
UNC Report No, TR84-010 

PROCEDURE-LEVEL PROGRAM MODELING FOR 

VIRTUAL MEMORY PERFORMANCE IMPROVEMENT 

by 

Edward L. Jones 

A dissertation submitted to the faculty of The 

University of North Carolina at Chapel Hill in 

partial fulfillment of the requirements for the 

degree of Doctor of Philosophy in the Department 

of Computer Science. 

Chapel Hi II 

1984 



PROCEDURE-LEVEl PROGRAM !!ODELING FOR 

VIRTU AL-I!E!WRY PERFORI!ANCE II'IPROVEI!ENT 

by 

Edward L. Jones 

A dissertation submitted to the faculty of The 

University of North Carolina at Chapel Hill in partial 

fulfillment of the requirements for the degree of 

Doctor of Philosophy in the Department of Computer 

Science. 

Chapel Hill 

1984 

Advis~Cal~ -------

Readr~ haradw z· Jayarama n 

~-~~--'-=--"'-"' \ 
Reader: Frederick P. Jr. 



EDWARD 1. JCN.ES Procedure-Level Program llodeling for 

Virtual lleEory Performance Improvement [Under the direction 

of DE. FET.EE CALINGHR'l] 

AESTEACT 

Ihe page-fault overhead incurred ty a program executing 

on a deEand-paged virtual-memory computer system is a 

functicn cf the progrc:m •s module-to-modulE reference 

patterL and the program's layout tbe assignment of 

progra& &cdules to pages in the virtual name space. 

Defining the layout using program restructuring methods 

can greatly reduce this overhead, tut the restructuring 

proce!s is itself expensive lihen an execution trace of the 

prograa is reguired. 

This .research aims to reduce the computer and 

prograrmer time reguired to perform program restructuring. 

Only externally re1ocatat1e code modules (i.e., 

subroutines or 

procedure-level 

procedures) are treated. A 

program model (PAll) is defined 

generative 

and used to 

synthesize program executions that, when usEd in progra~ 

restructuring instead of actual execution traces, are 

shown tc ~reduce acceptatle layouts. lloreover, the PAtl 

progra11 modeling system can te fully automated. 

- ii -



DEDIC! liON 

~o my wife and children, the 

driving force behind this once 

in a lifetime venture. 

- iii -



.IC~NCWI.HGE!! E NT S 

I aa the prod~ct of those people and events God in His 
visdo11 has used to aake IRE me. The ~ist is long, and I feel 

Ullable to e:xp:ess adeguatel y my thanks to everyone 

faaily, friends, teachers, encouragers -- or for everything 

-- the successes, the setbacks, the in-between times. So I 

siaply thaDk God for enal::lillg IRE to profit from tte finite 

experiences of ay life and, most of al~, from tte infiDite 

reality of being one of His little ones. 

A srecial honor is due 

faailial love and support. 

my parents who gave ~~;e life, 

1 am what they could have been 

in differeDt times and ~nder different circumstances. 

lil, the darling wife of my youth, has waited patiently, 

feeling alcng with me the ups and downs of graduate school. 

She is Gcd•s greatest gift to ae. fty children, Edward, 

Nicholas ar.d Daroyce, explain vhy it took so long and why it 

was 11orth it. Their constant love keeps ae reminded that 

there's mere to life than school or work. 

The list of friends is too long. Special thanks to Bey, 

taris and bicca Fargas, ~ith whom we spent many fun times 

singing, playing guitars, eating and laughing. All the 

students 11ho passed through -- Ann, Juay, lee and Ava, 

candy, ••• were terril::ly important to my survival. 

I aa deer~Y indebted to the members of my committee. tr. 

Peter calingaert, my 

pa.tiently directed 

advisor, carefully alld (almost al~ays) 

the project, always having my best 

interests in mind, for ~bict I bold him in high regard. In 

such at endeavor as this, one needs someone short en words, 

but lotg en ellcouragement. Dr. Donald Stanat was that man, 

and I thank him. Dr. frederick P. Brooks, Jr., helped ~e in 

- iv -



many ways, sJ;ii:itually and professionally; I am glad I got 

to kllcw hia. I thank t1:. Bhai:adwaj Jaya~:aman for his 

willingness to Eei:ve as a I:eader, and Dr. Kishor TI:ivedi of 

Duke Unive~:sity, who pi:ovided much help and advice dui:ing 

the eaxly stages of the !:£search. I also acknowledge the 

cont~:ibuticns of DI:. Mehdi JazayEI:i and Dr. David Parnas, 

~ho helJ;ed ae get the research off the ground. 

I was encou~:aged to develop my ideas after sba~:ing them 

with curxently active investigators: DI:. Alan Batson, of the 

University cf Virginia, Dr. Domenico Ferrari, of Eerleley, 

and Dr. lic~an Syndei: of the Dni versity of liashington. !like 

Padrick, cf the UNC Computation CEntEr helped me locate 

samfle Jii:Cgraas and data files that were used in the 

research. 

I aa grateful to those institutions that provided mo~:al 

and ti~;ancial suj:po~:t: 'Ihe Ford ~oundation, IBM, liacbovia 

Bank ai:d TI:ust Company, and the UNC Board of Governors. 

Finally, I acknowledge the encouragement, confidence and 

ratience shewn ty my curr£nt employer, Winston-Salem State 

University, pi:i~arily in t~e persons of Dr. V.K. Newe~l and 

Dr. Arncld Lockett. 

- v -



SECUC~ 

1 IN'IRCDUCTICN •• 

1. 1 T.llE PBOBLEll • 

. . . 
• • • 

• • • • . . . . . . - . . . 
. . - . • • --·-----

1.2 A VIEW CF PAGED VIETUAL !IE!IOBY SYS'IEl'IS . . - . 
1.~. I Notation and Terminology . . . . . . . . - . -
1.2.2 Twc Important OtEervations 

1.3 IEGGEAll EIBAVIOR ••••••• 

. . . . . 
-.... • • . . 

•• . . . 
1.3.1 Prcgram Referencing Eehavior . . . - . . - . -
1.3.2 Characterizing Locality of Reference - - . . . 
1.3.3 Phase-Transition Eehavior ••••••• . . 

1.4 SC!IE CCli!ICN PAGE REPLACE!IENT lLGORI'IB!IS • . -.. -
1. 4. 1 LeaEt-Recently Used (LRU) 

1.4.2 llc.~:king Set (liS) •••••• 

. . . . . 

. . . . . •• . . 
1.5 VIRTUAL llf!ICFY PEEECE~ANCE . . . . . - . . . . . . 

PAGE 

1 

1 

3 

3 

6 

7 

7 

8 

12 

14 

14 

15 

16 

1.5.1 Program Performance Issues • - - • • • • • • • 16 

1.5.2 system Performance Issues • • • • • • • • • • • 17 

1.6 FEBFCR~ANCE I!IPBOVE!IENT TECHNIQUES • • • • • • 18 

1.6.1 Eardware Configuration • • • • • • • • • • • • 19 

1. f. 2 System EeEource l!anagem€llt • • • • • • • • 20 

1. 6.3 Frcgramming StJlE •• - • • • • • • • • • • • • 21 

1. 6. 4 Cbject Code llanipulation 

1.7 IiGGFA!I BfSlBUCTDFlNE ••• 

. . . . 
. . ... 

. . . . . . 
. . . 

1. 1.1 Cvervieli - ... - . . . . - . 
1.1.1.1 Goal of restructuring . . . . . . . . . . 
1.7.1.2 The basic procedure • • . . . . . . 
1.7.1.3 Classification of methods - .. - . . . . 

1. 7.2 The Bestructuring Phase ••••• 

1.7.2.1 The Nearness method •••• 

. . . . . . 
. - . . 

1. 7.'L.2 

1.7.2.3 

Frogram tailoring: critical LRU 

Eelaticn to program locality •• 

. . . . 

. . . - . 
1.7.3 Trends in Program Rtstructuring. . . . - . . . 
1. 7. q SUIIIlaiy • • • • • • ••• • • • • 

1.8 CVEiVlEW CE THIS EISlARCE •••••• . . . . 
- vi -

22 

23 

23 

23 

23 

24 

25 

26 

26 

27 

28 

30 

31 



1.€.1 7he Procedure-Activation Model: The Tool .. -
1.E.2 The SccFe of !Ibis Research •••• 

1.9 fAJGF THESES ANl CLAIMS Of 7H1S BESEAHCH . - . - . 
1.10 OBGANIZAliCN CF 7HE DlSSEBTATlC~ • . - . - - - - . 

2 THE EECCfDUBE-lC71VAilCN MOtEL 

2.1 PliEII~ltiAEIES ••••••• 
• • • • • • • • • . . . 
. . . • • • • • • • • • 

2.1.1 A SimFle Structured Programming Lan~uage . - . 
2.1.1.1 Seguencing primitives 

~.1.1.2 tata types •••• 

. . . . . . . - . . 

. . . . . . 
2.1.1.3 ExaaFle program PJ • • • • • . . . . . . . 

2. 1.2 ~cdel Assumptions ••• •• • • • . . - . . . . 
~-1-2.1 tio data references • • • • • • • . . . . . 
2.1.2.2 

:i. 1 • .2.3 

Eredictatle flo~ of control 

Ca11-pat.h independence ••• 

. . . . 
• • • •• 

~- 1. 3 The Automatic Modeling System •••••• 

2.2 !CDEl CCNSTliUCiiON ••••••••••••• 

. . . 

. . . 
2.2.1 The Call Seguence Grammar 

2.2.2 The CCNSTBUCTCE ••••••• 

2.2.2.1 lieguired data structures 

. . - .. 

. . . . . 

. - - .. 
• • • • 

• • • • 
2.2.2.2 Description of the algorithm* . . . . . . 
~.2.2.3 Discussion • . . - . • • • • • • • . .. . . 

31 

33 

31t 

36 

37 

38 

38 

38 

39 

liO 

lilt 

lilt 

lili 

lilt 

li5 

li7 

liB 

50 

50 

52 

53 

2.2.3 Instz:umenting the Sul:ject Program • • • • • 54 

2.2.3.1 Allocating instrumentation varial:les. • • 511 

2.2.3.2 Inserting instrumentation code • • • • • • 55 

2.2.3.3 Extracting execution coefficients • • 58 

2.3 EARA~ETEB ESTIMATION • • • • • • • • • • • • • • • 60 

2.3.1 Maintaining the Parameter Datal:ase . . - . . . 
;.3.2 AffiOaches to Execution Sampling . . . . . . . 

~-3-2.1 One- time observation . . . . . . . .. . . 
~.3.~.2 Fredetez:mined numl:er of ol:servations •• 

~.3.2.3 Statistically controlled observations 

2.11 SYNTHETIC EEFEBENCE STRING G!NEEATlCN ••••• 

2.4.1 ihe GENEBAlOE • -- . - . - - - - - - - - -
~- 4. 1. 1 tata structures . - . . . . . . - . . . 
2.1i.1.2 tata wanipulation primitives • . . . . . . 
;.4.1.3 Nctation • . . . . . . . . . 

- vii -

61 

63 

63 

64 

65 

66 

66 

66 

68 

69 



2.4.1.4 

2.4.1.5 

The algoritbm • • •• 

An Example ••• • • • 

. . . . . • • • 

. . . . . . . . . . 
2.4.2 Ter&~nating Generation . . . . . . . . . . . . 
2.4.3 Generation Environments • . . . . • • • . . - . 

2.5 ANAlYSIS CF COSTS ••••• • • • • . . . . - . . . 
2.5.1 Assum~tions • ••••• 

~.~.2 Ccxpiler modificaiions 

~.~.3 Irstrumented Ctject Code 

. . . . . . . . . . 

. . . . . . . . . . . . 
Size • • • . . . . . . 

2.~.4 Instrumented Otject Code Speed 

2.5.5 !anaging the tatatases ••• 

. . . 
. . .. 

. . . - . 

. . - . . 
2.~.6 String Generation Costs • 

2.6 VAEIANTS CF TEl EASlC ~OLEL • 

. . . . . . . . . 
. - . . . .. . . . . 

2.6.1 A Ncrmal-Porm CSG . . . . . . . . .. . .. 
2.6.2 Representing Call-Path Context Information 

2.6.3 The Descriptive PAM •••••••••••• 
• • 

2.6.4 A Ccmparison of the PAll Variants •• . . . . . 
2.7 SU!MARI • ••• • ••••••••••• . . . . 

3 BES'IBDCTDRAlliLITY OF 'IHE SUBJEC'I l'RCGRAIIS • . . . . 

70 

71 

73 

75 

75 

75 

76 

76 

77 

78 

79 

80 

80 

S2 

84 

87 

89 

90 

3.1 A PCSiERlCRI PROGEAII FISTRDCTURING ISSUES • • • • • 91 

3. t. 1 Overvieli of tlle Restructuring Process • • • • • 92 

3. 1. 2 'Ihe FLogram Characterization Phase • • • • • • 94 

3.1.~.1 

3.1.2.2 

3.1.3 Ihe 

3. 1.3. 1 

Choosing the executions to sample . . . . 
Reference string representation . . . . . 

Festructuring Phase •••••• 

Choice of algorithm ••••••• . . . . 
3. 1.3.2 Choice of central parameter 

94 

94 

97 

99 

100 

3. 1.4 The Clustering Phase • • • • • • • • • • • • • 101 

3. 1. fl. 1 Estimating module sizes • • • • • • • • • 101 

3.1.4.2 Page size . . . . . . . . . . . . 
3. 1.1l.3 Clustering algorithm •• 

3.2 lAYCDT FEFFCRIIANCE EV!LUAilON •• 

3.2.1 Cvervie~a .......... -

. . . 

. . . . . 
. . 

3.~.2 ferformance Measures . . . . . . 

. . 

. . . . 

3.2.2.1 scalars 

curves 

. . . . . . . . . . . . . . . . . 

. . . - . . . . . . . . . . . 
3.2.3 Ccmraring Layouts • . . . . . . . . . . . . 

- viii -

101 

102 

103 

1 03 

105 

105 

105 

106 



3.3 THE SUBJECT PROGEAM COLL!CTION 

3.3.1 ieasitility of Restructuring 
. - . 

. . 
3.3.2 Static Program tescriptions ••• 

3.3.3 The Testbed of fxecution Traces • 

. - . - . • • 

. - . - - - . 

. . . . . - . 

. . . . . . . 
3.4 THE FESTBDCTUEAEILITl EXPERl~ENT 

3.4.1 Pu~pose of the E~periment •• 
. . . - . . . . . 
- - . . -- . - -

3. 4. 2 I ttLinsic P~o gram Cllaract er ist ics . • • . . 
3.4.3 Perfcrmance of Standard Layouts . • . . . • • . 
3.4. 4 Perfcrmance of Computed Layouts • • . • - . . . 
3. 4. 5 Setting Restructuring Parameters • • • - . • • 

3. 4. 6 stability of Restructuring Improvements • . . • 

. - . . . • • . . . 3.4.7 ccnclusions. 

3.5 sueeARY ••••• . . - . . • • • .. 
4 fLEMENTARI MODELING •• . . - • • • • 0 • 

4.1 GENERAL MLDELlNG ISSUES •••• 

4.1.1 overview of Issues •• 

4. 1. 2 fcdel Version ••••••• 

. . . 

. . . 

. . . 

.. . - . 
• • . . . . . 
. . . .... 
. . . . . 
. . . . . - . 
. . . . . 

108 

1C8 

109 

116 

117 

118 

119 

124 

129 

132 

133 

136 

137 

138 

139 

139 

140 

4. 1.3 GEAII Parameter Representation • • • • • • • • 142 

.LI.1.3.1 loops •••••••••••••••••• 143 

4.1.3.2 Selection constructs • . . . . . . . . . . 
4.1.3.3 Eelative importance of constructs • • • • 

4. 1.4 Parameter Estimation . . . . . . . . . 
4.1. 4. 1 loop and selection parameter estimators 

4. l. 4.2 

4. 1. 4. 3 

Instrumentation requirements 

Statistics and estimators used 

4. 1.5 fcde1 Validation . . . . . . 
. . . . 

143 

144 

145 

145 

147 

147 

149 

4.1.5.1 Experiment overview • • • • • • • • • • 149 

14.1. ~-2 7etminolog'j • • • • • • • • • • • • • • • 149 

4. 2 THE FCINT-ESTIIHUCN !10J:E11NG AFPRCACH • • • • • • 151 

4.2.1 lttrcduction ••••• 

4.2.2 Cverview of the Study • 

. . . . . 
. . . . . . . 

. . . 

. . . . . 
4.:2.3 H}'fcthese.s 

4.3 IICDEl ACCURACY 

4.3.1 tNF-PAM •• 

. . . . . . . . . . . . - - . . 

. . . . - . . . . . . . . - . . 
. . . . . . . . . . . . . . . . . . 

4.3.2 GFAII ..................... 
4.3.3 Ccnclusions . . . . . . . . . . . • • 

- ix -

151 

152 

15'1 

155 

155 

157 

158 



4.4 ~UlTIFLE-EIECUTIGN HOtELING • • • • • ••• . . 
4. "1. 1 tN F-P AI! • • • • • • • • • • • • • • • • . . - . 
4.4.2 GUll . . . . . . . . . . . . . . . . . 

• • • . . . . . . - . . . . . . . 4.~.3 Cc~clusions • 

II. 5 SUHHY •••• . . . . . . . . . . . 
4.5.1 Discussion ••••••••• 

4.~.2 Evaluation of the Ejpotheses 

5 AVVA~CEt l'lGtEllNG SlOtlES •••• 

. . . 

. -
. . 
• • 

... - . 
. . . - . 

. - ... 
- - . - ... 5.1 IN1IlCDUC7ION 

5.1.1 Cverview . . . . . . . . . . . . . . - . . . . 
5.1.2 Ey~ctheses •••••••••••••• • • • • 

5.2 TBE GFAH LOOP PARA~flER DJS7RIB07ION SlODX .. - . 
5.2.1 IDtroduction ••••••••••••• 

5.2.2 Bean-Value Characterization of Samples •••• 

5.2.2.1 Comparison of means across samples •••• 

5.2.2.2 Confidence intervals for the mean of r •• 

5.2.3 The Distribution of Loop Repetitions ... - . 
5.2.4 Ccnclosions ••••• • • . - • • • • • • • 

5.3 GFll'l MODELING REVISITEt • • • • • • • • • • • • • • 
5. 3. 1 Mean- valued Modeling •••• 

5.3.2 Interval-Eased l!odeling ••• 

. . . . . 

. . . .. 
• • 

. . . . 

160 

160 

162 

163 

165 

166 

168 

175 

175 

176 

177 

178 

178 

179 

179 

1E2 

185 

190 

191 

192 

1911 

~. 3. 2.1 Uniform sampling from [mean, maximum J 1911 

5.3.2.2 Uniform sampling from [r-kd,r+kd] • • 196 

5. 3. 3 ristritution- rasec !'iodeling • 

5.3.4 Ccnclusions 

5. 4 SU 1':11 A EY • 

6 A CA!E S1DDJ 

. . . 

. - . 

• • .. . . . . . 
. . . . . . . . . 
... -. - .. 

. . . . - . . 
. . . - . . . 

. - - . . -
6. 1 IliTECI:UCXlON • • • • • • •••••••• 

6.2 PEACHCAL !~SUES CF ~OlCHTIC EESTEUCTUliiNG • 

198 

199 

200 

202 

202 

2 03 

6.~. 1 tetermination of Program Bestructuratility 204 

6.2.2 Setting Restructuring Parameters . . . . . 
t.~.3 f.easuring Eestructuring Effectiveness 

6.2.4 Selecting the Modeling Approach ••• 

6.3 CHAEACTEE1S1ICS OF SOEJECl FEOGBA~ ADDIX 

.. 

. . . . . 
6.3.1 Static characteristics ••••• 

6.3.2 The Testbed of Execution Traces • 

. . . 

. . . 
- X -

204 

205 

205 

206 

2 06 

2 C9 



6.3.3 Eynamic characteristics ••••• 

6.3.4 Eestructuratilitj Characteristics 

6.q !}flYING ioE fl0£EL 70 A£EII ••••• 

..... - .. 
. . . . . . . 
• • • • • 

6. 4.1 l!ean-Valued l!odelilig for: Small Samples . - - -
6.4.2 .l!cdeling Larger Samples •• . . . . . . . . - . 

6.5 CONClUSIOBS • • • • •••• •••••• • • • • 

1 CONCLUSIONS AND ~DEAS FOE FDB7HER RESEARCH . . . . . . 
7.1 FlNDl~GS A~D CONCLUSIONS . . . . . . . . . . . - . 

7. 1.1 Review of the Research Environment . . . . . . 
7.1.1.1 l!odel assumptions • • • • • • • • • • • • 
7.1.1.2 Goals • • • • • • • • • .. . . . . . 
7. 1. 1.3 ihe experimental approach . . . . . . . . 

7. 1.2 Autcmatic ftodel Construction .. . . . . . . . 
7.1.3 .l!ajor Besults. •• . . . . . . . . . . . . 
7.1.4 Evaluation of .l!ajor iheses •••••• 

7.2 RESEARCH NEEDS iOR AUTOMATIC EES7HUCTUR1NG 

. . . . 

. . . . 
7.3 AREA~ FOR fCETHER RESEARCH - . -

7.3.1 !cdeling and Restructuring ••• 

7.3.2 Cther Applications ••••• 

7.4 CCNCIUSION ••••••••• . . 
BlBLlCGRAPH Y . - . . . - -- . - . 

. . . 
. . . . . . . 
. . . . . . . 

. - - . -
ACRCNYf.~ GICSSAFY/INDEX . . . . . . . . . . . . . . 

- xi -

209 

215 

218 

218 

220 

221 

222 

222 

222 

223 

224 

224 

225 

226 

227 

228 

228 

230 

231 

232 

244 



TAELE 

2.1 

3. 1 

3.2 

LIST OF TAELES 

The Procedure-Activation fodel family ••• 

Static characteristics of Sutject Programs 
- . 
. . . 

Trace string Testted • • • • • • • • • • • • • • 

PAGE 

87 

• 111 

- 116 

3.3 Variables cf the Restructuring Experiment ••••• 118 

3. 4 

3.5 

3.6 

3.7 

3.8 

3.9 

3.10 

4. 1 

4.2 

4.3 

4.4 

11.5 

STD layout WS Cost Reductions over L.WORSi •••• 127 

STD 

CiiS 

layout 

layout 

I.IlU Cost lieductions over L.WORST • 

iS Cost Reductions over L.BEST •• 
. - • 128 

. . -
ClRU layout LRU Cost Reductions over L.BEST • • . -

129 

130 

Eestructuring Parameter Settings ••••••••• 132 

CWS Restructurability of Testted Traces • • • • 134 

Statility of cws Cost Reductions over L.BEST ••• 135 

Variables of the GPAM Point-Estimation Study ••• 1118 

D~F-fA~ Single-Execution Model Quality •••••• 155 

GfA~ Single-Execution Model Quality •• 

~cdel Quality: DNF-PAM versus GPAH •• 

DliF-PUI Multiple-:Exeeution !lodel Quality 

• • . . . • 157 

• • .... 
. . ... 

158 

161 

11.6 GPAM Multiple-Execution Model Quality ••••••• 162 

4.7 Il Medel Quality: tNF-PA!I versus GPA!I ••••••• 163 

4.8 

4.9 

5. 1 

5.2 

5.3 

5.4 

5.5 

6. 1 

6.2 

6.3 

6.4 

6.5 

6.6 

6.7 

IT Medel Quality: tNF-PAM versus GPAM • . . . . 164 

165 Suraary ot Model Accuracy • • • • ••• . . . . . . 
~ear. leap Repetitions for GFNREF samples ••••• 18C 

MeaL Leap Repetitions for CLUSTER Samples ••••• 181 

~ear.-Valued Modeling: Effect of Sample Size •• 1S2 

I1prcvements for GENBEF l'lodel Instances • • • • 155 

I1prcvements for CLUSTER Model Instances •• • 196 

ccnparative Static Characteristics of ADDIX •••• 2C7 

Ccst Beductiocs of STt Layouts for ADJJX • 215 

cast Beductions of cws Layouts for APDIX ••••• 216 

Stability of CWS Layouts for ADDIX •••••••• 217 

Single-Execution Model Quality . . • • • • • . . • 218 

!'ul ti.~=le-Execution Hodel Quality - . . . . - . . • 219 

Su.uary of large-Sample Hodel Quality • . - • • • • 22C 

- xii -



LIST Of HGURES 

HGURE FAGE 

1.1 

1.2 

fiaae S(aces in a Paged Virtual ~emory ••• 

layouts LO and L1: ftodule-to-Page ftappings . . . . 
4 

5 

1.3 Faaily of Eault curves •••••••••••••• 10 

1.4 

2.1 

2.2 

2.3 

2.4 

2.5 

2.6 

.... Werking Set C~rves 

sa~~le SSEL Program P1 . . 
. -
•• 

The A~tomatic ftodeling System • 

!odel Construction • • • • •• 

. . . . . . . . . . 

. . . . . . . . - . 

. . . . . . . . - . 

. . . . . . . . - . 
Call-Sequence Grammar for Sample Program P1 • 

Paraneter Descriptor tata Base Record Format 

Ir.str~mented Procedure B of Program P1 ••• 
. - . 

2.7 Instrumentation Routine tUftP . . . . . . . . - - . 

12 

41 

46 

47 

48 

52 

57 

59 

59 

60 

61 

62 

81 

85 

86 

2.8 

2.9 

Instrumentation Boutine WRITECR . - . . . . 
Paraneter Estimation . . . - . . . . . . . . . - . 

2.10 Coefficient Datatase Record ~ormat 

2.11 A Parameter Datatase Record format 

. . 

. - . . . . 
2.12 

2.13 

2. 14 

DliF Call-Sequence Gramliar for Program P1 

DPA~ Slate-Diagram for Program P1 • . . . 
Samfle DPAft Execution Profiles ••••• 

. . . - . 

. . . 

. . . . . 
3.1 Schel!atic cf the Bestructuring Process • • • • 93 

3.2 Esti~ation of Reference Times •••••• . . - 96 

SE 

103 

3.3 Exanfle of Cutput frcm the Restructuring Phase 

3.4 

3.5 

3.6 

3.7 

3.8 

3.9 

3.10 

3. 11 

3.12 

4.1 

5. 1 

5.2 

layo~t Evaluation Scbematic . . . . . . . . . . . . 
Call Tree for s utjHt 

Call Tree for S utject 

Call Tree for Sul:ject 

Pro gram 

Program 

Program 

GENII Ef ' 

RESTR UC'I • • ••• 
CL OSIER •• . - .. 

Irtrinsic ye cost Curves . . . . . . . . . . . . 

• 112 

• 113 

• 11 5 

• 12 c 
I~:trinsic ye 

Irtd~:sic Y1 

liorking Set Curves ••• . . . . . . . 121 

Cost Curves 

Irtrinsic Y1 Working Set 

ClUSTER STD Layout Y 1 iiS 

Cvervieli of PAll !lodeling 

. . . . . . . . . . 
Curves • . . . -
Cost Curves . . . . . . 
. . . . . . . . . - . . 

• 122 

• 12 3 

• 126 

• 14 0 

90~ Ccnfidence Intervals foe Loop 1 of DDMPCSG •• 1E3 

90~ Ccnfidence Intervals for Loop 2 of IIERGE .. • 1E4 

- xiii -



5.3 

5.4 

5.5 

5.6 

6. 1 

6.2 

6.3 

6.4 

6.5 

tecaying Distribution for Loop 1 of 

Eell-ShaFed Distritution for Loop I 

liEBGE ••• . -
of liERGE . . . 

Hybrid Distribution fer Loop 2 of eEEGE •• 

UEtyfed Distribution for Loop 2 of LOADFDti 
- -
•• 

• • 

166 

187 

HIS 

189 

Call Tree fer Program ADDJI . . . . 
AC;Dll: Intrinsic llemory cost Curves 

HtiX Intrinsic liorkin·g set Curves 

t:e11cry Cost curves fer All Programs 

acrking Set Curves fer All Programs 

- xiv -

. - . . . 

. . .... -

. . . . 
- . . . . . . 
. - • • • • • 

• 208 

• 210 

211 

• 213 

• 214 



Chapter 1 

:IUBODUCT:IO R 

This charter contains the sotivation and clai&s of this 

research, along with a 

those readers unfasiliar 

survey of related research. For 

with the the general area of vir-

tual memory, Denning's Eicellent tutorial [DENN70] is recom

mended. Ferrari's survey paper [FERR76a) gives a concise 

introduction to rrogram restructuring techniques. 

1.1 TBE PROBLEil 

The paging overhead (i.e., overhead incurred when a page 

fault cccurs) experienced ty a single program executing in a 

demand-paged virtual memory environment depends upon four 

major factors: 

(1) the program's module-to-module reference pattern; 

{2) the program's layout in its virtual name space; 

( 3) the system's memory management policy, priiLarily, 

the page replacement algor it bm; and 

( 4) competition fz:om othez: programs in the system for 

resou.rces. 



2 

Given the progru•s reference pattern and the system• s 

page size and rep~aceaent algoritha, a program ,n:structuring 

for which the E~Q£~du~ can produce a near-opti~al 

paging oYerhead is near its ainiaua. 

procedures haYe been shown to reduce 

layout, 

Program restructuring 

paging overhead signif-

icantly, but the inconvenience and high cost of collecting 

the regui red reference information discourage the widespread 

use of this effective perforaance-improvement technique. 

[ FEBB76a] Low-cost, easy-to-use, 1 anguage-independent 

restructuring packages are sorely needed to encourage the 

acceptance of program restructuring as an integral part of 

the program development cycle for large programs. 

The primary objective of this research is to reduce the 

cost of using conventional program restructuring technigues. 

The objective is not to define brand new restructuring pro

cedures, but to reduce the cost of attaining the reguired 

reference information. A secondary 

strate that procedure-level program 

otjective is to demon

modeling is feasible, 

and that it yields insights into execution-time behavior. A 

fu11y-autcmatic restructuring system is designed and com

pared to conventional approaches in ter~s of ease of use, 

effectiveness and cost. lt is hoped that, with such pack

ages available, the use of program restructuring will become 

as conncnplace as the use of optimizing compilers to reduce 

a program's execution-time cost. 



3 

1.2 I VIEW OF PAGED VIRTUAL MEMORY SYSTEMS 

Figure 1.1 shows an overview of a paged virtual memory 

system. The programmer writes a program using symbolic 

names; the set of names used is called the §Y&bolic nam~ 

§E££~ (SNS). When the program is translated to produce a 

load module, each symbolically named object is assigned a 

virtual address in the virtual ~space (VNS). The vir

tual address identifies the page in which the first byte of 

the module is stored. ihen the program is loaded prior to 

execution, the virtual name space is stored in the §torage 

kie~ch~, usually in the tack~ storage. Backing storage 

and main storage (executatle memory) define tte £hysical 

E~g §£2Ce (PNS) of physical addresses referenced during 

prograa execution. 



I 

Symbolic 
Name 
Space 

(modules) 
Layout 

Virtual 
Name 
Space 

(virtual 
pages) 

fl / ~ f2 

.I '\. 
(physical Memory (physical 
page page 
frames) Manager frames) 

Backing Main 
storage storage 

Physical Name Space 

l'igure 1. 1 

Name Spaces in a Paged Virtual Memory 

4 

I 

The naEe spaces are related by way of maps that are 

defined at various times in the program's life cycle. The 

~QQ~le-!g-~g~ map relates elements of the symtolic and vir

tual nane sraces. This map is static, and is produced by a 

series cf translation programs, including the link-editor. 

we call this map the l2.YQUt, since it describes the layout 

of the ~rogram in its virtual name space. Consider the lay

outs of Figure 1.2 for a program consisting of modules A, E, 

c. D and E. Layout LO is denoted LO=( (A) • (BJ • (C) • (D), (E)], 

where each module occupies a page l:y itself. layout 



5 

L 1=£ (A,E) • (E,D) • (C)] assigns several modules to a single 

page, bot allows no aodule to OTErlap more than one page. 

When nc page overlap is permitted, the layout is a function 

l:SNS-~VNS; otherwise. the layout defines a relaticn. ror 

this research, we require layout L to te a function. 

Symbolic Name Space 
(Program Modules) 

Virtual Name Space 
(Possible Layouts) 

Size Name 

8 A 

6 B 

14 c 

10 

6 

D 

E 

==> 

LO 

A 
/Ill 

B 
/Ill 

c ..... 
D 

Ill/ 

~ 
Page Boundary ~ 

E 
Ill/ 

Unused space 

Figure 1.2 

layouts LO and ll: l!odule-to-Page l!appings 

11 

A,E .... 
B, 

D 

c . ... 
I I II 
Ill/ 

Ill! 
Ill/ 

The virtual and physical name spaces are related by way 

of two rrarrings. The first one, f1, maps a virtual page to 

a page slot in the backing store; the second, f2, maps a 

virtual page to a page frame in main storage. Both mappings 

are defined QYQ2mi~B!!~· Although fl may change, it is 

always defined; £2 is defined only when the virtual page is 

in main storage. The set of virtual pages for which f2 is 

defined at time t is called the .tesid.mJ.! 2et at time !. and 



6 

is denoted by B(t). A reference to virtual page Vfl causes 

a ~age tauJ! when f2(vp1) is undefined. The£~ re~£g

men! ~lf!£Iithm fetches the virtual page from physical 

address f1(vp1) in the backing storage, stores that page in 

some page frame pf1 in main storage, and defines 

f 1 (vp 1) ~- pf 1. 

The dynamic mapping functions fl and f2 represent the 

memory management component of a virtual memory operating 

system, and they reflect tbe system policies of allocation, 

f~£Jg£g.J!!en!, and £age fetcbing. 

1.2.2 'Iwc Important .Qhs&rv,g!i.Ql!.~ 

Two observations atout the static aud dynamic mapping 

functions defined above are import ant to this research. 

First, the static module-to-page map is constructed automat

ically, and therefore the process is amenatle to imfrovement 

through more intelligent algorithms. This is the basis for 

applying progra.m restructuring aetbods to this problem. 

Second, the execution-time mapping functions, though 

dynamically defined, can use information gained during the 

definition of the static aapping to control the redefinition 

of the dyna~ic maps. The language translators can embed in 

the object code directives that suggest ways in which the 

replaceJEent algorithm can alter its strategy of memory man

agement. !or e.~:ample, the compiler can detect when an array 

spanning several pages will be accessed sequentially. It 

can then issue directives to the memory manager (replacement 

algorithm) suggesting that pages of the array be prefetcbed. 



7 

1. 3 fliCGiiAI! EEl:lAVIOR 

1.3.1 f~og~s~ ~efe~~nging Behavio~ 

Page-level ~efe~encing behavior is captu~ed in the ~ 

£~t~fg~g~ ~!fi~ z=x[ 1],x[2] ••••• x[K], whe~e x[i] is the 

page that contains the i'th v~tual add~ess gene~ated by the 

p~cg raJt. In the lU'IIll:>olic ~efe~ence st.o:ing 

w=v[ 1] 0 w( 2), ••• ,w[l!J, each w[ i] is a symbol in the symbolic 

name space. The two aajo~ tehavioral. characteristics pres-

ent at the symtolic level are also present at the page 

level, namely. 1Q£gliil g! ~efe~ence and phas~-t~ansition 

behavio~. 

Locality of reference is the tendency of program refer

ences to favor a subset of the program's modules (pages) 

during scme specific time 

favored modules (pages), 

interval. 

termed the 

l!oreov e~, the set of 

locality set, tends to 

of reference is related change zembership slowly. 

to programming in that (1) 

Locality 

on only a small collection 

programmers tend 

of sutprotlems at 

to concentrate 

any one time, 

and ( 2) programs tend to make extensive use of the looping 

control structure, which causes certain modules to be refer-

enced repeatedly within sho~t time inte~vals 

[ DENN70,BUS76b]. Locality of ~eference does not hold 

throughout program execution, but during relatively long 

tise intervals called ~hases, or regimes {FBEI75]. Tr~-

§itigns between phases are marked ty very poor locality of 

reference, resulting in a rapid increase in the ~ate of 

faults. Studies ty Eatson and Madison [BATS76b,MADI76], and 

by Denning and Kahn [DENN75] all came to the conclusion that 

"· •• phases a~d transitions are of .,qual iljlport;;;ncl;! in 
program l:ehav1or -- long phases domu;ate v1ttua1 t1me, 
as anticipated by the earliest virtual mewory engi
neers, ana transitions, teing unpredictatlei account 
fo~ a substantial part of the ••• [page] fau ts ···" 



8 

locality of reference explains why, for the most part, 

virtual •emory works; the phase-transition behavior explains 

why page faults come in bursts, corresponding to transitions 

between phases. 

At the symbolic level, locality of reference is caused by 

a group of modules being referenced close together in time. 

This type of locality is termed temporal locality. Storing 

these closely related modules within contiguous pages pro

duces §~s!1s1 19£2li!I, in which the next virtual address 

generated is likely to he numerically close to those gener

ated in the immediate past. Spatial locality increases the 

density of references to a particular page (or group of 

pages), thereby increasing the time the page remains in main 

storage. For this reason, the module-to-page layout should 

achieve maximal spatial locality, 

temporal locality. 

given the symbolic-level 

What are some vays of characterizing or measuring local

ity? A single global description of a program's locality 

masks out the types of behavior observed within the differ-

ent phases of execution. Decomposing an execution into a 

sequence of major phases, and studying each phase in detail 

is one way around this difficulty. Denning [DENN72] sug

gested that this decomposition might be a useful level at 

which to study locality. Madison and Batson's bounded 

JQcali!~ i~!g~sl (BLI) method [MADI76,BATS76t] is the first 

~idely-adopted approach to phase decomposition. 

A mere widely used measure of locality is the amount of 

faulting activity generated by a program execution, grapti

cally disflayed using a family of "fault curves." The inde

pendent variable is r, the average resident set size. The 

~s~Ei~g curve plots f(r), the number of faults when the 

average resident set size (allocation) is r. The fault-~ 



9 

curve z (r) = f (r) /K, where K is the number: of references, 

plots the aean rate of faulting as a function of the allo

cated real storage. finally. the lifetime curve 

l(r); 1/F(r) = K/f(r), plots the mean nuaber of references 

between faultE, as a function of the allocated real storage. 

consider: .Figures 1.3a-c, s.bowing "fault" curves generated by 

tvo different programs P1 and P2. Notice that the fault

rate curve is a scaled version of the swapping curve. 

Observe that for low aemory allocations, P1 performs better 

thaD F2; the relative performaLce switches for: large alloca

tions. 



10 

- - - -

Legend Legend: 
* Pl * Pl 
* PZ + PZ 

F 
41 a 
F u 
a I 
u t 
I 
t R 
s a 

t 
e 

r r 

Fig 1.3a: Swapping Curves Fig 1.3b: Fault-rate 
Curves 

I 
t 

Legend: 
41 * Pl 
R + P2 / 

,. 

