
University or North Carolina at Chapel Hill
Department ot Computer Science
Technical Report
TR84-007

FINAL TECHNICAL REPORT
SRC Contract 82-11-003

Transfer of Software Methodology to VLSI Design

Frederick P. Brooks, Jr.
with

Major Richard R. Gross, USAF
Lenwood S. Health

September 20, 1984

Goals.

Final Technical Report
SRC Contract 82-11-003

Transfer of Software Methodology to VLSI Design

This investigation was proposed as a big·h-risk one-year exploration of VLSI design
methods by a group of software engjneers, to see how applicable the complexity manage
ment techniques evolved over fifteen years of software engineering would he to the analo
gous VLSI design complexity problems. We said we would look at the problem for a
year and then report whether there was gold in these hills.

Results- Quick Net

1. There is not enough gold there to interest any of our faculty investigators in person
ally exploring further ; it is less promising t han our other research opportunities. So we
made no application for furtb~r support·.

Professor Kye Hedlund is pursuing independent work on VLSI design methodology
that has been influenced by our research under this contract, although it had other prin
cipal stimuli.

2. There is enough gold that one of our students, Major Richard R. Gross, USAF, has
chosen to write his Ph.D. dissertation on the hot topic developed from this contract
re!!earch. Hi!! !!ubject i!!:

" Using Software Technology to Manage Change in VLSI Design."

His Ph.D. dissertation advisor is Professor Peter Calingaert, co-principal investigator of
this contract.

Since Major Gross is fully supported by the Air Force, his work, both during the
life of the SRC contract and over the coming year, has cost SRC nothing for salaries.
The contract did pay part of the cost of a computer workstation which Major Gross
shar es.

An invited paper by Major Gross, delivered at the Seventh Syracuse-Maryland Min
nowbrook Workshop on Software Performance Evaluation, July, 1984 is attached. Major
Gross's dissertation will be delivered when finished, about June, 1985.

3. During the contract, Professor Hedlund, one of the investigators, received a two year
IBM Young Faculty Research Award in nation-wide competition.

4 . Mr. Lenny Heath , a research assistant on this contract, became interested in prob
lems in the theory of 3-D VLSI, in particular, the problem of bow many layers are
required to ensure wireability. He has lowered the previous best upper hound from nine
" pages" to seven for the " book embedding" problem.

His paper "Embedding Planar Graphs in Seven Pages", has been accepted for the
25th Symposium on the Foundations of Computer Science and will he published in the
Proceedings in October. A ten-page extended abstract is attached.

Results -Discussion

Dimensionality. We found software engineering (SE) complexity management
techniques to be less applicable than we had expected. I think this arises from two
causes. The most important is that the interface problem between two VLSI subdesigns
has three (vector) dimensions, whereas software interfaces have one vector dimension, a
parameter vector describing a Logical, or information. interface. The components or the
interface vector are data objects , which themselves may have quite complex structure
and representation. These compon~nts may pass across the interface explicitly, as in a
procedure call, or implicitly, as global variables.

VLSI sub-design interfaces have this same Logical dimension, with the same data
objects being passed. Except where two sub-designs each also have an interface to a
third which has memory, all logical passing must be explicit rather than implicit, but
this doesn 't seem to be an important restriction.

VLSI interfaces also have a second dimension, the Spatial vector with "2 1/2" sub
dimensions. The wires coming out or one component have to align, in two subdimen
sions. and in layer, a half-subdimension, with those going into its neighbor. The align
ment points are often called pin1.

This is not merely a resource allocation restriction, as in software, where com
ponents are commonly rationed as to how much space they may occupy. In VLSI, the
shape or the space may also be constrained. The Spatial dimension of the interfaces is
precisely geometric, not merely topological, and requires coordinates.

The third vector dimension or VLSI is the Electrical. For each pin the driving or
driven impedance, the voltages representing 0 and 1, and the timing and wave shapes or
all pulses must be defined. Maximum current may also be constrained.

The Electrical dimension, like t he Spatial, is also subject to over-all resource ration
ing: total power, total current allowed for a subcomponent.

I believe this essential difference in dimensionality means that VLSI design metho
dology will take an independent path from software design methodology, except in cer
tain respects illuminated below' most notably management or change.

Flow. We studied a second major difference between the ways VLSI and software
designs are assembled from t heir component sub-designs.

In software, the assembly paradigm is that or the nesting or called procedures.
Even where run- time efficiency demands static binding and open subroutines, the logical
model is that or nesting, at least within major system components. It is not uncommon
for a pipelining paradigm to be used between major components (consider Unix " pipes"),
but the ' 'structured" SE methodologies make neither use of nor provision for this para
digm.

In VLSI, on the other hand , wire costs more than logic, up-stream data-paths slow
cycle time, and unidirectional, parallel dataflow is most efficient in time and space. Only
open subroutines make sense; closed ones cost too much in communications. Major
Gross believes this dissimilarity will vanish as software addresses parallel computation.
Maybe so, but I think it will endure a long time. Moreover, all or the past SE technol
ogy t hat we hoped to harness reflects it fundamentally to the core.

Single-Language Design. In my view one of the most promising VLSI design ideas I
have seen evolved from computer engineering, not software engineering. Professor Gerrit

2

A. Blaauw of the Twente Technical Institute in the Netherlands presented to us his
current work on VLSI design. He uses a single language, a constrained standard APL, to
describe first the functional specifications, then the boundary interlaces, and finally the
logical design (the implementation) of the chip. The same approach extends to electrical
and timing specificatioqs. The use of one language allows formal verification that the
implementation indeed implements what the architecture specifies. His approach is an
extension of that set forth in his book, Digital Sy1tem Implementation, Prentice-Hall,
1976.

Ir I were continuing research in VLSI 'design I should certainly pursue this promis
ing approach.

Management of Change. As we noted in our second quarterly report, we found
one area of high promise for further work. This is the transfer and adaptation of D.L.
Parnas's methodology for the anticipation and management of change in design.

With computer programs, as with all established design disciplines such as those for
buildings , bridges, airplanes, and computer hardware, totally. new designs are rather rare.
Most designs are extensions, reworks, modifications of previous designs. Indeed, even
new designs heavily borrow sub-part -and component designs from early ones.

