prepared for triangulation by means of Algorithm 0, yielding lists 4 and A2,
and that list # will be scanned, each convex triad Aj being tested for inclu-

ded re-entrant vertices P, from list £,

k

For each successive vertex Pj of ¥ whose index j lies in list A, .

2.1. [same as 1,1] for every vertex Pk whose index %k 1s in the list
A, mmﬁkz%edﬁmﬁmﬂmh;ﬂj—l,j,kL vid, 4+ 1, k], and v[g + 1, 7 - 1,
k] of the inequalities (9), (10), .and {11) of Lemmna 7,

2.2, if all ﬁhree diseriminants are positive for any re-entrant
vertex P, from list B, note the index k and thé values of the diseriminants
yid -1, J, k] and y[J, J§ + 1, k], and (a) keep track of‘the indices of the
least such discriMénants; yielding the indices h . and nowhen all of list B
has been traversed, then (b) put the triads PJ 1PJPh— and PJ ijph+ into list
€, and (c) recursively apply Algorithm 2 to each of the simple closed polygons
thereby separated [in Figure 12, these would be the poiygons'...’ 3 h' eees
...XPh_P Ph+V..., and ...UPh+PJ+1..., the dots dencting rema1n1ng connected

vertices of ¥, in the same order as they appear in ¥],

2.3, [same as 1.3] if one or more of the diseriminants in 2,1 are

.

the list @, (b) remove the index of P from 1igt P (c) test FJ I ="v[d - 2,

g -1, 71 and TJ = y[j, F + 15 J + 2] as in 0.1-0.4 and adjust lists A and

ﬂon-posatzve, Ffor every. P from list 8 then (a) put the triad PJ IPij+1 into

1-
B accordingly, and then go on to the next vertex in list A

2.4, continug (wzth recursaon as needed) until cach Lici A has ardy

- two indices in it.

Explanation., - 2.2 1s the case when the.triad'does contain vertices of J; we now
diverge from Algerithm 1 by recursively calling Algorithm 2 to each of the three
sub-polygons into the original one is split, as expiained above and illustrated
in Figure 12, Lemma 9 ensures that the two triads added to 1list € in doing this.
always exist and are empty conveﬁ triads, as required. In 2.3, note that the
discriminants v[J - 1, 7, k] and vij, 4 + 1, k] cannot vanish (because of the
elimination of redundant vertices by -0.4); and if v[j + 1, j - 1, %] = 0, then

the triad Aj is empty and the vertex Pk is redundant in the residual polygon.



-17-

The analysis of this zlgerithm is a little more tricky than that of
Algorithm 1, proving Theorem 2 (and, in particular, the a.o. count given by
{13)). Again, we seek an upper bound for the number of a.o. required to.
perform the algorithm, and therefore look throughout at worst-case situations.
The first postulate, therefore, would be that no redundant vertices are ever
found, since these would shorten the work. The algorithm bifurcates at 2,2
and 2,3; so that, if 2.2 is more laborious, we should assume that this is

the path taken every time; while, if 2.3 takes more a.o.,, we should similarly

assume that this 1s the choice at every step.

First consider 2.3, Let lists # and 2 have p and g entries, respectively,
with p + ¢ = n. Then, if option 2.3 occurs every time, the first set of tests
will lead to it; so that only ¢ inclusion tests (27g a.o.) need be computed
fcompare (p - l)g in the analysis of Algorithm 1]. The worst case is given by
Lemma 5, with p = 3 and ¢ = n - 3. This gives a count of'27fn - 3) a.o. We
can now add-up the counts, much as before (at each step, we need 18 more a.o.

to test the two discriminants Fj— and I, to vield

1 J+l)’
27(n - 3) + 18 + 27(n - 4) + 18 + ,,. + 18 + 27(2) + 18 + 27

2 11 2

_ 27 e 180s - 4y = 2702 2,
= S - 23 (n - 3) + 18(n 4}__2(;? Sn o 3. (23)

Now suppbse instead fhat g;g_ié chosen each time., We first note that,
however a convex triad turns out to be non—empfy, the situation is essentially
the same, This is illustrated in Figure 13, which shows all possible arrange-
ments, in essence. Any of the sub-polygons may be degeneraté; but fhere cannot
be more than threc. The three sub-polygons are marked A, 1, and € in the figure,

and they are easy to identify, In the first example, A
Figure 13. '

and € disappear {each may degenerate separately), and in




~18-

the second, © is degeﬁerate; the third example shows that, even when there is
only one incursiecn into the interier of the triad, all three sub-polygons are
generated; and the last exam?le shows, on the one hand, that only three sub-
polygons occur, even with many incursions, and, on the other hand, that the
sub~-polygon # may reduce to.a single triangle. Observe, too, that, if A, %,
and € respectively have Mys T and Mg vertices, then

1+n2+n3:n+2, ' : {249

because Ph— and Ph+ are counted twice. Having divided our polygon into three,

I

we must make three new lists ﬁl,142,143, and three new lists Bl, ﬁz, 83 (the
list € remains unique and comprehensive); to do this takes 9(n + 2) a.o.
Thus, if we suppose that fin) denctes the upper bound we are seeking, for the

number of a.,o., required to perform the algorithm, it necessarily follcws that

fn) = max [For) * flny) + Fln)] + 90n + 2), (25)

M +Hp TNt 2

If any ng = 3, the corresponding lists are unnecessary; so 9(n + 2) becomes
9(n - 1) or 9(n - 4); and f(3) = 0; while we see by the construction that no
n £ 2, Taking thesé cases one-by-one, we see that, if ny = n, = 3,

fn) = fln-4) +9n - 4) (26)
has a soluticn of the form anz + Bn + ¢; and the equation {26) shows that
db + ¢ + 9m - 36, or 8ag = 9, 16a - 4k
-9/2. Now, f(4) = 27 [there can only

anz + bn + o = an2 - 8an + lé6a + bn

= 36; whence g = 9/8 and b = 4a - 9
be one re-entrant vertéx, by Lemma 5, and sc¢ one inclusion test sufficés, and

202;yields empty convex triads only}, so that 16g + 45 + ¢ = 27, whence ¢ =

27 -~ 18 + 18 = 27, yielding the solution

Fir) = 07 - an v 20, (27
Similarly, if ny o= 3 and ny = 4, we get
fln) =27 + f{n - 5) +9n - 1) = f{ln - 5) + 9n + 2}, (28)

which will have a similar solution with an2 + b+t e = anz - 10an + 252 + bn
~ 5 + ¢+ 91 + 18, or 10a = 9, 25¢ ~ 5bh + 18 = 0, and 16a + 4b + & = 27;
whence ¢ = 9/10, » = 81/10, and ¢ = -22, vielding the solution

Fln) = %mZ v om - 22). (29)



-19-

Again, if ny T M, T 4, we get

fin) =54 + fn -6) + 9n + 2) = f(n - 6) + 9(n + 8), {30)
which will have a similar solution with arn”™ + bn + 2 = an2 - 12an + 36a + bn
-6h +c+ O+ 72, or 12a =5, 36g - 6b + 72 = 0, and 1l6a + 4b + ¢ = 27;

whence @ = 3/4, b = 33/2, and ¢ = -51, yielding the solutiocn
: 2

At I %(n +22n - 68). {31)
In degenerate cases, such as are illustrated in Figurg 13, there may be no
sub-pblygons.at all [nl =M, =g = 0 arnd n = 4]; or one sub-polygon [n2 =
ng = 0 and ny = os 2], when we have
fny =f{n -2y + 9(n - 2), (32)
with the solution
£y = 2 - am v 4y (33)
or two sub-polygons [nS = 0], when we cither have ny = 3 and nyo= oo 3, or
ny = 4 and ny=7no- 4, the former yielding
fny = Fn-3) +9(n - 3), (34)
with the solution '
fin) = g{nz - 3n + 14), {35)
and the latter yielding
fn) = f(n - 4) + 9(n + 3}, (36)
with the solution '
fin) = —g-'(nz + 107 - 32). ' (37)
These cases have all dealt in extremely skewed values of nys 7o and s

It is apparent that f{») is monotonically increasing with », and faster than
lUlnearly; and in such clreumstances, it is advantageous to make the threc e
as equal as possible, To illustrate this, we may consider the case when we

suppose the equation to be

n o+ 2

Fln) = 3f(===) + 9(n + 2). , (38)

“In this case, we can see that the solution is asymptotic to some kn log n;
for then we get that kn log n ~ k(n + 2)Y[log(n + 2) - log 3] + 9n + 18, which
demonstrates the correctness of the general form, and yields that kX log 3 = 9,

whence k = 9/(log 3). [A further term is then seen to be asymptotic to k' log n,



-20-

vielding that kn log n + k7 log n ~ k(n + 2)[log(n + 2) - log 3] + 9n.+ 18
+.3k’[log(n + 2) - log 3], whence ku log n + k' log n -~ kn log n - 2k log »

- kn log{l + 5J - 2k loé(l + %J + kv log 3 + 2k log 3 - 9n - 18 - 3k’ log n

-~ 3k7 log(l + %) + 3k" log 3~ (k log 3 - 9)n - 2(k' + kK)log n + O(1) ~ 0.
This gives k = 9/{log 3) and ¥’ = -k = -9/(log 3). Further terms can be ob-
tained similarly.] The point here is that making thev@ialmost equal gives
much faster execution of the algorithm; and since we are seeking worst-case
situations, we are right [unfortunately!] in concentrating on the skewed cases

considered earlier,

To make our conclusions rigorous, we need some results in convexity., Let

us consider functions f(x) defined for x 2 0, such that f(x) = 0.

LEMMA 10, If f(x) [as abovel is differentiable, monotonically increasing

with x,faster than x, so that
)y ? = as x> =, - (39)
then f 18 convex for x 2 0; Z.e., for all 0 < x < %y and gll 0 ) € 1,

M)+ (1= AF,) 2 O+ (1= Aay). “0)

[ The inequality degeneratés to an equaiity when T, = m2 or A = 0 or A = 1, as
is immediately obvious., Therefore fix ) 20 and 0 < <1, and vary z, 2 €

£ £ < x, and

By the Mean Value Theorem, there is a £ such that x 5

1
M) + (1= MF() - fOz) + (- Wa,)
= Af@)) ¢ (1= MF) - FOz, + (1 - Nay)
- MSE) - L - 0 s (- A8
= (1 - 2)[FE) - e + (1 - 1)g) 20,

by {3%9), which states that f'is ménotonically increasing, since (because * £ £}

£z ;\xl + {1 - A)¢. This proves (40).]

Note that the form of the function f(n) in the discussion of Algorithm 2
is that specified by (39) above (since f increases at least as fast as the

equations (26) - (38) suggest.



~21-

LEMMA 11. If f(x) is a comwex functiom for x 2 0, then
k
Pz, 2y, weuy @) = T;Zz Flay) =Ffla)) + Fley) + oo+ Flxg) (41)

18 a convex function over all x, 20 (i =1, 2, ..., k), and the same is true

if we impose the condition [i1.e., limit points (xl, Tyy wves mk) to the hyper-
plane] '

*y % Ty toeae # * = X. [(42)
[Since F is convex, we have thét, for.all o< T € Ly an& all 0 €21, the
inequality {40) holds, Taking k-dimensional vectors (1 Lygs wens xlk) and
(x21, Lons sees m2k) in the positive orthant, we see that, by (40), for each
=1, 2, ..., k,

M)+ (1= 0F(y,) 2 FOey, + (1 - Day), (43)

Summing these equations over all 7, we get that

PGy @y e mpp) v (1 DF(yy, 2y, ces B
k k k
=h L fle ) v - ] Fleyd = TOfle) < (1 - Dy
7=1 7=1 i=1 _
k
z ) f(mli + (1 - )\)xzi) = F()\xl + (1 - A}xz) (44)
i=1 1 _

with the usual vector notation; and this is the defining inequality Qf'cdnvex_
ity of the function 7 in k-dimensional Euclidean space. If we limit ourselves
to vectors Ai and Xé Satiszing {42), then we see that the vector Axi +

{1 - A)Jé also satisfies (43}, and this proves that F is convex in the hyper-

plane also.]

Now note that again the function f in the discussion of Algorithm Z is
indeed convex {as was pointed out above) and so- the function
Plngs ny, ng) = flng) + £(n)) + Fng) (45)
occurring in the crucial ‘equation (25) is convex, even on the plane (24). Now,
a convex function attains its maximum ét the boundary of the domain of permitted -
values [see, e.g., A, W, Roberts § D. E, Varberg, (onvex Funétions (Acédemic
Press, New York, 1973) p. 124, Theorems D and E]; provided this is a compact

‘convex set [and the set of x satiéfying {42) with non-negative coordinates is



-272-

precisely so]. Thus we get the necessary result:

LEMMA 12. The function (45) attains its global maximem under the condi-

tion (24) at an extreme point of the allowable values of nis 7as and =

This lemma completes the proof that indeed the bounds obtained for all the
extreme cases of 2.2 in (26) - (37} contain among them the global bound f{x)
for the a.o. count, Of the bounds obtained, all quadratic in behavior, that
with the largest coefficient of n® is (33), The corresponding coefficient in
the bound for 2.3 in (23} is 27/2, which is larger; so that we may conclude
that this is the worst case of all. The advantage of this asymptotic behavior

-over that given in {13) for Algorithm I is evident,
Thus, we have established the next main result:

THEOREM 3. Algorithm 2 (i) always yields a complete triangulation in a
Fintte number of steps; (11) takes 9 a.o. and 0(n) other operations to execute
the preparatory Algorithm 0, and less than

Hin? - Ha v - oh (46)

a.o. and O(n2) other operations to perform; (iii) is as economical as possible,

Note that (ii) implies {i). The rveference, here and in Theorem 2, to the
"other operations" is a reminder that bookkeeping operations and tests are of
‘the same order of number as the a.,o. (in certain algorithms, though these "other
operations' are quick, they begome so numercus as to overshadow the a.o.: this.
is not the case here}. The step 2.3 is economical (i.,e., does not introduée new
" triangles, beyond the n - 2 ncecessary ones, as has alrcady been explained in
Theorem 2., A count of vertices shows that the net number of triads érising
before gnd after step 2.2 is the same [{:»’z_l - 2) + (nz - 2) + (n3 -2} +2 =
no- 27.