I / 
e / 
f 
s I 

l p 
e 
r , , I 
F / I a / 

/ 
u / I 
I / / I t 

I 

I I 
! xl , x2 

Avg resident set size, r 

Fig 1 • 3c : Lifetime curves with 

I 
primary knees xl and x2 

Figure 1. 3 

Family of Fault Curves 



11 

A kn~ of a ~ifetiae curve is a point (resident set size) 

beyond which the curve hegins to flatten out. The primary 

kn~ is defined geometric~ly as the point of tangency 

between the curve and a ray of aaximum s1ope emanating from 

the or~g1n. Figure 1.3c shows how the primary knee is 

determined graphically. 

Lifetime Cllrves have teen studied extensively 

[ EE.LA69,DENN76,LER076,SPIR17 ), and are generally used to 

determine a region of aemory allocation in which satisfac

tory faging perforaance is obtained. The replacement 

a~gorithm centro~ paraaeter (e.g., the working set window) 

is then set to achieve an average resident set size within 

the knee region. ~hat is, the memory allocation is set to 

match the loc~ity properties of the program. One can look 

at locality improvement efforts as being directed at reduc

ing a program's faulting activity at a given value of r. 

One ether barometer of a program's ~ocality is its demand 

for space in main storage, as measured ty the average resi

dent set size, r. Under variatle-allocation memory manage

ment, r reflects the over-all mean real-storage demand, con

strained by the value of the control parameter. Denning's 

working set is the classic measure of memory demand. The 

working set curve (r versus liS window size T) is widely 

used to validate models of program tebavior. Figure 1.4 

shows working set curves for programs P1 and P2. The lover 

curve indicates smaller working set size for a given window 

setting, im~lying a greater degree of ~ocality. Coffman and 

Denning [ COFF73] have shown that the oorking set curve is a 

very cc~~act description of program behavior that captures 

many asfects of a program's performance. 



r 

Legend: 
* Pl 
+ P2 

12 

j 
( 

L Working Set Window 

-----------.J 
figure 1.4 

Working set curves 

A reference string aay be decomposed into phases and 

transitions, as shown belo~ 

1-X1-J---P1---j--I2--j-----P2-----J-X3-J ••• , 

where l's denote transitions, P 1s phases. The size of phase 

Pi is the amount of aain storage required to keep its local-

ity set li resident. Since a phase is a period of rela-

ti vely stable memory demand, loading the entire phase local

ity set Li into aain storage at the start of Pi would bring 

the page fault rate do~n to zero for a long period of time. 

A reasonable goal of page replacement algorithms should be 

the prediction and detection of phases for the purpose of 

keeping resident the corresponding locality sets. Since the 

sizes of (:bases Yary, the replacement algorithm must adjust 



13 

to the size of the current phase to avoid excessive page 

faultiDg, CD the one hand, and wasted space, on the other. 

Phase-transition behavior is primarily a consequence of 

symbolic-level behavior: (1) trayersing data structures; 

(2) modular design of the program, and (3) leering con

structs. This suggests that language translators could, 

with scme effort, lend a .hand in the detection of phases and 

transitions. More specifically, translators could predict 

code phases4 given the program's modular decomposition and a 

descriFtion of its use of internal control structures, such 

as lOOfS and selection (conditional) constructs. 

Until recently, it was telieved that most paging activity 

was attritutable to transitions between phases. snyder 

[ S!UD7Sa] has shown, however, that sequencing through large 

arrays spaDDing multiple pages can generate substantial pag

ing activity, even within a phase of execution. This find

ing is imfcrtant because it shows that page-level behavior 

~s~ ~fi always be deduced from symbolic-level behavior. 

This is because in t.he symbolic reference string, the size 

of a mcdule is completely ignored, but at the page level, a 

refereDce to a module that is larger than the page size may 

generate references to one or more of the pages containing 

the ~odule. Moreover, the identity of the referenced rages 

is not determinable from the symbolic reference string. 

Program restructuring can not te applied to such modules, 

but prefetching can be used to load the pages of a large 

module [SNYD78b,TRIV77,ABDS79]. 



14 

1.4 SC~E CC!MON PAGE REPLACEMENT ALGOEITBMS 

We now present two of the most popular replacement 

algorithms, for the purpose of establishing notation and 

terminology, and to shoM hov replacement strategies are 

affected by the phase-transition behavior of programs. Both 

algorithms are used in this research. 

The LRU replacement algorithm belongs to the class of 

where a program is allowed a 

fixed aaxiaum of m page frames in main storage at any given 

time. The variable a is termed the LRU &ontrQJ, E~.I~meter, 

since it exerts control upon the replacement of pages. 

LRU(m) denotes the LRU replacement algorithm for an alloca

tion of m ~age frames. 

The resident set under LRU(m) at timet, R(LRU(m),t), is 

the set of the 111 most-recently referenced pages. If, at 

time t, a reference is aade to page .k, vbich is not in 

R (lllU (E) , t- t} , page .k is placed in R (LRU (m) • t) , replacing 

the least-recently used page of R(lRU(m),t-1). 

The major deficiencJ in fixed-allocation algorithms is 

that deEa~d for pages varies according to the phase-tran

sition behavior of the program. liithin a phase, the set of 

pages referenced is approximately constant and the faulting 

rate is lew, unless the size of the phase exceeds 11 pages. 

During transitions, the faulting rate is high, unless m is 

very large. Since the sizes of phases vary, finding the 

proper setting of m is not easily done using lllU. 



15 

~he iS replacement algorithm belongs to the class of 

yari.5!!ll~a1J,.Q9!i.2!!. algorithms, since the allocation of page 

frames to a rrogram is allowed to vary during the course of 

progra.r execution. iS, just like LRU, attempts tc replace 

pages referenced furthest £ack in tiAe. ~he iS control 

parameter, T, is called the iiS (time) window. The resident 

set under liiS (T) at time t, denoted ii(t,T) • is the set of 

pages referenced in the time interval [ t-T, t ]. 

During phases of execution, the working set size is sta

ble, ax:d may even shrink, depending upon the time between 

successive references to resident pages. During tran

sitions, the working set expands rap idly, and shrinks again 

when the ne.rt phase is entered. This growing and shrinking, 

in response to program referencing patterns, is vha t 

replacement algorithms should do, instead of expecting a 

progra~: to exhibit a constant demand for its pages. 



16 

1.5 VIRTUAL aEaOliY PERFORaANCE 

1. 5. 1 Prcgfam f~rfQrll.!!!i~ Issues 

Perhaps the most widely accepted cost function for meas

uring the performance of a program in a virtual aemory envi

ronllent is the .§llil£~.!1~ ,l!roduct, ST, which takes into 

account both the faulting behavior and the memory demand of 

a program. On aost computer systems memory charge is 

assessed in "space-tiae" units, although the numerical value 

aay not be that of the space-time product. Consider a pro

grall e:recution I=J:[ 1 ],x[ 2 ), ••• ,x[ K ]. (It is often conven-

ient tc associate an execution with its reference string.) 

Suppose I e.xperiences N page faults at times t 1,t2, ••• ,tN, 

and has an average resident set size r. Then the space-time 

froduct is given by the formula 

N 

S'I= 'I*r + D*L [ IR (ti) I ) 
i= 1 

In the formula, D is the aean (elapsed time) delay required 

to service a page fault, T is the total execution tiae, and 

IR{ti)l is the si:ze of the resident set at the time of the 

i 1 th page fault. It has been shown [DENN76,GRAH76,GRAH77) 

that ST is close to its minimum when the average resident 

set size falls near the primary knee of the lifetime curve. 

Notice that the two performance measures, r and N, affect 

ST. Eoth reflect the amount of locality of reference --

small values imply good locality. As we shall see later, 

these aeasures are related to 

the module-to-page map. 'I his 

each other 

suggests 

indirectly through 

the potential for 

perfor&ance improvement through judicious definition of the 

module-to-page map. 



17 

In a multiprogrammed virtual memory system, each program 

contributes to the over-all performance of the system, meas

ured by the amount of work that passes throug1 the system 

per unit time. One way to achieve high throughput is to 

have the 111a:dmu1R number of s,imultaneous users at all times. 

But, since each user program's real storage requirements 

vary (as exFlained by the phase-transition behavior), simul

taneou.; exFansion of the TiOrking sets of two or more pro

grams can lead to very high page fault rates. If too few 

real storage page frames are available to absorb this 

increased demand, thrashing results, and the system begins 

to spend mc~t of its time paging, instead of completing user 

progra&s. 

How, then,· can near-optimum throughput be achieved, 

while, at the same time. staving off the onset of thrashing? 

Graham and Denning (GRAH77,DENN80J have found that operating 

each program in the region of the primary knee of its life

time function minimizes system page fault rate, and opti

mizes system throughput. They have also shown (DE~N80] how 

a working set dispatcher can te used to control the load 

(number of simultaneous users) in a multiprogrammed virtual 

me~ory system so that near-optimum throughput is achieved. 

The foregoing discussion has an important application in 

this wcrk: locality improvement techniques, such as program 

restructuring, should have as their goal tbe shifting of the 

location of the primary knee toward the origin. That is, 

restructuring .;hould decrease the memory demand or the 

faulting activity of the restructured program, or both. 



18 

1.6 FEEFOEfANCE IMPROVEMENT TECHNIQUES 

~uch of the early research in virtual memory systems •as 

directed at understanding the factors contributing to per

formance. Denning [DENN68a] suggested that 

"··· the trou~les with.paged aemory systems a~ise 
not from any m~sconcept·~on about program behav~or, 
but rather from a lack of understanding of a three
way relationship among program tehav~or, paging 
[refJaceme~t] algorithms, and the system hardware 
conf~gurat~on •• •" 

Pour arrroaches to improving virtual aemory system per

formance have been used. 

(1) Modification of parameters of t.he hardware configura

tion, such as page size or number of levels in the 

•emery hierarchy. 

(2) .!!edification of system policies and strategies such 

as scheduling and memory management algorithms. 

( 3) .M cdifica tion of the pro gralll 1s reference pattern by 

strict adherence to programming style. 

(4) .Modification of the program's layout, after it has 

been translated into object form, using program 

restructuring. 



19 

Special hardware devices and techniques are required to 

achieve acceptable virtual 

buffers and aesociative 

memory performance. 

registers speed up 

Look-aside 

the dynamic 

translation from virtual to physical addresses; faster pag

ing drums and more intelligent drum scheduling algorithms 

have decreased the time to handle page faults; and, mere 

recently, special hardware and firmware have been used to 

speed up ~emory management algorithms (COFF73]. 

ftemcry hierarchies received much attention during the 

early seventies [KUCK70,CijOW74]. 7oday, most virtual memory 

systems use multi-level hierarchies, although the number of 

levels is kept low: CPU cache, primary storage, drum or 

fixed-head disk primary paging device, and disk secondary 

paging device. 

Much research was devoted to the selection of the optimal 

page size [HATF72,COFF73]. Small pages were found to be 

best fer over--all main storage utilization, but slow trans

fer tines reguired large pages. large pages, on the other 

hand, are susceptible to "dynamic internal fragmentation" 

[ftASU79]. What is needed is intelligent packing of pages, 

regardless of the page size. 



20 

studies of paging algorithms (BELA66,JGSE70,AHCA71] 

revealed several approaches to memory management: management 

on a jocaJ cr gJQ!al basis; memory allocations of a fixed or 

~gri£]1~ number of page frames; and paging on demand or in 

~D!i£ifs!iQB of demand (i.e., prefetching). ftost algorithms 

can be c~assified according to these categories. 

An interesting study by Sneeringer [SNEE75) of solutions 

to the performance improvement problem for time sharing sys

tems pcints out a sensitive relationship between hardware 

and memory management software. Any solution should be 

based en a careful analysis of cost;performance tradeoffs 

affected by the cost;speed ratios of the (hardware and soft

ware) components of the solution system. A surprising con

clusion she reached vas that pure demand paging is not an 

optimal strategy for time sharing systems, unless the pro

tection and sharing afforded by virtual memory were 

required. 

The most recent progress in memory management is due to 

the elevation of the role of memory management to that of 

scheduling, as suggested ty Kuehner and Bandall (KUEH68]. A 

scheduler based on the working set model, and capable of 

controlling the load on a 

imple~ented and shown to 

(RCD~73b,GRAH77,DENN80]. 

multiprogrammed system, has been 

achieve near-optimal throughput 

lhe area of load control through 

scheduling is currently guite active, with special interest 

in shewing that proposed·methods are not susceptible to 

unpredictable anomalies that can lead to performance degra

dation. 



21 

Brawn and Gu~;tavson (BBA1i16B] shoved that programming 

style affects the running time of programs 

grammed and multiprogrammed environments. 

that, when programs are carefully written, 

perfor1ance approaches the anticipated level. 

in both unipro

'l'hey also found 

virtual memory 

Certain types of programs lend themselves to improvements 

through programming style. llany programs involving array 

operations are characterized ty sequential traversal of rows 

or columns. The major order in which rows and columns are 

stored, and the way looping to access the arrays is per

formed can have a dramatic effect on the number of page 

faults generated ( CO.Fl'€B,l'ICKE69,BRAW70,!10LE72,ELSH74 ]. 

l'lorris (liORR73] and Rogers [BOGE75) give hints for writ

ing high-level programs specifically for virtual memory 

environments. They show ttat knowing how a compiler builds 

object ~odules from the source program is essential to effi

cient program eiecution, and that the required modification 

in programming style does not appreciatly increase program

ming costs. 

One of the latest approaches to modifying the source pro-

gram involves source-level transformations. Trivedi 

[TRIV77] and Abu-Sufah [AEUS79] transform array programs by 

rewriting leaps to reduce the number of different arrays 

accessed inside each loop, therety spacing out the eipected 

time between successive page faults. A similar idea for 

opti~~:izing array expression evaluation in APL was used by 

Abra~s (AERA70]. His design for an APL machine used a combi

nation of deferred execution (which he termed "drag-along") 

and evaluation-Eequence optimization (termed "beating"), in 

order to reduce the total memory requirement for expression 

evaluation. 



22 

Co•eau (CO~E67] vas among the first to demonstrate exper

imentally that program layout bas a great influence upon 

program performance. 

Tsao et al. [TSA072], 

replacegent algorithms, 

His findings vere substantiated by 

who showed, for fixed allocation 

that layout has a greater impact 

upon program performance ttan does the choice of replacement 

algorithm. 

Early efforts to achieve good layouts involved modifying 

compilers tc perform otject code £aqination -- placement of 

modules within pages, avoiding page boundary overlaps. l!uch 

attention vas giYen to ensuring that the bodies of nested 

loops, especially the most deeply nested ones, not overlap 

page boundaries. These attempts were characterized by com

pile-ti~~:e analy.Eis of the static source program and the use 

cf boolean connectivity matrices as a model of program ref

erenciDg [ EA!IA66,LOWE70, VEEH71,BAEE72 ]. 

These methods marked the beginning of program restructur-

ing, which has 

aent of program 

as its goal 

modules to 

execution-time page faults. 

tbe determination of an assign

pages that will result in fewer 

The next section is devoted to 

reYiewing program restructuring. 



23 

1.7 PROGRAM RESTRUCTURING 

Prograa restructuring can be viewed as a so-called "opti

mization" such as that performed by an optimizing compiler. 

This section gives an overvie~ of the goals, methodE, issues 

and successes of program restructuring as a viable program 

performance improvement technique. A case is made for the 

adoption of automatic restructuring systems requiring mini

mal prcgra~mer involvement. 

1. 7.1 Q.!~.!.!ie~ 

1.7.1.1 Gcal of :restructuring 

The goal of program restructuring is the improvement of 

page-level locality of reference. This is accomplished by 

mapping {observed or predicted) module-level temporal local

ity into page-level spatial {within a single page, or within 

a cluster of pages} locality. Restructuring usually pro-

duces reductions in the number of page faults, in the aver

age resident set size, or in both. 

1.7.1.2 The basic procedure 

The gene:ra1 procedure for program restructuring is out

lined below. 

~teE j: The program's symbolic name space is partitioned 

into relocatable ~locks. 

St~E l: A .!~§1.!Y£!~.!in~ Eraph, represented by a square 

matrix c, is constructed. Each graph node represents a 

block: each edge represents a reference tetween twa blocks. 

Node weights correspond to tlock sizes. Edge weight C[i,j] 

represents the closeness of blocks i and j, i.e., the sav

ings in memo:ry cost that is realized when blocks i and j are 

stored ~ithin the same page. The algorithm used to calcu

late edge weights is called the restructuring E1goritbm. 



24 

A £!9~!g£lll9 algorithm takes the restructuring 

graph, and clusters blocks together into pages, attempting 

to maximize intra-cluster closeness, subject to the con

straint that cluster size not exceed page size. 

Ste,E E: The program tlocks are relocated in the virtual 

name Sf ace. That is, the blocks are assigned to pages by 

some pxcgram such as the compiler or link-editor. 

For procedure-level restructuring, the l:locks in step 1 

are external procedures, the restructuring graph contains 

(edges cf) the program call-graph, and the relocation of 

progra& blccks is performed by the link-editor. The differ

ent restructuring methods differ primarily in the way in 

which the edge weights are assigned in step 2. 

1. 7.1.3 Classification of methods 

Restructuring methods can te classified according to •hen 

the module-];age assignments are made, what constitutes a 

block, and !!ow the C[i,j] are defined. 

llethods that are based on information obtained 

from cne or more executions of the program are termed ~ ~Q§

!~fi.9fi lliethods { HATF71,FERR74a ,R YDE74, IIASU74, BAB077 ]. ! 
,Eri.Qri methods are based on information derived from a 

~!~!ic representation of the program, such as the program 

source code (RAIIA66,LOWE70,VERH71,BAER72,SNYD78a] • 

.Khat level? ilhen the blocks of step 1 are groups of 

instructions or data within a procedure or data module, the 

method is termed an in!§f:QE! method. Ctherwise, tte method 

is ter~ed an ~!g£nal method. External methods reguire no 

reprogram Iring or alteration of the otject code produced by 

the coapiler. Furthermore, the numter of blocks is usually 

less for external methods, resulting in lower restructuring 

cost. 



25 

.llg are the C[i,j] defined? l!etbods that make assump

tions about the page replacement algorithm under which the 

restructured program vill executed are called program tai

,!gri.mi methods [.FERR75]. such methods have been shown to 

outperform non-tailoring methods consistently, because they 

take into account more of the factors influencing perform

ance, naiely, program l:ehavior em l:odied in the reference 

string, and the replacement algorithm used by the system on 

which the ~rogram will l:e executed. In the-next subsection 

we present examples of non-tailoring and ta Hering 

approaches to defining the C[i,j]. 

The function of the restructuring phase is to define the 

restructuring graph, represented by the closeness matrix c. 
Matrix C defines a £!2§&n~§§ ~odel for the modules of the 

progra&. The closeness model is also called "inter-refer

ence" cr "affinity" model [JOBN75,1!ASU74,BYDE74). Closeness 

models are generally symmetric, 
' 

~Y!~al need for modules to be 

same page. 

since "close to" suggests a 

stored together within the 

Two issues are involved in defining the closeness model: 

(1) what constitutes a connection, i.e., when is C[i,j] 

nonzero?; and (2) how is the strength of connection defined, 

i.e., what values can the C[i,j] assume, and how are they 

assigned? In the simplest a priori closeness models, a con

nection is said to exist tetveen modules i and j whenever i 

g~B reference j (or j £An reference i), and the strength of 

connection is a constant, usually zero or unity. Such con

nectivity models reguire the least amount of information, 

but, net surprisingly, they yield the poorest results 

[BATF71,SNY~78a]. We now give examples of models that 

reguire more information and yield better results. 



26 

1. 7. 2. 1 The Nearness method 

The Nearness aethod of Hatfield and Gerald (HATF71] 

defines l![i,j] to be the number of times a reference to i is 

followed by a reference to j. For the syabolic reference 

string w="123232413121" 

M = [ 1 2 
0 
2 
0 

1 
1 
0 c i] • 

For the Nearness method, C[i,j] is the number of times "ij" 

or "ji" an:ears in the reference string. .!latrix c is 

defined by C = .1! + .1! 1 , where !! ' is the matrix transpose of 

!!. 

c = [ l 3 
0 
3 
1 

2 
3 
0 
0 ~] • 

1.1.2.2 Program tailoring: critical LRU 

The next example of a closeness model belongs to the 

class of "critical-set" program tailoring methods [FERR75]. 

In gene~:al, a tailoring method is based upon some replace

ment algorithm A, having control para•eter e, denoted A{€), 

and is afplied to a sym belie reference string 

v=w[1],w{2], ••• ,v{K]. Each symbol in w corresponds to a 

blg£k in the symbolic name space. The behavior of A(B) on w 

is sil!ulated, assuming each block to occupy a single page. 

Block resident sets R {A (B) ,t) are computed following each 

reference w{t), and are used to update matrix c, as shown in 

the fclloliing example. 

The ~fi!ifgl 1E~ (CLEU) method assumes that LRU is the 

und~rlying reflacement algorithm. The closeLess measure is 

defined as follows. lf a reference to j causes a fault, 

increment l![i,j] by unity tor each i that belongs to the set 



of resident •odules. Consider again the 

"123232413121", assuming an allocation 

frames. The seguence of resident sets is 

27 

reference string 

of two (block) 

n. *PJ, *f1,2J, *£2,3J, £2,3J, £2,3J, p,3J, 

*{2,4}, *{1,4}, *{1,3}, {1,3}, *{1,2}, {1,2}. 

The asterisks identify resident sets formed as a result of 

(block) faults. The resulting closeness .11atrix c, denoted 

CLiiU (2, w) , is 

[ l 3 
0 
2 
1 

2 
2 
0 
2 

7he "critical-set" tailoring 

goal the reduction of the number 

~ l 
algorithms 

of faults. 

have as their 

In fact C[i,j] 

is the number of page faults that ~ould go away if modules i 

and j are stored in the same page. Tailoring methods, in 

general, tend to be more expensive than non-tailoring meth

ods, because of the simulation of the replacement algorithm, 

and the comFlexity of the code to increment the C[i,j]. 

1.7.2.3 Belaticn to program locality 

Every Fage replacement algorithm is based on some 

imFlicit assumption about a program's pattern of page refer

ences; consequently, for programs exhibiting the assumed 

behavior, the replacement algorithm performs nearly opti

mally. When the underlying assumption is that the program 

exhibits locality of referEnce, the replacement algorithm 

FErforrs the role of a !2fE!i!~ estimator [DENN75], that is, 

it atte~Fts to determine the ioentity of the set of favored 

pages in CJ:deJ: to keep those pagEs rEsident auring the time 

they are being favored. The goal of the restructuring phase 

is to determine the most likely (constrained) module local-



i ty sets, 

define the 

ing j:hase 

ules that 

as approximated by the resident sets, 

28 

and to 

closeness a easure in such a 11 ay that the cluster

will place in the same cluster (page) those mod

co-occur most frequently in the resident sets. 

Program tailoring attempts to transform a module-level 

reference string into a page reference string whose refer

ence j:attern exhibits the locality properties assumed by the 

page replacement algorithm. Program tailoring methods suc

ceed because they use replacement algorithms (pri~arily oS 
and lRU) that have been shown to I::e good estimators of 

locality. The Nearness method, which is actually a tailor

ing method based on the I.BD(1) algorithm, is a poor estima

tor cf lccality because it has a very constrained locality 

set si:ze -- one module. In light of the phase-transition 

view cf J:rogram behavior, it is not surprising that perform

ance gains obtained using the Nearness met hod are consis

tently less than those of other tailoring algorithms based 

on better locality estimators. 

The earliest 

priori methods 

LOl/.E70, VEEH71, 

attempts 

applied 

EAER72]. 

at program restructuring were a 

at the internal level (RA!IA66, 

A priori 

on static l::colean connectivity were 

approaches 

limited in 

based solely 

their effec-

ti veness, mainly l::ecause boolean connectivity is a poor pre

dieter of the dynamics of program execution ( BABC77, 

SNYD78b]. What was needed was more information on which to 

base .testructuring decisions. Monitoring actual program 

e~ecutions frovided this information to a posteriori 

restructuring methods that achieved marked improvements over 

a priori arJ:roaches. Tbe higher cost of the a posteriori 

apfroacb, due to program monitoring overhead and the 

required analysis of the collected data, is compensated for 

by a higher level of performance gains achieved. 



29 

The Nearness aethod vas aaong the first to aake use of 

the gynam!£ behavior of the program, as emtodied in the pro

gram trace. Other restructuring aetbods were proposed to 

improve upcn the Nearness method [~ASU74,FERR74a]. Johnson 

[JCHN75] and Ferrari [FERR73,FERR74a,FERR74b] vere among the 

first to use prograa tailoring to achieve significant 

improvements over the Nearness method, but at higher analy

sis costs. The fully-automatic, adaptive and user-transpar

ent system OPALE (BAB077,ACEA78], is a program tailoring 

approach that makes use of a program's history of faulting 

behavicr to modify its layout periodically. 

Snyder [SNYD78a,SNYD78b] has demonstrated that language

driven a rrioii restructuring based on static program analy

sis can rroduce layouts as good as those produced by 

a posteriori restructuring. Be achieved this by taking into 

account the internal structure of each subroutine {proce

dure) and the semantics of parameter passing. Snyder's 

approach differed from the earlier a priori methods in that 

his layouts sap ~Jte~~~ll~-relocatable program components -

FORTRAN subroutines, arrays and CC~MON blocks -- into pages. 

Snyder also proposed a method for using static structure 

inforaaticn to perform prefetching for array processing pro

grams, a performance improvement technique used successfully 

by others (JCSE70,TRIV77]. 



30 

1.7.4 ~.!!!!.!!!.i!il 

Prcgram restructuring is an important technique for 

enhancing the performance of a program running on a paged 

virtual meJJory computer system. The effectiveness of 

restructuring depends upon (1) the quality of tbe informa

tion availat:le about tbe program 1s symbolic-level behavior 

(an execution trace provides the best information), and 

(2) the degree to which tbe restructuring algorithm is based 

upon a geed locality estimator. 

A posteriori program restructuring does work, but the 

cost and effort required to attain the execution trace make 

such restructuring economical only for often-used programs 

[ llATF71,PEEB76a) that have significant memory cost. Another 

factor in the widespread application of restructuring is the 

g~§g with which it can te applied. The OPALE system and the 

LOCALlZEB [FERB73] are systems providing nearly fully-auto

matic restructuring capatility -- steps in the right direc

tion. 

The critical-set tailoring algorithms of Ferrari repre

sent the state of the art in a posteriori program restruc

turing, and thus provide an accepted tase for evaluating new 

restructuring afproaches. 



31 

1.8 OVERVIEW OF THIS RESEARCH 

The Procedure-Activation .Model (PA.!l) attempts to use the 

way a program is written (decomposed into procedures and 

control structures) to predict its procedure-level reference 

behavior. The major advantages of such an approach are sim

plicity, naturalness and suitatility for automation. After 

all, procedures and control structures are the units of pro

gra• ccKposition closest to the conceptual solution of a 

problen:. 

PAM is used to generate .§_ynthetic procedure reference 

strings to approximate execution trace strings. The .§Ub1~ 

(modeled) program is modeled procedure by procedure. Each 

procedure description has two components. 

• ~!g!if f£!EQBg~!· A context-free grammar, 

gy§~g gf~!ar, describes the placement 

cortrol structures (loops, conditionals 

~ithin the procedure body. 

the gll-se

of calls and 

and gatos) 

0 ~_ynami£ fQEEQnen!. Numerical vectors, called E£££!etef.§, 

describe the flow of control through the procedure, 

observed during one or more executions of the procedure. 

Parameters are obtained simply by counting the execution 

frequency of selected program statements, 

and strongly recommended by Knuth [KNUT69], 

an idea proposed 

who called the 

counts II~!i!~· He suggested that profiles be used in pro-

gram testing to detect sections of untested code. 

can further be used to improve the efficiency 

(by opti11ization of selected program sect ions) 

Profiles 

of programs 

and of lan-

guage translators (by identifying and optimizing the trans

lation of language constructs used most often at a particu-



lar installation). In Chapter 2, 

estimation is shown to l:e low. 

32 

the cost of parameter 

There are three major steps in program modeling. 

0 Mc4el Q9nstr~ction. 7he call-sequence grammar is con

structed, and the sutject program is instrumented to 

rrcduce parameters when it is executed. 

0 f2~2~~!~~ ~§!!!at!on. Each execution of the instrumented 

subject program produces a set of parameters.. These can 

te combined with parameters from other executions to 

form parameters which describe a set of program execu

tions. 

0 ~~£!h~!i£ §!!!ng g~n~rg!iog. The static and dynamic com

ponents of the model are coml:ined, and used to generate 

syllthetic procedure reference strings. 

Each modeling step can l:e fully aut om at ed. I he major 

thrust cf this research is an investigation of PAM modeling 

techniques and the effectiveness of synthetic reference 

strings when used in program restructuring. A secondary 

concer£ is the cost of constructing and using the automatic 

modeling system. 



33 

1.8.2 lh~ Seep~ Q! lhiE Besearch 

Thi~ research is basically a simulation study of the use 

of synthetic reference strings in prograa restructuring. 

Existing restructuring algorithas Ferrari's ClBU and CiS 

-- are used. providing accepted bases for evaluating the 

results ve obtain. l paged.virtual aeaory aachine is siau

lated to Froduce ferforaance data. 

The automatic aodeling system descrited herein has not 

been iiFlemented. hut guidelines for its construction are 

given. and clearly show how the systea can ke iapleaented. 

Several FL/I programs. of medium size and coaplexity. are 

aodeled and the perforaance of their synthetic strings in 

frograz restructuring is evaluated. 

The study of model properties is limited to the use of 

the model in frogram restructuring; other applications and 

investigations are suggested as topics for further research. 



34 

1.9 MAJOB THESES AND CLAIMS OF THIS BESEABCH 

Thi~ research proposes an automatic system for program 

model coDstruction, parameter estimation and synthetic ref

erence string generation, as a front end to a posteriori 

progLam Lestrocturing. The theses of this research are pre

sented in decreasing order of contribution to the state of 

the art. 

o Program restructuring using synthetic reference strings 

produces layouts whose performance does not differ sig

nificantly fLom the performance of layouts obtained from 

program restructuring using execution trace strings. 

• Extensive modeling effort is not required to obtain good 

restructuring results using synthetic reference strings. 

o The synthetic-reference-string 

syste& can be fully automated. 

program restructuring 

o The cost cf constructing and using the automatic model

ing system does not exceed the cost of the execution

tracing approach. 

'Ihe following claims, although they do not constitute 

theses, de point out some of the more promising features of 

the model developed in this study. The PAM model has possi

ble application beyond that attempted in this research. 

0 PAM is a useful conceptual model that gives insights 

into the relationship tetween program structure and Fro

gram referencing behavior. 

° FAll instrumentation and parameter estimation provide a 

leo-cost ~ay of monitoring program execution, and can be 

used in automatic program testing. 



36 

1. 10 CEGANIZATION OF TB! IISSERTATION 

This chafter has presented a brief overview of the 

research, a~ong with sufficient background material for 

reading the remaining chapters. 

The Procedure-Activation Model (PA!) is defined in Chap

ter 2. A comp~etely automatic modeling system is designed, 

and shewn to require low overhead. The mode~ is shown to be 

flexible enough to accommodate different approaches to mod

eling, specifically in the areas of parameter estimation and 

string ~eneration. 

Chafter 3 describes the sutject programs used in the 

research, reviews the issues of program restructuring rele

vant to the research, and defines the layout comparison 

methodology. ~inally, results are presented that show the 

degree to which the execution of the subject programs can be 

improved through the use of restructuring. 

Chapters ~. 5 and 6 present empirical results from pro

gram restructuring experiments that used the synthetic ref

erence strings generated from instances of PAM. Chapter 4 

contains results from modeling using the simplest model ver

sions and farameter estimation approaches. In Chapter 5, 

more sophisticated model versions and parameter estimation 

were used in an attempt to improve model accuracy. Chap

ter 6 presents a case study, where the techniques of Chap

ters 3-5 were applied to a final subject program. 

Chapter 7 contains conclusions and recommendations for 

further investigation. 

A glossary of acronymns is provided for easy reference to 

the ~any acronymns used throughout the dissertation. 



chapter 2 

rBE PBOCEDURE-lC~IVlTION ~ODEL 

The Procedure-activation Model (PAM) is defined in this 

simple structured 

as the high level 

chapter. we begin by defining SSPL. a 

that will be used progra=•ing language 

source language 

as the language 

in which program examples are written, and 

in which the model construction algorithms 

are exrressed. Several methods of estimating model parame

ters are given. followed by a discussion of synthetic string 

generation techniques. lie conclude the chapter with an 

over-all analysis of the cost of using the model, and with 

the definition of model variants. ae show that the entire 

modeling process can be fully automated. 



38 

2.1 PliELII!INARIES 

~he ~rograaming language SSPL contains the basic seguenc-

ing ~riaitives that allow looping, selection, 

calls and escapes (restricted branching). 

procedure 

All rrccedures are e~ternal. The synta~ of the procedure 

statement is 

f!OC <procname> <parameter list> 

<declarations> 

·<stmt> 

The aain Frocedure is distinguished by the occurrence of the 

keyword !~in in the parameter list. 



2.1.1.1 Seguencing primitives 

looping 

selection 

Escape 

Call 

BeturD 

.2xntax 

fepeat (control. clause) 

statement 

~llQfepeat; 

§~lect 

if(cond1) stat1 

••• 

else stat 

~!!.Qselect; 

~§cape<arith expr>; 

~_gll <procname>; 

39 

Example 

repeat(for X:=l to 10) 

S:=S+I; 

en drepeat; 

select 

if (I> I) I:=X+Y; 

if (I<Y) Z:=X; 

else Z:=X-Y; 

endselect; 

escape 3; 

call A; 

return; 

lhe statement "es~ape n n causes an exit from n levels of 

control structure nesting. When n~O, no tranch is executed; 

when n is greater than the nesting level, the effect of the 

statement is that of the "feturg " statement. 

2.1.1.2 Data types 

Three attributes characterize variables: 

- structure -- §£.E1.EI or _grray 



2.1.1.3 Exa~fle program P1 

lie conclude the introduction 

Figures 
of SSPL with an 

2.1 (a-c), li ill 

40 

example. 

be used Progra~ F1, shown in 

throughout this chapter. Its function is of no particular 

importance; we merely need to study its structure, i.e., the 
seguence and nesting of control structures. 



I 

li.Q£ A (!!a in) ; 

global !n!sE~f array F(1:50]; 

global in!~E~f scalar A1,A2,A3; 

lo£al inteE~I ~lar I,J,N,I,S; 

,1;,gad (N,I) ; 

re !'~~! (!Qf I:= 1 to N) 

re,gg ( F {I ]) ; 

mJ.9Hl.Eea t; 

..§el~ct 

.iJ. (N>25) call B (F ,25) ; 

else 

call C (N, X) ; 

S:=O; 

[~.ES.2! (fo[ I: =1 to li) 

S:=S+.F(I ]; 

call D(I,F(I],S); 

f~!.l B (F,N); 

!'!l.9fepeat; 

~.!! dsel ect; 

S:=O; 

g.E~.2! (for I: =1 !2 J while S<I) 

£gll f(F[I]); 

S: =S+F( I); 

!l!JQgpea!; 

~DdfrOf A; 

Procedure A of Sample Program P1 

41 



( 

.Ill£ B (X , N) ; 

in_!ggg_!: g.J!l.i!I li; 

ill tegg_!: .ll!:ll X; 

q!~bal int~gf array F[1:50]; 

local intgqg£ §Calar l,J,U; 

U:=X(1); 

.!~ea_!(fof J:=1 to N) 

call C(!i, 0) ; 

~le£! 

i,! (U<F[ !i )) call D (l,F{ J ], U) ; 

i,! (UH[ li )) 

call c (N ,.F( li ]) ; 

_!§tU_!:!!; 

~1.2!1 escape 2; 

endselect; 

U:=I[l+1); 

!l!!QI~mea t; 

call E(I) ; 

enQ.p_!OC B; 

Iil.YI!l 1-1 U!l 
Procedure B of Sa•ple Program Pl 

42 

I 



I 

I 

HO£ C{U,V); 

!ateg~I ~calar D,V; 

logal i~!~I scalar 5; 
S:=D+V; 

§elect 

i.f (U=V) S:=O; 

j,.f (U>V) call E (V, U); 

!l!g f£1! D[D,V,S); 

,gn d.il.!ll ect; 
endproc·C; 

HQ£ D (L,l!,li); 

integ§I scalar L,l!,N; 

call E (L); 

.f£U E (!!); 

call E (N) ; 

!l.!!£EIQ£ D; 

frog E {X) ; 

in!.!lg.!li scalar X; 

.)2Iin t (X) ; 

~.!!g_pi25: E; 

1.!.9.!!!:§ 1-1 (.f) 

Procedures c-E of Saffiple Program F1 

43 



44 

2.1.2.1 io data references 

Data references are not aodeled, for three reasons. lhe 

first and most important reason is that no efficient soft

ware tcols besides execution interpretation are available 

f cr 1 c.ti toring data references. Tracing data references 

slows ~rogram execution [HATF71). Second, passing parame

ters by reference makes it impossible to model data refer

ences using a context-free grammar, since the identity of 

the data item referenced inside the called procedure depends 

upon the site of the call, i.e., the context of the caller. 

Any attemFt to solve this protlem would require a grammar 

aore powerful than contert-free. The third reason is that, 

even if it could be done, the grammar used to describe all 

possible reference seguences would te so large that syn

thetic string generation would te very inefficient. 

2.1.2.2 Predictable flow of control 

Flow of ccntrol must be predictable from the source code, 

execution must always tegin at the first statement of a code 

module, and a procedure must always return control to its 

most recent caller. !herefore, coroutines and interrupt 

routines are not modeled. 

2.1.2.3 Call-path independence 

A rrocedure•s behavior is assumed to be independent of 

the program's call history. That is, a procedure is assumed 

to behave the same way each time it is called, and therefore 

can not be influenced to behave differently for different 

callers. This assumption is required because the call-se

quence grammar is context-free. Procedures violating this 

assumption can nonetheless te modeled, as we shall see in a 

later section. 



45 

In Chapter 1 ~e outlined thE major phases of PAM model

ing: 

( 1) call- sequence grammar construction and program 

instrumentation; 

(2) ~rogram execution and parameter estimation; and 

(3) synthetic string generation. 

These ste~s correspond to instrumentation, observation and 

generation. The process is described i.n Figure 2.2. In 

the figure, rectangles indicate steps in the process , and 

arrows indicate data flow into and out of each step. 

