
TRIANGULATION ALGORITHMS 
FOR SIMPLE, CLOSED, 

NOT NECESSARILY CONVEX, 
POLYGONS IN THE PLANE 

JOHN H. HALTON 

The University of North Carolina 
Department of Computer Science 

New West II all 035 A 
Chapel Hill, NC 27514 USA 

M A R C II 31, 1 985 

TR 85008 



TRIANGULATION ALGORITHMS 

FOR SIMPLE, CLOSED, NOT NECESSARILY CONVEX 

POLYGONS IN THE PLANE 

John H. Halton 

Professor of Computer Science 
The University of. North Carolina 

Chapel Hill, NC 27514 USA 

ABSTRACT 

This paper presents three algorithms for dissecting the interior of an 
arbitrary simple, closed, not necessarily convex polygon in the plane. The 
simplest algorithm is shown to have time complexity O(n 3) and the two others, 
derived from it, while more complicated, have complexity O(n2). The triangu
lations obtained are economical, in the sense that the number of triangles 
obtained is as small as possible; but no effort is made to reduce the diameters 
of the component triangles. 

Keywords: Algorithms; data structures; triangulation; polygons; graphics 
{computers; techniques; performance analysis; complexity} 

~larch 1985 



Triangulation Algorithms for Simple, Closed, Not Necessarily Convex Polygons in the Plane 

John H. Halton, Chapel Hill, North Carolina, US A 

1. I nt r oduct ion 

The problem is a classical one. We are given n points P
1

, 

in the Euclidean plane and interpret other indices modulo n, so 
P2' · .• , Pn 

that P
0 

= P 
n' 

P 1, and in general P. = 
n+ J 

p . k • 
J+ n 

The points are supposed to be so ordered 

(1) 

the polygon with vertices P. (j = 1, 2, ... , n), consisting of then line
J 

segments P .P. 
1 

(j = 1, 2, ... , n), is simple (i.e., all the P. are distinct and 
J J+ J 

no two sides P.P. 1 and P.P. 1 have points in common, except when i = j [of 
1.- 1.-+ J J+ 

course] or i = j - 1 [only P. in common] or i = j + 1 [only P. in common]). 
J "' In common parlance, we would say that a simple polygon does not cross itself. 

We wish to identify a set of triangles, whose interiors are disjm:nt, and 

whose union is the interior and boundary of the polygon P. This process is 

referred to as the triangulation of the polygon. 

The removal of a simple polygon from the plane leaves exactly two connec

ted open sets, called its interior Ip and its exterior Ep, with the interior 

identified in that it is bounded (i.e., there is a circle in the plane which 

entirely contains Ipl· 

we traverse the polygon 

We re-number the vertices (if necessary) so that, as 

P , the interior is on the left. 
n 

Vertices may be divided into three mutually-exclusive classes, according 

to the angle by which one turns from the direction of P. 
1
P. to that of P.P. 

1
. 

J- ;] ,) J+ 
If this angle 8. satisfies 0 < 8. < 

J J 
the angle satisfies -n < 8, < 0, we 

u 
P. is called 
J 

redundant or collinear 

TI, we say that P. is a convex vertex; if 
J 

call 

(and 

P. a 
J 

will 

re-entrant vertex; and if 

later be eliminated). If 

e . = o, 
J 

the 

polygon p is such that the line-segment joining any two points in its interior 

or boundary is entirely contained in the union of P and Ip, we shall say that 



X=P 
7 

; 
/ 

/ 
/ 

; 

j.-' 

\ 

-2-

P is a convex polygon. We shall not limit ourselves to this simple case. 

Figure I. 

p 
6 

p~ 
/A 

INTERIOR 

p 
1 

p 
17 ·. · .. 

8 .,.. 
17 

INTERIOR 

p 
5 

p 
2 

p 
4 

B 

p 
2l 

y 

8 '!J-----"'1' 

p 
:!) 

p 
3 

y = Q 
7 

Q 
2 

P = P1P2P3P4P
5

P
6

P
7 

is a convex polygon [or 

heptagon, since.n = 7]; line-segments such as 

AB or XY are entirely in or on P. On the con

trary, ~ = Q1Q2Q
3

Q
4
Q

5
Q

6
Q7 is not convex; while 

the segment AB is in or on ~. segments such as 

XY are not (the dotted portion is exterior to 

the heptagon). All vertices of Pare convex, 

as are Q
2

, Q3, Q4' Q6' and Q7 ; but Ql and Q
5 

are re-entrant vertices of~- In the third 

illustration, pl7 is re-entrant ( -1T < 8!7 < 0) ' 

81B p while PIS and p20 are convex (0 < 818 < n and 

0 < e
20 

< n). What are P
19 

and r
21

? 
19 

Again in common 

tUI'ns left at. a 

parlance, if the polygon is traversed as defined above, then one 

convex vertex (i.e., towards the interior) and turns right at a 

re-entrant vertex. 

We seek a triangulation algorithm which: 

(i) always yields a complete triangulation in a finite number of steps; 

(ii) is as fast as possible (i.e., each step is fast, and the total 

number of steps required is least); 



. -3-

(iii) is as economical as possible (i.e., the final set of triangles has 

no more than n- 2·members --less than n- 2 when certain vertices arc collln-

ear, as in the polygon P (vertices P
4 

and P
5

) in Figure 1). 

In some cases, a fourth criterion is used also: it is sought to increase the 

minimum internal angle of the triangles as much as possible, so as to avoid 

long-thin triangles, which are not desirable for computational triangulations. 

We shall not consider this criterion here. 

Two workable algorithms will be described here, Each has some merits, 

Both are adequately fast, as will be demonstrated, 

2. Preliminary Results 

Denote the coordinates of each vertex P. by (x., y ., 0). 
J .7 ,} 

LEMMA 1. The passage from P. 1 through P. toP. 
1 
~sa turn to the left 

J- J J+ 
if 

X . (y . 1 - y . 1) - y . (X • 1 - X . 1) 
J J+ J- J J+ J- > X • 1Y . 1 - X • 1Y . 1 " J- J+ J+ J-

(2) 

Proof, (Proofs will be enclosed in [ ... ] from now on.] 

IT The vector P. 1 P .~ (x. - x. 1, y . - yJ. _1, 0) and the vector P .P. , 
J- J J J- J J ,j+l 

(xJ+l - xJ., YJ+l - YJ' 0); so that the vector (or cross] product 

(3) 

where 

Z ~ (xJ - XJ-l) (yJ+l - YJ) - (xJ+l - XJ) (YJ - yJ-l), (4) 

and this quantity will have the same sign as sin 8 ., where e. is the angle 
J J 

defined earlier, from the vector P. 
1
P. to the vector P.P.·

1
, Thus, the turn 

J- J J J+ 
is to the left (0 < 8. < w) if Z > 0. It remains to rearrange terms to give 

J 
the inequality (2).1 

The importance of this result is that it is an easy matter to determine 

whether there is a turn to the left or to the right at any given vertex. 

COROLLARY. The passage through P. is a turn to the right if'>' is 
J 

replaced by '<' in (2). 



' 

X 

-4-

LEMMA ]:_. A convex polygon has only convex vertices. 

[Define lJ as in (1). Suppose it is convex; then any line-segment JOining two 

points in or on lJ [we use this phrase to indicate that the points are either in 

lJ or in Ipl is entirely in or on l,l. 

there is a right turn from P. 
1
P. to 

J- J 
It follows that any segment XY, with 

Figure 2. 

X 

P. 
1·1 

INTERIOR 

y 

P. 
1+1 

Let P. be a re-entrant vertex of lJ; then 
J 

P.P. 
1

, with the interior of lJ on the left. 
J J+ 

X interior to the segment 

terior to P.P. 
1 

crosses 
J J+ 

of lJ (at least next to X 

P. 
1
P. and Y in

J- J 
the exterior ElJ 

and to Y; there 

could be vertices of lJ in the triangle 

P .XY). 
J 

This is illustrated in Figure 2, 

where the exterior portion of XY is shown 

dotted (as in Figure 1 [(Q]). This result 

contradicts the definition of convexity 

for the polygon lJ. Therefore there cannot 

be any re-entrant vertex of a convex poly

gon.! 

LE~~A 3. A polygon with only convex vertices "s convex. 

[Define lJ as in (l). Suppose it is not convex; then there is a line-segment 

joining two points X andY which are in or on lJ, such that not all of the 

segment XY is in or on lJ. Therefore we can find a point C between X and Y on 

the segment XY, such that Cis exterior to l,l. Since X and Y·are interior and 

C is exterior, XY must cross the polygon an even number of times (at least 

twice). Let A and B be the nearest intersections of XY and lJ on either side 

of C [sec Figttrc 3). 

Figure 3_. 

P. 
l 

p 
i-1 

P. 
1+1 

y 

Then let AP.P. l ... P. 
1

P.B he the (properly directed) 
1/ //+ J- ,} 

P. 
1+4 

polygonal sub-arc of lJ from A to B. The 

linear segment ACB must be to the right 

of the vector P. 1P., since C is exterior. 
"- " Thus, the net turn from P. 

1
P. to P.P. 

1 "- " J J+ 
must be to the right; and therefore not 

all angles 8.' e. l' ... ' 8 . l' e . can " "+ J- J 
be positive; whence at least one of the 

EXTERIOR 

vertices Pi' Pi+l' .~., Pj-l' Pj is re

entrant. This contradicts our hypothesis; 

so lJ must be convex.! 

P. 
1+3 



K =P 
2 4 

p 
5 

p 
3 

Figure 4, 

p 
7 

K 
3 

K 
1 

p 
8 

p 
9 

that in which K is traversed, 

angle LP. 1P.P. 
1 

is contained 
J- J J+ 

same sign, namely, positive [E 

K 
4 

-5-

LEMMA 4, Given a convex polygon K 

and a general polygon ll cnt-ir·~.~!y in of' on 

K, if a vertex P. of Plies on K, then P. 
J J 

is a convex vertex of P. 
[The situation is illustrated in Figure 4, 

where 1( is a convex hexagon and :P is a 

decagon; with P
1

, P
4

, and P
5 

lying on K. 

If P. lies on K, then it is either coin-
J 

cident with a vertex of K (like P
4 

in Fi-

gure 4) or is interior to a side of K 

(like r
5 

and P
1 

in Figure 4). In either 

case, we can uniquely identify vertices 

K and K, such that K P. and P.K are 
r s r ,7 ,J .'1 

parts of sides of K (For- 1'
1 

in Figure ·1, 

we have K
6 

and K
1

; for P 
4

, K 
1 

and K
3

; and 

for P
5

, K
2 

and K
3
), there being no other 

vertex of K between K and P. or between 
r ,J 

P. and K, the direction being the s~mc us 
J s 

Since P. 
1 

and P. 1 are both in or on K, the 
J- J+ 

in the angle LK P .K and is therefore of· the 
r J s 

is convex; so, by Lemma 2, its vertices are 

COnVeX, While pointS in itS Straight Sides SUbtend angleS Of TI (~ 180"); and 

P and K are traversed in the same (counterclockwise) direction]. 

a convex vertex.)) 

Thus, P. is 
(} 

COROLLARY. If the vertices of a simple, closed polygon P have coordinates 

P. 
J 

(x., y ., OJ 
J J 

then the vertices satisfying 

mln.x. or x. 
J J 1. 

max .x. 
J J 

are all convex vertices. 

(j ~ l, 2, ... , n), 

min .y. 
J J 

max .y ., 
J J 

(5) 

(6 I 



-6-

[The notation is that used in proving Lemma l. The rectangle R with vertices 

(mi11. x., mln. y ., 0), 
J J J J 

(max . X., Ill]_ Jl • y . ' ()) ' ( J!l;J X • ;r: . ' max. II., II I , 
J J J J J J J "J 

(min. X., max. y ., 0) (7) 
J J J J 

is a convex polygon containing all of V. Thus, by Lemma 4, vertices satis

fying any of the equations (6) lie on the sides of the rectangle and so must 

be convex vertices.] 

LEMMA 5. Every polygon with a non-empty interior must have at least 

three convex vertices. 

[Polygons with one or two vertices have no interior. Polygons with all their 

vertices collinear have no interior. Thus, for a polygon to have a non-empty 

interior, n ~ 3. If the interior IV of V is non-empty, it is defined as an 

open set; that is, every point X of IV is surrounded by a circular neighborhood 

entirely contained 1n IV (such a neighborhood is the set of all points Y distant 

Jess than some radius p > 0 from X); and it follows tl1at 

min. x. <max. x. 
J J J J 

and min. y. <max. y .. 
J J J . J 

(8) 

Therefore the rectangle R defined above, with vertices (7), has sides of positive 

length (opposite sides are distinct). It takes at least two distinct vertices 

of Von the boundary of the rectangle to define it (see Figure 5). Now either 

Figure 5. 

R 
I 

/ 
'-, 

R 

there are three such vertices on the rect-

angle, and we are through; or there are 

only two. In the latter case, rotate the 

coordinate axes of x and y :1bout the z-axis 

so that the line through the two extreme 

vertices of V is parallel to the new x•-axis. 

Make a new rectangle R' as before, in terms 

of the new coordinates x' andy'; then, since 

the interior of V is non-empty, at least one 

more vertex of V is on R' . (The tlvo extreme 

vertices from Rare extremes of x' in R'.)] 



-7-

We shall call the triangle P. P.P. formed by three consecutive verti
J-1 J J+l 

ces of a polygon P the triad 6. at P .. It is a convex triad if P. is a con-
J J ,) 

vex vertex of P. 

LEMMA 6. If 6 . = 
J 

6. contains any vertex 
J 

vertex of P. 

Figure 6. 

p. lp .P. 1 
J- J J+ 

of P, then 

P. 
..... J+l 

6. 
J 

P. 
J 

is a convex triad of a polygon P, and if 

it must contain at least one re-ent.rant 

[The situation is illustrated in Figure 6. 

The argument is similar to that used in 

proving Lemma 3. P. is a convex vertex, 
J 

with a left turn from P. 
1
P. to P.P. 

1
. 

J- J J J+ 
If a vertex Pk of P is inside the triad {', ., 

J 
it must bring with it a part of the exterior 

Ep of p. Let A and B be adjacent points in 

which p crosses the side P. 
1
P. 

1 
of the 

J- J+ 
triad, traversed from A to B.t Then the side 

of P through A must turn right in net effect, 

for the Sub-arc of P from A to B to reach B, 

which is on the right of the side of P through 

A. It follows that at least one vertex of P between A and B (and therefore inside 

6 .) must involve a right turn; that is, must be re-entrant. [t Here, we mean 
J 

that Pk is part of the sub-arc of P traversed from A to B entirely inside 6j.]ll 

LEMMA 7. The vertex Pk lies inside the convex triad 6j if and only if 

> 

> 

and 

[We argue exactly as in proving Lemma 1. 

to the left of each of the vectors 

tain the conditions (9), (10), and 

p . lp . ' 
J- J 

( 11) by 

(9) 

(10) 

> (11) 

Pk is inside 6k if and only if it is 

PjPj+l' and Pj+lpj-l' Thus, we at
respectively replacing· the indices 

(j-1, j, j+l) by (j-1, j, k), (j, j+l, k), and (j+l, j-1, k).ll 



-8-

As with Lemma 1, the importance of this result is in showing how it is 

quick and easy to determine inclusion of a vertex in a triad. 

ALGORITHM 0. Given a simple, closed polygon 11, defined by the coordi

nates of its vertices in the xy-plane [as in [5)), we prepare it for triangu

lation as follows: for each vertex P . (j ~ 1, 2, ... , n), 
.] 

M 

P. 
c 

0.1. compute the discriminant~ 

r . 
J 

X • (y . 1 - y . 1) - y . (x . 1 - X • 1) - X • ly . 1 + X • ly . 1' 
J J+ J- J J+ J- J- J+ J+ J-

(12) 

0.2. if r . > o, 
J 

enter the index j into a list II, 

0.3. if r . < 0, enter the index J into a list B, 
J 

0.4. if r . 0, omit the index j, reducing higher indices by one., 
J 

0.5. beginning with h ~ 1 and M ~ x 
1

, if x. > M, put h = .; and 
J 

X., if X. ~ Mandy. > yh' put h = j., otherwise do nothing (note rh!; 
J J J 

0.6. if rh < 0, re-number the vertices in lists II and B so that 

becomes PN . 
1
, where N is the number of vertices remaining (last index 

-~+ 

value entered in one of the two lists), and interchange the lists II and B. 

Explanation. The discriminant r. is just 
J 

the z-component Z of the vector 

product (3) (compare (4)). Thus, by Lemma 1' r . ~ 0 when the 
J 

P ., and 
J 

omitted 

r. < o, 
J 

0.2 and 

P. 
1 

are 
J+ 

in 0. 4. 

it makes 

collinear, sO that P. is 
J 

redundant; in this 

If r. > 
J 

a right 

0, the polygon makes a left turn at 

turn there; hence the lists II and 8 

0,3 are lists of left-turn and right-turn vertices, 

vertices P. 
1

, 
J

case, P ._ is 
J 

P., while if 
.! 

generated by 

However, the 

interior of the polygon is not known yet, In 0.5, we progressively seek the 

vertex with maximum x-coordinate, and in case of a tie, that with maximum y

coordinate among them, and call it Ph' By Lemma 4, Ph is a convex vertex; 

thus, if l1 is being traversed properly (by our convention], with its interior 

on the left, r. > 0; otherwise, we reverse the numbering and the roles of the 
J 

lists II and 8 in 0.6; so that II is the list of indices of convex vertices and 

B is the list of re-entrant vertices of P. 



p 
lD 

p 
ll 

-9-

LE~!MA 8. No simple, closed polygon has an empty interior. 

[This case lS, ln fact excluded by the Jefinitions given in the lntroJuction 

above. If all the vertices P. (j = 1, 2, ... , n) are distinct and no two sides 
J 

P.P. I and P.P. l (i, j !, 2, .•. , n, with 
1.- -z-+ J J+ 

Pn+l = P1) have points in common, 

unless i = j or i = J. - l (P. only) or i = j 
J 

+ l (P. only); then it is impossible 
~ 

for a polygon to have less than three vertices or for a polygonal arc (even a 

single side) to be traversed in both directions (or in the same direction) twice. 

The passage from any vertex 

entirely disjoint paths; so 

P. to another P. in 
1- J 

the interior of the 

each direction must be along 

polygon must be non-empty. 

Therefore the provision of Lemma 5 is unnecessary.! 