A comparison of the bounds of the two algorithms for smaller values of =
-1is also instructive:

n=| a4l 8| 20| 100

(13) | 75% | 984% | 16 887% | 2 217 747% ' (473

(45) | 27 {477 | 4 419 130 059 '




-23-

5. ° Example

Figure 14, Example of a non-convex polygon with n = 48 vertices.

List 4: {4, 6, 7, 8, 10, 12, 13, 15, 16, 18, 23, 26, 27, 29, 30, 31,
34, 36, 37, 39, 40, 41, 43, 44, 45, 48}; p = 26,

43
41
4’7
21
&
@ 42 16
4. 46 _
20 18 N
1
Jﬁ -
4 12
19 ,
@ “17
9 2 w5/ 22 ) 340
8 27 48
13
(.
34 5 11 1404
y 38 3 o
% 8 )
36
. 7
10 .
12 123
) 15
35 D 20 2
&
31 280 39
o
933
37
List #: {1, 2, 3, 5, 9, 11, 14, 17, 19, 20, 21, 22, 24, 25, 28, 32, 33,

35, 38, 42, 46, 47}; g = 22.

Algorithm 1: Empty convex triads at first pass, to List e '(5,6,7_}',
(5,7,8), (5,8,9), (12, 13, 143, {'17,‘18,19), (22,23,24), (25,26,27), (28;29,30),
(28,30,31), (28,31,32), (33,34,35), (33,35,36), (33,36,37), (44,45,46), (44,46,
473, Note that, in updating the lists, we remove 6, 7, 8, 13, 18, 23, 26, 29,
30, 31, 34, 35, 36, 45, 46 from list A (with 35 and 46 having been transferred
from list B to list A), remove 32 from list £ by redundancy (collinearity),

and further transfer 5, 25, 33 from list 2 to list 4. The results are shown in



_24_

41

Figure 15,

List 4: {4, 5, 10, 12, 15, 16, 25, 27, 33, 37, 39, 40, 41, 43, 44, 48};
with p = 16.

List #: {1, 2, 3, 9, i1, 14, 17, 19, 20, 21, 22, 24, 28, 38, 42, 47};
with g = 16. | |

Empty eonvex triads at second pass, to List ¢: (4,5,9), (4,9,10), (11,
12,14), (11,14,15}, (24,25,27), (28,33,37), (28,37,38), (43,244,473, (43,47,48).
I.n updating lists, we remove 5, 9, 12, 14, 25, 33, 37, 44, 47 from list A
(9, 14, and 47 having beén transferred from 1ist A to list 4), and further trans-

fer 28 from list 2 to list 4. The results are shown in Figure 16; for which we

have:

List #4: {4, 10, 15, 16, 27, 28, 39, 40, 41, 43, 48}; with p = 11,

List #: {1, 2, 3, 11, 17, 19, 20, 21, 22, 24, 38, 42}; with g = 12,

Empty convex triads at third pasé, to List &: {3,4,10), {3,10,11), (3,
11,15y, {27,28,38), {(27,38,39)., In updating lists, we remove 4, 10, 11, 28, 38



~25-

43
A
S 41
",
--_.EE%}
\-_'.
=— %5
= %
g {/ ¥ 6
44 ,‘
A 2
c
{}
O
O’ 19
4 \\‘]n
h’ \\ -
5 Do s B )0
- o, d &
5 -, v
7 ER N &
/ P ”‘h n é’. 14
) e = ;
5 b My = v
i S " - /
'l Ty 10 = Ji
/ N H
[ g
’ ‘\‘ 12
/
4 \\‘
|
/ 0
25% .
—
£
B —...-."'.ﬁ
—
=
i
N
37
Figure 16,

from list & (11 and 38 having been transferred from list £ to list &), and

further transfer 2 from list 2 to list A4, and remove 3 from list 2 by redun-
.dancy.

The result is shown in Figure 17; for which we have:
List 4: {2, 15, 16, 27, 39, 40, 41, 43, 48}; with p = G,

List 2:{1, 17, 19, 20, 21, 22, 24, 42}; with g = 8,

Empty convex triads at fourth pass, to List @ (1,2,15), (1,15,16),

(1,16,17), (24,27,39), (24,39,40)., In updating lists, we remove 2, 15, 16,

27, 39 from list A4, and transfer 1 and 24 from list £ to list A.

The result 1is
- shown in Figure 18; for which we have:

List 4 {1, 24, 40, 41, 43, 48};
List A:

with p = 6.
{17, 19, 20, 21, 22, 42}; with g = 6.



~26-

Figure 17,

/

TP

] B

Figure 18,




Figure 19,

Figure 20,

Figure 21.



_28-

Empty convex triads at. fifth pass, to list C: (48,1,17), (48,17,19),
(48,19,20}, (22,24,401, (22,40,4]1), (43,48,20). Inupdating lists, we rcmove
1; 17, 19, 24, 40, 48 from list 4 (17 and 19 having been transferred from
list B to list A), and further transfer 20 and 22 from list £ to list 4. The

result is shown in Figure 19; for whitch we have:

List A: {20, 22, 41, 43}{ with.p = 4,

List 8: {21, 42}; with ¢ = 2.

Empty convex triads at sixth pass, to list ¢: (21,22,41), (21,41,42),
(42,43,20). In updating lists, wé remove 22, 41, 43 from list A4, and transfer
21 and 42 from 1list £ to list 4, leaving list 2 empty, The result is shown in

Figure 20; for which we have:

List 4: {20, 21, 42}; with p = 3.

List #8: empty; g = d;

The final situation is shown in Figure 21, where the single remaining
triad is removed into list @.7 Just 15 + 9 + 5 + 5 + 6 + 3 + 1 = 44 triads 7
are in list €, being {(n - 2) - 2, the deficit of 2 being attributable to the
 two vertices removed by the exercise of 0.4 (redundancy by collinearity) in

the first (P} and third (P,) passes.,

" We now turn to the g.o. count. First, note that two discrﬁminants are
computed, under 1.3(c) for every triad put into list €, excepting the last
two; so0 there is a count of |
18 x 42 = 756 - | (48)
a,o0. for this, in all. The remaining!a.o. arise from discriminant computa-
tion for inclusion tests, 27 a.o, for each test. The number of tests is
obtained as follows. We begin with g = 22 indices in list B:

22x3 = 66 4, {6}, {71 tested [{...} denotes removal to list cl;

5 transferred from list A to list A, ,
21x9 = 189 {8}, 1o, 12, {13}, 15, 16, {18}, {23}, {26}; 25 transferred.

20x4 = 80 27, {29}, {30}, {31}; 32 eliminated by redundancy.
19%x1 = 19 {34}; 35 transferred,

18x2 = 36 {35}, {36}; 33 transferred.

17%x7 = 119 37, 39, 40, 41, 43, 44, {45}; 46 transferred.
16x4 = 64 {46}, 48, 4, {5}; 9O transferred, :

15x3 = 45 {93}, 10, {12}; 14 transferred. :
14 %6 84 {14}, 15, 16, {25}, 27, {33}; 28 transferred,
13.x 6 78 {37}, 39, 40, 41, 43, {44}; 47 transferred.

i



-29-

{47}, 48, {4}; 3 transferred.

12x3 = 36
I1x1 = 11 {10}; 11 transferred.
10x5 = 50 {11}, 15, l6, 27, {28}; 38 transferred,
9x7 = 63 {38}, 39, 40, 41, 43, 48, {3} [null triad]; 2 transferred.
8x2 = 16 {2}, {153}; 1 transferred.
7x2 = 14 {16}, {27}; 24 transferred.
6x2 = 12 {39}, {1}; 17 transferred.
5x1 = 5 {17}; 19 transferred.
4x2 = B {19},{243; 22 transferred.

Ixd4 = 12 {40}, 41, 43, {48}, 20 transferred.
2x2 4 20, {22}; 21 transferred,
1x2 {41}, {433}; 42 transferred.

(LI 1]
[

The total is thus 1,013 tests = 27,351 a.o., plus (48) for a grand total of
28,107 a.o. {(49)
Fof comparisen, the bound (13) yieldé the result that {49} should he

< 241,734% a.o.: (50)

50 that we see how much of a "worst case estimate' 1t is!

Returning to Figure 14, we now apply Algorithm 2: Initial lists 4 and R
are as before (see page 23 above). -Triads (3,4,9) and (4,5,9) are put in list

C, by 2.2, and we get two polygons:
¥, =01, 2, 3,9, 10, ..., 47, 48] and {1y = [5, &, 7, 8, 9},
with new lists,

#1: {9, lo0, 12, 13, 15, 16, 18, 23, 26, 27, 29, 30, 31, 34, 36, 37, 30,
40, 41, 43, 44, 45, 48}; with p, = 23; '
BI: {1, 2, 3, 11, 14, 17, 19, 20, 21, 22, 24, 25, 28, 32, 33, 35, 38,
42, 46, 47}; with q, = 20,
A,: {6, 7, 8, 9}; with_p3 = 4;

3

83: {5}; with g, = 1; )

as illustrated in Figure 22. Take HS first: triads (5,6,7), (5,7,8), and
(5,8,9) successively go to list e, términating this branch, by 2.3 only., In
m, _

are removed, by 2,2, leaving just one new polyvgon:

triads {(3,9,10) and (3;10,11) are empty; then (11,12,14) and (12,13,14)

v, = (1, 2, 3,11, 14, 15, 16, ..., 47, 48],
with new lists [11 being removed by redundancy],

Ay 13, 14,15, 16, 18, 23, 26, 27, ..., 43, 44, 45, 48};



-30-~

Figure 22.

a7

with pll = 21; )
811: {1, 2, 17, 19, 20, 21, ..., 42, 46, 47}; with qy, = 17;
as illustrated in Figure 23, ~Proceeding, empty triads are found at (2,3,14),
{2,14,15), (2,15,16)}, and the next split cccurs at (2,16,1) and (l6,17;1),
again yielding a single polygon:
211713 = {1, 17, 18, 19, 20, ..., 47, 48],

with new lists,
A5

| Byst _
as illustrated in Figure 24,

{1, 18, 23, 26, 27, ..., 44, 45, 48}; with Pz = 183
{17, 19, 20, 21, ..., 42, 46, 47}:; with g3 = 15



~-31-

Figure 23,

43

37
Note: We use subscripts to refer to the sub-polygons on the k [y,
middle [2], and nt [3] sides of the triad in question, There are ne middle

polygons so far (cases have been degenerate as Figure 13, second example, or

worse) .,

Proceeding again, empty triads are found at (48,1,17), (17,18,19),
(22,23,24), (25,26,26), before we encounter a split at (25,27,38) and (27,
28,38), yielding the two polygons:.

M5, = [17, 19, 20, 21, 22, 24, 25, 38, 39, 40, 41, 42, 43, 44, 45, 46,
47, 487;



372~

Figure 24.

43

41

47
a4 45
45
40
27
3
36
)
5 0
31
37

with lists

;41131; {17, 25, 38, 39, 40, 41, 43, 44, 45, 48}; with Prisy = L0

Biigpr 119, 20, 21, 22, 24, 42, 46, 47F; with g ) = 8; :
and .

0,45 = [28, 29, 30, 51, 32, 33, 34, 35, 36, 37, 38];
with lists

A 1550 129, 30, 31, 34, 36, 37, 38}; withp .. =7;

B 550 {28, 32, 33, 3515 with g o= 4;
as 1llustrated in Figure 25. Take I first: triads (28,29,30), (28,30,31),

1133
(28,31,32) are found empty and 32 becomes redundant; then (33,34,35), (33,35,36},

(33,36,37) are also found empty; then a fully degenerate split yields (33,37,28)
and (37,38,28), terminating this branch.



-33-

Figure 25,

37

In ﬂllSl’ empty triads are removed at (48,17,19), (48,19,20), (24,25,38),

(24,38,39), (24,39,40), before we appeal to 2.2 and split off (24,40,22) and
(40,41,22), yielding the single polygon:

U305 = [20, 21, 22, 41, 42, 43, 44, 45, 46, 47, 48],
with lists

;411313: {22, 41, 43, 44, 45, 48}; with py 45 = 6;

311313: {20, 21, 42, 46, 47}; with 91313 = 5

as illustrated in Figure 26. Empty triads are found at (21,22,41) and (21,41,
42), before cur first and only three-way split (in this.example) at (42,43,47)
and (43,44,46), leaving the three polygons: o '

[20, 21, 42, 47, 48],

B3 =
with lists



~34-

Figure 26. | o | A 15t (21, 47, 48);
3 WEth Py gy = %
Briziz . 120, 4235
WIth q)p3931 = 25
T 515y = [43, 46, 4715
and
T, 5155 = [44, 45, 46].

n113131

¢?113133 The last two poly-

gons are empty triads;

so they terminate immedi-

i ately. For ¥ we

' : 113131°
find empty triads ({20,21,42), {20,42,47), and (20,47,48), completing the tri-

angulation,

We now turn to the c.o. count for this algorithm, Counting the triads re-
moved, we find 44 = (48 - 2)'— Z again, with P11 and P32 found redundant. Of
these, 30 are found empty through 2.3 and there are seven splits by 2.2, for
14 more triads. Thus the discriminant-pairs under 2Z,3(¢) number just 24 (we

recall that the last two or less triads of a polygon de not require the cal-

culation of these test-discriminants. Thus we use
18 x 24 = 432 a.o. . ' (51)

for this purpose. In computing the a.c. count for the first algorithm, we did
not count the work required to set up the initial lists # and £; so neither do
we do so here; but we now must Compute the a.o. required to get the new lists,

at each split, In all, there are seven splits, requiring in all
91 Py v gy s Pet g Py YAy TPy T 93 Y Prisn T 91t

Pr133 * 91133 T P11313 * T11313 T Puisisn  9i13131)
=0 x (23 + 200+ 4 + 1 + 21 + 17 + 18 + 15 + 10 + 8 + 7 + 4 +
6 + 5+ 3+ 2) =9 x 1§4 = 1,476 a,o, ' (52}

Finally, we must count inclusion tests, performed at each step of 2.1 for all
members of the current list £ and taking 27 a.o. each, We count-as we did be-

fore.