Ihe frcgram to be modeled is called the subject program. 

Model construction produces three outputs: the call-sequence 

grammar (CSG); instrumented object code for the subject pro

gram (ICBJ); and the parameter descriptor database (FDDB), 

which describes the parameters required to model each proce-

dure. Parameter estimation involves executing IO.EJ a num-

ber of times. Each execution produces execution coeffi

~i~ts, counts of loop and selection construct usage, which 

are stcred in the coefficient oatatas e (CDB) following pro-

gram eiecution. Coefficients aust be converted into the 

parameters for use during actual synthetic string genera

tion. Parameters are stored in the parameter database 

(PDB). Synthetic string generation requires the grammar 

(CSG) and farameters (PI:B) as inputs, and produces one or 

more synthetic strings (SYN) as output. 

'!he call-seguence grammar and the parameters used in syn

thetic string generation constitute an j~ta~f& of PAM for 

the subject program. A model instance for program F is 

denoted FAM(P,II) = <CSG(P),PARM(P,W)>. PA!iM(P,II) denotes 

the model parameters derived from a set W of executions of 

the instrumented object code (JOBJ). When no ambiguity can 



result, the aodel instance can 

Plll(W) = <CSG,Pll!I!(W)>. 

Source program P 

+ 

C
;;;t~ct--] 

and 
-------- Instrument --l r ---------

~ + l 
CSG IOBJ PDDB 

Synthetic reference strings (SYN) 

:E,!_gure £._£ 
The Automatic l!ooeling System 

be 

46 

denoted 

The ne.xt three sections of this chapter discuss the 

phases of FA!! modeling in terms of inputs, data structures, 



47 

algorithms, output and cost. Particular attention is given 

to shoving that the automatic sodding system can easily be 

integrated into existing Sjstem software to provide an addi-

' ticnal rrcgram "optimization" akin to that provided by opti-

mizing co•Filers. 

2.2 ~ODEL CONS1RUCTION 

The construction phase of PA~ modeling is depicted in 

Figure 2.3. The source text of a subject program module is 

the infut; the outputs are its PA~ call-seguence grammar, an 

instrusented Yersion of its object code (IOBJ) and a data

base Lecord describing the parameters reguired by the CSG. 

Each output will be descrited in the succeeding sections. 

Subject Program ~odule 

~ 
{---------[-~~~~1~~~~~~--------J 

CSG IOBJ 

l'i.!JJJg 1-l 
Model Construction 

PDDB 

We should point out here that the assumptions and 

algorithms we are about to present protatly do not represent 

the most efficient way to construct automatically the model 

of the subject program. Our intention is rather to present 

straightforward algorithms and analyses that give insights 

into the nature of the model construction process. 



48 

The call-sequence grammar (CSG) 

in Figure 2.4. The CSG gives a 

for program F1 is given 

linear representation of 

the structure of each procedure, i.e., the placement of sig

~!i£aD! £.9!!!ro! structJll;~ within the procedure. A signif

icant central structure is defined recursively as 

(1) a call or return statement; 

(2) a leaF or selection construct that contains a sig

nificant control structure; 

(3) an escape from a significant control structure. 

Only significant control structures affect the sequence of 

execution-time Frocedure calls. 

A = ( E I c < D E > ) < E >· • 
B = < c ( D C! I -2 ) > E; 

c = ( E I D ) ; 

D = E E E; 
E = ; 

f!.9.l!H 1·~ 
Call-Sequence Grammar for Sawpl e Fro gram F 1 

Consider the CSG production for procedure A, which shows 

that either A calls B, followed ty repeated calls to E, or A 

calls c, fcllowed by repeated calls to D and B, followed by 

repeated calls to E. In the CSG production for B, the 

selecticn (or conditional) construct is nested inside the 

loop ccnstruct. ilbenever the second alternative is 

selected, C is called and B immediately returns to its 

caller; whenever the third alternative is selected, an exit 



is aade fxom two levels 

resulting in the call to !. 

49 

of control structure nesting, 

The production for procedure c 

has as its first alternative a null call, which corresponds 

to an execution of the selection construct that does not 

lead tc a procedure call. 111 alternatives of a significant 

selection construct aust te aodeled. 

A su~mary of the CSG operators and the corresponding SSFl 

keywords is pxesented below. 

"I" 

"-" 
11! " 

n .. tt • 

EfQ£ 

Explanation 

loop delimiters. 

selection construct 

delimiters 

alternative separators. 

exit control structure. 

exit from procedure call. 

start of CSG production 

definition. left-hand side 

is name of procedure; right

hand side contains operators 
and procedure names. 

production terminator. 



50 

The table of CSG operators and SSPL keywords reveals that 

CSG coLstroction can be lteJword driven and, as such, it can 

be inccrporated into either the lexical or syntactic analy

sis phase cf a compiler. lie now present one such (not nec

essarily optimal) algorithm for CSG construction in order to 

sh oli the amount of work that is reguir ed. This algorithm, 

called the CONSTRUCTOR, takes as input the SSPL source code 

for an arl:itrary procedure P, and produces as output the CSG 

production for P. The CONSTRUCTOR may also be used to pro

duce ether outp llts that will be used in later phases of the 

modeling process, such as the instrumented source program 

(source level or object level) and a descriptor for the 

parameters required for that production. In the next sec

tion lie discuss program instrumentaton; here ve will show 

how the grammar and parameter descriptor are constructed. 

2.2.2.1 Required data structures 

!cti~~ ~fnstr]£! ~tack (ACS). A construct is gctive if 

its initial delimiter has teen scanned, but not its terminal 

delimiter. Each stack element bas the following format. 

I construct l count l size l #par am~, where 

ccnstruct encodes the type of control structure: 

-n the n'th loop; 

0 the start of procedure; 

+n the n 'th selection construct. 

count is the number of significant control structures 

liithin the construct. 

size is the number of CSG symtols generated. 

trarams is the numter of parameters required. 



51 

f£1Iut ~]II~£ (OB) contains CSG symbols generated during 

model construction. 

~~~§!~Y£! ~~££!i£!2! Ig!le(CDT). Each construct in the 

final CSG froduction has a tat:le entry of the form 

I construct 1 lparams f. 

~he g~rame~ De§f!iEtox (PD) record for each production 

has the fermat shown in Figure 2.5. It describes the num

ber and types of constructs contained in the production, 

along with the number of parameters required for each con

struct., and for the production as a whole. As an example, 

procedure A has the production parameter descriptor 

I A I 6 I 2 I 1 I 2 I· 

Procedure A requires six parameters: two each for its two 

loops, and two for its one two-way selection construct. The 

ui in .Figure 2.5 are referred to collectively as the 

.§el~f.!i.21l .Qg.§criE!or list ISDL). 



Frocname is the name of the procedure; 

1 is the total number of parameters required; 

l is the numter of loops; 

g is the number of selection constructs; 

ui is the number of alternatives in the 

i'th selection construct. 

!ignr~ 1·~ 

Parameter Descriptor Data Base Becord Format 

2.2.2.2 Description of the algorithm* 

52 

J 

The output tuffer OE is filled one symbol at a time. 

lihen a construct initiator sym tol (a "E£2£", "repeat" or 

"select") is scanned1 an ACS record is pushed onto the 

stack, and the corresponding CSG output symtol is moved to 

OB. The top element of ACS is the curren1 £Q~tr~ct; its 

count field is incremented each time "£Ell" is scanned; its 

size field is incremented each time a CSG symbol is moved to 

OB; and its #params field is initialized to tvo fer loops, 

and is incremented by one each time "if" or "else" is scan

ned. lihen the current construct terminator (an "-f;nd.EI.Q£", 
11 §!!£f~.E~A!" or "~ndselect") is scanned, its CSG output sym

bol is mewed to OB. If, vhen the end of the current con-

*This algorithm does not handle escapes. A siq.t<:i.!icant 
escaFe frcm a construct makes that construct s~gfi~f~cant, 
and vice-versa. Determination of significance requires 
lock-ahead -- to the end of a (possitly nested) construct. 
Algorithm aodifications required to hanale escapes are simi
lar to the use of l:ranch-atead tal:les in assemblers and com
pilers. lie ~o~ill not give further details. 



53 

struct is reached, its count field is zero (i.e., no calls 

were made from within the construct), OB is purged of all 

output symbols generated by that construct. ~he size field 

contains the number of symbols to te deleted. If the count 

field is nonzero, a CDT entry is made for the construct, the 

element is popped from ACS, and the count field of the new 

current construct is incremented by the count field of the 

old current construct (this reflects the nesting of control 

constructs) • 

The PD is constructed from the CDT after the source pro

gram has been scanned. The Parameter Descriptor records for 

the procedures of program P1 are given in the following 

table. 

L.!!~.!!!g_l#par~§1HQQE2Jllsel ects I SDL 

A I 6 I 2 1 2 

B 5 I 1 1 I 3 

c I 3 0 I 1 3 

D I 0 

E I 0 I 

2.2.2.3 Discussion 

This algorithm requires only one pass over the source 

prcgra~, and can be incorporated into the lexical analysis 

phase of the compiler if the source language contains the 

eguivalents of SSPL constructs. Otherwise, for languages 

such as FCETEAN, some constructs must be simulated using the 

sequencing primitives available, which may require the CSG 

construction to be incorporated into tbe syntactic analysis 

phase cf the compiler. 



54 

The second aspect of model construction is the instrumen

tation of the subject program so that it will produce param

eter estimates when it is executed. Instrumentation 

involves 

-allocation of instrumentation varial:les (ivars) ; 

-in!Oertion of instrumentation code (icode) 

ivars to be incremented; 

to cause 

-insertion of code to write the values of ivars to the 

coefficient database. 

The values of the ivars from a single execution of the sub

ject program are called fQ£ffi~ients, and are written to the 

coeffifien! Q~!~~~§~ (CDB). Coefficients from one or more 

executions are combined to form the parameter Qatab~ 

(PDB). 

We nov show how the CONSTRUCTOR can be extended to 

instru&ent the subject program. Again, we will discuss the 

required ~odifications to the data structures. The instru

mentation algorithm we no• present is decomposed into two 

passes to enhance clarity, although an actual implementation 

may use only a single pass. 

2. 2.3.1 Allocation of instrument at ion v ar iahles 

The number of ivars required for a procedure depends upon 

its CSG production. Each loop construct requires two, one 

to· count the number of times the loop is entered, the other 

to cou~:t the total numl:er of times the l:ody is executed. 

Each selection construct requires one ivar per alternative. 

Instruaentation variables are assigned to loops 

the left-to-right order in which the loops appear 

first, 

in the 

in 

CSG 



55 

production. The first loop in the production is assigned 

ivar[ 1] and ivar[ 2]. Bext, ivars are assigned to selection 

constructs in a left-to-right order of the constructs; 

within a construct, the ivars are assigned consecutively. 

Consider the CSG production right-band side below. 

< A ( B I D ( B I ) I < c > ) > ; 

~ ( l l ! l l 
1,2 5 6 8 9 7 3,4 

The indices of the ivars assigned to each construct appear 

underneath the .~:especti ve CSG construct symbols. 

Instrumentation can te viewed as 

formation that inserts statements 

a source-language trans

within the source pro-

gram. Allocation of ivars amounts to declaring an array to 

contain the ivars, namely the SSPL statement 

g].Q.£21 in_tgger 2n:2.1 <procname>ivar[1:#params] 

2.2.3.2 Insertion of instrumentation code 

Instrumentation code takes the form "incr(n)", which 

causes ivar[n] to be incremented by unity. Insertion of 

iccde requires two items of information: the ivar index and 

the inserticn point. 



56 

The location of the insertion point is ba.sed on syntax, 

as showD below. Insertion points are indicated by aster-

isks. 

Loop construct: *1 ~~E~~i( 

Selecti CD construct: 

g_lgct i! (con d) * stmt 1 

. . . 
elg * stmtn 

!i!l9~lect 

At the loop instrumentation point •1, the loop ~nt~£g fre-

quency the number of times the loop is entered from the 

top -- is determined. The loQE repetition frequency -- the 

nu~:ber of times the loop body is executed -- is computed at 

Inserticn points can l:e determined during pass one, as 

the CSG is being constructed. ihe ACS and CDT are extended 

to include a field that points to a list of construct inser

tion pcints. An insertion point list (IPL) has nodes of the 

form 

liP I ivar 
L-

next!. 

where ivar is the index of the ivar to be incremented, ip is 

the pcsiticn in the source (or intermediate) code af~ 

which the icode is to l:e inserted, and next is the list 

pointer. for simplicity, ip is expressed as the serial num

ber o.f the source program syml:ol following which tte inser

ticn is tc be made. 

At the end of pass one, the ivar field of each IPL node 

is assigned an ivar index. During pass two, each time an 



57 

inserticn pcint is reached, the icode to increment the cor

responding ivar is inserted. The instrumented version of 

procedure E of program P1 is given in Figure 2.6. 

Jl.!Q£ B (I,B); 

int~g~f §f]lA£ N; 

integer ~M I; 

local in.!.§9.§£ scalar I, J, U; 

global i!!!&gg array Bivar[ 1:5]; 

U:=I[ 1 ]; 

i!!f.I ( 1) ; 

.!~~~!C12f J:=1 to N) 

ing(2); 

g]J.l C (N,U); 

§el~ct 

if (U<A[ N]) 

ins;£ (3) ; 

.fall D(I,A[I),U); 

i.! (U>A[N)) 

.§!l.§§.§J.§Ct; 
U:=X[I+1]; 

.§ndrepeat; 

_s;all E(I); 

~!H!HQ£ B; 

.i.!!.£!: ( 4 J ; 
H!l C(N,A[N]); 

return; 

.ing (5) ; 

§§£.2£~ 2; 

f.igyre l-.2 
Instrumented Procedure B of Program P1 



58 

2.2.3.3 E~traction of execution coefficients 

The execution coefficients must he written to the coeffi

cient database after the termination of the execution of the 

subject program. l straightforward instrumentation to cause 

this tc bafpen requires two new procedures, WBITECR and 

DO.!IP. liBITl!CI:i writes the co_efficients belonging to one sub

ject prcgram procedure. lt takes as parameters the name of 

the procedure, the numter of parameters (ivars) and the ivar 

array for that procedure, and writes a CDB record having the 

format 

[procname 1 Jparams I ivar[ 1:1params] (. 

Procedure DD.!IP1 which contains {global) ivar declarations 

from each procedure, passes to WBITl!CB the ivars from the 

executions of each procedure. DU.!IP can be generated from 

the infcrmation in the parameter descriptor database (PDDB). 

A call to DU.!IP must be the last statement executed in the 

main procedure. Figures 2. 7 and 2 .a show the DD .!IP and 

WRITECE instrumentation routines for program Fl. 

This instrumentation produces output that must be manipu

lated further to make it suitable for generating synthetic 

strings. The parameter database is constructed from the 

coefficient databases procuced by multiple program execu

tions, and may contain detailed historical and statistical 

data scch as extrema, averages and variances of coefficients 

of selected constructs. For example, the generation 

algorithm may reguire that loop parameters be expressed as a 

single scalar representing the average loop repetition fre

quency, or as a range [n 1,n2], where nl and n2 are, respec

t! vely, the minimum and maJimum loop repetition frequencies, 

or as a Fair of descriptive statistics (e.g., mean and vari

ance of repetition frequency). 



I 

HQ£ DU!IP; 

_gloHl i!l.!.§.!l €r array Aivar[ 1:6]; 

,glo.£al iuHger array Bivar[ 1:5]; 

glo~al in!.!l.9li arrai Civar[ 1:3]; 

call WRITfCR("A",6,Aivar); 

fall iRITECR("B",5,Bivar); 

call WRIT fCR ("C",3,Civ ar); 

~!!!J.E!OC DU!IP; 

fi_gure --1·1 
Instrumentation Routine DU!IP 

.£!££ iRITECR(PROCNAliE,IPARA!IS2,IVAR); 

§£g!ar ~!ring PROCNA!IE; 

§£alar int~q~ tPARA!IS2; 

!~!g~f g£I~ IVAR; 

]!fite (PROCNA!IE,tPARA!IS2,IVAR) !:2 file (CDB); 

etdfrCf WRITECll; 

fi_gyre l·l! 
Instru•entation Routine WRITECR 

59 

l 



60 

2.3 PARA~ETER ES~I~ATION 

Parameter estimation can tegin during the testing and 

debugging of individual modules, provided that the tests use 

representative input. Such an early start can provide 

insights into the nature of the program long before it has 

been co1pleted. In fact, PAll parameter estimates provide a 

cl.aracteri:zation of the data used in 

follows. If exhaustive program unit 

program 

(modules 

testing, as 

and control 

structures) testing is desired, a set of test data is assem

bled, the Frogram is executed using the test data tc prodoce 

execution statistics from lihich can te determined which mod-

ules and mcdule units have been exercised. Additional test 

data are created until all tte desired program units .have 

beell exercised. PAll parameters record precisely the infer-

mation of interest, provided that the program has been 

instrunented to produce execution coefficients. 

Parameter estimation is depicted in Figure 

shows the required databases and processing. 

IOBJ 

PDB 

Parameter Estimation 

2.9, which 



61 

The various databases, Parameter Descriptor 

ficient (CI:E) and Para&eter (PDB), which are 

(PDDE), Coef

used during 

2.5, 2. 10 parameter 

and 2. 11, 

esti&ation, 

respectively. 

are described in Figures 

During the PDE update, the procname field is used to 

match records from each of tte three databases, FCDE, CCE 

and PDE. The CDE ui values for alternative constructs are 

added tc the corresponding PDB cjk fields, where the PI:DE 

record is used to deter11ine the correspondence between the 

ui and cjk fields. the first 2*1 ivars are allocated to 

loops, The average repetition count for loop j is the quo

tient u[2j]/u[2j-1]. For loop i, mi, l!i, ai and Di are 

updated using u[ 2i- 1] and u[ 2i]. 

t 

------------------------------~ 
{ procname J K I u 1 l u 2 I -.. I uK ) 
-----------------------------------

K is the number of ivars; 

ui is the value of the i'th ivar. 

Iigur§ 1-.l.Q 
Coefficient Datatase Record Format 

_j 



B is the number of numeric subfields in tbe 

J:ecord; 

1ti is the average minimum loop i repetition 

count; 

l!i is the average maximWl loop i repetition 

count; 

ni is the total number of loop i executions; 

ai is the average repetition frequency for loop 

i. 

vi is the variance of repetition frequencies for 

lCCf i. 

cjk is the cumulative execution count for the 

k'th alternative of the j'th selection unit. 

62 

I 
L------- ------------·---------------------------------------~ 

.figur!il 1·11 
A Parameter Datalase Record Format 



63 

Estiaating PAM parameters involves observing, or §~

E!ing, one or more eiecutions of the instrumented subject 

prograa. One would Eipect that as the number of observa

tions increases, so would the confidence one could place in 

the quality of the estimates. We nov consider three 

approaches, and show that the PAff modeling system database 

contains (cr can te made to contain) the information neces

sary tc surrcrt any of these approaches. PAM parameter 

estimation produces a database which characterizes the 

observed eiecutions. 

2.3.2.1 One-time observation 

A single execution of the sutject program is used to col

lect ~arameters. Although such an approach may seem unac

ceptable, there are cases when it will provide a very good 

characterization of the sutject program -- when the program 

is ~~!~-i~§~nsi!ive. · Some programs have been found to 

exhibit this property. But unless the subject program is 

known with certainty to have this property, a single obser

vation should not he used. 

The pursuit of a representative sample is commcn to any 

sanplirg endeavor, and the intuition that the larger the 

sample, the more representative it is, gives a good rule of 

thunb fer sarrrling. What is needed is a way of characteriz

ing a sample, so that uncertainty can be dealt with using 

statistical methods. PAM parameters, which, as we shall see 

later, can be determined at a very low cost, provide such a 

characterization. 



64 

2.3.2.2 F~edete~mined numter of observations 

For mcst prograas, e~ecution time behavior depends upon 

the inputs used to drive the program. Although the set of 

all possible input values is infinite, the set can be parti

tioned into a small number of groups Gi, such that within a 

particular group, program behavior is (approxiaately) con-

stant. For such programs a reasonable st~atified saBpling 

method is tc choose representative inputs from each data 

group Gi, to observe the program's execution with these 

inputs, and to form cumulative parameters from these obser

vations. This approach requires that the programmer or user 

of the program know 1:he e~pected range of inputs and the 

effect of each group of inputs upon the program's control 

f lev. 

Another multiple-observation approach is random sampling. 

That is, during the in-production lifetime of the program, 

executions to be sampled are chosen at random, without 

regard to the type of inputs used for the e~ecution. This 

approach may require a larger number of observations than 

stratified sampling, but it does appeal to those desiring 

some statistical basis for the parameter estimation 

approach. Moreover, such an estimation can be undertaken 

without depending upon (possitly inaccurate) information 

from prograrmers or users. 

In both the stratified and random approaches, the number 

of obse~vations is predetermined. Factors contributing to 

the number of observations include the sensitivity of the 

subject prcgram to its inputs, deadline~ for completing the 

observaticns, and the amount of programmer involvement 

required. Of the two approaches, random sampling involves 

nc prcgrarrrrer involvement. 



65 

2. 3. 2. 3 Statistically controlled observations 

The first two approaches to execution sampling do not 

attenpt an explicit statistical cbaracterization of the sam

ple. Under these conditions 6 one aay be concerned with the 

possibility of failing to model the program's intrinsic 

behavior. Granted6 the possibility exists that a small sam

ple size will give an inaccurate view of the subject pro

gram6 tut because most programs tend to be quite data-insen

sitive [llATF71,FERR76a],egEr array_ Bivar{1:5); we feel that 

the likelihood of this happening to the detriment of 

restructuring resul. ts is not great. 

Although ve do not think it necessary to control the sam

pling frocess by statistical analysis 6 whenever such an 

apprcach is required, PAll lends itself to statistical param

eter analysis. The parameter database can te expanded to 

keep track of the distribution of each parameter. Based 

upon farameter distribution measures (means, variances) and 

assumptions (such as normality) 6 statistical inference meth

ods can be used to decide when the sampling process can be 

terminated. Notice that a parameter-by-parameter statisti

cal testing procedure involves considerable computation. 

This testing process can be simplified by focusing attention 

on critical constructs that are felt to contribute most to 

the characterization of the program's execution, e.g., con

struct farameters for top-level modules. 



66 

2.4 SYNTHETIC REFERENCE S~RING GENERATION 

In thi~ section we descril:e the algorithm for string 

generation. ~~~ in previous sections, we begin •ith a defi

nition of data structures, and proceed to describe the 

a~gorith~s in terms of manipulations of the data structures. 

After we present the generator, ve discuss approaches to 

deter[ining •hen to terminate the generation process. 

The majcr data 

the parameterized 

table (FDT), the 

structures required by the GENEEATOR/are 

CSG (PCSG), the production descriptor 

generator stack (GS) and the loop stack 

(LS). The PCSG and PDT are constructed prior to actua~ gen

eration; GS and LS represent the state of the generation 

process. We now descril:e each data structure. 

2.4.1.1 Data structures 

f2~E!~1~~i~~£ ~~§ (PCSG). The CSG and the parameter data

base are combined to form an internal representation of each 

production. PCSG is a one-dimension~ array which contains 

a parameterized production for each procedure. Within PCSG, 

productions are stored contiguously. Parameters are 

inserted betoeen grammar elements as follows: 

l££I§*: < l:ody > l:ecomes < nl n2 body >, ~here nl 

and n2 specify the range of repetition counts 

for the loop; and 

*~e use thi~ form of ~oop parameter primarily for ill1,1stra
t1on. In a later sect1on we suggest other representat1ons. 



67 

§~le~ticn cgn§1I]£ts: 

( case 1 1 case2 1 ••• 1 cas em ) becomes 

( T k 1 case 1 1 k2 case2 1 • • • km casem ) , 

~here T= kl + k2 + ••• + km, and each ki is 

proportional to observed frequency of select

ing alternative i. 

RIQQY£1ifn Dg§~Ii~iQI IEtle (PDT). This table is used to 

look up the start and end of each production in PCSG. Each 

table entry is of the form 

Qirst 1 last , where 

first(P) is the index into PCSG of 

terized prcduction for procedure P; 

the final production symbol. 

the start of the parame

last (P) is the index of 

lfQf ~3~£k (LS). This glotal stack is used to keep track 

of generate-time looping. Conceptually, each production has 

its ovn sta~k of elements of the form 

[ n I start J , where 

n is the the n umter of rem a in in g rep et it ions; 

start is the cursor position (in PCSG) of the start 

of the loop lody. 

Upon exit frcm a production (procedure), any loops active 

within that production are automatically popped from the 

locp stack. 



68 

~~~~atQI ~!Eck (GS), with stack pointer GSP. Ttis stack 

keeps track of the generate-time state. Each element has 

the for11.at 

(irodn J cursor J , 11 here 

prcdn is the production number; 

cursor indicates the current position in the produc

tion (i.e., an index in to PCSG). 

~]tFtt ]~ff~I (OE) contains output symbols. 

2.4.1.2 Data aanipulation priaitives 

The following data manipulation primitives are used in 

the descri Ftion of the algorithm. 

push(stackname,[datalist]) pushes data onto specified 

stack. 

poF (stackname ,[ resul Uist]) pops specified stack and 

extracts inforaation into result variables. 

outFut(symbcl) places symbol in OB. 

unifcrm(F,q) generates a random number uniformly dis

tributed bet111een p and q. 

select(n,cursor) chooses an index of a selection con

struct alternative, given random numter n, and the 

current cursor position. 

fir;der.d (C,m) determines the cursor position of the end 

cf the m'th enclosing construct, where the current 

cursor position is c. 

lCCfccunt(C,x) determines the amount by wbich the loop 

nesting level will decrease when moving from cur

ser position C to position x. 



69 

2.4. 1.3 Nctation 

During generation, activity is centered around tte gener

ator stack, GS. To facilitate describing the generation 

algorithm, we vill use the following symbols to refer to the 

data on the top of the GS stack. (Recall that GSP is the 

stack-top pointer for GS.) 

P = GS(GSP).prodn, the current production; 

C = GS{GSP).cursor, the current cursor position within 

the current production; 

5 = ECSG(CJ, the current CSG symtol within the current 

~;rod action. 

The syrbol H represents a PCSG nonterminal (i.e., the name 

of a prcgram module), as distinguished from the PCSG opera

tors ard parameters. 

Suppcse that the main procedure of program P is ~AIN. 

The first production in PCSG is "$ = ~AIN t", where "$" is 

the start symbol, representing the operating system function 

of job initiation, and "t", 
represents job termination. 

GENERATOR is 

the special terminator symbol, 

The initial state of the 



2.4.1.4 The algorithm 

~hen ~ !.2 Do !;!!~ !Qllowing 

t terminate generation 

B C ~ C+l 

"•" • 

UJU 

"-" 

"(" 

"I" 
") .. 
"<" 

">" 

push (GS,[N,first (N) +1 ]) 

output (P)" 

C ~- C+l 

pop (GS, [-,- ]) 

output (P) 

~E~at (for 1=1 to loopcount(C,last(Pj) 

pop (LS,[-,- ]) 

~I!EllE~.Si 
c -<- last (P) 

E ~- find end (C, PCS G (C+ 1)) 

I~£~.§1 (for 1=1 12 loopcount(C,E)) 

pop (15.,[- ,- ]) ; 

~ngrepeat 

C ~ E+l 

r -<- uniform (l,PCSG (C+1)) 

i <E- select (r,C+l) 

c -(- position of i •t·h alternative 

c <E- find end (C, 1) 

c ~ C+l 

r -(- uniform (PCSG (C+l) ,PCSG (C+2)) 

push (IS 1 [ r, C + 3 )) 

c <E- find end (C, 1) 

pop(LS,[n,start )) 

if n > 0 11!.§!!. 

push (LS,(n-1,start D 
C -<- start 

el.§.§ C <E- c + 1 

70 



71 

2.4.1.5 An Example 

CoDsider the following CSG, &ith average loop repetition 

(for procedure I} of 1. and selection execution frequencies 

2 alld 3. 

$ = A *' A = B < c > . • 
B = ( c l D ) ; 

c = ; 

D = . • 

The Farameterized CSG is 

~-~-A-t-~== B 3=!_2_~=?-~_E :_]=~-2 ~=!-~-~=~ ;=~=:=i=~=:=~=]· 
1111111111222222:<-223 

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 ~ 8 9 0 

The Prcduction Descriptor Tatle (PDTJ is 

f
~~2Qn_J_first_J_last_ 

$ I 1 I 4 

A I 5 l 13 

.B I 14 I 24 

c 25 27 

D I 28 30 



72 

Snap;hcts of the GENEUTOR as it generates the string 

"AEDBACA" fellow. 7be rigbb1ost stack element iE at the 

top. 

Stgj? .§ §f!.!l!l!"at_il_Stac! lStack output Note 

1 A f$ ,3) 

2 = [$,4) (A,6) A 

3 B ($,4) (A,7) 

4 = ($,4) (A, B) (E, 15) B 

5 ( ($,4) (A,8) (B,16) 

6 D ($, 4) {A, 8) (E, 22) r=J, i=2 

7 = ($,4) (A,8) (B,23) (D,29) D 

8 ; ($,4) (A,8) (B,23) (D,30) E 

9 ) ($, 4) (A, 8) (B, 23) 

10 ; ($,4) (A,8) (B,24) A 

11 < {$, 4) {A, 8) [1,11] r= 1, n= 1 

12 > ($,4) (A, 12) I o, 11 J 
13 c ($,4) (A,11) (0,11] 

14 = ($,4) (A, 12) (C,26) [ o, 11] c 
15 ; ($,4) {1,12) (C,27) [ 0, 11] A 

16 ; ($,4) (A,12) loop exhausted 

17 . ($,4) {A,13) • 
1e 

*' 
($,4) Terminate 

J 



13 

Just as in the case of parameter estimation, • here we bad 

to consider the number of observations required to obtain a 

certaiJil confidence in the parameters obtained, we must 

decide how many synthetic strings should be generated. 

Three alternatives exist: 

-generate one string; 

-generate a predetermined numter of strings; 

-generate strings until some statistical test is satis

fied. 

The GE!iEBATOR can be made to terminate using any of these 

approaches. 

2iE91~ £1Iing generation is not recommended, since it 

defeats the purpose of the model, namely, replacing a small 

number cf trace strings by a potentially infinite number of 

synthetic strings. A single execution trace string is pre

ferred over a single synthetic string. 

A £I~Q§1grai~§g n]~£ii of synthetic strings is a more 

appealing way to terminate string generation. As in any 

multiple string generation, ·there is concern for the inde

pendence of individual strings. !his will improve the 

chance of "true" random sampling from the set of all possi

ble synthetic strings. In tt.c implementation of the 

GENEEATOB used in this research, each string is based on a 

different random number seed computed from the time-of-day 

clock. 

The determination of the number of strings is not easy, 

because without any statistical claracterization of the gen

eration process, it is difficult to know when the finite 5et 

of generated .strings has covered (uniformly sampled from) 

the space of all synthetic strings generable from the model 



75 

The GENERATOR can te used either as an off-line program 

to produce an output file of synthetic strings, or as an 

on-line coroutine to produce symbols of the synthetic 

strings on demand. Since the storage of the entire string 

is net reguired, the on-line approach is ideal for efficient 

· rrogram restructuring. 7he off-line approach can be used 

when the synthetic strings will be subjected to further 

analyses. 

2.5 ANALYSIS OF COSTS 

In this section we assume that the subject program has 

the following characteristics: 

-100 ~:rocedures; 

-each procedure contains 2 significant loops; 

-each procedure contains 2 significant selection con

structs, each containing 3 alternatives; 

Further, we assume that 

-each procedure name is 8 characters long; 

-each ivar is two 8-l:it t:ytes long; 

-the icode for in.>:!: reguires one 4-t:yte instruction. 



76 

Considering the inhe:rer1t complexity of good compilers, 

the 1odifications required by the CONS'IRUCTOB should have a 

negligible e£fect on the size and speed of the compiler. 

The descriFtion of the CONS'IRUC'IOR's data structures and 

algorithms indicate that onl.Y a small amount of code need be 

added to the compiler, and that the data structures ACS, CDT 

and IPI will not te large. 

Program instrumentation changes the subject program by 

introducing ivars and icode. According to our assumptions, 

each ~rccedure requires 10 ivars (20 bytes) and 10 increment 

instructions (40 bytes). 'Ihe over-all increase in space 

reguire11ents for the entire program is 6000 bytes 

( 60 byteS/Frocedure * 100 procedures). Instrumentation 

routine DUMP contains 100 call statements, tut since it is 

invoked only at the end of program execution, it can reuse 

space cccufied by program procedures no longer required in 

main stcrage. DDI'IP does, however, increase the size of the 

progra&•s virtual name space ty an amount proportional to 

the Duaber of bytes of otject code required to effect a pro

cedure call (to WRITECR) with three parameters. We eBtimate 

that 20 bytes are required per call; hence 2000 tytes are 

required for DUMP. Thus the over-all increase in the pro

gram's cbject code will te around 8000 tytes. 



77 

Althcugh the additional space requirements can be quanti

fied, it is more difficult to charactErize tbe execution 

slovdcvn experienced by the instrumented program. The slow

down is proportional to the numter of execution-time addi

tions introduced by the instrumentation. 

The reader may recall from the section on model construc

tion that only significant control structures are instru

mented. Thus, the numter of instrumentation additions is 

proportional to the numter of procedure· calls made. The 

constant cf proportionality is unity or less, as the follow

ing analysis shows. I.et us assume that the majority of the 

procedure calls will occur from within loops, and that each 

(significant) loop contains at least one (unconditional) 

procedure call. Nov consider the two loops, < A > and 

< 11 E >, both having repetition frequency n. For the first 

locp, n calls and n additions are made; for the second, 2n 

calls and n additions. ihe respective ratios of calls to 

additions are 1.0 and 0.5. ie will use the higher figure of 

one addition per procedure call, indeed an extremely low, 

and practically negligible overhead. 



78 

we new Ehow that the space overhead for maintaining and 

updating the reguired databases is 15,000 to 20,000 bytes. 

Only the coefficient database need be on-line during parame

ter estimation; PDB updating and synthetic string generation 

can be relegated to times of low deaand for the system. 

The storage space required to hold the production parame

ter deEcri (:tor, coefficient and parameter databases is quite 

small. The typical PPD record looks like 

I procnameJ4J2j2J3J3 J 

and requires 13 bytes of storage. The CDB record looks like 

jprocnameJ10Jn1Ja1Jn2Ja2Jc11Jc12Jc13Jc21Jc22Jc23 {. 

which occupies 30 bytes. (Record field definitions use the 

sa~e syAbcls used to describe the PDB.) 

The size of the PtE depends upon the amount of detail 

maintained. Assume that the PDB record has the format given 

in -Figure 2. 11. Then each record requires 38 bytes. 

The CSG database can contain either the non-compressed 

(symbolic) or compressed CSG productions. Assume that a 

production contains an average of seven procedure calls and 

ten CSG operators. !hen each non-compressed production 

requires 7*8 + 10 = 66 bytes. 

The total space requirements for all these databases is 

6600 (CSG) + 3000 (CDB) + 3800 (PDb) + 1300 (FDDB), or 14700 

bytes. A more sophisticated PDB can increase this space 

requirement, as well as the time required to perform parame

ter estimation. 



79 

ThE SfEed of the GENERATOR depends upon the CSG, the lan

guage in which the GENERATOR is written, and the efficiency 

of the GENERATOR code. The most important GEBEEATOR per

formance index is the rate of synthetic string production, 

which should .be several orders of magnitude faster than that 

of execution tracing. 

The GENERATOR used in the research vas implemented as a 

PL/C program running on an lBM 3081 (or 370/158) under the 

l'IVS operating system, and was in no wise optimized for speed 

of generation. Generation speed ranged from 750 to 3000 

references per CPU second, depending upon the complexity of 

the CSG p:od uctions. (Selection constructs slow down the 

generation process more than do loops.) The performance of 

the GENERATCR can easily te improved l::y an order of magni

tude and, indeed, should te were the GENERATOR to be imple

mented as a production program. The inefficiency of the 

PL/C GEKEEATOR notwithstanding, it seems clear that syn

thetic strings can be generated at an acceptable rate and 

cost to justify use of the model. 

As a final word, we should note that the ease and conven

ience of using the model, from the standpoint of the program 

developer, is more than adequate compensation for any gener

ation inefficiencies. 



80 

2.6 VARIANTS OF tHE BASIC ~ODEL 

In this section ve relax some of the assumptions and 

restricticns of the PAM model. lie begin by showing how to 

model data-sensitive programs. Next, we simplify the CSG 

syntax to a normal form. Eefore proceeding, we need to give 

a name to the version of PAM ve have been discussing up to 

nov. ie call it the ~enerative PAM, or GPAM, 

involves synthetic string generation. 

since it 

PAM is actually a family of models. In this section we 

start ~ith the GPAM and move in two directions -- generali

zation, to remove the requirement of the call-path indepen

dence assumftion -- and simplification, to reduce the com

plexity and size of the CSG. PAM attempts to capture two 

aspects of frogram structure: static control-structure 

nesti rg aDd dynamic procedure-call nest in g. l!odel variants 

differ in the extent to which they capture these aspects of 

frcgram structure. Each model version can be thought of as 

being either generative (when used to produce synthetic 

strings) or descriptive (when used to describe or character

ize observed program executions). 

GPAM attempts to reproduce procedure level referencing 

behavicr in terms of §~gy§QCi~~ and distribution QX calls. 

seguelicing is controlled l::y the grammar operators loops, 

alternation and tranching -- and ty the synthetic string 

generator. Ey distribution of calls, ve mean the relative 

frequeDcies of calls to potential targets. The distribution 

of calls is governed at the level of the individual proce

dure by the procedure's parameters. If situations exist in 

which the distribution of calls is more important than their 

sequence, a simpler form of PAM CSG productions is possible. 

we say that a production of the form 

X = < (x 1 I x2 I • • • I xm ) >; , v here 



81 

xi is either a call or a return (!), is in distributjon-nor

~~1 fc~~ (DNf). This form of production guarantees (in a 

statistical senEe) to preserve the distribution of procedure 

calls to the possible call targets, provided that the 

GENEEATCR uses a random numter 

unifora random deviates. The 

shown in Figure 2.12. 

generator that produces true 

DNF CSG for program Pl is 

A = < ( B c D I E ) > . • 
B = < ( ! I c I D ) > . • 
c = < ! D I E ) > ; 

D = < E > ; 

E = ; 

Figure bfl 
DNF Call-Sequence Grammar for Program P1 

We briefly compare DNF-FA~ and GFAM. The DNF grammar is 

compact because of the simpler productions. The required 

CONSTRDCTCR algorithm and data structures are simpler since 

no analysis of the structure of the subject program is 

required. Instrumentation is simpler: ivars simply count 

the nu~ber of times one procedure calls another, completely 

disregarding the control-structure context of the calls. 