Hence the most important design management task is that for this evolution, revi
sion, extension and adaptation process - i.e., the management of change.

The VLSI discipline is so new that this evolutionary process is not yet evident
most designers are still iterating on their first designs , and most designs are new. Hence
Gross 's topic is exceedingly timely just now, as the VLSI design discipline moves into the
evolutionary stage.

Moreover, of all the work done in software engineering, I feel that Parnas's work on
change management is the most specific, is t he most concrete, is the most revolutionary
in concept , and offers the most benefit to the VLSI design discipline.

We are pleased that t his research approach is developing and look forward to Major
Gross 's results. We very much appreciate SRC's research suppor t and hope that both
our negative results and our positive ones will bear further frui t in the VLSI design com
munity.

cc:
MC:"-l C
SRC
UNC Office of Research Administ ration
UNC Contrac ts and Grants

3

I

}

t

University of North Carolina At Chapel Hill
Department of Computer Science

APPLICATION OF

Technical Report
TR84-005

SOFTWARE CHANGE MANAGEMENT TECHNOLOGY
TO VLSI DESIGN

Major Riehard R. Gross, USAF
September 1984

Invited paper. Presented at the Seventh Syracuse University {University or Maryland
Minnowbrook Workshop on Software Performance Evaluation, Blue Mountain Lake, NY, July
24-27, 1984.

This research was sponsored in part by Semiconductor Research Corporation Grant No.
41258. The views expressed in this paper are those of the author and do not reflect the official
policy or position of the Department of Defense of the U.S. Government.

APPLICATION OF SOFTWARE CHANGE MANAGEMENT TECHNOLOGY
TO VLSI DESIGN

Major Richard R. Gro~a, USAF
Air Force Institute of Technology and

The University of North Carolina at Chapel Hill
September 1984

Abstract

This paper reports on the results of an eighteen-month investigation conducted to deter
mine potentially fruitful areas of application of software engineering techniques to Very
Large Scale Integration (VLSI) design. The management of change is found to be a par
ticularly crucial such area, and it is postulated that the extension to VLSI design of cer
tain software change management techniques developed by D.L. Parnas would have posi
tive results. The extension, implementation, and assessment task for these techniques,
however, is substantial, and research subtasks leading to its successful completion are
therefore identified and ordered.

Contents:

I. Introduction
A. The Question to be Explored
B. The Scope and Approach or the Exploration
C. The Purpose of this Paper

II. Change Management - An Increasingly Critical Problem
A. Problem Description
B. Relevant Work- D.L. Parnas's Change Management Techniques

1. Information Hiding
2. Hierarchical Structuring for Design Families
3. Precise Specification

C. Component Research Problems
I. Abstract Interface Specification
2. Quantifying Ease of Change
3. Information Hiding
4. Creating Broad Design Families
5. Determining Extent of Required Revalidation

Ill. Conclusions and Suggestions for Future Work

**:k

I. Introduction.

A. The Question to be Explored.

In scientific research, a frequent source of breakthroughs is the application of an established
answer from one field of endeavor to an unanswered question which exists in a similar field. Simi
larities between software engineering and VLSI design became apparent soon after the advent of
the latter as a discipline in the early 1980s. Several papers and at least one workshop [Rade82j
were devoted to enumerating such similarities as the following:

- Both fields possess a computer heritage; indeed, many VLSI applications consist of the imple
mentation or former software functions in silicon.

- Complexity management is a driving problem in both fields. Complexity increases super
linearly as projects become large.
- In both fields, abstraction is important as a tool in dealing with complexity.
- Both fields increasingly recognize the importance of a life-eycle focus. In particular, the
processes of managing and communicating the effects of change are critical to both fields.
-Both fielas currently emphasize accelerated design evaluation because errors caught early are
less costly to repair.
- As perhaps the most striking similarity, improved tools and methodologies are seen in both
fields as a remedy for their outstanding problems.

Is there reason, then, to believe that· techniques which have been used successfully to
address software engineering problems can be extended or adapted to apply to counterpart prob
lems in VLSI design? If so, what are some of the fruitful areas of application?

B. The Scope and Approach of the Exploration.

To investigate these questions, a research group was formed at the University of North
Carolina, Chapel Hill in 1983 to perform an eighteen-month "modest-scale exploration." The
group's purpose was to identify areas, if any, which appeared particularly promising for further
research into transferring software technology to VLSI design. The research approach employed
was as follows:

- Assemble a team of professionals from the software and VLSrdesign communities.
-Present a typical VLSI design problem to tlie team as a stimulus for thought on potential appli-
cations of software engineering methodology. Postulate theses about such applications.
- Evaluate the theses and assign the most promising to team members for study at greater
length.
- Critique the results and suggest future directions for research in this area.

C. The Purpose of this Paper.

This paper is a final report on the exploration described in the preceding paragraph, present
ing the group's conclusions and suggestions for future work.

The group's general conclusions were as follows:

l. The similarities between the two fields which were enumerated earlier were confirmed. Further,
even some apparently obvious dissimilarities faded upon closer examination:

- In VLSI, the model of efficient computation is pipelining, not nesting. Further, unlike classical
software, VLSI is concerned with a unidirectional fiowing structure, parallelism, and open sub
routines. Nevertheless, lately the software field is also confronting to a much greater degree
the issues involved in parallelism. This dissimilarity will probably not endure.

- In VLSI, different cost factors place a premium on earlier testing. There is no counterpart in
software to the costly fabrication step in integrated-circuit manufacture. Nevertheless,
software is also now emphasizing earlier testing and rapid prototyping. This dissimilarity also
is diminishing in significance.

-A fundamental difference seems to be that VLSI design has more concerns than just function,
that the VLSI design space is multidimensional, concerned with geometry and electricity as
well as function. However, while it has traditionally been held that functional specification is
adequate to define software completely, there is now at least some evidence that orthogonal
axes (such as quality) also exist in the software design space jWeis84j. It is true, however, that
classical software engineering has dealt primarily only with function, so that in general current
software engineering principles may have to be extended to deal with the additional design
concerns of VLSI.