_35_

22x1 = 22 (4) 1(...) denotes a split after this test, |
ix2 = 2 {6}, {7},

20x1 = 20 {9}; 3 transferred,

19x2 = 38 {10}, (12).

17x2 = 34 {3}, {14}; 2 transferred,
16x2= 32 {15}, (16).

i5%x2 = 30 {1}, {18}; 17 transferred.

14x2 = 28 {233, {26}; 25 transferred.
13x1 = 13 (27).

4x3 = 12 {29}, {30}, {31}; 32 redundant. -
3xl = 3 {34}; 35 transferred,

2x2 = 4 {35}, {36}; 33 transferred; (37).
8x1 = 8 {17}; 19 transferred,

7x5 = 35 {19},{25}, 138}, {39}, (40).
5x1 = 5 {22}; 21 transferred.

4x2 = 8 (a1}, (43).

2x1 = 2 {21}; 42 transferred,

The total is thus 296 tests = 7,992 a,o,, plus (51) and (52), for a grand total

of
9,900 a.o., . (537

or about one-third of the work required by Algorithm 1. For comparison, the

bound (46) yields the result that (53) should be
< 28,737 a.o, ' : {54)

so0 that the bound is somewhat closer for this example with Algorithm 2 than

with Algorithm 1.

6. ° The Third Algorithm .

A reconsideration of the first two algorithms, as described abové,
indicates.that no use is made of the fact, that, when a triad is processed,
the rest of the polygon changes relatively little; the procedure prescribed
requires the computation, at euch iteration, of numerous discriminants vy (as
defined in (20) - (22)); and indced, these make up the bu]k of the computa-
tional work of the élgorithms. It is evident that there is an irreducible
residue of inclusion—testing of the order of %fn tests, or ﬁi-nz a,0., in
the worst case, Since the second algorithm takes time of the order of
about twice this, it does not scem very pIOmising to seek improvement of this
along this line of thought; but, by the same token, since the first algorithm

takes time of the order of %ﬂ23,it is a much likelier candidate.



-35-

We thefefore reconstruct Algorithm 1, in a way that seeks to minimize the
duplication of effort, by keeping a record of all vertices contained in cach
convex triad under consideration. We shall specify the data structures uscd
in a little more detail.. We assume that, initially, the polygon ¥ is given

as an array [see (5)]

P =[P, P, Py . P 1, with Pj = [xj, yj]}
Ty x| oo e | 5y 1 l first index {row) % P, ) = Y5 (55)
Yi | ¥y [Ug | oom ¥, 2 P29 =y )
1 2 3 v.. n — second index {column)

. N 2
We also assume that »n is too large to allow space allocation of £(»n™) or more;

s¢o that some economy of storage must be adopted,
We set up data-structures as follows:
(a) Real array G of size n [to hold discriminuants for edch vertex].

(b) Pointer (address) array 5 of size n [pointer S(k) points to list ik]'

(c) Integer array ¢ of size (3 x n) [Sucéessive cll, r),.0(2, »r), and
C(3, r) hold indices A, Z, and j.of empty triads Phpipj as they are identified.

This corresponds to 'List €' of Algorithm 1.]

(d) Linked Ziéts will be structured as foiiows. There will be an identifier,
which is a pointer, 7d, whose name is the name of the list; there will be a
header cell, of the form [ip, la], where Ip points to the first cell of the list
and Is points to the last cell of the list; and then the cells making up the

body of the list will be of the ftorm |Zp, conifent], where cach pointer {p points

te the next cell in sequence and content denotes the content of the cell. When
the list is initialized, the header cell takes the form [NIL, NIL], and the last
cell wili‘always take the form [NIL, content]. Two operations on lists will be
required here: apﬁend(id;'enﬁries) attaches a cell with the given entries at

“the end of the list with identifier <d. The procedure is:

T A1 if id:lp = NIL; then id:ls < id:1lp < neweell {newcell is a pointer
- to a new cell, pointed to by header and old last-cell};
Axz : eZse,\idEZs <+ i&:ls:lp + neweell {assign right-to-left};
A*3 - . 4d:ls:lp « NIL {list-pointer of new 1asf—ce11 is NIL};
Ax4 id:lscontent <« entries {e.g., if content = (a, b, ¢), entries =

{x, y, z), then id:ls:a <« x, id:ls:b + y, id:ls:c < z}.



in our pseudo-code, the notation 'A <« B' mecans that the expression or variable
B is evaluated, and fhe resuit is inserted into the variable {or mcmory;locution)
A [aseignment operation]; 1if Q is a pointer to a cell with components a, b, ¢,
.., then the notation 'Q:x' denotes the component x of the cell pointed to by Q;
it the x-component is itself a cell-pointer, then 'Q:x:y' means the component ¥y
of the cell pointed to by Q:x. Thus, above, id:ls is'the-last—cell pointer of
the header, Zd:ls:Ip is the list-pointer of the last cell, and <d:ls:Ip:Ilp is the
list-pointer in the cell pointed to by what was the last cell, z.e., the list-
pointer in the new (last) cell. As usual, assignment overwrites and supersedes
previous content. The operaticn delete(id, ptr) removes from the list with
identifier <d the cell next after that to which the pointer piZr points. The

procedure 1is:

D -1 if id:ls = ptr:lp, then id:ls < ptr {if the cell to be deleted
is the Last, then the last-cell pointer in thc header
should point to the predecessor cell; otherwise the
last-cell pointer is unchanged};

D -2 ptrilp <« ptﬁ:Zp:Zp {the list-pointer in the cell preceding that
toe be deleted should point directly to the cell to

which the deleted cell points},
What must be noted is that both of these procedures take time O(1) to execute.

(e) Linked list with identifier 2 and cells of the form [Ip, cp, up, xj
in the body of the list; so that content = [cp, up, x], where ep and up are
- pointers, and x 1s an intéger index [D is a list of all agctive vertices of
the polygon ¥; initially, £ is constructed as a list of all convex and re-
encrant ﬁertices (x dénoting the index of the Vertéx ij, in the order in
which'they occur in a tour of ¥ in the direction in which the interior Iﬂ of
¥ is on the Zeft. 1In each cell, the pointer Ip points to the next cell in the
list D; if Px is a convex vertex, and 1f a pointer pir poinfs to the prede-
cessor of the cell referring to Px, then the pointer pir:ep points to the pre-
decessor of the qell referring to the mext convex vertex; similariy, if Pm
is a re-eniranl vertex and ptr points to the predecessor of the cell referring
to Px, then pir:icp points to the predecessor of the cell referring to the next
re-entrant vertex. A pointer 4 is initially set to point to the predecessor

ot the first cell feferring to a convex vertex; so that the cells pointed to by



~38-

A:lp, Aiep:lp, Aicpiepilp, HAieprepiopilp, {56)

form the vomplete Tist of convex vertices in the.cyclic order ['List A']; and
similarly a pointer £ is initially set to point to the predecessor of the first
cell referring to a re-entrant vertex, and the cells pointed to by
R:lp, Ricp:lp, ARBiepiep:lp, Riepiepicp:lp, ... (57)

forn the complete list of re-entrant vertices in the cyclic order ['List A,
When 4 points to the predecesscr of a cell referring to the convex vertex Pi,
say, so that A:lp:x = 4; then (if Atz = h and A:lp:ip:x = j§, say) PhPin forms
.a convex triad, and if it is empty of other vertices, it can be transferred to

the array ¢ (i.e., to 'List €': see (c) above). All the pointers
Biup = Riepiup = Ricpiepiup = Licpiepiepiup = ... = NIL, (58}
and if A:lp:z = ¢, then A:up poirnts to the list “*: s for every .|

(f) For every k, linked tist with .identifier £, and cells of thc- form

, k
[Zp, tp], where Ip is the list-pointer, as usual, and fp is a pointer which
points to the predecessor in some List ag_of a cell réeferring to index k
[S(k) = £,; see (b) above].

(g) For every ¢ such that-Pi is a convex vertex, linked list with iden-
tifier_ai and cells of the form [wp, k], where wp is the list-pointer and %k
~is the index of a vertex contained in the convex triad associated with Pi'

[1f 4:1p:x = ©, then the triad is PhPin, where 71 = A:x and j = A:lpiip:ix.]
(h) After the list D has been constructed, we apply
¢ -1 Dils:lp « D:1p {pointer in last cell now points to first cell};

to make the 1list eireular, We also note that 4 and B are initially equal to
A and B, and advance as we construct the list 2 until A points to the predeces-
sor of the last cell referring to a convex vertex and B points to the predeces-

sor of the last cell referring to a re-entrant vertex. We then do

C -2 Aiep « A;
c-3 B:op <~ B

making lists & and £ circular, too.



-30-

The diagram helow illustrates the structurces descrihed above.

2

o [ o E o] o g 8
¢ |—aj (] § 14 | | 5 A
o3 I—&jlml BL 73] + }
“4E0é¥u7| Bz[’i:t_l. »}r B‘(-’»ﬂd_
N R EAR o B> & TR (ws)
g Wj 28] ¢ |i6|~’"} |
%7 r“: |oo| B2 | Zg] w <
o [ Toa 8 1% - o[BI Za]+ )
w0 [ETed 3 12) . |
1o ]_0:1 o] Ba ! 710 }+p
tin 0:1]0“2] o | gl Bs (¢£11)
o [ Tol & T2
oo [ ol B T2 | | o
o [ 52] 8o 17 j‘+ Bs (2214
ws [ To 5 5 < - b (7] b0 [T T3] fars)
I A A | -
. _ list 1list _
S =4y = > [T 1B, ) =45 = v » [ Lmlove [3_ 1o,
S(6) =46 = v » [0 B |, 87 =47 = ve » [ lod>v [ Lod, |
S(9) =4q =ys »[9 Lol S(12) =415 = ve »[8 [Bal, S(13) =413 =y + [ [osl].

Figure 27 below shows a corresponding polygon, -

Figure 27.




-40-

Turning to space requirements, we scc that the arrays ¢, 5, and C, and the

array D wiil take up memory space O{n). The problem lies with the Tists £7 and

~
. . 2
“2' cach of which may, in the worst case, take space C0(n”), when summed over

all values of the index. Each'qollection of lists takes up 2m memory locations,
where m 1s the total number.of ineiusions (i.=., relations of a vertex being
inside a convex triad); and it is possible to construct polygons for which m =
O(nz}. For exampie; Figure 28 illustrates a class of (4k - 1}-gons, in which
the triad (4k -1, 1, 2) contains 3{k -.-1) vertices; while the triads {1, 2, 3},
(5, 6, 7), v.., (4% - 3, 4% - 2, 44 - 1), ..., (4k - 3, 4k - 2, 4k - 1) contain
respectively 4(k - 1), 4(k - 2), ..., 4tk - 1), «.., 4(k - kY; for a total of
(2k + 3)(k - 1) inclﬁsions. The case of k = 5

. 9 .
Eiéﬁﬂfiiﬁi- _ / is illustrated. As a more realistic example,
//4%4 _ consider.the 48-gon in Figure 14. Here, a
& quick enumeration shows that m = 57 {we

have given the benefit of the doubt to

\\\ ~all vertices nearly included in triads).

Out of 26 convex triads, 10 are empty
and 6 show only dne inclusion; the
Targest number of inclusions in
a single triad is 11 in (38,
39, 40). Here, m < 1.19n;
so that O(nzj behavior is
not in evidence, The
two sets of lists

would require 4m
= 228 memory
1 locations;
_ while a plain
(n x n) array would take up 482 = 2304 memory locations. Returning to the
extrere case of Figure 28, we see that the lists would require 4 x13x4 = 208
memory locations, while a simple squére array would need 192 = 361: still in

favor of the list-structure, Indead, for all %k, 4(2k + 3)(k - 1) < (4k - 1)2.



41~

We can now proceed to modify and refine the algorithms. We first adinst

Algorithm 0,

ALGORITHM 0%,

o1 B« 1; M« T
ox2z  for j < 1 ton (step 1), do
ora  O(1, J) < C(2, §) < C(3, ) < 05 S():lp + S(3):ls « NIL {initialize};
0*4 compute the diseriminant Fj_z Yy - 1, 4, 4+ 1) {see (12), (20)};
0*5 G{7) = P
0*6 if'mj > M, then do
U I Mo
.
0*8 else, if'xj = M and yj > Yy then h <« j;
o*as  end {for 7}

{By Lemma 4 Corollary, Ph‘is now an extreme vertex of the polygon y and so
must be conver; if Ty > 0, the polygon is correctly indexed for touring it
with interior on the left; if F% < 0, the order must be reversed.}

oxw A+« B<HA B <«Dhip«Dils «ptr <z« NIL; p < g = 0 {initialize};
o*u if G(R) > 0, then, for j « 1 to n (step 1), fill lists {right ordering};

ox12 else, for j <« n to 1 (step -1}, fill lists {wrong ordering of vertices},

In the pseudo-code, multiple assignments are done in the direction of the arrows,
from right to left.[in a-2 of appeﬁd, this is cruciai, since id:ls:lp <« newcell
is done first, with the old pointef 2d:lg, 'and then id:ls <« id:lsflp updates this
pointer to its new.ﬁalue; hefe, it is not so important]; for 7 <« a ito b {step c)
repeats all subscquent material (cither a single instruction, or all instructions
from do to end) with 4 taking successive vaiues a, a + ¢, a + 2¢, ..., a+ kc, ..
as long as (J - b)/c € 0 (¢ must not be 0), with no execution if [a - b)/¢c > 0;
if K thenm will execute all subsequent material (éither a single instruction, or
all instructions from do to either end or elee) once only, if and only if K is
TRUE; should there be an else, all subsequent material (single instruction, or

everything from do to end) will be executed only once, if and only if K is FALSE.