3. The First Algorithm 

THEOREM l. Every simple, closed polygon P has at least two convex triads 

~ and ~ each containing no other vertex of P. 
r B 

[By Lemmas 5 and 8, p must have at least three three convex vertices, and so 

at least three convex triads" By Lemmas 2, 3, and 6; first, if a convex triad 

contains no re-entrant vertex, then it contains no vertex of Pat all; and· also, 

if p is convex (or equivalently has only convex vertices) every triad is convex 

and contains no other vertices of p. Thus our theorem presents a problem only 

when p is not convex. (i) Let P., P. l' .•. , 
1- ~+ 

vertices (as in Figure 

P. 1 , P. be consecutive convex 
J- J 

7); then, if any of the corres-

ponding convex triads !J. • , b. • 
1

, ..• , !J. • 
1

, 6 . contains 
~ 1-+ J- J 

no other vertex, we are ahead by that triad. If, on 

the contrary, each of them contains at least one vertex 

(and so at least one re-entrant vertex), we must search 

elsewhere. Note that the polygonal arc of P containing 

these re-entrant vertices may itself have one or more 

empty convex triads (which would put us ahead), but it 

does not have to. (In Figure 7, i = 7, j = 10, re-en-

trant vertices are ringed, and only 

shown as convex and empty.) In the 

~ 24 is explicitly 

worst case, from 

the point of view of our theorem, a string of convex 



L 

-10-

vertices is flanked by a corresponding string of re-entrant vertices, as in 

Figure 8, with no hr3nd1.ing, such as occurred rn Figttrc 7. (In both figure:~, 

Figure 8. 
the dotted lines indicate the third sides of con-

vex triads and ringed vertices are re-entrant.) 

It will be seen that this worst-case arrangement 

presertts a "ribbon" of polygonal interior, if not 

quite parallel-sided, then bounded by polygonal arcs 

running alongside each other. The less-than-worst 

case is then either a broadening of the ribbon, 

which immediately yields empty convex triads, or 

a branching of the ribbon, which does not change 

our argument and indeed yields more empty convex 

triads than does the worst case. (ii) This worst

case ribbon construct is bounded on either side hy 

polygonal sub-arcs of p, and, since P is :1 sintplc, 

closed polygon, these two arcs must join at their ends. This can happen only 

in two ways, as illustrated in Figure 9, and the first is not permissible, 

since it separates P into several disjoint loops. (We may think of AB anJ XY 

as polygonal "sides" of the ribbon, and 
_!'_!:gur~. 

FIRST WAY SECOND WAY 

then the first way is to join B to A and 

Y to X, completing an annular ribbon, 

while the second--- and only legitimate 

---way is to join B to X andY to A.) 

The question then reduces to whether the 

"ends" of the ribbon must have empty 

convex triads; and clearly this is so; 

for the point Q must lie in the triad 

ALM (with L a convex and Q a re-entrant 

vertex; or their roles are reversed) and 

either A is convex and the empty convex triad is YAL, or Y 

is convex and the empty convex triad is QYA (at least one of 

A and Y is convex, since otherwise A would be i'!"lsicle LQM, 

contradicting our assertion that Q is inside ALM). This is 

illustrated in Figure 10. (iii) Since a ribbon construct 



L 

L 

M 

' 
' ' 

Figure 10. 

A 

-11-

L 

such as we have defined above must 

have at least two ~nds (more, if 

there are branches), it follows 

that any simple, closed polygon 

must have at least two empty 

convex triads.] 

A convex [YALJ 

A 
L 

Y conVex [ QYA] 

ALGORITHM 1. We suppose that 

the simple, closed polygon P has 

been prepared for triangulation by 

means of Algorithm 0, yielding a 

reduced set of vertices, properly 

ordered (so that the interior of P 
is on the left as we traverse the 

polygon) and without redundant ver

tices with angle n (= 180"), and 

partitionec.l into 1 ists ll and /J, the 

first containing all convex vertices 

and the second all re-entrant verti-

y 

M 

' ' ' ' . 
' 

M 

A and Y both convex A and Y both .r.ewentrant 

[Q not in ALM] 

ces. Now proceed as fo llm..;s: tPeatinq 

ll as a circular list (i.e., last member 

is immediately followed by first), for 

each successive vertex P. whose index 
[YAL and QYA) 

J 
is in the list ll, 

1.1. for every vertex Pk whose index k is in the l·ist B, compute the 

inequalities (9), (10), and (11) of Lemma 7, 

1.2. if all three inequalities hold for any re-entrant vertex Pk from 

list /J~ go on to the next convex vertex from list ll (i.e., iterate to l~J:) _, 

1.3. if one or more of the inequalities fail, for every Pk from list B, 

then (a) put the triad 6. = P. 
1
P.P. 

1 
into a list e of empty convex triads, 

J J- J J+ 
(b) remove the index of Pj from list ll, (c) test rj_ 1 and rj+ 1 as in_()_,]:_-_()_,~. and 

adjust lists ll and B accordingly, and then go on to the next vertex from list ll; 

1.4. continue until list ll has only two indices in it. 



P. 
J+l 

P. 
J+l 

P, 
J+l 

-12-

Explanation. By Lemma 7, the vertex Pk lies inside the triad 6. if and only if 
,) 

all three inequalities tested in step 1.1 ho-IJ. We seck empty eonV('X triads; 

so we need only consider j in list 4. By Lemma 6, a convex triad will be empty 

if it contains no re-entrant vertex; so we need only test k in list B. As soon 

as we find a re-entrant vertex in a convex triad, we may go on to the next 

convex triad; hence ~· As stated in ~' if all re-entrant vertices fail the 

test, the convex triad being tested is indeed empty. By Lemmas 5 and 8, the 

list 4 will not be initially empty. By Theorem 1, each pass of the list will 

yield at least two empty convex triads, so that the list will be reduced at 

each iterative pass by at-least 2; but then as many as four indices may be 

transferred from list B to list 4. (Re-entrant vertices may become convex by 

removal of a triad's apex, but the reverse cannot happen. See Figure II.) 

Figure 11. 

P. 

Convex vertices 
become more so 

p 

P. 
J·l 

---<-----
P. 
J 

P. 
J·l 

Some re-entrant 
vertices remain 

re-entrant 

Others become convex 

Nevertheless, each time a triad is found and put 

in the list e, at least one vertex is removed 

(if a flanking vertex becomes redundant, by Q~~' 

when an apex vertex is removed, it too is removed) 

from the union of the two lists 4 and B. Thus 

the process will eventually terminate (since, 

when the list B is empty, all triads become 

empty and convex (by Lemma 6). 

THEOREM 2. Algorithm 1 (i) always yields a 

complete triangulation in a finite number of steps; 

(ii) takes 9 arithmetic operations (additions, sub

tractions, and multiplications) to eomput-e a Jineri-

minant [of the form (12)], altogether 9n arithmetic 

operations and O(n) other operations to execute the 

preparatory .4lgori thm 0, and less than 

9 3 3 2 
-(n - -n 
4 2 

arithmetic operations 

69 
+ 7n - -z-l 

3 and O(n ) 

3 
~ O(n ) (13) 

other Operations to 

perform; (iii) is as economical as possible (i.e., yields at most n- 2 triads). 

I (i) This result is indicated in the Explanation above; indeed, when (ii) is 

proved, we get (i) as a conclusion. (ii) Examination of (12) verifies that it 

takes 9 arithmetic operations ["a.o." hereinafter] to compute a discriminant. 



-13-

Suppose that a has pr indices of convex vertices listed and that 8 has qr 

jndiccs of re-entrant vertices listed, after i' triads h:tvc been pttt inC, 

Then (14) 

since Algorithm 0 may remove some redundant vertices (at 0.4), and whenever an 

empty convex triad has been identified and its apex removed, the same 0.4 test 

may lead to the removal of more redundant vertices. The inclusion test perfor

med in ~-1.3 takes the checking of three discriminants [none may be omitted] 

and therefore takes 27 a.o. each time. Since, by Theorem l, the list a must 

contain the indices of at least two empty convex triads, it takes at the very 

most (p - l)q inclusion tests to reach success (at 1_._:3_1. Given the total 
1" 1" ----

number n of vertices in a and 8 combined, we seek an upper bound for this 
r 

expression. Now, [(p + 1) l](q- 1) - (p- l)q = pq- p- pq + q = q- p 

> 0 when q > p; so that (p - l)q increases when p is increased, so long as 

q > p. Thus, (p - l]q is greatest, for given n , when 
r r r 

( 15) 

where L .. . J and r .. . l respectively denote the "floor" and "roof" func

tions [the integer infimum and supremwn]. Let us consider the worst case, 

when 0.4 never leads to the elimination of redundant vertices and success 1n 

finding an empty convex triad always takes the maximum number of failures 

first. Then we may put 
n 

r 
n - r. 

Further suppose that the \Vorking of 1.3(c) 

holds for all r. Then the total number of 

algorithm is (for n even) 

(16) 

so hal:tnces / 1 and '1 th:tt (IS) 
I' Y' 

inclusion tests required by the 

nn n 2 n n n 2 :zC"z- - 1) + c2 - 1) + c2 - 1) c2 - 2) + c2 - 2) + • • • + 3 X 2 + 2 X 2 + 2 X 1 

1 
2-[(n - l)(n - 2) + (n - 3)(n - 4) + • • • + 

n/2 
= 2 I 

h=l 

1 
(h - -)(h 

2 
1) - 1 = 2_[2n(n + 2) (n 

24 

3 2 ) )_n - n - 12 , 

7x6+Sx4]+2 

+ 1] - 9n(n + 2) + 12n] - 1 

(17] 



-14-

or (for n odd) 

n - l 2 n - 1 n - 1 n - 1 2 
(·-·-T-) + (- ·-·z-- ) (- ·-;:-- - l) + ( --y-- - l) + • • • + 3 x 2 + 2 x 2 + 2 x ) , 

which is the same as before, with n replaced by n - l and the addition of 

the first term, [~-(n - l) ] 2 ; this yields the sum, therefore, 

.2-[(n - 1) 3 - icn - 1} - (n - l) - 12] + l[(n - 1)
2

] 
12 2 4 

l 3 3 2 3 
= u(n - 2" - n - 12 + ~), (18) 

just slightly more (by~) than (17). The total number of a.o. required for 

the inclusion tests is thus not greater than 

- n - ~) 2 . (19) 

We must add to this the number of a.o. required to compute the two discrimi

nants in l.3(c), namely 18, for each success (except the last), for a total 

of l8(n - 3) a.o. The sum of this and (19) is (13). (iii) Finally, to sec 

that the algorithm is economical, we need only observe that all triads put in 

list e have vertices of the polygon p as their vertices, and in addition, any 

redundant vertices occurring along the way are omitted.! 

4. The Second Algorithm 

This algorithm was prompted by the feeling that much of the scanning of 

list 4 in Algorithm l might lead to failures (i.e,, convex triads containing 

re-entrant vertices of the polygon ty), when, in fact, empty convex tri:1ds 

could be found inside such non-empty triads, still with economy as defined 

above (i.e., triangulation does not generate additional vertices). It was 

felt that greater speed could thus be generated at the cost of rather more

complex programming (without excessive computation]. 

First, we note that, if we \Vrite the discriminant r. in (12) as 
J 

r. = z = [P. 
1
P./\ P.P. 

1
[ = [P. 

1
P.[ xo(P. 

1
, P. 

1
P.J 

J o- J J J+ J- J J+ J- J 

= y[j- l, j, j + 1], (20) 

where [>·[ denotes the magnitude of the vector X and 6(C, AE) is the distance 

from the point C to the line AB, then the discriminants in the inequalities 



----
/ .... 

-15-

(9), (10), (ll) may be written as y[j - 1, j, k], y[.j, j + 1, kl, and 

y[j + 1, j- l, kJ, respectively; anJ, indeed, the inequalities (2), {~)"), 

(10), and (11) then become 

y[j - l, J, j + 1] > 0, (21) 

y [j - 1 ' j' k l > 0' y [j' J + 1 ' k J > 0' y [j + 1' j - 1 ' k l > 0' ( 22) 

respectively. Thus, for fixed ~ and j, as k varies, y[i, j, k] is propor

tional to the distance from the point Pk to the line P.P .. 
" J 

LE~!MA 9. If the convex triad 6. = P. 
1

P .P. 
1 

does contain certain verhces, 
J J- J J+ 

then the vertices Ph- and Ph+ among them, respectively having the least values of 

y [j - l, j, h -] and y [j, j + l, h +], are re-entrant, and the corresponding 

triads P. 
1

P.Ph- and P.P. 
1

Ph+ are empty convex triads. 
J- J J J+ 

[Since the discriminants y[j - l, j, k] and y[j, j + 1, k] are respectively 

proportional to the distances from vertices Pk to the lines P. 
1
r. and I'.P. 

1
, 

J- J J J+ 
we see that the vertices Ph- and Ph+ are respectively the closest to these lines 

among vertices interior to the triad P. 
1
P.P. 

1
• Figure 12 illustrates the situ

J- J J+ 

Figure 12. 

c --- B 

( / 

\ .... ---....... __ ~--
I 

I 

---

both empty and convex. Finally, the angles 

ation: the polygon P invades the in-

terior of the triad in one or more 

polygonal sub-arcs (here, two: A ..• 

U .•• V ..• B and C .•. X .•• Y ..• D; enter

ing the triangle (across the side 

P. 1r. 1) at A and again at C and 
J+ J-

emerging at Band again at D). Ph-

and '\ + are defined as above; so 

that the dotted lines FG and HK, 

respectively parallel to p. 1 p. 
J- J 

p. 1 p. through Ph- and ph+ can 
J+ J 

no vertices of lJ interior to the 

and 

have 

triad 

and between the parallel pairs. It 

follows immediately that the shaded 

triads P. 1P .Ph- and P .P. 1_Ph+ are 
J- J . J J+ 

LXPh_y < LGPh_F = rr and LUPh+V < 
LKPh+H = rr, so that both Ph- and Ph+ must be re-entrant, in view of the direction 

of traversal (marked in Figure 12 by arrow-heads).] 



-16-

ALGORITHM 2. We suppose, as for Algorithm l, that the polygon has been 

prepared for triangulation hy means of Algorithm 0, yielding lists~ :1nJ B, 
list~ will be scanned, each convex triad 6. being tested for inc]u

J 
and that 

ded re-entrant vertices Pk from list 8. 

For each successive vertex P. of P whose index j lies in list~' 
J 

2.1. [same as~] for every vertex Pk whose index k ~s in the list 

8, compute the discriminants y[j- l, j, k], y[j, j + l, k], and y[j + l, j- l, 

k] of the inequalities (9], (10), and (ll) of Lemma 7, 

2.2. if all three discriminants are positive for any re-entrant 

vertex Pk from list 8, note the index k and the values of the discriminants 

y [j - l, j, k] and y [j, j + l, k], and (a) keep track of the indices of the 

least such discriminants, yielding the indices h- and h + when all of list 8 

has been traversed, then (b) put the tr.iads P. 
1

P .Ph- and P. 
1

P .Ph+ into list 
J- J J+ J 

C, and (c) recursively apply Algorithm 2 to each of the simple closed polygons 

thereby separated [in Figure 12, these would be the polygons .•• Pj-lph_y ... , 

••• XPh_pjph+V ••• , and ••• UPh+Pj+!"""' the dots denoting remaining connected 

vertices of p, in the same order as they appear in PJ, 

2.3. [same as 1.3] if one or more of the discriminants m 2;1 are 

non-positive, for everu Pk from list 8, then (a) put the triad P. 
1

P .P. 
1 

into 
" J- J J+ 

the list e, (b) remove the index of p. from list 8, (c) test r. l ~ y[j - 2, 
J . J-

J - I, j] and r. 
1 

~ y[j, j + l, j + 2] as in O.l-0.4 and adjust lists~ and 
J+ ----

8 accordingly, and then go on to the next vertex in list ~; 

2.4. continue (with r•eeur•sion, as needed) unt;il c'Crc:h Li:d ~ ;,,,, ou!y 

b~o indices in it. 

Explanation. 2.2 is the case when the triad does contain vertices of P; we now 

diverge from Algorithm l by .recursively calling Algorithm 2 to each of the three 

sub-polygons into the original one is split, as explained above and illustrated 

in Figure 12. Lemma 9 ensures that the two triads added to list C in doing this 

always exist and are empty convex triads, as required. 

discriminants y[j - l, j, k] and y[j, j + I, k] cannot 

elimination of redundant vertices by 0.4); and if y[j + 

In 2.3, note that the 

vanish (because of the 

l,j-l,k] 0, then 

the triad 6j is empty and the vertex Pk is redundant in the residual polygon. 



\ / ,_ .... 

-17-

The analysis of this algorithm is a little more tricky than that of 

Algorithm 1, proving Theorem 2 (and, in particular, the a.o. count given by 

(13)). Again, we seek an upper bound for the number of a.o. required to 

perform the algorithm, and therefore look throughout at worst-case situations. 

The first postulate, therefore, would be that no redundant vertices are ever 

found, since these would shorten the work. The algorithm bifurcates at 2.2 

and 2.3; so that, if~ is more laborious, we should assume that this is 

the path taken every time; while, if 2.3 takes more a.o., we should similarly 

assume that this is the choice at every step. 

First consider 2.3. Let lists~ and B have p and q entries, respectively, 

with p + q n. Then, if option 2.3 occurs every time, the first set of tests 

will lead to it; so that only q inclusion tests (27q a.o.) need be computed 

[compare (p- l)q in the analysis of Algorithm 1]. The worst case is given by 

Lemma 5, with p = 3 and q = n - 3. This gives a count of 27(n - 3) a.o. We 

can now add-up the counts, much as before (at each step, we need 18 more a.o. 

to test the two discriminants rj-l and rj+l)' to yield 

27(n - 3) + 18 + 27(n - 4) + 18 + + 18 + 27(2) + 18 + 27 

2;cn- 2)(n- 3) + 18(n- 4) = 2;cn2
- ~ + fJ. (23) 

Now suppose instead that 2.2 is chosen each time. We first note that, 

however a convex triad turns out to be non-empty, the situation is essentially 

the same. This is illustrated in Figure 13, which shows all possible arrange

ments, in essence. Any of the sub-polygons may be degenerate; but there cannot 

he more than three. The three sub-polygons arc marked A, B, and [ Ill the figiirc, 

Figure 13. 

