TR85-~004

. A Taxonomy of Time in Databases
A

-—

Richard Snodgrass & Ilsoo Ahn

Department of Computer Science
University of North Carolina
Chapel Hill, North Carolina 27514

March, 1985

This paper will appear in Proceedings. of the ACM-SIGMOD International Conference on
Management of Data, Austin, Texas, May. 1985.

L.

N

A Taxonomy of Time in Databases

March, 1985

Richard Snodgrass?
Ilsoo Ahn

Department of Computer Science
University of North Carolina
Chapel Hill, NC 27514

Abstract

The need for supporting time varying information in databases has been recognized for quite
some time. Many authors have proposed numerous schemes to satisfy this need by sncor-
porating one or two time attributes sn the database. Unfortunately, there has been confu-
sion concerning the terminology and definition of these time attributes. This paper pro-
poses a new tazonomy of three times for use in databases, one that ss more cleanly defined,
that may be conceptualized tn a pictorial fashion, and that defines several kinds of databases
differentiated by their ability to represent temporal information. The paper argues that fu-
ture database management systems should support all three times to fully capture time vary-

ing behavior.

1. Introduction

The need for recording time varying informa-
tion in databases has been recognized for quite
some time [Bubenko 1976]. There have been
significant research activities in formulating a
semantics of time at the conceptual level [Anderson
1982, Breutmann et al. 1979, Bubenko 1977, Ham-
mer & McLeod 1981, Klopprogge 1981|, developing
a model for time varying databases analogous to
the relational model for static databases [Clifford
& Warren 1983, Codd 1979, Sernadas 1980, and
the design of temporal query languages [Ariav &
Morgan 1981, Ben-Zvi 1982, Jones & Mason 1980,
Snodgrass 1982]. Recently, it has been argued that
a single time attribute is insufficient, and that two
time attributes are necessary to fully capture
time-varying information. Unfortunately, there

t The work of this author was supported by NSF graat
DCR-8402339 and by aa IBM Faculty Development Award.

has been some confusion concerning terminology
and the definition of these time attributes.

The next section will discuss the various
characteristics attributed to the two times; the
third section will illustrate the difficulties posed by
the vague definition of these times. The fourth sec-
tion will present a new taxonomy of time in data-
bases to replace the two previous times. The new
taxonomy consists of three distinct time concepts
and four distinct kinds of database management
systems (DBMS), differing in their support of the
new time concepts. The final section will compare
the new taxonomy with the old one.

2. Previous Characterizations

In this paper, we will use the terms physical
time and logical time [Lum et al. 1984] to discuss
the concepts as they appear in the literature. Phy-
sical time has also been called transaction time
[Copeland & Maier 1984|, registration time |[Ben-
Zvi 1982, data-valid-time-from/to [Mueller &
Steinbauer 1983, and start/end time [Reed 1978
Logical time has also been called event time [Cope-
land & Maier 1984, effective time [Ben-Zvi 1982,
state [Cliford & Warren 1983}, valid time
[Snodgrass 1984, and start/end time [Jones et al.

.

LNy

1979, Jones & Mason 1980|. Each paper has
defined the terms in slightly different ways. There
is general agreement on the definitions, but little
consensus concerning the details. The differences
identified by previous” authors between physical
and logical time may be characterized in terms of
three related attributes. The purpose of this sec-
tion is to discuss these attributes and to examine
their contributions to the concepts of logical and
physical time. We will proceed by stating the view
presented in the literature, then follow in the next
section with an analysis of this view. This sum-
mary is drawn primarily from the works of Cope-
land and Maier [Copeland & Maier 1984, Dadam
et al. [Dadam et al. 1984], and Lum et al. [Lum et
al. 1984, although others have also noticed that a
single time stamp or s pair of time stamps is inade-
quate.

2.1. Reality versus Representation

The correspondence of the model stored in
the database with reality is one aspect that is used
to distinguish between logical and physical time.
Logical time is characterized as the time that an
event occurs in reality; physical time is character-
ized as the time when the data concerning the
event was stored in the database. Examples include
retroactive salary changes, release dates of
engineering versions, scheduled events that have
not yet occurred, and scheduled events that were
suppose to occur, yet did not.