The procedure f711 lists is as follows.

=y



F -3

I-16

I-18

1-19

1.2

42~

append(@, NIL, NIL, j) {add a cell referring to Pj at the end of List D};
if G(j) > 0, then increment(d, A, p) {vertex Pj is convex; add to List A};
if G(j) <0, then inerement(3, B, gq) A{vertex P, is re-entrant; add to A,

¢

ptr « Dils [pir now points to new previous-celll,
The procedure increment(g, Z,-w) is as follows,

if ' w = 0 and ptr # NIL, then 3 < ptr {Pj is the first vertex in List §;
ptr points to the previous cell; make jJ point to the predecessor of the
first cell refefring to a vertex in the current list};
if w=1and § = NIL, then z « ptr {first cell in List D is in Ligt 3
and current vertex is secownd in List F};
if w > 0, then do {Pj‘is not the first vertex in List g};
if Z # NIL, then Z:cp <+ ptr {Z:cp points to the previous cclll;
Z < ptr {Z points to the predecessor of the latest vertex in List 3};
end {1f}
if (GRY > 0and j =n) or (Gh) <0 and § = 1), then do {end of scarch}
if A = N[ﬂ, then do {first cell in List £ is in List A}
A« P:1s {last cell is predecessor of first cell in List A};
:4:@p < 2z {A:cp points to predecessor of second cell in List A};
end Tif} o o .
if B = N1L, then do {first cell in List D is in List A}
R « D:ls {last cell is predecessor of first cell in List B}:
Biep <« 2 {B:cp points to prédecessor of second cell in List A1,
end {if) | |
D:lg:ilp « D:lp {circularize List D; see c-1};
Atep < A {circularize List 4; see c-2};
Biep « B {circularize List Z; see ¢-3}:

end {1f}

w+w + 1 {wcounts vertices in List 3¥. -



%o

On termination of this algorithm, we have a circular linked list of all
convex vertices in List 4, circu]ﬁr linked tist of all re-entrant vertices
in List #, both ordecred so as to make a tour ot the polygon 1 with its interior
on the left, and both incorporated in the circular linked list D2 of all active
vertices, Apart from the use of linked lists and the considerably greater
detail given above than in the earlier algorithms, the only change is that we

have not altered the original indices given to the vertices of the polygon.

We can now modify and expand Algorithm 1. The new algorithm will have two
parts:  first, a setting-up part, which we shall call Algorithm 1*, will form
the collections of lists {k und«ui; then an dterative part will extract succes-

sive empty triads: this we shall call Algorithm 3,

ALGORITHM 1%,

i*1 agp <A {initialize the A-1ist pointer};

1x2  Loop

1+3 ho« apix; 1 <« apilpixz; j < apiipiip:x {PhPin is convex triadi;
1*4 apiupils < apiup:lp + NIL {initialize « -list header};

15 mt « Q {initially suppose the triad is ecmpty};

1%6 bp < B {initialize the A-list pointer};

1%7 if bp # NIL, then do

1%8 | Loop
149 kK« bpiipix {Pk is a re-entrant vertex};
1% 10 compute the three discriminants Yy = v(h, 1, k), Yy = y(i, 7., k), and
Cien Yo = YOio hy kY Asee (9), (10y, (Y1), (2231, '
1*12 if‘Yl > 0 and Vs > 0 and ¥y >.D, then do  {vertex Dk is in triad PhPin}
1%13 mt -« 1 {i.e., the triad is not empty}; '
1%14 appeﬁd(ap:up, k) {add Pk'to List.ui};
1415 append (S (k), ap:up:ls) {add pointer to new cell in «, to List ék};
1+16 end {if} '
T bp <« bp:ép {go to next re-entrant vertex};
1*18 wntil bp = B {continue to end of List A}

1*1  end {if}



44~

Algorithm 1% (continued):

1*3
1%21
1%22
1%23
1%24
1% %
1%
1% 27
1+ 28
1*2
1*30

1*3t

1+

1*33

if mt = 1, then do {i.c., triad contains at lecast onc re-cntrant vertex)
bp « A {initialize an A-iist pointer}; |
Loop
k « bpiip:x {Pk is a convex vertex};
compute the three discriminants Yo Vo and Vo
if ¥ > 0 and Y, > 0 and Vs > 0, then do {vertex Pk is in triad PhPiﬁj};
append (ap:up, k) {add Pk to List ui};
append (5(k), apiup:ls) - {add pqinter to new cell in “; to List ék};
cend {1f} _ o ‘
bp < bp:op {go to next convex vertex};
wntil bp = A {continue to end of List }4};
enid {if} _ |
{List “: is now complete.}
ap < apicp  {go to next triad};
wntil ap = A {continue to end of List AJ.

~Only one new pseudo-code construct appears above; namely, loop ... wntil M;

which means that the body of ... is repeated so long as, at its end, M is FALSE

fthis piece of code is therefore necessarily executed at least once].

3 -10

The entire structure is now complete, and we can proceed to Algorithm 3,

ALGORITHM 3. ,
ap'+14; r <+ 0 {initialize};
loop | _
if apiup:le = NIL, then do ({i.ec., the triad is empty}
r « p + 1. {increment position in array C};
C(l, v} « h < apix; C(Q, r} « 1 < apilpix; C(3, r} < j < ap:lp:lp:x

{put the triad P Pin into the array ¢ of empty triads};

bp <« S(i):1lp {initia?iZe aléﬁ—list pointer};
. while bp # NIL, do
bpitp:lp « bp:tp:lp:lp {delete the cell next after that to which bp:tp
points [this destroys thé Value of‘the corresponding u@:ls
pointer; but th;s will not matter]};
Ep < bp:lp {go to next cell in éi};
end {while}



45—

To ensure the viability of a full implementation of the third algorithm,
a program in 'C' was written and tested, following the procedures outlined
above, The fully-annotated program is listed in &7 and four examples of

triangulations are given in §8,

Since this algorithm essentially does the same thing as Algorithm I,
we know from Theorem 2 that the procedure will always yield a complete,
economical triangulation in a finite number of steps. It remains only to

obtain the worst-case order of magnitude of the time taken.
The program is divided into four principal parts:

{1) Preliminary Definitions (pages 47 - 51);

(2) Main Program (pages 52 - 57);

(3) Find Included Vertices (pages 58 - 59);
and (4) Output Lists (pages 60 - 61},

The last of these is concerned with presenting the results, and the time taken
in doing so is not a proper part of the timing calculation., The Preliminary
Definitions consist of preprocessor instructions and stdrage declarations, which
are used by the compiler and do not affect execution time of the compiled or

'object' code, together with functions,

app uth, jJ, app t(k, uj, del S(1),
and fillwp(j,-G),

which are used in the Main Program. The functions app u() and app t{) take
constant time {they append a single cell to a linked list equippec¢ with a
header which points to the last cell); del S({i}) deletes from u-lists all

references to Pi+ Since del S(i) is invoked at most once, for each 7,

and since the totil size of all the u-lists cannot exceed nz, the timé taken
by all calls to del S(i) is definitely no move than O(r°). Finally, £ill D(),
which appends a D cell to the D-list, adjusting all appropriate D-, A-, and
B-pointers, takes constant time. The section titled "Find Included Vertices"

consists of the function
find u{a),

which constructs the u-list for the D cell pointed to by the pointer . - Each

call to this function takes the computation of inclusion conditions for, at

worst, every vertex in the D-list {first, the B-list is tested; but then, if



46—

a re-entrant vertex 1is found.to be included, the A-list is tested too)}; so that
the expenditure of time 1s Q0(p + g), where p is the number of vertices in the
A-list and g the number of vertices in the B-list; and this includes 27(p + qj
a.o., invelved in computing three discriminants for each pessible included
vertex, Of course, p and g will diminish, as each vertex is removed. This
estimate s slightly excessive, since somewhat less computation is required
for empty triads {only 27 a.o.), and 9 or 18 a,o. may suffice (rather than

27 a.0.) to eliminate many vertices,

We may now turn to the Main Program. Input (like output) is not included
‘in the timing calculation, The time required to initialize the D-, A-, and B-
iists (essentially Algorithm 0%) is clearly O{n), including 9n a.o. to compute
the »n discriminants. Since Algorithm 1% now calls find u{) for each convex
vertex, the total time here is J{p(p + g)) = O(nz}, inciuding at most 27p(p + q)
< 27%2 a,0. This brings us to Algorithm 3 proper: the elimination of succes-
sive‘empty convex triads. In the worst case, there are no redundant (collinear)
vertices at any stage; so that we eliminate triads in »n - 2 iterations, with »n
= p + g initially and p + g diminishing by one at each iteration. The search
tfor the next empty triad takes a worst-case time O{p), as we cycle through the
A;list; and the calls to del S() will contribute to a total O(nz) overall, as
has already been explained. In each iteration, two new discriminants must be
éomputed, taking 18 a.o., and there may be, at worst, as many.as four calls to
find u(}, involving not more than 108(p + g} a.o. (if the vertices flanking
the vertex to be removed from the apex of the triad in question are therehy
made redundant, two more discriminants wili change in value, but not in sign,
and therefore need not be recomputed). As careful perusal of the program will
bear out, all other operations take constant time, for each iteration, It
therefore follows that the time for cach iteration is J(p + g}, including
168(p + q) + 18 a.o. In sum, the iterations together take time O(nZ), inclu-

ding 54(%2 + ﬂ-n - %gﬂ a,o. With the % and 27n2 above, this yields:

3
THECREM 4. Algorithms 0%, 1%, and 3 together (i) always yield a complete,

economical triangulation, an& (11) take less than
81 nin + 1) - 360 = 0(n°) (59)

a.o. and O(nz]‘other'operations to perform,



47

7.  The Program

/*************************************************************************
PRELIMINARY DEFINITIONS
Fokkokkkokokickk ok Rk R Rokck koo bk ok ook ook ok ok kokokR ko k /

#include <{stdioc.h>

/¥X%  We are given a simple closed polygon P, with vertices
P(Ly, P(2), ..., Pln). For j =20, 1, 2, ..., n~ 1,
P{01{j] contains the x-component x{(j+l), and P[1]1[j]
the yv-component y(j+1) of the vertex P{j+1). The
discriminant {(see below) of the triad whose middle
vertex is P(j+1) is stored in G{j]. ¥k /

float P[27[100], G[100];
/%%  gamma{h, i, J) 18 the discriminant,

P(h+1}P(i+1) ™ P(i+1)P(j+1),

of the triad P(h+l)P(i+1)P(j+1). kXX
#define gamma(h, i, §) {ge+,  P[O]1i] % (P[110J] - P[LI[h]) \
- P[1}{i] * (P[O][;} P{OJ [h]) A\
+ PI11th] % PIOI[4) - PIOTIR] ¥ PIT1141)

JERK The polygen P has n vertices: p are convex, q are
re-entrant, and the rest (if any) are redundant
{i.e., collinear with their neighbors). Discriminant
evaluations are counted in g as they occur. As emply
convex triads P(h+1)P{i+1}P{j+1) are found, they are
stored in the array C: h in C{0}{r]l, 1 in C[1][r],
and § in C{2]([r], with r =0, 1, 2, ... *kk/

int g = 0, n, p =0, q =0, C{3}[100];

/¥¥¥  The u-lists have identifying pointers in the "up”
components of cells in the D~list {(see below); these
point to header-cells "head u" of the form {uf, us},
with "uf" a pointer pointing to the first, and "us" a
pointer pointing to the last, "u.cell”. Every u_cell

ful, udex!, where "ul" is a list-pointer, and the
index "udex" identifies a vertex P{udex + 1} of the
polygon P, contained inside the convex triad to which
the D_cell (whose "up" component points to the current
u-list) refers. Fach u-list has a first cell, of the
form {ul, udex} = {ul, 0}. _ : ¥k /

struct u_cell { struct u cell *ul;
int udex;
+o '

struct head u { struct u cell ¥uf, *us; } :



-48-

/¥kk malloc(L} allocates a free memory space of length L
and returns a (character) pointer to it. KK /

char *malloc();

/¥¥%  NEW u returns a pointer to a new u_cell, for addition
to an existing u_list. NEW Hu returns a pointer to _
a new header—cell head u, for initializing a u-list. ¥k /

#define NEW u  (struct u cell %) malloc(sizeof(struct u_celil))
#define NEW Hu  {struct head u %) malloc{sizeof(struct head u})

J¥%x - app u{h, j) appends a new u cell {0, j} with index
"udex" = j to the end of the u list with identifying
pointer h. ¥/

app u(h, J)

struct head u *h;
int j;

{ struct u cell *u;

u=h->us = h > us -> ul = NEW u;

u ~->» ul = 0;

u —> udex = j;

+
JEKK The t—lists have identifying pointers S{k], pointing to

header-cells "head_t" = {tf, ts}, with "tf" pointing to
the first, and "ts" to the last, "t _cell”. Every t_cell
= {tl, tu}, where "t1" is a list-pointer and "tu" points
to a u _cell, which is the predecessor of a u cell whose
index is k (the index of the t-list S{k}). Xkk /

struct t_cell { struct t_cell xt1;
~ struct u_cell ¥tu;
rs
struct head t { struct t_cell *tf, *xts; } *S[100];
/¥k%  NEW _t returns a pointer to a new t_cell, for addition
to an existing t list. NEW Ht returns a pointer to
a new header-cell head t, for initializing a t-list. *¥k/
#define NEW t {struct t_célll*) malloc{sizeof{struct t cell))

#define NEW Ht {struct head_t *) malloc(sizeof{struct head t))



g 3 ¢ 4

app_t(k, u)

int k;

-40-

app_t(k, u) appends, to the end of the t list S[kl, a

new t cell {0, u}, with "tu" - u pointing to the

predecessor, in some u-lisi, of a u cell with "index"

= k. *xk/

struct u_cell xu;

{ struct t_cell ¥t

if (S{k] -> tf == 0) t = S[k] -> ts :
t

else

t -> tl

t ~> tu
t

/ kK

del S{i)

int 1;

= §[k] -> tf = NEW t;
= 8lk] ~> ts = S[k] -» ts —> t1 = NEW_t;

noi

0;
u;

del S3{1) deletes cells referring to vertex P{i+1) from

all u-lists, using the listing of their predecessors in

Sli]: then voids S{i]. [NOTE: Once del S(i} has been

used, it is no longer possible to rely on the values of

the u-list header-pointers d ~> up —> us (where d is a

pointer to any D cell), since these are not updated by

del S{i).] : kkk/

{ struct t_cell xt;

o= 8fi] > tf;

while (t

= 0)

{ £ -> tu~> ul = £t ~> tu -> ul -> ul:
t =t -> tl;

t
}

Sii] —> tf = §[i] > ts = 0



/HKK

-50-

The "D"-list has identifying pointer D, pointing to the
first "D_cell”., Fach D cell = {pp, np, f, b, up, index},
where "pp'" is a list-pointer, "np" is a reverse-sense
list-pointer, "f" and "b" are other pointers to D cells
{see below), "up” is the identifying pointer to a u-list
(see above), and "index" is the index of the vertex
P(index + 1) of the polygon, to which the D cell refers.