The nu1ber of ivars is egual 

cedures called (plus one if 

the amount of 

to the number of different pro

the procedure contains multiple 

icode is proportional to the exit pcints); 

nu~ber of call statements in the procedure. 

DNF-PAM characterizes a program's execution at the level 

of inter-frocedural references, as opposed to the intra-pro

cedural characterization GPA~ produces. DNF-PAM is the sim

plest version of PAM, and it used in this research primarily 

as a generative model. 



Frc• a restructuring standpoint, 

82 

DNF parameters are 

equivalent to the Nearness aatrix. DNF paramters measure 

pair-wise call frequencies, from which can he derived the 

pairwise adjacency frequencies that constitute the entries 

in the Nearness matrix. 7hat is, for very low instromenta-

ti on overhead, enough information is obtained to achieve 

very acceptable performance gains from program restructur

ing. 

Consider the following CSG. 

p = A B c: 
A = D; 
E = D; 
c = D; 
D = ( X y I z l ; 

Suppose that D always calls I, Y or Z, accordingly as D is 

called by A, B or C, respectively. Then, since D's behavior 

depends upon its caller, D violates the independence of call 

path assumftion. The variation of D's behavior according to 

its caller requires an exaaination of some data, either one 

of its farameters, or some glotal variable. Such a proce

dure is said to be g~!A-§&D§itiY§. 

Procedure D can still be modeled ty creating aliases DA, 

DB and DC, whose CSG productions are 

DA = X; DB = Y; and DC = z; 

Productions for A, E and C become 

A = DA; B = DB; and C = DC; 



83 

we now J:resent a general aliasing technique that introduces 

no unnecessary aliases. 

1. Determine non-aliasatle productions, those that do 

not contain any significant control structures. 

(Ncn-aliasable'prodoctions do not require any parame

ters.) 

2. Assign serial number unity to each aliasable produc

tion. 

3. Copy each production. Eor each nonterainal on the 

right-hand side whose production is aliasable, append 

to the nonterminal the serial number of its corre

sponding production, and increment the serial number 

by cne. 

4. Write new productions for each aliased production 

according to step 3. When there are no more unex

fanded productions, stop. 

The iapcrtance of this transformation is that it allows 

modeling cf programs that contain data-sensitive modules. 

AliasiDg has two side effects: an increase in the number of 

J:roductions; and an increase in the amount of work done by 

the CONSTEUCTOB. Since each alias requires its own set of 

execution coefficients, the compiler must allocate and prop

erly reference a stack of instrumentation variatles for each 

aliased procedure. During execution of the instrumented 

program, calls to aliased procedures must include a parame

ter value fer properly indexing the ivar stack. The value 

of this index must be determined during instrumentation. It 

should be clear that aliasjng increases instrumentation com

plexity. Fortunately, however, it is protatly the case that 

the aliasing transform would te applied rarely. 



84 

Aliasing provides a way of injecting global call-path 

context information into the model. (Non-aliased produc

tions contain no information atout the static chain of pro

cedure calls by which entry is made into the corresponding 

procedure. The only information provided is the retur~ point 

for any calls made by that procedure.) The serial number 

.assigned to an aliased procedure encodes the call path to 

the procedure from the start of the program. Applying the 

aliasing transform to GPAft produces aliased GF!~. or lQiA~. 

AGPAH contains the maximum amount of call context and con

trol-structure context information possible in a context

free call-sequence grammar used by the PAft family. When 

aliasing is applied to every production in a DNF CSG, the 

resulting model version is called the descriptive PAM, or 

DPA~. 

Procedure-level program execution is captured in the 

segueDce of active procedure call chains. The descriptive 

PAM (DPAH) defines program state to be a procedure call 

chain, and a state-transition to be a procedure call or 

return. 

A static representation of an arbitrary program P is the 

DPA!I state-diagram, denoted DPA~ (P). Figure 2.13 sho•s 

DFAM(£1), the state-diagram for sample program P1 of Figure 

2.1. The state-diagram is an undirected tree, which •e 

term a £~11 !!~~· Each node of the tree corresponds to a 

DPAM state (i.e., a call chain). Nodes are identified by 

unique integers assigned according to a preorder traversal 

of- the tree. For example, in DPA!I (P1), state 7 represents 

call chain [A,B,D]. State 7 has label "D", the most-re

cently activated procedure in call chain [A,B,D]. 



3 c 
I r--+---1 

4 D 6 

5 E 

1 A 

I r------------r--------r----. 

7 

I 

1 
E 8 

10 c 
I r--+---1 

D 9 E 11 D 13 E 

I 
E 12 E 

Xi .9J!H 1· .1J 

14 D 16 E 

I 
15 I! 

DPAI'I State-Diagram for Program P1 

85 

Given frccedure reference string w=w[ 1)w[2] ••• w[K), there 

is a corresponding DPAI'I state-sequence string 

z=z[ 1)z[2] ••• z[K], where symbol w[i) causes a DPA!'I state 

transition into state z[i). (The DPAM initial state is 

~0)=0.) The program execution. v. can be described (char

acterized) in terms of DPAI'I(P). We nov list several charac

terizations. 

(1) fii~g(s) =the numter of times states is entered 

via a call transition. 

(2) !f!figg(s) = the total number of times state s is 

entered. 

(3) !f!Q£I(S) = the total number of state transitions 

(references) madE to states belonging to tl:e 

subtree of DPAI'I(P) having states as the root. 



86 

(4) ~yggur(s) = the average nu~ber of state transitions 

made between subsequent entries and exits from 

the subtree of DPAM(P) having states as the 

root. (avgdur (s) =totdur (s)jcfreg (s)) 

We call these characteri2ations ~X~~YiiQn R£Q!iles, which 

.are analogoo£ to GPAM execution coefficients. Figure 2.14 

contaills values for these profiles derived from reference 

string "AECECEDHEDl'DBCECBCECBEBAEAEA" of length 29. 

st~te l!!:Q£ £.!H9 !Otfr~ totdur avgdur 

1 A 1 4 29 29 
2 E 1 6 24 24 
3 c 3 6 9 3 
4 D 0 0 0 0 
5 E 3 3 3 1 
6 E 3 3 3 1 
7 D 1 1 7 7 
8 E 3 3 3 1 
9 E 1 1 1 1 

10 c 0 0 0 0 
11 D 0 0 0 0 
12 E 0 0 0 0 
13 E 0 0 0 0 
lll D 0 0 0 0 
15 E 0 0 0 0 
16 E· 2 2 2 1 

li.9J!re l·ll 
Sample DPAM Execution Profiles 

we new FIOfOSe ways in which the profiles just introduced 

can be used in program restructuri11g, to suggest one or 

more areas for further investigation. 

(1) DPAM (P) with node weights £fr~ provides enough 

restructuring information to duplicate the Nearness 

method. 

(2) Hcfiles j:otd.Jl£ and ~.Y~.!l£ measure locality since 

they capture the reference density to a subset of 

Frccedures during an interval of program execution. 



87 

It should be noted that tPAM and many of its profiles are 

directly derivable from GPAM CSG and parameters. Develop

aent of restructuring algorithms based on DPAM is suggested 

as a tcpic for further research. 

2.6.4 ! !;£.!Fari§Q!!. 52!. th~ PA.!! Variants 

Table 2.1 summarizes the different versions of the PAM 

model. A level-i model version (i=t,2,3) is derivable from 

le vel-j versions (j>i) • !:!II-PAM is the simplest, modeling 

only the local call-contezt inforaation implicit in the 

"calls" relation tetween procedures. AGPA 11, 11 hich models 

global call-context and local control-structure information, 

is the most general. 

I 
Level Version Context Information Jlepresented l ---- ----- ------------------------------

4 AGP All global call and local control 

\ structure. 

3 GP111 local call and control str~ctore. I 
2 DPA!! global call. 

1 DNF-PAM local call. 

!.§!!le _1-1 
The Procedure-Activation Model Family 

The nature of the PUI family is perhaps most clearly evi

dent frcm tFAII, where the notion of model states and state

transi tier: probabilities are explicit. This l:asic structure 

is commcn to all model versions, as is the capacity to gen

erate (cr recognize) a sequence of properly formed procedure 

references. 

PAM differs from many stochastic program models primarily 

in the definition of program state. The PAll variants differ 

from each ether in the way the state-transition probabili-



ties are derived. 
88 

For DNF-PA!! and DPA!!, they are based on 
direct aeasurements of inter-procedural referencing. For 

GPA! and IGIA!!, the determination of these probabilities has 
both a static and a dynamic component. The static component 

consists of the aodel paraaeters -- statistics for loops, 
and Frcbabilities for selection constructs. During syn
thetic string generation, the choice of the next reference 
to generate is based upon a dynamically-determined Frobabil

ity, whose value is some complex function of program struc
ture and aodel Faraaeters. 



89 

2.7 SU!I!IARY 

In this chapter, ~e have defined the elements of the Pro

cedure-Activation modeling system. We have sho»n that mod

eling can l:e automated, and that the model lends itself to 
various choices of esc grammar form, parameter estimation 

,' techni gues, and generation en Yironments. The cost of model 
construction and parameter estimation were shown to be low. 

~e have shown that PAM is a family of models, having in 

common a constrained (by internal control-structures or call 
chain cr both) probabilistic wiev of the program execution 

phenomenon. In this research, 

treat only GPAM and DNF-PA!I. 

the primary investigations 

Although DPA!I ~ill not be 
investigated thoroughly in this research, it shows promise 

of yielding insights into program locality, and of forming 
the basis c£ new restructuring algorithms. 



Chapter 3 

iBSTBUCTDRABILITY OF TEE SUBJECT PROGRABS 

Thi~ re~earch is divided into four major studies. 

For each subject program, ve 

deter~ine the extent to which program restructuring can 

reduce execution-time memory cost. 

(2) !l~~g!!~!I ~odg!ing. These approaches to modeling 

are attem~ted: the simples model version, DNF-PA~; and the 

more general model version, GPA~. for which point estimates 

for model ~arameters are used. 

(3) R~!2mg!g! estim~!ion. The execution-sampling phase 

of aodeling is studied statistically: the effect of random 

sample ~ize upon model accuracy, and the underlying distri

bution cf model (loop) parameters. 

More modeling effort is expended 

to achieve tetter accuracy: point estimates of loop parame

ters are replaced by interval estimates; model version 

DNF-FA~ is replaced by GPAN. 

This charter presents the design and findings of the 

restructurability study. Elementary modeling is the subject 



91 

of Charter q; the parameter estimation studies and advanced 

modeling results are presented in Chapter 5. ae begin this 

chapter with a review of the relevant issues of a posteriori 

prograa restructuring using actual program traces, and 

define the method of comparing layouts. Next ve describe 

the subject programs, noting in particular their static pro

gram structure -- nesting of procedure calls and control

structure constructs. zinally, we describe and present 

results frcm the restructurability study: the feasibility of 

applying restructuring to subject programs is determined; 

and the parameters of the restructuring process are assigned 

values for use in subsequent experiments. 

3.1 A POS7ERIGRI PROGRA~ RESTRUCTURING ISSUES 

In this research we do not study restructuring for its 

own sake, but as the tool by which PAM will be validated. 

To avoid making bad choices in applying the restructuring 

procedure, ve decided to deal systematically with the vari

ables cf restructuring to determine values of these vari

ables that least obscure the benefits derivable from using 

PAft. We now examine the parameters of the restructuring 

process, with the primary concern for avoiding values that 

consistently yield poor restructuring gains. 



92 

Figure 3.1 illustrates the steps in the program restruc

turing frocess, and the input variables for each step. The 

program characterization phase involves execution saapling 

and the representation of the collected trace data, usually 

in the form of a set i of reference strings. The set W, 

restructuring algorithm A and control variable € (the pair 

is denoted A(e)), are inputs to the restructuring phase, 

during which the restructuring matrix C is constructed. 

~atrix c contains aodule-aodule affinity weights that sug

gest clusters. The clustering phase takes the affinity 

weights and aodule sizes, and builds clusters, subject to 

the page size (F) constraint. ihe extent to which tt.e clus

tering suggestions contained in C can be carried out depends 

upon p and the module sizes. The resulting layout is 

denoted L(W,A(a) ,p), ~hich identifies the parameters of the 

restructuring process. 



r ------------------
Frogram J 

1--~~~~~!i~~:~~~:: 

• w 

r---- a 
t 

[ -----------------Resti: uctur in g -------~~~~~------~ 
~ 

L(>,A(6),p) 

figur~ .J.j 
Schematic of the Restructuring Process 

93 

The following sections discuss, for each phase in the 

restructuring process, options for implementing that phase, 

the effect of choices at one phase on subsequent phases, and 

the rationale fer some of tle choices we made. 



94 

3.1.2.1 Choosing the executions to sample 

one of the first steps in the standard a posteriori pro

gram restructuring process is to decide which executions of 

the subject program to use as inputs to the restructuring 

phase. In order to achieve the greatest benefit from 

restructuring for the majority of the runs of the program, 

these executions should l:E !:.5J?.resentative of the "average" 

or typical behavior of the program. fortunately, empirical 

studies [BATF71,FERR76a] have demonstrated that programs 

tend tc be quite insensitive to their input data. This 

result supports the common practice of carefully c~oosing a 

small number of executions (sometimes just oneJ, taking into 

account the function and structure of the program, and typi

cal input values. 

3.1.2.2 Reference string representation 

The reference string captures information al:out the 

sequence and, possibly, times of pro gram references. When 

restructuring makes use of the LRU replacement algorithm, 

which is driven by sequence alone, reference times are not 

reguired. Time information must, however, be provided for 

restructuring based on the liS replacement algorithm. Direct 

measure~ent of reference times can require significant over-

head, since 

required. 

viding each 

contrclli ng 

calls to the operating system clock routines are 

Furthermore, on multiprogrammed systems not pro

concurrent process with its own virtual clock, 

measurement errors is difficult because of the 

sharing of the system clock. For these reasons, most stud-

ieE reEcrt to estimating refereLce times. 

we now examine a widely-used 

term the ~£~g!inq method. 

estimation technique, which 

we Given 

string w=w1,w2, ••• ,wK, let the times of 

procedure reference 

each of the K refer-



ences be given by the time string 7=t1,t2, ••• ,tK. 

95 

When the 

counting method is used for machine-level tracing, the time 

of the k+l'st reference is given by t[k+1]=t£k)f-lii*A, where 

Ni is the number of machine instructions separating w[ k) and 

v[k+1], and A is the average instruction execution time. 

This method is based upon the assumption (which is guite 

reasonable at the level of machine-instruction execution) 

that the time interval tet~een the executions of successive 

instructions is a constant. 

we have used a siailar method, based upon the following 

assumptions. 

(1) the cost of a call linkage is one time unit, charge

able to the caller. 

(2) the cost of a return linkage is one tiae unit, charge

able tc the returner. 

(3) the cost of executing the non-call portion of the body 

cf a ~rocedure is ~IQ· 

These assumptions lead to tbe simple time string 

T=0,1,2, ••• ,K-1. Notice that this is actually a counting 

method based on the assumption of a ~D§!ant ~Ete Ql Jj~age 
g_!ents. Under these assumptions, the execution time charge

able to a procedure is one plus the number of calls it 

makes. An example of the time string computed for a short 

refererce string is shown in Figure 3.2, ~;here "$" repre

sents the operating system jot initiator routine. A call 

linkage has type "C", a return type "B". 



96 

+---+---+--+---+--+---+---+---+---+ 
Reference: IAIEICIBIAIDIIIDIAI 

+--+---+---+--+---+---+---+---+---+ 
Type: I C I C I c I B I ll I C I Il I c I R I 

.---+---+---+---+--+--+---+---+---+ 
Charged to: 1-!_!-~i-~-1-~-1~-l-~-1-E-l-~-1~! 
Time: 1011121314151617181 

+---+---+---+---+--+---+---+---+---+ 

!i.9YH 1·1 
Estimation of Reference Times 

Batson and Brundage [BATS77a) studied the distribution of 

the a:ean inter-procedural reference times for Algol pro

grass. They found the aean to te 2-10 times the median, 

with coefficient of variation l:etween 2 and 10. Their find

ings suggest that (1) the median interval tetween most link-

ages is a:uch shorter 

variability in times 

than the mean, 

(high coef ficent 

and (2) most of the 

of variation) is 

caused by the small percentage of very long intervals 

between linkages, contrasted against a very large percent

age of short intervals. ie are satisfied that the assump

tion of (nearly) constant time tetveen linkages holds for 

the major portion of the program's execution-time refer-

ences. 

Under the time-dependent replacement algorithm ws, the 

working set will be overestimated, for a given window size, 

during one of the few long intervals l::etween linkages, 

resulting in an underestimation of the number of faults for 

that window. Eut this situation 11 ill rarely occur, since 

long intervals are few. Underestimation of the working set 

for very short intervals can occur in like manner, l:ut since 

the variability is low (when long intervals are excluded) 

the au:cunt of estimation error is small. 

DesFi te the possibility of errors in estimating t.he work

ing set, ve did not feel that such errors will invalidate ws 
restructuring results, for the following reasons. First, 



97 

and perhafs most important, is the fact that this study is 
really a simulation study in which we felt that seguence was 

the most imfortant program property to model. Second, if 
indeed a synthetic string reproduces the reference sequence 

of a subject trace string, when it is used in restructuring, 

it will produce the same §JStematic error as was produced by 

restructuring using the sutject trace string. That is, the 

two strings being compared toth have roughly the sa1e amount 

of measu.[ement error, and the differences in behavior cannot 

be attributed to that systematic measurement error. 

The restructuring phase takes as input a set 

restructuring 

and the £01-

set W is cap-

ll= (w1,w2, ••• ,w.l'l} of reference strings. One 

matrix, Ck, is constructed per string wk in 11, 

j§g1i~ restructuring information embodied in 

tured in the matrix C=C 1 +C2 + ••• +CII. Recall tllat C(i,j] is 

the nu1ber of faults that would be eliminated should modules 

i and j occupy the same page., stated another way, C[i,j] 

measures the ~Q!E~!itiQ~ tetveen i and j for membership in 

the resident set under replacement algorithm A(6). Competi

tion, hence memory cost, is reduced when modules i and j are 

stored in the same page. 

!latrix C suggests a clustering of modules based on mutual 

COIIFetiticn for residency under A (6). For C[i,j ]>0, modules 

i and j belong to the same n~iY£2! cluster. Any module k 

having affinity for a module belonging to a natural cluster 

is itself a member of that same natural cluster. Natural 

clusters are of unconstrained size, and are usually too 

large to be stored entirely in one page. We term the 1-m 

pair having the largest weight C[l,m] the ££iii~21 E2i£· 
The natural cluster containing the critical pair is termed 

the ~!i!i£s1 £1]§1~· 



98 

Output from the restructuring phase is a list cf module 

pairs and affinity weights, in decreasing order of affinity 

weights. The list suggests 111odule pairings directly, and 

natural clusters indirectly. consider the list of weighted 

affinity pairs shown in .Figure 3.3. Critical pair (1,3), 

having affinity weight 29, suggests the natural cluster 

<1,3,8>, which is critical because it contains the critical 

pair ( 1,3). The function of the restructuring phase, then, 

is to ;ake clustering suggestions to the clustering phase; 

it is up to the clustering phase to carry out the sugges

tions. 

Natural 
Weight i j Cluster +-------·--·------.. 

I 29 I 1 I 3 I A I +------+---+---+ --+ 
I 14 I 2 I II I B I +------+---+--+-------+ 
I 14 I !: I 6 I c I +------+--+--+-------+ 
I 12 I 1 I 8 I A I +------+---+--+------· 
I 516171 c I +------·---+-----· 

!.!.9.!!-Ul .J • .J 
Example of Output from the Restructuring Phase 

!he phase-transition view 

interesting interpretation 

types cf competition occur. 

of program tehavior suggests an 

of the i-j affinities. Three 

a) Intra-phase -- toth i anc j telong to the same pl.ase 

cf execution. 

!::) Inter-phase i and j l::elong to different phases. 

CoA~etition is otserved during transitions between 

phases. 



99 

c) lnt£a-transition -- both i and j belong to a tran

siticn between the same two phases, but not to either 

J;hase. 

The restructuring phase has as its primary goal the defini

tion of natural clusters that correspond to intra-phase com

petiticll. That is, intra-phase affinities should be greater 

than the ether types of affinities. 

3.1.3.1 Choice of algorithm 

From the outset, ~e intended not to introduce any new 

restructuring methods, but to concentrate on finding sources 

of reference strings other than execution traces. Critical

set prcgram tailoring methods of .Ferrari ~ere chosen because 

they have been shown to perform well [FERR76a), and are sim

ple and relatively inexpensive to use. LRO and WS were cho

sen to be the underlying replacement algorithms because they 

are the mcst widely used algorithms for fixed and variable 

al~ocation policies, respectively. 

The obvious question is whether the choice of algorithm 

affects restructuring effectiveness? The many papers writ

ten on the subject give evidence that the cl:oice of 

algorithm is important. ln the restructurability study, 

however, ~e are concerned only with showing that both the 

cws ar,d CLBU restructurin~ algorithms are affected in the 

same way l:y changes in the other parameters of the restruc

turing frccess. 



100 

3.1.3.2 Choice of control parameter 

What should the ~~§!rU~!yrinB window, e (the WS window 

size or the LRU allocation), be to achieve good results from 

restructuring? can some values of e lead to poor clustering 

suggestions? As far as we have teen atle to determine from 

the literature, there is no widely accepted set of control 

parameter values used for J:estructur in g. 

few guidelines. 

lie now present a 

Care must be taken in choosing e. Bad choices do exist. 

Consider the refeJ:ence pattern "AEAEAEAB ••• ABA", where "AB" 

is repeated k times. CLFU restructuring with 9=1 determines 

A-B affinity to be 2k. When 9=2, the affinity is 1. If 

progJ:all: execution is dominated by this cycle, 9=1 is the 

opti&al setting. So we see that referencing patterns, typi

cally cyclic patterns produced ty looping, have a bearing on 

the pi:cper choice of e. Eaving e too large "swallows up" 

the doninant phase. 

What is too large a value of 9? The window 9 is a func-

tion of the number of modules referenced during a phase, and 

the mean time t between successive references to modules. 

When t > €, there will te turnover in (hence, competition 

for) resident set membership throughout the phase. !he 

value t is related to the cyclic reference patterns gener

ated by the program. 

A method for selecting the restructuring window 6 is to 

compute the memory cost curve (s versus r), assuming each 

module occupies exactly one page. The r value for which 

the ccst d1:ops drau;atically identities the average number 

of mcdules resident during the dominant phase. Since the 

dominant phase should not be "s•allowed up" ty too large a 

restructuring window, e should not te set much larger than 

this r value. such a 6 will be sufficiently small to ensure 

that conpetition for the resident set is indeed observed 



during J:estructuring. FuJ:theraore, 

for ssal1 values of a are preserved 

ments whose control parameters exceed 

1 01 

improvements obtained 

in operating environ

a [ FERR76a]. 

The clustering suggestions received from the restructur

ing phase axe used to construct page-sized clusters. The 

extent to which the suggestions can be followed depends upon 

the page size constraint. As the page size becomes Slllaller, 

relative to the average module size, sore and sore informa

tion contained in clustering suggestions is discarded. 

Large Datural clusters must be broken into smaller clusters 

in crdcx to satisfy the page size constraint. 

3.1.4.1 Estimating module sizes 

Knowledge of module sizes is required to perform restruc

turing. Since, in this study, the restructuring experiments 

are basically simulations, the number of source language 

statements in a procedure was used to approximate the size 

of each pxocedure module. 

3.1.4.2 Page size 

Program restructuring •orks best when, on the average, at 

least three modules are packed to a page [HATF71 ]. Since 

this research is a simulation study -- the execution of the 

restructured program on a paged virtual memory computer is 

simulated-- we are free to choose page size to be at least 

three times the average ~oJule size m. Si~cE thE modules 

correspond to procedures from structured programs, it is 

re~sonable to assume further that no module is larger than 

the fage size. lhe minimum page size p is therefore chosen 

to be &ax(3*m,M), where M is the size of the largest module. 

Given the xestructuring matrix C, clustering is performed 

for page sizes p, 1.5p and 2p. 



102 

The natural clusters suggested ty the restructuring phase 

should be stored in a single page in order to realize the 

maximua benefit f.~:om restructuring. Hence, the optimal page 

size is a function of the program's static (aodule sizes) 

and dyDa&ic (looping) properties. The existence of critical 

clusters exflains why large page sizes are preferred. From 

a E2gi~g ~!~£h~2~ perspective, optimum performance occurs 

when the minimum number of faults is geDerated, that is, 

when the fage size is the size of the program's name space. 

such a large page size is, of course, impractical. More

over, a large natural cluster often requires a page size 

that is imfractically large. Smaller natural clusters are 

formed when small e values are used during the restructuring 

phase. 7hese small clusters are less likely to have to be 

broken up to fit small pages and, v hen the page size is 

large, several may be stored in the same page. 

3. 1. 4. 3 Clustering algorithm 

The clustering algorithm used in this research is essen

tially the one descrited l:y Ferrari [FERR73 ]. The first 

phase cf clustering is based on pair-wise affinity weights 

contai~:ed in the restructuring matrix. The second phase is 

a clean-up pass during which unclustered modules are 

assigned to partially filled pages according to a first-fit 

strategy, subject, of course, to the page size constraint. 

The seccnd phase totally ignores the connectivity of mod

ules, and is concerned mainly with reducing the number of 

pages spanned by the layout. 

Although this particular clustering procedure is quite 

simple, it produces good layouts cheaply. More sophisti

cated clustering methods produce marginally tetter layouts, 

but at a much higher cost [FERR76a]. 



103 

3.2 lAYOUT IEB~CR~ANCE EVALUA110~ 

The qemera~ layout evaluation procedure is depicted in 

Figure 3.4. ~he simulation of the replacement algoritha 

A(9) en the execution y, assuming layout L, produces some 

cost measure, which we now defiDe. 

layout 
Beplacement 
Al gon. t hm 

A (6) 
Evaluation 
String 

L ---l t r-y 
Layout evaluator ( -----------] 

t _______ !_~_L_ ___ _ 

~ 
e (L,A (S), y) 

!igur~ .1·.!! 
Layout Evaluation Scbematic 

.!2g_f.!lli t;i,Q!!: e (L,A (e) ,y) is the cost of aecuting execution y 

under replacement algorith~ A{€), using layout L. Lay-

out Lis said to be £J~luated under A@) agaiD§! evalua

.!i£!! §.!.Ii!l9 .I• 

When nc ambiguity as to the layout L and algorithm A can 

occur, e(l,A(-€) ,y) is liritten e (9). 

A layout can also be evaluated against an Qrdered §.§.! of 

stJ:i ngs, Y=[ y 1, y2, ••• , y~ ], termed an evaluation ~!Iillil §et. 
In this case, the replacement a1gor it hm input string is 

CONCAT(Y)=yl~y2+ ••• +yM, the concatenation of the members of 

Y. As a further generalization, layout evaluation can be 

extended over some arbitrary ~YEluation inte.[val, Q=[6i,6j]. 

lie term such an evaluation of layout La fQ,Y)-§Y!!JJ!i!li.2.!!· 



~gf!~!!i£D: E(L,A,Q,y) 

e f~! i~!g!!al Q. 

E (L, A, Q, y) 

104 

is the ~xtension of the cost function 

E is given by 

ei•e (8i) + ••• +8j*e (8j) =--------------------- . ei+ ••• +ej 

~his weighting scheme penalizes a large cost at high aeaory 

allocations. In order to ensure a fair comparison of two or 

more layouts, all evaluations must use identical e sample 

points 11itbin the interval Q. 

Consider the following example, where the cost measure is 

the nul£ber of faults, f, and the interval Q=[2,4 ]. 

Layout £ (2) 

11 

12 

100 

80 

Cost 

f(3) f(4) 

8C 

70 

20 

40 

Extended Cost 

Ef2,3) 1![2,4] 

88 

74 

5€ 

59 

Layout L1 experiences more faults than 12 at €=2 and 6=3, 

but its lower cost at 6=4 (20 versus 40) reduces its cost 

over [2,4] to below that of 12. Over [2,3 ], the cost of Ll 

is higher. so we see that the extended cost function per-

forms a smoothing, so that poor performance at low alloca

tions can be compensated for ty good performance at higher 

allocations. 

feLhaps the major issue in layout evaluation is the 

choice of the evaluation interval Q. USing a narrow inter

val can give either overly optimistic or overly pessimistic 

results. Using a wide interval gives cocservative results 

since, given sufficient allocation of memory, layouts tend 

to perform about the same. 



105 

cost functions, which apply to executions, are also used 

to measure the perforaance of a layout. In the cost func

tion e(L .. A(-6),y), holding y fixed while varying L from 1.1 to 

L2 measures the relative goodness of layouts Ll and L2. 

3. 2. 2. 1 Scalars 

We use three cost functions to measure memory cost and 

layout performance. 

(1) r(L,A(e)~Yl is the ~§§Q re§ident set siz~ at a fixed 

value of e. 

(2) f(I,A(~),y) is the numter of~~ faults generated 

for a fixed e. 

(3) s (I, A(~), y) = r (L, A (e), y) *f (L,A (e) ,y) is the §pace-

1s~lt ££Qduct, which is the space-time cost of han

dling page faults, for a fixed e. 

When nc ambiguity can result, we refer to these functions as 

the scalar variables r, f and s, respectively. 

3.2.2. 2 Curves 

Performance data are either presented graphically, in the 

form of a curve of some type, or they are presented in sum

mary fcrm as a scalar. curves give a visual summary of the 

effects of varying the values of variatles under considera

tion, and often suggest places where furtLer quantitative 

analyses are needed. Scalars provide a quantitative measure 

fer ccaparing performance. 

>e use three performance curves. 

(1) The ~Q~fing &§! curve plots 
replacement algorithm is ws. 
packing efficiency of layouts. 

r versus e, when the 

This curve shows the 



106 

(2) lhe ~~£fing curve plots f as a function of r. It 

shows the effect of memory allocation upon the num

ber of faults. 

(3) The ££~~faul!, or memory cost curve plots the 

product r*f versus r. It shows the effect of memory 

allocation upon memory cost. 

lie can ccmpare the performance of layouts L1 and L2 by 

comparing e(L1,l(6),y) and e(L2,A(6),y), for arbitrary cost 

functicn e. I£ the values of e versus the appropriate inde

pendent variable are plotted for both layouts on the same 

graFh, the relative perforaances of Ll and L2 can be seen. 

such curves summarize relative performance over a vide range 

of values cf the independent variatle. 

At times one is concerned with a quantification of rela

tive performance. lie use a single measure of comparison for 

two layouts L 1 and L2. 

~efiDi!iQD: R(Ls,L,E,A,Q,y) is the ~t-reduction cf Lover 

Ls under [Q,y)-evaluation, with respect to cost function 

e. R is given by 

R (Is, L, ll, A, Q, Y) 
E (L,A,Q,y) 

= 1 - ----------- , where 
E(Ls,A,Q,y) 

layout Ls is the comparison standard. 

When no ambiguity can result, we write R{Ls,L). This 

measure cf comparison has two uses: {1) comparing the clog

DeSE of two layouts, and {2) determining the ~QE~ior, or 

infg£i2£• layout. lie find it more convenient to express E 

as a percentage. Negative values indicate performance ggg
I!!dati_£.!); FOSitive values indicate ,improvement. From this 

point en, we will use the terms "improvement", "degradation" 

and "closeness" in comparin9 layouts. 



107 

Suppcse we have tlio layouts, Ll=L(vl,A{G),p) and 

L2=L (v2,A (6) ,p), £armed using the same restructuring 

algorithm and clustering page size. We say that "vl pro-

duces layout L 1" and "v2 produces L2" since tte input 

strings, •I and v2, distinguish the tvo applications of the 

restructuring process that produced the layouts 11 and 12. 

Comparing layouts L 1 and L2 is tantamount to comparing the 

restructuring effectiveness of the strings v1 and v2; the 

one that leads to the tetter layout can be thought of as 

being tetter in terms of restructurability. iie will often 

indirectly compare strings ty comparing directly the layouts 

they produce. 'Ihat is, saying "strings v1 and w2 are within 

10~ of each other" aeans that the performances of layouts 11 

and 12 are within 10% ot each other. 



109 

TyFe-2 frograms provide benchmarks for GFAM Kodeling: 

GPl~ ~ust capture and reproduce the restructuring signature 

of ot:served executions of the subject program. lie expect 

that the signature is so distinctive that type-2 programs 

can also be modeled using DNF-PA!I to produce good quality 

layouts. 

Modeling type-3 

challellging. lie 

programs using GPAM 

expect this type of 

should prove to be 

program to require 

careful parameter representation and estimation. 

Even if the program can not t:e successfully modeled, GPAM 

provides a llsefu1 vehicle for descrit:ing and characterizing 

the subject program. Being atle to predict the extent to 

which restructuring is viat:le is a useful capability that 

GPA!I might provide. 

Three cf the four subject programs that were studied are 

described in this chapter. {'Ihe fourth one is studied sepa

rately in chapter 6.) Subject programs were selected on the 

bases cf availatility, size (in number of statements or pro

cedures), program structure (structured programming style 

was preferred), and programming language (Pl/I). These cri

teria liere necessary to facilitate modeling. Three of the 

selected J:rOgrams were •ritten by the author and used as a 

part cf the modeling and restructuring system used in this 

research. No conscious attempt was made to code these pro

grams in a manner that would in any way bias the results of 

this research. As a further guard against inadvertent bias,' 

we chose as the fourth program one written for a use that is 

totally unrelated to the requirements of this research. 

Table 3.1 summarizes the collection of subject programs. 

Figures 3.5- 3.7 give the procedure-level static structure 

of the subject programs GENREF, RES'IROCT and ClOSTER. A 



110 

celatively long period during which a pcogram performs a 

distinct logical function is called a lQgical phase of exe

cution, which corresponds coarsely to the phase-transition 

behavior discussed in Chapter 1. For each subject program, 

logical phase boundaries were determined from a knowledge of 

the over-all function of the program, and from an examina

tion of its source code. 

The static procedure nesting level and sharing index 

(ratio of the number of call graph edges to the number of 

nodes) reflect the inter-procedural complexity. Over-all 

construct nesting level, and specific 

els - selection and loop const.ructs 

construct nesting lev

indicate the intra-

procedural control structure complexity. A procedure that 

calls ether rrocedures is termed a caller procedure. 

All the subject programs have about the same static char

acteristics. In all, the percentage of caller procedures is 

30-40%. Ncne have very complex intra-procedural structure, 

as evidenced by the low levels·of construct nesting. All 

arpear to have the call-graph stcucture one would expect 

when structured programmin~ is used, in that procedures are 

used instead of deeply nested constructs. 

Program 

given a FA!! 

GENREF performs synthetic string generation, 

model instance for a subject program. There are 

two large (involving more than eight procedures) logical 

phases: ( 1) the model internalization phase, during which 

the parameterized call-seguence grammar is loaded and stored 

internally; and (2) the string generation phase. These two 

phases are es.se~;tially disjoint, the driver teir.9 tbe only 

procedure ccmmon to both phases. The first 

of two smaller phases corresponding to CSG 

para~eter leading, respectively. 

phase consists 

loadins and CSG 



111 

IState•ents 

#Procedures 

tCaller Frocedures 

llogical phases 

Sh a .re-i nde x 

Avg procedure nesting level 

~ax Frocedure nesting level 

ILOCFS 

Avg lOCF nesting level 

Max lccf nesting level 
#Selection constructs 

Avg selection nesting level 

Max selection nesting level 

1 #Constz:ucts 
I Avg construct L:.:_ construct 

nesting level 

nesting level 

Subject Program 

GENBEF BESTROCT ClOSTER 

769 

32 

14 

2 

1.4 

2.6 

4 

Hi 

0.3 

2 

18 

0.3 

2 

34 

1. 0 

4 

640 

21 

7 

3 

1. 3 

1. 7 

3 

7 

0.6 

1 

15 

o. 5 

2 

22 

1. 4 

4 

590 

26 

8 

3 

1. 1 

2.5 

4 

7 

0.3 

1 

10 

o. 4 

2 

17 

0.9 

4 

!l!~l~ 1-1 
Static Characteristics of Subject Programs 

I 



GENREF 

tUMPCSG ====tOOlPUT 

--GENST.H ===ISTRGEN) 

--INitCSG 

\ r--GETSYHB I ,--LOADNT 

= +- ~0Ai)C:s"G1 = + ! -----· L.,,,. 

----- r-GEtSYIIB 

-{ LOADPR 11] = +--LDCC.KD 

L------ L-LDLOOP 

~-- NUIISTR 

j--OUTPUTL 

L-FGMSUE 

Fi.!lBil ~-.2 

r
--CNTLESC 

--FINDLEY 

--LOG PEND 
=+ 

l
--LPENTBI 

--OUTPUT 

--SEL_ALT 

f--GETSUB 

=+--INSFIND 

L-NE>ICARD 

r
--DUPLICATE 

--FIXJUIIP 

--GETSYHB 
=+ 

--NEIICARD 

112 

r-FINDLIV 

=+--OUTPO'I 

L-FCUOCP 

,.--FINtLEV 
=+ 

L--OU'rPUT 

r--FINDAL'I 
=+ 

L--HNDL:EV 

i
--INSFINt 

--SETDUP ====GE'ISYIIB 

r-FIND_IP 

= +--GETSY liE 

L-rNSPAR!I 

====GETSYIIB 

call Tree for Subject Program GENREF 

One distinctive feature of GENREF is its non-determinis

tic behavior-- two ezecutions of GENREF using the same 

inputs ~ill produce two different outputs (and hence, dif-



113 

ferent execution trace strings). lhis is due to random saa

pling frca GPAM paraaeter distributions during the genera

.tion Fhase. On each execution of GENREF, the initial random 
number seeds are changed, which makes this non-determinism 

possible. The Frocedore-level static structure of GENREF is 

sholin in .iigore 3.5. 

f'""' 
)--ElDClEL 

I 

~--FITI:ATA 
BES!BOCT=!--FEli~IT 

~~-[;::;;~ I ____ :J 

{-[~~~~ 
J--SETHLE 

L-SEli!AP 

--CLEARF 
f--SETCFLD 

=+ 
~--SETFFLD 

L-sETIFLD 

--FETFLD 

f--SETCFLD 
=+ 
~--SETFFLD 

L--SE'IIFLD 

====B EADATA 

r--POSFILE 
=+ 

L--RFD 

====SETIFLD 

r--FE'IDATA ====BEADATA 
=+ 

L--U PIA'IE 

r--FE'IDA'IA ====READATA 
=+ 

L--liSUPDATE 

Figure J • .§ 

Call Tree for Sul:ject Program nESTEUCT 

Prcgr:am RES'IROCT constructs a restructuring matrix C, 

given as inFuts a reference string and replacement algorithm 

specification {i.e. 1 the algorithm and a value of its con

trol Farameter:). RES'IRUCT's longest phase (containing three 



114 

procedures) occurs during construction of the-restructuring 

matrix. The identity of the aodules referenced within the 

phase defends upon the replacement algorithm. Its other two 

phases, both short-lived, occur during program initiation 

and terEination. The only aspect of EES7BDCT 1 s behavior 

subject to change apprecially across executions is_the dura

tion of the longest phase, which is proportional to the 

length of the input string. Figure 3.6 shows the call 

tree for EESTBDCT. Botice that the height of the tree is 

less than GENBEF 1 s, which indicates that GENBEF has a more 

complex (static) call structure. 