I 
/ 

I 
I 

and they are easy to identify. In the first example, A 

and [disappear (each may degenerate separately), and in 

I ' 
I h' ' 
I "' I , _ _.. 

lA _.) 
t ( 

' I ,, 



-18-

the second, R is degenerate; the third example shows that, even when there is 

only one incursion into the interior of the triad, all three .sub-polygons :II'L' 

generated; and the last example shows, on the one hand, that only three sub

polygons occur, even with many incursions, and, on the other hand, that the 

sub-polygon R may reduce to a single triangle. Observe, too, that, if A, il, 

and [ respectively have n
1

, n
2

, and n
3 

vertices, then 

n + n + n = n + 2, 
1 2 3 (24) 

because Ph- and Ph+ are counted twice. Having divided our polygon into three, 

we must make three new lists 1/
1

, 11
2

, 4
3

, and three new lists 1?
1

, B
2

, B
3 

(the 

list e remains unique and comprehensive); to do this takes 9(n + 2) a.o. 

Thus, if we suppose that f(n) denotes the upper bound we are seeking, for the 

number of a.o. required to perform the algorithm, it necessarily follows that 

fen) =max [f(n) + f(n) + f(n )1 + 9(n + 2). (25) 
n 1 +n2+n 3=n+2 1 2 3 " 

If any n. = 3, the corresponding lists are unnecessary; so 9(n + 2) becomes 
~ 

9(n- 1) or 9(n- 4); and f(3) = 0; while we see by the construction that no 

ni ( 2. Taking these cases one-by-one, we see that, if n1 = n
2 

= 3, 

f(n) = f(n - 4) + 9(n - 4) (26) 

has a solution of the form 2 an + bn + c; and the equation (26) shows that 
2 

+ bn + c 2 San + l6a + bn 4b 9n 36, or Sa = 9, 16a 4b an = an + c + - -

= 36; whence a = 9/8 and b 4a - 9 -9/2. Now, f( 4) = 27 [there can only 

be one re-entrant vertex, by Lemma 5, and so one inclusion test suffices, and 

2.2 yields empty convex triads only], so that 16a + 4b + c = 27, whence e 

27- 18 + 18 = 27, yielding the solution 

f(n) = ~(n 2 - 4n + 24). 
8 

Similarly, if n 1 = 3 and n
2 

= 4, we get 

f(n) = 27 + f(n 5) + 9(n - 1) f(n - 5) 

which will have a similar solution with an 2 
+ bn + c 

+ 9(n + 

2 an 

(27) 

2)' (28) 

lOan + 25a + bn 

- Sb + c + 9n + 18, or lOa = 9, 25a - Sb + 18 = 0, and 16a + 4b + c = 27; 

whence a = 9/10, b = 81/10, and c = -2c, yielding the solution 
9 2 fCnJ = TOCn + 9n- c2). (29) 



-19-

Again, if n 1 
~ n2 ~ 4, we get 

f(n) ~ 54 + f(n - 6) + 9(n + 2) ~ f(n - 6) + 9 (n + 8), (30) 

which will have similar solution with an 2 
+ bn 2 l2an 36a bn a + c ~ an + + 

- 6b + c + 

whence a 

9n + 72, or l2a ~ 9, 36a - 6b + 72 ~ 0, and 16a + 

3/4, b ~ 33/2, and c -51, yielding the solution 

f(n) ~ ~(n 2 
+ 22n- 68). 

4b + c ~ 27; 

(31) 

In degenerate cases, such as are illustrated in Figure 13, there may be no 

sub-polygons at all [n
1 

~ n
2 

= n
3 

~ 0 and n ~ 4]; or one sub-polygon [n
2 

n ~ 0 and n ~ n- 2], when we have 
3 I 

f(n) ~ f(n- 2) + 9(n- 2), 

with the solution 
9 2 f(n) ~ 4 cn - 2n + 4); 

or two sub-polygons [n
3 

~ 0], when we either have n
2 

n
2 

~ 4 and n
1 

~ n - 4, the former yielding 

f(n) ~ f(n- 3) + 9(n- 3), 

with the solution 

f(n) 

and the latter yielding 

~ icn2
- 3n + 14), 

2 

f(n) ~ f(n- 4) + 9(n + 3), 

with the solution 
9 2 f(n) ~ 3Cn +!On- 32). 

(32) 

(33) 

n - :; , or 

(34) 

(35) 

( 36) 

(37) 

These cases have all dealt in extremely skewed values of n
1

, n
2

, and n
3

. 

It is apparent that f(n) is monotonic;!lly increasing with n, and faster than 

linearly; emu 111 such circumstances, it lS advantageous to make the t II rcc II. 
L 

as equal as possible. To illustrate this, we may consider the case when we 

suppose the equat-ion to be 

f(n) 3f(n ; 2) + 9(n + 2) • (38) 

In this case, we can see that the solution is as)'mptotic to some kn log n; 

for then we get that kn log n k(n + 2) [!og(n + 2) - log 3] + 9n + 18, which 

demonstrates the correctness of the general form, and yields that k log 3 ~ 9, 

whence k ~ 9/ (log 3). [A further term is then seen to be asymptotic to k' log n, 



-20-

yielding that kn log n + k' log n- k(n + 2)[1og(n + 2) -log 3] + 9n + 18 

+ 3k'[log(n + 2) - log 3], whence kn log n + k' log n- kn log n- 2k log n 
2 . 

- kn log(l + -) - 2k log(l 2 + -) + 
n n2 

- 3k' log (1 + -) + 3k' log 3 
n - (k 

This gives k = 9/(log 3) and k' = 

kn log 3 + 2k log 3- 9n- 18 - 3k' log n 

log 3- 9)n- 2(k' + k)log n + 0(1)- 0. 

-k = -9/(log 3). Further terms can be ob-

tained similarly.] The point here is that making then. almost equal gives 
. ~ 

much faster execution of the algorithm; and since we are seeking worst-case 

situations, we are right [unfortunately!] in concentrating on the skewed cases 

considered earlier. 

To make our conclusions rigorous, we need some results in convexity. Let 

us consider functions f(x) defined for x ~ 0, such that f(x) ~ 0. 

LE~~A 10. If f(x) [as above] is differentiable, monotonically increasing 

with x,faster than x, so that 

f' (x) t oo as x -. oo, (39) 

then f is convex for x ~ 0; i.e., for all 0 < x 1 < x 2 and all 0 < \ < 1, 

[The inequality degenerates to an equality when x1 = x2 or A 

is 

By 

immediately obvious. Therefore fix x 1 ~ 0 and 0 < A < 1, 

the Mean Value Theorem, there is a ~ such that X < ~ 1 

\f(x1) + (1 - A)f(x2) - f(Ax1 + (1 - A)x2) 

Af(xl) + (1 - A)f(xl) - f(Axl + (1 - \)xl) 

+ [l - A) f' l S) - ( 1 - ,\) f' (AX l + [l - \) f;) 

= (1 - A) [f'(S) - f'Ux
1 

+ (1 - \)S) ~ 0, 

<X 

( 40) 

= 0 or A = 1 ' as 

and vary x2 ~ xl. 

2 and 

by (39), which states thatf' is monotonically increasing, since (because x
1 

< ~) 
~ ~ Ax1 + (1- A)~. This proves (40).1 

Note that the form of the function f(n) in the discussion of Algorithm 2 

is that specified by (39) above (since f increases at least as fast as the 

equations (26) - (38) suggest. 



-21-

LEMMA 11. If f(x) is a convex function for x ~ 0, then 

k 
F(x

1
, x

2
, ••• , xk) ~ J

1 
f(xi) ~f(x1 ) + f(x 2

) + ••• + f(xk) ( 41) 

is a convex function over all x. ~ 0 (i ~ 1, 2, ... , k), and the same is true 
"' if we impose the condition [i.e., limit points (x

1
, x

2
, ••• , xk) to the hyper-

plane] 

( 42) 

[Since f is convex, we have that, for all 0 ~ x
1 
~ x

2 
and all 0 ~A~ 1, the 

inequality (40) holds. Taking k-dimensional vectors (x 11 , 

•• 0 ' 
x2k) in the positive orthant, we see that, 

i = 1, 2, •.. , k, 

Summing these equations over all i, we get that 

AF(x11 , x 12 , ... , x 1k) + (1-

k 
~ A L f(x l i) + ( 1 - A) 

i~! 

k 

A)F(x
21

, x
22

, 

k 
L f(x2i) ~ 

i~! 

~ L f(AX!. + (1 - A)x
2

".) ~ F(AX! + (1 - A)X
2

) 
i~! "' " 

x 12 , •.. , x 1k) and 

by (40), for each 

( 43) 

( 44) 

with the usual vector notation; and this is the defining inequality of convex

ity of the function F ink-dimensional Euclidean space. If we limit ourselves 

to vectors x
1 

and x
2 

satisfying (42), then we see that the vector A x1 + 

(1 - A) x
2 

also satisfies (43), and this proves that F is convex in the 'hyper

plane also.] 

Now note that again the function f in the discussion of Algorithm 2 is 

indeed convex (as was pointed out above) and so the function 

( 45) 

occurring in the crucial equation (25) is convex, even on the plane (24). Now, 

a convex function attains its maximum at the boundary of the domain of permitted 

values [see, e.g., A. W. Roberts & D. E. Varberg, Convex Functions (Academic 

Press, New York, 1973) p. 124, Theorems D and E], provided this is a compact 

convex set [and the set of x satisfying (42) with non-negative coordinates is 



-22-

precisely so]. Thus we get the necessary result: 

LEMMA 12. The function (45) attains its global maximwn under the condi

tion (24) at an extreme point of the allowable values of n
1
, n2, and n

3
• 

This lemma completes the proof that indeed the bounds obtained for all the 

extreme cases of 2.2 in (26) - (37) contain among them the global bound f(n) 

for the a,o, count, Of the bounds obtained, all quadratic in behavior, that 

with the largest coefficient of n 2 is (33). The corresponding coefficient in 

the bound for 2,3 in (23) is 27/2, which is larger; so that we may conclude 

that this is the worst case of all. The advantage of this asymptotic behavior 

over that given in (13) for Algorithm 1 is evident, 

Thus, we have established the next main result: 

THEOREM 3. Algorithm 2 (i) always yields a complete triangulation in a 

finite number of steps; (ii) takes 9n a.o. and O(nJ other operations to execute 

the preparatory Algorithm 0, and less than 

27 2 ll 2 2 -(n - ~ + -) = O(n ) 
2 3 3 ( 46) 

2 a.o. and O(n ) other operations to perform; (iii) is as economical as possible. 

Note that (ii) implies (i). The reference, here and in Theorem 2, to the 

"other operations" is a reminder that bookkeeping operations and tests are of 

the same order of number as the a,o, (in certain algorithms, though these "other 

operations" are quick, they become so numerous as to overshadow the a.o.: this 

is not the case here). The step 2,3 is economical (i.e., does not introduce new 

triangles, beyond then- 2 necessary ones, as has already been explained in 

Theorem 2, A count of vertices shows that the net number of triads arising 

before and after step 2.2 is the same [(n
1 

- 2) + (n
2 

- 2) + (n
3 

- 2) + 2 = 
n - 2]. 

A comparison of the bounds of the two algorithms for smaller values of n 

is also instructive: 

n = 4 8 20 100 

) (13) 75% 984% 16 887% 2 217 747% ( 4 7) 

( 45) 27 477 4 419 130 059 



-23-

5" Example 

Figure 14. Example of a non-convex polygon with n = 48 vertices. 

List ll: {4, 6, 7, 8, 10, 12, 13, 15, 16, 18, 23, 26, 27, 29, 30, 31, 
34, 36, 37, 39, 40, 41, 43, 44, 45, 48}; p = 26. 

43 
41 

44 

40 

36 

37 

List /J; {1, 2, 3, 5, 9, 11, 14, 17, 19, 20, 21, 22, 24, 25, 28, 32, 33, 
35, 38, 42, 46, 47}; q = 22. 

Algorithm l; Empty convex triads at first pass, to List C: (5,6,7), 

(5,7,8), (5,8,9}, (12, 13, 14), (17,18,19), (22,23,24), (25,26,27), (28,29,30), 

(28,30,31), (28,31,32), (33,34,35), (33,35,36}, (33,36,37), (44,45,46), (44,46, 

47). Note that, in updating the lists, we remove 6, 7, 8, 13, 18, 23, 26, 29, 

30, 31, 34, 35, 36, 45, 46 from list ll (with 35 and 46 having been transferred 

from list B to list ll), remove 32 from list B by redundancy (collinearity), 

and further transfer 5, 25, 33 from iist B to list ll. The results are shown 1n 



-24-
43 

41 

37 

Figure 15. 

List II: {4, 5, 10, 12, 15, 16, 25, 27, 33, 37, 39, 40, 41, 43, 44, 48}; 

with p = 16. 

List /J: {1, 2, 3, 9, 11, 14, 17, 19, 20, 21, 22, 24, 28, 38, 42, 47}; 

with q = 16. 

Empty eonvex triads at second pass, to List C: (4,5,9), (4,9,10), (11, 

12,14), (11,14,15), (24,25,27), (28,33,37), (28,37,38), (43,44,47), (43,47,48). 

In updating lists, we remove 5, 9, 12, 14, 25, 33, 37, 44, 47 from list II 

(9, 14, and 47 having been transferred from list 8 to list II), and further trans

fer 28 from list 8 to list II. The results are shown in Figure 16; for which we 

have: 

List II: {4, 10, 15, 16' 27' 28, 39, 40' 41, 43' 48}; with p = ll. 
List 8: { l' 2, 3, 11, 17, 19, 20, 21, 22, 24, 38' 42}; with q = 12. 

Empty convex triads at third pass, to List C: (3,4,10)' (3,10,11)' ( 3' 

11,15), (27,28,38), (27,38,39). In updating lists, we remove 4, 10, 11, 28, 38 



-25-

Figure 16. 

from list~ (11 and 38 having been transferred from list B to list~), and 

further transfer 2 from list B to list~' and remove 3 from list B by redun-

dancy. The result is shown in Figure 17; for which we have: 

List~: { 2' 15' 16, 27, 39, 40' 41, 43, 48}; with p = 9. 

List /J: {1, 17, 19, 20, 21, 22, 24' 42}; with q = 8. 

Empty convex triads at fourth pass, to List C: (1,2,15), (1,15,16), 

(1,16,17), (24,27,39), (24,39,40). In updating lists, we remove 2, 15, 16, 

27, 39 from list~' and transfer l and 24 from list B to list~. The result is 

shown in Figure 18; for which we have: 

List~: {1, 24, 40, 41, 43, 48}; with p = 6. 

List B: {17, 19, 20, 21, 22, 42}; with q = 6. 



-26-

Figure 17. 

Figure 18. 

4D 



Figure 19. 

Figure 20. 

43 

"' Figure 21. 

21 

-27-

40 

21 

22 



-28-

Empty convex tFiads at fifth pass, to list e: (48,1,17), (48,17,19), 

(48,19,20), (22,24,40), (22,40,41), (43,48,20). lnupdating lists, we remove 

l, 17, 19, 24, 40, 48 from list~ (17 and 19 having been transferred from 

list B to list~), and further transfer 20 and 22 from list B to list~. The 

result is shown in Figure 19; for which we have: 

List~: {20, 22, 41, 43}; with p = 4. 

List B: {21, 42}; with q = 2. 

Empty convex triads at sixth pass, to list e: (21,22,41), (21,41,42), 

(42,43,20). In updating lists, we remove 22, 41, 43 from list~. and transfer 

21 and 42 from list 8 to list~. leaving list B empty. The result is shown in 

Figure 20; for which we have: 

List~: {20, 21, 42}; with p 3. 

List B: empty; q = 0. 

The final situation is shown in Figure 21, where the single remaining 

triad is removed into list e. Just 15 + 9 + 5 + 5 + 6 + 3 + l = 44 triads 

are in list e. being (n - 2) - 2, the deficit of 2 being attributable to the 

two vertices removed by the exercise of 0.4 (redundancy by collinearity) in 

the first (P
32

) and third (P
3

) passes. 

We now turn to the a.o. count. First, note that two discriminants are 

computed, under l.3(c) for every triad put into list e. excepting the last 

two; so there is a count of 

18 X 42 = 756 ( 48) 

aoo. for this, in all. The remaining a.o. arise from discriminant computa

tion for inclusion tests, 27 a.o. for each test. The number of tests is 

obtained as .follows. We begin with q = 22 indices in list B: 

22 X 3 66 4. { 6}. { 7} tested [{ ... }denotes removal to list e]; 
5 transferred from list B to list ~-

21 X 9 = 189 {8}, 10, 12, {13}, 15, 16. {IS} • { 23}. {26}; 25 transferred. 
20 X 4 80 27, {29}, {30}, { 31}; 32 eliminated by redundancy. 
19 X l 19 { 34}; 35 transferred, 
18 X 2 = 36 {35}, {36}; 33 transferred. 
17 X 7 = 119 37, 39, 40, 41, 43, 44, {45}; 46 transferred. 
16 X 4 64 { 46}. 48, 4, { 5}; 9 transferred. 
15 .x 3 45 {9}, 10, {12}; 14 transferred. 
14 X 6 84 {14}. 15, 16' {25}, 27, {33}; 28 transferred. 
13 X 6 = 78 {37}, 39; "40_, 41, 43. {44}; 47 transferred. 



-29-

12 X 3 36 {47}, 48, { 4}; 3 transferred. 
11 X 1 = 11 {10}; 11 transferred. 
10 X 5 50 { 11}' 15, 16, 27' {28}; 38 transferred. 

9 X 7 = 63 (38}, 39, 40, 41, 43' 48, {3} [null triad]; 2 trans fer red. 
8 X 2 = 16 {2}' {15}; 1 transferred. 
7 X 2 = 14 {16}, { 27}; 24 transferred. 
6 X 2 = 12 {39}, {1}; 17 transferred. 
5 X 1 = 5 {17); 19 transferred. 
4 X 2 = 8 {19}, {24}; 22 transferred. 
3 X 4 12 {40}, 41' 43, {48}; 20 transferred. 
2 X 2 = 4 20, {22}; 21 transferred. 
1 X 2 = 2 {41}, { 43}; 42 transferred. 

The total is thus 1 '013 tests = 27,351 a.o., plus ( 48) for a grand total of 

28,107 a.o. (49) 

For comparison, the bound (13) yields the result that (49) should be 

< 241,734% a.o.; (50) 

so that we see how much of a "worst case estimate" it is! 