" 2.2. Update Flexibility

The types of update permitted to time values
is another way that logical and physical time have
been differentiated in the literature. A physical
time value may be added to the database, yet once
it has been added, it may not be changed. The
concept of a non-stop running clock is evoked to
indicate how the time values are generated. Logi-
cal time values, on the other hand, are always sub-
ject to change, since discrepancies between the his-
tory (a sequence of events or time intervals) as it
actually occurred and the representation of the
history as stored in the database will often be
detected after the fact. The distinction then is
between permitting only appends and permxttxng
arbitrary modifications.

2.3. Application Dependency

The third attribute used to distinguish
between physical and logical time is that of appli-
cation dependency. Logical time is generally

characterized in the literature as being
application-dependent, while physical time is con-
sidered to be application-independent. While this
attribute is the hardest to define precisely, it is
usually equated with the control the user of the
DBMS has over the value of a temporal domain in
the database. If the value can be computed
automatically by the DBMS, the value must neces-
sarily be independent of any particular application
and must have a simple semantics. An
application-dependent time value, on the other
bhand, must have been defined explicitly by the
user. Its value must also be specified by the user,
and may thus be quite complex. The integrity of
this data must be maintained by the user; the
value must be modifiable by users when a
discrepancy is discovered between the real world
and the database model. Hence, the DBMS cannot
guarantee the integrity of logical time values. The
relationship between the types of time identified in
the literature and their attributes is shown in Fig-
ure 1.

3. Comparison

Two of the attributes differentiating physical
and logical time, those of reality versus representa-
tion and update flexibility, are reasonably precise
concepts. They are also strongly related to each
other, in that a time value that records when the
data was stored cannot later be changed. The
third attribute, that of application dependence, is
unfortunately- fraught with difficulties. It makes
certain assumptions of which the most crucial is
that all actions performed by the DBMS are
application-independent. This assumption is not
valid, at least to a certain degree. The database
schema, which directs most actions by the DBMS,
is certainly application-dependent. Many DBMS's
allow the specification of integrity constraints,
which are application-dependent, yet are inter-
preted automatically by the DBMS without user
intervention. Application-dependent values can be
handled by the DBMS if their semantics can be
defined in terms the DBMS can interpret.

An example often cited of the distinction
between application-independent and application-
dependent time is a retroactive salary raise, where
the time at which the raise was recorded (say,
12/1/83) is considered application-independent, as
it is not under the user's control, whereas the time
at which the raise was to take effect (say, 8/1/83)
is considered application-dependent, as it is in some
sense arbitrary and under the user’s control.

[.

{—

Examining this situation more closely, however,
can result in precisely the reverse semantics. In
many commercial settings, salary updates are
batched together and executed against the data-
base only once or twife a month, whereas pay-
ments might be made at the last possible date to
minimize cashflow problems, and hence may occur
at arbitrary times during the month. That a
salary update was performed by the DBMS on
12/1/83 may simply be an artifact of when salary
updates are entered, which is application depen-

over when the salary was changed, and hence the
effective date is in this sense application-
independent.

The point to be made is that characterizing a
time value as being dependent or independent of
an application involves fairly subtle issues of the
semantics of that value, both as interpreted within
the DBMS and as applied to the situation being
modeled. Given these difficulties, this attribute
appears to be less than ideal in differentiating phy-
sical and logical time.

dent. On the other hand, the user has no control
Reference Terminology Append Application Representation
-Only Independent vs. Reality

|Ariav & Morgan 1982] Time Yes Yes Representation
[Ben-Zvi 1982] Registration Yes Yes Representation
Effective No | Yes Reality

[Clifford & Warren 1983] State No | Yes
[Copeland & Maier 1984] Transaction Yes Yes Representation
Event (1) No No Reality
[Dadam et al. 1984] & Physical (2) Yes Representation
[Lum et al. 1984] Logical (1) No No Reality
[Jones et al. 1979] & Start/End (2) Yes Reality
[Jones & Mason 1980] User Defined No No Reality
[Mueller & Steinbauer 1983| | Data-Valid- (3) Yes Representation

