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ABSTRACT

JOSEPH KITCHINGS PARKS. A Comparison of Two Graphics Compu-
ter Designs (under the direction of Dr. Henry Fuchs} .

Currentiy, three dimensibnal graphics systems with hidden .
surface rémoval and smooth shading'are large, expenéi?é,.
pipelined pomputers with many sSpecial purpose processors.
Fred Parke and Henry Fuchs have introduced designs using
general puipose microprocessors working in parallel, rather
than pipelined fashion, Parke's scheme divides the display
screen into contiguous chunks, and assigns each chunk to a
processor. Fuchs' scheme assigns adjacent points on the
screen to différent processors; so that all processors work
on every polygon.

Parke éompared these deéigns assuming an even distribu-
tion of data over the screen, and found that splitting the
screen into cohtiguous chunks is always superior. However,
realistic daté: {such as landscapes or airplanes) are not
distributed eéénly. '

This thesis presents a comparison of these designs using
data from NASA's Space Shuttle flight simulator, We find
that for few pProcessors {say 4), the Fuchs' scheme is pre-
ferred; for hﬁhdreds of processors, the Parke scheme is pre-
ferred; and féf an intermediate number {say 16), the designs

are relatively equal.



ACKNOWLEDGEMEBNTS

I wish to thank James R. Seith of the Johmnson Space Cen—
ter and Richard Weinberqg {now with Cray Research} for the
Space Shuttle database. I also thask Greg Abraas for the use
of his polygon transforaation amnd clipping progra®, and Di.
Frederick Brooks for being a sourding board during the whole
project. Dr. Henry Fuchs has been a coanstant source of em-
couragement and direction. Most of all, I thank ay wife,
Sandy, who has acted out of love and grace, and not justicea



CONTIENTS

Chapter page

Hotlvatlon - - - - - .V - - L J - - -» L. - - - -
Description of Project s @ s s e = 2 e =a e

Il. ALGORITHY DESCRIPTION AND ANALYSIS o o = « o « =

The A1GOTIithAE v v ¢ o = o = © o = © = s « = « =
Analysis of Visible Surface Algoriths . . . »
Limitations O0f this 2nalysis o« ¢« « ¢ o = = = «

III. MACHINE DESCBIPTION o o « o = « © = = = o = o o =

The Parke Splitter Machine o « o« o « o = « © =
The Fuchs Interlace KachiDe .« « o = = « « = =
Assumptions and Limitations . o« « « =

Iv. SIMULATION RESULTS AND MACHINE COMPARISON . + « «

Parke'!s COMPACiSON « o« + o o« o & o = = = » & o
The Analyzed Scenes and Their Besults . -
Screen Complexity: Area vs. Number of Polygons
Splitter's Sensitivity to Non—uniformly
Distributed Datad o« v « © o « = =« o = o »
Fifects of Polygon Overhead on Interlace Scheme
Parke®s Hybrid Schefte . « o = 2 2 2 = © © =« =

v. COHCLUSIONS - - - - - - » = - L] - G. - - L] - « - -

[]
[}
8
8
[

Summary of Simulation Results - .
COBClu SiORS - - - - - - L. - - - - L) - - - - -
Further BeSearch « « o o« « o 6 =« © © « o o

REFERENCES - - L] - - - - - - » - - - @ - - - ar - - o -



PROGEAM LISTINGS INC . . &

PROGEAM LISTINGS IN PDP-11 ASSEMBLER

Appendix

Re

Ba
Code from
Code fron
Code from
Code frosm

Ca

STATISTICAL CHARACTERISTICS OF SELBCTED SCENES

PCLYBODY1.C and POLYEBODY2.C
EDGEBODY1.C apnd EDGEEBODY2.C

SEGEENTBODY1.C and SEGHNENTIBODY2.C

BIZELBODY.C .

UNiProceSSOr o= o = « = = = = = =
Splitter—--4 Processor {siowest}

Interlace~-4§ Processor (slowest)
Splitter--16 Processor {slowest)

Splitter~-16 Processor {shuttlie pro
Interlace--16 Processor {slowest)
Interlace--16 Processor {fastest)

“»

= o -

-
-»
-
-

Hybrid—— 16 Processor {slomest) . .

-—iy—

e 8 Y8 & B 8

£

s s 8 e s 8 @

it]

6 & & O ¢ & b #

-

=

-

L

8}

B & B Ywrp B o 8

8 & 8 B8 & & B

&

& 290 & & p & &

b & 8

100
103
105
108
111
i1y



Shuttle, Cff lLeft

-QVﬂ

LIST OF FIGURES

Fiqure hage
1. Traditional and "Parallel Hicro¥ DesSigns o « o o o «

2e Polygon Examples « o o c ¢ o ¢ o o a ¢ o = « ; o =

3. Tabular Polygon Bepresentatiol o« o« « o o = o =« o « o

e Algorithnm ?alues After Initialization . <« « » = = = 11
5, POlygon OB SPALSe GLid « v o = o o = = = » = = = « « 10
6. 3 Sipple Division SCheBES 4+ o o« =« © a 2 « o = o o = 19
7. 16-Processof Parke Splitter Machine .+ o « o o« v o o 20
8. biagram of Parke Splitter Hachine with 4 Processors 22
9. Ix4 Interlace PatterDn .« « o « o ¢ = @ @ « s o » o » 23
10. 2x2 Interlace Patterll . o o « o » ¢ o « » = » « » o 28
11 16-Processor Interlace Patiérd « « « « = © « « « s » 26
12. Interlace Hacﬁine “« & 4 = ® s e 4 s 6 o = o o a « o 28
13. Splitter Tiue.ﬁerses Number Of Processors o« « o o = 31
f4. Interlace Timé Verses Number of Processors « « « « - 33
5. BRunway with One Shuttle . ¢« @« 2 o 2 o @ @ = « = = » 35
t6. Airport at Gréat-nistance s o s = # ®» 3 ® « « a =« & 36
17. Airport at Gréat DIiStanC® o o« o« =2 = a « o a » a » « 37
18. Airport at Medium DiStanCe « o = = « ®w o = = « =« « « 38
19. Airport at Hedium DistaliCe « « « o« « = =« = = » = = = 39
20. Airport, Close 10 RUDNWAY « « = + o« © « « =« a » « « o 40
21. Airpert, Close $0 RUDNWAY « = = = =« o= o = = = = « a » 41
22. Side Of Tail « o« o o = « o o = « « #2



23
24,
25.
26.
27.
28a
29.
30.
3t.

Shuttle, Off Left Side 0f Tail o« « « = & s« = =« =

Shuttle, Cargqgo Bay from €Cabinn . ¢ « « = @« a = =

Shuttle, Cargo Bay From Cabili « « o « « o o = = -

Exarple of Screen CompleXity « « =« o = o = « & «
Cosplexity Example~—Timing Summéry a ® o ® 8 a a
Tigming SUBBALieS = o « o = « » @ = » 2 a « = =« «
Tining SuBBaAries==2 . = v © e = s © 2 @« @ a = =
Timing SulBaries==3 . . e o o =2 ® @ = @ = = = =

16 Processor Time as ¥Functionm of Vievwer Position

- Yi -

43
45
45
47
49
52
54
55
60



Chapter I
INTRODUCTION

1.1 MOTIVATION

The increasing popularity of computer graphics systeas
reflects the fact that the gind zore easily grasps pictures
than tables of numbers. Hovever, one area of conputer
graphics wshich is not receiving auach publicity {(but is of
great interest) is real-time three-dimensiomal modeling with
hidden surface eliamination {rather than wire frame images).
If such a system 1is to be ¥®real-tine,¥ that is to say that
the display can be updated in less time than a humak can
perceive the changes, the systeam must generate the new scene
in less than 1/15th of a second. This task is very expen-
sive computationally, and cannot be done on most computers
using realistic databases. Let us briefly consider its com-
pPlexity. A database in such a system aight be defired as a
series of planar polygons {or tiles). A polygom, in turmn,
is a 1list of vertices in three-space. A ®g50lid" object
would simply be a collection of polygoas {or surfaces).
Hovever, the polygons may be manipulated independently,
without reference to a higher structure. The mathematical
formulae for describing +the perspective tramsforaations
properly {so that the display changes to convey the correct
depth cues) are well-known, and can be handled easily (see
i Newman79]).

The computationally expensive parts of this task occur
after the polygons have heen transformed. ©One pust then de-
cide how to panipulate the display to represent the set of
transforsed polygons. A typical screen might be a matrix of
512x512 picture elements (pixels}. Then, for ecach of the
256,000 pixels, the computer system must determine which po-
lygon is visible (the "hidden surfaces® cannot be seenj};
and, for that polygon the system nust determine what color
{or grey scale intensity) to display. This cosputation must
be done for four pixels every microsecond, on the average,
to generate the entire screen without flicker or uneven mo-
tion. The traditional method of dealing with this problez
has been to build a large pipelined machine with many spe-
cial purpcse processors [Shohat77]).  However, such machines
are very expensive to build {Schac8ti].
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A slightly less ambitious task is to generate new scenes
not in ¥Yreal-time," but in Yinteractive-tizme;® that is to
say, an observer would notice the change froz one scene to
the next, but the generation would require only a fraction
of a second {say, 1/3 of a second), instead of several sec-
onds. However, general purpose computers {e.ge. a VAX
11/780) cannct generate scenes for even this reguireaent.
Thus, a single dedicated processor is either too slow {(gen-
eral purpose systems), or too expemnsive (pipelined systems}).