Returning to Figure 14, we now apply Algorithm 2: Initial lists 4 and B 

are as before (see page 23 above). Triads (3,4,9) and (4,5,9) are put in list 

e, by 2.2, and we get two polygons: 

l\ = [1, 2, 3, 9, 10, .•. , 47, 48] and 11
3 

with new lists, 

{1, 2' 3, 11, 

42' 46, 47}; 

43: 

/J3: 

{6, 

{5}; 

7, 8, 9}; 

with q
3 

14' 17, 19, 

with ql 
with p3 4. 

' 
= 1 . 

' 

[5, 6, 7, 8, 9], 

as illustrated in Figure 22. Take p
3 

first: triads (5,6,7), (5,7,8), and 

(5,8,9) successively go to list e, terminating this branch, by 2.3 only, In 

:P 1, triads (3,9,10) and (3,10,11) are empty; then (11,12,14) and (12,13,14) 

are removed, by 2.2, leaving just one new polygon: 

:pll = [1, 2, 3, 11, 14, 15, 16, .•• , 47, 48], 

with new lists [11 being removed by redundancy], 

411: {3, 14, 15, 16, 18, 23, 26, 27, ..• , 43, 44, 45, 48}; 



-30-

Figure 22. 43 
41 

44 

4 

9¢ 
6 

8 

7 

37 

with p ~ 21 · . 11 ' 
3

11
: {1, 2, 17, 19, 20, 21, ... , 42, 46, 47}; with q

11 
~ 17; 

CiS illustrated 1n Figure 23. Proceeding, empty triads are found at (2,3,14), 

(2,14,15), C2,15,16), and the next split occurs at (2,16,1) and (16,17,1), 

again yielding a single polygon: 

pll3 ~ [1, 17, 18, 19, 20, •.. , 47, 48], 

wjth new lists, 

17
113

: {1, 18, 23, 26, 27, ... , 44, 45, 48}; with p
113 

~ 18; 

3
113

: {17, 19, 20, 21, ... , 42, 46, 47}; with q
113 

~ 15; 

as illustrated in Figure 24. 



-31-

Figure 23. 

43 
41 

34 

36 

37 

Note: We use subscripts to refer to the sub-polygons on the h [1], 

middle [2], and h+ [3] sides of the triad in question. There are no middle 

polygons so far (cases have.been degenerate as Figure 13, second example, or 

worse). 

Proceeding again, empty triads are found at (48,1,17], (17,18,19], 

(22,23,24), (25,26,26), before we encounter a split at (25,27,38) and (27, 

28,38), yielding the two polygons: 

ll113l ~ [17, 19, 20, 21, 22, 24, 25, 38, 39, 40, 41, 42, 43, 44, 45, 46, 

47, 48]; 



Figure 24. 

36 

with lists 

,q 1131: 

1.?1131: 

and 

pll33 
with lists 

4 1133: 

1.?1133: 

= 

-32-

43 
41 

37 

{17, 25, 38, 39, 40, 41, 43, 44, 45, 48}; with pll
3

! Ill; 

{19, 20, 21, 22, 24, 42, 46, 47}; with q
1131 

8; 

[28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38]; 

{29, 30, 31, 34, 36, 37, 38}; with p
1133 

= 7; 

{28, 32, 33, 35}; wtth q
1133 

= 4; 

as illustrated in Figure 25. Take p
1133 

first: triads (28,29,30), (28,30,31), 

(28,31,32) are found empty and 32 becomes redundant; then (33,34,35), (33,35,36), 

(33,36,37) are also found empty; then a fully degenerate split yields (33,37,28) 

and (37,38,28), terminating this branch. 



-33-

43 41 

Figure 25. 

47 

44 

34 

36 

37 

In P
1131

, empty triads are removed at (48,17,19), (48,19,20), (24,25,38), 

(24,38,39), (24,39,40), before we appeal to 2.2 and split off (24,40,22) and 

(40,41,22), yielding the single polygon: 

pll313 = [20, 21, 22, 41, 42, 43, 44, 45, 46, 47, 48], 

with lists 

4 11313 : {22, 41, 43, 44, 45, 48}; with p
11313 

= 6; 

&11313 : {20, 21, 42, 46, 47}; with q 11313 = 5; 

as illustrated in Figure 26. ~mpty triads are found at (21,22,41) and (21,41, 

42), before our first and only three-way split (in this example) at (42,43,47) 

and (43,44,46), leaving the three polygons: 

pll3l3l = [20, 21, 42, 47, 48], 

with lists 



44 

-34-

Figure 26. 
·II 

22 

4113131' {21, 47, 48}; 

witl1 1• 113131 = 3; 

8 113131' {20 • 42 }; 

with ql13131 = 2; 

llll3132 = [43, 46, 47]; 

and 

llll3133 = [44, 45, 46]. 

The last two poly

gons are empty triads; 

so they terminate immedi

ately. For p
113131

, we 

find empty triads (20,21,42], (20,42,47), and (20,47,48], completing the tri-

angulation. 

We now turn to the a.o. count for this algorithm. Counting the triads re

moved, we find 44 = ( 48 - 2] - 2 again, with P 
11 

and P 
32 

found redundant. Of 

these, 30 are found empty through 2.3 and there are seven splits by~. for 

14 more triads. Thus the discriminant-pairs under 2.3(c] number just 24 (we 

recall that the last two or less triads of a polygon do not require the cal

culation of these test-discriminants. Thus we use 

18 x 24 = 432 a.o. (51 J 

for this purpose. In computing the a.o. count for the first algorithm, we did 

not count the work required to set up the initial lists 4 and B; so neither do 

we Jo so here; but we now must compute the a.o. required to get the new lists, 

at each split. In all, there are seven splits, requiring in all 

9 X (p; + ql +p3+q3+ Pu + q 11 + Pu3 + qll3 + pll31 + qll31 + 

pll33 + qll33 + pll313 + qll313 + pll313l + qll313ll 

= 9 X (23 + 20 + 4 + 1 + 21 + 17 + 18 + 15 + 10 + 8 + 7 + 4 + 

6 + 5 + 3 + 2] = 9 X 164 = 1,476 a.o. (52) 

Finally, ~<e must count inclusion tests, performed at each step of l,l for all 

members of the current list B and taking 27 a.o. each. We count as we did be

fore. 



-35-

22 X 1 = 22 (4) [ (. .. ) denotes a split after this test.] 
1 X 2 2 { 6}, { 7}. 

20 X 1 20 {9}; 3 transferred. 
19 X 2 = 38 {10}, (12}. 
17 X 2 = 34 {3}, {14}; 2 transferred. 
16 X 2 = 32 {15}, (16). 
15 X 2 = 30 {1}, {18}; 17 transferred. 
14 X 2 = 28 { 23}, {26}; 25 transferred. 
13 X 1 13 (27). 
4 X 3 12 {29}, { 30 }., { 31}; 32 redundant. 
3 X 1 3 {34}; 35 transferred. 
2 X 2 4 {35}, {36}; 33 transferred; (37). 
8 X 1 = 8 {17}; 19 transferred. 
7 X 5 35 {19},{25}, {38}, {39}, (40). 
5 X 1 = 5 {22}; 21 transferred. 
4 X 2 = 8 { 41}, (43). 
2 X 1 = 2 {21}; 42 transferred. 

The total is thus 296 tests = 7,992 a.o., plus (51) and (52], for a grand total 

of 
9,900 a.o., (53] 

or about one-third of the work required by Algorithm 1. For comparison, the 

bound (46] yields the result that (53] should be 

,;; 28,737 a.o. (54] 

so that the bound is somewhat closer for this example with Algorithm 2 than 

with Algorithm 1. 

6. The Third Algorithm 

A reconsideration of the first two algorlthms, as described above, 

indicates that no use is made of the fact, tha.t, when a triad is processed, 

the rest of the polygon changes relatively little; the procedure prescribed 

rcqtiJrcs the comptttation, at c;1cl1 iteration, of nttmcrotts Jiscrimin;Ints y (as 

defined in [20) - (22)); and indeed, these make up the bulk of the computn

tional work of the algorithms. It is evident that there is an irreducible 

· ·' f · 1 · · f I d f 1 2 27 2 . rcs-tuue o 1nc us1on-test1ng o t1e or er o 4-n tests, or -4 n a.o., 1n 

the worst case. Since the second algorithm takes time of the order of 

about twice this, it does not seem very promising to seek improvement of this 

along this line of thought; but, by the same token, since the first algorithm 
9 3 takes time of the order of in , it is a much likelier candidate. 



-36-

We therefore reconstruct Algorithm 1, in a way that seeks to minimize the 

duplication of effort, by keeping a record of all vertices contained in C11rl1 

convex triad under consideration. We shall specify the data structures used 

1n a little more detail. We assume ti1at, initially, the polygon Pis given 

as an array [see (5)] 

XI x2 x3 ... X n 
yl y2 y3 ... Yn 

1 2 3 n 

with P.=[x.,y.]; 
J J J 

1 l first index (row) 
2 

P(l, 

P(2, 

-+ second index (column) 

j) 

j) = 
x., 

J 
y .. 

J 

(55) 

2 We also assume that n is too large to allow space allocation of C(n ) or more; 

so that some economy of storage must be adopted, 

We set up data-structures as follows: 

(a) Real array G of size n [to hold discriminants for each vertex]. 

(b) Pointer (address) arrayS of size n [pointer S(k) points to list -ik]. 

(c) Integer array C of size (3 x n) [Successive C(l, r), C(2, r), and 

C(3, r) hold indices h, i, and j of empty 

This corresponds to 'List e• of Algori t!tm 

triads P
1

P.P. as they are identified. 
I Z J 

1.) 

(d) Linked lists will be structured as follows, There will be an identifier, 

which is a pointer, 1:d, whose name is the name of the list; there will be a 

header cell, of the form [lp, ls], where lp points to the first cell of the list 

and ls points to tile last cell of the list; and then the cells making up the 

body of the list will be of the form llp, eonl.erdj, where each pointer II' points 

to the next cell in sequence and content denotes the content of the cell. When 

the list is initialized, the header cell takes the form [NIL, NIL], and the last 

cell will always take the form [NIL, content]. Two ope1oations on lists will be 

required here: append(id, entries) attaches a cell with the given entries at: 

the end of the list with identifier cd. The procedure is: 

A* I 

A*2 

A*3 

A*4 

if id:lp =NIL, then id:ls ~ id:lp ~ newcell {newcell is a pointer 

to a new cell, pointed to by header and old last-cell}; 

else, id:ls ~ id:Zs:lp ~ newcell {assign right--to-left}; 

id:ls:lp ~NIL {list-pointer of new last-cell is NIL}; 

id:Zs:content ~entries {e.g., if content= (a, b, c), entries _ 

(x, y, z), then id:ls:a + x, id:ls:b + y, id:ls:c + z}. 



-37-

ln our pseudo-code, the notation 'A,. B' means that the expression or vari.ahlc 

B is evaluated, and tl1c result 1s inserted into tl1c v~lri~Jl1lc (or mcmory-loc;Jtion) 

A [assignment operation]; if Q is a pointer to a cell with components a, b, c, 

... , then the notation 'Q:x' denot~s the component x of the cell pointed to by Q; 

if the x-component is itself a cell-pointer, then 'Q:x:y' means the component y 

of the cell pointed to by Q:x. Thus, above, id:Zs is the last-cell pointer of 

the header, id:Zs:Zp is the list-pointer of the last cell, and ·id:Zs:Zp:lp is the 

list-pointer in the cell pointed to by what was the last cell, i..e., the list

pointer in the new (last] cell. As usual, assignment overwrites and supersedes 

previous content. The operation delete(id, ptr] removes from the list with 

identifier id the cell next after that to which the pointer ptr points. The 

pTocedure is: 

D -1 if id: ls ptr:Zp, then id:ls + ptr {if the cell to be deleted 

is the last, then the last-cell pointer in the header 

should point to the predecessor cell; otherwise the 

last-cell pointer is unchanged}; 

D -2 ptr: Zp + ptr: Zp: Zp {the list-pointer in the cell preceding that 

to be deleted should point directly to the cell to 

which the deleted cell points}. 

What must be noted is that both of the5e procedures take time 0(1) to execute. 

(e) Linked list with identifier :JJ and cells of the form [Zp, cp, up, x] 

1n the body of the list; so that content= [cp, up, x], where cp and up are 

pointers, and x is an integer index [:JJ is a list of all ac·tive vertices of 

the polygon V; initially, :JJ is constructed as a list of all convex andre

en~rant vertices (x denoting the index of the vertex p X), in the order in 

which they occur 

V is on the left. 

in a tour of V in the direction in which the interior IV of 

In each cell, the pointer Zp points to the next cell in the 

list :JJ; if P is a convex vertex, and if a pointer ptr points to the prede-
x 

cessor of the cell referring to P , then the pointer ptr:cp points to the pre
x 

decessor of the cell referring to the next convex vertex; similarly, if P 
X 

1s a re-entrant vertex and ptr points to the predecessor of the cell referring 

to P , then ptr:cp points to the predecessor of the cell referring to the next 
X 

re-entrant vertex. A pointer it is initially set to point to the predecessor 

of the first cell referring to a convex vertex; so that the cells pointed to by 



-38-

11: lp, l!:cp: Zp, I!: cp: cp: lp, I!: cp : cp : cp : lp, (56) 

form the complete list of convex vertices in the cyclic order !'List I!•J; '"'J 
similarly a pointer 8 is initially set to point to the preuecessor of the first 

cell referring to a re-entrant vertex, and the cells pointed to by 

8:lp, 8:cp: lp, 8:cp :cp: lp, !1:cp :cp :cp: lp, (57) 

form the complete list of re-entrant vertices in the cyclic order ['List 8•]. 

When A points to the predecessor of a cell referring to the convex vertex P., 

" say, so that A:lp:x o i; then (if A:x o hand A:lp:lp:x o j, say) PhP.P. forms 
" J 

a convex triad, and if it is empty of other vertices, it can be transferred to 

the array C (i.e., to 'List C•: see (c) above). All the pointers 

8:up = 8:cp:up = 8:cp:cp:up = 8:cp:cp:cp:up NIL, 

;md if A:lp:x = i, then A:up points to the list u., for every i.] 

" 

(58) 

(f) For every k, linked list with identifier £k am! cells of the form 

[lp, tp], where lp is the list-pointer, as usual, and tp is a pointer which 

points to the predecessor in some List u. of a cell referring to index k 
" [S(k) = £k; see (b) above]. 

(g) For every i such that 

tifier u. and cells of the form 

" 

P. is a convex vertex, linked list with idcn

" [up, k], where up is the list-pointer and k 

is the index of a vertex contained in the convex triad associated with P .. 

" [If A:lp:x o i, then the triad is PhP.P., where h o A:x and j = A:Zp:lp:x.] 
" J 

(h) After the list J) has been constructed, we apply 

c ·1 JJ: ls: lp + JJ: lp {pointer in last eel I now points to f.i rst cc II}; 

to make the list circula1'. We also note that A and B are initially equal to 

I! and B, and advance as we construct the list J) until A points to the predeces-

SOY of the last cell referring to a convex vertex and B points to the predeces-

SOT of the last cell referring to a re-entrant vertex. We then do 

c -2 

c -3 

A:cp +I!; 

B:cp +8; 

making lists I! and 8 circular, too. 



-39-

The diagram below i llustrntcs the structures described above. 

JJ+ ao I a, I ""I 
+ a, I a, I "sl 
+ a, I a, J a,J 
+ 

"' I "• ! "•I 
+ 

"• J as J a,J 
+ as J a, J a, I 
+ 

a, J a, J as I 
+ a, J a, I a, I 
+ 

a, J a, I aul 
+ 

o:, J a,o J awJ 
+ 

a,o Jau I a"J 
+ 

au I"" I a"J 
+ 

an Ja" I ""I 
+ 

0:13 Jal4 I a"J 
+ 

"" I a, I 
0:!5 

5 ( l) = 1:.1 Yt 

5(6) = 1:.6 y, 

5(9) = i:.g ys 

Figure 27 below 

i'ii."rc II· P:u; 

p 
3 

p 
4 

' ' 

p ' 
p 1 ' 

2 ' 
p 

5 

¢ I i,] +--/5 

¢ I i,J 

JJ 
--ll 

St I i,J 
s, I i•l St ¢ I ~, I («4) 

~ 
s, 87 I i, 1-;- S7 I ¢ I i, C«sl 

q, 

s, I i7l 

) ~ I is I s, J Bs I i"l + Ss I ¢ I i" I («sl 

¢ I i,J 
s.__l__hl 

¢ I iul} s. I ¢ I i, («11) 

¢ I i"l 

Ss I inl } s, I i"l Bs I ¢ I i, I («14) 

+ s, I So 11:7 I+ s, I ¢ I i, C«1sl 

15 ll 
list list 

_,_ I ¢ I s, J, 5 (2) = 1:.2 y, -+ I Ys I "•l_,.y, :/' I as I , 
..,. I¢ I s, I , 5(7) = 1:.7 Y4 + IX, I "'~..,. y, :/' I a,J ' 
-;-I¢ I au J, 5 ( 12) = 1:.12 = y, _, I ¢ s,l, 5 (13) = 1:.1 3 '(7 

shows a corresponding polygon. 

p 
11 

_,_ I <! J as I. 



3 

-40-

Turning to space requirements, we sec that the arrays G, S, and C, and the 

urray 2) will take up memory space O(n). The problem 

ui, each of which may, in the worst case, take space 

1 ies with the lists .t.
1
. and 

2 ' O(n ), when summed over 

all values of the index. Each collection of lists takes up 2m memory locations, 

where m is the total number of inclusions (i.e., relations of a vertex being 

inside a convex triad); and it is possible to construct polygons for which m -· 

O(n 2). For example, Figure 28 illustrates a class of (4k- 1)-gons, in which 

the triad (4k - 1, 1, 2) contains 3(k 

(5, 6, 7), ... ' (4i - 3, 4i - 2, 4i -

respectively 4 (k - 1), 4 (k - 2), ... , 

- l) vertices; while the triads (1, 2, 3), 

1), ... , (4k-

4(k -

3) (k 

i) J ••• ' 

3, 4k 

4(k -

- 2, 4k - 1) contain 

k); for a total of 

Figure 28. 

----------
------------- --------------

(2k + - 1) inclusions. The case of k = 5 

lS illustrated. As a more realistic example, 

consider the 48-gon in Figure 14. Here, a 

quick enumeration shows that m = 57 (we 

have given the benefit of the doubt to 

all vertices nearly included in triads). 