The D-list incorporates two other lists, the A-list and
the B-~list. All three of these lists (unlike the u— and
t~lists) have no header—-cells. The identifying pointer
of the A-list {which points directly to the first D cell
in the A-list) is A, and that of the B-list (which points
to -the first D cell in the B-list) is B; the pointers AA,
BB, and DD respectively point to the last D cells of the
A, B—, and D-lists. The D cells in the A-list are those
referring to convex vertices; the D_cells in the B-list
are those referring to re-entrant vertices. The "f" and
"b" pointers are forward and backward list-pointers for
D cells of like kind (both in the A-list, or both in the
B~list).

When the construction of the A-, B--, and DI-1lists is
completed, the list-pointers of the last cells are made
to point to the first cells of the respective lists,

- making them circular.

struct D_cell { struct D_cell *pp, *np, *f, %b;

/EXk

struct'head_u ¥up;
int index;
3 kap, %A, %AA, *bp, %B, ¥BB, %D, ¥DD, ¥mtt;

NEW D returns a pointer to a new D _cell, for addition
to the D _list. '

#define NEW D  {struct D_cell %) malloc(sizeof(struct D cell))

Xk /

dok /



-5]~

/%% fill D(j, G) appends a D_cell {0, np, 0, b, up, i} to
the D~list, and increments the A-list if P(j+l) is
convex, and the B-list if‘P(j+1) is re-entrant. Xokk /

£ill D(j, G)

int j;
fleat. G;

{ struct D _cell *d;
char *malloc();

d = NEW _D;
d>pp=d-> 1= 0
d ->up = 0;
-d ~> index = J:
if (DD = 0) A
{ DD -> pp = d;.
d ~> np = DD;

Db = d;
TRCERD)

{ if (AA t= 0)
i AA > T = DD,

BD ~> b = AA;
}
else
{DD ~>» b = 0
_ A = DD;
}
AA = DD;
4
if (G < O}
{ if (BB ‘= 0)
{ BB —» £ = DD
D > b‘: BB;
o
else
{ D > b = 0
E = Db;
¥
BB = DD;

.

——



-57-

A dokkkkoiook okkokkokkoiorkokkkokokokkorkokolokookiokokksiok kokokaokokskokoloiooiookokoiok ok ok K

MAIN PROGRAM

Tk opiokkookopiooRokock ook ook ook ORIk oK /

main{)
{ i.nt h, hh, i,. J’, .j.j, k: mt! r;
float x, v;

struct D _cell *findmu{);
/X%  HRead in the vertices of the polynomial. -

do scanf("%d ", &n); while (n < 3);
for (i = 0; i < m; i++) :
{ scanf("%f %f ", &x, &v):
P{O][1] = x;
} P{1][i] = y;

/0K Find the vertex with maximum x-coordinate {(if several,
: find that with maximum y-coordinate). (This is an
extreme vertex, and so is convex.) Also compute gamma
values and initialize the C-array and the t-lists.

h = 0; » = P{O}[0];
for (i = 0; i < n; i++)
{ if (P{O}{1) > x)
{ h=1i;
x = P[O]{i};
}
if (P[O)[i] == x && P{1][i] > P{1]JIRh]) h = i;
if (i ==n -1) G{i] = gamma{n — 2, n - 1, 0};
else if (1 == 0) G[1] = gamma(n - 1, O, 1);
alse Gfi] = gamma(i - 1, i, 1 + });
cloji} = ¢[11[i] = C[2][i] = Oy
S[i] = NEW_Ht;
Slit —> tf = §8[1] -> ts = {0

/¥¥%  G[h}] is the discriminant of a vertex guaranteed to be
convex. Thus, if G[h] < 0 (it cannot vanish), the
polyvgon is numbered in the wrong sense {correct sense
has the interior on the left as we tour the polygon).
For the correct sense, all discriminants computed
above must have signs changed. Count the convex
vertices in p and the re~entrant vertices in q.

x = ((G[h] > 8) =1 : {(-1)});
For (i = 0; i < n; i++)
{ Gli}] = x x G[i];
if (G[i] > o) ptt;
else if (G{i] < 0} q++;

1kk/

*Ak/

2k /



-53m

/%%  Print out the polygon. kkk/

printf("Polygon P: %d vertices; %d convex, %d re-—entrant.\n\n",
n, p, 9);

printf{"Vertex X vy Discriminant AoA\n");
for {1 = 0; 1 < n; 1++)
{ printf{("P(%3d): %12.7f %12.7f %12.7f ",
i+l, P[O}j[i}, PIL}[if, Gli]);
if (G[i} > 0) printf("convex\n");
else if (G[i] < 0} printf("re—entrant\n");
else printf{"redundant {collinear)\n");
}

printf("\n"};
/&K Initialize all A~-, B--, and D-1list pointers. ¥k /
A=AA =B =8B =D =DD = {;

JRse: In correct interior-on-left cyclic order, append D_cells
for each convex or re-entrant vertex to the D-list and

update A- and B--lists accordingly. xkxk/
if (x > 0} for (1 = 0y i < n; i++) fill D(i, G[1]);
else for (1 =n - 1; 1>~ 1; 1—) fill D{i, G{i});
Jxxk  After cémpleting the D-, A, and B~ lists, now
circularize all three lists. Xkk/
Db > pp = Dy
D ~> np = DD;
AL > = A
A ~> b = AA;
BB ~> f = B;
B -> b = BB;

/*¥%  Examine each convex triad P{(h+1)P{i+D)P(j+1) to make up
a u-list of all contained vertices. At least one such
triad must be empty. find u returns a pointer to the
‘triad it has examined, 1f that triad is empty; or else
it returns mtt (the pointer to the last emptv triad). Kkk/

{ mtt = find ulap);
ap = ap ~» F;
1

i)
while {ap 'z A) ;



~54-

/%k%x  Print out the lists. KKk /

LIST();
EMPTY();

/¥k%%X  Proceed to search for empty convex triads and remove
them from the D-list to the C-list. Position in the
array C is initialized te r = 0. We begin at the first
empty triad in the A-list. Xkk/

r = 0
AA = mtt >
while (p > 2)

S XKk Search for next empty triad, cycling forward‘through
circular A-list. . *xk,/

‘while {(mt == 1)
{ if (AA -> up —> uf -> ul == 0}

{ mtt = AA;
mt = 0;
}
else
{ ht+t: _
AA = AA > f
}

/ XXk Put indices h, i, and Jj of empty convex triad into
C-list and decrement A-list count p. Vertex P{i+l)

will be removed from the D-1list. Kkok /
Cio}l{r} = h = mtt —> np > index;
Clil[r] = i = mit -> index;
Ci2lir] = j = mtt -> pp -> index;
P :

printf("\n  %3d >>>> Remove vertex P{%d) from P(%d)P{%d}P(%d)\n",
r+1, i+1, h+1, 1 +1, j + 1});

FEokk Delete cells referring to vertex P{i+l) from all
u-lists, using the listing of their predecessors in
S[il; then void S[i]. Fokk /

del S(i};



-5G5-

rd

/XK Remove P{i+l} from A- and D-lists, *xx/

mtt ~> pp —-> np = mtt -> np;
mtt —-> np —> pp = mtt —> pp;
if (mtt == DY D = mtt > pp;
mtt -> £ ->» b = mtt > b;
mtt ~-> b > F mtt -> f;

if {mtt == A) A = mtt > F;
AA = mit > fy

it

/S REE Put old discriminants of adjacent vertices to P{i+l)

in x and y, and recalculate them without P{i+l). k%K /
G{i] = O
x = G[h];
y = G[Jj];
h

h = mtt —> np -> np —> index:
Jj = mtt -> pp -> pp —> index;
G{hj = gamma(hh, h, j);
(4] = gamma(h, j, jj)

/XK Reconstruct u-lists for any convex adjacent vertices. xkx/

if (G(h] > 0) find u{mtt -> np);
it (Gf3] > @) find u(mtt ~> pp);

/X% Check adjacent vertices for change from re-entrant to
convex {the reverse is not possible). ¥xx/

Cif (x < 0 & G[h] >= 0 ' ¥ < 0 && G[j] >=-0)

PR3 Put into ap, bp, AA, and BB pointers to the previous
convex and re-entrant, and the next convex and
re-entrant, vertices, respectively. fkk/

{ ap = mtt -> b:

ap ~» f = AA;
AA ~-> b = ap;
if (x < 0) bp = mtt -> np --> b;
else bp = mtt -> pp —>» b;
if {(y <0) BB = mit ~> pp -> f;
else BB = mtt ~> np ->



56—

/¥x¥  Adjust to each side-vertex in turn. X%/

if {(x <0 && G[hf >= 0)
{a-

printf("\n  Vertex P(%3d} changes from re-entrant",
h + 1)

if (q == 0) B - 0;
bp —» f = mtt => np ~> f;
if (y < 0) mtt -> pp —> b = bp;
else BB -> b = bp;
if (mtt -> np == B) B = mtt ~> np ~> f;
if (G[h] > @)
{ pt+;

printf{" to coovex.\n");

mtt —> np —> b = ap;
ap = ap ~» f = mtt -> np;
ap —» T = AA;
AA -> b ap;

}

else

{ mtt -> np -> np > pp = wmit -> pp;
mtt —> pp —> np = mtt > ap -> np;
if (mit ~> np == D) D = mtt > pp;

iton

printf{" to redundant (collinear). Remove it.\n"};

if {(mtt -> np -> np == ap) find ufap);
if (mtt -> pp == AA) Tind u(AA);

/¥kx  Delete cells referring to vertex P(h+1) from all
u-lists, using the listing of their predecessors in

S{h]; then void S/h]. Kokk /
del S{h);
r
ks
else if {(x < 0) bp = mtt ~> np;
if (v < 0 && G[j] >= D)
(g
printf{"\n Vertex P{%3d) changes from re—entrant”,
J o+ 1)
if (g == 0) B = 0
bp ->» f = BB; '
‘BB > b = bp;
if {mtt -> pp == B) B = BB;



-57-

if (Gl4} > 0}
U optt;

printf(" to convex.\n");

find uimit ~> pp);
mtt -> pp -> T = AA;
AA = AA > b = mtt —> pp;
AA > b = ap;
ap —» T = AA;

}

eclse

{ mtt -> pp ~> pp ~> np
mtt > pp -> np -> pp
if (mtt ~> pp == D) D

mtt ~> pp -> np;
mtt ~> pp - pp:
mtt ~> pp - pp;

on

printf(" to redundant (ceollinear}. Remove it.\n");

if {mft ~» pp ~» pPp == AA} find_u(AA);
if (mtt -> pp ~> np == ap) find u(ap};

/%K Delete cells referring to vertex P{j+1) from all
u-lists, using the listing of their predecessors in

S[J.I; then void S(J] . k% /
del S{j}:
i
¥
i
/%xkx° Increment position in C-array. *xk/
r+t+:
EMPTY{);

1
)

printf{"\n%d Discriminants Evaluated: %d a.o.\n", g, 9 ¥ g);
PRS2 Print out the C-array. kX /

printf{"\nArray ¢ of emply convex triads as found by the program.\n\n"};
for (h = 0; h <= r / 13; h++)
{ for (i = 0 1 < 35 1++)
{ for (3 = 0; J < 13 & (k = 13 % h + j} < r; j++;
prioptf("%3d ", Cliflk]l + 1),
printf{"\n");
I
printf{"\n");
}



-58-

ckckaookoR sk sokkokokoaokokiokkok ook ok koiorckaokiokk ok ok kool kekolokdokokiciokaok ook ook ko

FIND INCLUDED VERTICES

FKOKROIOR ¥ oKk 3k ok ok siorsokk ikl kokokskokokock ko ko sokaloiok sciokooioklolokoRksiokokoksolookoiolockkokok sk /

struct D cell *find u{a)

struct D"éell *a;

u —-> ul = 0;