2. Further technology transfer in both directions between software engineering and VLSI design
appears feasible. The most important catalyst for this process will be a re-initiation of the
dialogue bet:ween what are now largely separate research communities.

3 . .The following observation of Boehm [Boeh8Ij applies a fortiori to VLSI design:

The nlost important software engineering skills we must learn are the skill involved in dealing
with a plurality of goals which may be at odds with each other, and the skill of coordinating the
application of a plurality ot means, each of which provides a varying degree of help or hindrance
in achieving a given goal, depending upon the situation.

4. A most crucial problem in both fields is the management of change. There is evidence that at
least two software engineering concepts for change management, information hiding and families
of designs, can be extended to VLSI design.

5. Techniques for precise specification of abstract VLSI interfaces are needed before the benefits
of either information hiding or families of designs can be realized, however.

In the remainder of this paper, the last two of these conclusions, which formed the focus of
the group's effort, will be elaborated.

U. Change Management: An Increasingly Critical Problem.

A. Problem Description.

Currently, the stated major concern in YLSI design is the management of complexity
jMudg81, Sequ83j. Traditional tecfiniques for complexity management, such as hierarchy, restric
tion, and structuring, have been partially effective in the VLSI context; nevertheless, the design
process is still excessively costly, and hundreds of designer-years are being invested in the
development of state-of-the-art VLSI circuits [Latt81, Cane83j.

The unconstrained nature of the VLSI design medium leads to some of this cost [Sequ83j, in
that only inefficient algorithms are available to apply to the typically NP-hard problems, such as
one-dimensional placement [Valt82j and optimal routing [John82j, encountered in design construc
tion and verification. Nevertheless, while such traditional costs of VLSI design are still the sub
ject of much research, another source of cost, only lately recognized, is becoming a major concern
among designers. This cost arises from the ripple effect of changes during the design process
[Wern83aJ, and its seriousness stems from the fact that it is particularly sensitive to the increases
in complexity which characterize modern VLSI design. Belady and Lehman's work [Bela79j, for
example, suggests that for software systems "increasing system complexity leads to a regenerative,
highly non-linear, increase in the effort and cost of system maintenance and also limits ultimate
system growth." While I am unaware of similar studies directed specifically at VLSI systems ev<>
lution, there is good reason to suspect that the effects of progressive changes on such systems are
comparable.

Furthermore, this "cost of change" compounds in the following way. Competitive pressures
for denser, more capable. and hence more complex circuits beget increased refinement of designs,
or increased change. Such increased change, Werner notes, is necessitated by elevated perfor
mance standards for modern chips, possibly even requiring retrofitting a design in progress to
include new technologies or capabilities. However, the same competitive pressures also demand
early production or these more-complex chips, so that larger teams, partitioning the design task,
are assembled to meet delivery schedules accelerated by intense competition. Increasing complex
ity thus has two effects: (I) more change; and (2) larger design teams. As Brooks [Broo75j notes,
either effect alone increases the amount of communication required in the design project, and the
cost of this communication must be added to the amount of design work to be done. The combi
nation of these effects, however, has a compounded impact on increasing costs of communication
and thus of design, making the cost factors of design in the multi-designer environment
significantly different from those which have been traditionally applied.

3

Consequently, as VLSI circuits grow larger, the cost of change management, especially in
the now-typical multi-person design effort, may well become the primary concern in the VLSI
design process. Because current VLSI design techniques focus primarily on developing correct ini
tial designs and not yet on the management of design change, the development and study of VLSI
design change management techniques are timely and important.

B. Relevant Work·· D.L. Parnas's Change Management Techniques.

Modern software methodologies, which mostly emphasize design per se, offer little promise
of assisting VLSI designers in managing change. Few, if any, of them also address the factor of
change in the software life-cycle. In this regard the software design techniques of D.L. Parnas are
conspicuously exceptional.

1. Information Hiding. Parnas is perhaps best known for introducing the concept of "information
hiding" [Parn7~[, a means of encapsulating design details that are likely to change so that the
effect of the change, when it occurs, is limited. He begins by defining an interface between two
programs [Brit81a[as "the set of assumptions that each programmer needs to make about the
other program in order to demonstrate the correctness o(his own program." A secret, on the
other hand, is a set of assumptions about the internal operation of one of the programs that the
other programmer is not allowed to make. Information hiding, then, is performing the modular
decomposition of .the programming system in such a way as to encapsulate into separate modules
those aspects of the system that are likely to change, i.e., the secrets. The interfaces, by exten
sion, consist of those assumptions which are less likely to change, with the result that the effects
of likely changes to the system are compartmented, affecting small numbers of modules only.

Information hiding seems deceptively simple, disguising the fact that making the decisions
involved in applying it requires both substantial knowledge of the project and of the underlying
technologies. Also, there is likely to be a run-time cost associated with the strict encapsulation
of, Cor example, data structures: every access to the data they contain will necessitate a call to the
encapsulating module. Nevertheless, the results oC a recent extensive test oC information hiding,
conducted in the Software Cost Reduction Project [Brit8lb, Chmu82j at the Office of Naval
Research, indicate that the information hiding principle imparts a discipline to system design that
is well worth the costs it engenders.

2. Hierarchical Structuring for Design Families. A second way in which Parnas provides for
design change is by examining the concept of design families, characterizing [Parn75J a set of pr~
grams as a family "whenever it is worthwhile to study programs from the set by first studying the
common properties of the set and then determining the special properties of the individual family
members." Parnas's key assumption is that attention to family similarities during all stages of the
design process will lead to designs that are relatively easy to modify (to obtain other family
members); thus, if one of the other family members is the desired result of a proposed change, the
cost of such a modification will be reduced substantially. Brooks [Broo82J has suggested, for
example, that the following are possible variances among family members:

(I) Designs can be functionally identical but make different resource tradeoffs.
(2) Designs can be subsets of the same (super)program or subsets of each other.
(3) Designs can be built on a common base ("kernel") but provide different user interfaces to meet

varying needs.
(4) Designs can have similar facades (architectures) and different implementations.