----

Out of 26 convex triads, 10 are empty 

and 6 show only one inclusion; the 

1 a rgcst number of i ncllls ions 1 n 

a single triad is ll i11 (38, 

39, 40). 

so that 

Here, 
2 O(n ) 

m < 1.19n; 

behavior is 

not in evidence. The 

two sets of lists 

would require 4m 

228 memory 

--------- ---------- locations; 

----
----------------

(n x n) array would take up 48 2 
while a piain 

2304 memory locations. Returning to the 

extrewe case of Figure 28, we see that the hsts would require 4 x 13 x 1 = 20R 

memory locations, while a simple square array would need 192 361: still in 

favor of the list-structure. Indeed, for all k, 4(2k + 3) (k- 1) < (4k- 1) 2 . 



-41-

\'Jp, ('an now prnt'eed to modify uncl rcfi ne the 011 gor i thms. We first ad jnst 

PdgorJthm U. 

0*1 

0*2 

0*3 

0*4 

0*5 

0*6 

n + ., 

0*8 

ALGORITHM 0*. 

h +- 1; M -<- x
1

; 

for j ~ 1 to n (step 1), do 

C(l, j} ~ C(2, j) + C(3, j) + 

r;ompute the 

G(j) + r.; 
J 

?:fx.>M, 
,I 

;, /'.,I .I • 

discriminant r . 
J 

then do 

.I 

0; S(j) :lp + S(j) :ls +NIL {initialize}; 

y(j- 1, j, j + 1) {see (12), (20)}; 

else,ifx. 
J 

M and yj > yh' then h + j; 

0*9 end {for j) 

{By Lemma 4 Corollary, Ph is now an extreme vertex of the polygon jJ and so 

must be convex; if rh > 0, the polygon is correctly indexed for touring it 

with interior on the left; if r < 0, the order must be reversed.} 
~~ 

o•ro A+ B + 1/ ~ /] ~ JJ:lp + JJ:ls + ptr + z +NIL; p + q + 0 {initialize}; 

o•u ifG(h) > 0, then, for j + 1 ton (step 1), fill_lists {right ordering); 

o•u else, for j + n to 1 (step -1), fill_lists {wrong ordering of vertices}. 

In the pseudo-code, multiple assignments are done in the direction of the arrows, 

from right to left [in A·2 of append, this is crucial, since id:ls:lp + newcell 

is done first, with the old pointer id:ls, and then id:ls + id:ls:lp updates this 

pointer to its new value; here, it is not so important]; for i + a to b (step c) 

repeats all subsequent material _(cithCr a single instruction, or all instructions 

from do to end) with 1: taking successive values a, a+ c, a+ 2c, ... ,a+ kc, ... , 

us long as (j- b)/c ~ 0 (c must not be 0), with no execution if (a- b)/c > 0; 

if K then will execute all subsequent material (either a single instruction, or 

all instructions from do to either end or else) once only, if and only if K is 

TRUE; should there be an eZse, all subsequent material (single instruction, or 

everything from do to end) will be executed only once, if and only if K is FALSE. 

The procedure fi lZ _lists :is as follows. 



-42-

F -1 append(JJ, Nl L, NIL, j) {add a cell referring to P. at the end of List 2J}; 
J 

F -2 if G(.j) > 0, then increment (II, A, p) {vertex p. is convex; add to List 1/}; 
J 

F M3 if G(.j] < 0, then 1:ncn.>mrnt (8, R, q) {vertex 1'. 1;:; rc-cnt rnnt; ndd to 81; 
.I 

F -4 ptr < 2J: l.s [piP now points to new prcv i OJJS-ct' I I l. 

The procedure increment(;), Z, w) is as follows. 

I -,-1 if w ~ 0 and ptr I' NIL, then J + ptr 

ptr points to the previous cell; 

{P. is the first vertex in T.ist J; 
J 

make J point to the predecessor of the 

first cell referring to a vertex in the current list}; 

I 2 1:[W ~ 1 and;)~ NIL, then Z ptr {first cell in List 2) is ln List J, 
and current vertex is second in List J}; 

I - 4 

if w > 0, then do 

if Z i' NIL, then 

{P. is not 
J 

Z :cp + ptr 

the first vertex in List Jl; 
{Z:cp points to the previous cell); 

I-5 Z + ptr {Z points to the predecessor of the latest vertex in List Jl; 
I-6 end {if) 

I-7 if (G(h) > 0 and j ~ n) or (G(h) < 0 and j ~ 1), then do [end of se"rchl 

I-s ifll =NIL, then do {first cell in List J) is in List Ill 

I -9 II+ J); ls {last cell is predecessor of first cell in List 1/}; 

I-ID ll:cp + z {ll:cp points to predecessor of second cell in List Ill; 

I-n end r if) 

I -12 if 8 ~ NIL, then do {first cell in List 2) is in List Bl 
I-13 8 +2J:Zs {last cell is predecessor of first cell in List 8}; 

I-14 8:cp + z {8:cp points to predecessor of second cell in List 8}; 

1·15 end {if) 

I-16 2J: ls: lp <- 2J: Zp { circulC~rize List 2J; see c ·1}; 

I 17 A :cp <-II {circularize List II; see c -2}; 

I-18 B:cp + 8 {circularize List 8; see c -3 }; 

I -19 end {if) 

1 :n w +-- w + 1 {w counts vertices in List JJ. 



-43-

On termination of this algorithm, we have a circular linked list of all 

con'JCX vcrt_iccs in List II, ;1 circular linked 1 ist of <Jll rl'-('ntr;Jnt V(~rticcs 

in List B, both orUcrccl so as to make a tour of the polygon P with its interior 

on the left, and both incorporated in the circular linked list 'f) of all active 

vertices. Apart from the use of linked lists and the considerably greater 

detail given above than in the earlier algorithms, the only change is that we 

have not altered the original indices given to the vertices of the polygon. 

We can now modify and expand Algorithm 1, The new algorithm will have two 

p:nts: first, a setting-up part, which we shall call Algorithm 1*, will form 

the collections or li:;ts -tk 

sive empty triads: this we 

ALGORI TH~1 1 *. 

and a.; then ;m .it<'r;lt ivc 

" shall call Algorithm 3. 

1'1 ap +II {initialize thell-list pointer}; 

1 * 2 Zoop 

p;1 rt w i I I 

1*3 h + ap:x; i + ap:lp:x; J + ap:lp:lp:x {PhP.P. is convex triad]; 
'" J 

1*4 

1*5 mt + 0 

ap:up:lp +NIL· {initialize a.-list header]; 

'" {initially suppose the triad is empty}; 

1*6 bp ,_ B {initialize the Li-list pointer]; 

1 * 7 

1 * 8 

I * 9 

1 * 10 

1 * II 

1' 12 

1 * 11l 

1 * 14 

1 * 15 

1 * 16 

1 * 17 

1 * 18 

1 * 19 

if bp f NIL, then do 

loop 

k + bp:lp:x {Pk is a re-entrant vertex}; 

compute the three discriminants y
1 

= y(h, i, k), y
2 

y. y(J, h, k) fsc·c· ('l), (Ill), (II), (ceil; 
·' 

y(i, .) , k), and 

if y I > 0 and y
2 

> 0 and y
3 

> 
{i.e., the triad is 

0, then do {vertex P i_s 
I< 

mt -<- 1 

append(ap:up, k) {add 

append(S(k), ap:up:ls) 

end {if) 

Pk to 

{add 

not empty}; 

List a.}; 
1-

pointer to new cell in ui to List Lk}; 

bp + bp:cp 

until bp = 8 
{go to next re-entrant vertex}; 

{continue to end of List 8}; 

end {if} 



-44-

Algorithm 1* (continued): 

1 '2l 

1' 23 

1' .. 

1' 2£ 

1'29 

1 * 31 

if mt = 1, 'then do {i.e., triad contains at least one re-entrant vcrlC'X1 

bp -<-II {initialize an ll-!ist pointer}; 

loop 

k ~ bp:lp:x {Pk is a convex vertex}; 

compute the three? discriminants y 
1

, y 
2

, and y 
3

; 

if y > 0 andy > 0 andy > 0, then do {vertex Pk is in trind J'hi'.P.l; 
1 . 2 .3 1 .! 

append(ap:up, k) {add Pk to List ui); 

append(S(k), ap:up: ls) {add pointer to new cell in «i to List -lk); 

end {if} 

bp + bp:cp 

until bp = ll 

end {if} 

{go to next convex vertex}; 

{continue to end of- List ll}; 

(List u. is now complete.} 
1 

1'32 ap-<- ap:cp {go to next triad); 

1 • 33 until ap = ll {continue to end of List Ill. 

Only one new pseudo-code construct appears above; namely, loop .. . until M; 

which means that the body of ... is repeated so long as, at its end, M is FALSE 

[this piece of code is therefore necessarily executed at, least once]. 

The entire structure lS now complete, and we can proceed to Algorithm 3. 

ALGORITHH 3. 

3-1 ap + ll; r + 0 {initialize}; 

3 -2 loop 

3-3 if ap:up:ls =NIL, then do {i.e., the triad is empty} 

3 -• r + r + 1 {increment position in array C); 

3-5 C(l, r) <- h + ap:x; C(2, r) + i + ap:lp:x; C(3, r) + j ~ ap:lp:lp:x 

3 ·6 

{put the triad PhP.P. into the array C of empty triads}; 
1 J 

bp + S(i) :lp {initialize a i-.-list pointer}; 
'1 

3 -7 while bp ~ NIL, do 

3 •8 bp:tp:lp + bp:tp:Zp:Zp {delete the cell next after that to which bp:tp 

a -9 

3 -10 

points [this destroys the value of the corresponding u :Zs 
g 

pointer; but this will not matter]}; 

bp + bp: Zp {go to next cell in -l.}; 
1 

end {while} 



-45-

To ensure the viability of a full implementation of the third algorithm, 

a program _i.n 'C' was written and tested, following the procedures outlined 

above. The fully-annotated program is listed in §7 and four examples of 

triangulations are given in §8. 

Since this Qlgorithm essentially does the same thing as Algorithm 1, 

we know from Theorem 2 that the procedure will always yield a complete, 

economical triangulation in a finite number of steps. It remains only to 

obtain the worst-case order of magnitude of the time taken. 

The program is divided into four principal parts: 

(1) Preliminary Definitions (pages 47 - 51) ; 

(2) Main Program (pages 52 - 57); 

(3) Find Included Vertices (pages 58 - 59); 

and ( 4) Output Lists (pages 60 - 61) • 

The last of these is concerned with presenting the results, and the time taken 

in doing so is not a proper part of the timing calculation. The Preliminary 

Definitions consist of preprocessor instructions and storage declarations, which 

are used by the compiler and do not affect execution time of the compiled or 

'object' code, together with functions, 

and 

app_u(h, j), 

fill_D(j, G), 

app_t(k, u), del_S(i), 

which are used in the Main Program. The functions app_u() and app_t() take 

constant time (they append a single cell to a linked list equipped with a 

header which points to the last cell); del_S (i) deletes from u-lists all 

references to p. 1 Since del _s (il is invoked at most once, for each i, 
1-+ 

2 and since the total size of all the u-lists cannot exceed n ' the time taken 

by all calls to del _s (il is definitely no more than 2 
0 (n ) • Finally, fill _ _D () ' 

which appends a D_cell to the 0-list, adjusting all appropriate D-, A-, and 

B-pointers, takes constant time. The section titled "Find Included Vertices" 

consists of the function 

find _ _u(a), 

which constructs the u-list for the D_cell pointed to by the pointer a. Each 

call to this function takes the computation of inclusion conditions for, at 

worst, every vertex in the 0-list (first, the B-list is tested; but then, if 



-46-

a re-entrant vertex is found to be included, the A-list is tested too}; so that 

the expenditure of time 1s O(p + q), where p is the number of vertices in the 

A-list and q the number of vertices in the B-list; and this includes 27(p + q) 

a.o., involved in computing three discriminants for each possible included 

vertex. Of course, p and q will diminish, as each vertex is removed. This 

estimate is slightly excessive, since somewhat less computation is required 

for empty triads (only 27q a.o.}, and 9 or 18 a.o. may suffice (rather than 

27 a.o.} to eliminate many vertices. 

We may now turn to the Main Program. Input (like output} is not included 

in the timing calculation. The time required to initialize the D-, A-, and B

lists (essentially Algorithm 0*) is clearly O(n}, including 9n a.o. to compute 

then discriminants. Since Algorithm l* now 

total time here is O(p(p + q)) 

calls find_u(} for each convex 

O(n2}, including at most 27p(p + q) vertex, the 
2 < 27n a.o. This brings us to Algorithm 3 proper: the elimination of succes-

sive empty convex triads. In the worst case, there are no redundant (collinear} 

vertices at any stage; so that we eliminate triads in n - 2 iterations, with n 

~ p + q initially and p + q diminishing by one at each iteration. The search 

for the next empty triad takes a worst-case time O(p}, as we cycle through the 

A-list; and the calls to del __ S(} will contribute to a total O(n2} overall, as 

has already been explained. In each iteration, two new discriminants must be 

computed, taking 18 a.o., and there may be, at worst, as many as four calls to 

find_u(}, involving not more than 108(p + q) a.o. (if the vertices flanking 

the vertex to be removed from the apex of the triad in question are thereby 

made redundant, two more discriminants will change in value, but not in sign, 

and therefore need not be recomputed). As careful perusal of the program will 

bear out, all other operations take constant time, for each iteration. It 

therefore follows that the time for each iteration lS O(p + q), including 

O(n2}, inclu-lOS(p + q) 

ding 54(n
2 

+ 18 a.o. In sum, the iterations 
4 20 

+ 3 n - 3l a.o. With the 9n and 

together take time 

27n2 above, this yields: 

THEOREM 4. Algorithms 0*, 1*, and 3 together (i) always yield a complete, 

economical triangulation, and (ii} take less than 

81 n(n + 1) - 360 ~ O(n2
} (59} 

2 . 
a.o. and O(n } other operations to perform. 



-47-

7. Tile Program 

!************************************************************************* 
PREI.IMINARY DEFINITIONS 

*************************************************************************I 
#include <stdio.h> 

I*** We are given a simple closed polygon P, with vertices 
P(l), P(2), ... , P(n). For j = 0, l, 2, ... , n ~ l, 
PfOJ[jJ contains the x-component x(j+l), and P[l][j] 
the y-component y(.j+ l) of the vertex P(j+ l). The 
discriminant (see below) of the triad whose middle 
vertex is P(j+l) is stored in G[j]. 

float P[2][lOO], G[lOO]; 

I*** gamma(h, i, j) is the discriminant, 

P(h+l)P(i+l) A P(i·>l)P(j+l), 

of the triad P(h+l)P(i+l)P(j+l). 

#define gamma(h, i, j) (g++, P[O] Iii * (P[11 [j] P[l] ih]) \ 
- P[l] [i] * (P[O][j] - P[O][hj) \ 

***I 

***I 

+ P[lilh] * P[O]I.i]- P[Oiih] * Plll[.il) 

I*** The polygon P has n vert ices: p are convex, q ar·e 
re·-entrant, and the r·est (if any) are redundant 
(i.e., collinear with their neighbors). Discriminant 
evaluations are counted in g as they occur. As empty 
convex triads P(h+l)P(i+l)P(j+l) are found, they are· 
stored in the array C: h in C[O][r], :i in C[l]fr], 
and j in C[2][r], with r = 0, l, 2, ... ***I 

int g = 0, n, p- 0, q = 0, C[3][100]; 

I*** The u-lists have identifying pointers in the "up" 
components of cells in the D··list (see below); these 
point to header--cells "head_u" of the form {uf, us}, 
with "ufl' a pointer pointing to the first, and uus" a 
pointer pointing to the last, "u_cell". Every u_cell 

struct 

struct 

{ul, udex}, where "ul" is a list--pointer, and the 
index "udex" identifies a vertex P(udex + l) of the 
polygon P, contained :inside the convex triad to which 
the D_cell (whose "up" component points to the current 
u-list) refers. Each u--list has a first cell, of the 
form {ul, udex} = {ul, 0}. ***! 

u c"ll { structc u cell *ul; . 
int udex; 

J 

head u { struct u cell *uf, *us~ J 



I*** 

-48-

malloc(L) allocates a free memory space of length L 
and returns a (character) pointer to :it. 

char *malloe() ; 

I*** NEW u returns a pointer to a new ucell, for addition 
to an existing u_list. NEW_Hu returns a pointer to 
a new header--cell headu, for initializing a u-list. 

ltdefine NEW u (struct ucell *) malloc(sizeof(struet u cell)) 

ltdefine NEW_Hu (struct headu *l malloc(sizeof(struct headu)) 

I*** 

app_u(h, j) 

app u(h, j) appends a new u_cell {0, j} with index 
"udex" = j to the end of the u1 ist with identifying 
pointer h. 

struct head u *h; 
int j; 

{ struct u_cell *u; 

u = h -> us = h --> us -> ul -- NEWu; 
u --> ul = 0; 
u -> udex = j; 

I*** The t--:tists have identifying pointers S [k], pointing to 
header-cells "head_t" = {tf, ts}, with "tf" pointing to 
the first, and "ts" to the last, "tcell". Every t_cell 
= {tl, tu}, where "tl" is a list-pointer and "tu" points 
to a ucell, which is the predecessor of a ucell whose 

***I 

***I 

***I 

index is k (the index of the t--list S[k]). ***I 

struct t. cell I st.rud. t cell *tl; 

strucl head 

I*** 

-
struct u_cell *tu; 

} 

t { struct t ... cell *tf, Hs; } *S [1001; 

NEW_t returns a pointer to a new t_cell, for addition 
to an existing t_list. NEWHt returns a pointer to 
a new header-cell head_t, for initializing a t-list. 