The restructuring matrix c produced by BESTBDCT is an 

input tc frog ram CL DSTEB, which is essentially a list-pro

cessing algorithm whose behavior is governed by the number 

of non-zero elements in c. Jts first phase occurs during 

the loading of C; the second phase, the longest, occurs dur

ing actual clustering; the third and last phase occurs dur

ing the assignment of clusters to pages. 

Logical fhases of execution can be described in terms of 

the call trees. A phase of execution includes all refer-

ences 11ade from the time of entry to a sul:tree, to the time 

of the succeeding exit, provided that the time (or number of 

references) between entry and exit is sufficiently long. In 

Figures 3.5-&Fignum(&AttliDPA~)., modules whose execution 

leads to fhases are surrounded ty boxes. The subtrees 

defined by these modules contain the modules referenced dur

ing these phases; the frequency with which they are refer

enced, and the ower-all length of the phase, depend upon the 

static frcgram structure. 

Observe that phases for GENBEF can involve a larger num

ber of different modules than BES'lBDC'I or ClDSTEB. Since 

phases refresent periods of locality of reference, modules 

referenced during the same phase should, if at all possible, 

be stored in the same page. The restructuring process ulti-



115 

mately decides which of these modules will occupy the same 

page. 

-cLEANUP 

--CONSTCL 

-- I:Ul'!PCL 

--tul'!PZL 

--HTIFLD 

--CLUSTR =+--INITCD 

CLUSTER =+ 

j 
--PBNTI!AP 

--SETCFLD 

--SETIFLD 

-SE'IP!RS 

' . r-FETIFLD 

•--ficAnc"Pl=+ 

·------.J L_ R EA:CRI! T 

li.gure 2-1 

~--DUI!PEL 

=+--INSERT 

L-B.E!!OVE 

~-DUI!PI!AP 

=+--PAGENU!! 

L-sETIFLD 

r-FETDATA 

1--FE'IINIT 
=+ 

1--SETFII.E 

L-SETI!AP 

• 

====READATA 

r--POSIILE 
=+ 

L--RFD 

Call Tree for Subject Program CLUSTER 



116 

For each subject program, a testbed of up to twenty exe

cution traces vas collected. ibe testbed is used to deter

mine the intrinsic referencing characteristics of the sub

ject program, based on observed executions. It is also used 

to validate the synthetic strings generated from the fl! 

model. Each execution trace is associated with the input 

data the subject program ran against to produce tte trace. 

The lengths of the execution traces ranged from 500 to 

50,000 frccedure references, with a median length of around 

5,000. Execution traces are referred to by subject program 

name (GENBIF, BESlRDCT or CLDSlEB) and testbed index (e.g., 

TB-3, TE-11E). 

Table 3.2 gives the names of the testbed string sets 

used in the restructuratility experiment. As seen in the 

table, single strings from the testbed are named using lower 

case "y", e.g., ye. Sets of multiple strings (e.g., Y1 and 

Y2) are actually_ ordered sets of strings. For instance, Y1 

represents the string formed by the concatenation 

(TE-2)+(TE-3)+('IB-5), in the case of subject program GENEEF. 

The set TEED contains all the strings in the testbed. 

subject 
Frcgram 

GIN REF 
FESTRUCT 

CLUSTER 

Testbed 'irace String Sets ---------------------------------
ye Y 1 Y2 

TB-6 

TB-4 

TB- 12 

TB-2+3+5 

TB-2+4+5 

TB-2+3+5 

!l!Ug J-1 
Trace String Testbed 

TB-3A+4+6 

TB-0+1+3 

'IB-1+4+6 

' 
j 



117 

3.4 !HE BES!ROCTOBABILITY EXPERIMENT 

In this phase of the research, we wanted to verify 

whether program restructuring does indeed work for the sub

ject programs used in this research, and whether the same 
relative performance improvements are achieved from restruc

turing regardless of the restructuring algorithm. In order 
to reduce the volume of ilata generateil ty the succeeding 

experi~ents, we selected values of the restructuring 
algorithm A, central variable e and page size p for which 

restructuring yields consistent performance improveaents 
when afplied to execution trace strings. We also wanted to 

investigate the robustness of restructuring as a function of 
the set of evaluation strings. Einally, we wanted to see 

the extent to which performance improvements differ when the 

trace string used as input to the restructuring process is 
changed. 

The variables, or parameters, of the restructuring pro-

cess are the restructuring algorithm A, 

ter e, and the clustering page size p. 
variables used in this experiment are 

3. 3. 

its control parame
The values of these 
presented in Table 



118 

Bestructur in g Variable ---------------------------------------
Page size 

Subject ---------------Progra• Algorithm Theta (6) p1 p2 p3 --------- -------- --------- -------------
~EIIBEF CLBU 1,2,3,4 80 120 160 

CliS 1,3,5,7 

RES1ROC7 CLRU 1, 2, 3 60 90 12 0 

CliS 1, 3, 5 

CLDSnB CillO 1,2,3,4 72 108 144 

CliS 1,3,5, 7 

!.!!.!1le J.] 
Variables of the Restructuring Experiment 

In crder to determine the extent to which restructuring 

could be expected to i•prove the performance of the subject 

prog ra IllS, 

strings. 

we performed 

The purpose of 

restructuring 

the experiment 

using actual 

was four-fold. 

trace 

(1) To demonstrate that the choice of layout does indeed 

affect the performance of the subject programs. 

(2) To demonstrate the feasibility of applying program 

restructuring to the subject programs. 

(3) To select values of the restructuring variables, A, € 

and f• for use in the remainder of the research. 

(4) lo determine how sensitive the amount of i~provement is 

tc the choice of trace string used as input to the 

restructuring process, and to determine the extent to 

which the amount of improvement is preserved across 

different executions. 



119 

display and interpret perforaance 

distiiictive referencing tehavior of 
~urther, we decide upon a region of 

In this section we 

curves that exhibit the 
each subject progxaa. 

aeaory allocation over ~hich a significant reduction in aem

this vill te the evaluation interval ory cost is observed. 

ever which perforaance comparisons vi11 be aade. The 
intrinsic characterizations presented describe a carefully 

chosen set of execution traces. (Using other executions 
leads to the same general results as those shown.) 

Intrinsic locality properties, such as pa~ing activity, 

aemory cost and memory demand, can be determined ~y simulat
ing a page replaceaent algoritha on a syabolic reference 

string, assuming a one-to-one aapping of modules into pages. 

The nor~alized cost curves in Figures 3.8 and 3.10 plot 

memory cost (relative to tbe maximum observed cost) versus 
woxking set size. The verkin g set curves in Figures 3. 9 

and 3.11 show the comparati~e growth rate of working set 
sizes fer the subject programs. 

The intrinsic behavior of the single execution ye is 
shewn in the curves in Figures 3.8 and 3.9. !he execution 

ye for subject programs GENBEF, RESiRUCi and. CLUSTER has 

respective lengths 27K, 7K and 14K references. EESIRUCT and 

CLUSTER tcth have phases that are shorter than those of 
GENREf. A further similarity is that they cycle through 

their eDtire. code body, once for each value in the input 

stream. 
phase. 

that the 

GENEEF reenters only its dominant (the generation) 
The effect of cycling through the program body is 

working set gro~s with the aS window, as tbe window 
spans 1cre than one moderate 
whose do~inant phase is longer 

as GE~EEF), the growth is much 

length phase. For programs 

than the maximum • in dow (such 

slower. 



... -. 
0 
0 

o-

..... 
"' 0 

;:o ,.., 
r o-
:I> 
-; "' 1-1 0 
< 0 ,.., 
n 
0 
(I) 
-; o-

1\) 

"' 0 

c:> 

0 

In the 

0 GENREF 
+ RESTRUCT 
X CLUSTER 

I 
~ 

~ 
__.__._ 

S.OO \o.o 
1
15.0 ko. o 
AVG WORKING SET SIZE 

Figure 3. 8 

Intrinsic.ye Cost Curves 

normalized aemory cost curvES of Figure 

12 0 

I 

ks.o 

3. 8 ve 

see a rapid drop in memory cost wh€D the average working set 

size arprcaches a certain value: G.EiiR.EF near 6, llESTBDCT 

near 2 and CLOSTER near ~. suggesting that the dominant 

phases reguire 6, 2 and 4 modulEs, respectively. From our 

discussion in section 3.1.3, it would appear that using 

restructuring windows e=5, e=l and e=J should yield good 

CloiS re£tructuring results for GINEfF, EESTllUCT and CI.OS~LER, 

respectively. 



:D 
< 
C> 

:!:: 
(/) 

(/) 
H 
N 
!"'I 

-CX> 

0 

-1\.) 

0 

(To 

0 
0 

o GENREF 
+ RESTRUCT 
X CLUSTER 

121 

0-r-----------r----------,-----------.-----------.----
0. 50.0 100. 150. 200. 

WINDOW T x 101 

Figure 3. 9 

.Intrinsic ye Working set curves 

The intrin~c behavior of an ordered set (Y1) of three 

execution traces ~as determined. lhe set Yl for the subject 

prog ra as were 

length from 

shorter than the ye executions, ranging in 

4.4K to 13K references. the executions vere 

carefully chcsen to represent a diversity of subject program 

input types. Y1 represents three tack-to-back executions of 

the subject program. illat is, Y1 cycles through the entire 

progra~ cede three times. For programs such as EESlBUCT and 

CLUSTEB, the behavior of Y1 is not significantly different 

from that of ye; for GIRREF, though, the induced progra• 

cycling should change the tehavior. 



;o 
~ 
r-
:D 
-; 
~ 

<: 
~ 

r> 
C) 
tn 
-; 

... 

C> 

~ 
tn 
C> 

0 

tn 
C> 
C> 

0 

~ 
tn 
C> 

o GENREF 
+ RESTRUCT 
x CLUSTER 

122 

o-r-------y-------,-------.--------r-------,------1 
0 5.00 10.0 15.0 20.0 

AVG WORKING SET SIZE 

Figure 3.10 

Intrinsic Il Cost curyes 

25.0 

Compared to single execution ye, for execution set Y1, 

the ~aximum working set si2es (at window 2000) are larger 

fer all pzcgrams: by 25~ for CLUSTER, 60X for EESIRUCT and 

150~ fer G!NEEF. The cycling for GENREF causes tte window 

to enccmpass parts of terminal (generation) phase and the 

initial phase, increasing the over-all working set size. 

The effect upon the memory-cost drop-off point is most 

marked for GENEEF, changins from 6 to 3; they are unchanged 

for FESlRUCT and CLUSTER, since ye contains the same cycling 

pattern as does t1. The decrease in drop-off point for 



GENBEF is caused by tvo factors. 

three .short executions in !1, the 

123 

Pirst, in each of the 

generation phase vas not 
the dorinant one, whereas in ye, which is four ti~es longer 

than the length of r1. tbe the generation phase doainates 

Yirtual time. Second, the CJcling in 11 causes the non-gen
eration phases to dominate, ty Yirtue of their increased 

frequencJ. 

-OJ 
:J) 

< 
C> 

0 

:0: 
U> -U> 1\:) ...... 
N 
1""'1 

0 

.,.. 
0 
0 

I 0 

0. 

o GENREF 
+ RESTRUCT 
x CLUSTER 

50.0 100. ISO. 

WINDOW T x 1 Ql 

Figure 3.11 

Intrinsic Y1 working Set curyes 



124 
The intrinsic curves can also belp to identify an evalua

tion interval, O=[t11,t32J, of tl values over which different 

layouts should £e comparee. lie use the following guide
lines. 

(1) Tbe total cost reduction over interval Q should be 

at least so". 

(2) ever interval Q, the liS size should reach 50-70J of 

its maximum size. (:Ibis represents the noraal oper
ating region of memory allocation on paged systems.) 

Such a choice of Q covers loth a region of tight memory con

straint, and one of lesser constraint. For the LRU replace
•ent algorithm, the interval Q=[1,number of pages) was cho

sen; for liS evaluation, Q=[1,100J. 1 wide evaluation 
interval will result in more conservative comparisons of 

layout ferformance, because of the s•oothing produced by the 

weighted sum used to co•pute cost over an interval. For 
these choices of evaluation intervals, the subject programs 
meet guidelines (1) and (2). 

Standard laycuts represent typical ways of assigning mod
ules to fages without using restructuring techniques. lie 

used fcur. 

( 1) L.ALPHA -- the modules are presented to the linker 

in alfhal€tical order: 

(2) L.EANDOI'I -- the modules are presented to tl:e linker 

iD random order; 

(3) l.TEXTUAL -- the modules are presented to the linker 

in the order in which they appear in the source 

text: 



125 

(4) l.WCEST -- the linker is instructed ·to store one 

acdule per page. 

The layouts are foraed by a first-fit placeaent of aodules 

take~ f£oE the input list. Except for L.WORST, page breaks 
occur when an atteapt to store the next input aodule would 

result in a page overflow. 

Figure 3.12 shows typical cost curves coaparing the stan

dard layouts against a common evaluation string set Y1. ~n 

the figure, ordinate values are scaled (down) by the largest 

factor cf ten such that the smallest scaled value is less 
than ten, and the comaon logarithm of the scaled value is 

plotted. (The scaling merely improves the appearance of the 

curve.) Fer small allocations, L.7EXT is clearly superior, 
but for increased allocations the differences among l.TEIT, 

L.AlPHA and L.EANDOK diminish. 



,-
0 
Q -0 
~ 

::3: 
JTI 
::3: 
0 
::0 
-< 

"' 0 

"' -I 
~ 

0 
0 

-
0 
0 

o LCCL. WORST) 
+ LCCL. ALPHA) 
x LCCL. RANDOM) 
liE LCCL. TEXTUAL) 

126 

0 

0 

L_ ____________ s_._o_o ______ ~_o._o ______ ~_s_.o ______ 2_o_._o ______ 2s_._o ___ jl _ AVG WORKING SET SIZE 

Figure 3. 12 

CLOSTER STt Layout 11 iS Cost Curves 

lie ccmFared the performance of I.. ALPHA, L.RANOOil and 

L.TEXTOAl relative to L.WOBST by evaluating them against 11 

over the selected evaluation intervals, and for each page 

size. Tables 3.4 and 3.5 show the performance improve-

~rents ever the IIOBST layout. In particular, we oJ:sErved the 

following trends. 

(1) 'Ihe benefits of restructuring increase with page 

size. The increase is generally monotonic. 



127 

Eval Page Size 
Subject Str STD --------------------,l?rcgraa Set Layout pl p2 p3 A y g ---
GENFEP !1 ALPHA 32 54 62 49 

RANDOl! 32 54 60 49 
TEITUAL 44 55 63 54 ---- --

Avg 37 54 62 51 

EES7BUCT Y 1 ALPHA 45 59 75 60 
RANDO II 39 61 71 57 

THTOAL 45 82 86 71 ----
Avg 113 67 77 63 

CLUSTER !1 ALPHA 49 73 88 70 
EANDOII 50 73 91 72 

TEXTUAL 56 74 89 73 ---
Avg 52 73 89 71 

.Ii!l:l~ J·.! 
STD Layout liS Cost B.edactions over L.liOBS'! 

(2) Except for the subject program RESTBUCT, where the 

TEXTUAl laycut is vastly superior to L.ALPHA and l.RAfiDCII, 

there afpears to be no sulstantial difference in the stan

dard layouts. for BES'!BOCT, the two tightly-bound modules 

that account for the dominant phase appear adjacent to each 
other in the source text. Since L.ALPHA and L.RANDCII ignore 

this order, 

page. 

they fail to store these modules in the same 

(3) '!he best standard layout across all subject programs 

was !.TEXTUAL. Henceforth, ve denote ty l.BEST the best 

standard layout for a given sutject program. 



128 

EYal Page Size I Subject Str STD --------------------Prcgram Set Layout p 1 p2 pJ lvg ------ ---
G :Eli E EF Yt ALPHA 55 63 60 59 

F.ANDOl! 53 60 55 56 
:J:EXTUAL 58 63 64 62 -- ---- ----

AYg 55 62 60 59 

B :ES'IEU CT It ALPHA 52 28 53 411 
RANDO!! 47 27 24 33 

'IEITUAL 47 92 94 78 --
Avg 49 49 57 52 

CLUSTER Y1 ALPHA 58 57 74 63 
llA!iDOl! 54 56 62 57 

TEXTUAL 64 78 80 711 

f 
-- ----

l't'g 59 64 72 65 

t 

! i!&J.~ 1·!1 
STD Layout LRU Cost Be duct ions OYEr L.liORST 

No~ ~e would like to see the extent to ~hich further 

improvements are possitle fro• the use of program restruc

turing. 



129 

Each comFuted layout is identified by the restructuring 

algorithm (CiiS or CLBD) used to produce it. For each sub

ject prcgram we computed layouts, 1(!1,A(e),p), using dif

ferent values of 1, a and p. liE then evaluated these lay

outs against the evaluation string set 11. 7heir 

comparative ferforaances, relative to L.BEST, the best stan

dard layout for a given replacement algorithm, are presented 

in Tables 3.6 and 3.7. 

Eval Page Size ' 
Subject Str computed --------------------Program Set Layout p1 p2 p3 Avg ------ -----
GENBEF I1 

cvs r1·1~ -7 44 53 30 
CliS Y1,3 42 60 67 56 
CW S Y 1, 5 45 58 72 58 
CiS Y1,7 36 55 71 54 ---- ----

l'fg 29 54 66 50 

J RESTEDCT !1 cwsv1,1} 3 15 11 10 

I CiiS Y1,3 2 -71 -86 -54 
CliS Y 1, 5 7 -40 -42 -25 ----- ---- ----

I 
A vg Lj -34 -39 -23 

CLDSTEE Yl 
CWSrl,lf 

6 38 25 23 
CWS Y1,3 34 56 42 44 

I L 
CliS Y1,5 31 46 31 36 
CIIS Y1,7 32 56 48 45 --- ----

Avg 26 49 37 47 

I§H.!i J • .§ 

CIIS layout liS Cost Be duct ions over l.BEST 



130 

:!val Page Size 
Subject Stl: Computed --------------------Program Set Layout pl p2 p3 Avg ----- ------
GEIIR:EF Yt CLRUr 1,1} 5 53 72 43 

ClRU 11,2 13 39 76 43 
CLBU Y1,3 23 53 62 46 
CLBD 11,4 34 51 69 51 ---

Avg 19 49 70 45 

I RESTBUCT Yl CLRU ~y 1, 1} 6 22 38 22 
CLRU Y1,2 -7 -537 -583 -376 
CLRU Y1,3 10 -341 -690 -340 ---- ---- ---- ----

Avg 3 -285 -445 -231 

I CLUSTER Yl Cl.R u r 1. ,

1 
14 53 64 44 

CLRO Y1,2 21 59 72 51 
CLR U Y 1,3 28 17 -2 14 
CLRU Y1,4 41 13 54 36 --- ----

Avg 26 36 47 36 

Il!£1 e 1·1 
Cl.RU Layout LRU Cost Eeductions over l.BEST 

These results suggest the following. 

(1) Fer RES'TRUCT, the Nearness method (Clr/5(1) or CLRU(l)) 

is clearly superior to any other restructuring algorithm. 

This is no surprise, however, since the Bearness method is 

based on adjacency of reference, a one-one relation between 

iodules. Negative table entries for hESTRUCT's ClRU and c•s 

layouts indicate that other layouts actually perform ~~ 

than the 7EITUAL layout. Notice also that very small 

improvements occur for the small page size (pl) because it 

is toe small to contain the dominant phase consisting of two 

modules. In this case ve see that a good restructuring 

algorithm can be thwarted during the clustering phase. 

(2) For CLUSTER, the CWS (3) and CLRU ( 2) restructuring 

algorithms result in tbe best improvements over l.BEST. The 



131 

effectiveness of the Nearness aethod is nearly nil for the 

small page, but increases with page size, owing largely to 

the cafacity of the clustering algorithm to pack several 

small clusters within the larger page. ~his trend is also 

present in frogram GENBEF. 

(3) The effecti~eness of using the Nearness method varies 

with the replacement algorithm used during layout evalua

tion.* Across all page sizes, Nearness layouts reduced I.BU 

aeaory ccsts by up to twice as auch as they reduced iS 

costs. 

(4) A slight anomaly in the relationship between page 

size and restructuring effectiveness vas observed for pro

gram CLUSTD. As shown in Table 3.6, an increase from page 

size F2 to p3 resulted in a reduction in restructuring 

effectiveness, relative to the L.~EX~DAL layout. A possible 

explanation is the the L.~EXTDAL layout vas. better able to 

use the larger page size, resulting in less margin for 

imprcve11:ent through restructuring. In Table 3.4 we see 

that !.TEXTUAL improved layout I..WORST by up to 90,, which 

is much higher than the 6G-70J improvements recorded for 

progra1s GENEEF and RESTRDCT. 

Program restructuring is indeed beneficial for the sub

ject programs, the amount of benefit depending upon the val

ues cf the restructuring variables used. 



132 

ie have already seen in Tables 3.4-3.7 that, for a giYen 

restructuring algorithm, the amount of iaproYement is 

affected by the values of e and p. As expected, increasing 

page size increases improvement. Excluding RES!RDCT, cost 

reductions of aore than 501 are achieved for the interaedi-

ate fage size. Although more impressive improvements are 

realized for the large page size, improvements realized for 

the interaediate sized pag£ represent conservative estimates 

of the benefits of applying program restructuring to the 

subject J;:rcgrams. Table 3.8 summarizes the e of choice for 

each te:otructuring algorithm, using the intermediate sized 

page. 

Prcgraa -----
GENEH 

REsnuc~ 

I CLUSTER 

L__ 

llgoritha Theta Page Size 
!!emory-cost 
Reduction ------ ----- -------

CiS 5 120 
CLRD 1 120 

CIIS 1 90 
CLRD 1 90 

CiS 3 108 
CLRD 2 108 

H.U& ] • .§ 

Festructuring Parameter Settings 

--------
54 
53 

15 
22 

64 
59 

I 
I 

l 

It affears that the differences bet•een the cws and ClFU 

layouts (for liS and LED replacement, respectively) are not 

substantial: both show the same relative effects from 

changes in e and p, and J;oth produce the same relave per-

for[aLce i~Frovements. 

si vely. 

we will henceforth use c•s exclu-



133 

3.4.6 ~~ility Qf Ef~1fBCturing Improvements 

Jn order to identify executions that lead to good lay

outs, ~e restructured using each string in a set of selected 

traces and coapared the aeaory costs of the layouts they 

produced. The strings (i.e., layouts) were ranked according 

to their perforaance against a coamon trace string (1) to 

give us an idea of what the chances were of making a good 

(or bad) choice of execution upon which to base restructur

ing, and (2) to identify the test choice of evaluation 

striDg for subsequent la)out comparisons. We found that, 

except for TE-2, BES'lBOCT is very insensitive to the values 

of its inruts, as shown in 'latle 3.9. Even short execu

tions of R!STBUC'l provide the same restructuring information 

as auch 1cnger executions. Programs GENBEF and CLUSTER 

show more sensitivity. For each subject program, the execu

tion with the highest restructuratility rank (indicated by 

the asterisk) vas used as the standard layou_!. .f!aluation 

string, ye, for the subsequent phases of the research.· 

In Table 3.9 ve see that GENREF executions TB-6, TB-4, 

TB-5 and TE-31 all produce layouts whose performances differ 

by less than 10%. CLUSTER's executions TB-11, TE-12 and 

TB-5 are within 1% of each other, and TB-1, TB-3 and TE-2 

are within 15% of the l:est string (layout). lie also see 

that, when restructuring is based on multiple executions, a 

smoothing effect occurs. For example, the worst execution 

(to use in xestructuring) for GEIIREF vas TB-2, but when it 

was used together with TB-3 (rank 7) and· TB-5 (rank 3), the 

resulting layout was only 15% inferior to the best layout, 

as Ofpcsed to the 125% inferiority of TB-2 when used alone. 

Sillli.la.t results were ol:served for the other subject pro-

grams. We draw the conclusion that restructuring is sta-

blest when it is based on multiple execution trace strings. 



134 

Subject Program ~ -------------------------------------- f GENREF BESTBUCT CLUSTER 
---------- ---- ----------ID ~DIFF It KDIFF It ~Diff 

s .E 
I I 
B .E 
G C 
L U 
E 'I 

l 
0 
N 
s 

0 
-3 
-4 
-7 

-16 
-24 
-33 

*'IB-6 
'IB-4 
!B-5 
n-JA · 
'IB-1 
'IB- 2A 
18-3 
'IB-2 -124 

*TB-4 
7B-1 
TB-3 
'IB-5 
TB-0 
'IB-2 

0 
0 
0 
0 

-8 
-77 

*TE-12 
TB-5 
TE-11 
TB-1 
TE-2 
TB-3 
TE-7 
TB-6 
T£-4 

0 
0 
0 

-11 
-11 
-11 
-37 
-83 

-122 
• • • • • • • • • • • • • • • • • • • • • • 

M 
u 
L Yl=(TB-2 
'I 'IB-3 
I TE-5) 
p 
L Y2=(TB-3l 
E TB-4 

TE-6) 

Y3=(TE-1 
TB-21 
TB-5) 

YT= (Y 1 
12 
YJ) 

-15 

-1 

-1 

0 

('IB-0 
TE-1 
'IB-3) 

('IB-2 
TE-4 
78-5) 

(y 1 
Y2) 

,latle 1·.2 

-8 

0 

-8 

(TB-2 
. TE-3 

TB-5) 

(TB-1 
TE-4 
TB-6) 

0 

0 

(TB-7 
'IE-11 
TB-12) -22 

(Y 1 
Y2 
Y3) 

0 

CoS Restructuratility of Testbed Traces 

( Improvement over Layout L (ye) ) 

Once Epecific values of the restructuring variables, A, e 
and p, ~ere determined, ~e wanted to verify that the compa

rable rerfcrmance improvements could also be achieved using 

a different set of strings as inputs to the restructuring 

phase. We chose this set, Y2, to te three strings repre

senting different classes of subject program inputs than 



135 

those representing Y1. ihe results from evaluating layouts 

L(Y1,1(€),p) and L(Y2,A(8),p) against evaluation string sets 

!1, !2 and ye are shown in Tatle 3.10. This table shows CiS 

illprove•ents over the J:est standard layout. 

·is little "tariation in thE performances of 

L(Y2) and l(ye} across e~ecutions !1, Y2 and 

OYer-all, there 

layouts L(Y1), 

ye. 

Subject 
Prcgram 

Evaluation String Set 

Layout Y1 

!JHl ~~ 
L he~ 59 

GENREF 

RESTRUCT !JHl B 
L he~ 15 

!IHl ~~ 
L he~ 56 

CLUSTER 

!i!U~ ~-1.Q 

Y2 

66 
71 
71 

14 
11 
14 

56 
56 
56 

ye 

65 
69 
70 

19 
12 
19 

78 
78 
78 

Stability of CWS Cost Reductions over L.BES~ 

lvg 

63 
66 
67 

16 
12 
16 



136 

Progras restructuring is feasible for the subject pro

grass. we found that performance isprovesents are preserved 

across a range of different executions. Of all the subject 

prograAs, EESlEUCT is ty far the easiest one to restructure, 

since very ~hart executions provide enough infor•ation to 

achieve an optimal layout. The set of restructuring vari

ables •e will use during the remainder of the study are such 

that intermediate improvements are achieved from restructur

ing. 

In terms of classifying the subject programs based on 

restructurability, BESlRUCl is a type-2 program, whereas 

GENREF and CLUSTER appear to te type-3 programs. We expect 

RESTBUCT to be easier to sodel than GENREF and CLUSTER. (In 

general, cne can only make an intelligent guess as to the 

restructurability of a program, given only its static source 

text and scae knowledge of its function.) 



137 

3. 5 SUMABY 

Progra~ re~tructuring works for the subject programs. ie 

have chosen values of tbe restructuring variables, 1, e and 

p, and the evaluation interval, c, such that program 
restructuring }:roduces performance improvements of 20-75l 

over the best standard layouts. Restructuring works best 
when it is :based on aore than one execution trace. 



Chapter 4 

ELEBEIT&BI BODELZIG 

ThiE chaFter describes the first level of PAM modeling in 

which the simFlest model versions and parameter distribution 

assumptions are used. We begin with a review of the issues 

of modeling. Next we describe the two modeling experiments 

that constitute this major study of the research. In the 

next chapter, we introduce the next higher level of aodeling 

in which more sophisticated parameter estimation techniques 

are used. 

Both model verEions DNF-PAM and GPAM were found to repro

duce actual trace strings successfully. The subject pro

grams afpear to have a range of modeling difficulty which is 

related to the restructnratility of the modeled executions. 



139 

4. 1 GENERAL MODELING ISSUES 

The general PAM aodeling procedure involves the four 

steps shown in Figure 
relatirg to modeling 

the next step. The 

categories. 

4.1. At each step, 
aust be treated before 

issuES of PAM modeling 

certain issues 
proceeding to 

fall into four 

(1) llcdel version. Which model version, GPAM or DNF-PlM, 

froduces tetter synthetic strings for use in program 

restructuring? 

(2) Farameter representation. What statistics should be 

used to characterize loop and selection constructs? 

Bcv much detail about the statistical distribution of 

construct parameters is required to produce acceptable 

restructuring results? 

(3) Farameter estimation. ihich prograa executions should 

te sampled to provide the raw data for parameter esti
laticn? Bow should the rav data be combined to produce 

a single characterization of the sampled executions? 

(4) ~odel validation. Ho~ accurate is a model instance? 

Bow is accuracy determined? 



fiE~~ !·1 
OverviEk of PA~ ~odeling 

140 

Of the four versions of PAM introduced in Chapter 2, ve 

studied extensively only tNF-PA! and GPA~. Cur discussion 

of rarameter estimation treats GPAft almost exclusively. 

GPAM is mere general than DNF-PAM and, since it uses more 

infor~aticn about the program's static and dynamic charac

teristics, one would expect it to have a tetter chance of 

accurately modeling the sutject program. 

In essence, PAM is a §jmulation model. PAe synthetic 

string generation simulates the execution of the subject 

program. The simulation is driven by model parameters 

derived frcm observing actual program executions driven by 

input data. As with any simulation model, the quality of 

the nodel deiends upon its underlying structure dLd upon the 

quality of rarameter estimates. 



141 

The structure of GPAM is directly related to the control 
structures ased in the subject program. GPAM recognizes 

. loops, selection. escapes and procedure entry and exit as 
the only significant program execution actiYity. io dis

tinction is made among the three'types of loops (for, while 
and until) found in structured programming languages. All 

loops are modeled as for loops. GPAM models all condition
al-ezecution stateaents as selection constructs in which 

exactly one of many alternatives is selected for execution 
upon entry to the construct. The minimum numter of alterna

tives is two; hence, the "if-thenn statement is indistingui
shable from the "if-then-elsen statement. The only program 

constructs that require parameterization are loops and 

selection constructs. 

Becall that the DNF-PAM call-sequence grammar takes the 

form 

A = < ( x1 I x2 I •.• I xm ) >. 

DNF-PA~ parameters have slightly different interpretations, 
all independent of the structure of the source program. 

The DKF-FAM loop parameter represents the number of proce
dure calls made per entry to the procedure; selection con

struct parameters are derived from the number of calls made 

by the procedure. DNF-PAM parameters can be derived from 

GPAM parameters, or they can te gathered ty program instru

mentation. 



142 

A ~rcgram is characterized in teras of the vay it was 

observed (during one or aore executioDs) to execute its loop 

and selection control structures. the usage of a loop is 

characterized by a random varialle that represents the num

ber of re~etitions, i.e., the nuaber of times the body is 

executed ~er entry to the .loop. An m-v ector of selection 

probabilities characterizes the execution of an m-vay selec

tion construct. 

The statistics used to characterize a loop or selection 

construct can vary-- e.ztrea a, averages, variances, modes 

-- de~ending upon the modeler's discretion. The choice of 

statistic affects slightly the instrumentation overhead 

and, to a greater extent, the cost of calculating parameters 

from the execution coefficients. The process of parameter-

izing frcgram constructs involves two major decisions. 

(1) The statistic to be used to characterize the execu

tion of a construct. 

(2) The a11ount of oetail required al:out tl:e distribu

tion. Three approaches are typically taken: 

a) a point estimate of the distribution; 

l:) an interval estimate of the distritution (which 

may require an assumption of the class of the 

distribution and several of its moments); and 

c) the identification of the form of the distribu

tion together ~ith its characterizing variables 

(e.g., mean and variance). For example, a loop 

repetition paraffieter may have a normal distribu

tion with mean 18 and variance 7. 



.llegardless of how these issues are resolved, 

that all constructs of a given type have the saae 

underlying distribution, t:ut different values 

aoaents. 

11.1.3.1 Loops 

143 

we assume 

fora of 

for the 

loops have been shown to be the primary cause of locality 

of reference [DENN76,EATS77t:,SNYD78a] t:ecause they cause the 

mod ule10 in10ide the loop to te 

modules tend to have a hish 

referenced repeatedly. Such 

clustering affinity for each 

other. The number of 

ing information. I.ow 

loop repetitions contains restructur

values discourage clustering of mod-· 

ules referenced inside the loop; high values encourage clus

tering. 

The execution of a given loop can he characterized by 

rando& variables r and R, where r represents the 1ean loop 

repetition frequency, and B is the aaxiaua loop repetition 

frequency. Each program execution produces a list of fre-

quencies from which r and R are estimated. 

11.1.3.2 Selection constructs 

suppose we have an m-vay selection construct. cne pro-

gram execution produces a vector of coefficients, 

S=(s1,s2, ••• ,sm), where the i•tb alternative was executed si 

times. The vector-valued random varial:le Q=(g1,g2, ••• ,gm) 

is estimated using s. 7he protability of selecting the i'th 

alternative upon entry to the selection construct is esti

mated by gi=si;(s1+s2+ ••• +sm), the relative frequency of 

selecting the i•tb alternative during the otserved execu

tion. 



144 

4.1.3.3 lielative importance of constructs 

Since prcgraa restructuring is a locality-improvement 

technigue, it should te influenced by the same factors 
affecting locality, of which looping is a major contributor. 

GPA~ •ust, then, capture the looping characteristics of the 

subject prcgra• during parameterization, and reproduce those 
properties during synthetic string generation. It was our 
feeling that modeling loops would be crucial to successful 

GPA~ acdeling. 

This is not to say that selection constructs are unimpor

tant. The contribution of a selection construct depends 

upon the global nesting level of the procedure containing 

the construct. At the top level, a selection construct can 

alter a &ajor portion of a progra. execution. In such 
"transaction-type" programs, the selection construct is dom

inant in that it eiplains a great deal of the variability 

among eiecutions. Even then, it is looping at some level 

that accounts for the length of the execution, and for the 
clustering of the sodules invoked during the processing of a 

particular transaction. 

Henceforth, we focus our major attention on the estima

tion of lccp parameters. 



145 

The farameter estimation phase of modeling involves com

bining coefficients from one or more executions to approxi
mate the underlying distrilutions of the characterizing sta-

tistics. Tvo afproaches to comtining coefficients from 

multiFle executions are considered. 

(1) The £9!EQSite-~~&SY!ion ~£Eroach. Given a sample of 

multifle executions. W={~1,v2, ••• ,vk}, statistics 

are computed as if the actual execution were 

vl+v2+ ••• +vk, where 1+1 indicates string concatena

tion. Such an approach leads to a single value of 

the desired statistic which will, in the text that 

fellow, be identified l::y the superscript •. 

Each execution 

contril:utes one data point, and statistics are com

fUted using these data points. For example, each 

execution produces an average loop repetition fre-
' guency, and the average for the entire sample is 

ccmfuted as the mean of the individual execution 

averages. Parameters computed in this manner are 

identified by the superscript 2. 

In the ccmfosite-execution approach, long executions tend to 

contritute more to the statistic value than do shorter ones. 

Each execution contributes equally in the individual-execu

tion affroach. 

A second aspect of parameter estimation is the selection 

of the Ftogram executions to otserve. Tl:e various 

apfroaches were discussed in Section 2.3.2, where the adapt

ability of GFA!I to a variety of parameter repr:eser:tatiori and 

esti~ation approaches vas demonstrated. 



146 

4. 1. 4. 1 loop and selection parameter estimators 

ie nov present estimators for the mean loop repetition 

frequency r, and for the maximum loop repetition frequency 

B. Given K execgtions of the prograa, we define estimators 

r• and rz for r, and R• anc az for R. 

r• = (total lloop repetitions)J(total lloop entrances): 

rz = (r1+r2+ ••• +rK)/K: 

Ji1 = J&aX (R 1,R2, ••• ,IlK); 

EZ = (ll1+B2+ ••• +RK)jK. 

Rj and rj represen·t, respectively, the maxiaum and xean loop 

repetition frequencies during the j 1th ol:served execution. 

BZ is the 11ean maximum loop repetition frequency over the 

set of observed executions. Both rz and az lend themselves 

to calculation of variances and to standard statistical 

estimation techniques. 

For an arbitrary 11- way selection construct in the subject 

program, K program executions produce tte composite-execu-_ 

tion coefficient vector (f1,f2, ••• ,fm), where fi is the 

total number of times (during K program executions) that 

alternative i vas executed. Each execution also produces 

its ou: estimate of Q. I.et Qi=(qi[1 ],gi[2 ], ••• ,qi[m]) be 

the random variable of selection protatilities derived from 

the i'th observed execution. ie nov have two estimators for 

Q, Ql and cz, iihose j 1 tb components are given ty 

Cl(j] = fj/(f1+f2+ ••• +fm), and 

QZ[j] = (q1[j]+g2[j]+ ••• +gK[j])/K, respectively. 

Ql is easily computed, but does not ler.d itself to statisti

cal analysis of the individual selection probabilities, as 

does cz. 