The advent of low cost Bmicrocompiters has =made another
approach possible; one could divide the display into severai
semaller areas and dedicate a nmicroprocessor to each area.
Bach micro would then work on its own (small) area in paral-
lel with the other micros. Thus, one avoids the high cost
of many special purpose conmputers, but gets better perfor~
mance than a uniprocessor. '

Three architectures have been proposed following the
¥parallel aicro"% strategy~—one by Puchs [Fuchs77, PFuchs79]
and two by Parke [ Parke79a, Parke80]. Parke [ Parke80] has
analyzed the expected performance of these machines (see
" section 4.1) using the following assumptions:

1. the processors execute an algoriths similar to that
described in [ Suther74i.

2. A uniform distribution of polygons over the screen.

However, most interesting data represent landscapes {e.g.
airports or city skylines) or objects {e.g. ships, air-
planes or molecules). For these types of data, assamption
{2) is suspect. And since one of the schemes is especially
sensitive to the distribution of polygons, an analysis based
on realistic data may yield more accurate estisates of the
processing speed of various designs. This thesis expaunds on
Parke's results by comparing these architectures using real-
istic data. The project is described in further detail be-
low.

1.2 DESCRIPTION OF PRGJECT

One of the oldest and coamonest methods uased to compare
computers is the technique of hemchmarking. That is to say,
several programs are executed on the target nmachimes, and
the time e€ach machine takes to execute the set of programs
is used as the machine's ¥score®. A siailar technigue was
used in this project.

Irn this project;' the algorithnm to be executed {whick is
discussed below) 1is fixed and already specified. ¥hat is
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not specified is the data the machismes sust aamipulate.
Thus, we chose several views of twvwo related databases {which
are discussed below), and used these as our bemnchmark. The
vieus {or "scenes"} are exactly what an observer would see
given that he was at a specified location {in x, vy and z)
looking with a given angle of view and direction. Thus,
this analysis is very dependent upon the selected scenes be-
ing typical of scenes in general. However, the use of actu~-
al, generated scenes allows us to avoid saking assamptions
about the size of polygoas, their shape, number of vertices,
or their distribution over the screen, etc.

The concept of elapsed time was also a problem im this
project, since physical implementations were not available.
In piace of seconds {or ailliseconds), ¥e have used memory
cycles, since the most important simsgle factor in the execu-
tion time of a simple instruction is the number of mesory
fetches required [Fuller77, p. 29). 7Thus, executiocs time is
given in terms of the nuasber of memory fetches required (for
both instructions and data) to execute the given algorithm
for a given scene. Multiply and Divide instructions were
assumed to require 10 memory cycles each. The PDP~17 was
chosen as the base processor, in spite of the fact that it
would never be used to build one of these machines {because
of its limited addressiang capability). However, it has in-
fluenced current 16~bit micro processors heavily, and its
instruction set is very typical. And since execution times
are expressed as memory cycles, they <can be adapted for
different speeds of processors and mempories. Should a pro—-
cessor have a cache memory, however, the execution times
would vary greatly frosm those calculated here; currently,
few micro processors use a cache.

Given the scenes we wish to use as a benchemark, and the
gese of memory utilization as our tiaming metric, we could
have simulated the generation of each scene by each of the
Bachines we wished to compare, and actually counted the me-
mory fetches regquired. However, this would have givem lit-
tle imsight into why the machines behaved as they did.
Therefore, ancther method was developed which produced re—
sults pearly ideatical +to the strict sisulation, and aiso
aided in understanding the factors which caused the aachiae
behavior. This methed contains three steps. PFirst, the al-
gorithms used ia the machines was analyzed, and the scene
characteristics which affect execution time were identified
{e-g. the nunmber of polygons, the height of each polygon,
the size of each polygon, eic). Then, a formula which de~
scribes how the algorithnm depends on these characteristics
was developeda. The algoritha and analysis are presented in
chapter 2. Second, five machines were chosean to include in
the comparisor, the uniprocessor case, 4~ and i6-processor
gachines using the Fuchs scherme, and 4- and 16-processor ma-
chines using the Parke scheame. These machines ({aand their
underlying ideas) are discussed ia chapter 3.
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Third, the selected scenes were generated and then pro-
cessed by a simulator which extracted the statistics rele-
vant to the algoriths characteristics. The actual compari-
son consists of applying these data to the algoeritha
analysis formulas. This is discussed in chapter 4. Chapter
5 summarizes our corclusions and gives reconsendations for
future designs.

One database used in this project was the NASR Space
Shuttle. Thus, this analysis is very dependent on the Shut-
tle representing a "typical" object, as vell as the scenes
selected representing "typicailY scenes. The Shuttle data-
base contains about 450 polygons. The second database was a .
simple airport. It consists of two runways, and two shut-
tles sitting on one of the runways. This database coatains
about 900 polygons. _



Chapter IX

ALGORXTHN DESCRIPTIOHN AND ANALYSIS

The algorithm used by all of the processors in this pro—-
ject is the welil-known 2Z-buffer algoritha. In this section,
we describe this algoriths and analyze one possible imple-
gentation. The analysis calculates the nuaber of menmory
fetches required to execute each major portion of the algor-
ithm, and allows us to calculate the number of mesmory fetch-
es required to display a given scene on the differemt ma-
chines.

2.1 $HE ALGORITEN

As mentioned eariier, the systes must determine how to
render the closest pclygon at each pizel. The Z-buffer al-
gorithe accomplishes this by keeping a buffer with the dis-
tance of the closest polygon at each pixel. This distance
buffer {termed Z-buffer bhecause it represents depth) can be
thought of as heing parallel to the frazme buffer. Polygons
are processed seguentially. First, the depth of each pixel
covered by the new polygon is calculated. If the new poly~
gon is closer to the observer tham the valuse in this pizel's
2-buffer locatiom, the new poiygon depth is placed in the
Z-buffer, and the nev polygon's image is placed in the fraame
buffer. This is described in detail below:

Let a polygon be a collection of vertices and each vertex
a 4-tuple of x, vy, 2z and s, where x and y are the I and ¥
coordinates {respectively} of the poiat im tke object space.
Also, let z represent the distance betweenm the point and the
viever. Finally, s is the shading or intensity wvalue for
the vertex. A polygon is defined by drawing lines from each
vertex to the next, with the last vertex connected £o the
first. An exaaple followus:
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W -

poly A

$,5,7,10
10,5,7, 10
7,14,7,10

poly B
8,15,8,9
8,6,8,9
14,6,8,9
14,15,8,9

{broken lines denote hidden edges}

poly C
21,110,611
17,15,6,11%
13,10,6,11
17,6,6,11
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We will make the coamoan assumption that all pelygoans are
convex.! ¥e will further reduce the amount of work the til-
ing algorithm ayst do by eliminating reduandant vertices in
polygon defimitionms. That is, no vertex is repeated in a
polygon description; for example, ' the polygon {{20,3G),
{15, 15} . {15,15), (30,30)) has a redumdant vertex at
{15,15). ©We will, however, allow polygoms of 1 or 2 vertic-
es (i.e. a point or single line). _

Another common assumptios in three-dimemsional ,graphic
systess is that polygons are "one sided,®™ and described con-
sistently. This can be understood by considering a descrip-
tion of a flat, planmar obhject, say a table. The table will
have different polygoms describing the +top and bottom, be-
cause othervise it would have no depth. &nd, if one is be-
low the table, we know that only the bottor can be seen; the
top cannot be seen because it is #facing® the ¢rong way. If
one describes the "front® faces consistentiy (and ¥e de-
scribe thew in a counter-clockwise manner), then the back-
facing polygons can be easily identified and removed just
before scene generation (see [ Newzani791l). Thus, backfacing
polygons represent apother form of useless data wkich caa be
easily identified and removed, and so we assume that they
will not be given to the alqgoriths. Both C and PDP~11 as~
sembler listing for this tlllng algoritkz are in Appendices
2 and B.

The algorithm operates oa one polygon at a time, and a
polygon is represented in the algoritha in a tabular fors.
Consider:

%

X §y Z s

e e Rt by

vertex 04——-——> i i i i i
- e e et bt |
vertex j-————-=> i i } i i
| e R e B
vertey n-1 —=-=> R TR

FPigure 3:  Tabular Polygon Bepresentatioﬁ

1 Assuming convex polygons often simplifies graphics algor~
ithms, and non-convex polygons can always be divided into
several convex ones. See {Neuwman?79] for more information
on this topice. :
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The aligoritha follows:

T

Scan all vertices, finding the one with the highest ¥
value [i.e. the topmost vertex})  for the left and

right sides.

right) vertex.