#define NEW_t ( struct t_cell *) malloc(sizeof( st.ruct tcell)) 

ltdefine NEW_Ht (struct head_t *) malloc(sizeof(struct head_t)) 

***I 



I*** 

-49-

app_t(k, u) appends, to the end of the tlist S[kl, a 
new tcell {0, u}, with "tu" = u pointing to the 
predecessor, in some u-·l:ist, of au cell w:ith "index" 
= k. 

appt(k, u) 

int k; 
struct u_cell *u; 

{ struct t_ cell *t; 

} 

if (S[k] -> tf 
else 

0) t - S[k] -> ts -- S[k] -> tf c NEWt; 
t = S[k! -> ts = S[k] -> ts -> tl = NEWt; 

t -> tl = 0; 
t ·-> tu = u; 

I*** del S( i) deletes cells referring to vertex P(i+ l) from 
all u--lists, using the listing of their predecessors in 
S [ :i] ; then voids S [ i I . l NOTE: Once del S ( i ) has been 
used, it is no longer possible to rely on the values of 
the u-list header-·pointers d --> up -> us (when' d :is a 
pointer to any D_cell), since these are not updated by 
de}S(i).] 

de IS( i) 

int i; 

{ struct t_cell *t; 

) 

t. = S[i] -> tf; 
while (t != 0) 

I t -> tu -> ul - t -> tu -> ul -> ul; 
t=t->tl; 

} 
S[i] -> tf = S[i] -> ts - 0; 

***I 

***I 



-50-

I*** The "D"-list has identifying pointer D, pointing to the 
first "D_cell". Each D_cell ~ fpp, np, f, b, up, index}, 
where npp" is a list---pointer, "npu :is a reverse--sense 
list-pointer, "f" and "b" are other pointers to D_cells 
(see below), "up" is the identifying pointer to au-list 
(see above), and "index" is the index of the vertex 
P( index + l) of the polygon, to which the D cell refers. 

The D-list incorporates two other lists, the A-list and 
the B-list. All three of these lists (unlike the u- and 
t-lists) have no header-cells. The identifying pointer 
of the A-list (which points directly to the first Dcell 
in the A-list) is A, and that of the B·-list (which points 
to the first Dcell in the B-·list) is B; the pointers AA, 
BB, and DD respectively point to the last D_cells of the 
A .. , B-, and D-:U sts. The Dcells in the A-list are those 
referring to convex vertices; the D_cells in the B-list 
are those referring to re--entrant vertices. The "f" and 
"b" pointers are forward and backward list-pointers fol' 
D cells of like kind (both in the A-list, or both in the 
B-list). 

When the construction of the A-, B--, and D·lists is 
completed, the list-pointers of the last cells are made 
to point to the first cells of the respective lists, 
making them circula!'. ***I 

struct D 

I*** 

cell { struct D - cell *pp, *np, *f', *b; 
struct head_u *up; 
int index; 

) *ap, *A, *AA, *bp, *B, *BB, *D, *DD, *mU; 

NEW D returns a pointer to a new D_cell, for addition 
to the D_list. 

#define NEW D (struct D_cell *) malloc(sizeof(struct D_cell)) 

***I 



-51-

I*** fil]D(j, G) appends a D_cell {0, np, 0, b, up, j} to 
the D-list, and increments the A--list if P(j+l) is 
convex, and the B-l:ist if P(j+l) is re--entrant. ***I 

fillD(j, G) 

int j; 
float G; 

{ struct D_cell *d; 
char *malloc(); 

d = NEW_D; 
d -> pp = d -> f - 0; 
d -> up = 0; 

1 
f 

d - > index = j ; 
if (DD != 0) 

{ DD -> pp = d; 
d -> np = DD; 

} 
else 

{ d -> np = 0; 
D = d; 

f 
DD - d; 

if (G > 0) 

{ if (AA !.:;:: 0) 
{ AA -> f -

DD -) b -

} 

else 
{ DD --> b --

A = DD; 
) 

AA = DD; 
} 

if (G < 0) 

{ if (BB !:::: 0) 
{ BB -> f = 

DD -> b . 

} 
else 

{ DD --> b = 
B = DD; 

1 
f 

BB ·- DD; 
} 

DD; 
AA; 

0; 

DD; 
BB; 

O· 
' 



-52-

!************************************************************************* 
MAIN PROGRAM 

*************************************************************************/ 

main() 
{ int h, hh, i, j, jj, k, mt, r; 

float x, y; 
struct D_cell *find u(); 

I*** Read in the vertices of the polynomial. 

do scanf("%d " &n); while (n < 3); 
for ( i = 0; i < n; i ++) 

h 

{ scanf("%f %f ", &x, &y); 
P[O] [i] - x; 
P[l][i] = y; 

} 

I*** 

- 0; X 

Find the vertex with maximum x-coordinate (if several, 
find that with maximum y-coordinate). (This is an 
extreme vertex, and so is convex.) Also compute gamma 
values and initialize the C-array and the t--lists. 

= P(OJ [OJ; 
for ( i = 0; i < n· i ++) 

' { 

} 

if (P[OJ [i] > x) 
{ h = .i. 

' 
X - P[O] [i]; 

} 
if (P[OJ[i] == x && P[l[(i] > P[lj[h]) h- i; 
if (i == n - l) G[i] = gamma(n- 2, n - l, 0); 
else if (i == 0) G[i] = gamma(n -- 1, 0, l); 
else G[ij = gamma(i- 1, i, i + l); 
C[O][j] = C[ l] [ij = C[2][i] = 0; 
S[i] =NEW Ht; 
S[il -> tf = S[i] -> ts = 0; 

I*** G(hj is the discriminant of a vertex guaranteed to be 
convex. Thus, if G[h] < 0 (it cannot vanish), the 
polygon is numbered in the wrong sense (correct sense 
has the interior on the left as we tour the polygon). 
For the correct sense, all discriminants computed 
above must have signs changed. Count the convex 

***I 

***I 

vertices in p and the re--entrant vertices in q. ***I 

X= ((G(h] ) 0) ? 1 (-1)); 
for (i = 0; i < n; i++) 

{ G[ij = x * G[i); 

} 

if (G[i] > 0) p++; 
else if (G[i] < 0) q++; 



-53-

I*** Print out the polygon. 

printf("Polygon P: 
n, p, q); 

%d vertices; %d convex, %d re~-entrant. \n\n", 

printf( "Vertex x y Discriminant 
for ( i = 0; i < n; i ++) 

{ printf("P(%3d): %l2.7f %12.7f %12.7f " 
i+l, P[O][i], P[l)[i], G[i]); 

if (G[:i] > 0) printf("convex\n"); 
else if (G[i] < 0) printf("re-entrant\n"); 
else printf("redundant (collinear)\n"); 

} 
pr:intf("\n"); 

I*** Initialize all A-, B--, and D-list pointers. 

A = AA = B = BB = D = DD = 0; 

I*** In correct interior-on--left cyclic order, append D_cells 
for each convex or re-entrant vertex to the D--list and 

***I 

\n\n"); 

***I 

update A--- and B-lists accordingly. ***I 

if (x > 0) for· (i 
else for (i 

= 
= 

0; 
n -- 1; 

i < n; i++) fill_D(i, G[ij); 
i > l; i--) fill D(l, G[i]); 

I*** After completing the D-, A, and B- lists, now 
circularize all three lists. 

DD -> pp = D; 
D -> np = DD; 
AA -> f = A; 
A -> b = AA; 
BB --> f = B; 
B -> b = BB; 

I*** Examine each convex triad P(h+l)P(i+l)P(j-tl) to make up 
a u--list of all contained vertices. At least one such 
triad must be empty. findu returns a pointer to the 
triad it has examined, if that triad is empty; or else 

***I 

it returns mtt (the pointer to the last empty triad). ***I 
ap = A; 
mtt = 0; 
do 

{ mtt =find u(ap); 
ap = ap -> f; 

) 
while (ap != A) ; 



I*** 
LIST(); 
EMPTY(); 

I*** 

r :: 0; 

-54-

Print out the lists. 

Proceed to search :for empty convex triads and remove 
them from the D·-list to the C-list. Position in the 
array C is .initialized lo r ~ 0. We begin at the first 
empty triad in the A-list. 

AA " mtt ·· > f; 
while (p > 2) 

I*** Search for next empty triad, cycling forward through 
circular A-list. 

{ mt = 1; 
h -= 0; 

while (mt 1) 
{ if (AA --> up --> uf -> ul 0) 

{ mtt ~ AA; 
mt = 0; 

} 
else 

{ h++; 
AA = AA -> f; 

} 
} 

I*** Put indices h, i, and j of empty convex triad into 
C·-list and decrement A-list count p. Vertex P(i+l) 
wi 11 be removed from the D-list. 

C[O] [rJ = h = mtt -) np -> index; 
C[ll[r] - i - mlt. -> index; 
C[2] [r] = J - mtt --> pp -> index; 
p-~-·; 

***I 

***I 

***I 

***I 

printf("\n %3d »» Remove vertex P(%d) from P(%d)P(%d)P(%d)\n", 
r + 1, i + 1, h + 1, i + 1, j + l); 

I*** Delete cells referring lo vertex P(i+l) from all 
u--lists, using the listing of their predecessors in 
S[i]; then void S[i]. 

del S(i); 

***I 



-55-

I*** Remove P(:i+l) from k- and D- lists. 

mtt -> pp -> np = mtt -> np; 
mtt -> np -> pp = mtt. -> pp; 
if (mtt == D) D - mtt -> pp; 
mtt -> f -> b mtt --> b; 
mtt -> b -> f = mtt -> f; 
if (mtt == A) A = mtt -> f; 
AA = mtt --> f; 

I*** Put old eli scriminants of adjacent vertices to P(i -t-1) 
in x and y, and recalculate them without PI i + 1). 

G[i] = 0; 
x=G[h]; 
y=G[j]; 
hh = mtt --> np --> np -> index; 
jj = mtt -> pp -> pp -> index; 
G[hj ·- grumna(hh, h, j); 
G[j] = gamma(h, j, jj); 

I*** Reconstruct u--lists for any convex adjacent vertices. 

if (G[h] > 0) find_u(mtt -> np); 
if (G[j] > 0) find_u(mtt -> pp); 

I*** Check adjacent vert ices for change from r·e-entrant to 
convex (the reverse is not possible). 

if (x < 0 && G[h] >= 0 :: y < 0 && G[j] >=·0) 

I*** 

{ 

Put :into ap, bp, AA, and BB pointers to the previous 
convex and re-entrant, and the next convex and 
re·-€ntran·t, vertices, respectively. 

ap -- mtt -> b; 
ap -> f - AA; 
AA ·-> b = ap; 
if (x < 0) bp = mtt --> np -·> b; 
else bp = mtt -> pp -> b; 
:if (y < 0) BB = mi.t --> pp - > f: 
else BB = mtt -> np -> f; 

***I 

***I 

***I 

***I 

***I 



I*** 

I*** 

-56-

Adjust to each side--vertex jn turn. 

if (x ( 0 && G[hj )cc 0) 
{ 'I" . ; 

printf("\n 
h r l); 

Vertex P(%3d) changes from re-entrant", 

if Cq =: 0) B = 0; 
bp -> f = mtt -> np -> f; 
:if (y < 0) mtt -> pp -> b : bp; 
else BB -> b = bp; 
if (mtt -> np :: B) B = mtt -> np ··> f; 
if (G[hj > 0) 

{ p++; 

printf(" to convex. \n"); 

mtt -> np -> b : ap; 
ap ap --> f = mtl -·> np; 
ap -> f : AA; 
AA - > b = ap; 

} 
else 

{ mtt. - > np --> np --> pp 
mtt --> pp -> np = mtt 
if (mtt -> np == D) D 

= mtt - > pp; 
--> np -> np; 

mtt ·· > pp; 

***I 

printf(" to redundant (collinear). Remove it.\n"); 

if (mtt -> np -> np == ap) find_u(ap); 
if (mtt -> pp -- AA) find_u(AA); 

Delete cells referring to vertex P(h+l) from all 
u-lists, using the listing of their predecessors in 
S[h]; then void S[h]. 

del_S(h); 
J 

} 
else :if (x < 0) bp = mtt --> np; 
if (y < 0 && G[j] >= 0) 

{ q-- ; 

printf("\n 
j + l); 

Vertex P(%3d) changes from re--entrant", 

if (q == 0) B - 0; 
bp -> f = BB; 
BB --> b = bp; 
if (mtt -> pp B) B = BB; 

***I 



-57-

if (G[j] > 0) 
I p+t; 

printf(" lo convex. \n"); 

find_ u(mtt -> pp); 
mtt - > pp - > f = AA; 
AA = AA -> b = mtt -> pp; 
AA > b ap; 
ap ··> f = AA; 

else 
{ mtt -> pp -> pp - > np 

mtt ·> pp -> np -> pp 
if (mtt -) pp cc= D) D 

= mtt 
-- mtt 

mtt 

pp -> np; 
-> pp -> pp; 
- > pp --) pp; 

printf(" to redundant (collinear). Remove it.\n"); 

I*** 

I*** 

if (mtt -> pp -> pp -- AA) findu(AA); 
if (mtt -> pp -> np --- ap) find_u(ap); 

Delete cells referring to vertex P(j+l) from a.ll 
u--lists, using the listing of their predecessors in 
S[j]; then void S[j]. 

delS(j); 

} 

Increment posi Lion in G--·array. 

r++; 
EMPTY(); 

printf("\n%d Discriminants Evaluated: ?,;d a.o.\n", g, 9 *g); 

I*** Print out the C--array. 

***I 

***I 

***/ 
pr]ntf("\nArray C of empty convex triad,; as found by the program. \n\n"); 
for (h = 0; h <= r I 13; h++) 

( for (i = 0; i < 3; i++) 
r for (j = 0; j < 13 && (k = 13 * h + j) < r; j++) 

pr:intf ("?&3d ", C [ i i I kl t 1) ; 
printf("\n"); 

} 
printf( "\n 11

); 



-58-

I************************************************************************* 
FIND INCLUDED VERTICES 

*************************************************************************I 

struct D_cell *find_u(a) 

struct D~cell *a; 

{ int h, 
struct 
struct 
struct 

I*** 

i, j, k, mt, app_t(), appu(); 
u_cell *u; 
head_u *hu; 
D~~cell *d; 

Initialize an empty u-list for the ll-cell pointed to by 
the pointer a. ***I 

hu a -> up ~ NEW Hu; . ~ 
u ·~ hu -> uf = hu ~~ > us ·~ NEW u· - ' u -> ul ~ 0; 
u ~~ > udex = O· 

' 

h = a ~~ > np ·-·> index; 
i ~ a -> index; 
j a -> PP ~ > index; 

I*** mt is the nempt.y" flag, initially 0 (empty). 

mt = 0; 

I*** Examine each re-entrant vertex P(k+l) for inclusion. 

d = B; 
if (d !~ 0) 

do 
{ k = d ~> index; 

I*** Compute the three discriminants; if all three are 
non-negative, then P(k+l) lies in the triad. 

if (gamma(h, i, k) >= 0 && k != h) 
if (gamma(i, j, k) >~ 0 && k '= i) 

if (gamma(j, h, k) >= 0 && k != j) 
{ mt = 1; · 

***I 

***I 

***I 



J 

-59-

I*** Add pointer to last. cell in current u~ list to t~·list at 
S[k]; add k to current u-list. 

} 

} 

app. t ( k, a ~. > up - > us) ; 
app_u(a -> up, k); 

d = d -> f; 

while (d 1 = B) ; 

I*** If the triad contains at least one re~·entrant vertex, 
it may contain convex vertices also. If so, examine 
each convex vertex P(k+l) for inclusion. 

if (mt == 1) 
{ d = A; 

do 
{ k = d -> index; 

} 

if (gamma(h, i, k) >= 0 && k !=h) 
if (gamma(i, j, k) >= 0 && k != 1) 

if (gamma(j, h, k) >= 0 && k 1 = j) 
{ app~t(k, a -> up ·-> us); 

app_u(a ~~> up, k); 
} 

d = d -> f; 

while (d != A) ; 
} 

I*** If still mt = 0, the triad is empty. 
pointer to the triad. 

if (mt: == 0) return(a); 
else return(mtt); 

If so, return a 

***I 

***I 

***I 



-60-

!************************************************************************* 
OUTPUT LISTS 

*************************************************************************! 
LIST() 

} 

:int v; 
struct u_cell *u: 
st.ruct head_u *h; 
struct D cell *d; 

printf("\nA- list: %3d vertices: ( '' p); 
v = 0; 
d = A; 
do 

{ if (v% 8 == 6) printf("\n "J; 
printf("P(%3d) '', (d -> index) + 1); 
v++; 
d = d -> f; 

J 
while (d !oc A) 
printf("}\n"); 

if(q>O) 
{ printf("\nB--list: %3d vertices: { " q); 

v ::: 0; 
d = B; 
do 

{ if (v % 8 == 6) printf("\n "); 
printf("P(%3d) ", (d -> index) + l); 
v++; 
d = d -> f; 

} 
while (d != B) 
printf("}\n"); 



-61-

EMPTY() 

int v; 
struct n cell td; 

printf("\nEmpty Convex Triads at { "); 
v :: 0; 
d = A; 
do 

{ if(d -> up -> uf -> ul == 0) 
{if (v% 8 == 6) printf("\n "); 

printf("P(%3d) '', d ->index+ 1); 
v++; 

) 
d -- d --> f; 

} 
while (d 1 = A) 
printf("}\n"); 



-62-

8. Examples 

Four examples were run. The first was the 15-gon in Figure 27, whose 

resulting triangulation is shown in Figure 29 below. The computer output is 

11 

8 

shown on pages 63 - 64. Twelve 

triangles are formed (n - 3; 

because the vertex P
2 

becomes 

collinear after the first 

triad (P
2

P
3

P
4

) is removed. 

The total number of a.o. (i.e., 

10 nine times the number of discri-

minants evaluated) comes to 

4,257, as compared with the 

bound (59) of 81 x 15 x 16 - 360 

19,080 (a factor of almost 5 too big; compare the factors of almost 9 and about 

3 in Algorithms 1 and 2). 

7 

The second example was the 20-gon shown in Figllre 30. The computer output 

4 

9 

is given on pages 

65 - 67. Seventeen 

triangles are formed 

(n - 3; because the 

vertex r
6 

becomes 

collinear after the 

removal of the first 

three triads (P
20

P1P
2

, 

1 P
4

P
5

P
6

, and P
6

P
7

P
8
). 

This time, the total 

number of a.o. is 

6,579, as compared 

with the bound (59) 

of 8lx20x21- 360 

= 33,660 (a factor 

of about 5 too big). 



-63-

ExamEle 1. 

Polygon P: 15 verticPs; 8 convex, 7 re---entrant.. 

Vertex X y Discriminant 

P( J): 4.0000000 4.0000000 -lH. 0000000 r!!-~entrant. 