147 

4. 1.4.2 Instrumentation requirements 

GFA! subject program instrumentation can easily be 

extended to provide ra~ data on repetitions from ~hich the 

desired statistics can te computed. Collecting raw (versus 

condensed) data does, ho11ever • increase the volume of data 

produced by the instrumented program. In aost cases the 

condensed data should l:e just as informative, tut they might 

hide the nature of the underlying distribution of parameter 

values. Until the form of the distritution has teen ascer-

tained (or until some assumption atout it is accepted), col

lecting ra~ data can yield insights for making parameteriza

tion decisions. During preliminary stages of aodeling, raw 

data can pinpoint constructs that have high variability in 

their usage. These should te aodeled carefully. 

4.1.4.3 Statistics and estimators used 

We have introduced a number of statistics and estimators 

that can be used in parameter estimation. Each ro~ in Table 

4. 1 describes a set of parameter representation;estimation 

approaches. For example, for approach A, loop parameters 

are estimated from average repetition freguencies computed 

using the composite-execution approach, and selection param

eters are estimat~d using the composite-execution approach. 

The afFroaches investigated in this chapter are iLdicated by 

an asterisk in the "Approach" column. 

In crder tc control the amount of experimental data gen

erated during multiple-execution modeling, we had to settle 

upon a s~all number of intuitively appealing approaches that 

shewed FJ:Omise in preliminary studies. For loops, we inves

tigated the use of two statistics, mean and maximu~ repeti

tion frequencies, and their I:espE:ctive estimators, I:' ar:d 

R'. Cf farticulai: interest •as whet hEr it is tetter to use 

a large, extreme value of the loop repetition parameter, 01: 

a mo~:e tyfical value, such as the mean. !he values given by 



148 

estimatcrs rt and Rl should differ from each other enough to 

account for any observatle difference in the synthetic 

strings Ircdoced from the respective model instances. 

Construct Estimators 

,Iabl§ !·1 
Variables of the GPAM Po in t-Est imat ion Study 

In this chapter, we deal exclusively with point estimates 

of the underlying parameter distributions. Stratified sam

pling is used to select program executions from which model 

parameters are derived. ~hese executions are driven by dif

ferent classes of input data, present in proportion to their 

exfected occurrence in the population of all e~ecutions of 

the subject Frogram. In the next chapter, we •ill deal in 

Eore detail with the underlying distributions, but only for 

those subject programs that appear sensitive to tte choice 

of statistic, or that are unusually difficult tc model. 

Randca saJFling will be used to ottain model parameters. 



14 9 

4.1.5.1 ExFeriment overvie~ 

Each scdeling experiment consisted of the following 

ste t:S• 

(1) Select the set OES of §~lj~£t ~xecutions, from which 

rarameters PARI! (OBS) are determined. 

(2) Restruct~re using OBS as input to the restructuring 

phase to produce layout L(OBS). 

(3) Generate set SIN of synthetic reference strings from 

xode1 instance PAM<CSG,PARII(OBS)>. 

(4) Restructure using SYN as input to the restructuring 

phase to produce la }OUt L (SYN). 

(5) .Evaluate layouts L (CBS) and L (SIN) against the stan-

dard evaluation string set ye to yield performance 

indices eOBS and eSIN, respectively. 

4.1.5.2 1erminology 

The B]~ll!~ 2! !h~ !Qg§! instance FAM<CSG,PAEM{CES)> is 

defined in terms of the relative performances of lay outs 

l(CES) and l{SYN), and given ty 

eOBS - eSYN 
Quality= 100 • -----------eOES ' 

the percentage performance improvement of L(SYN) over 

l(CBS). cuality measures u.e closeness of SIN to OBS. · A 

negative cuality value indicates that SIN is inferior (for 

restructuring) to OBS; a positive value indicates that SYN 

is superior; and a zero value indicates that SYN is ~1~-



150 

1~! tc CES in l~StiY~!YI£!iliiY· lihen Quality=O, we also 

say that the model instance reproduces (the restructuring 

signature of} the subject executions OBS. 

lt this fCint we feel it would be helpful to discuss the 

usage cf terms by which model quality is expressed. The 

quality of a aodel instance measures the closeness of the 

synthetic strings it 

(traces) from which 

produces to the subject executions 

the model instance was constructed. 

~ode1 £~£YI£f~ is a statement of the over-all quality of 

instances of the model constructed for different subject 

progra~s. Accuracy is somewhat subjective. 

define four levels of accuracy: 

lie arbitrarily 

( 1) IQQ£, when aodel quality is less than -20ll; 

(2) .fgir, when aodel quality is between -10l and -20ll; 

(3) g.Q_Q.Q, when model quality is between -5% and -10l; 

(4) ~.!~~.!.lgnt, when model quality is above -5\t. 

The ef.fgrt required to ottain a good quality aodel 

instance is a function of the execution-sampling approach, 

the model version used, and the number of synthetic strings 

generated from the aodel instance. lie expect that as the 

model version becomes more general, as the number of 

observed subject executions increases, 

synthetic strings generated from 

increases, so will the quality of the 

and as the number of 

the aodel instance 

model instance. A 

subject frcgram is said to te difficult to model when qual

ity does net improve with modeling effort. 

Since there are approaches to model validation (SPIR77] 

other than the one we used, our conclusions about the qual

ity of instances of PAM may not be consistent with those 

obtained when other validation techniques are used. How 

well results from our validation procedure correlate •ith 

those obtained using other techn igu es (such as liS curve 

analyses or phase decoaposition) is perhaps best treated in 

a separate study. 



151 

4.2 TEE FCINT-ESll~ATION MODELING APPROACE 

Fro& this point on, the emphasis will be on modeling pro

gram lccps. rbe simplest parameter-estimation and synthetic 

string-generation approach is to use point estimates of the 

loop repetition freguencies to characterize loop execution. 

Under such assumptions, generate-time simulation of an arbi

trary program loop always proouces the same numter of rep

etitions~- the value given by the parameter. 

The first concern atout such an approach is the quality 

of the approximation to the actual trace string attainable 

using such.simplifying assumptions. 

This phase of the research has the following objectives. 

(1) To determine whether such a simple approach produces 

any useful results at all. 

(2) To characteri2e instances when this approach pro

duces acceptable results. 

(3) To determine the relative benefits of using DNF-PAM 

versus GFAM based on point estimates of model param

eters. 



152 

Each execution of the subject program produced execution 

coefficients which were stored in the coefficient database 

(CDB). The CDE for each subject program contained coeffi-

cients frcm BD-100 executions. The CDB vas used to compute 

aodel fara1eters, and to perform statistical analyses of 

model farameters -- the topic of the next chapter. A test

.Qed cf 8-15 execution trace strings was collected for each 

subject frcgram. For the modeling effort of this chapter, 

the test bed enabled us to validate aodel instances against 

"answer" strings. 

T~o experiments were conducted per model version: sin

gle-execution modeling and aultiple-execution aodeling. 

Single-execution aodeling was used to determine the basic 

accuracy of the model as a function of (1) the subject pro

gram, (2) the restructuratility of the sul:ject execution, 

and (3) the statistic used to characterize aodel parameters. 

One to three single executions vere modeled. ie selected 

executions that spanned a range of restructurability. 

Since in Chapter 3 ve saw that restructuring using multi

ple executions was superior to that using single executions, 

we concluded that it was important to show that multiple 

executions could be aodeled accurately. For each subject 

prograa, two sets of multiple executions, I1 and YT, were 

chosen, again based on restructural:ility. Y1 contains three 

carefully selected executions; IT contains a major portion 

of the testbed. Yl represents a small-sample approach to 

modeling; IT represents the expenditure of more effort in 

execution-sampling phase. 

It should be understood, at this point, that there is a 

fundaaental difference tetween modeling a single execution 

and modeling multiple executions. To illustrate, let vec

tors X1,I2, ••• ,Im l:e the aodel parameters from m executions 



of the 

used, 

actual 

153 

subject program. iben single-execution modeling is 

the aodel instances PAe<cSG,PABM(li)> are based on 

executions. On the other hand, the parameter vector 

I used in aultiple-execution aodeliug is soae function 

X=f(X1,X2, ••• ,Xm) of parameters from actual executions. 1 

describes the "tJpical" execution which, for all practical 

purposes, does not really exist. 

vector X is likely to be close to an actual execution 

parameter vector Xi, ~hen Xi represents the do~inani execu

tion in the set of m executions. 7he dominant execution 

contributes most to the layout computed directly from the 

set of executions. '!he use of statistics that measure 

extrema (such as maximum) increases the likelihood of having 

a doKinant execution, as does modeling a small number of 

executions. For larger samples, or when statistics that 

smooth (such as the mean) are used, the "typical" execution 

parameter vector X is aore likely not to describe an actual 

execution. 

The foregoing discussion 

multiple-execution modeling 

points out that results from 

should not be used so much to 

measure aodel accuracy, as to measure how well a set of exe

cutions can be characterized using PAM parameter estimation 

techniques. In particular, multiple-execution modeling 

enables us to evaluate the use of various statistics to 

define model statistics, and to study the effect of the sam

ple size upon the characterization. Although the term 

"quality of the model instance" will still be used when .dis

cussing all acdeling results, for multiple-execution model

ing it is the process liherel:y parameters are obtained that 

is being judged. 



Re new present soae Yerifiable hypotheses 

claims that can be shown true or false on the 

results presented in this chapter. 

154 

representing 

basis of the 

• Good aodel instances can te constructed from a small num

ber cf subject executions. 

0 The si~rlest model version, DNF-PAM, comes to within 10~ 

of the acre sophisticated GPAM version in quality. 

0 The guality of the model instance increases with the num

ber of synthetic strings generated from a aodel instance. 
That is, a smoothing effect occurs in which tt.e composi

tion of synthetic strings tetter represents the subject 

executions than does a single synthetic string. 

o Obtaining a good quality aultiple-execution aodel instance 

reguires aore modeling effort than is required to achieve 
a single-execution model instance of comparable quality. 

o Choice of statistic and estimator affects aodel accuracy. 

o Ease cf modeling is related to the restructurability of 

the subject executions. 



155 

4.3 ~ODEL ACCURACY 

4.3.1 DNf-.EU! 

Fro& Table 

did a qood job 

4. 2, tiE SEE that this 

of aodeling GENREF. 

simple model version 

In the best case, the 

synthetic strings were within 1~ of !B-4; in the worst case, 

they were cnly 4~ inferior. sutject program CLUSTEF was the 

hardest tc ~odel. Synthetic strings for TB-3 (wtich ranks 

secotd in restructuratility) was just 1~ inferior in the 

best case, and 12% in the worst case. For TB-5 (rank one), 

the best synthetic string set was 11S inferior to the actual 

execution trace. 

I 
Subject Trace 

Synthetic Set---------~ 
-------------

} .Erograa String Bank Size Quality ----- ----- ---- --------
GENREI TB-4 2 3 -4 

~ 3 -1 
6 -4 

RES'IBUCT TB-3 1 3 -a ( 3 -182 
3 -a 

t 
6 -8 
9 -8 

TB-3 2 3 -11 
I 

CLUSTER l 3 -1 
6 -12 

I 
TB-5· 1 3 -11 I I 

3 -11 
6 -24 

I 
J 

!EU.§ .!!·l 
Medel Quality: DNF-PAM Singl£-Execution Modeling 



156 

EESTEUCT, the subject program thought to be the easiest 

to restructure, exhibited a disturbing, 

in which it produced a synthetic string 

200~ inferior to the subject execution. 

anomalous behavior 

set that was nearly 

Further inYestiga-

tion. disclosed that the major pbase of execution correspond

ing to CLBU restructuring was not present in the synthetic 

strings, although it was present in the subject execution. 

The layout constructed from the synthetic strings was not 

optiai2ed with respect to the CLRU phase. The unusually 

poor perfcr&ance of this layout occurred tecause the evalua

tion string T.B-4 contained an instance of the CLRU phase. 

When this anomalous synthetic string set is treated as a 

data outlier, the remaining synthetic strings come to 11ithin 

8~ of the subject execution trace string TB-3. 

A counter-intuitive relationship between aodel accuracy 

and the number of synthetic strings vas observed in the case 

of ClUSTEE. One 11ould expect that increasing the number of 

synthetic strings •ould provide a tetter coaposite picture 

of the program that would lead to a tetter layout. That 

this dces not happen, ve conjecture, is because DNF-PA! dis

torts the seguence of program references (since the model 

does net contain intra-procedural sequence information). As 

a result, a synthetic string produces a restructuring aatrix 

11hose entries suggest different module affinities than trace 

strings could possibly suggest. Since matrices from single 

synthetic strings are added to ottain the restructuring 

matrix for multiple synthetic strings, these aberrations are 

magnified. 

Synthetic string generation using DNF-PA~ can fail to be 

accurate tecause of loss of sequence information. When data 

outliers are excluded, synthetic strings from DNF-fAM model 

instances ~ere o-24,; inferior to their subject executions. 

!odel instances for CLUSlER were the least accurate: those 

for GE~EEF were the most accurate. 



157 

4. 3. 2 G FAll 

Results in Table 4. 3 show that subject program RES'IRUC'I 

vas easy to model using either statistic, r or B. For the 

aaximua lcc{-repetition frequency statistic, :s, synthetic 

string sets for all sutject programs were as good as their 

subject executions -- in the test case. Synthetic strings 

for GENREF were actually 3% superior to execution TE-5. 

Except for CLOSTER, using the mean loop-repetition freguency 

statistic, r, produced synthetic strings that were as good 

as these .obtained using R. CLUS1EE vas the most difficult 

to model using r. IIedel instances for TB-3 and TE-5 were 

22% inferior in the worst case, and 10~ inferior in the best 

case. 



158 

For GE~EEF and EES~RUC~, the choice of statistic appeared 

to have little cr no effect upon aodel quality. For GENREF, 

using the statistic r was superior for TB-lJ, hut F. :was 

slightly SUferior for TB-5. For CLOS7ER, however, using the 

11ari1tul: statistic was clearly superior. Of furtber 'interest 

is that with statistic R, increasing the nuaber of synthetic 

strings iEfroved aodel quality, a phenomenon absent froa 

DNF-EAP, modeling. 

GPA~ is accurate. For each subject program, there was a 

choice of statistic (r or B) for which the model instance 

reprcduced the sutject execution. Poor choices of statistic 

exist fer some subject programs, such as CLOSTER. DNF-PAI!, 

which does not model control structures, is not as accurate, 

although the model can generate synthetic strings that are 

within 11f; of the subject execution. Table lJ.lJ compares 

the (test-case) accuracy of aodel yersions GPA!! and DllF-PA!!. 

GPAM Estimator 
Subject -------------
Execution Bank DNF !lean !!ax ----------
GENREF TB-4 2 -1 0 -1 

BESTRUC'I 'IB-3 1 -7 0 0 I 

CLUSTER TB-3 2 -1 -10 0 ) 

I TB-5 1 -11 -22 0 I 

\ 

l:.§l:l.§ ..!! • .!! 
Model Quality: DNF-PAII versus GPAII 

{Eest results used) 

We see from the table that model quality is a function of 

the restructurability rank of the sul:ject executions, and 



159 

that the choice of loop parameter statistic makes a signifi

cant difference in model quality, for some subject programs, 

notably CLUSTER. GPAI! lias most accurate for programs GENREF 

and EESIBUCT. DBF-Pl!! vas •ost accurate for GENBEF (T B-11) 

and CIUSTEE(TE-3), the sutject executions of restructurabil

i ty rank two. 



160 

4.4 !UlTJFIE-EXECUTlGN !OtiLlNG 

At this pcint we wanted to see whether multiple execu

tions could be aodeled as accurately as sing1e executions. 
ie alsc wanted to see whether some sets of executions were 

aore difficult to aodel than others. ie aodeled subject 
execution sets Yt and IT which, for BESTRUCT and ClUSTER, 

had the same restructural:ility rank (i.e., Y1 and IT pro
duced eguivalent layouts). For GENREF, IT had restructur

ability rank one, Y1 had rank five. 

The following discussion refers to the results shown in 
Table 4.5. It appears that model accuracy is a function of 

the :restructurability of the sul:ject executions. As the 

restructurability of the subject executions increases, so 

does the modeling difficulty. It appears that, conversely, 
multiple-execution modeling can lead to improYeaents oYer 

subject executions that have fair restructurability proper

ties (such as I 1 aodel instances for GENREF and llESTRUCT). 

For EESiRDCT and CLUSTER, sets Y1 and IT, which had the same 
restructurability, were mod€led to the same level of accu

racy. 



Subject 
Erograa 

GINRH 

liES!IBOC! 

CLUSTER 

161 

Synthetic String Set 
--------------------------------Y1 n ---------- --------------tstr Quality tstr Quality ---- ------- ---- -------

3 +5 2 -18 
3 +9 2 -II 
6 +9 II -5 

3 -8 3 -E 
3 0 3 +8 
6 -a 6 0 

3 -12 3 -11 
3 -13 3 -11 
6 -23 6 -11 

!~.f!~ ~-2 

~cdel Cuality: ~ultiple-Execution DNF-PA~ Modeling 

The ancmalous behavior that RESTRUCT experienced when a 

single execution was aodeled did not appear in the modeling 

of aultiple executions. !his result lends support to the 

use of xultiple subject executions instead of a single sub

ject execution. 

Certain similarities l:et11een modeling single and multiple 

executions can te seen. CLUSTER continues to be difficult 

to model, especially for tt.e shorter string set, Y1, 

a best-case accuracy of -11~. Modeling RESTRUCT for 
having 

nlti-

ple executions is atout same as for single executions. For 

GENREF, the influence of restructuratility on model accuracy 

i.lO mcst evident. 



162 

4.4.2 GPA~ 

The relationship, seen in DNF-PA~ aodeling, between aodel 

accurac1 and the restructuratility of the subject execution 

vas also seen in GPA~ aodelin g. In Tat:le 4.6 ve see that 

for GENBEF, IT ~as more difficult than 11 to aodel, whereas 

for iESTEOCT and CLOSTER there vas a saaller difference in 

the difficulty cf modeling 11 and IT. Compared to DNF-PA~. 

GPAM vas slightly less effective in modeling GENBEF, but vas 

much sere effective in modeling CLOSTER. For CLUSTE!l, at 

least, GFAI'I was able to capture and reproduce more of the 

restructurability signature of the subject executions than 

could DliF-FA!! -- GPAII vas 12l' letter than DNf-PA~ when sta

tistic B vas used. 

Set of Subject Executions 
--------------------------------11 tT 

Subject ------------ --------------Fregram Stat tstr Quality lstr cuality ------ ----- ------ ----- -------
GENRH r 3 -7 5 -8 

B 1 +5 1 -14 

EESnUC'I r 3 -8 5 0 

R 2 -8 1 +E 

3 -6 5 c I 
CLOS'IER r \ 

R 2 0 1 
_, 

~ 
I.!!fH !!-.2 

IIedel Quality: Multiple-Execution GPHJ Modeling 

Hodel quality seems to l:e influenced by the size of the 

subject executien set, or its length, or both. The quality 



163 

of model instances based on short executions seems to be 

improved vhen the maximum statistic (B) is used, as if sta
tistic E ccmFen~ates for short executions. As the number of 

subject ezecutions iDcreases, the mean (r) becomes the sta

tistic cf choice. 

For s~all samples, DNF-PAM showed potential for modeling 

as accuz:ately as G.l?AM. !his is explained in part by the 

notion cf dominant execution: in a small set of executions, 
the characterization of the entiz:e set may be very close to 

the characterization of one of the executions, the dominant 

one. For exaaple, in Tatle 4. 71 we see that using the max
imum leap-repetition statistic. which increases the likeli

hood of having a dominant execution, vas aore effective than 

using the &ean loop-repetition statistic. (Loop Farameter 

statistic is not a factor in DNF-PAft modeling, since control 
stz:uctures are not modeled l:y DNF-PAM.) 

I 

l 

G P A II 
Loo~ Parameter 

tatistic 
Subject 

Rank DNF frograli ------------!lean !lax ------
G.ENB EF 5 +9 -7 +5 

.E..ESlB OCT 1 +3 -8 -8 

CLUSTER 1 -12 -6 0 

1-El:l~ E-1 
Y 1 Model Quality: tli f-PAM versus GPAM 

(Eest results used) 

-~ 

\ 
) 

1 
1 



164 

When aodeling was tased on a larg& set of executions, 

differences in the aodel versions and in the subject pro-

grans ~ere mere apparent. G:ENBEf vas the m.ost difficult to 

aodel; lEStEUCT •as the easiest. Coapared to DIF-Pl!, GFlft 

was 101 more accurate for CLtSTEB, 8l aore accurate for 

BES7BOCT, and 5-101 less accurate for GENREF. (See Table 

4.8.) ls the number of sutject executions increases, GFAI! 

seems to te letter atle to alsorb and reproduce the 

increased amount of information. 

Cf the sets, Y 1 and I'I, of subject executions, IT is more 

representative of multiple-execution sampling, in terms of 

sample size and restructuratility (restructuring should be 

based en executions that yield good 1 ayouts) • lie see that 

for CIUSTEli, DNF-P AI! could get no closer to lT tban 10-151, 

whereas there vas a GPAft model instance that could repro

duce IT. 

Loop Statistic 
Subject -----------
Prograa Bank DNI fie an flax -----
GENRE!' 1 -4 -8 -14 

RESTBUCT 2 0 0 +7 

CLUSTER 1 -11 0 -1 

!_g.!)le ~-.!! 

IT ftodel Quality: BNE-PAH versus GPAI! 

(Eest results) 



165 

4. 5 SUI! I! ARY 

Refults rresented in this chapter show the effectiveness 

of aodeling using siaple aodel versions and point-estiaates 

of aode1 rarameters. In the next chapter, we aove towards a 
aore realistic representation of the distribution of aode1 

parameters. Xhe progression towards aodel sophistication is 
expected to result in improved modeling accuracy. 

The results of elementary modeling investigations are 
presented in Table 4. 9. Since the term accurac_y relates 

to the over-all quality of a range of aodel instances, per
haps we should consider the worst, test and average cases. 

It is safe to say, based on elementary modeling, that GUll 

and even DNF-PAI! are accurate, although there are situations 
in which they need improveaent. 

Accuracy 
level -------
Eest 
Average 

llorst 

Single-Execution 
llodel ing 

!ultigle-Execntion 
odeling 

================= ================== 
GP!! Stat GP!II Stat ------- --------

DIU' !lean I! ax DNF !lean !lax 

- 1 0 +3 +9 0 +8 

-9 -10 -6 -6 -5 -2 

-24 -22 -22 -23 -8 -14 

!.§ble !t-~ 

Summary of l!odel Accuracy 



166 

Q!~~-~11 I~fof~£~ Q1 ~NF-gA~ and GPA~. Some synthetic 

strings were superior to their subject trace strings. In 

the vorst case, synthetic strings were 24'1 inferior, but in 

the test case, 9% superior. Surprisingly, DNF-Flft does a 

good jcb of approximating execution trace strings. 

RESTBDCT is by far the easi-

est subject program to model. CLUSTER ~as most difficult to 

model using DNF-PAM, GENREF was most difficult using GFAM. 

The success with which tNF-FAM and GPAM model BESTRUCT con

firms that these model versions work for programs whose 

locality results from tight looping during vbich a small 

number cf acdules are referenced. The lack of accuracy with 

which GF!M modeled executions YT of GENBEF indicates the 

need fer mere accurate modeling techniques. Henceforth, ve 

will nc lcnger investigate RESiBDCT, tut will study GENREF 

and CLOSTER, since they represent more challenging subject 

progra11 ty~es. 

~!!~£! ~! §]~j~£! ~J&f]!Jon set. Modeling difficulty 

increased with the restructurability of the subject execu

ticns. Furthermore, model instances constructed from sub

ject executions having the same level of restructurability 

had nearly the same level of accuracy. Thus some executions 

are inherently more difficult to model. 

~!!~£! ~! !QQ~! !er§ion. The simplest model version, 

DNF-FAM, vas fairly accurate, but as the number of subject 

executicns increased, tNI-PAM lost accuracy. GFAM shoved 

the ability to represent and reproduce referencing informa

tion co~tained in multiple executions of the subject pro

gram, whereas DNF-PAM, ty virtue of its simpler model struc

ture, vas unable to capture the significant referencing 

characteristics of program execution. 



167 

There 
vas ~o cousisteut difference iD results obtained using loop 
parameter stati~tics r and R, except that r worked better 

for large saaples of long executions, whereas B worked bet
ter for s11all samples of short executions. ie did Dot find 
this result very surprising. our coujecture is that each 

loop parameter has a threshold value, below which locality 

infor•aticn is suppressed and lost, and above which locality 

infor~aticn is distorted. ~he distortion results in phases 

(in the synthetic strings) ~hose lifetimes are extended and 

whose sizes (in nuaber of different modules referenced) are 
changed. These distortions in the synthetic string produce 

a aeaory-deaand signature that is different from that of the 
subject execution. ihen this distorted string is used as 

input to the restructuring phase, the distortion carries 
over into the ~estructuring matrix that is produced, and 

into the layout. 

Effgct R! !ag nuiber 2i ~thetic strings. Increasing 
the number of synthetic strings used as input to the 
restructuring phase did not consistently increase aodel 

accuracy. (Our liai ted computer hu dget a a de it infeasible 
to generate a very large number of synthetic striugs.) 

These findings, although a little ilisturbiug at first 
glance, give an important insight into the role of selection 

constructs in GPAM modeling. When point estimates of the 

underlying model parameter distributions are used, the only 
variation among the individual strings telonging to the same 

synthetic string set is due entirely to selection con-
structs. That little variation is otserved suggests that 

selection constructs do not have a major impact on the 

locality signature of the sul: ject program, and that to 

achieve the variation that is o.tserved in actual trace 

strings reguires the introduction of randomness in the val
ues of loop parameters used during synthetic string genera

tion. This is done in the neJ:t chapter. 



168 

Be~olts presented in this chapter generally support the 

hypotheses of section 4.2.3, with one notable exception: 

the quality of the aodel instance does not improve with the 

number of synthetic strings generated from that instance. 

This suggests that the paraaeter estiaation phase is aore 

crucial to aodel accuracy than is the generation phase. 

That nc hypothesis was overwhelmingly supported by the 

experiaental data suggests that the aodel is sensitive to a 

large number of factors, and that as yet, we do not under

stand the relative importance of these factors. 



Chapter 5 

IDYIBCE£ ftODELIIG STUDIES 

5.1 I~TRODUCTION 

In the ~ast chapter we saw that aode~ing based en point

estilation of the distritutions of aodel parameters works. 

The accuracy of the simplest aodel version, DRF-Plft, was 

im~roved by changing to a acre detailed model version, GPAr.. 

In this chapter ve continue the quest for acre accurate 

model instances by moving along two different fronts: 

(1) increasing the number of execution observations used 

to construct point-estimate model instances, and 

(2) increasing the amount of information about ~arameter 

distributions that is retained in the model instance. 

The results of this chapter show that the point-estima

tion aFfrcach does not require a large number of saEpled 

executions--small random samples of 10-20 executions lead to 

geed mcdel instances. Attempts to improve upon the point-

estimation approach by increasing parameter distribution 

infor[ation in the model leads to marginal improvements in 

some itstances, and to significant improvement in others. 

Good pcint-estiaate aodel instances were not improved u~on 

by increasing parameter distritution information. 



176 

5. 1. 1 f.!.§.!.Yi~ 

The models in Chapter 4 were deterministic with respect 

to loo~s, since point estimates of loop repetition distribu
tions were used. In this chapter we concentrate on large
sample acdeling where loops are aodeled probabilistically. 
In the ideal case, the type of probability distribution and 

a few of its moments are known. In the sore likely case, 

lihen the ~robability distritution is not lulown, or is not 

the same for all loops in the program, the distribution must 

be approximated by some "safe" distribution which captures 
the essence of the observed distritution. As a first 

ap~roximation, we consider the uniform distribution over 

some interval because it is the simplest, and leads to the 

most efficient generator. Given a large number of subject 
executions, the normal distribution is a reasonable choice, 

since programs, in the long run, tend to have a "typical" 

behavior, and only a low perca.tage of executions differ 

significantly from this behavior. 

The first investigation looks again at point-estimation 

of the distribution of loop repetitions, this time using the 
mean (I) as the statistic. From the previous chapter we saw 

that r was a good statistic for modeling large samples. 

The purpose of this study is twofold: (1J to study the 

effect of sample size upon the ~ean-valued characterization 
of samples, and (2) to determine whether the choice of sta

tistic estimator (rl or rZ) affects the mean-valued charac-

teri:za tion. lie liant to determine the lover bound on sample 
size ir, the event that mean-valued (!!V) modeling is used. 

The second investigation focuses on the distribution of 

locp repetitions to see if there is a standard probability 

distribution that describes loop repetitions, given the 
para~eters for an arbitrary program loop, such as mean and 
variance. If one is found, it should describe a majority of 
the program loops, to make parameter estimation and string 

generation as streamlined and efficient as possible. 



Finally, 

177 

ve construct aodel instances that use aore 

inforaation about the distritution of loop paraaeters. 
Three aJ=J=rcache.s are used: (1) approximate the distribution 
by aeans, relying on 1arge saaple size to give accurate val

ues for the means; (2) approximate the distribution by uni
foraly sampling froa soae interval that covers a aajor por

tion of the observed distr itution; (3) Use a standard 
distribution function, where the paraaeters have been deter
mined fro~ a large sample of program executions. 

• A saall random sample provides adequate information for 

effectiwe aodeling. 

0 ~cdel guality improves with an increase in the amount of 

paraaeter distribution information contained in the 

aodel instance. 



178 

5.2 TEE GPA~ LOOP PARA~ETER DISTRIBUTION STUDY 

In the first part of this 

of the aean (statistic r) 

study, we investigate the use 

to characterize saapled execu-

ti ons. In particular, we compare the characterizations 

derived froa the two estimators for the aean, r• and rz, 

which represent different approaches to computing model 

parameters from multiple executions. In the second part of 

the study, 11e study the underl.ying loop repetition distribu

tions in crder to identify the probability distribution 

function to be used in generating loop repetitions during 

synthetic string generation. 

We are interested in answering the follo11ing questions. 

(1) Ecw well does a sample of a given size reflect, in 

terms of aean loop repetition frequencies, the popula

tion of all executions? 

(2) tees the choice of statistic estimator, r• 

affect the mean- val ned character iz at ion of a sample? 

(3) What is the typical underlying distribution of loop 

repetition frequencies for a given loop? 

Each execution of the subject program produces an execu

tion coefficient record that is stored in thE coefficient 

Databa~e (CtE). Each CtB record contributes up to one value 

for the characterizing statistic, r. For subject programs 

GENREF and CLUSTER, the first eighty CDB records were chosen 

to represent the !ini!~ EQE]lation (POP) of all subject exe

cutions. The testbed of trace strings introduced in the 

previous chapter vas used as a stratified sample from PCP. 



179 

Bandel sa&fles 510, 520, 530 and 550, of sizes ten, twenty, 

thirty and fifty, respectively, were selected from PCP, for 

each of ~bich ~ean loop repetitions were computed using 

estimators r• and r2. 

For selected loops, histograms were constructed to dis

play the distribution of values, and were used to identify 

the type of underlying distribution. ~o analytic fitting of 

the distribution was attempted, nor was a goodness-of-fit 

test used, because histograms constructed during preliminary 

stages shoved no particular pattern of distribution from 

which cculd be formulated a single hypothesis of distribu

tion type. 

5.2.2.1 Comparison of means across samples 

ie computed r' and r2 aeans for samples TBED, 51C-550 and 

POP. 5alple means for s1o-sso were compared to the popula

tion means, and the coefficient of variation among the 

510-550 sa~fle means •as computed. iatles 5.1- 5.2 show 

the r• and r2 means for sutject programs GENREF and ClUSTER. 

In the tables, the columns lateled "8EAN" and "CVAR" refer 

to statistics computed from the 51Q-550 sample means. The 

coefficient of variation measures the variatility in means 

across sa1ples. 

For subject program GENREF, the means of the 510-550 sam

ple ~eans (computed using Either rt or r2) differ from their 

respective population means ty at most one repetition. 

(Loop 113 of program GENREf is the only e1ception to this 

observation.) The same holds true for all loops of program 

CLUSTER, e1cept for loops LJ and LS. This suggests that 

accurate means can be computed using small samples. 



180 

!leans for Sample ... ~ ================================== 
l.OOf Ist TBI.D 510 520 530 550 POP 

Ll r• 1 3 4 3 3 3 3 0.07 
rz 1 3 II 3 3 3 3 0.07 

L2 tl 2 2 :1 2 2 2 2 o.oo 
rz 2 2 2 2 2 2 2 0. 00 

L3 rt 25 26 25 26 25 25 2E 0.01 rz 25 26 26 26 25 26 :16 0.01 

14 r• 5 6 6 5 6 6 E 0.05 rz 5 5 6 5 6 6 6 o. 13 

I L5 rt 58 47 67 52 61 58 57 0.16 
rz 58 47 57 52 61 58 57 o. 16 

L6 rt 11 9 8 10 9 9 c 0.06 -rz 11 9 8 10 9 9 s C.06 

1.7 rt 2 3 3 2 3 3 3 0.13 
rz 1 3 2 2 3 2 3 0.12 

I.B r• 10 10 11 10 10 10 10 0.05 
rz 10 10 11 10 10 10 10 0.05 

1.9 rt 13 13 12 12 13 12 12 0.03 
rz 12 12 12 11 12 12 12 o. 03 

I L10 r• 49 50 50 51 50 51 50 0.01 
rz 49 50 50 51 50 51 50 o. 01 

1.11 r• 3 3 3 3 3 3 3 0.02 
rz 2 3 3 3 3 3 3 o. 03 

1.12 J:l 2 2 ~ 2 2 2 2 O.OQ 
rz 1 2 2 2 2 2 2 o.os 

1.13 rt 440 3568 5579 9269 8235 6987 6H3 0.39 
J:2 295 4172 4645 9318 8008 5601 6551 0.39 

114 r• 2 2 2 2 2 2 2 0.06 
rz 2 2 2 2 2 2 2 o. 08 

1.15 rt 1 1 1 1 1 1 1 C.32 
rz 1 1 1 1 1 1 1 o. 15 

L16 rt 1 1 1 1 1 1 1 0.03 
rz 1 1 1 1 1 1 1 0. 12 

I.9.£le ~-1 

Mean Loop Repetitions for GENBEF Samples 



I 

181 

Theie is no appreciatle difference in the means computed 

by rt and rz for lo~t-repetition loops (those with fever than 

ten refetitions), where the maximum difference between rt 

and .rz. across all saaples tut one, is less than one repeti

tion. fer high-repetition loops, differences of up to 35~ 

(rZ gave the higher value) were observed for program 

CLUSTER, but no significant differences for GENBEF. GENREf 

has five (cut of sixteen) high-repetition loops; ClUSTER bas 

two (cut cf seven). 

.!leans for Sa.llple 
================================== 

Loop !st TEED 510 520 S30 sso POF !IEAii CVAR 

L1 rt 4 4 7 8 6 7 6 0.30 [Z 4 4 7 8 7 7 6 0.30 

L2 [1 2 1 1 1 2 1 1 C.11 
[2 2 2 1 1 2 2 2 o. 19 

L3 rt 79 58 88 76 76 73 75 0.17 
[2 79 76 92 87 81 77 84 o. 08 

L4 rt 3 1 2 1 1 1 1 0.15 
[2 3 1 2 1 2 2 ... o. 13 

L5 rt 39 27 52 53 47 47 45 0.27 
rz 34 39 57 60 54 50 52 o. 18 

L6 rt 5 6 5 4 5 5 5 0.11 [2 4 4 5 4 5 4 5 0.05 

L7 [1 6 6 7 7 7 7 7 o.~ r2 7 6 7 7 7 6 7 o. 12 

:r.~He 2-1 
llean Loop Repetitions for CL US'IER Samples 



182 

5. 2. 2. 2 Confidence intervals for the mean of r 

The discussion from here on deals with the sasple of When 

the !V sodel instance is already accurate, up to n values of 
r, the sean loop repetition frequency, extracted from n 

executions of the subject program, and computed using rz. 

(An execution for which a loop is never executed does not 

produce an estimate of r.) The mean and standard deviation 

were CC[puted for each sample, and used to compute 90J con

fidence intervals for the mean of r. The standard deviation 

of the (infinite) population was assumed to lle that of PCP. 
AssuiLing further that each sample was large, confidence 

intervals were computed using the normal distribution. (The 
student's t-test, which requires no assumptions, yielded 

tighter confidence intervals. At any rate, the intervals we 

will be using are conservatively vide.) 

.Froa; Figures 5. l- 5. 2 we see that for large saaples, 

confidence intervals narrow, degenerating into point esti

mates. Even for small samples, the intervals for lov-rep
etiticr lccps narrow to a width less than one repetition, 

suggesting that these loops can be modeled using means. 

High-repetition loops that have non-trivial confidence 

intervals appear to -have underlying distributions that can
not be characterized ty aeans alone. 



Sample 

TESTBED 
SlO 
S20 
S30 
sso 
POP 

1--------------------------------1 1----------------------------1 1------------1 
1--------1 

1-----1 
1---1 

1-----------------------------------1 
1 2 2 3 
9 3 7 1 

Interval 

figure 5. 1 

90% Ccnfidence Intervals for Loop 1 of DU~PCSG 

183 

l 

When the t-test is used to compute confidence intervals, 

the aedian widths of confidence intervals for saaple 520 are 

0.73 fer ClUSTER and 0.€3 for GENREF; for sample 550, 

resfective widths are 0.51 and 0.13. For the high-repeti

tion lccps (the one with tile highest repetition excluded) of 

GENREF, the average interval 11idth is 77 for 520, and and 14 

for S50. The respective ~idths for CLOSTER are 265 and 68. 



Sample 

TESTBED 
SID 
S20 
S30 
S50 
POP 

1---------------1 
1-------------1 

1---1 
1---1 

1- I 

1------- I 

1---------------------------------------1 
4 5 6 7 8 

Interval 

Figure 5.2 

90% Confidence Intervals for Loop 2 of ftEBGE 

184 

We conclude that, when aeans of the underlying distribu

tion are used, the sample size need not !:e very large; in 
fact, sa~ples of size twenty or less are adequate. This 

indicates that there is a sample size l:eyond which addi
tional sanrling will have little or no effect upon aean-val-

ued leer parameter values. 

sole arrroximatioa to the 

Of course, using the mean as the 
distril:ution for high-repetition 

loops results in loss of information atout the distribution, 

such as its variability ana range. 



185 

In the discussion that follows in this section, the ran

doa •ariable is not r (the aean loop repetition frequency). 
but, let as say. x = loop repetition frequency. Bandom 
variable r is estimated from the collection of x values 

observed dnring one or acre program executions. 