Time-From/To (4)

[Reed 1978] Start/End Yes Yes Representation
[Snodgrass 1984 Valid Time No | Yes Reality

Notes:
(1) Not actually supported by the system
(2) Can make corrections only
(3) Can make changes only in the future
(4) Reality is indicated only in the future

Figure 1 : Types of Time

4. A New Characterization

The previous section argued that physical
and logical time are not well defined, and that
application time is particularly problematic. In

this section we introduce a new taxonomy of time
for use in databases. This taxonomy is more
clearly defined, being based on reality versus
representation, may be conceptualized in a

pictorial fashion which aids understanding, and
defines several kinds of databases differentiated by
their ability to represent temporal information.
Though the following discussion is based on the
relational model, similar arguments also apply to
hierarchical or network models. We will first dis-
cuss static databases, focusing on their representa-
tional inadequacies. We then define three new time
concepts to replace the vaguely defined physical
and logical time. We introduce each time concept
by discussing the features associated with a partic-
ular kind of DBMS supporting that time concept.

4.1. Static Databases

Conventional databases model the real world,
as it changes dynamically, by a snapshot at a par-
ticular point in time. A state or an instance of a
database is its current contents, which does not
necessarily reflect the current status of the real
world.

Updating the state of a database is per-
formed using data manipulation operations such as
insertion, deletion or replacement, taking effect as
soon as it is committed. In this process, past states
of the database, and those of the real world, are
discarded and forgotten completely. We term this
type of database a static database.

In the relational model, a database is a collec-
tion of relations. Each relation consists of a set of
tuples with the same set of aftridutes, and is usu-
ally represented as a 2-dimensional table (see Fig-

_ure 2). As changes occur in the real world, changes

are made in this table.

Figure 2 : A Static Relation

For example, an.instance of a relation ‘faculty’ at a
certain moment may be

name rank
Merrie full
Tom associate

and a3 query in Quel, a tuple calculus based
language for the INGRES database management
system [Held et al. 1975, requesting Merrie’s rank,

range of f is faculty
retrieve (f.rank)
where f.name = "Merrie”
yields

rank
full

There are many situations where this static data-
base relying on snapshots is inadequate. For exam-
ple, it cannot answer queries such as

What was Merrie’s rank 2 years ago?
(historical query)
How did the number of faculty change
over the last 5 years? (trend analysis)

nor record facts like

Merrie was promoted to a full professor
starting last month. (retroactive change)

James is joining the faculty next month.
(postactive change)

Without system support in this respect, many
applications have had to maintain and handle tem-
poral information in an ad-hoc manner.

4.2. Static Rollback Databases

One approach to resolve the above
deficiencies is to store all past states, indexed by
time, of the static database as it evolves. Such an
approach requires a representation of fransaction
time, the time the information was stored in the
database. A relation under this approach can be
illustrated conceptuaily in three dimensions (Figure
3) with transaction time serving as the third axis.
The relation can be regarded as a sequence of
static relations indexed by time. By moving along
the time axis and taking a vertical slice of the
cube, it is possible to get a snapshot of the relation
as of some time in the past (a static relation) and
make queries upon it. The operation of taking a
vertical slice is termed rollback, and a database

- supporting it is termed a static rollback database.

Changes to a static rollback database may only be
made to the most recent static state. The relation
illustrated in Figure 3 had three transactions
applied to it, starting from the null relation: (1)
the addition of three tuples, (2) the addition of a
tuple, and (3) the deletion of one tuple (entered in
the first transaction) and the addition of another
tuple. Each transaction results in a new static rela-
tion being appended to the front of the cube; once
a transaction has completed, the static relations in
the static rollback relation may not be altered.

Action

time
Figure 3 : A Static Rollback Relation

One limitation of supporting transaction time
is that the history of database activities, rather
than the history of the real world, is recorded. A
tuple becomes valid as soon as it is entered into
the database as in a static database. There is no
way to record retroactive/postactive changes, nor
to correct errors in past tuples. Errors can some-
times be overridden (if they are in the current
state) but they cannot be forgotten.