Set
CUB_V_RT_PBTR

CUB_V_LT_PTIR
KIN_Y
Initialize
NXT_Y_LT
NXT_Y_RT
NXT_V_BT_PTR

NXT_V_LT_PTR
CURRENT_Y

Z_RGH_PTR
INAGE_RON_PTR

This becomes the current left ({or

pointer to current wvertex,
right side

pointer to current vertex,
left side

pininun {i.e. lowest) y value

next y value, left side

next y value, rigkt side

pointer to next vertex on

right side

pointer to next vertex om left side
curreat y value {i.e. curreat

scan liae)

pointer to current row in z buffer
pointer to current row ia image
buffer

{(see figure &)



TS

CUR _V_LT_ PTR
5 ~

NXT_V_LT_PTR

Y—

CYR _V_RT_ PTR

NXT_V_RT_. PTR

/

b . g 1o

MIN _Y = 4 CURRENT.Y =14
CNXT_Y_LT =7 NXT_Y_RT =1}

VALUES AFTER INITIALIZATION

FIGURE H
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3.

S5e

6.

7.

8e

for each Scanline use {CURRENT_Y} to go frosm
{EIGHEST_Y_VALUE) down to ({MIN_Y} do
if (CURRENT_Y <= NIT_Y¥_ILT} caiculate new values for
CUR_X_LT current x value, left side
CUBR_Z_LT " z " “ "
CUR_S_LT " s W " "
NXT_Y_LT next y walue, left side
DX_LT delta value ({i.e. increment} for
X left side
DZ_LT delta value for z, left side
DS_LT ] w W og, & "
 BXT_V_LT_PTR next vertex poinmter, left side
fi '
if (CURBENT_Y <= NXT_Y_RT)
calculate
CUR_X_RT
CUB_Z_RT
CUBR_S_RT
BXT_Y_RT
DX_RT
DZ_ ET
DS_RT

NXT_V_RT_PTR
fi

find the y value of the next highest vertegx-—i.e.
the next y value vhere vertex processing must be
done.

Set NXT_HIGH_ Y = max{NXT_Y_ LT, BXT_Y_BRT)

-for each scanlite use {CORRENT_ Y} to go fron

{CORRENT_Y} down to {NXT_HIGH_Y) do

Calculate

IMAGE_PTE = IMAGE_RO¥_PTR[CUR_X_LT] current pirel
in image buffer

Z_LT_PTR = Z_ROW_PTRICUR_X_LT] current pizxel
in z buffer

Z_RT PTR = %Z_ROW_PTR[ CUR_X_RT] last pixel in
z buffer

PIX_DZ delta for z

PIX_DS delta for s

BIX_ 3 Z value

BPIX_S s value

for each pixel use ({PIX_Z_VAL) to go from (Z_LT_PIR)
over to {Z_RT_PTR)
if PIX 2 < valueof {(PIX_Z_VAL}

valueof {PIX Z_VaAL) = PIX &
_ valueof {IKAGE_PTE) = PIX_S
fi
increment

PIX_X by PIX D2
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PIX_Z by PIX_DZ
PIX_S by PIX_DS

end of stmt 8 *for' loop

9. increrent

CUB_X_LT by DX_LT
CUR_X_RT by DX_BRT
COR_S_Lt by DS_LT
CUB_S_RT by DS_RT
CU8_2Z_LT by DZ_LT
CUB_%_RT by DZ_RT

move 2_ROH_PTR to next row of z huffer

move IMAGE_RON_PTR to next row of frame buffer

end of stmt 7 *for* loop

end of stmt 3 ?for' loop
end of algoritha

In this project, the X and Y step sizes (the iacresent to
go from one Y value to the next, or one X value to the next)
are not umity, but are compile-time constants. = Thus, this
program transforms a very fine image space irto a coarse
screen space by point (mot area) sawmpling.  Rhile we will
not list the {conceptually} minor changes in the algorithm
required to make this change here, vwe will list some of the
less obvious problems it raises. <Consider figure 5:
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1« the top line (the highest y value to be processed} is
not simply the y value of the highest vertex (y=13),
but the y value of the highest assigned line under
the hiqghest vertex {y=12).

2. the processing at vertex 2 (pocint {3,11)) aust cor-
rect the values of the x, 2 and s {and their delta
values) from those given at the vertex. Further,
since movement in x (as well as y) is required, the
.calculations depend on the edge value from the
right--which may not be known when vertex 2 is being
processed.

3. ona given side, pore than one vertex Rmay require
processing ip moving froz one y value to the next.
For exaaple, in soving from scanline {or y value) 10
to 8, the right side must process vertices 5 and &.

4. the single pixel appearing onm line 6 (at {(7,6)} is
not assigned to this processor, and, therefore, this
processor has no processing to do onm line 6. :

2.2  ANALYSIS OF VISIBLE SUBPACE ALGORITHN

This amalysis is based on that of [Parke80}. In this pa-
per, ®"timing¥ refers to the mumber of memory cycles used for
both instructions and data on a PDP-11. Hemory cycles were
used because the most important factor in simple instructioa
execution time on current computers is the number of memory
cycles required. Multiply and divide instructions were as-
sumed to take 10 memory cycles. This iasplementation of the
‘algorithm uses 16 bits of precision. i

t« Scam all véftices, finding the one with the highest y
value [(i.e. the topmost vertex) for the left and

right sides.

Tizing analysis: 42 memory accesses per polygon.
24.6 memory accesses per vertex.

2. 'Initializations

Tising analysis: 97 gemory accesses per polygon.

3. for each Scanline use  (CUBRENT ¥} to go fros
(HIGHEST Y _VALUE) down to (MIN_Y) do

Timing analysis: 25 mewnory accesses per vertex. .
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5.

6.

8.

9.

if (CURBENT_Y <= NXT_Y_LT) calculate new values for

if {CORBENT_Y <= NXT_Y_RT)

.calculate

fi

Timing analysis, left hand side and right hand side
average: 257.2 memory accesses per vertex.

find the y value of the next highest vertex-—-i.e.
the next y value where vertex processing must be
done.

Timing amalysis: 12.5 meBery accesses per vertex.

~ for each scanline use {CURBENT_¥) te go froa

{CURRENT_Y) down to {NXT_HIGH ¥) do

Tiring analysis: 85 memory accesses per scas line.

for each pixel use (PIX Z_VAL) to go from {2_LT PTR}
over to (Z_RT_PTR) e
if PIX Z < valueof(PIX_2Z_VAL) '

valueof {PIX_Z_YAL) PIX Z

valueof {IKAGE_PTR) PIX_3
fi
increment

PIX_X

PIX_Z

PIX_S

i

endhof stet 8 *for? loop

Timing analysis: 15 memory accesses per scan line.
27 memory accesses per pixela

incresment
CUB_X LT
CUB_X_RT
CUR_S_Lt
"CUB_S_RT
CUR_Z_LT
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CUB_%_BT move Z_ROW_PTR to next row of z buffer
pove IHAGB ROW_PTER to mext row of frane huffer

Timing analysis: 58 memory accesses per scan line.
end of stat 7 *for*' loop
end of stat 3 "for' loop

end of algorithm

Ezxecution time summary:

- abbreviation nenory cycles (avg )
Polygon setup time Gt 139
Vertex processing time vt 319.3
Segment processing time st - 158
Pixel processing time Pt 21

Total scene ptoce551ng tige

= nusber of poclygons & Gt
number of vertices ¥ ¥t
purber of segments % St
nusber of pixels * Pt

_-+++

= musber of polygons
* (Gt
4 average nuasber of vertices per polygom * ¥Vt
+ average number of segments per polygopr * St
4 average nusber of pixels per polygon * Pt)

2.3 LIBITATIONS OF THIS ABALYSIS

If one considers a diamond shaped quadrilateral,




i8

vertices A amnd C will be processed.as BOTH left and right
side vertices. Thus, the total number of vertices processed
will be six, instead of four. However, shen processing ver-
tex C, neither side will use the calculated delta values.
Therefore, the delta processing may be skipped for vertex C,
and vertex processing now rtequires delta calculations for
four vertices and a very small amount of processing for two
vertices. Our analysis has simplified this situation to the
processing of four vertices {with delta calculatioms), and
no testing to avoid the unnecessary delta value calcaela-
tions. In the results that follow, the error introduced by
this simplificatiocn was less tham five per cent in all
scenes for the uniprocessor machine.



Chapter III
BACHIEE DESCRIPTION

Obviously, one could progragk any general purpose computer
to execute the algorithm givem in Chapter 2. ghat is not
obvious is how to distribute the work load asong several
Processors. Both the Parke and Puchs schemes divide the
display (or screen) into disjoint areas, and then dedicate a
processor to each area. The schemes differ in how the
- screen is divided. The Parke scheme is the simpler of the
tvo, and will be discussed first. Muach of this chapter is a
condensation of material contained in [Fuchs77, Fuchs79 and
Parke80] (for the Fuchs machine), and [Parke79a, Parke80]
(for the Parke machine).