It is tempting to ask, therefore, whether or not considering a set of VLSI designs as such a family
has the potential to reduce the cost of VLSI design development and maintenance.

[_] START
I
0
I
0
I
0
I

0<--X-->0-->X
I 1 2

X<--X
4 3

Figure 1. Sequential Completion [Parn76[.
(C) !976 IEEE. Used by permission.

Symbols: [_) is the set of initial possibilities;
0 is the incomplete program;
X is the working program.

VLSI design is not now characterized by family considerations. Perhaps the most common
approach to VLSI design, in fact, is what Parnas [Parn76) calls "sequential completion." (Figure
1). In sequential completion, a single design is developed and then iteratively reworked as neces
sary to obtain the desired result. Every iteration of such a process produces a finished design
which is an ancestor of future iterations. Consequently, every design shares some characteristics
o(its ancestors, whether or not they remain appropriate, simply because they are too difficult to
"work out" of the design. Designs developed in this way are non-robust under change because of
the propagated complexity of the constructs which must be included in the design solely to
address the obsolete ancestral features.

Parnas, however, suggests that this sacrifice of robustness is not necessary. Rather than
producing new designs from previously completed ones, he advocates the deliberate and stepwise
development or "intermediate designs" (or "incomplete designs") which are never intended to be
implemented but which instead encapsulate conscious (abstract) design decisions. Such intermedi
ate designs define families (in that each can be a design ancestor of a family of designs which
share its characteristics) and thus provide a hierarchy, the design decision hierarchy, of check
points for design backtracking (Figure 2). If a change is desired, the work done in developing the
intermediate design need not be repeated.

5

Observe that the order in which abstract design decisions are made and encapsulated in
intermediate representations defines the design decision hierarchy. The breadth of the families
created is determined by the ordering or the decisions made during the design process. Therefore,
one would like the earliest design decisions to be those most likely to be invariant, so that the
decision hierarchy is developed in order or increasing likelihood or change.

9. Precise" Specification. To be useful in change management, both the modular decomposition
embodying information hiding and the intermediate designs defining families must be precisely
represented. Parna.s proposes two means for suCh representation. The first is stepwise refinement,
the well-known embodiment [Wirt71] or Dijkstra's concept of abstract machines. The second is
primarily due to Parnas himself, and is called "module specification." In module specification, no
pseudo-code is produced: rather, the intermediate design is decomposed into independent program
groups called "modules" which are represented by a careful specification of their external (black
box) interfaces. While such decomposition and specification are both costly and demanding, they
permit a true separation or concerns (potentially very useful in multi-person design development)
and allow the freedom to postpone inter-module connectivity considerations from the early stages
of design. (The benefit or this freedom in VLS! design, admittedly, seems dubious.)

[_] ROOT
I
0
I
0

1\
0 0
I\ \

0 0 0
I \ \

0 \ 0
I\ I I\

X X X X X
l 2 3 4 5

Figure 2. Intermediate Designs [Parn76J.
(C) 1976 IEEE. Used by permission.

Symbols: [_] is the set or initial possibilities;
0 is the incomplete program;
X is the working program.

II

In summary , then, the following points should be noted:

- Parnas's concepts or information hiding and design families may contribute to reducing the cost
or design development and maintenance.

- Both information hiding and design families encour11ge the postponement or change-prone deci
sions.

- Precise specifi cat ion or designs is necessary to obtain the benefits or either technique.

C. Component Research Prohlem8.

How might the promise of the ~arnas techniques be further tested! The group postulated
that following approach might be used:

- Extension or Parnas 's Techniques to VLSI Design. An initial task would be to extend Parnas's
techniques of information hiding, hierarchical structuring Cor families of designs, and precise
specification into the VLSI domain. Such an extension has in turn three subtasks:

- Identifying relevant VLSI design decisions;
- Ordering (and then making) these decisions to obtain information hiding and broad design

families; and
- P recisely representing/specifying these design decisions.

- Implementation or Parnas's Techniques io a VLSI Design Framework. Once P arnas's tech
niques were extended into the VLSI domain , new or revised design methods incorporating
these techniques would be required before the techniques ' ut ility could be tested by experimen
tation . Ag:Un, three subtasks are involved:

- Establishing criteria or merit for design decisions;
- Developing design aids incorporating these decision criteria; and
- Implementing design techniques which use the evaluated decisions.

- Evaluation of the Utility or Parnas's Techniques in Managing Change. Finally, the techniques
must be evaluated through experimentation designed to assess whether or not their application
provides measurably effective VLSI design change management.

These tasks define a research program substantial in scope. Before such a program could be
completed, background research would need to be conducted in several areas. Some or t hese areas
are defined below:

1. Abstract Interface Specification. Recall that Britton, Parker, and Parnas [Bri t8 l l have defined
an " interface" between two programs as " the set of assumptions that each programmer needs to
make about the other program in order to demonstrate the correctness or his own program." An
" abstract" interface specification , in their sense or the term , has been carefully limited in content
to a description or only these assumptions, so that the specifi cation describes not a single interrace
but a class or interfaces. More than one module or design thus fits the interface, and the interface
is robust under certain types or changes.

Surprisingly , in spite or the greater levels or modularization or IC designs with increasing
levels or integration, little has been done in developing techniques for precise characterization and
specification or abstract interfaces for VLSI designs. One contributing factor is the greater dimen
sionality of the VLSI interface, so that more concerns than merely function must be included in
the specification .

1

.·

I

or the existing methodologies for hardware interface specifications, the research group was
most impressed with the approach taken by Blaauw [Biaa76J. Blaauw's use of the language APL
to specify hardware interfaces achieves an unusual economy of discourse, capitalizing on the care
ful and well-established semantics of APL and on the applicability of APL to both architecture
and implementation descriptions.

2. Quantififlng Ease of Change. One criticism which has been justly raised about methodological
research is that claimed benefits for proposed methods are frequently unsubstantiated. To avoid
this criticism, one would like to have a technique-independent means of quantifying the degree to
which a given VLSI design is easy or difficult to change; then, based on this quantification, the
merits of various change management techniques could be compared.