Implementing a static rollback relation in this
way is impractical, due to excessive duplication:
the tuples that don't change between states must
be duplicated in the new state. Another approach
that partially addresses this difficulty appends the
start and end points of the transaction time to
each tuple, indicating the points in time when the
tuple was in the database. A typical relation in
this approach looks like Figure 4. The double vert-
ical bars separate the non-temporal domains from
the DBMS-maintained temporal domains. The
latter domains do not appear in the schema for the
relation, but may rather be considered part of the
overheads associated with each tuple. Note the
fact that Merrie was previously an associate pro-
fessor, a fact which could not be expressed in the
example for a static database.

name rank transaction time
(start) (end)
Merrie | associate || 08/25/77 | 12/15/82
Merrie | full 12/15/82 L)
Tom associate ||12/07/82)
Mike assistant || 01/10/83 | 02/25/84

Figure 4 : A Static Rollback Relation

Any query language may be converted to one
which may query a static rollback database by
adding a clause effecting the rollback. TQuel (Tem-
poral QUEry Language) [Snodgrass 1984,

Snodgrass 1985], an extension of Quel for temporal
databases, augments the retrieve statement with
an a# of clause to specify the relevant transaction
time. The TQuel query

range of f is faculty

retrieve (f.rank)
where f.name = "Merrie”
as of "12/10/82"

on a ‘faculty’ relation shown in Figure 4 will find
the rank of Merrie as of 12/10/82:

rank
associate

Note that the result of a query on a static rollback
database is a pure static relation.

The concept of transaction time has appeared
in several systems, including GemStone [Copeland
& Maier 1984], MDM/DB (Model Data
Management/Database) |Ariav & Morgan 1982),
and the SWALLOW object store |[Reed 1978, Svo-
bodova 1981].

4.3. Historical Databases

While static rollback databases record a
sequence of static states, BAistorical databases
record a single Aistorical state per relation, storing
the history as it is best known. As errors are
discovered, they are corrected by modifying the
database. Previous states are nof retained, so it is
not possible to view the database as it was in the
past. There is no record kept of the errors that
have been corrected. Historicai databases are simi-
lar to static databases in this respect. Historical
databases must represent valid time, the time that
the stored information models reality.

t

ime
Flgure 5: An Historical Relation

Historical databases may also be illustrated
in three dimensions (see Figure 5). Though its

‘~ U
AR

—

illustration looks similar to one for the static roll-
back database (in fact, for many transaction
sequences, it will be identical), the label of the time
axis has been changed to valid time and the
semantics are more closely related to reality,
instead of update bhistory. Therefore more sophis-

ticated operations are necessary to manipulate the

complex semantics of valid time adequately, com-
pared to the simple rollback operation.

A second distinction between historical and
static rollback databases is that historical DBMS's
support arbitrary modification, whereas static roll-
back DBMS’s only allow static states to be
appended. The same sequence of transactions
which resulted in the static rollback relation in
Figure 3 also results in the historical relation in
Figure 5. However, a later transaction (not possible
on a static rollback relation) has removed an
erroneous tuple inserted on the first transaction
(compare Figures 3 and 5 closely). Static rollback
DBMS’s can rollback to an incorrect previous
static relation; historical DBMS's can record the
current knowledge about the past.

Historical databases also incorporate user-
defined time, which will be discussed in the context
of temporal databases. Both valid time and user-
defined time concern modeling of reality, and so it
is appropriate that they should appear together.

Historical databases require more sophisti-
cated query languages. There have been two such
languages developed: LEGOL 2.0 |[Jones et al.
1979], based on the relational algebra, and TQuel
[Snodgrass 1984], based on Quel [Held et al. 1975),
a relational calculus query language. LEGOL 2.0
[Jones & Mason 1980| was developed for writing
complex rules such as those in legislation or high
level system specification where the correct han-
dling of time is important. It also attaches to each
tuple two time attributes which delimit the period
of existence for the associated member of the
entity set.

TQuel supports the expression of historical
queries by augmenting the refrieve statement with
a valid clause to specily how the implicit time
domain is computed, and a when predicate to
specifly the temporal relationship of tuples partici-
pating in a derivation. These added constructs
handle complex temporal relationships such as
start of, precede, and overlap.