H

i, J, k, mt, app_t(}, app u{);
u_cell *u;
head u *hu;
D cell *d;

Initialize an empty u-list for the D-cell pointed to by

0;

if (d !'= 0)

the pointer a. *Hk/
—» up = NEW Hu;
~> uf = hu ~> us = NEW_u;
-» udex = 0;
a —> np ~» index;
a —> index;
- a —» pp —» index;
mt is the "empty" flag, initially 0 (empty). : *xk/
Examine each re-entrant veriex P(k+1l) for inclusion. xkk/
{ k = d ~> index;
Compute fhe three discriminants: if all three are
non—-negative, then P{k+1l) lies in the triad. kx%/

if (gamma(h, i, k) >= 0 && k '= h)
if (gamma(i, Jj, k) >= 0 && k '= i)
if {gamma{j, h, k} >= 0 && k =
{ mt = 1;-

N,



}

-50-

/%K Add pointer to last cell in current u-list to t-list at
Slk); add k to current u-list. *kk/

app_t(k, a -> up —> us);
app_uf{a —> up, k);

d=4d -> f:
}
while {d !'= B) ;

/ kX% If the triad contains at least one re—-entrant vertex,
it may contain convex vertices also. If so, examine
each convex vertex P{k+l) for inclusion. KKK/

if {mt == 1)
{d=4;
do
{ k = d ~>» index;
if (gamma(h, i, k) >= 0 && k != h)
if (gamma{i, j, k) >= 0 && k '= 1)
if {gamma(j, h, k) > 0 8& k '= j)
{ app t(k, a > up —> us);
app _uf{a --> up, k);
. .
d=d-» f;
}
while (d '= A) ;

1
)

7 Xiok It still mt = 0, the triad is empty. If so0, return a
pointer to the triad. _ ¥kx/

if (mt == 0) return(a};
else return(mtt);



~-60-

JF kR ok kskskoboioksk ok ok koK koo iolokokskokok ok ko R ook kR kosksk ok ook skok ok kolokoksokokslol ¥ok ok ko
: OUTPUT LISTS
ook dokokorakkokokokok ook ok skl ooRKkokoRk kol ko kokskok kol okl aoickaolok kloloiokekokakoiolokokololoiok dokck ook ook /

CLIST()

{ int v;
struct u_cell *u;
struct head u Xh;
struct D _cell *d;

printf("\nA-list: %3d vertices: { ", p);

v = 0
d =~ A;
do
{ if (v % 8 == 8) printf{"\n "Y;
printf{"P(%3d) ", {(d -> index) + |}
vt
d=d > f;

i
while {d '= A) ;
printf("}\n");

if (q > )
{ printf{"\oB-list: %3d vertices: { ", q};
v = (;
d = B;
do :
f if (v % 8 == 8) printf("\n "y
printf{"P{%3d) ", (d -> index) + 1);
vty
d=d -» f;
}

while (d !'= B} ;
printf{"}\n"};



-61-

EMPTY(

[

int v;
struct I cell *d;

printf{"\nEmpty Convex Triads at { ");
v = 0

d = A,
do
{ if{d => up —> uf => ul == )

{ if (v % 8 == 6) printf("\n "y
printf{"P{%3d} ", d -> index + 1)}; '
vty

} .

d=d-> f;

+
while (d !'= A}
printf("}\n");



-52-

8. E xamples

Four examples were run., The first was the l5-gon in Figure 27, whosc
resulting triangulation is shown in Figure 29 below. The computer output is

shown on pages 63 - 64, Twelve

Figure 29.

triangles are formed (n - 3;
because the vertex P2 becomes
collinear after the first
triad (P2P3P4) is removed,

The total number of a.,o. (i.e.,

nine times the number of discri-

minants evaluated) comes to

4,257, as compared with the
bound (59) of 81 =15 x 16 - 360

= 19,080 (a factor of almost 5 too big; compare the factors of almost 9 and about

3 in Algorithms 1 and 2),

The second exampie was the 20-gon shown in Figure 30, The computer output

is given on pages

Figure 30. 5 4
I 65 - 67. Seventeen

6 . triangles are formed
(n. - 3; because the
7 .
I 1 2 vertex P_ becomes

6
8 é? collinear after the
R :

removal of the first

XV ;
- x three triads (P20P1P2,

$ i 1T 1 PyPcPc, and P P Poj.
u 18 : This time, the total

number of a.o, is
9 9
14 13 /§’ 6,579, as compared
v M % with the bound (59)
of 81 x20x%x21 - 360
= 33,660 (a factor
15 of about 5 too big).

17



-63-

ExamEIe 1.

Polvgon P: 15 vertices; 8 convex, 7 re—enlrant.

Vertex P v Discriminant

I B 4. 00000600 4. 0000000 ~18. 0800000 re—-entrant

pLoo2): 2. 0000600 2, 0000000 -20.00000600 . re-entrant

P{ 3 0. 0000000 10.0000000 20, 0000000 convex

P{ 4): 0. 0000000 0.0000000 50, 0006000 convex

P( B): 6. 00000600 0.0000000 60. 0000000 convey

P B 6.00000600 - 16.0000000 -30.0000G608 re—entrant

P{ 7 3. 0000000 10.0000000 -30. 0000000 re-entrant

P{ 8): 17. 8000000 0.G6000000 93. 00000060 convex

BP( 9): 22. 0000000 6. 00000600 -2, 0000000 re-entrant

P{ 103 26,0000000 5.00006000 26. 0000000 convex

P{ 1l 16. 00000006 14, 0000000 71.0000000 convex

P{ 12): 17.0000000 5. 0000000 —-23, 0000000 re—entrant

P( 13): 14.90000600 7.00000600 -8, 0000060 re-entrant

P{ 14%; 13. 0000000 1G. 0000000 24,0000000 convex

Pl 15): 4, 5000000 13.0000000 81. 0000000 convex

A-list: 8 vertices: { P{ 3) P{ 4) P{ 5) P{ 8y P{ 10y PC Li:
P( 14) P( 15} }

B~list: 7 vertices: { P{ 1) P( 2} P( 8) P( 7) P{ 9) P( 12}

P{ 13} }
Empty Convex Triads at { P{ 3) P{ 10} }
1 »>»>» Remove vertex P{3) from P{Z2)P{3)P{4)
Vertex P( 2) changes from re-entrant to redundant (collinear). Remove it.
Empty Convex Triads at { P{ 4) P{ 107 ]
2 »>»»¥ Remove vertex P(4) from P(1)P(4)P(3)
Vertex P{ 1} changes from re—entrant to convex.
Empty Convek Triads at {-P( 5y P{ 10y PO 13}
3 >>>> Remove vertex P{5) from f{I}P(S)P(B}
‘Empty Convex Triads at { P( 10) P{ 1) }
4 >>»> Hemove vertex P(10) frbm P{OP(IOP{LIL)
Vertex P{ 9} changes'from rewenfrant to convex.

Empty Convex Triads at { P( 11) P{ 1) }



5 »xe>
mwtymem{
6 o>
Vertex P{
Empty Convex
T 225>
Fmpty Convex
8 x>
Vertex P{
Empty Cénvex

9 2>

Empty Convex

AD e
Vertex P(
Emply Convex
11 >35>
Vertex P{
Empty Convex
12 =252

Empty Convex

_6d-

Remove vertex P{11) from P{OP{ILIP(1Z)
Triads at | PO 9 PCH)

Remove vertex P{1) from P{I5IP{1IP(6)
B) changes from re—-entrant to convex.
Triads at { P{ 9} P( 6} }

Remove vertex P(6) from P{15YP{6)P{V)
Triads at { P{ 9 P({ 15) 1.

Remove vertex P(9) from P{S}?(Q)P(lZ}
12) changes from re-entrant to convex.

Triads at { P{ 12) P( 15} ]

Remove vertex P(lEj from PIEYPLLZIPIL3)
Triads at { P( 8 P{ 15) }

Remove vertex P{15) from P(14}P(15)P(7)
73 changes from re-entrant to convex.

Triads at { P( 8) P{ 14} }

Remove veftex Pi{8} from P{7)P{()P{13}
13) changes from re—entrant to convex.

friads at { P( 14y P{ 7} P( 13) }

Remove vertex P(13) from P(T)P{I3)P(14)

Triads at ¢ P( 14} P( 7} }

493 Discriminants Evaluated: 4257 a.ol

Array C of empty convex triads as found by the program.

9 9 15 15 8 g 14
0 1l 1 B g9 12 15
il 12 3] 712 13 7 1

7
8
3

7

i4

&



Empty Convex Triads
2 >»>> Remove
Empty Convex Triads

3 »»ry  IRemove

-65-

Example 2.
Polygon P: 20 vertices: 11 convex, 9 re-entrant.
Vertex - X g Discriminant
P 1) 5.0060000 0. 00000060 2.00600000
B{ 2): 4., 0000000 2.0000000 7. 0000000
P{ 3): 1.0000000 1. 00006000 -8. 0000000
P{ 4}): 2.0000060 4,0000000 6.0000000
B( 5): §.0000000 4.0000000 2.0000000
P{ 6): 0. 0000000 3.0000000 ~-4. 0000000
P 7): -4, 0000000 2.0000000 2. 0000000
P{ 8): -2.0000000 2.00060000 -6.0000000
B( 9): 2. 0000000 -1.0000800 9. 0000000
“P( 10): 1. 00060000 3.0000000 -5, 0000000
P 113: 0.00000060 0.0000000 8.0000000
P{ 12): 3.00000600 1.0060000 -4, (0000000
P{ 133: ~0.5000000 ~1,5000000 -5. 0000000
P 145: -2.5000000 ~1.5000000 3.0000000
Pi 15): -1.0000000 -3. 04000000 6. 7560000
P( 186): 1.5000000 -1.0000000 ~4.5000000
PL L7 6. 0000000 ~4. 0000000 2.2500000
P{ 18): 2.7500000 0.0000000 -5, 7500000
PO19): 3.5000000 ~1.00009000 L. 5000000
P{ 20): 3.5000000. 1.000066G0 -3.0060000
A-list: 11 vertices: { P{ 1) P( 2} P{ 4) P{ 5)
P( 11 P( 14y P( 15) PO 17) P{ 19}
B-list: 9 vertices: { P{ 3) P( 8) P( 8 P{ 1)
P( 16} P({ 18) P{ 20} !
Empty Convex Triads at { P{ 1} P({ 5y PCOTY PLOO9)
P({ 18} }
1 »>>> Remove

vertex P(1} from P{20)P(1YP(2)

at { P( B) PC T) Pl 9) P 14;

vertex P(5) from‘P(4)P{5}P{6}

at { B( 7) P( 9 P{ 14) P( 17)

vartex P{7} from P(BYP{7)P{8)

Vertex P{ B) changes from re-entrant to redundant

Va%é{ﬂ-B}bhﬁ&mfﬁmrveMrmﬂincmmmx

convex
convex .
re—entrant
convex
convex
re—entrant
convex
re—enirant
convex
re—entrant
convex
re-entrant
re-enlrant
conveax
convex
re--entrant
convey
re-entrant
COnVex -
re—entrant

PC 7Y PL 9

P{ 12) P( 13)

p{ 14y PO AT

P{LTY PA
P{19) b

{collinear).

Empty Convex Triads at { P{ 9) P( 14) B( 17) P{ 19) }

193

1

Remove it,



4 333
Empty Convex
B 2xuy
Yertex P(
Empty Convex
6 >5>>
Empty Convex
T 3>
Veriex P(
Empty Convex
H >»o>
Vertex P(

Vertex P(

Empty Convex

Empty Convex
140 5>
Verlex P{
Empty Convex
11 >>>>
Empty Convex
12 >35>
Empty Convex
13 o5

Empty Convex

66—

Remove: vertex P{9) from PfH)P(Q)P(lO)
Triads at { P( 8} P({ 14) Pk 17y PO 19)
Remove vertex P{14) from P{13)P{14)}P({ 15}
lB)_Changes from re-—-entrant to convéx.

Triads at { P{ &) P{ 13} P{ 15) P{ 17)

Remove vertek P{(16) from P{13)P{1B)P({16)
Triads at { P( 18} P('i3} B 17) P19
Remdvelvertex P{17) from P(16)P{17)P(18)
18} changes from re-enirant to convex.

{ P( 8) p{ 13} P{ 1B) P{ 19)

Triads at
Remoﬁe vertex PUI9) from PUIRYPLIGYPO20)
18) changes from re-entrant to convex.
20} changes from:re-entrant to convex.

Triads at { P{

Remove vertex P(20) from P(IS)P(ZD)P(Z)

Triads at { P{ 8) P( 13) P{ 16) P{ 18)

Remove vertex P{8) from P(4IP{RIP{1()
10} changes from re-entrant lo convex.

PP 4y PO 10Y PO O13) PLO16)

Triads at

Remove_vertex P{10Y from P{4YP(ID)YP(11:

Triads at { P( 4) P( 13) P{ 16) P( 18)

Remove vertex P{13) from P(I12)P(13)P(16)

Triads at { P( 4) P( 16) P( 18) }

Remove vertlex P(16) from P{1ZYP(1B)P(18)

Triads at { P{ 4) P( 18} V

P 19)

'

}

P{o18)

}

i

8) P{ 13) P({ 16} P( 18y P{ 20} }

N

i



-67-

14 »>>> Remove vertex P(18) from P(12)P(18)P(2)
.Vertex P( 12) changes from re enlranl Lo convesx.
Empty Convex Triads at 7{ P( 2) PL 4) P(12) }
15 »»>> Remove vertex'f(2) fram P{12)YP{2YP(3)
Empty Convex Triads at { P( 4) P( 12) }
18 »>>> Remove Qgrtex P(4} from P(3)P{4)P(11)
Vertex F( 3) changes from re—entrant to convex.
Empty Convex Triads_at P13y PC12Y PO}
17 >>>> Remove vertex P{1l) from P(3)P{LL)P{12)
Fmpty Convex Triads at. { P{ 12) PO 3) }
731 Discfiﬁinants Evaluated: 6579 a.o.