Preliminary investigation into quantifying ease of change suggests that, first, a metric is
needed for change itself, so that the "difference" between two VLSI designs can be measured. A
modest amount of experimentation into developing a change metric was conducted in the context
of this exploration [Gros84J. This experimentation investigated measuring VLSI design change as
a difference in design information content, going on to attempt to measure design information by
counting various discrete design components (analogous to software science approaches such as
those described by Halstead, McCabe, or Albrecht and Galfney [Aibr83J). Results indicated that
techniques employing such approaches will probably need to be quite complex in order to capture
design information content successfully. Further, .there may well be assumptions embedded in the
design that render desirable information components uncountable, suggesting that such metrics
must be derived from a ·design representation.which also embodies these assumptions. An
abstract interface specification for the design is such a representation.

3. Information Hiding. The decomposition of a VLSl design into modules is an important phase of
the design process. In a study of decomposition criteria conducted under the auspices of this
exploration, Heath [Heat83J found that information hiding is a desirable basis for VLS! design
decomposition whenever robustness under change is a primary design objective. At the same
time, however, he notes that VLSI design modularizatioo, using any criterion, requires the exter
nal aspects of each module to be "sufficiently and precisely specified." Consequently, precise
interface specification techniques for VLSI designs are essential if the benefits of information hid
ing are to be obtained.

4. Creating Broad Design Families. During the course of this exploration, I studied whether or
not considering the successive representations of an evolving VLSI design as a family had the
potential to reduce the cost of design development and maintenance [Gros83[. While the conclu
sion was affirmative, exploiting the family concept depends critically on the availability of
precisely-specified intermediate designs which can serve as checkpoints for design backtracking.
To the extent that these intermediate designs can be characterized by their interfaces, progress in
research seems to hinge once again on the availability of techniques for VLSI design interface
specification.

5. Determining Extent of Required Revalidation. The decision to change a VLSI design brings
about the following activities:

- Determine the nature and scope of the change required.
- Perform the change.
- Ensure, by testing, the correctness or the design following the change.

Full testing of the design following each change, however, is costly and often unnecessary. Unfor
tunately, there currently exist no suitable ways to determine which subsets of the design might
have been affected by a given change; thus one cannot be sure that anything less than Cull testing
will suffice. Techniques are required to assist the designer in making such a determination.

8

This problem is one of the chief reasons that information hiding was developed in the
software domain. An extension of information hiding to VLSI design which would address this
problem requires that an abstract interface be specified at the boundaries of each design com
ponent to which change effects are to be localized. The existence of such a specification would
reduce testing of any changed design to the assurance that each changed module continued to
meet its interface specifications. Even if such interface specifications were not met, the affected
boundary modules would be dearly identified for follow-on modification and testing.

m. Conclualona and Suggeatlona tor Future :work.

It seems dear, therefore, th.at precise specification of abstract interfaces Cor VLSI design
modules is a crucial problem, a problem whose solution could enable the pursuit of useful research
in a number of areas related to design change management . Based on this conclusion, I anticipate
conducting fo llow-on doctoral dissertation research which reports on the development and
demonstration of a new method Cor abstract interrace specification or VLS I designs. I will fur ther
show how automated tools can efficiently support the new specification method, making its use
perceptibly cost-effective Cor designers.

A cknowledgment. Important contributions to the conclusions reached above were made by each
oC the participants in this research exploration: the principal investigators, Frederick P . Brooks,
Jr. and Peter Calingaert; Vernon L. Chi; Lynne C. Duncan; Lenwood S. Heath; Kye S. Hedlund;
Roy McGuffin ; John' Poulton; Connie U. Smith; and 'Bernard I. W!tt. Gerrit A. Blaauw, Kathryn
Britton, and Henry Fuchs provided numerous helpful suggestions and comments.

Bibliography

[Aibr83J. Albrecht. A.J. and J .E . Gaffney, Jr. , " Software Function, Source Lines of Code, and
Development Effort P red iction: A Software Science Validation." IEEE Transactions on
Software Engine ering SE- 9, 6 (November 1983), pp. 639-648.

[Bela79j. Belady, L.A. and M.M. Lehman, " The Characteristics or Large Systems." In P . Wegner,
ed., Research Directions in Software Technology. Cambridge: The MIT Press, 1979, pp.
106-138.

[Blaai6J. Blaauw, G.A., Digital System Implementation. Englewood Clifl's, NJ: Prentice-Hall,
1976.

[Boeh81[. Boehm, B.W ., Soft ware Engineering Economics. Englewood Cliffs, N.J.: P rentice-Hall,
1981.

[Brit81aJ. Britton, K.H., R.A. Parker, and D.L. Pamas, " A Procedure for Designing Abstract
Interfaces for Device Interface Modules." Proceedings of the Sth Int ernatio nal Conference on
Soft ware Engineering, March 9-12, 1981, pp. 195-204.

[Brit81b[. Britton, K.H. and D.L. Parnas, " A-7E Software Module Guide." Naval Reuarch
Laboratory Memorandum Report 4102, December 8, 1981.

[Broo75J. Brooks, F .P., Jr. , Th e Mythical Man-Month. Reading, MA: Addison-Wesley, 1975.

[Broo82[. Brooks, F .P., Jr., Class notes for COMP 145, "Software Engineering Laboratory,"
University of North Carolina at Chapel Hill, Spring 1982.

'

.•
I

[Cane83[. Canepa, M., E. Weber, and H. Talley, "VLSI in FOCUS: Designing a 32-bit CPU
Chip." VLSI Design 4, 1 (January-February 1983), pp. 20-24.

[Chmu82J. Chmura, L.J. and D.M. Weiss, "The A-7E Software Requirements Document: Three
Years of Change Data." Naval Research Laboratory Memorandum Report 4998, November
8, 1982.

[Gros83J. Gross, R.R., "Hierarchical Structure for Families of VLSI Designs." University of North
Carolina at Chapel Hill Department of Computer Science Working Paper, October 6, 1983.

[Gros84J. Gross, R.R., "A Proposed Information-Theoretic Approach to VLSI Design Change
Measurement." University of North Carolina at Chapel Hill Department of Computer Sci
ence Working Paper, May 28, 1984.