3.1 IHE PARKE SPLITTER HACHIER

Given a certain number of microprocessors ({say, 4} to ex~-
ecute a tiling algorithme, bhow might one connnect them to

take advantage of parallel computation?

A simple nethod' would be to divide the screenr ({image
space) into contiguous blocks. Thus, ve amight have the fol-
lowing division schenmes. :

| Lo
T T e
S e IR FOR PR VN S e
" :: u, ;' i 3 I A
! A I #

Figure 6: 3 Sisple Divisionm Schenmes
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Everything which fails in gquadrant ul is processed by the
first microprocesscr; everything wkich falls in gquadrant ut
is processed by sicroprocessor 2, etc. The divisions of the
image space may be vertical (b}, horizontal {c} or a combi-~
gation of vertical and horizontal {aj. Henceforth, we will
assuse schese {a} for the #-micro Parke amachine. One possi-
. ble scheme {and the only one we will be comsidering) for a
i6~processor Parke machine is im figqure 7.

Pigure 7: 16-Processor Parke Splitter Hachine

The major problem in this schese is issuring that a poly~
gon does Dot Cross a processor boundary. Tkis is accos~
plisked by a tree structure of hardware splitters which take
& polygon description amd ocutput two polygons, one wholly to
the left of the dividing line (or above, if the split is
Borizontal}, and the other polygorn wholly on the right {or
below). :
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The Parke machine, then, coasists of a certral computer
{which will perform all transformations on the polygoms), a
series of hardware splitters {in a tree structure}, and a
set of microprocessors {at the leaves of the splitter treej.
The micros are then connected to a portiom of a frame buffer
which corresponds to that micro's portion of the screen. An
illustration of a 4—processor machime is shown in figure 8.



AR SR vertica)

Splittey
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e — e o e e s

Screen

TIAGRAM OF PARKE SPLYTTER MACHIBE WiTH FouR PROMESSOR:

FIGURE 8
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3.2 THE PUCHS INTERLACE HACHIBE

. Instead of splitting the image space jnto contiquous
blocks, e might divide on a pixel by pixel basis. Thus,

given 4 processors, we might have a screen divided as in
figure 9.

y h sl ke | ﬁzhﬁ Mol v
= ;,un )u'n }—l;i/-l;
1

Pigure 9: 1x#4 Interlace Pattera

Hete, pixel {(x,y¥) is assigned to processor %, pixel {(x41,V}
to processor 2, {(x+2,y) to nuaber 3 and {x+3,y) to nukber 4.

Another scheme is given in figure 10.



TPo i

M2l P

Pigure 10: 2x2 interlace Pattern
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The pixel to processor assigmnments here are as follows:

{x,y} to uld, {(xi1,y} to ul, (x,7v41} to u2 and {x4i1,y+1) to
ul.

The above division is the one we will use for the
g~processor interlace? aachine. The following f£figure shous
the scheme ve will use for the 16-processor machine.

2 We will use this designation for Fuchs' machine, to keep
fros confusing it with his other desigans.
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An ianterlace machine, then, consists of a central compu-
ter (which plays the same role as im the splitter machine),
a polygon bus, the collection of micros and a frame buffer
bus. The micros are connected to both the polygon bus and
the frame buffer bus. Bach picre is connected to the frasme
buffer bus so that it has control of only the pixels as~
signed to it. This is shown in figure 12.
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3.3  ASSUSPIJIONS ARD LISITATIONS
. The act of displaying a poiygom is by far the most expen-
sive computation performed by either a splitter or an inter-
lace systen. Thus, other parts of a splitter or interlace
machine need not be considered in this analysis. For exam-
ple, in processing a scene the splitter architecture gay
split each polygon several times. The time reguired to
split a polygon is much less than the time required to dis-
play it, and so splitting tisme is not included in the per-
formance analysis of the splitter architecture. Hovever,
increased hardware encoding of the visible surface algoritha
could change the overall systea balance, and 1nvalxdate th1s
assumption. _

Similarly, the geometric and perspective transformations . .
performed by the central computer 1in each scheme are simple
coapatred to the tiling process, and will not be a systen

bottleneck. TIransmission +time from the central computer -

down the bus (or through the splitter tree) is also ignored.
In other words, each nmicro always has more polygon data
availablie. However, in the splitter scheme, this assumption
zight pnot hold. In figure 20, for example, if the leftmost
shuttle is described in a contiguous block of polygoms, the
tree could become saturated waiting for the {(few) affected
microcs to process this part of the data. and, the micros
which are to process the rightmost shuttle description would
be standing idle, even though they bhave work to do. This
phenomenon cculd increase the tize required to display some
scenes. : _

The frame buffer, also, is not included in this analysis;
since the transfer time to it from a micro is far oversha-
dowed by the processing time. ' : :



Chapter IV

' SINULATION RESULTS AND NACHINE COBPARISON

At this point we are able to compare the two desigps. To
minimize bias, we will be generating a variety of scemes us-
ing data supplied from the Evans and Sutherland real~-tine
" system at the Johnson Space Center. Our method will be to
take each scene and simulate each processor in each machisne
by counting the nusber of pixels, line segments, edges and
polygons processed. From this, we cam use the timing formu-
la derived from the algorithe analysis to calculate the to-
tal time required. The results of this process are present-
ed in this chapter for %-, 4— and t6-processor interlace and
. splitter machines. Below, we give the scenes?® vhich vere
analyzed and their results. We then analyze the results.
First, however, we will review Parke's results, '

4.1 PARKB®S CONPARISOHN

In his comparison [ Parke80], Parke assumes that the poly-
gons to be displayed are evenly distributed over the screen.
Thus, for an nxn splitter machine, 1/n%#%2 of the total scene
would fall im each section of the screen, and each processor
would do about %1/m%*2 of the total work of a uniprocessor
working on the same scene. That is, each processor would be
respoasible for {approximately) i/n®*%*2 of the polygons, and
thus have i/n*%*2 of the total vertices, 1/n%¥2 of the total
nasber of segrents, etc. Parke, therefore, claims that for
a fixed scene, processing time and number of processors are
related by graphs with the general shape of fiqure 13. (Ba-
sically, doublimg the number of processors halves the execu-
tion time of a given scene.)

3 Space Shuttle data courtesy of NASA.

- 30 -
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PFor the interlace machisme, however, the timiang curve does
not approach zero, but instead approachkes sose comrstant
vhich is the time regquired for a processor to process the
poiygon time {Gt} and vertex tigpe {Vt} for each polygom in
the scene. Thus, execution time graphs for imterlace ma-
chines are generally shaped like figure 4.
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Of course, one can construct pathological scenes for
which adding fprocessors does not significantly reduce pro~
cessing time for either scheme (or both schemes). And one
could alsc note that the splitter architecture?s execution
time does not actually approach zero, but instead approaches
a constant which degends on the scene*s highest depth com~
plexity (mamely,

{Gt + V¢t 4 5¢ 4 Pt) * max{Dc}.

However, the real question raised by Parke®s work is the
relevance of these graphs to wmachines workiag on real data.

We now investigate this gquestion.

&.2 THE ANALYZED SCENES AED THEJR RESULYS

He will now present the analyzed scemes, and their tising
Fesults in millions of memory cycles. He also include sta-
tistics on a third architecture, the ®hybrid,*” which we will
discuss later.
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6.3 SCREEN COEPLEXITY: AREA ¥S. NUBBER QF POLYGOES

Suppose we were given one large and one small polygon to
display, and two processoxs to display then. WHould it be
better to give each processor a polygon, or to have each
processor display half of each polygon? In one case, ¥ue
give one processor significantly more work to do {in teres
of nuysber of pixels to calculatel. In the other, we double
the polygon setup time, because both processors musi set up
bothk polygons. This section investigates the relationship
betveen area and polygon overhead, and shows that polygon
setup is relatively inexpensive when compared to displaying
large polygoas. :

#e should first consider what we mean by "screen cosplex—
ity? and "distribution of poclygoms over the screesn.' One
meaning of these terms refers to the placeaent of each poly—
gons'! center of mass on the screen. Another meaning is the
distribution of depth complexity® over the screen. These
concepts are related, but not ideantical. Consider figure
26,

@ The depth complexity at a given pixel is the number of po—
lygons which fall on that pixel; the depth coaplexity of a
scene Ls the average number of polygons which £all over
all the pixels.
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The polygon placement 1s skewed to the left, but the depth
complexity is skewed to the right. Detection and measure-
pent of skewness vas outside the scope of this project, alt-
hough ve will use the intuitive concepts.

The most obvious difference between the two schemes is
that the interlace machine is relatively insensitive to non-
uniform areaS and polygon distributioms, and the splitter
architecture allows some processors to completely ignore
some poelygons {especially if +the polygons are distributed
uniformly) .

To state this problem differently, ve note that the al-
gorithe depends on the following parameters:

number of polygons

nusber of vertices per polygon

height per polygon (in resolution units)
area per polygon

The interlace architecture attacks these problems fron the
bottos of the list, cutting the area and height of polygons
in very requilar and predictable vays. The splitter attacks
this list from the top, reducing the mumber of polygons each
@icro must process.