Array C of empty convex triads as found by the program.

13 13 16 18 18 4 4 12

20 4 6 8
1 5 7 9 14 15 17 19 20 8 10 13
2 6 8 10 15 16 18 20 2 10 1L 16

12 12 3 3

18 2 4 1l
2 3 1 12

1z
16
i8



~68-

The third example was @ yariant on the highly—involuted 19-gon shown in
shown tyiangulated in Tigure 31, The computer

jads are formed (

v removed Uupon becomin

Vigure 28. This was 4 27~ o,
9 - 772. Twenty-one tr y - 63 becaust

put 3s shown on pages 6
g col-

out
(593

and P, are successivel

o5
the ver 1ces_P18,.Pl4, plD" |
of a.o. 15 11,367, as compared with the hound

The total number.
ig by @ factor 0O

60,876 (too bl f about 5).

linear)..
of 81;<277<28 - 360 =

o

Figure 31.
- L




-69- .

EffTE]e 3.
Polygon P: 27 vertices; 15 convex, 12 re-entrant.
Vertex X v Discriminant
P{ 1) 0.0000000 0. 0000000 4, 0000000 convex
PL 20 2.0000000 -1.0000000 -4, 0000000 re—-entrant
P{ 3y 0. 0000000 2.0000000 -26.0000000 re—-entrant
P( 4): -4. 0000000 -2.0000000 8. 0000000 convex
P 5 0.0000000 4, 0000000 48. (000000 convex
P{ B): 4.6006000 -2, 0000000 -8, 0000000 re-entrant
P{ Ty 0.0000000 &.0000000 -84 .0000000 re—entrant
P( 8): -6. 0000000 --3. 0000000 12. 0000000 convex
p{ 9 &. 0000000 2. 0000000 132. 0000060 convex
P{ 10}: 5.0000000 -3. 0600000 -12. 0600000 re-entrant
P{ L1 .00060000 10.0000000  —188.00060000 re-entrant
P{ 12): --8. 0000000 -4, 0000000 16, 0000000 convex
P( 13): £.0000000 12. 0000000 256.0000000 - convex
P( 14} 8. 0000000 ~4, 0000000 -16. 0000000 re-entrant
P{ 15): 0. 0000000 14, 0000000  -332.06000000 re—entrant
P{ 16): -14, 0000000 -5. 0000000 20. 0000000 convex
P{ 17): ¢. 0000000 16. 0000000 420,0000000 convex
P{ 18): 10.0000000 . --5.4000000 ~20. 00000600 re—enlrant
P{ 19): - 0.0000000 18.0000000  ~516.00000060 re—entrant
P{ 20y  -12.00006000 -6, 0000000 24.0000000 convex
pP{ 21): 0.0000000 20.0000000  624.0000000 convex
P( 22): 12. 0000000 -6, 0000000 508. 0000060 convex
COPL 23 ~-8. 0000000 -5, 0000000 34. 0000000 convex
P{ 24): 6.0000000 - —=4,0000000 24, (3000000 re-entrant
Pl 25): -4, 3000000 -3.0000000 16, 0006000 convex
P{ 26): 2.0000000 2. 0000000 -14. 0000000 re—entrant
P{ 27): -2,0000000 . ~1.0000000 - B.00000090 convex
A-list: 15 vertices: { P( 27) P( 25) P( 23) P 22) P{ 21 P{ 20
P( 17) P{ 16) P{ 13)Y P( 12Y P{ 9 B{ 8) P{ 5) Pl 4)
P{ 1)}
B--list: 12 vertices: { P( 26) P( 24) P( 19) P{ 18) P( 15) P( 14)

P{ 11) P{ 10) PC T) P( 6) P{ 3) B( 2) )

Empty Convex Triads at { P{ 27} P( 25) P{ 23) P{ 20) P( 16) P( 12)
: P{ 8y BP( 4) P{ 1} } _

1 >»>y Remove vertex P{27) from P{1)P(27)P(26)

Empty Convex Triads at { P({ 25) P{ 23) P{ 20) P{ 16) P{ 12) P{ 8)
PO 4 P{ 1) } : :



70~

2 >»>» Remove vertex P(25) from P(26)P(25)P(24)

Verlex P{ 26} changes Trom re-entrant to convex.

Empty Convex Triads at { P({ 23) P{ 20) P{ 16) P{ 12)

P( 1) P( 26) }
3 >>»> Remove vertex P(23) from P(24)P(23)P(22)
Vertex P{ 24) changes from re-entrant toc convex.

Emﬁty Convex Triads at { P{ 20) P{ I6) P({ 12) P{ 8)
P( 26) P( 240 3}

4 >>>> Remove vertex P(20} from P{21)P(20)P(193)
Vertex P{ 19) changes from re-entrant to convex.

Empty Convex Triads at { P( 21) P{ 19) P( 16) P( 12)
P( 1) PC26) P{ 24) }

5 »»>» Remove vertex P{19) froﬁ P(2LIP{IDP(IR)

Empty Convex Triads at { P{ 21} P( 16) P{ 12) P{ 8}
P{ 26} P( 24} }

6 >>>> HRemove vertex P(16) from P{17)P{18)P{15}
Vertex P( 15) changes from re-entrant to convex.

Empty Convex Triads at { P{ 21) P{ 17) P{ 15) PL 12)
P{ 1} P( 26) P({ 24) }

7 >35> Remove vertex P{15) from P(17)P(15)P{14)

Empty Convex Triads at { P{ 21) P( 17) P( 12) P{ 8)
P({ 26) P( 24) }

8 >y Remove vertex P(12) from P{13)P(12}P{11)
Vertex P( 11} changes from re-entrant to convex.

Empty Convex Triads at { P{ 21) P{ 17) P{ 13) P( 11)
PO 1) P{ 26) P( 24) } :

9 >>>> Remove vertex P(11) from P{13)P(11)F(10}

Emply Couvex Triads at { P{ 21) P{ 17) P{ 13)7P( B}
P( 26) P( 24) }

P{

B{

P(

P(

P{

P{

P(

8)

4)

8}

4)

4)

8)

4

P{

B(

P(

Pl

P(

P{

P(

4)

13

4)

45

L)

Y

1)



10 >>>>
Vertex P{

Emply Convex

LE 3555

Empty Convex

12 >35>
Vertex P{

Empty Convex

13 2>2>

Empty Convex

14 3555

" Empty Convex

15 222
Vertex P{
Empty Convex
16 >>>>
Fmpty Coﬁvex
17 255>
Vertex P{
Empty Cénvex
18 >$>>
Vertex P(

Empty Convex

~71-

Remove vertex P(B)} from P{9)P(B}P(7)
7} changes from re-entrant to convex.

Triads at { P{ 24) PO 17) P 13) P( D)

P{ 1) P{ 26) P{ 24} }

Remove vertex P(7) from P{OP(7)P(B)

Triads at { P{ 21) P( 17) P( 13) P{ 9

P{ 26) P({ 24) }

Remove vertex P(4) frbm P{SYP(YP(3)
3) changes from re-entrant to convex.

Triads at { P{ 21) P{ 17) P( 13) P( 9}

P{O1) P( 2B) P( 24)

Remove vertex P(3) from P{S)P(3)P(2)

Triads at { P( 21) P( 17) P( 13} P{ 9

P( 26) P{ 24) } .

Remove vertex P(1) from P(2YP(1)P{2B)

Triads at { P( 21) P( 17) P( 13) P( 9)

P{ 24) }

Remove vertex P{2B) from P{2)P(Z6)P(24)
2} changes from re—-entrant to convex.
Triads at { P( 21) PC I7) P( 13) P{ 9
Remove vertex P(21) from P{2Z2)P(21)P{18)
Triads at { P{ 22) P{ 17y P( 13) P( 9)
Remove vertex P(17) from P(I18)P{17)P(14)
18) changes from rémentrant to redundant
Triads ét { P{ 22) P{ 13y PO 9 P{ &)
Rémove vertex P(13) from P{14)P{(13)P{10D)
14} changes from re—entrant to redundant

Triads at { P( 22) P( 9} P{ 5) }

P 7y PO 4)

P( 4) P( 1)

FC 5) PO 3)

P{ 5 P 1)

P{ 5 P( 26)

P{ 5) }
P{ 5)

{collinear). Remove it.

Mt

{collinear}. HRemove it.



-72-

19 >>»> HRemove vertex P(9) from P{lO)YP(9)P(5;
Vertex P( 18) changes from re-entrant to redundant {collinear). Remove 1t.
Empty Convex Triads at { P( 22) P( 5) }
20 >>>> Remove vertex P(5H) from P(BIP(5)IP{2}
Vertex P{ 6} changes from re-entrant to redundant {collinear}. Remove_itv
Emply Convex Triads at { P{ 22) P{ 2) }
21 >>>> Remove vertex P(2) from P(22)P{2)P{24)
Empty Convex Triads at { P({ 22} }
1263 Discriminants Evaluated: ll367 a.o.

Array C of empty convex triads as found by the program.

126 24 21 21 v 17 13 13 9 9 5 5
27 26 23 20 19 16 15 12 11 8 ki 4 3
26 24 22 19 18 15 14 11 10 7 6 3 2

2 2 22 18 14 10 6 22

1 26 21 17 13 9 5 2
26 2 24

24 18 14 10 6



-73-

The final example was the 48-gon treated earlier and shown in Figure 14.
The computer output for this is shown on pages 74 - 80, lorty-five (n - 3)

triads are formed (P3 becoming redundarit). The algorithm took 36,306 a.o.

2
to complete. The corresponding bound (59) is 81 x48x49 - 360 = 190,152
{again about five times too big). Algorithm 1 took 28,107 a.o. and Algo-

rithm 2 took 9,900 a.o. to complete, for the same polygon.

Despite'this_last, at first sight unfavorable, comparison, it is impor~
tant to realize that Algorithm 3 is preferable to Algorithm 1. First, we
see that the asymptotic behaviof of the former is (by (13)) 54@3, while that
of the latter is (by (59)) 81 n3; so that a crossover around n = 36 might be
expected, with the third algorithm preferable for greater values of n. V[More
precisely, the beunds (13} and (59) cross over at n = 39.) Secondly; wWe see
~that Algorithm 1 repeatedly tests each convex triad for the inclusion of at
least one re-entrant vertex. The worst case occurs when (i) p + g - 1 triads
must be tested for each empty triad found, (ii) g re-entrant vertices must be
tested to find one that is included in any given triad, and {iii) g remains
as large as possible, i.e., p = 3, at ecvery stage; and this 1s extremely un-
‘likely to occur; On the other hand, Algorithm 3 maintains u-lists of all

(both re-entrant and convex) vertices included in each convex triad; so that,
while the worst case surpasses the worst case for Algorithm 1 at » = 39, it
is clear that the probable situaticn must be closer to the worst case, here.

Very roughly speaking, we could expect factors %—, %—, and %-to enter in (i),

(1i), (11i) abhove; for a ratio of actual to worst-case a.o. of about f%-. The
actual ratio observed is 28,107/241,734 = élg-. In Algorithm 3, we bound

p(p + g) with nz, for a probable factor of perhaps %—on %—of the total bound
(59), and the remaining %—of the bound assumes four calls to find u(}, when
perhaps two are nearer to the truth; and, in testing for inclusion,'OH average,

only two and not three discriminants need be computed, so the factor here is

about-%; for a net factor of i%-. The actual ratio ohserved is 36,306/1¥90,152
= 3627"' Combining our estimates, we would expect A}gdrithm 3 to compare with

Algorithm 1 about six times less favorably than is indicated by the bounds;
combining the observed ratios for our 48-gon, the number is about two, . The

crossover point would then be n = 75 (factor, 2) to n = 219 {factor, 6),



Polygon P

Vertex

P({
P{
P(
P(
P(
P(
P(
P{
P{
P{
P(
P(
P({
P{
P(
P(
P(
P(
P{
P(
P{
P{
P
P(
P{
P(
P(
P(
P(
P(
Pl
F{
P(
P(

P

P(
PA
P(
P
P(
P
B(
i
P(
P(
Pt

P{

Examgle 4.

Ly:
23
3
4
5):
B):
Ty
8):
9h:
103
L1):
12):
13):
14y
155:
163
17):
18):
195:
20):
21
223
23):
245
2573
26):
295
28):
29):
30):
KIDE
327
337:
34):
35):
36):
37
38):
39y
405 :
413
425
435
A4y
45
46)
47):
487

48 vertices;

k]

— GO N W W N LW — O N LA L LN e DD LN B DD DN

. 5000000
. 5000000
.0060000
. 0000000
. 5000000
. 5000000
.5000000
. 5000000
. 5000000

.5000000
. 2560000
.5000000
. 2500000
. 5000000
. 0000000
. 5000000
. 2500000
. 5000000
. 0000000
. 5000000
. 0006000
.0000000
.5000000
. 5000000
. 7500000
. 2500000
. 0000000
.5000000
. 7500000
. 2500000
. 2500000
. 7500000
. 0000000
. 7500000
. 7500000
. 0000000
. 0000000
. 5000000
. 5000000
. 5000000
. 0000000
. 0000000
. 0000000
. 5000000
. 0000000
. 0000000
. 0000000
. 0000000

;

: | ! .
s LN W N RN O O DO e DD R OB LD

26 convex,

o,

. 5000000
.5000000
00000069
.5000000
. 0000000
. 5000000
.5000000
. 2500000
. 7500000
. 7500000
. 2500000
. 6000000
. 7500000
. 2500000
.0006000
. 0000000
. 2500000
.5000000
.5000000
.50000G0
.5000000
.5000000
. GC000000
. 0000000
. 2500000
.5000000
. 2500000
-2.5000000
. 7500000
. 7500000
.5000000
. 7500000
. 0000000
. 5000000
.5000000 .
~-0.7500000
5000000
.5000000
.5000000
.5000000
.5000000
. 0000000
. 0008000
. 3000000
.5000000
. 0000000
. 0000000
. 7500000

74—

22 re-entrant.