[Heat83J. Heath, L.S., "Criteria for Modular Decomposition in VLSI Layout." University of
North Carolina at Chapel Hill Department of Computer Science Working Paper, June 24,
1983.

[John82J. Johnson, D.S., "The NP-Completeness Column: An Ongoing Guide." Journal of Algo-
rithms 9, pp. 381-395 (1982). -:

[Latt81J. Lattin, W.W.'et al., "A Method~logy for VLSI Chip Design." Lambda 2, 2 (Second
Quarter 1981), pp. 34-44. ·

[Mudg81J. Mudge, J.C., "VLSI Chip Design at the Crossroads." In Gray, J.P., ed., VLSI 81: Very
Large Scale Integration. New York: Academic Press, 1981, pp. 205-215.

[Parn72J. Parnas, D.L., "On the Criteria to be Used in Decomposing Systems into Modules."
Communications of the ACM 5, 12 (December 1972), pp. 1053-1058.

[Parni6J. Parnas, D.L., "On the Design and Development of Program Families." IEEE Transac
tions on Software Engineering SE-2, 1 (March 1976), pp. 1-9.

[Rade82J. Rader, J., ed., "Proceedings of the IEEE Computer Society VLSI and Software
Engineering Workshop," Port Chester, NY, October 4-6, 1982.

[Sequ83J. Sequin, C. H., "Managing VLSI Complexity: An Outlook." Proceedings of the IEEE 71,
1 (January 1983), pp. 149-166.

[Valt82J. Valtorta, M., "The Linear Placement Problem." In "Course Projects on VLSI Algo
rithmics," Duke University Department of Computer Science Technical Report CS-1982-17,
1982.

[Weis84J. Weissman, C.A., private communication, June 1984.

[Wern83bJ. Werner, J., "The Moving Target." VLSI Design 4, 2 (March/April 1983), p. 14.

[Wirt71J. Wirth, N., "Program Development by Stepwise Refinement." Communications of the
ACM 14, 4 (April1971), pp. 221-227.

10

Embedding Planar Graphs in Seven Pages
(Extended Abstract)

Lenny Heath •

Department or Computer Science
University or North Carotin~

Chapel Hill, NC 27514

ABSTRACT

This paper describes an algorithm ror embedding any planar graph in a book or at most

seven pages. This algorithm improves upon the result or Buss and Shor [1). which gave a nine

page embedding. The algorithm uses a different level structure ror planar graphs than did the

algorithm or Buss and Shor to achieve the seven page result.

)

•Research !1Upported in part by Semiconductor Re3ea.reh Corporation grant 41258.

. 2.

1. Introduction

A book embedding of a graph is an ordering of its vertices along the spine of a book (i.e.,

linearly) and an assignment of each edge of the graph to a page of the book so that if two edges

are on the same page of the book, then they do not intersect. This research investigates the prob

lem of embedding any planar graph in a book of few pages. The minimum number of pages

within which a graph can be book-embedded is called its pagenumher. It is known that the

graphs of pagenumber one are exactly the outerplanar graphs and that the graphs of pagenumber

two are exactly the subhamiltonian planar graphs (planar graphs that can be edge-augmented to

have hamiltonian circuits, yet J:emain planar) [2j. Edges outside the 'circuit are placed in one

page, edges inside the circuit are placed in a second page; edges on the circuit may be placed in

either page. Since there are maximal planar graphs that are not hamiltonian, there are planar

graphs with pagenumber at least three. Buss and Shor [lj give an algorithm that embeds any

planar graph in nine pages. This paper gives an algorithm of quite different construction which

embeds any planar graph in seven pages.

Clearly, if an algorithm is found to embed any triangulated planar graph, then any planar

graph co.n be embedded; triangulate the planar graph, embed the triangulated graph and finally

remove edges added by triangulation. We consider here a slightly broader class of planar graphs,

inner-triangulated planar graphs. All triangulated planar graphs are inner-triangulated. Also, the

planar embedding of a graph is fixed except for local modifications explicitly carried out by the

algorithm. The main result of this research is that any inner-triangulated planar graph (and

hence any planar graph) can be embedded in a seven page book.

The book embedding problem consists of two parts. First, the vertices of the graph are

linearly ordered (in fact, the ordering can be circular, so the vertices are placed on a circle).

Second, the edges are assigned to pages such that no two edges on the same page intersect. When

• 3.

the vertices are pi3Ced on a circle, the edges oC the graph beeome chords oC the circle and the

second part becomes to color the chords with Cew colors so thai no two intersecting chords are

colored alike. Thus, a book embedding algorithm chooses the ordering or the vertices first so as

to mak e possible the 3Ssignment or edges to a C~w pages later (though in reality the two parts

may be done in parallel). The algorithm presented here starts with an assignment oC vertices and

edges to levels so that components or the graph are adjacent if and only iC they are on the same

or adjoining levels o(the graph . It then uses the level structure to place the vertices on a circle

and finally assign edges to pages.

2. Definitions

An inner· triangulat ed plan""ar graph is a connected undirected graph (without loops or multi-

pie edges) that can be embedded in the plane so that the exterior (ace is bounded by a cycle and

, :l.ny interior (ace is bounded by a tr iangle. Clearly , any triangulated planar graph is inner·

triangulated . Henceforth, whenever a graph is given to be inner-t riangulated, a planar embedding

o (the above nature is assumed given.

Let G= (V,E) be an inner-t riangulated plana.r graph. We now define levels Cor the vertices

and edges oC G. The definitions are iteratively derived. V0, the set oC level 0 vertice8, contains

eX3Ctly the vertices on the exterior (ace or G. Eo. the set or level 0 edge8, contains eX3Ctly the

edges on the exterior race or G. G0, the level 0 sub graph or G, equals (V0, £1>). Hence, by the

definition or inner- t riangulated planar graph, G0 is just the bounding cycle or the exterior Cace oC

G.

Now , suppose we have defined V~1• E~11 and G~1 Cor k~l. V0 the set oC level k vertice8, is

~1

;he subset or V- U V, consisting or vertices adjacent to vertices in V ~~· An edge (v1, ~~z) is in En
.->

•

~ .