Because of the potential for a large volume of data, raw 

loop ret:etition frequencies vere gathered sparingly. The 

data gathered were used to determine the shapes of the dis

tributions and to see whether there is a commonality of dis
tribution types Lor loop repetition frequencies. 

we constructed histograms showing the relative frequen

cies fer (rav) loop repetition frequencies for all loops, 

si nee the volume of data was small. lie have included only a 

fev cf the aore typical histograms. Bistograa shapes fell 

into fcur categories. 

(1) tecaying. The protabilities decreased (approximately 

llionctonically) vith increasing repetition frequency. 

(See Figure 5.3.) 

(2) Bell-shaped. 7he probabilities increased, then 

decreased. (See Figure 5.4.) 

(3) Eybrid. Pwbabilities are nearly constant over an 

interval of small values (i.e., the distribution is 

unifcrm over this interval). and beyond thjs inter
val, the curve is type-1 or type-2. (See Figure 

s. 5.) 

(4) lie particular shape. (See Figure 5.6.) 



R 
e 
1 F 
a r 
t e 
I q 
v u 
e e 

n 
c 
y 

Summary Statistics 

IPOINTS = 3757 
MIN = 1 
MAX = 26 
AVO = 4.8 
STD DEV = 4.1 
MEDIAN = 3 
MODE = 1 

1 1 1 1 1 1 1 1 1 1 2 2 2 2 
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 

Loop Repetition 

Figure 5. 3 

Decaying Distribution for Loop 1 of BEBGE 

186 



R 
e 
1 
a 
t F 
i r 
v e 
e q 

u 
e 
n 
c 
y 

r-

Summary Statistics 

i!POINTS = 81 
r- MIN = 1 

.... MAX = 14 
AVG = 4,1 

r- STD DEY = 2,6 
MEDIAN = 4 
MODE = 4 

r-

r-

n onn n 
1 1 1 1 1 

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 

Loop Repetition 

Figure 5. 4 

Bell-Shaped Distritution for Loop 1 of MEBGE 

... . , 

187 



f 
R F 
e r 
1 e 
a q 
t u 
i e 
v n 
e c 

y 

Summary Statistics 

1 1 1 1 1 1 
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 

Loop Repetition 

Figure 5.5 

IPOINTS = 1000 
MIN = 1 
MAX = 30 
AVG = 7.2 
STD DEV = 4.7 
MEDIAN = 6 
IDDE = 4 

1 1 1 1 2 2 2 
6 7 8 9 0 1 2 

Bybrid Distribution for Loop 2 of ftEBGE 

• 
2 
3 

188 

l 

2 
4 

J 



a 
t F 
I r 
v e 
e q 

u 
e 
n 
c 
y 

I' 
Summary Statistic 

#POINTS = 77 
MIN = 1 
MAX = 45 
AVG = 12.6 
STD DEY = 10.1 
MEDIAN = 10 
1\'IODE = 10 

1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 
0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 

Loop Repetition 

Figure 5. 6 

Untyped Distribution for loop 2 of LC&DPDN 

189 

s 

' ,. 

An interesting finding was that the shape of the distri

buticn defended upon the executions sampled. For example, 

.Figures 5.3 and 5.11 hawe different shapes, but describe 

two different sets of observations of the same loop. Notice 

that, although the shapes differ, the mean repetition fre

guencie~ are guite close. 



190 

The findings are summarized telow. 

(1) No single loop repetition distritution describes all 

lOOfS• 

(2) For a given loop construct, the type of distribution 

may vary from sample to sample. 

(3) Although the type of the distritution may vary from 

samfle to sample, for a given loop, the means of the 

distribution appear to te rather stable from sample 

to sample. 

ie have shown that the means of the loop repetition fre

quencies are guite statle across random samples of different 

sizes, even though the means may contain very little 

information about the underlying distribution. Across sam-

ples, variation in the sample means is so lov that when the 

saafle means are used as point-estimates of the underlying 

distributions, the differences in the resulting model 

instances (one fEr sample) are slight. 

Finally, ve saw that there is no general distribution 

function that generates repetition frequencies for all 

loops. This stronglJ suggests that one must resort to 
apfroxiaating the distritution by some interval that pre

serves the mean, yet contains a major portion of the distri

bution of repetition frequencies. 



191 

5.3 GFA~ !CDELING BEVlSITEt 

During synthetic string generation, some approximation to 

the umderlying loop repetition distribution is required. 

Besults from the previous section suggest that the uniform 

distribution, defined over an appropriate interval of rep

etitior:s, uy be the only vial:le representation of the dis

tribution, since the type of distribution varies from loop 

to loop, and from sample to sample. 

In this section we investigate three modeling approaches 

that use different representations of the distribution of 

loop reJ=etitions. Approaches (2) and (3) are intended to 

produce better aodel instances than approach (1). 

(1) !ean-valued (!V) aodeling, where the distribution is 

an:rcximated by the sample aean. 

{2) Interval-based ao.deling, where the distribution is 

aJ=Froxiaated by an interval from which repetitions 

are sampled uniformly. 

a) Average-!! axim am (A I!) int erv a1, defined by 

(mean repetition,aaximum repetition]. 

b) Extended interval, defined by (r-kd,rf-.kdJ, vbere d 

is the sample standard deviation, 

cne (El) or two (E2). 

and k is either 

(3) tistribution-based modeling, 

ability distribution is used. 

where a standard prob-

a) Normal distribution (ND). Negative values are clip

ped, and replaced replaced by a zero repetition. 

b) Fcisson distritution (PD). 



In Tables 

192 

5.3- 5.5 that follow, aode1 instances are 

identified ty sample identifier and aodeling approach. for 

exa~ple, the mean-valued model for sample S20 is written 

"S20-!n•; its Poisson instance ty "S2G-PD". 

We have seen that ~V aodeling works well, but now we 

vould like to see if its accuracy can he improved by invest

ing more effort in the sampling process. iie computed model 

instances for each sample, TEED, S1D-S50 and FOP, and com

pared them to 'l'E:ED-~V to determine whether illcreased sa!'ple 

size leads to illproYed aodel accuracy. 

Percent Iaproveaent 
over TB:ED-!IV 

= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = 

!lodel 
sutject Progra11 ------------------Instance GENR:EF CI. OSTER -------- ---- ------

s 10-!IV -4 -11 

S20-I!V -4 0 

530-IIV 0 -37 

SSG-!IV +2 0 

POF-I!V +2 0 

ll!bl~ 2·1 
!lean-Valued llodeling: Effect of Sample Size 

Table 5.3 shows the percentage improvement of !IV model 

instances ever model instance TBED-I!V. For GENEEF, FCF-~V, 

constructed from the largest sample, was only 2' tetter than 

TBED-!IV, and the over-all maximum difference in the quality 

of the model instances was E~, which is quite low. Three 



193 

CLUSTEB !V model instances aatched ~BED-!V, but 510-!V was 
was 11" inferior, and S3Q-! V was 37l! inferior. (Cur immedi

ate reaction to such a poor 530 sample was that it repre
sents the bad •lack of the draw.• Indeed, a second random 

sample of size thirty matched iBED-ftV, as did the other sam
ples of .size greater than ten. Further examination of S30 

revealed that it containeil debugging executions that con
tained calls to debuggillg routines that were rarely (if 

ever) called during "prodvction" executions.) lie conclude 
that fer.· I'!V modeling, there appears to be a sa~tple-size 

threshold, beyond which fvrther sampling does not lead to 
iapro,ed model accuracy. Furthermore, "chance" saxpling 

notwithstanding, this threshold is tetween ten and twenty 

executions. 

The siKilax:ities in the model instances, and the lack of 

marked superiority of models constructed from large saaples, 

are explained in part by tte statistical characterization of 

the sa 11ples. ihe sample means used in aean-valued modeling 

were close numerically, •hich resulted in 

that differed in only a few loop parameters. 

that .selection construct parameters for 

model instances 

lie also found 

all the aodel 

instances 11ere nearly identical across all samples. ihen 

executions are characterized using means, there does appear 
to be a ztypicalZ behavior, which can be surmised froa 

observing a small number of executions. 



194 

we have seen that when ftV modeling is used, there is lit

tle need for extensive sampling, since small samples tend to 

prod~ce the saae aeans as large saaples. ie also sav that 
confidence intervals, which capture aore of the underlying 

distribution, degenerate-into point estiaates when the saa

ple size is large or the confidence level is low. We nov 

use sa~fle statistics to construct intervals that capture 

soae of the range of values in the underlying distributions. 

5.3.2.1 Uniform sampling from {aean,maximum] 

EstiEator E2 computes the aaximum loop repetition random 

variable E by averaging the aaxima from the saapled execu-

tions. This ftoduces a smoothed 
effects of very large outliers. 

deletes from the distribution very 

less than the aean. 'lhe rationale 

value v hich negates the 

Thus the interval [r,E2) 

high values and values 

for such an interval is 

the co~jecture that high repetitions have a more significant 

effect open program locality than low repetitions. 

The GEHREF aodel instance 510-Aft vas 4l tetter than its 

ftV ccunterfart, and aatcbed TBfD-ftV, the 

instance. For CLUSTER, on the other hand, 

worse than sto-ev, and 22l worse than TBED-ftV. 

best ftV aodel 

510-n vas 10l 



195 

-------
p E R c E ll T 

1 II p 1l 0 v E a E ll T 
GENR.EF 0 y e r 
IIedel -------------------------Instance TE.Eil-IIV s 1 o-n 520-!IV TEED ------- ----- ------- ------------ --------- -------- ------- -
'7BED-l!V IIA +4 +4 -a 
TEED-ND -7 -2 -2 -15 

'!BH-P D -1 +3 +3 -10 

.S1 0-IIV -4 NA 0 -13 

S1 0-AII 0 +4 +4 -B 

52G-IIV -4 0 llA -13 

S20-E1 +3 +6 +6 -6 

S2G-E2 +3 +7 +7 -5 

52D-ND -3 +1 +2 -11 

52G-PD -1 +3 +3 -9 

Tatle ..2-.!! 
Improvements for GERREF llodel Instances 



I 
CLUSTER 
l!odel 
lnstance 

tBED-!IV 

TEED-liD 

TBEJ:-P D 

510-I!V 

s 10-1!1 

P E B C E N T 
1 ~ P R 0 V E ~ E N T 

o v e r 

THD-!IV 51 0-IIV 530-!IV 7BED 

51 +9 +27 0 

-1 +9 +26 -1 

-1 +9 +26 -1 

-11 

-22 

!ill 

-10 

+19 

+11 

-11 

-22 

-37 -24 B1 -37 

-23 -11 +10 -23 

-so -36 -10 -so 
-79 -61 -30 -79 

-1 +10 +27 -1 

196 

! 530-!IV 

53 0-11! 

530-!1 

S30-E2 

SJo-BD 

530-PD 

L-------------------------' ________ ·_9 ________ +2_6 ________ -__ 1 ______ j 
IEl:l.§ ~-.2 

lEfrovements for CLUSTER !lodel Instances 

5.3.2.2 Uniform sampling from [r-kd,r+kd] 

The 5ean-maximum interval captures only the tigh end of 

the diEtribution; all repetitions less than the mean are 

lost. We would like an interval that represents tr.e distri-

bution of values about the mean, and we would like to form 

the interval so that the there is an associated measure of 

the FICpcrtion of the underlying distribution that the 

interval covers. symmetric e~tension of the interval about 

the ~Jean by k standard deviations (d), produces interval 

[r-kd,r+kd], for which, by the Chetyshev inequality, we kno~ 

that nc more than 1;tz of tbe distribution falls outside 



197 

this interval. For k=2, interval [r-2d,r+2d] covers at 

least 75:1: of the distribution. 

Since negative numters are not allowed, negative left

endpoints produced by interval extension are replaced by 

zero. In such cases, the center of the interval is no 

longer the sample mean, s.o sampling from this truncated 

interval vill produce values whose mean is higher than the 

(true) sample mean. In fact, the maximum of the extended 

interval may be larger than the observed maximum, which may 

result in synthetic strings that are much longer than the 

subject .Etring. 

Froa Table 5.4 ve see that subject program GENBEF again 

realized improvements 

Although S2D-8V vas 

1then E1 and E2 intervals vere used. 

the worst of the mean-valued model 

instances, 52D-E1 and 520-E2 were 4' better than TEED-~V, 

and 6!t better than 52G-~V. ~he model instances 520-El and 

S20-E2 prcduce synthetic strings that are within 6~ of the 

subject string set TEEt. 

Neither CLUSTER model instance, 530-El nor S30-E2, vas an 

improve~tent over SJG-l!V. In fact, they vere 10-30!1' worse. 

Could the reason be that 530 vas a poor sample, and there

fore ary attempt to improve a model instance based on it 

will fail? Close examination of the samples TEED and 530 

reveal a few differences, which are related to the function 

of the CLUSTER program and the nature of its inputs. For 

TBED, three layouts vere produced for each restructuring 

graph, one for each of three different page sizes; 530 pro

duced cnly one layout per restructuring graph. 530 pro

cesses eight graphs, TBED four, so that 530 executions are 

longer. S30 also worked on more complex grapts than TEED, 

requiring more (50 

tion cf layouts. 

that TEED and SJO 

versus 40) list merges during the forma

Even these differences do not indicate 

are as radically different as their model 

instances are. The erratic behavior of the ClUSTEii All, E1 



196 

and E2 aodel instances may test te explained as the "luck of 

the draw." 

5.3.3 J;i£.!!i!l.Y!!Q.!l-Based llodeling 

For large samples, the normal distribution is generally 

accepted as a good approximation to the underlying distribu

tion, whatever its true form. Since loop repetitions are 

non-negative integers, the normal distritution must be trun

cated at the origin, to disallo~ negative values. This 

clipping actually skews the normal approximation towards 

values larger than the !llean. lihat is needed is a discrete, 

non-negative distribution that bas properties similar to the 

normal distribution. 

the Fcisscn. 

lie considered two, the geometric and 

The geometric distritution was appealing since its random 

number generator is efficient, and its parameter p has a 

natural interpretation relative to loop execution: p is the 

probability that the loop repeats its tody. The drawback is 

that the distribution is monotone decreasing, and skewed 

toward values less than the mean. The fact that srraller 

values have higher protatility than larger ones makes the 

distribution unrealistic for loops with very high repeti

tions. £urthermore, very few loops in sample POF satisfied 

the theoretical reguiremen t that the standard deviation and 

the JLean l:e nearly the same. (IntErestingly, the high-rep

etiticr lccps o£ CLUSTER come close to this geometric dis

tribution reguirement; those of GENREF conform more closely 

to the Fcisscn distritution requirement.) 

Next, we considered the Poisson distritution, which, for 

large xean looks like the normal distritution. Its rate 

Faraueter represents the numbEr of loop repetitions occur

ring between loop initiation and termination. The Poisson 

randcn Dumber generator is iterative, and requires consider

able overhead, relative to uniform and geometric generators. 



199 

we investigated the use of the normal and Poisson distri

butions. ever-all, representing the underlying distribution 

by a standard function was superior to all other modeling 

approaches. As usual, there was one exception, 520-El and 

S20-E2 for GUIRE.F. As to which distr il:ution is superior, 

they see• equally good. !he Poisson distribution bas the 

advantage of restricting the range of repetitions generated 

fer loops ~itb high variances, whereas the normal distribu

tion will generate a wider (sometimes unrealistic) range of 

values. Despite the attractive features of the Poisson dis

tribution, the normal distr il:ution is probably the one of 

choice, since it is more general and its generator is much 

more efficient. 

The objective of this investigation was to produce a 

model instance for a sample (e.g., 520) that was tetter than 

the l'.V model instance for that sample. The approach used 

was to increase the amount of information about the underly

ing distribution of loop repetitions. lie met this objective 

fer beth subject programs, GENREF and ClUSTER, but the 

amount cf improvement, and the effort required to obtain 

that improvement were different. For GENREF, the worst MV 

model instance differed from the !:est one by only 4~, and 

this difference was made UF l:y representing the distribution 

as the interval .l::etween the mean and maxiJLum repetiticns 

observed in the sample. Further improvement was obtained 

when the interval was extEnded on l:otb sides of the mean. 

In the case of program CLUSTER, at tempts to construct a 

model instance for the sample 530, the worst !!V instance, 

were successful only when the normal (or Poisson) distribu-

tion wa!: used. The test model instance for that sample was 

as good as any MY model instance for any sample. 



200 

None of the model instances were able to produce syn

thetic strings that were superior to actual trace strings, 

although synthetic strings generated from the best CLUSTER 

model instances reproduced (in terms of restructuring) the 

strings in the testbed. 7he l:est GENREF synthetic strir1gs 

were within 57; of the testl:ed strings. 

5. 4 SC~MARY 

We have shown, on the l:asis of modeling results, that for 

MV modeling, the observation phase of GPAM modeling need not 

be very extensive. ll small random sample of 10-20 execu

tions frovides an adequate characterization of the subject 

progra11. l!V modeling is susceptible to sampling "chance", 

which is best minimized ty sampling only production-type 

executions. The hypothesis that a small random sample 

yields a geed model instance is supported by the results of 

this chapter. 

The distributions of loop repetition frequencies tend to 

be of no predictable type, and the type (form) may change 

depending UFOn the sample. ~espite these obstacles to mod-

eling, we found that the means of the 

loop zepetition frequencies are rather 

execution samples• 

stable, and that 

using the means to formulate the model instance yields 

acceptable results. 

Increasing the amount of information atout the underlying 

loop repetition distritution improves the quality cf a poor 

MV model instance. Although the extended-interval approach, 

which uses uniform sampling from an interval defined by 

loop-repetition statistics, works in some instances, in oth

ers it froduces poorer model instances. lie feel that using 

a standard distribution (normal or Poisson) is the safer 

approach, since neither one was shown to result in dramati-



cally worse model instances, 

extended-interval approach. 

201 

as was the case with the 

When the MV model instance is already accurate, increas

ing the amount of distribution information does not further 

imFrove model accuracy, as was seen with 7BED-MV, and with 

the accurate MV instances constructed from samples of size 

greater than ten. Even when increased information leads to 

an improvement, that improvement is at best marginal (101 or 

less, disccunting CLUSTER sample 530). lhe second hypothe

sis, that model guality improves with an increase in the 

amount of Farameter distritution information contained in 

the model instance, is not strongly supported by the results 

of this chaFter. 



Chaptoor 6 

A ClSE STUD! 

6.1 INTBCDUCTICN 

Up tc this point, •e have conducted an investigation of 

the ra~ameters of the ~estructuring process and PAM model

ing technigues, when applied to sul::ject programs GENREF, 

RESTRUCT and CLUSTER. The reader may recall that these pro

grams were written by the author as a part of the ~odeling

restructuring system used in this research. Under such cir

cu~stances, a legitimate concern might be whether these 

progra~s have some property that favoratly bias the results 

reported in Chapters 3-5. The case study presented in this 

chapter applies modeling and restructuring to an arbitrary 

prog ral!. 

The fourth subject program, ADDIX, was not written by the 

autho~, neither does it solve a prol::lem related to program 

restructuring or modeling. 

encing properties (and to 

unkncwz:. ie found that, 

•hen it was selected, its refer

some extent, its function) were 

EVEn t~ough ADDIX was larger than 

any of the other subject program, it had very similar static 

structure, dynamic referencing properties, and restructur

abili ty properties. lie also found that, for synthetic-



203 

st~ing ~est~ucturing, simplest PAM model version, DNF-PA~, 

was §~f~I:i££ to all other model versions. 

In tbe next section we present some practical problems 

associated with an automatic modeling-restructuring system, 

and propose some solutions that are suggested ty the results 

of Chaj:ters 3-5. In section 6.3 the static, dynamic and 

·restz:uctorability characteristics of sut:ject program AtDIX 

a~e presented and compared with those of the other subject 

prograns. 

6.2 PRAC1ICAL JSSUES OF AUT05ATIC EESTBUCTURING 

The subject programs GENREF, EESlBDCT and CLUSTER were 

studied in far more detail than would te practical for the 

type of 2automatic2 modeling-restructuring system we pro

pose. In particular, the careful tuning of the parameters 

cf the ~estructuring process (A, e and p) that was done with 

the sol:ject programs, ~ould not te feasible for an automatic 

system. The last thing that the automatic system should do 

is tc force the programmer to tecome a performance analyst. 

Nonetheless, these parameters must te determined. ie now 

discuss scme possible approaches. 



204 

There seems to be no predictor of a program's inherent 

potential fer improvement through restructuring. The ben

efits aust be measured ty monitoring the restructured pro

gram's memory cost for some period of time. Nonetheless, 

our findings, tased on a small sample of programs, . along 

with earlier results [FERR76a,HATF71], suggest that it is 

safe to assume that a program can te improved ty restructur

ing. 

~ore than likely, the decision to restructure a program 

will be based on some external factors: program size, run-

ning time and frequency of use. For programs with short 

running times, or for small programs, the savings realizable 

from restructuring is low. 

critical-set restructuring algorithms, such as CwS, 

reguire a knowledge of A and p, the paging algorithm and 

page size used ty the system on which the restructured pro

gram kill execute. On a given system A and p will be fixed. 

The restructuring window, s. is the one parameter that must 

be set at the time restructuring is applied. we have 

observed that bad choices of e do exist, but that once they 

have teen avoided, there appears to be no significant dif

ference in the layouts ottainea. 

we have seen that e is a function of the behavior of the 

subject ~rcgram, especially during its dominant phase, which 

can te related to the static, proceaure-level structure cf 

the ~rcgram. An analysis of the PAM parameters can identify 

procedures that make a large number of calls each time 

entered; such procedures either participate in or form the 

nucleus of phases of execution. The distribution of calls 

from this znucleusz procedure can te used to det€rmine the 



size cf the phase, 

205 

which gives a reasonable choice for €. 

~hat is, e can be chosen from an analysis of model parame

ters, at the time the model instance is constructed. 

In an automatic modeling-restructuring system, there will 

be the storage of neither tbe execution trace strings nor 

layouts ccmputed from trace strings. Consequently, direct 

comparison of syn thetic-str in g 1 ayouts with trace-string 

laycuts will not be practicable. In such an environment, 

the operating system should, at minimum, make a post-execu

ti en repcrt o:f aemory cost. ~he effectiveness of the 

restructuring can be determined from the comparative before 

~DQ 2ft~ costs, monitored over a reasonable period of time, 

or frcm head-to-head comparisons of the restructured and 

non-restructured versions of the same program, executing 

against identical input data. 

our limited experience gained from the study of the three 

small subject programs GENBEF, BESiBUCT and ClOSTER, shows 

that synthetic strings are acceptable approximations to 

trace strings. In fact, we have seen that model version 

selecticn, DNF-PAM or GPAM, is an issue which is secondary 

to that cf observing a sufficient number and variety of exe-

cutions UfOn which to tase a model instance. Moving from 

DFN-FAM to GPAM does improve accuracy, but requires more 

expenditure ct effort in order to achieve slight improve

ments. In some instances, the tradeoffs do not favor using 

GPAM ever DNF-PAM. 

diet 

de net have sufficient experience to J::e 

the relative quality of DNF-PAM and 

able to pre

GPA!I ~todel 

instances, nor can we characterize when one model version is 

preferable. Ye have found that model instances, whatever 



206 

version is used, should te tased on multiple executions of 

the subject program. 

6.3 CHARACTERISTICS OF SUBJECT PRCGEAM lttiX 

The subject program ADDIX was written in well-structured 

PL/I and is maintained by the University of North Carolina 

Computaticn Center. AttlX automatically scans a Script text 

file fci: terms that are to .be included in an index. l:hen a 

match cccurs, Script z.ix2 commands are inserted at the 

appropriate places in the text file. 

AtDIX has two major logical phases. The first phase 

occurs during 

used tc match 

the construction of the finite-state machine 

index terms. Its duration depends upon the 

number of index terms. The second and dominant 

involves scanning the text file and processing matches. 

character of this phase depends upon the processing 

phase 

The 

mode 

(batch cr interactive, under 150), the size of the text 

file, whether or not the text file is line numbered and the 

number of matches found. 

There are a fev noteworthy differences among the subject 

progra[s. Table 6. 1 compares ADDIX to an equally

weighted, composite profile of the other subject programs, 

GENREF, RESTRUCT and CLUSTER. ADDIX is the largest progra~t, 

has the most complex call graph (average procedure nesting 

level cf 3.5 and share-index of 1.6), but the lowest average 

construct nesting. RES1RUCT has the highest average con

struct nesting. Programs GENREF and CLGS1Ei are quite si[i-

1ar, but have no distinguishing static characteristic. 



The 

6. 1. 

I Statements 

I Procedures 

#Caller procedures 

ttogical phases 

Share-index 

Avg procedure nesting level 

Max 1=rocedure 

ILcop; 

nesting level 

Avg loop nesting 

nesting 

level 

level 

#Selection constructs 

Avg selection nesting level 

Max selection nesting level 

#Constructs 

Avg ccn.struct nesting level 

Max ccnstruct nesting level 

SUBJECT PROGRAII 

ADDU ---
1561 

33 

12 

2 

1. 6 

3. 5 

6 

11 

0.3 

2 

31 

0.3 

2 

42 

0.8 

4 

Ihe Others --------
667 

u 
10 

3 

1. 3 

2.3 

4 

10 

0.4 

2 

14 

o. 4 

2 

24 

1. 1 

4 

12.&1~ .§.j 

Comparative Static Characteristics of ADDIX 

207 

1 
f 
I 

l 
j 

l 
procedure call-tree for ADDIX is shown in Figure 

In the figure, ZAti*Z and ZLIMIT*z indicate that the 

subtrees emanating from ADI and LIMIT have not been expanded 

(because cf lack cf space). 



ADDU -- l!AIN 

r--CONVTQT 

r
--EXTRACT=+ 

L--ERR!ISG 

--FCHART 

r-IBuiLn1=• t::::_:.J j--FF AIL 

L-FGOTO 

r-ERRIISG 

--CHKFILS=+--FI LEORG 
I 

I 
\--DA'IE9 

1--rnso 

L-- ST A 'ID liP 

r--ERR!ISG I I j--KEYWORD====ERR!ISG 
=+==PARMFAR= + 

} t--FAF!IDMF 

208 

j --PARZ I --ADf ======PUTNUII 

t r--GE'INUM l r-AD#* 

I r-----~ --HCYCLE=!--ERR!ISG 
-IIX~liiT =+ ~--LIIII'I* 

r-------, I L----
--PROCESS=+--~ATCH --SIIKUM 

t 
<-----.J --'IGET 

--GET!iUII I 
\ --NOELANK L--'IPO'I 

l 
--NOSCRIP ) r-ERB!!SG 

l
j--LIIIIT =+--TGET 

--PUTNOM I 

I 1
--PUTNUII I 

-- STA 'ID~IP t--T PUT 

~
1 --TERIIINI \--S"IKUM 

1--'IGET 
--TI I!ES 

--TPUT 

H.9 .\! li .§ • .1 
Call Tree for Program ADDIX 



209 

The testbed of execution traces for ADDIX consisted of 

twenty executions, of ~ength in the range 600-25,000 proce

dure references. Three single strings, TB-1, TB-8 and 

TB-13, were chosen as representatives of the diverse types 

of ADI:IX e~ecutions. 'IE-1 represents a short, l:atch-mode 

e.xecution; TE-8 is a long interactive execution; and TE-13 

is a moderate-length batch execution. 'Ihe following sets of 

executions were chosen. ye=TB-13, Yl=TE-8+9+11, 

Y2=TE-16+17+18 and Y'I=Y1+12. The respective lengths are 

19 I<, 25R, li2K and 67K referencEs. Yl is a mix of tatch and 

interactive executions of moderate length; 12 contains long 

batch executions, the predolliinant aay ADDIX is used. To 

achieve larger stbsets, ve comtined Yl and Y2 to form 

YT=Y1+Y2, which represents a cross-section of ADDIX execu

tions. Finally, set 'IEED contains seventeen executions from 

the testbed. TEED represents a large random sample of ADI:IX 

executions, and will te used as the test possible sa~ple of 

ADDIX executions. 

Figures 6.2 and 6.3 display the intrinsic execution-

time characteristics of ArriX across different executions. 

Figures 6.4 and 6.5 show the locality properties of ADDIX 

in relaticn to the other sutject programs. 



210 

0 Execution Set Yl 
+ Execut 1 on Set Y2 
X Execution ye 

-
0 
0 

I 0 

I -..J ~ U1 
0 

I 
;u 

\ 
1'1 
r 0 
:D 
-; U1 
o-; 0 
< 0 
1'1 

('"") 

0 

"' -; 0 

/\) 

U1 
0 

I I 

! 0 \ 0 5.00 10.0 15.0 20.0 25.0 l 
I I L AVG WORKING SET SIZE 

Figure 6-2 

ADDIX Intrinsic !!emory Cost curYes 



211 

Execution 
----1 

0 Set Yl I + Execut 1 on Set Y2 
X Execution ye I 

~ - ~ 1\.) 

0 

I 

l :D 
< I 0 

l ::0:: 
en 
en "' 

I 
H 

0 ! N 
m 0 

I 

\ 
I 

0 I 
I 0. 50.0 10 0. !SO. 2 00. I 

l WINDOW T X! Ol _ _1 

Figure 6. 3 

ADDIX ~ntrinsic Working Set curves 

Fer ADDIX, the drop-off in memory cost occurs when the 

average working set size is five modules, regardless of the 

executicn set. Y2, the set consisting of the longest execu-

tions, has a much greater degree of locality, m; ing to its 

Yl, wt.ich has very lorg dcminant phases. Not surprisiugly, 

the shortest executions, also has the poorest locality, evi

denced l::y higher memory cost and larger working sets. AI:I:D: 

is si~ilar to CLUSTE!1 and 1-ES'fEUCT, in that the locatior of 

the me~cry-cost drop-off point is not affected significantly 

by the chcice of execution. ln comparing the ye executions 



212 

of all subject frograms, ILLIX appears closer to GLNEEF in 

behavicr. Eoth have memory-cost drop-off points near 5 

(Figure 6.q). and toth have working sets that grow very 

little for working set windows over 100 references. Cf all 

the prcgrams, the ratio of the average working set size at 

vindcw 2000 to the number of modules is lowest for GENREF 

(0.38) and ADDIX(O.q3). 

Subject frograms GENRE! and ADDIX illustrate quite well 

the princifle of locality: programs can execute with only a 

small pcrticn of the program resident. Such behavior is 

explained by the existence of dominant phases of execution. 



:J) 

< 
Q 

:>:: en 
en .... 
N 
f"T1 

ru 
-P 

0 

-"' 
0 

-ru 
0 

0' 

0 
0 

0 

0. 

o GENREF 
+ RESTRUCT 
x CLUSTER 
liE: ADDIX 

50.0 150. 
WINDOW T x 1 Ql 

Figure 6. 5 

Working Set curves for All Programs 

214 

200. 



215 

6. 3. 4 !l§§!!.ll£!.ll.!:EbiH.!:t !:;.faracter ist ics 

ADtii showed the same potential for improvement through 

~estructu~ing as the other subject programs did. The stan

dard (STD) layouts ~ere nearly 60% better than the worst 

~ayout, and coaputed (CWS) layouts were 50% better than the 

best standard layout. (See Tal:le 6.2.) As was the case 

for the ether subject programs, L.TEXTUAL was the best stan

dard layout, which suggests that the order in which modules 

defi~itions appear in the source program gives some indica

tion of execution-time locality. 

STD 
Layout -----

ALPHA 
RANDOM 

'IEX'IOAL 

Avg 

Page Size --------------------p 1 p2 p3 

32 
50 
53 

liS 

34 
66 
H 

55 

65 
68 
78 

70 

-----l 
Avg 

z~ 1 
66 I 
57 \ 

________ j 

I.!!Us .2·1 
cost Reductions of SID Layouts for ADDII 

(Over L.iORST Layout) 

Based on results for the other subject programs, we 

decided to use the intermediate page size. cur choice of 

restructuring window e was !:ased on intuition, on experience 

with GENREF, the program most like ADDIX in terms of size 

and fhases, and on a trial and e:::-ror expe~:iment to see which 

values worked best. We chose 6=5, which, as seen in Table 

6.3, leads to the best layout £01: the inte~:mediate sized 

page. (Cur choice of € 

intrinsic cost curve, as 

was madE tefo~:e our analysis of the 

discussed in section 6.3.2.) 



216 

Paqe Size 
Ccmfuted --------------------Layout pl p2 p3 Avg --------

C'T''l 39 67 17 111 
CiiS Y1,3 46 68 71 62 I 
CliS Y1,5 54 82 66 67 

\ CWS Y1,7 58 8 1 84 73 
CWS Y1,9 34 77 48 53 ----

~ Avg 46 75 57 59 

-----

1El:l~ §.] 
Cost Eeductions of cws Layouts for ADD IX 

(Over L.BESi Layouts) 

Be£cre froceeding to modeling, we wanted to verify that 

the saue level cf restructuring improvement occurs, even 

when different trace strings were used as input to the 

restructuring process. we also 10anted to see if in:prove-

ments were observed over a range of program executions. we 

found the improvements ottained from 

intermediate page size and window 

restructuring using the 

e to be stal:le across 

other execution strings, and across layouts based on differ-

ent executions. [See Table 6. II) • 



Evaluation String Set 
---------------------Layout y 1 Y2 ye Avg ---- ----- ---- ---- -----

L {y 1~ 81 67 70 73 
L Y2 66 66 70 67 
L ye 60 67 72 66 

I .Ell e §. ~ 

Stability of CIS Layouts for ADDIX 

{Improvement over L.BEST) 

217 

l 



218 

6.4 APPlYING THE MCDEl TG ADDIX 

The reader should recall that the basic accuracy of a 

model instance is best measured ty its ability to reproduce 

the reEtructurability signature of a single subject execu

tion. Since, for a sample of size one, there is not enough 

information to decide upon a distritution of loop repeti

tions, the mean-valued approach is reasonable in this case. 

In Table 6.5 we see that the model is accurate to within 

5%, ir; the worst case. Eor execution TB-8 {wtich ranked 

last in reEtructurability), the GPAM produced synthetic 

strings that were 25~ tetter than lB-8. Execution TB-1, 

which had the best restructuratility properties, vas modeled 

to within 5~. lie see again the relationship t:etveen subject 

execution restructurability and MV model accuracy that was 

seen ir the ether subject programs. DNF-PAM model instances 

were also accurate. 

l 

Subject 
Trace 
String 

TE-1 

TE-8 

TE-13 

----------------------Model Instance ----------------------

! 
__________ _j 

1'.9 .!;1 g .§ • ~ 

Single- Execution Model Qu a.lity 

(Improvement over Subject lrace Strings) 



219 

we •ere interested in the effects of modeling based on a 

small £umber of carefully selected executions. Table 6.6 

~ho•~ that for a small number of observed executions, the 

resulting model instances for ADDII were excellent for 

DNF-PA~. The GPAn synthetic strings for !2 were almost 40~ 

inferior to the subject string set Y2, while the synthetic 

strings fer !1 reproduced !1. ihe major differences between 

Yl and Y2 are restructuratility (Y2 is slightly better) and 

lengthE of their respective component executions (for Y2 

they average 14K references, compared to 8K for Y1). oith

out a doubt, the inaccuracy of Y2 gives one reason to be 

vary cf ~cdeling based on a small numter of executions, 

regardless of the quality of those executions. 

I 
L 

subject Trace 
Str1ng Set 

Yl=TE-8+9+11 

Y2=TB-16•17+18 

Model Instance 

DNF-PAM 

+3 

+4 

GPAM 

0 

-37 

I2£le .2-f 
Multiple-Execution Model Quality 

(Improvement over the Subject String Set) 

1 
i 



220 

Whet large samples of lDDIX executions were modeled, we 

observed the same pattern of progressive increase in accu

racy with an increase in distritution information, with one 

remarkable exception. In Tal:le 6. 7 ve see that DNF model 

instances are superior to all otherst the very model that 

contains the least amount of sequence information does the 

best jet of reFroducing the restructuratility signature of 

its sutject executions. ~hat is more remarkable is that 

YT-DNF mcdels TEED tetter than any other TBED model 

instance, even though '!EH is vastly superior to YT. (The 

best YT model instance, which comes to within 1' of YT, is 

still 30% worse than TEED.) 

I p I R c E N T I I !! p ll 0 v E !! E N T 
I 0 'i' e r 

l 
IIedel -----------------------------------Instance Y1-MV YT lEED-1'! V HiED ------- -------- ------ ------- ------------- --------- -------- -------- -------

I Y!-DNF +20 +3 +3 -3 

-20 -20 -28 
I 

YT-l!V !lA I YT-ND -1 -22 -21 -30 

YT-PD -1 -22 -21 -30 I 
I +19 +3 +3 -3 

I 
TBED-DNF 

\ TEEJ:-!IV +17 -1 NA -7 

l 
TEEI:-E2 +17 0 +1 -6 

TEED-N D +16 -1 -1 -7 

TEEJ:-P D +16 -1 -1 -7 

'Iaj,le 2·1 
Summary of Large-Sample Model Quality 



221 

G FA~ mcdeling resnl ts for At l:!X show the wisdom of basing 

the model instance on large 

seventeen strings, YT only 

for YT are poor, all those 

within 7% of TEED. It is 

samples. 

six. All 

Sample TBED contains 

GPA~ model instances 

for TBED are good, coming to 

reasonatle to assume that IT 

inherits much of the behavior seen in Y2, which also led to 

poor model instances. 

6.5 CONCLUSIONS 

Applying a posteriori program restructuring techniques to 

reference strings generated from instances of the procedure

activation 11:odel works surprisingly well for the program 

ADDIX. Program ADDIX has many of the same characteristics 

found the the earlier sutject programs, and has similar mod

elability characteristics as well. !be extent to which 

ADCIX rerre~ent~ the typical program running in a virtual 

memory environment can te determined only by further inves

tigation. 

That DNF-PA~ is superior to GPAM is surprising. If this 

is true for a large class of programs, then the automatic 

modeling-restructuring system proposed in this research can 

indeed be implemented at a very lo~ cost. 



Chapter 7 

CONCLUSIONS lND lDElS POE FBiTHEB BESEARCB 

7. 1 FINDINGS ANt CONCLUSIONS 

7.1.1.1 Model assumptions 

The model versions used in the research contained a set 

of simplifying assumptions that probatly are not satisfied 

by actual programs. 

0 f211-~2th indep~~9~nce. This assumption is present at 

the level of the model version: it is present in 

tH-FAM and GPAII, but not in DFAM and AGPAII. Under 

this assumption, procedures execute in a "memory-less" 

state, in which the caller can not exert any distin

guishing influence on the execution of the called pro

cedure. AGPAII and I:PAII contain a memory of the call 

path (from the driver module), in that each procedure 

has multiple sets of parameter values -- one per uni~ue 

call path to that procedure. 