. The relative importance of the puaber of polygoms and to-
tal polygon area cap be illustrated by figure 15.

is figure 27 shous, the 16-processor splitter =achine
does noct spend most of its time working om section {3,2), as
one might expect. Sections {1,0} and {2,0) require more
time. This parodox can be understood by examining the rela-
tionship between area and polygon setup time.

5 By area we pean the aumber of pixels a polygon covers.
Thus, a single point kas an area of 1. Depth complexity
{Dc} and average area per polygon are related by the for-
mula

Dc * Resolution_in_X #* Resolution_in Y
= number_of_polygons * average_area_per_polygon.
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Suppose we have a polygom which is 128x128 sqguare on a-
i6-processor splitter machine {i.e. this polygen fills a mi-
cro's entire portion of the screean). How many polygons of
one vertex {i.e. single poimts) can be processed in the time
regquired to process one large polygon? HWe have

Gt 4 4Et 4 128St 4 {128%#2}pt
= n{Gt 4 Et 4 St + Ptj.
This syster reduces to
(Gt 4+ 4Et 4 1285t + (128%%2)Pt)

/ (Gt 4+ Et 4+ St 4 Pt}
573.

o

]

Thus, over 1000 point poiygons can be processed in the
time required to process the two polygons (rumway and lands-
cape} in secticos {1,0) and {2,0}.

If the spall pclygons.are triangles swhose area is 0.01
that of the total region {i.e. 12.8x12.8 pixels, averagel,
the equation becopes

t

(Gt + 4Et +'1285t + {128%%2) Pt)
/ (Gt 4+ 3Et ¢ 12.85t 4 {12.8%%2)Pt)
55.

o

#

The point of this discussion is that, of the two kinds of
complexity {number of polygons and total area}, nwrany, Bany
small polygons are reguired to equal +the complexity ({in
terss of processing time) of a very few large ones. Thus,
reducing the area rer processor is more important than sim-
ply reducing the number of polygons per processor; and if
very few micros are to be used (say, around &), distributing
the total area to be processed is probably more important
thap attempting to reduce the number of polygons each pro-
cessor must haandle. The 1interlace scheme very effectively
distributes total area among all processors, while the
splitter scheme may or may not, depending on the particular
scene to be processed. In fact, in the scenes analyzed be—
low, the U4-processor interlace scheBe was superioctr to the
Four processor splitter im all but tvwo cases.
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8.4  SPLITTER'S SEESITIVITY %0 K
DAZ)

Since screen complexity is so important, one would expect
the interlace architecture to have an advantage over the
splitter architecture for four processor machines. However,
vhen the number of processors is increased to 16, both ma-
chires have reduced the number of pizxels each =aicro must
cover from 64k to 16k. The gquestion bhecomes: Has the
splitter sufficiently reduced the size of each nmicro's
screen? And, has the interlace scheme begun to encounter
its problems with polygon overhead because each processor
must examine each polygon? The answver to both these ques~-
tions is unclear for the i6-processor machines, and the coa-
parison of thes is inconclusive. To examine the sensitivity
of the 16-processor splitter to very slight scemne changes,
several scenes vere selected, and then modified siightly to
yield especially favorable and uanfavorable divisions of the
screen. To summarize the results, a slight change in scene
caused- as much as 68% increase ia the time required to pro-
cess tvo very similar scenes. These results are imn figures
28, 29 and 30.
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The performance results for the 16 processor iaterlace
and spiitter mpachines working on figures 16 through 25 are
given in fiqures 28, 29 and 30. Figure 28 shows the amount
of time required by each processor. The times given in sec—
onds and frames per second are assusing 300 nsec memory, and
that memory cycle time exactly equals processing time.

As the ‘Yexecution time" graphs {figure 28) show, the
splitter architecture may be very effective im dividing a
given stcepe, but a small chasge in that scene may degrade
its performance dramatically. The interlace pattern, on the
other hand, is always between these two extrenes. To pat
this increase into absolute numbers for scenes 18 and i9
{the scenes with the largest percentage variatiocn), the
%good® split vould have required . 189 secoands to display on
a 16—-processor splitter. The slower "poor® split would re-
quire .318 seconds (with both estimates assuming 300 nsec.
Eemory <ycle time, and that the execution time exactly
equals the memory cycle time). The ¥®good" split would yield
around 5 frames per second; the poor onmne ohly 3. By con~
trast, the interlace machine would produce around & frames
per second for both scenes; the differences between the pro-
cessing times are imsigmificant.

Oone should remesmbker that the purpose of these small scene
changes was to investigate how the i6-processor splitter
compared with the 16-processoer iaterlace scheme. Thus, the
figures for the 4-processor splitter architecture should not
be overemphasized. Still, the interested reader may want to
compare these graphs to those in {[Parkes{}.

Figure 29 shows in more detail how the {6—-processor ma-
chines reacted to siight scene changes relative to the uni-
processor model. In going from figure 18 to 19, the split-—
ter®s time increased from 16% to 28% of the uniprocessor's
time. The 1interlace scheme's greatest variation was 1%.
Pigure 29 also shows the percentage change in uniprocessor
tipe; the largest variation was 8.5%.

Figqure 30 attenpts to shovw how chandges in the processing
time of similar scenes would be perceived by a user at a
display. For examgple, assume that soneone is using a
i6-processor interlace system to display figure 18. This
scene would take around .237 seconds to generate. If the
user moves quickly to figure 19, the processing time de-
creases to .228 seconds. This represents a relative perfor-
mance improvement <f arcund 4%. A4 splitter systen?'!s perfor-
mance would change from . 189 seconds per frame to .J31i8
seconds per frame, a relative performance degradation of

68%.

In figure 30, the splitter scheme?s relative performance
changes dramatically, while the interlace scheme’s perfor-—
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mance changes very little for small scene changes. ' The
percentage change in uniprocessor times have also been given
in figure 30, in the absence of a good measure of scene cok-
plexity. Of course, the uniprocessor's perforsance changes
little.

4.5 EFFECTS OF POLIGON QVERHEAD OF ; SCHEHE

As Parke notes ([ Parke80]), the main problem with the in-
terlace scheme is that each processor must process each po-
lygon. The effects of this cam be seen in the landscape
scene statistics of the 16~processor interlace machine. In
all but one sceae the slowest processor spent over 50% of
its time in polygon setup and edge (vertex) processing. As
the aumber of polygons in the scene increases, or as the
number of processors iacrease, this effect will be ®ore and
aore proncunced. In fact, one can roughly estimate the time
required for a given processor interlace machine. Consider
a p%¥*2 processor machine, with amn nxh interlace pattern.
the average polygom area per processor will be 1/n*#%2 that
of the uniprocessor systes. And the average height per po-
lygon will be reduced by 1/n. If we extrapolate to a 256
processor machine {in a 16x16 interlace patterm) operating
on these same scenes, 75% of each processor®s time will be
spent in polygon overhead and vertex processing. Adding
BOre processcrs can only improve perforaance by 25%, at
most.  Thus, the interlace scheme quickly encounters the
problems of dianinishing feturns for sany processors.
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4.6 PARKE'S HYBRIpD SCHEHNE

To sumpmarize each machine’s weaknesses, the splitter suf-
fers fros non-uniforam data distributions which overload in-
dividual processors. The interlace machine pays very high
overhead costs because each micro sust process each polygon.

One scheme which attempts to solve these problegs is
Parke®s hybrid scheme [ ParkeB80). & 16-processor hybrid com-
puter splits the screen into several large chunks ({say 4)
and then has a nubber of processors {say 4} assigned to each
chunk in an interlace fashion. As appealing as this might
seen at first, this scheme is not markedly superior to eith-
er the straight interlace or sSplitter schemes. The reason
is that it splits the screen into large chunks {and the
chunks can have significantly different amouats of work to
do), and then pays for each processor in the chunk to pro=-
cess each polygon. ' In cther words, this scheme contains the
elepents of the worst of both worlds, as well as the best.



Chapter Vv

CONCLUSIOES

5.1  SUBBARY OF SINULATION BESULIS

The scenes of the shuttle proper demonstrate clearly the
strengths and veaknesses of the two schemes. Ih cases where
screen complexity is spread relatively evealy over the
screen {e.g. the cargo bay), the splitter is clearly the
better schene. In cases where cosmplexity is hopelessly
skeved (e.g. the shuttle profile), the interlace schepe is
preferred.

The airport landscape scenes demoastrate a middle ground,
where neither machine is clearly superior. If ope imagines
figures 16 through 21 to be smapshots taken fror a plane ap-
proaching a runway, then figure 31 atteapts to plot execu~
tion time as a function of the planet*s position on this ap-
proach path. Execution times for similar scenes are
connected to show hov perforsance changes with saall changes
ian scene. The reader is cautioned that often the change in
Processing time is more attributed to a change in target
than a change in the position of the viewer alone. :
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In these scenes, the splitter reacted to small changes in
the scene by large changes in processimg time. The inter-
lace scheme was not greatly affected by these small changes.