As with static rollback databases, implement-
ing a historical relation directly as above is imprae-
tical. Figure 6 illustrates an alternative: appending

the endpoints of the valid time to each tuple, indi-
cating the points in time when the tuple accurately
modeled reality. "Like the transaction time in
static rollback databases, the valid time is not
included in the relation schema.

name rank valid time
(from) (to)
Merrie | associate || 09/01/77 | 12/01/82
Merrie | full 12/01/82 ()
Tom associate ||12/05/82 o
Mike assistant || 01/01/83 | 03/01/84

Figure 8 : A Historical Relation

The TQuel query requesting Merrie’s rank when
Tom arrived,

range of {1 is faculty
range of 12 is faculty

retrieve (fl.rank)
where fl.name = "Merrie”
and f2.name = "Tom"
when {1 overlap start of {2

on the historical relation ‘faculty’ in Figure 6 yields

rank valid time
(from) (to)

full |{12/01/82 0

Note that the derived relation is also an his-
torical relation, which may be used in further his-
torical queries. While both this query and the
example given for a static rollback relation seem to
query Merrie’s rank on 12/05/82, the answers are
different. The reason is that Merrie was promoted
on 12/01/82, but this information was recorded in
the database two weeks later. Hence, the database
was inconsistent with reality for that period of
time. In the historical database, the error was
corrected, but it is not possible to determine that,
at least for a while, the database was inconsistent.

Historical databases have been the subject of
several research efforts, including CSL (Conceptual
Schema Language) [Breutmann et al. 1979|, TERM
(Time-extended Entity Relationship Model) [Klop-
progge 1981], the intensional logic IL, [Clifford &
Warren 1983), and AMPPL-II (Associative Memory
Parallel Language II) [Findler & Chen 1971].

‘-n

[P

)y

4.4. Temporal Databases

Benefits of both approaches can be combined
by supporting both transaction time and valid
time. While a static rallback database views tuples
valid at some time as of that time, and a historical
database always views tuples valid at some
moment as of now, a temporal DBMS makes it
possible to view tuples valid at some moment seen
as of some other moment, completely capturing the
history of retroactive/postactive changes.

We use the term (temporal database to
emphasize the need for both valid time and tran-
saction time in handling temporal information.
Since there are two time axes involved now, it
should be illustrated in four dimensions (Figure 7

shows a single temporal relation). A temporal
relation may be thought of as a sequence of histor-
ical states, each of which is a complete historical
relation. The rollback operation on a temporal
relation selects a particular historical state, on
which an historical query may be performed. Each
transaction causes a new historical state to be
created; hence, temporal relations are append-only.
The temporal relation in Figure 7 is the result of
four transactions, starting from a null relation: (1)
three tuples were added, (2) one tuple was added,
(3) one tuple was added and an existing one
deleted, and (4) a previous tuple was deleted
(presumably it should not have been there in the
first place).

Jalid

time

Al

time
transaction

Aalid

time

Aid

time

time

Figure 7 : A Temporal Relation

name |rank valid time transaction time
(from) (to) (start) (end)

Merrie | associate ||09/01/77 o0 08/25/77 | 12/15/82

Merrie | associate ||09/01/77 |12/01/82 |{12/15/82 ©

Merrie | full 12/01/82 o 12/15/82)

Tom | full 12/05/82 | oo 12/01/82 | 12/07/82

Tom |associate ||12/05/82 oo 12/07/82)

Mike | assistant |{01/01/83 © 0i/10/83 | 02/25/84

Mike assistant |{01/01/83 | 03/01/84 || 02/25/84 00

Figure 8 : A Temporal Relation

" For example, the relation in Figure 6 will
look like Figure 8 after adding transaction time. It
shows that Merrie started working on 09/01/77,
information that was entered into the database on
08/25/77 as a postactive data. Then she was pro-
moted on 12/01/82, but the fact was recorded on
12/15/82 retroactively. Tom was entered into the
database on 12/01/82 as joining the faculty as a
full professor on 12/05/82; the fact that he was
actually an associate professor was noted on
12/07/82. Mike left the faculty eflective on
03/01/84, which was recorded on 02/25/84. Note
all the details of history captured here, which were

not expressible in other more restrictive databases.
The TQuel query

range of {1 is faculty

range of {2 is faculty

retrieve (fl1.rank)
where fl.name = “Merrie"”
and f2.name = "Tom"
when {1 overlap start of 12
as of "12/10/82"
on this relation determines Merrie’s rank when