' ..

~··
'

~-.

.~

;,.,...,, ...

-4-

the level k suhgraph of G, is (v,,E,). Clearly, Vis the disjoint union of all non-empty v,, .c:;::o.

X a the set of level k cro88 edges, contains exactly the edges between level k vertices that are

not in E., Bt.<+Jo the set of level k to k+ 1 binding edges, contains an edge (v" v2) if v1 is a level k

vertex and u2 is a level k+ 1 vertex or vice versa. Clearly, E is the disjoint union of all the non

empty EhX, and B,,t+1, for .1::;::0.

The set E,can be further partitioned. C., the set of level k cycle edges, contains edge (v"u2)

if (u1,uz) is in a cycle o(G., Nathe set of level k non-cycle edges, equals E,-C.,

A vertex v E V, is a pinch vertez if vis contained in' more than one cycle ot G,_ A pinch ver

tex v is said to be separated from a cycle C of G, ih a book embedding if v is in C and vertices

not in C are placed between v ~nd the remaining vertices of C.

We need the following result (stated without proof) to continue definitions.

Theorem 2.1. Let .t:;::o. If Cis a cycle of Gb then any edge interior to C is in either-~- ;?,k,

B:.:+" 1?. k or £,, j> k and any vertex interior to C is in VP j> k. Also, if (v1, v2) is an edge in

.~, j:;:: k, B:J+l• j?_ k or £,, j> k, then ("" vzl is contained in the interior of some cycle of a.. If

vE V,. j>k, then vis contained in the interior of some cycle of G,_

Proof is by induction. squ.are

It C is a cycle of Gh then the subgraph of G consisting of C and its interior, GJC (read G

restricted to C), is an inner-triangulated planar graph containing only edges and vertices at levels

jJ;:: k. Hence, subsets of the previously defined leveled sets which are restrictions to the interior

of C can be defined. For example, V:1cJ:;::k. consists of all vertices of V, which are on Cor inte

rior to C. Biof+liC• j?_k, consists of all edges of B1J+1 which are interior to C.

Note that since G1 C is inner-triangulated, results for G translate to results for GJ C.

- 5-

Let v, be a vertex of a cycle C or G., Let v,_, and "*' be the vertices of C adjacent to v,.

Then there is a !Xlth in GJ C from v,..1 to v.;-1 that includes only vertices adjacent to v,. Define Pv
'

to be this path.

3. Preliminary results

The following results are stated without proof. They are important to the understanding of

the leveled structure of G. The important ideo.s are that G, is a boundary in the sense of a closed

curve in the plane and that cycles of G, are disjoint, except perfiaps for a shared pinch vertex.

Theorem 3.1. If Cis a cycle of G, and X~c is emp~y, then G,+IIC is connected.

Theorem 3.2. Suppose v1, v2E.V,. Then there exist exactly two distinct vertices v3, v4E V ,_1 such

that (v,.u,,u3) and (v1,u2,u4) are faces of G. (Implication in the other direction works also.)

Theorem 3.3. Suppose (v1,v,)EC,. Then (v,V::) is in only one cycle of G.,

4. LeveLi without cycles

If G has only two non-empty levels and level 1 contains no cycle, then we can show that G

is subhamiltonian in a special sense. The cyclic order or vertices in G0 can be preserved in the

hamiltonian circuit. The algorithm for obtaining this hamiltonian circuit motivates the vertex

ordering of our main algorithm in section 5.

Theorem 4.1. If G1 contains no cycles, then G1 is a forest and no level greater tha.n 1 is non-

empty.

Proof: Obvious. square

Theorem 4.2. If G1 contains no cycles a.nd is connected, then G1 is a tree.

- 6-

Proof: Obvious. square

Theorem 4.3. ft G1 contains no cycles and X0 is empty, then G1 is connected, and there exists a

hamiltonian cycle H for G such that the vertices of Ga. appear in H in. the same order as they do

in the cycle Ga.

Proof: The algorithm for constructing H sheds some light on the forthcoming algorithm for book

embedding. The proof that G1 is connected is omitted here. By Theorem 4.2, G1 is a tree.

Assume the vertices of G0 are labeled in cyclic order v1, • • • , v,.. Suppose this order to be clock-

wise. Since .Y;, is empty, all vertices interior to the path P, are in V1• We may assume G1 is
, . ' r

non-empty. Then for each v, there existssome vertex of G1 adjacent. to v,. Let P,
1

be given by

Start H at v,. Go to u1 and follow P ,
1

to v~. Now for~:::; i< m, when v, is reached, go to the

first vertex of P, that has vet to be visited by H and if that vertex is not "•+" follow P, to "•+I·
' . '

When v,. is reached, return to v1 to complete H. Every vertex of G is contained in H. Following

P,, to "•+I cannot encounter a vertex already in H because then G1 would contain a cycle (the

proof is omitted here). Clearly H contains V0 in the order v1, • • · ,v"'. square

Theorem 4.4. If G1 contains no cycles, then G is sub hamiltonian where the order of the vertices

of G0 in the hamiltonian cycle will be preserved.

Proof: Assume G1 not empty. If .Y;, is empty, apply theorem 4.3. If A{, is non-empty, re-embed

the X0 edges outside G0 (this can be done by outerplanarity) and triangulate the interior of G0

such that no new cross edges are introduced. Then, theorem 4.3 applies to G0 and its interior.

Edges of .Y;, will necessarily be exterior to the hamiltonian circuit. square

-7-

5. Algorithm for -book embedding

The algoritlim Cor embedding an arbitrary inner-triangulated planar graph in a book draws

on the ideas or the previous section. However, the embedding will be seen in a circle Cor conveni-

ence. The algorithm lays out the vertices or G level by level. It starts by laying the vertices or

G0 out around the circle in cycle order. At each level k, the algorithm will already have placed

the vertices or levels 0 through k and it seeks to pi:J.ce the vertices or level k + 1. It does so by

taking each cycle in a, and laying out the level k + 1 vertices interior to the cycle separately.