5.2  CONCLUSIONS

As noted earlier, the single nmost important problem is the
total number of pixels a processor must handle. Thus, oae
does not want to split the screen into large, contiguous
chunks, because the complexity of the scene (both in the
number of polygons and amount of area) can vary greatly with
a very small variation in scene. Since the interlace scheae
effectively divides the screen area, for few processors (say
4) the interlace pattern is preferred. As the nuaber of
processors increases to 256, the interlace pattern clearly
spends too much of its time in polygomn setup and edge pro-
cessing; thus the splitter is preferred if am individual
processor is responsible for a relatively small area of the
screen. If one is to build a machine with an intermediate
number of processors (say, 16), the choice (at least from
these results) is less clear; the two schemes are fairly
close. The splitter scheme still suffers from the large
area per processor problem, and thus, its times for similar
scenes vary widely. On the other hand, the times for the
interlace scheme vary little; however, this scheme is start-
ing to show the effects of the polygon overbhead problea.

5.3  FUBTIHER BESEARCH

Although the statistical characteristics of typical
scenes cam strongly influeamce the performance of certain
graphics machines, very 1little work has been dome in this
area. With the exception of [Suthe72], almost nothing is
known about graphics data. Hence, one designer created a
scheme which depends heavily on a uniforam distribution of
polygons over the screen, and another explicitly assumed the
opposite. To combat this scarcity of information, we have
included typical raw scene statistics in an appendix. Prior
knowledge about the nature of graphics data cam only help in
the design of future machine. While these statistics are
hardly a definitive work, they may provide a base for more
work later.

One problem we were not able to solve was finding a me-
tric vhich wvould relate the statistics for a uniprocessor
system to a splitter systenm. In section 4.5, ve developed
an analytical method for estimating the time required for aa
interlace processor to display a given scene, given the sta-
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tistics {number of polygons, average height, average width,
average area) of the scene as a whole. We could not find a
siaple technique for estimating the time required for the
splitter architecture, because the splitter depends oa the
placement of the polygons over the sScreea. The two dimen-—
siocnal clustering of both depth complexity and nuamber of po-
lygons iaplies that the scene must be split, and each sec~-
tion analyzed separately.

Clark and Hamna in [ Clark80] have introduced a scheme si-
milar to the interlace architecture. Their syster 1is de-
signed for VLSI displays, but could be easily expanded to
ezecute a Z~buffer algoritham. Giver a model ezpressing
their systens processing time in terss of data characteris—
tics, their system's performance could be modeled easily us-
ing the technigues of this project. Of course, since they
are using a radically different implementation {custom VYiSI
chips 1instead of progyrammed general purpose picroproces—
sors), the Dbottlenecks of their system may be completely
different from those in splitter and interlace systess.
Even so, a study of the characteristics of typical images to
be generated wculd be very useful for the design of fature
custoas display schenes.

Henry Fuchs [ Fuchs80)] has suggested that his imterlace
architecture cculd be improved by freeirg each =micro froam
deoing polygon setup . and many of the edge caiculatioas. The
thrust of this idea is that the polygons could be broadcast
to the micros with {for example} the top vertex already lo-
cated, and all the edge increments already calculated. This
could be accomplished by giving each processor different po~
iygons. Each micrc then does the cozmmon setup on its poly-
gons, and broadcasts them to other micros in semi-digested
fors at the appropriate tine. This mogdification wouid al-
leviate the scheme’®s polygon setup time problem, but would
fequire more transsission time and BeRBOrY. This topic Bmer-
its further study.

As pentioned in Sectioh 2.3, sope vertices aust be pro-
cessed by both the left and right hand side cods. However,
this effect can be compensated for by testikg to deteramine
whether or not the delta calculations pust, in fact, be
dope. #®hile the net result of these two facis is negligible
for the nnaniprocessor nachinme, the multiprocessoer machines
can be affected greatly.

Specifically, if one tests to see whether or not delta
calculations are required for an ianterlace machine, the tine
required to process the scene of figure 18 drops by arocuad
20%. This topic, also, merits futher research.



REPERENCES

{Clark80] J. H. Clark, M. R. Hannah, "Distributing Pr009534
ing in a High~Performance Smart Izage Memory," Lasbda, Vo-
lume 1, Number 3, Fourth Quarter, 1980.

‘[ Fuchs?7] H. Fuchs, "Distributing a V¥isible Surface algor-
ithe Over Multiple Processors," Proceedings of the 1977 ACH
“Annual Conference, Seattle, Washington, October 1977.

frdchs?é] H. Fuchs, B. dJohinson, "“iAn Expandable Hultlproces-
sor Architecture for Video Graphics," Proceedings of the 5tk

Symposius on Copputer Architecture, April 1979.

{ Puchs80} d. Fuchs, personal communication.

fPuller77] S. H. Fuller, W. E. Burr, "Heasurement and Evala-
ation of Alternative Computer Architectures,® Computer, oc-
tober, 1977.

{ Newsan79] ¥. K. Newman, R. F. Sproull, Principles of Inter-
active Computer Graphics, McGraw~Hill, 2nd Edition, 1979.

[ Parke79a] F. I. Parke "A Parallel Architecture for Shaded
Graphics," Techunical Report, Computer Engineering Dept.,
Case Western Reserve University, Jan 1979.

{Parke??b] F. I. Parke, "performance Analysis of Z-Buffer
Convex Tiler Based Shaded Image Generation,® Technical Re-
port CES 79-15, Computer Engineering Department, Case Hest-
ern Reserve Umiversity, October 1979.

{Parke80] F. 1. Parke, "Simulation and Expected Performance
Analysis of Multiple Processor Z-Buffer Systeas,® SIGGRAPH

1980, pp 48-53.

{SchacSi] Be Ja Schachter, YComputer Image Generation for
Flight Siwmulation,® IEEE Cosputer Graphics and Applications,
October, 1981.

fShohat77] H. shohat, Jd. Florence, "“Application of Digital
Irage Generation to the Shuttle Hission Simulation,”® Pro-

geedings of the 1377 Sumper Coaputer ;muigg;g Confere gge,
1977.

- 63 -



o4

[Suther74] I, E. Sutherlaand, R. F. Sproull, R. Aa
Schumacker, "4 Characterization of Ten Hiddesn Surface Algor-
ithms,® Computinqg Surveys, March 1974.



Appendix A
PROGRAN LISTIEGS 1IN C

This appendix contains a C routine vhich isplements the
Z-buffer algorithm described in Chapter 2. The routine con-
tains 8 modules which are simply concatenated together. The

sodules (in order} are:

variakbles.c
polybodyi.c
.edgebodyt.c
segmpentbodyi.c
pixelbody.c
segmnentbody2.c
edgebody2.c
pelybody2.c

The module “variables.c®™ contains variable declarations.
Generally, most of the processing domne by polybodyil concerns
polygon setup, and most done by edgebodyl comcerns edge

{i-e. vertex} processing, etc.
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variables.cC

/f nunber of Cimensions per vertex (X, y, Z, shacding) */
#cefine vertex_size

/* subscript of ‘x' values in poly */
#cefine x O

/* subscript of ‘y' wvalues in poly */
#cefine y 1

/* subscript of 'z' values in peoly %/
#cefine z 2

/* subscript of 'sh' values in poly */
$define sh 3

/* starting points, step clze, ané image resolution =/
#cefine xstart O

#cefine ystart O

#cefine xstep 4

#cefine ystep 4

#cefine xsize 128

#define ysize 126

/* variables concerned mainly with pixel calculation */

int ®*pi_in_ptr, /* ptr to image buffer for current pixel */
*pi_z_b_ptr, /* ptr to z buffer for current pixel */
*ri_z_s_ptr, /¥ ptr tc z buffer for last pixel to paint */
ri_z, /* Gistance for current polygon point */
ri_<z, /* increment for pi_z */
ri_sh, /* shacing for current polygon point */
pi_ash; /¥ increment for shacing value (pi_sh}) */

/* variables concerned with segment calculation */

int SeC_ Y /% current y value {row cesignator} */
seg__z_1, /* z value for left scanline endpoint */
Seg_Z_T; /* 2 value for right scanline endpoint */
seg_sh_1, /* shading value-~left endpoint of scanline */
seg_sh_r, /* shacing value~-right enapoint of scanline %/
seg_x_1, /* leftmost x value for current scanline */

. BeG_X_T, /% rightmost x value for current scanline */

seg_i,seg_J; /* tenporaries %/

int ' /* row pointers ¥/
(*seg_zr. ptr) [xsize/xstep], /% ptr to current row of z buffer */
(*seg_ir_ptr){xsize/xstep]; /* ptr to current row of image buffer */