Tom arrived, according to the state of the data-
base as of 12/10/82. The result is

TIPS TR AT TR T A A o o

Mooy

>

rank valid time transaction time
(from) |{to)]] (start) (end)
associate |]09/01/77 {oo {]08/25/77 | 12/15/82

This derived relation s a temporal relaiion, s0_

further temporal relations can be derived from it.
If a similar query is made as of 12/20/82, the
answer would be full because the fact was recorded
retroactively by that time.

TRM (Time Relational Model) is another

. example of a temporal database [Ben-Zvi 1982].

However, the query language defined for TRM is
pot a temporal query language, because it can
derive only static relations.

4.5. User-defined time

User-defined time [Jones & Mason 1980] is
necessary when additional temporal information,
not handled by transaction or valid time, is stored
in the database. As an example, consider the ‘pro-
motion’ relation shown in Figure 9. Since it is an

event relation, only one valid time is necessary.
The eflective date is the date shown on the promo-
tion letter that the promotion was to take effect;
the valid date is the date the promotion letter was
signed, i.e., the date the promotion was validated;
and the transaction date is the date the informa-
tion concerning the promotion was stored in the
database. Merrie’s retroactive promotion to full
was signed four days before it was recorded in the
database. The effective date is application-specific;
it is merely a date which appears on the promotion
letter. The values of wuser-defined temporal
domains are not interpreted by the DBMS, and are
thus the easiest to support; all that is needed is an
internal representation and input and output func-
tions. Such domains will then be present in the
relation schema. Conventional DBMS's supporting
application time include the ENFORM DBMS
[Tandem 1983], Query-by-Example [Bontempo
1983], an experimental version of INGRES [Over-
myer & Stonebraker 1982|, and MicroINGRES
[Relational 1984].

name rank effective valid time transaction time
date (at) (start) (end)
Merrie | associate |09/01/77 |{08/25/77 || 08/25/77 o
Merrie | full 12/01/82 ||12/11/82 |[12/15/82 %
Tom |full 12/05/82 ||12/05/82 || 12/01/82 | 12/07/82
Tom |associate |12/05/82 ||12/07/82 {|12/07/82 L)
Mike | assistant |01/01/83 |]01/01/83 || 01/10/83 ©
Mike left 03/01/84]1102/25/84 || 02/25/84 00

Figure 9 : A Temporal Event Relation

§. Conclusions

Three kinds of time, transaction time, valid
time, and user-defined time, were introduced to
replace the vague formulation of physical and logi-
cal time found in the literature. Database manage-
ment systems may be categorized in terms of their
support for handling temporal information. As
shown in Figure 10, two orthogonal criteria are
capabilities for rollback and historical queries.
These criteria differentiate four types of databases:
static, static rollback, historical and temporal.
Support of the rollback capability requires the
incorporation of transaction time, which concerns
the representation; support of historical queries
requires the incorporation of valid time, which is
associated with reality (see Figure 11). DBMS’s
supporting rollback are append-only, whereas those

not supporting rollback allow updates of arbitrary
information. The attributes associated with the
three kinds of time are illustrated in Figure 12,
which should be compared to Figure 1.

The new time concepts may be loosely com-
pared with those appearing previously in the litera-
ture. Transaction time is most closely associated
with physical time, and valid and user-defined time
with logical time. However, as we have shown in
an earlier section, logical and physical time have
not been precisely defined, whereas the new terms
have been carefully defined by examining the
aspects they model and the limitations they impose
on the DBMS. Figure 13 classifies the time sup-

ported in existing or proposed systems according to
the new taxanomy.