223 
0 21E1i§!i~£ illdeE&Q§&~~~ Qi con§truct EE£E~et~. This 

assumfticn is present at the level of parameter repre

sentation and synthetic string generation. It reguires 

that all construct parameters be independently distrib

uted, i.e., that there are no correlations among param

eters. This assumption, when present, nullifies the 

effects of central variables defined globally or passed 

tc prccedures as parameters. This assumption is proba

bly mere unrealistic than the call-path independence 

assumftion. 

7.1.1.2 Gcals 

The goal of the research was to investigate the use of 

PAM as an integral part of a low-cost, automatic program 

restructuring system. 

0 Rifgi~~!~I=free ~Y!Q!Elif restructuring system. Such a 

syste~ requires automation at all phases: model con

struction, parameter estimation, synthetic string gener

ation and restructuring. 

The automatic modeling system should 

produce geed layouts that are competitive in performance 

>ith layouts obtained through standard restructuring 

methods. 

o 1£! £~§!· It was crucial that extensive parameter esti

matior. and generation not te reguired to achieve ~odel 

irstances of good quality, since ttese phases cf model

ing were far more expensive than model construction. 



224 

7.1. 1.3 The experimental approach 

Four PL/l programs ~ere modeled. we investigated the 

differences in model accuracy as a function of subject pro

gram, 1odel version, parameter representation (statistic and 

detail about the underlying parameter distributions) and 

parameter-eEtimation approach. The general modeling 

approach is outlined below. 

1. ~odel version selection. 

2. fodel construction and program instrumentation by the 

compiler. 

3. Parameter estimation: selection of executions to 

obEerve, program execution and computation of param

eters. 

4. Synthetic string generation from model instance. 

5. Program restructuring using synthetic strings. 

6. fodel validation ty layout comparison. 

We sho~ed that all model versions can be constructed by a 

modified compiler reguiring very little additional complex

ity or execution resource. ~e further showed that execution 

of the subject program to estimate model parameters 

increases the program's execution time by a negligible 

amount. Algorithms for model construction and subject pro

gram instrumentation ~ere given only for model version GPAM. 



225 

o Mogel-ba£ed ~~StiB£!Yii~ ~orks. In Chapters 4-6 we saw 

that SJnthetic-string layouts bad melllory costs 5-20% 

higher than trace-string layouts. In other words, 80-95~ 

of the aaximum performance improvement achievable through 

restructuring was reali7ed when synthetic strings were 

used. 

0 

0 

0 

l!lodel instances 

based in which the distributions of loop parameters are 

apprc:dmated ty the mean repetition frequencies are accu

rate, especially when the means are estimated from data 

collected from a random sample of 10-20 program execu

tions. 

]~.!~.!!§i.!~ .§.1!!!!I'!i.Qg 

i~· SaKpling more 

i.e n2.! I~quired 12£ ~~an-vElQ§g ~od~l

than twenty executions does not resnlt 

in .Eignificantly better model instances. Even when 

improvements are realized, they are marginal {around 5%). 

!!Q! _gost-effective. Increasing the 

arrount cf parameter distribution information represented 

in a model instance does not, in general, result in cost-

effective improvements in model accuracy. In some cases 

only ~arginal improvements are achieved, in others model 

accuracy decreases with increased complexity. 

0 £XE.9f.1!E§ 1.1!.!~ §!~ilEf £rO£erties. Differences 1n pro

grams, .l:oth in static structure and in dynamic ctaracter

isticE, are not as great as one might think. Perhaps the 

unifying thread is the concept of program locality. Even 

though the differences are not that great, ve were not 

able to develop any approach to characterizing a program's 



restructurability, or modelatility, 

226 

apart from actual 

experience ~ith the program. Fortunately, ve have groaing 

evidence that programs are both restructurat1e and modela

b1e, using PAM. 

Of the four theses set forth in Section 1.9, three have 

been sufported by the finding of the research. Tte fourth 

thesis-- that the cost of using the modeling system does 

not exceed the cost of restructuring using execution 

traces -- is not supported ty the results to date. The 

majcr cost of using the modeling system accrues during the 

string generation ana a posteriori restructuring phases. 

Even when a small number of synthetic strings is gener

ated, the cost of producing them, plus the cost of model 

ccnstructicn and parameter estimation, probably exceed 

the ccst of tracing a small number of program executions. 

A ffiore efficient generator and the use of modeling short

cuts may lower the cost of using the model, but the total 

elimination of the need to generate synthetic strings is 

sure to lever the cost to a fraction of the cost of a pos

teriori restructuring applied to actual trace strings. 

Algorithms fer computing layouts directly from a model 

instance are needed. 



227 

7.2 liESEARCH NEEDS FOR AUTOMATIC RESTRUCTURING 

That PAM works at all demonstrates its potential; that 

its accuracy is not predictatle suggests that more study 

is required. The case •here model accuracy vas substan

tially improved by moving to a more realistic llodel 

instance shows that there are situations that require the 

most general member of the PAM family, togetler vith a 

careful parameter estimation effort. 

simplest model version is adequate. 

In other cases the 

Subsequent research in automatic program restructuring 

using FAM should address the following unresolved areas. 

0 

0 

ff~!§J~!iQB§ ~QllE 

dure for measuring 

(e.g., correlation 

lOQ£ £arameters. What is a proce

dependencies, and at what point 

coefficient) are t be dependencies 

significant enough to affect model accuracy? 

f.b~Hf!§!"i~.!!.!i.Qll 21 model able 

modelability of a program te 

parameters cr program structure? 

eral mcdel version required? 
• 

suffice? 

££Qgram§. How can the 

characterized using FAM 

ihen is the most gen

When will tte simplest 

o ~~!f~.!!!ic !§fmill.!!!ion of string generation. The basic 

generation termination procedure outlined in Chapter 2 

shculd be i1plemented. 



228 

7.3 AEEAS FOF FUETBER RESIAhCB 

The studies suggested in the previous section can be 

thought of as prerequisites for the studies suggested here. 

These fa11 into two categories: (1) expansion of the auto

matic restructuring system and its algorithms in order to 

enhance modeling effectiveness and efficiency; and 

(2) application of modeling to prot1ems in other areas of 

current research, such as program tehavior and program test

ing. 

0 ~~4&1i~g lo!=J§yg! §QYf~ 12ngyages. Apply the ~odel to 

asseKbler language programs, or to non-structured pro

gramming languages. Many large programs written in such 

languages exist, tut have never teen optimized for exe

cution in a virtual memory environment. 

0 1~~1&~~1~11~ of 
coKplete aodeling 

21her model versions. 

system. 

Implement the 

o Da1~ ~&!§f§~cing. Devise approaches to referencing 

data. Determine when such modeling is feasible. The 

afproach should group data into large blocks to reduce 

the size of the model grammar, and, ultimately, to 

ensure the efficiency of synthetic string generation. 

0 ~&1s£1i!& ~~Eeligg 21 ££i1ic~! con21ructs. Which proce

dures ccntain constructs that are crucial to the sue-

cessful modeling of the sutject program? Wtich con-

structs are insignificant, and can therefore be ignored 

in acdeling? 

0 ~lg£fi1h~£ 12§§Q Qll RA~ E~f2met~. Devise non-genera

tive algorithms that use the parameter database. we 

feel that the elimination of the generation and a pos

teriori restructuring phases will reduce the cost of 

using the system ty an ordEr of magnitude. 



229 
0 Q§~ g£ E2~ §j~ in tgjlo£iDE algorithms •. Curr~nt fro

gram tailoring algorithms ignore page size until the 

clustering 

algorithms 

phase. Define "space-critical" 

that allocate during restructuring 

tailoring 

a fixed-

size region in which tte clock resident-sets are stored. 

What are the advantages and disadvantages of this 

affrcach? 

0 £!11£1~§ fg£!fUct~IiDE• Eliminate from the clustering 

~base module pairs ~hose affinities fall below some 

threshold, k. That is, define the restructuring matrix 

c• = c - k*C. It is possible, by proper choice of k and 

the restructuring window e, to filter out faults caused 

by transitions between phases, so the restructuring 

11a trix records only t be camp etit ion amongst members of 

the phase. 

0 £gg~g~f1l£2!!2n £1~§!~~- Since code blocks tend to 

be small, high-demand tlocks can t:e duplicated without 

significantly increasing the size of the program's vir

tual name Sface. One possit:le method would allow the 

clustering phase to have a threshold parameter. A 

high-demand block can te assigned to any natural cluster 

having an affinity for it exceeding the threshold value. 

tFAr may suggest where code duplication can te benefi

cial. 



230 

o Q1~~L sfFrOB£hes !Q !Od~l validation. In this research, 

~e used program restr~cturing as the vehicle for model 

validation. As a validation tool, restructuring is 

expensive, compared to approaches such as those pre

se£ted in [SPIR77]. 7hese should be compared with 

restructuring, to see whether the properties they meas

ure are related to program restructurability, and to the 

modelability of the subject program. 

PAM instrumentation and execution-

coefficient extraction provide a measurement tool fer 

prcgram execution testing. Since only significant con-

trcl structures are instrumented, and since tr.ese may be 

the most crucial parts of a module to test, the volume 

of data is greatly reduced. 

0 ~utcmB!1£ £Qgi~ §!Bng~rd§ checker. The compiler can be 

~ade tc &cnitor program source code to ensure conformity 

to organizational standards of program structure. 

Batson's bounded locality intervals 

(ELI} provide a way to decompose an execution into its 

phases, and to characterize each phase 

[~ACI76,EATS76b,EATS77t]. DPAM appears to suggest a 

mere natural way of expressing locality [JONE80). 



231 

7.4 CONCLUSION 

This dissertation has shown that program aodeling to 

achieve performance improvement through program restructur-

ing is feasible. 

can be answered 

greater number of 

is our bore that 

There remain interesting questions that 

only by further experimentation with a 

larger programs than those we studied. It 

this work has brought us a step closer to 

confiler-a~~isted "virtual-memory" program optimization. 



lU.!l11Q fil!ll!!.1 

AEIIA70 A trams F., "An APL l'lactine," Stanford linear 
Accele.rator Centu Beport SLAC-114 (Fetruary 1970). 

AEDS79 Atu-Sufah W., Kuck E. ana Lawrie D., "Automatic 
ficgram transformations for virtual memory 
CCI!futers," .H1!:~ fQ!llEr.£1!£!; Proceedings 49 (1979), 
H· 56Q- 97 4. 

ACHA7c Achard H.S., Eatonneau J.Y., Carpentier H., 
l'lcxriset G., l'lounajjed l'l.E., "the clustering 
algcrithms in the OPAL! restructuring system," in 
J~fl£f!g~~ Ql fQ!f~1f~ 1nstallation§, (D. Ferrari, 
!ditcx), North-Bollana Pul:lishing Company (1578). 

AHCA71 lhc A.V. and tenning P.J., "Principles of opti;al 
rage rerlacewent, 11 ~QUr!ial of thf !_~ 1.§,1 (January 
1 511), H• EQ-53. 

ALEX75 Alexander W.G. and ~ortman D.B., "Static and 
dyramic characteristics of XPL programs," IEEE 
f£!~~jf~ ],11 (Novemter 1575), pp. 41-46. 

ALJA79 Al-Jarrah, M.M. and lorsun I.S., "An empirical 
a.ralysis of CCEOL programs," ~ofi.!'.l!re-Fr_g.fiiCf _!!r.d 
]J!f~if~~~ ~,5 (May 1Si9), PP• 341-359. 

ALLE80 All"'n !.E., pri\ate communication (!lay 1~80). 

EAEC77 Eatcnneau J.Y., Achard H.S., Morisset G., fouuajjed 
f.E., "Automatic and general solution to tte 
adartaticn of programs in a pasing environ~ent," 
J.l;.s;s:gg£1!!.9.§ Q.f .11!~ .§~!.!! l!Ul .2.Y!!Eilli.i.\!1!! Ql! .fi.Eera t.i.llil 
~.:tg~.!!!.§ ~!!!l£iE.!H (llovemter 1 S77), pp. 105-11€. 



BAEE72 Eae~ J.L. and Caughey R., "Segmentation and 
Cfti~ization of programs from cyclic structure 
analysis," .!!1!::'2 ~.2l!.!.§f~.!1 groc&edin.B§ 37 (1972 
SJCCJ, FF• 23-36. 

233 

BAEE76 Eaer J.L. and Sager G.R., "Dynamic improvement of 
lccali ty in virtual memory systems, 11 lEEE 
;rgg_g~!.iQ!!.§ 2!! :'2.2.!i.l!.£!H !l!..Slineer in g SE-2, 1 
(Januai:y 1976), pp. 54-62. 

BAED73 Eard Y., "Characterization of program paging in a 
tiae-sharing environment," l.!ll! Jour.!!a1 of Fe.§earch 
~~£ ~!§~QE~§.!!! j],S (Septemter 1973), pp. 387-393. 

BAR~75a Bard Y., "Performance analysis of virtual memory 
til!e-sharing systems," 11111 .2J:st~ Journal 11,5 
( 1S75), H· 26t-3c4. 

BA&L75t Eard Y., ''A~plication of the page survival index 
(fSl) to vi~tual memory system performance, ~ 
JSY!.!!.21 9.! li§~!.£!ffh .£!1!~ Q§velopment ]2,3 (~ay 
1S75l, H· 212-•2c. 

BAE&79 Eai:I:ese A.L. and Shapiro S.D., "Structuring 
frcgrams for efficient operation in virtual 11emory 
systems," l.EEE .!:t.£!!!.§1!.ftions f!!! l?oftwEU Encineering 
~1=.2,6 (Novemter 1S7S), pp. 643-652. 

BATS70 Eatscn A.P., Jus.~. and ~ood D., "~easure11ents of 
segaent size," ~.Q§l!l.Y!llS.2.UQ.!l§ of !.he jCII ..11,3 
(.March 1 570), pp. ES-159. 

BATS7fa Eatscn A.P., "Program tehavior at the symtolic 
level," lU.E ~.QJU?.Y!.§f j, 11 (Novemter 1976), pp. 
2 1-26~ 

BAIS76b Batson A.P. and llacison A.W., "l!easurement.s of 
najcr locality phases in symtolic reference 
.striny s," f'IQH!.9Jl!9§ QJ !.b! ]nt§rn~ii2!!21 
~~!lS§l~! sn ~.Q~E~!~f I!I1Q£~~n.f~ l!odeliQE, 
tl~2~.ll±~!§l!1 .@.!!g £J21~~112ll• Camtridg~, lldss. 
(lS/6), pp. 75-E4. . 



234 

BATS77a Eatscn A.f. and Erundage B.E., "Segment sizes and 
lifetiaes in Algol 60 programs," £9.ll.Y!!icati_gns of 
!.!Hl AC~ &Q, 1 f.January 1577), pp. Jb-'14. 

BATS77b Batson A.P., Blatt D.W.E. and Kearns J.P., 
"Structure ~tithin locality intervals," in 
~~E£.Yring, ~gg§!iBg .il!!g l~alyating £Q~put~f 
2:iE!§J!!.§, (H. Beilner and E. Gelenl:e, Ecitors), 
Ncrth-Holland Pul:lishing Company (1977). 

BE1A66 Eelady L.A., "A study of replacement algorithms fer 
virtual storage computers," IBM _2:t:stg.§ .Qgurnal _2,2 
( 1566), FP• 785-101. 

BEIA69 Eelady L.A. and Keubner C • .J., "Dynamic space 
sharing in computer systems," £2~!.YDi£Eti.Q!!.§ of th~ 
M.!1 J1,5 (May 1569), pp. 2E2-288. 

BOG075 Ecgctt R.P. and Franklin 11. A., "Evaluation of 
Markcv Frogram models in virtual memory systems," 
2£ftwg!§-£fEf!i£§ .ilfr] l~P§£ienc§ .2,4 (Cctoler
tece~ter 1S75), FF• 334-346. 

EEAW6E Irawn E. and Gustawson F.G., "Program .l:ehavior in a 
Faying environment," .. HIP_2 co..n..!§~fl£.§ JfQ..f~Edinas 
.n ( 1968 F.JCC), PP• 1C 15-1032. 

ERAW70 Brawn B., Gustavson P.G. and Mankin E., "Scrting in 
a faged en vironm en t," ,S;o"'.!!!.!!n i£1lt io!!..§ .21. !.!!§ .!f..J:; 
]],8 (August 1570), pp. 483-494. 

BliOW7S Brcwn P • .J., "Softaare methods for virtual storage 
cf e~ecuta.l:le codE," £2JB.lli!li£ .Journal ll, 1 
(February 1979), pp. SC-52. 

BEYA75 Eryant P., "Precictins working set sizes," lll 
~£~f~El f! g§£~Ef£D llQ~ Q~!§lO£~Ent Jl,3, (~ay 
lS/5), fF• 221-<29. 



235 

CEEV78 Chevance B.J. and Eeidet 1., "Static proEiles and 
d1namic behavior of COEOl programs," AC~ SIGflA~ 
!!£!i~s 13,4 (April 1518), pp. 4'1-57. 

CH0~74 Chew C.K., "On optimization of storage 
hienrchies," 11'11 ~.Q.!1f!!.2l 2.! l.l.§Jll.J!f:Ch and 
~.§]gJ~IJ!1gnt J~,3 (May 1974), pp. 194-203. 

COfF6E Coffman E.G. and Varian I.e., "Further exp~rimental 
data en the tehavior of programs in a pa9ing 
euvircLment," .!;Q.!!!.!!!JJnic.J!tions of the~ JJ,1 (July 
1568), FF• 471-141~. 

CCFF73 Coffman E.G. and renning P.J., ~fatiQE ~ystem 
Hff!.Y• Prentice-Hall (1573). 

COEE74 Cchen J. and Zuckerman c., "Two languages for 
e.stiJLating program efficiency," f;.QJill!lJliljcatic.!!.§ of 
.!hg AC!:! J],6 (June 1574), pp. 301-308. 

COHEt>7 Ccmeau ~.w., "A study of tt.e effect of user prograJL 
Cfti•ization in a paging system," .f£.Q£sedilliJ.§ of 
.!hf AC!:! ~~.!!!E.Q~i~.!!! Q!! Operating Sys1.§.!!! gri.£Ciples 
(Octcbu 1967). 

CCUF76 Ccurtoi.s P.J., "A decomposatle model of prcgra~ 
l:ehavicr," j£!1! l!!I.Qf.!!!_Etica ..§,3 (1976), pp. 
256-275. 

DEAR64 Dearnly F.H. anil IIEiiell G.E., "Automatic 
Ecgrrentation of rrograms for t~o-level store 
cCJifuters," f;Q.!!!EJJ.!sf J.Q.J!fnal ], 3 (Octoter 19!:4), 
H• 185-187. 

DEFb7E re Freitas S.L. and Lavelle P.J., "A metl:od for the 
ti11e analysis of Ftogcams," ]B.M li.YStE.!!!.§ Journal 
j],1 ( 1578), pp • .<E-38. 



236 

DENN6!: I:er:nis J.B., "Segmentation and the design of 
rultip:cgrammed computer S}'Stems," .J!2Y!:nal of the 
j&~ Jl,4 (Octoter J9o!:), pp. 5~9-602. 

DENN6€a I:etning P.J., "Thrashing: its causes and 
prevention," .H1!'~ ~.Qll.!.§U!!.f.§ Proceedings 33 (1968 
lJCC), FP• 915-5.<.<. 

DE~N6Eb I:euning F.J., "lhe working set model for program 
tehavicr," .f.Q.!!!Jl!.!!!lif£.!l.Qns 2.! tb.§ ACr. 1J, 5 (11ay 
1568), pp. 3.<3-333. 

DEN~70 I:etning F.J., "Virtual ftemory,n f.QJ!!puting ~Y!:Veys 
,i,3 (Septeml:er 1SJO), pp. 153-189. 

DENN7.< Denning P.J., "On modeling program tehavior," AIIF~ 
~f~l~!:~llf~ f!:Qf.§edinS§ 4C (1572 ~JCC), pp. 937-945. 

DENN75 tetning P.J. and Graham G.s., n~ultiprograEmed 
aeEcry management," 1111 Proceeding§ ,!!],, (June 
lS/5), PP. 9.<4-SJS. 

DENN76 Denning F.J., Kahn K.c., Leroudier J., Potier D. 
and suri R., "CptiJLal 111ultiprogramming, 11 l!cta 
J!l!£f!l!£1i££ ],2 (1976), pp. 197-216. 

DENN80 Detning P.J., "~orking sets past and present," IEEE 
11~!l§£f1i.Q!l§ Q!l ~.Q!!~£re Eusineeri~ ~E-£,1 
~annarJ 1980), pp. t4-E4. 

DITZSO Ditzel D.R., "Program measurements on a tish-1eve1 
1atg uage computer," l.E H Computer 1]., 8 (Au gust 
1980), H· 62-7.<. 

ElSB/4 Elshcff J.L., "!ome programming techniques for 
fiCcessing multi-dimensional matrices in a paging 
ervircnmen t," ~11!:.2 ~.Q!ll&Ie.!!.f.§ Froceeoin,g.§ 43 
(1574), H• 1E5-1S2. 



237 

EISR7fa Elshoff J.l., "An analysis of some commercial Fl/I 
frcgrams," IEEE 1.L!!!l§J!CtiQ!!§ on jiQ_!tware 
I~~!~~~iDg ~~=l•~ (1516), pp. 113-120. 

ELSE7ib Elshcff J.L., "A numerical profile of commercial 
fl;I p:cgrams," ~.QI.!;.l!.§I~-,ffacti£~ J!.!U! ~!:.EEr ience 
£,4 (Octoter-Decemter 1976), pp. 505-525. 

F!BB73 Ferrari D., "A tocl for automatic program 
restructuring," . .H~ 1211 National £2nferen.£_§ 
g~g~~9!!!~§ (1973), pp. 22&-231. 

FEEB74a Ferrari D., "Improving program locality ty 
strategy-oriented Lestructuring," lFIF Consress 74 
,f~.Qf§~~!!!g§ (1974), North-Holland Putlis~ing, 
Aasterdam, pp. ~tt-27C. 

FEFE74b Ferrari t., "Improving locality ty critical working 
:oets," !;;.Ql!!.!!!.!l.!llSJ!J.,j,.Q!l§ Ql .!;he _!Cl! Jl,ll (!iovembEL· 
1574), FF• t1~-c20. 

FEEE75 Ferrari D., "iailering programs to models of 
rrcgram tehavior," ]JJ:! .JQurnal of ll§§EdfCh and 
~§1§19F!§nt J~,3 (May 1575), pp. 244-251. 

EEBB7ca Ferrari D., "!he improve111er.t of program l:ebavior," 
IEEE ~.Q!EMl~f ~,11 (Novemter 1576), pp. 39-47. 

FEllB7tt .Ferrari D. and Lau E., "An experiment in prograJL 
restructuring fer perlormance enhancement," 
1If££&~.,!.ng§ 2! .!;~~ 1~£ Jntern~liQ11!1 £.9bl~rsnce £L 
2£I!~g~§ E!lE!!l§£fi!lE (1976), pp. ~03-207. 

FEER7'7 Ferrari D. and Kol:ayashi !!. , "Program restructuring 
algcri ttm:: fer glctal lRU environments," in 
J~.!;~fE2£lQ!l.i!l ~QID£Ell!1E ~~~£osiug 1977, (E. Morlet 
and D. Bil;bens, Editors), North-Holland Iul:lishi11g 
Ce«fany (1977). 



238 

FILI77 Fili_~:ski A., "Call ty restricted aemory reference," 
AC~ ~1~l11M MQl~fs§ J1,10 (Octoter 1977), pp. 
75-77. 

FihE66 Fine G.H., Jackson c.w and ~clssac, P.V., "tynamic 
p:cgra~t tehavior under paging," Proceedin_g§ Qi. the 
Jftt 11§1 li~liQ~~l ~Qnference (1966) pp 223-228. 

FBAN74 Franklin M.A. and Gupta R.K., "Computation of page 
fault _~:rotatilities from program transition 
diagralls," fQ!!ll!l.!!!tlf.HlQ!l..§ 21 tb.§ ACM 11,4 (April 
1514), H• 186-191. 

}fi.I75 .i'riel:eJ.ger: 11.1'., Grenander u. and Sampson F.D., 
"fatterns in program references," IBM ~~al of 
~§£f£!fh ~~£ ~s~&lQ£J!l.§nt JJ,3 (May 1975), pp • 
.< 3 a- 243. 

GEN'l/7 Gentleman ~.II. and l!unro J.I., "I:esisnin<; overlay 
structures," ~ofj~~g-Practice 1JDd ExJ?gie~ ],4 
(July-August 1511), pp. 453-500. 

GBAH76 Graham G.S., "A study of program and memory policy 
tehavior," fh.r. Iissertation, Department of 
CcEputer Science, Purdue University, •· lafayette, 
Irdiana (Decemter 1S76). 

GBAH77 Graham G.S. and Ienning P.J., "Cn the relative 
ccr.trollabili t1 oi memory policies," in l££f.§ed~1L9.§ 
ff !h5 1£!5!£1!!~£££1 ~~!!l~QSiQJ!l Q~ CoJ!l£Q1er 
.!'s!fHl!l.!!I!f§ .!:JQ.Qell!!il, .!l.Ell§!!liJ!!enl .!!.!!.!l i.Y.f!luatjcn, 
(K.M. Chdndy and r,. ReisH, Editors), Nortt-Hclland 
fucli.shing Com pan} 11 S/7). 

HATF71 Hatfield D.J. and Gerald J., "Program restructuring 
fer virtual memory," 11Jl ~ystgJ!!§ .!)QJll.!!al 1Q,3 
{1571), H· 1t8-192. 



239 

HATF72 Hatfield D.J., "Experiments on page size, frogram 
access patterns, and virtual memory performance, 11 

1£] ~~~~B~~ Q! E~£i~~f£ 2nd ~evelopmenl j2,1 
(January 1972), pp. 58-66. 

IliNE7c Irnes I.R. and 'lsur 5. 1 "Interval analysis, 
J;aginaticn and program locality," In fo!:Datio.!l 
~g£g§.§!!lg !.&!!er§ ~.4 (Octol:er 1976) ~ pp. 91-96. 

JOHN75 Jch~son J.W., "Program restructuring for virtual 
ITellcry .Eystems," f~j.§ct .MAC 1ecbnical EllOr! 
!.!!:: 148 (March 1975). 

JONE80 Jcnes E.L., "Procedure-level computer program 
11cdeling: detecting major phases of execution," 
ff!f~B~l~!= E!BlQB 11 ~!~~~nt Symposium Q1 the 
E2!i£B~1 lgfBBl££! !§Saciation, NASA LanglEy, 
Eaarton, Viryinia (March 1980J. 

JCSE70 JcSefh t!., "An analysis of paging and program 
tehavic.r," f:Ql!!I!.!!!i~ ~Q.Yrnal 1.J,1 (Fel:ruary 1970), 
H• 48-54. 

KEE~71 Ke.rnighan E.W., "Optimal seguentia1 partitions of 
grat:hs," .!!Q.!If!l~! g! !]~ JCII .111, 1 (January 1971), 
H· 34-40. 

KIIE62 Kilburn '1., Editor~ards D.B.G., Lanigan ~.J. and 
Sul!ner F.B., "Cne-level storage systelli, 11 IFF 
1I~B§2f!l.Qll§ Qll J!~£!fQ!ll£ ~Q~puters EC-11,2 
(Fel::rua:ry 1962), fP• 223-235. 

K~UT69 Knuth I.E., "An empirical study of Fortran 
ficgralls," ~Q!!~~J~-R£2Ctice 2nd £XEi~ie~ j,2 
(At:ril-June 1971), pp. IC5-133. 

KNUT73 Knuth I.E. and Stevenson P.R., 11 Cpti11al measure~ent 
Feints fer program frequency counts," BI1 .1.~,3 
'1S73) I FP· 313-.3~2. 



240 

KCBA77 KctayaEhi 8., "Strategy-independent restructuring 
algcrithms," .:?2.!.!}.§.£~-Prj!ctic& and Exp.§£ienc.§ 7,5 
(Seftember-octoter 1577), pp. 585-594. 

KDCK70 Kuck D.J. and La~rie D.H., "lhe use and performance 
cf aemCI}' hierarchies - A survey," in Software 
J]g!~~~finB Vol. 1 (J.l. 7ou, Editor), Academic 
PieEE, New York (1970), pp. 45-78. 

KUEH6E Kuehner C.J. and IiarHlall B., "Demano pasin~ in 
ferErective," ~l:lF..:? _fonference Proc&edin_g§ 33 
(1568), H· 1011-1017. 

l.EEC7c Iercudier J. and Eurgevin P., "Characteristics and 
1cdels of program tehavior," !CM Annual Conference 
gf9£§§QlD~ J2 {1S7c), pp. 344-350. 

LOWE70 Lcwe T.C., "Automatic segmentation of cyclic 
rrcgram Etructures cased on connectivity and 
rrcceEsor timing," ~2m~~gications 21th& !CM 1],1 
panuary 1970), pp. 3- S. 

MADI7f Madison A.~. and Batson A.P., "Characteristics of 
p:cgra~: localities," Communications of th& ACJl .12,5 
(May 1S76), pp. ~E5-2S4. 

MASU74 MaEuda T., Shiota H., Noguchi K. and Chki T., 
"Crtimization of program organization ty cluster 
analyEis," J~l.!l 1l.H i;.QQ.Ef.§~ i±:Q.£.§&iiing.§ (1974), 
H• ~b 1-265. 

MASU75 MaEuda T., "Methods for the measurement of memory 
utilization and the improvement of program 
lccality," JEEE 1£1!D§1!~il£ll§ 2n ..:?21twaf.§ 
1B!l!~ging .:?.f=2,t (Novull:er l 979), pp. 618-o31. 

MCK.EtS McKellar A.C. and Coffman E.G., "Crganizins 
•atriceE and matrix operations for paged memory 
systems," ~.Q.!!!!!'.!!!!lH1.!Qn§ 21 .ill.§ AC~ J.~,3 (~arch 
1569) I H· 153- 16~. 



~CIE72 ~cle~ c.r., "Matri~ computation ~ith Fortran and 
faging," ~QB!!!.!HllfE!iO!!§ 2.! !,he !CM 1.2,q {April 
1912}, Ff • .<ba-no. 

I!CEE72 l!cr~is J., "Lemanc paging through the use of 
werking sets on tLe MANIAC 11," Co•munieations ~i 
!h~ !~~ J2,10 jOetoter 1572}, pp. 867-872. 

~ORi73 Mcrrisen J.E., "U~er program performance in virtual 
~ te rage sy ~ tem s," 111l ~li!.§ill! ~Q.!ll:l!2l fl, 3 ( 197 3) , 
H• .<16-237. 

OIIV7q Cliver N.A., "Experimental data on page reflacwent 
algorithms," ii1E.i .fonference Pr:oceedinss .!!.1 
11574}, FP• 179-1e4. 

C£DE74 Cfde~beck H., "Performance of page-fault frequency 
reflacement algorithms in a multiprogramming 
eu-ircr.ment," 1!1£ ~Ql!EU§ ]!l. .f~Hdj.!U2 (1':174), 
Ncrth-Holland Putlisbing Company, Amsterda~, pp • 
.<35- .<41. 

RAMAE6 BaJramocrthy c. v., "The analytic design of a oynan;ic 
leek-ahead and frogram segmenting scheme for 
nultip:ogrammed computers, 11 }2ro.f£§.9JIL9§ !!::.tl 11st 
M2!!.f!!El £Q!!f~~~!!~ (1966}, pp. 229-239. 

RANt6S Randell B., "A note on storage fragmentation and 
F£egram segmentation," COJ!!J!!.!!l!JcatjQns 2.! !..!;.§ MJ:l 
J1,1 (July 1St9}, pp. 365-369. 

BOEI76 Bcbinson S.K. and Torsun I.S., "An empirical 
ax;alysis of l'CE:IR~N progr:ams," _!;;ompute~ .QQ.!!.Inal 
J~, 1 {January 157t}, pp. 56-62. 

EOGE75 Regers J.G., 11 Strvetured programming for: virtual 
storage systems," 11.!1 ~.Y§l.§ll!§ Jo_grnal ..!E.,4 {1975), 
H• 385-406. 



242 

JiCD.F73a Fcdrig uez-liosell J. and Dupuy J., "i.be design, 
iaplementation ano evaluation of a working set 
diEpatcher," !;Ql!ll!l.!l!:!ications of the ACII J..2,4 (April 
1573), H• 247-2!:3. 

FCDli73b licdriguez-Eose11 J., ":Empirical working set 
tehavicr," ~2l!ll!l.!llli£Etig~ of tbe ACM 12,9 
(September 1S73J, pp. ~SE-560. 

liUSS69 liuEse11 E.C. and Estrin G., "Measurement based 
autc~r,atic analysis of fOR iRAN programs," .All.L1 
f£~f~£~~£§ f!2~~~~i!:!9§ 34 ~~ 1969), PP• 723-732. 

BYLf71l Byder K.D., "Optilllizing program placement in 
virtual systems," 1!~ 21st~§ Journal J1,4 (1971l), 
H· 292-306. 

SAYii69 Sayre r., "Is automatic folding of programs 
efficient enough to replace manual?" 
~£!!.!l~i~EJiQ!:!§ QI iE& ~ J1,12 (Decemter 1969), 
H• 656-t60. 

SNEE75 Sneeringer 
technigues 
Utiversity 
Hill, ll. C. 

c.c., "Models of memory management 
for time-sharing," Ph.D. Dissertation, 
of North Carolina at Chapel Hill, Chapel 

(1S75). 

SNYD78a Snyder E., "On a Friori program restructuring for 
virtual ~emor systems," g~~§dings £~~ 
1!!~~ati2~E! ~l!lE2§i.!ll!l Qn Operatill9 ~ystem§, IBIA, 
Le Chesney, France (October 1578) • 

S1YD78b Snyder R., "On the application of a priori 
kncwledge of program structure to the performance 
cf virtual memorJ computer systems," fb.c. 
Cissertation, University of ~asbington, Seattle, WA 
(1S78). 



243 

SfiE72 S{irn J.E. and Lenning P.J., "Experiments with 
{rcgra~ locality," ~llf~ ~onfer~~~ l£QCeedi~§ ~1 
Cl~~f J272), FP• t1!-c21. 

SPIR76 Sfirn J.R., "Distance string models for program 
tehavior," IEEE !2!!!.!2.!1.1!£ j, 11 CNovemJ::er 197b), PF· 
f11-621. 

SPIR77 Sfirn J.R., f~2Ef§!!! £!~§ViQ£: Mod~ls and 
~~§§.!I~§~~Qi§, Elsevier North-Holland (1977). 

XBIV11 irivedi K.s., "An analysis of prepaging," Feport 
CS-1977-7, Computer Science J::ept., Duke Ur1i versi ty, 
J::u.tham, NC (August 1 S'J7). 

TSAC72 T£ac E.F., Comeau L.i. and Margolin B.H., ~A Kulti
factcr {aging e1periaent: I. ihe experiment and the 
ccncludcns," in ~.!§.!~§ti_fal COJ!!E.!!!ll Pe£.!9£.JE.!!.!l.f~ 
J.Y§.!E§.!~ou, (li. F.reil::ergu, Editor), Aca<lemic Press 
C1S72), IP• 103-1314. 

UBSC75 urschler G., "Automatic structuring of pro;rams," 
J£~ ~9.!1~.!lal 21 £!£!§!:.fE Ell~ ]gy~lopment 12,2 (March 
1 575), H• 181-19~. 

VEBH71 Ver Hoef E.W., "Automatic program segmentation 
based en Boolean connectivity," !fiPS Conf!rence 
f~f£§§~ing§ J~ (1971 SJCC), PP• 4g1-495. 

loiiLK73 liilkes M.V., "ibe dynamics of paging," f2.!!!.EQter 
li.f.!i.!!!§.! ].§, 1 (Fdr:uary 1513), pp. 4-9. 



ACS 

AGFU 

244 

ACRONYftN GLOSSABY/INDEX 

Active-Construct Stack. See Section ~.2.~. "model 
CCD.Struction. n 

Aliased GPAft aode1 version. See Section 2.6.2. 

Aft tcdeling approach ~}ere loop-parameter 
distritutions are estimated using the interval 
(aean,~a~imum] of loop-repetition frequencies. see 
Section 5.3. 

BLI Ec~nded Locality-Interval. See Section 1.3. 

CDE Ccefficient tatatase. See Section 2.3.1. 

Clllll Critical LRU restructurins algorithm. See SectioD 
1.7.2.2. 

CSG Call-Seguence Grammar. See Section 2. 2. 

c~s Critical WS restructuring algorithm. See Clapter 3. 

DNF Distritutive Normal-Form version of PAM. See 
Section 2. 6. 

DPAll 

£1, E2 

GPAll 

DescriFtive version of PAll. See Section ~.£.3. 

~cdeliDg approach ~here loop-parameter 
distril:utions are estimated using the interval ( r
kd,r+kd], for k=1,2. see section 5.3. 

Generative version of PAM. See Section ~.t. 

GS Generator Stack, •itn pointer GSP. See Section 2.4. 

lOBJ lLstrumented Clject coce. See Section ~.2. 

IPL Insertion-Point List. See Section ~-<-~. 

LS 

L.BES'I 

lCCf Stack, with pointer LSP. See Section 2.4. 

The best of the four standard layouts. See Section 
3. 4. 



245 

L.•oR~7 Standard layout formed by assigning one module per 
page. See Section 3.4.3 for definition of ott.er 
standard layouts-- L.ALPHA, L.RANDOM and l.oORSl. 

MV Mcdeling approach ~here loop-parameter 
distributions are estimated using mean loop
repetition freguencies. See Chapter 5. 

ND l!cdeling approach ··here loop-parameter 
distributions are assumed to be Normal. See Section 
5. 3. 

OE 

OBS 

PAE.!! 

PCSG 

output buffer during CSG construction. See Section 
~-~-~-

General set of execution trace strings. See section 
.11.1.5. 

frccedure-Activation Model. See Section 1.8, 
Chapter .2. 

Set of parameters for model instance. See Section 
2. 1. 

Parameterized CSG. See Section 2. 4. 

PD .!!cdeling approach •lere loop-parameter 
distributions are assumed to te Poisson. See 
Section 5.3. 

PDB Parameter Datatase. See Section 2.3.1. 

PDDB 

PDT 

POP 

SDL 

SSPL 

ST 

Parameter-Descriptor tatalase. see Section 2 • .2. 

Production Descriptor Table. See Section 2.4. 

The set cf all execution coefficients. See Secticn 
5. 2. 

Selecticn-Construct Descriptor list. see Sectior1 
2.2.2. 

A ~imple Str:uctur:ed Fiograrnming Language. see 
Section 2. 1. 1. 

Space-Time froduct. See Section 1.5. 



SYN 

TBED 

246 

Set cf synthetic strin~s genuated frow wodel. See 
Chafter 2. 

The testted of actual trace strings. See Section 
3. 3. 3. 