/* variables for eage calculation */

int ea_cx_1, /* delta value for x intercept, left sice */
ed_G¥_1, /* aelta value for ¥ intercept, right side */
ed_oz_1, /* aelta value for 2, left side */
ed_cz_r, /* delta value for z, right sice */
ec_ash. 1, /* delta value for shading, left sice */
ec_ash_r, /* delta value for shading, right sice */
ec_x_1_skirg, /¥ distance to next assigned pixel (left sice} *»/
ed _X_r_skig, /* same as above, right side %/
ea y_ 1 skip, /* distance to next assigned line (left sice) */

ed_v_r_skig, /* éistance to next assigned line (right) */



int

int

int

variables.c
ed_c_y_1, /* current left vertex's y value */
ed_c_y_r, /¥ current right vertex's y value */
ec_n_y 1, /* next left vertex's y value */
eG_n_y_r, /* next right vertex's y value */
*ec_c_v_1l_ptr, /* current left vertex pointer */
*eg_c_v_r_ptr, /* current right vertex pointer */
*eo_n_v_1_ptr, /* next left vertex pointer */
*eg_n_v_r_ptr, /* next right vertex pointer */
*od mX_V_ptr, /* pointer to last vertex in poly array */
ed_is /¥ scratch variable */

/* variables for polygon setup */
po_x_1, /* % value of top leftmost vertex %/
PO_X_I, /* x value of top rightmost vertex */
po_min_y, /* y value of bottom of polygon */
*po_poly_ptr, /* temporary pointer into polygon */
po_n_vert, /* number of vertices in this polygon */

poly[10] [vertex_size], /* area to store a polygon */

po_y,

/*

y value loop temp */

po_i,po_j,po_k; /* temporaries %/

i;

image[ysize/ystep] [xsize/xstefp],

/*

temporaries %/

/* image buffer =/

z_buf[ysize/ystep] [xsize/xstepl; /* z buffer */



polybocyl.c

/* This section reacs in number of vertices (po_n_vert) anc
* the polygon vertices. The polygon is stored in "poly."
* This coce alse finos the topmost right and lett sice
: vertices,

/* Macro to go arcund a polygon counterclockwise (i.e. scan

* to the left).
*/

taefine vertl(ptn) {{ptry=ed_mx_v_ptr)? &polyli0)[C]: ptrtvertex_size)
/* Macr¢ te go arouna a polygon clockwise {i.e. scan to the right).
=

#cefine vertr(ptr) ((ptr<=poly) ? ed_mx_v_ptr : ptr-vertex_size)

/* Macro for croup algebra caleculation to move from any given line to the

*/next interesting line.
*®

#oefine groupy(line) ({{line) < 0) ? ystep + (line) : (line))

/* Read the number of vertices., 'eof' means guit and go home. */
while (s?anf(“%c“, &po_n_vert) != EOF}

for (po_i = 0; po_i ¢ po_n_vert; po.i++)
{

1

. Po_poly_ptr = apolylpo_i]l[0];

/* Read x y z sh and point code (which is tossed). */
scanf (“%a %G %G %G %*G",&po_poly_ ptrx}l,spo_poliy. ptriyvl,
} kpo_poly_ptrlzl, &po_poiv_ptrishl};

/* Finc high and low vertices for both left and right sices.
* Since we assume the polygons are gescribed in a counter-
* clockwise orientation, "down" the structure poly goes
* counterclockwise ané thus comes to the top of the polygon
* from the right.

*/
ea_c_v_r_ptr = ed_c_v_1_ptr = ed_mx.v_ptr = &polylpo_n_vert - 11{0];
po_min_y = po.y = ed_mx_v_ptriyl: /* highest y value so far */

po_x.1 = po_x_r = ed_mx_v_ptrlxzl;
.po_poly _ptr = ec_mx.v_ptr - vertex_size;

while (p?_poly_ptr >= gpolyi01(0])

pPo_k = po_poly ptriy};
if (poﬂk{> po_y}

eG_c_v_r_ptr = ed_c_v_1_ptr = po_poly_ptr;
pPo_y = po_k;

Po_x_1 = po_x_r = eg_¢c_v_ 1 _ptrix];

}



]
poiybodyl;c

else {
/* SBince we havenft hit a new *high', check to
* see if we're going along a horizontal (tofp)
* ecge, If so, make sure that we Keep left &
: right pointers correct.

if {po_k == po_y)
{

/* case of poly ptrix} */
if (po.p?ly,ptr{x] < po_x_1)

ed_c_v_1_ptr = po.poly_ptr:
?Q_X_l = po_poly_ptrix};

else %f {po_poly_ptrix] > po_x_r)

ed_c_v_r_ptr = po_poly_ptr;
?Q-K-I = pq_pqu_ptr[x];

else if {(po_min_y > po.k) po_min_y = po_k;

€Q_poly_ptr -= vertex_size;

/* Initialize values for first go through edge code. */
eG_n_y. 1l = eé . ny r = ysize + 1;
ed_n_v_r _ptr = vertr{ec_c_v_r_ptr);
ea_n_v_1 ptr = vertl{ed_c_v_l_ptr);
seg_y = ed_c_v_l_ptrilyl;:
i = groupy{ystart ~. (seg_y % ystep));
if (i 1= 0) seg_y == ystep - i;

/* Set up pointers to current row of z and image buifers.
*/i.e. set up pointers to top row of current polygon.
*
i = seg_y / ystep;
seg_zr_ptr &z_buf{il[0]:
seg_ir_ptr image[i};
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edgebodyl.c

/* macro to calculate the next vertex along the left edge
* of the polygon.
®

#cefine nextl(ptr) (ptr > ec_mx_v_ptr) ? &polyl0}{0]: ptr

/* Macro to calculate the next vertex along the right ecge
* of the polygon.
*
#cefine nextr({ptr) (ptr <= {&polyll}iix})) \
ec_mx_v_ptr \
ptr - (vertex_size << 1)

P

/* Macro for max ana min functions, ¥/
#cefine max{i,q) {(i<3) 7 3: 1
#cefine min{i,3) (i<3) 7 i: 3

/* Macro for group algebra calculation of @istance from current line to next
¥ interesting line,.
* / .

#define groupx{a) {{{a) < 0) ? xstep + (a) : (a}}

/

Loog to Go all affectec segments--

while the left siace y values are still going dGown,
continue the processing. When they start going
back up, we know we've roundec the bottom of the
polygon ané are through.

The test is mace after the left edge is updatec,
instead of a more conventional loop control.

* % A oW N ¥ »

*/

while (s?g,y >= po_min,y)

/* set up left eGge if necessary %/
Cif (seg_¥ <= ea_n_y_1)}

seg_X_ 1l = *ec_c_v_I1_ptr++;
eG_C_y. 1 = %ed_c_v_1_ptr++;
/* how far away is the next
* interesting line?
*/
ed y.l_skip = ed.c v 1 - segqg_y;
Pi_z = seg_z_1 = ®ed_c_v_1_ptr++;
pi_sh = Beg_sh_ 1 = *eg_c_v_Ii ptr++;
o c_v_l_ptr = ed_n_v_1_ptr;
ec—n_y 1 = eén_v_ 1 _ptriyl:
ec_1i = eo_c_y_l - ed_n_y 1;
ec_ax_1 = (*ed_n.v_ 1_ptr++ - seg_x_l) / ed_i;
seg_xX_1 += ed_ax_1 * ed_y_l_skip;
/* force to the correct pixel
* on our next line,
*/
ed_x_1_skip = groupx(xstart - {seg_x_1 % xstep)}:
seg_¥..1 += ed_x_1l_skip;
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edgeboayl.c

ed_dx_1 *= ystep;
ea_n v_ 1 ptr++; /% skip y */
eé_az 1 = (*ed_n_v_1 ptr++ - seg_z_ 1)} / ed_i;
* repeat above x calculations for
* z and sh.
. %/
pi_z = seqg_z_1 4= ed_dz_1 * ed_y_1_skip;
ed_cz_1 *= ystep; )
et_ash 1l = {*ed_n_v_l_ptr++ - seg_sh_1) / ed_i;
pi_sh = seg_sh_1 += ed_dsh_1 * e¢_y_l1_skip;
ea_ash_1 *= ystep:
ed_n_v_]1_ptr = nextl{eda_n_v_1_ptr);
} while ((seg_y < ed_n_y_ 1) & (ed n .y 1l < ed_c y 1));

/* set up right edge if necessary */
if (seg_y <= ed_n_y r}
ao { :
Beg_x_r = *ed_c_v_r_ptr++;
ed_Cc Y. r = %*ed_c_v_r_ptr++;
eG_y.r_skip = ed_c_y_r - seg_y;
5eG_zZ_Ir = Yed_ C_vV_I_pir++;
seg_sh_r = *ed_c_v_r_ptr++;
ed_c_v_r_ptr = ei_n_v._r_ptr;
ec.n .y r = ed n v r ptriyl;
ed_1 = ed_C_y.r - ec_n_y_r;
ed_ax_r = (*ed_n_v_r_ptr++ - seg_x_r) / ec_i;
seg_x_r += ed.Gx.r * ed_y _r_skip:
ea_dax_r *= ystep;
eG_n_v_r_ptr++; /* skip y */
ed_qaz_r = (*ea_n_ v_r_ptr++ - seg_z r) / ed_i;
seg_Z_ Y += ef_dGz_r * ed_y_r_skip;
eG_dz_r *= ystep;
ed_dsh_r = (*ed_n_v_r_ptr++ - seg_sh_r) / ed_i;
seg_sh_r += ed_dash_r * ed y_r_skip;
ed_ash_r *= ystep:
ed_n_v_r_ptr = nextr{ed n v_r_ptr);
} while ((seqg_y < ed_n_y.r) && (ec_n_y.r < ed_c_y_r)l;

seg_i = max(ed.n_y_l, ed_n_y r);
if (ed_le_skip I= 0}

pi_z = seqg_z 1 = seg_z_1 + (ed_x_1l_skip
* ((seg_z.r - seg_z.1) / (seg_x_r - seg_x_1}));
pi_sh = seg_sh_1 = seg_sh_1 + {ed_x_1_skip
: *{(seg_sh_r - seg_sh_1) / (seg_x_r - seg_x_1))};
?ci__x_],_skip = 0;
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segmentbocyl.c

This is the segment (or scanline) section,

It sets everything up so that the pixel code can march
along the current segment (or scanline, if you prefer).
This involves positioning pointers into the z and image
buffers for the first anc last pixels to be consigereg,
setting up the z anc sh values ana their delta values
{i.e. 2 ané& sh's increments}.