P( 2): 2.0000000 2.0000000 -20. 0000000 re-entrant 
PI ~n' 0.0000000 10.0000000 20.0000000 convex 

P( 4): 0.0000000 0.0000000 60.0000000 convex 
P( 5): 6.0000000 0.0000000 60.0000000 convex 

P( 6'. I • 6.0000000 10.0000000 -30.0000000 re--entrant 
P( 7): 9.0000000 10.0000000 - 30. 0000000 re--entrant 
P( 8): 17.0000000 0.0000000 98.0000000 convex 

P( 9): 22.0000000 6.0000000 --29. 0000000 re--entrant 
P( 10): 26.0000000 5.0000000 26.0000000 convex 

P( ll): 16.0000000 14.0000000 71.0000000 convex 

P( 12): 17.0000000 6.0000000 -23.0000000 re-entrant 
P( 13): 14.0000000 7.0000000 -8.0000000 re--entrant. 
P( 14): 13.0000000 10.0000000 24.0000000 convex 

PI 15): 4.0000000 13.0000000 81.0000000 convex 

A-list: 8 vertices: P( 3) p( 4) P( 5) PI 8) P( 10) PI ll! 
P( 14) P( 15) J 

B-list: 7 vertices: P( J) P( 2) P( 6) P( 7) P( 9) PI 12) 
P( 13) 1 ,-

Empty Convex Triads at I PI 3) P( 10) } 

l >>>> Remove vertex P(3) from P(2)P(3)P(4) 

V<Ttex PC 2) chcmges from re--entrant to redundant (colLinear). R"move it. 

Empty Convex Triads at { PC 4) P( 10) } 

2 »» Flemove vertex !'(4) from 1'(1)!'(4)1'(5) 

Vertex P( l) changes from re-entrant to convex. 

Empty Convex Triads at I l'( 5) PI 10) P( l) ) 

3 »» Remove vertex 1'(5) from P(l)P(5)P(6) 

Empty Convex Triads at { P( 10) P( l) } 

4 >»> !lemove vertex P(lO) from P(9)P(l0)P(ll) 

Vertex P ( 9) chanl(es from re--entrant to convex. 

Empty Convex Triads at { P( 11) Pi l) f 



-64-

5 »» Remove vertex P(ll) from P(9)P(.ll)P(l2) 

Empty Convex 'I'r iads at l P( 9) P( I) } 

6 »» Remove vertex P(l) from P(.I5)P(l)P(6) 

Ver·tex PI 6) changes from re-entrant to convex. 

Empty Convex Triads at: { PC 9) PI Ei) ) 

7 >»> Remove vertex P(6) from P(l5)P(6)P(7) 

Empty Convex Triads at I P( 9) P( 15) I 

B >>» Remove vertex P(9) from P(B)P(9)P(12) 

Vertex PI .12) chan[(es from re entrant to convex. 

Empty Convex Triads at I PI 12) P( 15) ) 

9 >>» Remove vedex P(l2) from f'IB)P(l2)P(.l3) 

Empty Convex Triads at I P( B) PI 15) I 

lO ,;))) Remove vertex P(l5) from P(.l4)P(15)P(7) 

Vertex P( 7) changes fr·om re -entrant to convex. 

Empty Convex Triads at I P( B) !'( .14) } 

11 »» Remove vertex P(B) from P(7)P(8)P(13) 

Vertex P( 13) changes from re--entrant to convex. 

Empty Convex Triads at i P( 14) P( 7) P( 13) } 

12 ))).' Remove verlex P(13) from !'(7)P(13)P(l4) 

Empty Convex Triads at { P( 14) P( 7) J 

473 Discriminants Evaluated: 4257 a. o·. 

Array C of empty convex triads as found by the program. 

2 1 
4 
5 

] 

5 
6 

9 
10 
1l 

9 
ll 
12 

lS 
1 
6 

15 
f) 

7 

B B 
9 12 

12 13 

lt1 
15 
7 

7 
B 

13 

7 
1:3 
14 



-65-

Example 2. 

Polygon P: 20 vertices; ll convex, 9 re·-entrant. 

Ver·tex X y Discriminant 

P( l ) : 5.0000000 0.0000000 2.0000000 convex 

P( 2): 4.0000000 2.0000000 7.0000000 convex 
P( 3): 1.0000000 l. 0000000 -8.0000000 re--entrant 

P( 4): 2.0000000 4.0000000 6.0000000 convex 

!'( 5): 0.0000000 4.0000000 2.0000000 convex 

P( 6): 0.0000000 3.0000000 ·4. 0000000 re-entrant 

PC 7): ·4.0000000 2.0000000 2.0000000 convex 

P( 8): ·2. 0000000 2.0000000 ··6. 0000000 re-entrant 

P( 9): -2.0000000 ·1. 0000000 9.0000000 convex 
P( 10): 1.0000000 3.0000000 ··5. 0000000 re-entrant 

P( 11): 0.0000000 0.0000000 8.0000000 convex 

P( 12): 3.0000000 1.0000000 -4.0000000 r·e--entrant 

Pi 13): -0.5000000 1.5000000 5.0000000 re-entrant 
P( 14): -2.5000000 -1.5000000 3.0000000 convex 
Pi 15): -1.0000000 ··3. 0000000 6.7500000 convex 
P( 16): 1.5000000 ·1.0000000 ·4.5000000 re··entrant 
P( 17): 0.0000000 -4.0000000 2.2500000 convex: 

PI 18): 2.7500000 0.0000000 -5.7500000 re-entr·ant 

P( 19): 3.5000000 1.0000000 1.5000000 convex 

PI 20): 3.5000000 1.0000000 -3.0000000 re-entrant 

A· list: 11 vertices: 1. P( l) P( 2) P( 4) P( 5) P( 7) P( 9) 
P( 11) P( 14) P( 15) P( 17) P( 19) . 

i 

B"-list: 9 vertices: { P( 3) PI 6) P( 8) P( 10) ]'( 12) P( 13) 
P( 16) P( 18) P( 20) 

Empty Convex Triads at 
P( 19) } 

P( 1) P( 5) P( 7) P( 9) P( 14) P( 17) 

l >>>> Remove vertex P(l) from P(20)P(l)P(2) 

Empty Convex Triads at { P( 5) P( 7) PI 9) F'( 14) P( 17) F'( 19) 

2 »» Remove vertex P(5) from P(4)P(5)P(6) 

Empty Convex Triads at { P( 7) P( 9) PI 14) P( 17) P( 19) 

3 )))) Hemove vertex I'(7) from P(6)P(7)P(8) 

Vertex P( 6) changes from re-entrant to redundant (collinear). Remove it. 

Vertex P( 8) changes from re-entrant to convex. 

Empty Convex Triads at ( P( 9) P( 14) P( 17) P( 19) } 



-66-

Jj ))) > RPmove veriPx 1'(9) from I'(HH'(!l)P( 10) 

Empty Convex Triads at { P( 8) F'( 14) P( 17) P( 19) 

5 >>>> Remove vertex P(l4) from P(13)P(l4)P(15) 

Vertex P( 13) changes from re--entrant to convex. 

Empty Convex Triads at { P( 8) P( 13) PC 15) P( 17) P( 19) f 

6 > > » Remove vertex P (15) from P ( 13) P (15) P (16) 

Empty Convex Triads at { P( 8) P( J:i) P( 17) PC 19) 

7 :->» Remove vertex P(l7) from P(l6)P(l7)P(l8) 

Vertex P( 16) changes from re-entrant to convex. 

Empty Convex Triads at i PI 8) P( 13) P( 16) P( 19) l 

8 »>> Ilemove vertex 1'(19) from!'( IB)P( 19)f'(20) 

Vertex P( 18) changes from re--entrant to convex. 

Vertex P( 20) changes from re-entrant to convex. 

Empty Convex Triads at { P( 8) P( 13) P( 16) P( 18) PC 20) } 

9 »» Remove vertex P(20) from P(lB)P(20)P(2) 

Empty Convex Triads at ( P( 8) P( 13) P( 16) P( 18) } 

10 »» Remove vertex P(8) from PI4)P(B)Pi10) 

Vertex P( 10) changes from re-entrant to convex. 

Empty Convex Triads at ( P( 4) F'( 10) P( 13) P( 16) P( 18) l 

11 »» Remove ver·tex P(lO) from P(4)P(l0)P(1l) 

Empty Convex Triads at { P( 4) P( Ll) P( 16) P( lB) } 

12 >>>> Remove ver·tex P(l3) from P( l2)P( l3)P( 16) 

Empty Convex Triads at ! P( 4) P( 16) P( lBl } c 

l3 )))) Remove vertex P(l6) from P(l2)P(l6)P(l8) 

Empty Convex Tr:iads at ( P( 4) P( 18) .I 



-67-

14 >»> Remove vertex P(l8) from P(12)P(l8)P(2) 

Vertex P( 12) changes from re f-mt.rant. t.o convex. 

Empty Convex Triads at ( P( 2) Pi 4) P( 12) } 

15 >»> Remove vertex P(2) from P(l2)P(2)P(3) 

Empty Convex Triads at ( P( 4) P( 12) } 

l6 »» Remove vertex P(4) from P(3)P(4)P(l1) 

Vertex P( 3) changes from re-entrant to convex. 

Empty Convex Triads at { P( ll) P( 12) P( 3) ) 

17 »>> Remove vertex P(ll) from P(3)P(ll)P(l2) 

Empty Convex Triads at ( PC 12) P( 3) } 

731 Discriminants Evaluated: 6579 a.o. 

Array C of empty convex triads as found by the program. 

20 4 6 8 13 13 16 18 18 4 4 12 12 
l 5 7 9 14 15 17 19 20 8 10 13 16 
2 6 8 10 15 16 18 20 2 10 11 16 18 

12 12 3 3 
18 2 4 11 ., 
~ 3 ll 12 



~68-

The third example "as a variant on the highly-involuted 19-gon shown in 

J'igura 28. This '"1s a 27-gon, shown triangulntcd in Figure 31. The com]Hlll'l' 

output is shown on pages 69 - 72. T\<enty-one triads are formed (n - 6; because 

' the vertices P

18

, P
14

, P
10

, and P
6 

are successively removed upon becoming cal

linear). The total number of <LO. is 11,36 7, as compared with the bound (59) 

of 81 x 27 x 28 - 360 ~ 60,876 (too big by a factor of about 5). 

21 

Figure 31. 
----~____....--' 



-69-

Example 3. 

Polygon P: 27 vertices; 15 convex, 12 re-entrant. 

Vert f:~X " y D j scrim:i nant 

P( l) : 0.0000000 0.0000000 4.0000000 convex 

P( 2): 2.0000000 l. 0000000 -4.0000000 re-·entrant. 
p( 3): 0.0000000 2.0000000 -20. 0000000 re·-entrant 
P( 4): -4.0000000 -2.0000000 8.0000000 convex 

P( 5): 0.0000000 4.0000000 48.0000000 convex 

PI 6): 4.0000000 -2.0000000 -8.0000000 re-entrant 
p( 7): 0.0000000 6.0000000 --84.0000000 r·e-entrant 
PI 8): -·6. 0000000 - 3.0000000 12.0000000 convex 
P( 9): 0.0000000 8.0000000 132.0000000 convex 

P( 10); 6.0000000 -3.0000000 -·12. 0000000 re·-entrant 
P( tl): 0.0000000 10.0000000 -188.0000000 re·-entrant 
P( 12): -8.0000000 -4.0000000 16.0000000 convex 

P( 13): 0.0000000 12.0000000 256.0000000 convex 

PI 14): 8.0000000 -4.0000000 -16. 0000000 re---entrant 
P( 15): 0.0000000 14.0000000 -332.0000000 re-entrant 
P( 16): -10.0000000 -5.0000000 20.0000000 convex 
P( 17); 0.0000000 16.0000000 420.0000000 convex 

PI !8): !(). 0000000 5.0000000 -20. 0000000 re"--en t.rant 

P( 19): 0.0000000 !8.0000000 -51.6. 0000000 re·-entrant 
P( 20): -12.0000000 6.0000000 24.0000000 convex 

P( 21): 0.0000000 20.0000000 624.0000000 convex 

P( 22): 12.0000000 - G. 0000000 508.0000000 convex 

P( 23): -8.0000000 --5. 0000000 34.0000000 convex 

P( 24): 6.0000000 -4. 0000000 -24.0000000 re-entrant 
P( 25): 4.0000000 --3. 0000000 16.0000000 convex 

P( 26): 2.0000000 ·-2. 0000000 - l 0. 0000000 re--entrant 
P( 27); ·-2. 0000000 -1.0000000 6.0000000 convex 

A-list: 15 vertices: { P( 27) P( 25) P( 23) P( 22) P( 21) P( 20) 
P( 17) P( 16) P( 13) P( 12) P( 9) P( 8) PI 5) P( 4) 
P( I) ' r 

B--Ust: 12 vertices: P( 26) P( 24) P( 19) P( 18) P( Hi) P( 14) 
P( ll) P( 10) P( 7) P( 6) P( 3) P( 2) 1 

J 

Empty Convex Triads at f P( 27) P( 25) P( 23) P( 20) p( 16) P( 12) 
' PI 8) PI 4) P( 1) } 

1 >>>> Remove vertex P(27) from P(l)P(27)P(26) 

Empty Convex Triads at { P( 25) P( 23) P( 20) p( 16) P( 12) f'( 8) 
I'( 4) P( 1) } 



-70-

2 »» Remove ver-tex P(25) from P[26)P(25)P(24) 

Vertex P( 26) chanp;es from re--entrant. t.o convex. 

llmpty Convex Triads at { P( 23) P( 20) PC 16) P( 12) P( 8) P( 4) 
P( l) !'( 26) } 

~l »» Remove vertex P(23) from P(24)P(23)P(22) 

Vertex P( 24) changes from re-entrant to convex. 

Empty Convex Triads at { P( 20) P( 16) P( 12) P( 8) P( 4) P( l) 
P( 26) P( 24) ) 

4 >»> Remove vertex P(20) from P(21)P(20)P(19) 

Vertex P( 19) changes from re -entrant to convex. 

Empty Convex Triads at { P( 21) P( 19) P( 16) P( 12) P( 8) P( 4) 
P( 1) P( 26) P( 24) } 

5 »» Remove vertex P(19) from P(2l)P( l9)P(l8) 

Empty Convex Triads a I j P( 21) P( 16) P( 12) P( 8) P( 4) P( 1) 
P( 26) P( 24) J 

6 »» Remove vertex l'(l6) from PC17)P(16)P(15) 

Vert_ex PC 15) changes from re--entrant to convex. 

Empty Convex Triads at { P( 21) P( 17) P( 15) P( 12) P( 8) P( 4) 
P( 1) P( 26) P( 24) J 

7 );>)) Remove vertex P(l5) from P(17 )P(15 )P(l4) 

Empty Convex Triads at { P( 21) P( 17) P( 12) P( 8) P( 4) P( 1) 
P( 26) P( 24) } 

8 »» Remove vertex P(12) from P(13)P(l2)P(l1) 

Vertex P( ll) chanr:es from re-entrant to convex. 

Empty Convex Triads at { P( 21) P( 17) P( 13) P( 11) P( 8) P( 4) 
!'( 1) P( 2Ei) P( 24) 

9 »» Remove vertex P(l1) from P(l3)P(ll)P(l0) 

Empty Convex Triads at { P( 21) P( 17) P( 13) P( 8) P( 4) P( 1) 
P( 26) P( 24) } 



-71-

10 »» R.-move vertex !'(8) from P(9)P(8)P(7) 

Vertex P( 7) changes from re-entrant to convex. 

Empty Convex Triads at I P( 2l) l'( 17) PI 13) P( 9) P( 7) P( 4) 
P( 1) P( 26) P( 24) } 

l.l »» Remove vertex P(7) from P(9)P(7)P(6) 

Empty Convex Triads at [ P( 21) P( 17) P( 13) P( 9) P( 4) P( 1) 
P( 26) P( 24) } 

12 »» Remove vertex P(4) from P(5)P(4)P(3) 

Vertex P( 3) changes from re-entrant l:o convex. 

Empty Convex Triads at { P( 21) P( 17) P( 13) P( 9) P( 5) P( 3) 
P( l) P( 26) P( 24) } 

13 »>> Remove vertex P(3) from P(5)P(3)P(2) 

Empty Convex Triads at I P( 21) P( 17) P( 13) P( 9) PC 5) P( l) 
P( 26) P( 24) } 

14 »» Remove vertex P(l) from P(2)P(l)P(26) 

Empty Convex Triads at ( P( 21) P( 17) P( 13) P( 9) P( 5) P( 26) 
P( 24) } 

15 »» Remove vertex P(26) from P(2)P(26)P(24) 

Vertex P( 2) changes from re-entrant to convex. 

Empty Convex Triads at ( P( 21) P( 17) P( 13) P( 9) P( 5) } 

16 >>>> Remove vertex P(2l) from P(22)P(21)P(18) 

Empty Convex Triads at { P( 22) P( 17) P( 13) P( 9) P( 5) } 

17 >>>> Remove vertex P(l7) from P(l8)P(17)P(l4) 

Vertex P( 18) changes from re--entrant to redundant (coil inear). R.emove it. 

Empty Convex Triads at I P( 22) P( 13) P( 9) P( 5) 

18 >»> Remove vertex P(l3) from P(l4)P(13)P(l0) 

Vertex P( 14) changes from re-entrant to redundant (collinear). Remove it. 

Empty Convex Triads at I P( 22) P( 9) P( 5) } 



-72-

19 >»> Remove vertex P(9) from P(l.O)P(9)P(6) 

Vertex P( 10) changes from re-entrant to redundant (collinear). Remove it. 

gmpty Convex Triads at { P( 22) P( 5) } 

20 >»> Remove vertex P(5) from P(6)P(5)P(2) 

Ver·tex P( 6) changes from re-entr·ant to redundant (collinear). Remove it. 

Empty Convex Triads at { P( 22) P( 2) } 

21 »» Remove vertex P(2) fr·om P(22)P(2)P(24) 

Empty Convex Triads at { P( 22) } 

1263 Discriminants Evaluated: 11367 a.o. 

Ar-ray C of empty convex t.r:i ads as found by the program. 

1 26 24 21 21 17 17 13 13 9 9 5 5 
27 25 23 20 19 16 15 12 11 8 7 4 3 
26 24 22 19 18 15 14 11 10 7 6 3 ') 

~ 

2 2 22 18 .14 10 6 22 
1 26 21 17 13 9 5 2 

26 24 18 14 10 6 2 24 



-73-

The final example was the 48-gon treated earlier and shown in Figure 14. 

The computer output for this is shown on pages 74 - 80. J:orty-fivc (n - 3) 

triads are formed (P
32 

becoming redundant). The algorithm took 36,306 a.o. 

to complete. The corresponding hound (59) is 81 x 48 x 49 - .)60 ~ 190, IS2 

(again about five times too big). Algorithm 1 took 28,107 a.o. and Algo

rithm 2 took 9,900 a.o. to complete, for the same polygon. 