Discriminant

. 75000060
. 5000080
.7500000
. 2500000
. 2500000
.5000000
. 7500000
. 5000000
. 00000800
. 8750000
. 1875000
. 3750000
. 9375000
. 0625000
. 65250000
. 1250000
.6250000
. 6250000
0000000
. 0000000
.5000000

-9.5000000

.5000000
. 7500000
. 1875000
.3125000
5625000
. 5625000
. 3750000
3750000
. 3750000
. 1875000
5625000
. 0060000
. 7500000
. 6875000
. 1250000
. 5000000
. 0000000
. 0000000
. 7500000
. 0000000
. 0600000
. 7500000
.7500000
. 0000000
5000000
. 6250000

- re—entrant

re-entrant
re-entrant
convex
re-entrant
convex
convex
convex
re-entrant
convex
re—-entrant
convex
convex
re-enirant
convex
convex
re—entrant
CONVes
ra—entrant
re—entrant
re—entrant
re-entrant
convex
re—entrant
re-entrant
convex
convex
re—entrant
convex
convex
convex
re--entrant
re—~entrant
convex
re—entrant
convex
convex
re-entrant
convex
convex
convex
re-entrant
convex
convex
convex
re-entrant
re—entrant
convex



-75-

A-list: 26 vertices: { P( 4) P{ 6) P( 7) P{ 8) pPC 10) F( 12)
P( 13) P{ E5) PO 16) P{ 18) P( 23) P 26) P{ 27) P( 29)
P{ 30) P( 31) P{ 34) P{ 36) P{ 37) P( 39) P( 40} P( 41)
P( 43) P{ 44) P( 45) P(-48} } :

B-list: 22 vertices: { P( 1) P{ 2) P( 3) P( 5) P( 9) PC 11)
P 14) P{ 17} PO 19) P{ 20) P( 21) P{ 22) P{ 24} P( 25)
P( 28) P( 32} P{ 33) P{ 35) P( 38} P( 42) p({ 46) P( 47)

Empty Convex Triads at { P({ &) P{ 8) P{ 13) P{ 18) P{ 23) P({ 2B)
P{ 29) P{ 30) P{ 31) P{ 34) P({ 36) P{ 45) }

1 »»»> Remove vertex P(6) from P(S}P(G)P(V}'
Vertex P( 5) changes from re-entranl to convex.

Empty Convex Triads at { P( 5) P( 7) P{ 8) P{ 13} P{ 18Y P{ 233
P({ 26) P{ 29) P{ 30) P{ 31) P{ 34) P{ 36) P( 45} }

2 »»>> Remove vertex P(7) from P{EYPUTIP(B)

Empty Convex Triads at { P( 5) P( &) P{ 13) P( 18) P( 23) P( 26)
P{ 29) P{ 30) P{ 31) P( 34) P( 36) P( 45) }

3 3>>> Remove vertex P(8) from P(5)P(8)F{9)

Empty Convex Triads at { P{ 5) P{ 13) P{ 18) P( 23) P{ 26) P( 29)
P{ 30) P{ 31) P( 34) P{ 36) P{ 45) } '

4 >>>> Remove vertex P(13) from P(12)P(13)P{14)

Empty Convex Triads at { P{ 5) P( 12) P{ 18) P( 23) P{ 28) P{ 29}
- P({ 30) P({ 31) P( 34) P( 36) P( 45) )

5 3333  Remove vertex P(18) from P(17)P{IR}P(19)

" Empty Convex Triads at | P{ 5) P{ 12) P({ 23) P({ 26) P{ 29) P{ 30}
P( 31) P{ 34) P( 36) P( 45) } |

5 »>>> Remove vertex P(23) from P{22)P(23)P{24)

Empty Convex Triads at { P{ 5} P( 12) P( 28) P( 29) P{ 30) P{ 31)
P 34) P{ 36) P( 45) }

7 >%>> . Remove vertex P{28} from P(25)P(26)}P{27)
Vertex P( 25) changes from re—entrant to convex.

Empty Convex Triads at | P( 5) P( 12) P{ 25) P( 29) P( 30) P( 31)
P( 34) P( 36) P 45)



~76-

g >»>> Remove vertex P(29) from P{ZB)P(29)P{30()

Bnply Convex Triads at { P( 5) PC 12)Y P{O26) PO 30Y PO 31 PO 34)

P{ 36) P({ 45) }
9 »>>> Remove vertex P(30) from P(ZR)P{3MP{31)

Empty Convex Triads at 5Y PC 12y P( 25) P{ 31) P{ 34) P{ 36)

{P{
P 45) } :

10 >>»>
Vertex P{
~ Bmpty Convex

11 >35>

Vertex P{

Empty Convex
12 5%%>

Empty Convex
13 »5>>
Veftex P{

Empty Convex
14 >35>

Vertex P{

Empty Convex

15 25>
Empty Convex
16 »e»>
Vertex P{
Emply Convex
17

PP

Empty Convex

Remove vertex P{31} from P{2RIP{31IP({32)
32) changes from re-entrant to redundant
{ P{ 5) P{ 12y P( 25) P{ 34)

Triads at

. Remove vertex P{34) from P(33)P{34)F(35)

35) changes from re-—entrant to convex.

Triads at { P( 5) P( 12) P( 25) P{ 35

Remove vertex P(3H) from P{33)P(35)P(36)

Triads at { P{ 5} P( 12) P{ 25) P( 36)

Remove verbex P(36) from P(33)P(36)P{37)
33) changes from re—-entrant to convex.

Iriads at { P{ 5) P( 12) P{ 25) P{ 33)
Remove vertex P{45) from P(44)F(45)F{48j
46) changesrfrmm re-entrant to convex.

Triads at { P( 5) P( 12) P( 25) P{ 33)

Remove vertex P{46) from P{44)P(46)P(47)

Triads at { P{ 5) P{ 12) P(.25) P{ 33}
Remove vertex P(8) from P(4)P(5)P(9)
9) changes from re—entrant to convex.

Triads at { P( 4) P( 9) P{ 12) P( 25)

Remove vertex P(9) from P(4)P(9)}P(10)
4) P( 12) P 25) P( 33)

Triads at { P{

(colliﬁear).

P

P{

P¢

B{

P(

P(

36) P( 45) }

36) P( 45) }

(45}

44) P( 46) }

44) }

33) P( 44) }

44y v

Remove it.



18 >35>
Vertex P{
Empty Convex
19 >>>>
Vertex P{
Empty Convex
20 2505
Empty Convex
21 >»»>
Vertex P{
Empty Convex
22 05x%
Empty Convex
23 >3
Vertex P{

Empty Convex

Empty Convex
25 2>
Vertex P{
Emptv Convex
28

2350

Empty Convex

Vertex P{

-Empty Convex

Remove

-77-

Remove vertex P({12) from P{1L)P{12)P(14)
14} changes from re—enirant to convex.

Triads at { P{ 4) P( 14) »{ 25) P{ 33)

Remove vertex P(14) from P(11)P(14)P{15)
11) changes from re-—entrant to convex.

Triads at { P( 4) P( 1) P{ 26) P{ 33;

Remove vertex P(25) from P(24)P{25)P{27)

Triads at { P{ 4) P{ 11) P( 33) P( 44)

Remove vertex P(33) from P(28)P(33)P(37)

28) changes from re-entrant to convex.

Triads at { P{ 4) P{ 11) P{ 28) P( 37)
Remove vertex P(37) from.P{28)P{37)P(38)
Triads at { P( 4) P( 11) P({ 28) P{ 44)

Remove. vertex P{44) from P{43)P(44)YP{47)
47) changes from re-entrant to convex,.

Triads at { P{ 4) P( 11} P( 28) P{ 43)

Remove vertex P({47) from F{43)P{47)P(48)

Triads at { P{ 4) P{ 11} P{ 28) }

Remove vertex P{4) from P{3)P(4)P(10}
3} changes from re—entrant to convex.

Triads at { P{ 10) P{ 11 P{ 28) P{ 3}

Remove vertex PL10Y from P{OYP(IOYPILIL)

Triads at { P( 28} P{ 3) }

vertex P(28} from P(Z27IP(28)P{38)
38} changes from re-entrant to convex.
{ P{ 27) P{ 38) P{

Triads at 37 4

P{ 44)

Pl o44)

}

P({ 44)

P{ 47)

]

t

h

i
;



28 o0
Emply Convex
293000
Empty Convex
30 5>
Vertex P(
Empty Convex
31 5000
Empty Convex
32 >¥y
Vertex P(
Empty Convex
33 oo
Empty Convex
34 5>
Vertex P(
Empty Convex
35 >5>>
Empty Convex
38->>>>
Verltex P(

Empty Convex

Emply Convex

_78-

Remove vertex P{38) from P(271P(38B)P{39)

Triads at { P( 27y P{ 3) }

Remove vertex P(3) from P{2)P{3)P(11)

Triads at | P{ 1) (0 27)

Remove vertex P{ll} from P(2)P(11YP{15)

2} changes from re-entrant to convex.

Triads at { P( 15) P{ 27y P{ 2) }

Remove vertex P{15) from P(2)P{15)P(16)

Triads at { P{ 27) Pt 2) }

Remove vertex P(27} from P(24)P(273P(39)

24) changes from re-entrant to convex.

{ P 24) PO 39) P 2} }

Triads at

Remove vertex P(39) from P(24)P{39)P(40)

Triads at { P{ 24) P{ 2) }

Remove vertex P(2) from P(1)P(2)P(16}
1} changes from re-entrant to convex.
Triads at { P{ 16) P({ 24) P( 1) }
Remove verlex P{1B) from P(1YP{16)P{17)
Triads at { P{ 24) P{ 1}y 7}

Remove vertex P{24) from P{ZZ&P(EﬂSP(4G)
22) changes from re-entrant to convex.
Triads at { P( 40} P( 1) P{ 22) }
Remove vertex P{40) from P(22)P(40)P(41)
P{

Triads at ¢ 1y pPL 22)



38 >335
Vertex P(
Empty Convex
39 >
Vertex P(
Empty Convex
40 >35>
Fmpty Convesx
41 5>
Vertex P{
Empty Convex
42 5555
Empty Convex
43 #)))
- Vertex P{
Empty Convéx
44 355
Vertex P(
Empty Convex
45.>>>>

Empty Convex

-709-

Remove vertex P{1l} from P(48)P(L)P(17)
17) changes from re-entrani to convex.
Triads at { P{ 17) P( 22) }

Remove vertex P{17) from P(4ADP(LITIP(19)
19) changes from re-entrant to convex.
Triads at { P( 48) P{ 19} P{ 22) }
Remove vertex P{19) from P{48}P(19)FP(20)
Triads at { P{ 48 P( 22) } |

Remove vertex P(22) from P{21)P(22)YP(41)
21} changes from re—entrant to convex.
Triads at { P({ 41) P{ 48 P{ 21) ;
Remove vertex P(41) from P{21)P(41)P(42)
Triads at { P( 48) P( 21) }

Remove vertex P(48) from P(43)P{4B)YFP{20)
20) changes from re-entrant to convex.
Triads'at { P 43 P{ 21 %

Remove vertex P(21) from P{20)P{2}1)P(42)
42) changes from re—-entrant to convex.
Triads at { P{ 43) P{ 20} P( 42) }
Remove vertex P{42) from P(20)P(42)P(43)

Triads at { P{ 43) P{ 20) }



~80-

4034 Discriminants Evaluabted: 36306 a.o.

Array C of empty convex triads as found by the progranm.

5 5 5 12 17 22 25 28 28 28 33 33 133
6 7 8 13 18 23 26 -29 30 31 34 35 36
7 8 9 14 19 24 27 30 31 32 35 36 37
44 44 4 4 11 11 24 28 28 43 43 3 .3
45 46 5 g 12 14 25 33 37 44 A7 4a 10
a8 47 g9 10 14 15 27 37 38 47 48 10 11
27 27 2 2 2 24 24 1 1 22 22 48 48
28 38 3 11 15 27 39 2 16 24 40 1 17
38 39 11 15 16 39 40 I8 17 40 41 17 19

48 21 2 43 20 20
19 22 41 48 .21 42
20 41 42 20 42 43



~81-

9. Maximally Re-Entrant Polygons

As d final notce, we add the Following result, as a caution against the
thought that the computational timing bounds given in the theorems are grossly

exaggerated,

LEMMA 13. The bound in Lemma § is tight: there are polygons of any number

of vertices n 2 3 with only three convex vertices.

2 . .
[, +B, +B. +...+B +B =7 -a;
so we may choose, e.g,, that
each Bi = (T - a)/(n - 1), for

<=1, 3, 4, 5, ..., n. Now,

‘Figure 32.

12 Pz, and P3 are

convex, while all of P4, p

vertices P

[‘) >
3 bl ] n
]6’ . ]n—l’ ]n are
re-entrant., |

This proof illustrates
the old adage, that "a pic-
ture says as much as a

thousand words™!!!



-82-

10. Acknowledgement

1 wish to thank Dr Geeorge C. Clark of the Harris Corporation, Melbourne,
Florida, for bringing this problem to my attention, and for several stimulating
discussions, The problem arose in seeking an efficient way to fill irregular
pelygonal shapes, given an efficiént and fast triangle-filling command, as part

of computer graphics involved in the automation of VLSI design {"C.A.D.")

I also thank Dr Henry Fuchs of The University of North Carcolina for en-

couraging me to reconsider Algorithm 1, in a way that led to Algorithm 3,

Chapel Hill, North Carolina.