14

- ' y'é

»— Mo

While fifteen years of research has focused on
formalizing and implementing static databases,
only a few researchers have recently studied the
formalization of historical databases (e.g., [Clifford
& Warren 1983]) and the implementation of static

the authors’ knowledge, there has been nothing
published on formalizing static rollback or tem-
poral databases, mor implementing historical or
temporal databases. The special opportunities
promised by temporal databases are, at this time,

rollback databases (e.g., [Lum et al. 1984]). To matched by the challenges in supporting them.
| No Rollbac Rollback
Static Queries Static Static Rollback
Historical Queries Historical Temporal
Figure 10 : Types of Databases
Transaction Valid User-defined

Static
Static Rollback v
Historical v v
Temporal v v v

Figure 11 : Attributes of the New Kinds of Databases

Terminology | Append-Only | Application Representation
Independent vs. Reality

Transaction | Yes Yes Representation

Valid No | Yes Reality

User-defined No No Reality

Figure 12 : Attributes of the New Kinds of Time

Reference System or Transaction Valid User-defined
Language Time Time Time

Ariav & Morgan 1982] MDM/DB v

Ben-Zvi 1982] TRM v v

Bontempo 1983] QBE v
[Breutmann et al. 1979] CSL v

[Clifford & Warren 1983] IL, v

Copeland & Maier 1984 GemStone v

Findler & Chen 1971 AMPPL-II v

Jones & Mason 1980 LEGOL 2.0 \Y \Y
Klopprogge 1981] TERM v

Lum et al. 1084 AM v

Relational 1984 MicroINGRES v
Mueller & Steinbauer 1983| - v

Overmyer & Stonebraker 1982] INGRES \Y
[Reed 1978] SWALLOW v

Snodgrass 1985 TQuel v v v
Tandem 1983] ENFORM v
Wiederhold et al. 1975 TODS Vv

Figure 13 : Time Support in Existing or Proposed Systems

’(a\'b

&

| T

-

Bibliography

[Anderson 1982] Anderson, T. L. Modeling Time et
the Conceptlual Level. In Improving Data-
base Usability and Responsiveness, Ed. P.
Scheuermann. Jerusalem, Israel: Academic
Press, 1982 pp. 273-297.

[Ariav & Morgan 1981] Ariav, G. and H. L. Mor-
gan. MDM: Handling the time dimension in
generalized DBMS. Technical Report. The
Wharton School, University of Pennsyl-
vania. May 1981.

|Ariav & Morgan 1982] Ariav, G. and H. L. Mor-
gan. MDM: Embedding the Time Dimen-
sion in Information Systems. Technical
Report 82-03-01. Department of Decision
Sciences, The Wharton School, University
of Pennsylvania. 1982.

[Ben-Zvi 1982] Ben-Zvi, J. The Time Relational
Model. PhD. Diss. UCLA, 1982.

[Bontempo 1983| Bontempo, C. J. Feature Analysis
of Query-By-Ezample, in Relational Data-
base Systems. New York: Springer-Verlag,
1983. pp. 409-433.

[Breutmann et al. 1979] Breutmann, B., E. F. Falk-
enberg and R. Mauer. CSL: A language of
defining conceptual schemas, in Data Base
Architecture. Amsterdam: North Holland,
Inc., 1979.

[Bubenko 1976] Bubenko, J. A., Jr. The temporal
dimension in information modeling.
Technical Report RC 6187 #26479. IBM
Thomal J. Watson Research Center. Nov.
1976.

[Bubenko 1977] Bubenko, J. A., Jr. The Temporal
Dimension in Information Modeling, in
Architecture and Models in Data Base
Management Systems. North-Holland Pub.
Co., 1977.

[Cliford & Warren 1983] Clifford, J. and D. S.
Warren. Formal Semantics for Time “in
Databases. ACM Transactions on Database
Systems, 8, No. 2, June 1983, pp. 214-254.

[Codd 1979] Codd, EF. Eztending the Database

Relational Model to Capture More Mean-
ing. ACM Transactions on Database Sys-
tems, 4, No. 4, Dec. 1979, pp. 397-434.

[Copeland & Maier 1984] Copeland, G. and D.
Maier. Making Smalitalk a Database Sys-
tem. In Procecdings of the Sigmod '84
Conference, June 1984 pp. 316-325.