Despite this last, at first sight unfavorable, comparison, it is .impor

tant to realize that Algorithm 3 is preferable to Algorithm 1. First, we 

see that the asymptotic behavior of the former is (by (13)) ~n3 , while that 
. 2 4 . 

of the latter lS (by (59)] 81 n ; so that a crossover around n ~ 36 mlght be 

expected, with the third algorithm preferable for greater values of n. (More 

precisely, the bounds (13) and (59) cross over at n ~ 39.) Secondly, we see 

that Algorithm l repeatedly tests each convex triad for the inclusion of at 

least one re-entrant vertex. The worst case occurs when (i) p + q - 1 triads 

must be tested for each empty triad found, (ii) q re-entrant vertices must be 

tested to find one that is included in any given triad, and (iii) q remains 

as large as possible, i.e., p::: 3, at every stage; and this i_s extremely un

likely to occur. On the other hand, Algorithm 3 maintains u-lists of all 

(both re-entrant and convex) vertices included ln each convex triad; so that, 

while the worst case surpasses the worst case for Algorithm l at n ~ 39, it 

is clear that the probable situation must be closer to 

Very roughly speaking, we could 
. l l 

expect factors 4 , 2 , 

the wo~st case, here. 

and ~- to enter in (i), 
l 

(ii), (iii) above; for a ratio of actual to worst-case a.o. of about 16 The 

actual ratio observed is 28,107/241,734 ~ 
8

1-
6 

. In Algorithm 3, we bound 
2 . l l 

p(p + 

(59), 

q) with n , for a probable factor of perhaps 2 on 3 of the total bound 

and the remaining ~-of the bound assumes four calls to find_u(), when 

perhaps two are nearer to the truth; and, 1n testing for inclusion, on average, 

only two 
l 

about 3 ; 
7 

= 36.7. 

and 

for 

not three discriminants need be computed, so the factor here is 
7 a net factor of I8 The actual ratio observed is 36,306/190,152 

Combining our estimates, we would expect Algorithm 3 to compare with 

Algorithm l about six times less favorably than is indicated by the bounds; 

combining the observed ratios for our 48-gon, the number is about two. The 

crossover point would then ben~ 75 (factor, 2) ton~ 219 (factor, 6). 



-74-

_JOxam~-· 

Polygon P: 48 vertices; 26 convex, 22 re-entrant. 

Vertex X y D i sct--im·i nanl 

P( 1) : 2.5000000 3. 5000000 -6.7500000 re--entrant 

P( 2): 3.5000000 1.5000000 - 4.5000000 re--entrant 
P( 3): 2.0000000 0.0000000 -9.7500000 r·e-entrant 
P( 4): -2.0000000 2.5000000 11.2500000 convex 

P( 5): -2.5000000 0.0000000 -:l. 2500000 re-entrant 
P( 6): -3.5000000 1.5000000 0.5000000 convex 
P( 7): -2.5000000 -0.5000000 2.7500000 convex 
P( 8): -1.5000000 0.2500000 [.5000000 convex 
P( 9): -1.5000000 1.7500000 -6.0000000 re-entrant 
P( 10): 2.5000000 -·0. 7500000 5.8750000 convex 

P( ll): 3.2500000 0.2500000 -1.1875000 re·-ent r·ant 
P( 12): 3.5000000 -1.0000000 1.3750000 convex 
P( 13): 4.2500000 0.7500000 0.9375000 convex 
P( 14): 3.5000000 0.2500000 .. .I. 0625000 re--entrant 
P( 15): 4.0000000 2.0000000 3.6250000 convex 
P( 16): 2.5000000 4.0000000 7.1250000 convex 

P( 17): 0.2500000 2.2500000 ··0. 6250000 re-entrant 
P( 18): 1. 5000000 :1.5000000 0.6250000 convex 
P( 19): 0.0000000 2.5000000 -2.0000000 re-entrant 
P( 20): 0.5000000 3.5000000 -4.0000000 re-entrant 
P( 21): 3.0000000 4.5000000 -12.5000000 re-entrant 
P( 22): 5.0000000 1.5000000 -9.5000000 re---entrant 
P( 23): 3.5000000 -1.0000000 1.5000000 convex 

F'( 24): 3.5000000 --2. 0000000 -0.7500000 re-·entran t 
P( 25): 2.7500000 -1.2500000 -0.1875000 re-entrant 
P( 26): 3.2500000 -1.5000000 0.3125000 convex 
p( 27): -· 1 . 0000000 1.2500000 14.5625000 convex 

P( 28): -0.5000000 -·2. 5000000 -0.5625000 re--entrant 
P( 29): -0.7500000 -1.7500000 0.3750000 convex 

P( 30): -1.2500000 -l. 7500000 0. 3750000 convex 
P( 31): -1.2500000 -2.5000000 0.3750000 convex 
p( 32): -0.7500000 - 2. 7500000 -().] fl75000 re--entrant 
P( 33): -1.0000000 -3.0000000 -·1 . 5625000 re-entrant 
P( 34): -3.7500000 0.5000000 2.0000000 convex 

P( 35): -2.7500000 -1.5000000 ·-1. 7500000 re-entrant 
P( 36): -4.0000000 ·-0. 7500000 1. 6875000 convex 

P( 37): 0.0000000 -4.5000000 18.1250000 convex 

P( 38): -0.5000000 0.5000000 --18. 5000000 re--entrant 
P( 39): 3.5000000 -2.5000000 22.0000000 convex 

P( 40): 5.5000000 1.5000000 18.0000000 convex 
p( 41): 3.0000000 5.5000000 15.7500000 convex 
p( 42): 0.0000000 4. 0000000 9.0000000 re--entrant 
p( 43): -2.0000000 6.0000000 9.0000000 convex 

!'( 44) : 4.5000000 4.0000000 4.7500000 convex 

P( 451: -4.0000000 2.5000000 0.7500000 convex 

P( 46): 4.0000000 4.0000000 3.0000000 re·-entrant 
p( 47): -2.0000000 5. 0000000 8.5000000 re-entrant 
P( 48): 0.0000000 1. 7500000 11.6250000 convex 



-75-

A~list: 26 vertices: ( P( 4) P( 6) P( 7) P( 8) p( 10) P( 12) 

P( [;)) p( 15) !'( 16) P( 18) F'( z:ll P( 26) P( 27) P( 29) 

P( 30) P( 31) p( 34) P( 36) p( :37) P( 39) P( 40) P( 41) 

P( 43) P( •14) PC 45) P( 4Hl 

B-list: 22 vertices: r P( 1) PC 2) p( 3) P( 5) p( 9) PC 11) 

]' ( 14) P( 17) P( 19) P( 20) P( 21) P( 22) P( 24) ]'( 25) 
P( 28) P( 32) P( 33) P( 35) P( 38) P( 42) p( 46) ]'( 47) 

Empty Convex Triads at I P( 6) P( 8) I'( 13) P( 18) I'( 23) P( 26) 
'· 

P( 29) I'( 30) P( 31) P( 34) P( 36) P( 45) } 

l >>>> Remove vertex 1'(6) :from PC5)P(6)P(7) 

Vertex P( 5) changes from re~-entrant to conyex. 

Empty Convex Triads at ( P( 5) P( 7) P( 8) P( 13) P( 18) P( 23) 
P( 26) P( 29) P( 30) P( 31) P( 34) P( 36) p( 45) } 

2 >>» Remove vertex P(7) from P(5)P(7)P(8) 

Empty Convex Triads at ( P( 5) P( 8) f'( U) P( 18) P( 23) PC 26) 
F'( 29) P( 30) P( 31) P( 34) P( 36) P( 45) ) 

~1 >»> Remove vertex P(8) from P(5)P(8)P(9) 

Empty Convex Triads at ( P( 5) P( 13) PC 18) P( 2:1) P( 26) P( 29) 
P( 30) P( 31) P( 34) P( 36) P( 45) } 

4 »» Remove vertex P(l3) from P(12)P(l3)P(l4) 

Empty Convex Triads at [ P( 5) P( 12) P( 18) PC 23) P( 26) P( 29) 
P( 30) P( 31) P( 34) P( 36) P( 45) } 

5 >>>> Remove vertex P(l8) from P(17)P(l8)P(l9) 

Empty Convex Triads at ( P( 5) P( 12) P( 23) P( 26) P( 29) P( 30) 
P( 31) P( 34) PC 36) P( 45) } 

6 >»> Remove vertex P(23) from P(22)P(23)P(24) 

Empty Convex Triads at { P( 5) P( 12) P( 26) P( 29) P( 30) f'( 31) 
P( 34) PI 36) P( 45) I 

7 >>» Remove vertex P(26) from P(25)P(26)P(27) 

Vertex P( 25) changes from re-~entrant to convex. 

Empty Convex Triads at I P( 5) P( 12) P( 25) P( 29) P( 30) PI :31) 
P( 34) P( 36) P( 45) I 



-76-

8 »» Remove vertex P(29) from P(28JP(29)P(:JO) 

Empty Convex Triads at PC 5) I'( 12) P( 25) I'( :lO) P( :n) P( 34) 
P( 36) P( 45) } 

9 »» Remove vertex 1'(30) from P(28)P(30)P(31) 

Empty Convex Triads at { P( 5) P( 12) P( 25) P( 31) P( 34) PC 36) 
P( 45) ) 

10 »» Remove vertex P(31) from P(28)P(31 )P(32) 

Vertex P( 32) changes from re--entrant to redundant (collinear). Remove it. 

Empty Convex Triads at { P( 5) P( 12) P( 25) PC :j4) P( 36) P( 45) } 

tl »» Remove vertex P(34) from P(33)P(34)P(35) 

Vertex P( 35) chan!(es from re--entrant to convex. 

Empty Convex Triads at ( P( 5) P( 12) PC 25) PC :35) PC 36) P( 45) } 

12 >>» Remove vertex P(35) from P(33)P(35)P(36) 

Empty Convex Triads at ( P( 5) P( 12) P( 25) P( 36) P( 45) J 

13 >/» Remove vertex P(36) from P(33)P(36)P(37) 

Vertex P( 33) changes from re--entrant to convex. 

Empty Convex Triads at { P( 5) P( 12) PC 25) P( 33) P( 45) 

14 >>>> Remove vertex P(45) from P(44)P(45)P(46) 

Vertex P( 46) changes from re-entrant to convex. 

Empty Convex Triads at ( P( 5) P( 12) P( 25) P( 33) P( 44) P( 46) 

15 »» Remove vertex P(46) from P(44)P(46)PC47) 

Empty Convex Triads at { P( 5) PC 12) P( 25) P( 33) P( 44) } 

16' >>>> Remove vertex P(5) from P(4)P(5)P(9) 

Vertex P( 9) changes from re-entrant to convex. 

Empty Convex Triads at f P( 4) P( 9) P( 12) P( 25) P( 33) PC 44) } ' 

17 )'-'>'> /'' Remove vectex P(9) fcom P(4 )P(9)P( 10) 

Empty Convex Triads at: { P( 4) P( 12) P( 25) P( 33) P( 44) 



-77-

18 >>>> Remove vertex P(l2) from P(ll)P(l2)P(l4) 

Vertex P( 14) chan!{es from re--entrant t:o convex. 

Empty Convex Triads at { P( 4) P( 14) P( 25) P( 3:J) P( 44) 

19 >»> Remove vet·tex P(J4) from P(11 )P(l4)P(l5) 

Vertex P( ll) changes from re··entrant to convex. 

Empty Convex Triads at. { P( 4) P( ll) P( 2fi) P( :l:l) P( 44) 

20 >>» Remove vertex 1'(25) from P(24)P(25)P(27) 

Empty Convex Triads at { P( 4) P( 11) P( 33) P( 44) ) 

21 »» Remove vertex 1'(33) from P(28)P(33)P(37) 

Vertex P( 28) chan!{es from re-entrant. to convex. 

Empty Convex Triads at { P( 4) P( 11) P( 28) P( 37) P( 44) } 

22 >»> Remove vertex P(:l7) from P(28)P(37)P(38) 

Empty Convex 1'riads at ( P( 4) P( 11) PI 28) P( 44) } 

23 »» Remove vertex 1'(44) from P(43)P(44)P(47) 

V<ortex P( 47) changes from re--entrant to convex. 

Empty Convex Triads at ( P( 4) P( 11) P( 28) P( 43) P( 47) 

24 >>» Remove vertex P(47) from P(43)P(47)P(48) 

Empty Convex Triads at I P( 4) P( 11) !'( 28) } 

25 >»> Remove vertex 1'(4) from P(3)PC4)P(l0) 

Vertex P( 3) changes from re-··entrani to convex. 

Empty Convex Triads at ( PC 10) P( ll) PI 28) P( 3) 

26 >»> Remove vertex P(IO) from P(:!)P( 10)!'(11) 

Empty Convex Triads at i P( 28) PC 3) } 

27 >>» Remove verlex f'(28) from PC27)P(28)P(38) 

Vertex P( 38) changes from re--entrant to convex. 

Empty Convex Triads at. { P( 27) P( 38) P( 3) } 



-78-

~fl »;·> Remove vertex PC38l from P(27)P(3fl)P(39) 

Empty Convex Triads a L { f' ( 27) I' ( 3) } 

29 >>>> Remove vertex P(3) from P(2)F'(3)P( ll) 

Empty Convex Triads ai : !'( Ll) I'( 27) j 

30 »>> Remove ver·tex P(ll) from P(2)P( ll JP( 15) 

Vertex P( 2) changes from re··ent.rant to convex. 

Empty Convex Triads at ( P( 15) P( 27) P ( 2) } 

31 >»> Remove vertex P(15) from P(2)1'(15)P(l6) 

Empty Convex Triads at ( P( 27) P( 2) } 

32 >»> Remove vertex P(27) from P(24)P(27)P(39) 

Vertex P( 24) changes from re-entrant to convex. 

Empty Conv<>X Triads at ( PC 24) P( 3>1) !'( 2) } 

33 »» Remove vertex P(39) from P(24)P(39)PC40) 

Empty Convex Triads at { P( 24) P( 2) } 

34 >»> Remove ver-tex P(2) from P(l)P(2)P(l6) 

Vertex P( 1) changes from re·entrant t.o convex. 

Empty Convex Triads at { P( 16) P( 24) P( 1) ) 

35 >»> Remove vertex P(l6) from P(l)P(l6)P(17) 

Empty Convex Triads at { P( 24) P( 1) ) 

36 >>» Hemove vertex P(24) from P(22)P(24)P(40) 

Ver·tex PC 22) changes from re··entt·ant. to convex. 

Empty Convex Triads at { P( 40) P( l) P( 22) ) 

37 »» Remove vertex P(40) from P(22)P(40)P(41) 

Empty Convex Triads at ! P( 1) P( 22) } 



-79-

38 >>>> Remove vertex P(l) from P(48)P(l)P(l7) 

Vcr·tex P( 17) chanf(Ps from reentrant t.o convex. 

Empty Convex Triads at { P( 17) P( 22) ) 

39 >>» Remove vertex P(l7) from P(4B)P(l7)P(19) 

Vertex P( 19) changes from re··entrant to convex. 

Empty Convex Triads at { P( 48) P( 19) P( 22) ) 

40 »» Remove vertex P(l9) from P(4B)P(l9)P(20) 

Empty Convex Triads at { P( 48) P( 22) ) 

41 »>> Remove vertex !'(22) from PC2l)P(22)P(41) 

Vertex !'( 21) chang<>s from re··entrant to convex. 

Empty Convex Triads at ( P( 41) !'( 48) P( 21) J 

42 »» Remove vertex !'(41) from P(2l)P(4l)P(42) 

Empty Convex Triads at ( P( 48) P( 21) l 

43 »» Remove vertex !'(48) from P(43)P(48)P(20) 

Vertex P( 20) changes from re--entrant to convex. 

Empty Convex Triads at { P( 43) P( 21) ·r 

44 >>>> Remove vertex P(21) from P(20)P(2l)P(42) 

Vertex P( 42) changes from re--entrant to convex. 

Empty Convex Triads at ( P( 43) P( 20) P( 42) } 

45 >»> Remove vertex !'(42) from P(20)P(42)P(43) 

Empty Convex Triads at I P( 43) P( 20) } 



-80-

4034 Discriminants Evaluated: 36306 a.o. 

Array C of empty convex tr· iads as found by the program. 

5 5 5 12 17 22 ·>f: 
~-' 28 28 :w 3:J :B 33 

6 7 8 13 18 23 26 29 30 31 34 35 ~16 

7 8 9 14 19 24 27 30 31 32 35 36 37 

44 44 4 4 ll 11 24 28 28 43 43 3 3 
45 46 5 9 12 14 25 3:1 37 44 47 4 10 
46 47 9 10 14 15 27 37 38 47 48 10 ll 

27 27 2 2 2 24 24 l 1 22 22 48 48 
28 38 3 11 15 27 :39 2 16 24 40 l 17 
38 39 11 15 16 39 40 16 17 40 41 17 19 

48 21 21 43 20 20 
19 22 41 48 21 42 
20 41 42 20 42 43 



-81-

9. Maximally Re-Entrant Polygons 

/\s u fi.nal note, we ~1UU the Fo!J.owing result, ;1s <J c;Jution against the 

thought that the computational timing bounds given 111 the theorems are grossly 

exaggerated. 

LE~~ffi 13. The bound in Lemma 5 is tight: there are polygons of any number 

of vertices n ? 3 with only three convex vertices. 

6 

5 

=1f -a· , 

so we may choose, e.g., that 

each fl. = (1T - a)/ (n - 1), for 
1-

i ::: 1 , 3, 4, 5, ... , n. Now, 

vertices P1 , P
2

, and P
3 

are 

convex, while oll of r
4

, r
5

, 

1'6, ... , p 1' p ;Jrc n- n 
re-entrant.] 

-- .--

This proof illustrutes 

the old adage, that "a pic

ture says as mucl1 as a 

thousand words"!!! 

1 



-82-

10. Acknowledgement 

I \Vish to thank llr George C. Clark of the Ilarris Corpor~1tion, Mell)()urnc, 

Florida, for bringing this problem to my attention, and for several stimulating 

discussions. The problem arose in seeking an efficient way to fill irregular 

polygonal shapes, given an efficient and fast triangle-filhng command, as part 

of computer graphics involved in the automation of VLSI design ("C.A.D.") 

1 also thank Dr Henry Fuchs of The University of North Carolina for en

couraging me to reconsider Algorithm 1, in a way that led to Algorithm 3. 

Chapel Hill, North Carolina. 