To make the layout or each cycle independent or all others, the vertices oC each cycle or G, should

be laid out consecutively, without intervening vertices and in cycle order. This will always be

possible except when there are pinch vertices. In that case, the algorithm pi:J.ces the vertices or

the cycle in cycle order and possible leaves some level k - 1 vertices between a single pinch vertex

and the rest or the cycle vertices. It is important that at most one vertex or a cycle be separated

rrom the rest or the vertices.

Cross edges can cause problems Cor the layout. When a cycle has cross edges, the technique

oC the previous section will be applied. The cross edges are re-embedded exterior to the cycle and

the interior or the cycle is triangulated without adding new cross edges. &lges added during tri-

angulation can be deleted at the very end or the algorithm.

Let C be a cycle oC a. The algorithm places the vertices oC G,+liC by finding a cycle

through the vertices or c and vt+II C· The cycle will not really be a hamiltonian circuit since
- -

some edges or E,+II c must be deleted and some edges added to complete the cycle. In particular,

Cor any cycle oC Gt+IIC• exactly one edge will be deleted. Suppose (vr.v.J is the edge in E'+liC to

be deleted and let v3E V~c such that (vr. "2. v3) is a race or G. Then when (vr. v2) is deleted, edges

Crom v3 to all remaining vertices or the level k + 1 cycle can be added to the planar embedding (ir

the interior or the cycle is ignored). Then the algorithm traverses the entire level k + 1 cycle

·8·

from u1 around to "2 and is able to proceed to the next vertex.

The algorithm assumes the existence of a pool of seven pages, S= {•1, • • • ,s1}. Place the

vertices of G0 around the circle in cycle order. Choose an arbitrary vertex u.€ V0 and invoke

LAYOUT(G0,w,sv{ s,,s.,sT}).

LAYOUT is a procedure called with four parameters. The first parameter is a cycle C in

some G~ The second is a vertex u of C. The third is the page son which edges incident to u are

to be placed. The fourth is a set Tor three pages that may already be assigned to edges incident

to C and hence may not immediately be reused. LAYOUT can assume that the vertices of C are

already placed in cycle order a':ld that there ·is an arc of the circle within which all vertices of C

reside and no other vertices reside except that there may be some vertices of the level k • 1 cycle

that contains C between u and -the other verti:es of C. Also, if C contains a pinch vertex that

was separated from C at the next outer level, then u is that pinch vertex of C. The algorithm will

place vertices of G <+t! c within the arc strictly containing vertices of C.

The following is a sketch of the LAYOUT procedure. It is invoked as LAYOlJ"T(C,v,s,T). If

V,+I!C is empty, then setH equal to C and proceed to the next paragraph. Move all cross edges

of C outside of C and triangulate the interior of C so that no new cross edges are introduced and

so that G;+IIC is connected. Let C be defined by vertices v=v~o · · · ,um. Let

{r1,r~r3} = S- {JU{s}). Let Pv
1

be defined by Vm,u 1, • • • ,u11,~. Go from v1 to u1 and along Pu
1

until a cycle edge (u;;";+tl is encountered. Let K be the cycle of Gt+liCcontaining (u1,u1+tl· Asso

ciate page r1 with K. Delete (ul' uJ+,) and add edges from u1 to every vertex of the cycle, re

routing when necessary. Go from u1 to u1+1 along the cycle, then go to the next un-encountered u,

or v2 as necessary. Invoke LAYOUT (k,r2,{s,r1,r3}). Continue around C. At each u, find the first

unencountered edge of P,, If it is a cycle edge (u1,u1+1) and u1 is already encountered, do as

before except when going around the cycle u1 will be skipped. Let K be the cycle of Gk+t!C

- 9-

containing (u1,u1+d· ·Let ~ be the unique cycle of G'+ll c which contains u1 and which u1 was not

separated from. · ~ is hence the first cycle containing u1 which was laid out. It r1 is associated

with~ , invoke LAYOUT(K,r~o{s,r2,r3 }) and associate r2 with K. It r2 is associated with~ ,

invoke LA YOUT(K,r2, { s,r~or3}) and associate r2 with K.

When LAYOUT has returned to Vm, a hamiltonian circuit H has been defined containing

vertices of C in cyclic order and all vertices in V'+!IC· Assign page • to all edges incident to v.

Now assign pages a and r3 to edges of C and edges in Bt,HliC and X~c as indicated by the hamil

tonian circuit H. This completes LAYOUT.

Whenever LAYOUT is entered, itS assumptions are met. Iri particular, the following

assumption holds: when LAYOUT(C,v,s, T) is invoked, any vertices between v and the remainder

of C have edges on only five of the se.ven pages. All edges in G that are incident to vertices of C

are assigned to one of the five pages in 1LJ { s,r3}. Either page r1 or r2 is assigned to all edges

from a pinch vertex at the next level that may intersect those edges, thus avoiding conflict with

the five pages incident to vertices of C.

It is now clear that the reason the algorithm must use seven pages is the possible existence

of pinch vertices Cor cycles of C. If G has no pinch vertices, the algorithm can easily be modified

to use only (our pages.

6. Conclusion

This paper has presented an algorithm Cor embedding any planar graph in seven pages. The

algorithm can be shown to have time performance O(n"), so that it is efficient. Seven pages is a

twc>-page improvement over the previously best known upper bound of nine [1[and uses a new

approach specifically developed and analyzed Cor this problem. Future research might consist of

closing the gap between the best current lower bound of three pages and this new upper bound or

- 10-

seven pages. The au~or conjer.tures that four pages is a lower bound for pagenumber of planar

graphs based solely .on the investigation that resulted in this new algorithm, as he has no example

that he knows requires more than three pages.

7. Acknowledgement

The author expresses his appreciation to Arnold L. Rosenberg oi Duke University for sug

gesting the problem and much encouragement. The author also appreciates the support provided

by the Semiconductor Research Corporation.

8. References

[1] J. Buss and P. Shor, ''On the pagenumber of planar graphs," Proceedings of the Six·

teenth AnnuaiACM Symposium on Theory of Computing, 1984, pp. 98-100.

[2J F. R. K. Chung, F. T. Leighton and A. L. Rosenberg, "A graph layout problem with

applications to VLSI design," in preparation.