[Dadam et al. 1984] Dadem, P., V. Lum and H.-D.
Werner. Integration of Time Versions into
8 Relational Database System. In Proceed-
ings of the Conference on Very Llrgc Dats
Bases, 1984.

[Findler & Chen 1971] Findler, N. and D. Chen.
On the problems of time retrieval, temporal
relations, causalily, end coezistence. In
Proceedings of the International Joint
Conference on Artificial Intelligence,
Imperial College: Sep. 1971.

[Hammer & McLeod 1981] Hammer, M. and D.
McLeod. Database Description with SDM:
A Semantic Database Model. ACM Tran-
sactions on Database Systems, 6, No. 3,
Sep. 1981, pp. 351-386.

[Held et al. 1975 Held, G.D., M. Stonebraker and
E. Wong. INGRES-—A relational data base
management system. Proceedings of the
1975 National Computer Conference, 44
(1975) pp. 409-416.

[Jones et al. 1979] Jonmes, S., P. Mason and R.
Stamper. LEGOL 2.0: a relational
specification language for complez rules.
Information Systems, 4, No. 4, Nov. 1979,
pp. 293-305.

|[Jones & Mason 1980] Jones, S. and P. J. Mason.
Handling the Time Dimension in a8 Data
Base. In Proceedings of the International
Conference on Dats Bases, Ed. S. M.
Deen and P. Hammersley. British Com-
puter Society. University of Aberdeen:
Heyden, July 1980 pp. 65-83.

[Klopprogge 1981] Klopprogge, M. R. TERM: An
approach to include the time dimension in
the entity-relationship model. In Proceed-
ings of the Second International Confer-
ence on the Entity Relationship Approach,
Oct. 1981.

‘—r‘ l’*‘v"\f ‘

[Lum et al. 1984] Lum, V., P. Dadam, R. Erbe, J.
Guenauer, P. Pistor, G. Walch, H. Werner
and J. Woodfill. Designing DBMS Support
Jor the Temporal Dimension. In Proceed-
inge of the Sigmod '84 Conference, June
1984 pp. 115-130.

[Mueller & Steinbauer 1983] Mueller, T. and D.

_ Steinbauer. Eine Sprachechnitistele zur

Versionenkontrolle in CAM-Datanbanken,

in Informatik-Fachberichte. Berlin:
Springer, 1983. pp. 76-95.

[Overmyer & Stonebraker 1982] Overmyer, R. and
M. Stonebraker. Implementation of ¢ Time
Ezpert in 8 Database System. SIGMod
Record, 12, No. 3, Apr. 1982, pp. 51-59.

[Reed 1978] Reed, D. Naming and Synchronization
in & Decentralized Computer System. PhD.
Diss. M.I.T., Sep. 1978.

[Relational 1984] Relational Technologies, Inc.
MicroINGRES Reference Manual. 1984.

[Sernadas 1980] Sernadas, A. Temporal Aspects of
Logical Procedure Definition. Information
Systems, 5 (1980) pp. 167-187.

[Snodgrass 1982| Snodgrass, R. Monitoring Distri-
buted Systems: A Relational Approach.
PhD. Diss. Computer Science Department,
Carnegie-Mellon University, Dec. 1982.

[Snodgrass 1984] Snodgrass, R. The Temporal

' Query Language TQuel. In Proceedings of

the Third ACM SIGAct-SIGMOD Sympo-

sium on Principles of Database Systems,

Waterloo, Ontario, Canada: Apr. 1984 pp.
204-212.

[Snodgrass 1985] Snodgrass, R. A Temporal Query
Language. 1985. (Submitted to Transac-
tions on Database Systems.)

[Svobodova 1981] Svobodova, L. A reliable object-
oriented data depository for a distriduted
computer. In Proccedings of 8th Sympo-
sium on Operating Systems Principles,
Dec. 1981 pp. 47-58.

[Tandem 1983] Tandem Computers, Inc. ENFORM
Reference Manual. Cupertino, CA, 1983.

[Wiederhold et al. 1975] Wiederhold, G., J. F. Fries
and S. Weyl. Structured organization of
clinical data bases. In Proceedings of the
National Computer Conference, AFIPS.
1975.