* % A R R K XN

/

éo { .
pi_z_s_ptr = seg_zr _ptr(0];
pi_z_s_ptr = pi_z b ptr = &pi_z_s& ptriseg_x_l/xstepl:
pi_im_ptr = seg_ir_ptri0];
pi_im_ptr = spi_im_ptrlseg_x_1/xstepl;

seg_j = (seg_x_r - seg_x_1):
pi_cz = ((seg_z_r - Beg_z_1l) / seg_j)} * xstep;
pi_ash = ((seg_sh_r - seg_sh_1l) / seg_3j) * xstep:

pl_z_s_ptr += seg_3 / xstep;

/* inner loocp | */
/= v =/



pixelboay.c

/* This section of code paints the pixels {if appropriate)
:/across the current scan line.
for ¢ :P%—z_b_ptr <= pi_z_s_ptr; pi_z_b_ptr++)
if {pi_z{< *oi_z_b_ptr}

*pi_z_ b _ptr = pi_z;
;pi_im;ptr = pi_sh;

. pi_im _ptr++;
pi_sh += pi_dsh;
$i_z += pl_Gz;

T3



T4

segmentboayi.c

/* "
/* inner loop | */

pix. 1 = seg_x_1 += ed_ax_l;
Seg_X_I += ed_gax_I;

pi_z = seg_z_1 += ed_qz 1;
seg_z_r += eQ_QzZ_T;

pi_sh = sec_sh_ 1 += ed_Gsh_1;
seq_sh_r += ec_ash_r;
seG_zr_pir—-;

seg_ir_ptr--;

seg_y -= ystep;

i while (seg_y > seg_i);



edgebody2.cC

ns




polyboay2.c



Appendix B
PROGRAN LISTIEGS IN PDP-11 ASSENBLER

" This appendix contains the PDP/11 assesbler code which
implements the Z-buffer algoritha described in Chapter 2.
This code was generated by the C compiler on a Version 7
UNIX6 system, and then modified by hand to improve its exe~-
cution efficiency. Beside each statement, a pair of nusbers
appears. . The first number refers to the number of memory
cycles required to fetch the iastruction {assuaning 16 bit
fetches} . The second number refers to the number of memory
cycles reguired to fetch {or store) the instruction's data.
For example, consider

nov  *R1,R2 /2 1.

To execute this instruction, two 16-bit words of instruction
nust be fetched, and one 16-bit data vword must he fetched.

¥ultiply and divide instructions are marked with ®H® and
®p®, respectively. Both were assumed to require i0 memory
cycles to fetch their instruction and data and to execute.

. Commentary beside the iastructions will give the reader
some qguide to the decisions made when the analysis vas not
straightforvard.  For examsple, the statistical data do not
distinguish between left and right side vertices. But left
and right side vertices do require Jdiffereat amounts of time
to process because of a polygon®s representation in memory.
In this particular case, we assumed that left and right side
vertices were egually probable, and so a simple average of
the execution times was sufficient.

Each major section of code is labeled POLY, VERTEX, SEG.
or PIX. Blocks marked POLY are executed on a per polygon
basis. Blocks marked VERTEX are executed for each vertix
(or edge). Simarily, SBEG. refers to segsent {or scan line)
processing, and PIX. refers to pixel processing.

6 UNIX is a trademark of Bell Telephone'LahoratorieS,

- 37 -
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B.¥ CODE FROE POLYPODYI.C AND POLYBODYI.C

The following section of assembler <code is the result of
the POLYBODY1.C and POLYBODY2.C from Appendix A. No other
rodules are considered.



poly.s.as.ana

ash $3, r0

aGaa r5, ro

agd $poly, rd

mov r0, ea_mx_wv_(r5}

L& :mov po_n_ver(r5), r0

mov r0, ed_c_v_1(rs)
mov r0, ed_c_v_r{rhs)
mov ed_mx_v_{(r5), ré
rmov 2(r4), ro

mov r0, po_y(r5)

mov 0, po_min_y{r5)

mov (r4), r0
mov r0, po_x_r{(rd)

mov r0, po_x_1l{r5)
acgc $-vertex_size, ré
mov r5, r0
aad §poly, r0-
Lll:
cmp r4, r0
jic 112
mov 2(rd}), r2

cnp po_y(rS), r2
jge Ll13

mov ré4, ed_c_v_1{r5)
mov r4, eG_c v_r{rd)
mov r2, po_y(r5)

mov *ed_c_v.1(r5), r0
mov 0, po_x_r{r5)

mov r0, po_x_1(r5)
jbr L1l4

L13:cmp po_y{r5}, r2
jne L15

emp po.x_1({r5), *r4
jle L16

mov rd, eq_c_v_1{rS5)
mov *ré4, po_x_1(r3)
jbr Ll7

/1
/2

/2
/1

/2
/2
/2

/2
/2

/2
/1

/2
/1

/2
/1

/2
/1

ook

OO0 b b b e e

O R R Ok OO

R (=08 X o

a4

poly setup POLY.

scan vertices  VERTEX.
<<<<luse 5

|
<<

it

<<<<|probability of finding a
inew 'highest' vertex is
lassumed to be .25,

£<<<| else ]
<<<<{|execution probability = .25.

<€<<<1if new leftmost vertex
<<<<{execution probability = .1.

{{<<{process new leitmost vertex
lexecution probability = .0
4444



poly.s.as.ana

Lié:cmp po_x.r(r5), *r4 /2 2 <<<<!lif new rightmost vertex
jge Lls /1 0 <<<{<lexecution probability = .1
mov r4, ed_c_v_r{rh} /2 1 <<<<lprocess new rightmost vertex
"oV *rd, po_x_ri{r5) /2 2 iexecution probability = .1
L16:L17:3br Ll /1 0 <<

L15:cmp £2, po_min_y(rs) /2 1 <<<<|if found new lowest vertex
jge L20 /1 0 |execution probability = .5
mov r2, po_min_y(r5) /2 1 <<<<|

L20:L15:L14: :

sub ${vertex_size*2}, r4d /2 0

jbr Lll yat o

Li2:mov %201, 0 /2 0 init values POLY.

mov r0, ea_n.y..r(r5) /2 1

mov r0, e _n_y_1{r5) /2

mov r5, r2 /1

aad $-254, r2 /2

cmp ec_c v.r{rd), r2 /2

Jhi L1000C /1

mov ec_mx_v._(r5), 0 /2

jbr L1000l /1

L10000:mov eqa.c_v_r{r5), r0 /2

aGa S-{vertex_size*2), r0 [ 2

L1000l:mov r0, ec_n_v_r(rd) /2

crp ea_mx_v_(r5), eé_c_v_1{r5) /3

jhi L19002 /1
jbr L10003 /1
L1000Z:mev ed_c_v_1(r5}, 0 /2
acd S{vertex_size*2)10, ro /2
L10G03:mov 0, ed_n_v_1(r5) /2
mov 2(r0), seg.y(r5) /3
mov Sxstart, r0 /2
mov $xstep, r2 /2
neg re . /1
mov seqg _y{r5}), 3 /2
bic r2, 3 /1
sub r3, 0 /1
jge L10004. /1
adaa $4, ro /2
L10004:

L10005:mov 0, ré4 /1
jeg L2l /1
mov $ystep, rl /2
sub rd4, r0 /1

HOOO < CDOoOO0ORFRPROOO [ 3 HOHOOC ] HOROKOHOO Lo

sub r0, seg_y{r5) /2



poly.s.as.ana
L21l:mov seg_y(r5), rl
sxt r0
Giv Systep, rd
ash $6, ro0

aad r5, rl

mov 10, rd

aGc $z_buf, r0 -

mov 0, seg_zr_p{r5)

ada Simage, r4

mov r4;, seg ir_p(rd)
jbr L4

L5:L3:

HOODOoOD [=0 )

O

4



g2
Ba2 CODE FROH EDGEBODYII.C AED EDGEBODY2.C

The following section of assembler code is the result of
the EDGEBODY1.C and EDGEBODY2.C from Appendix A. Ho other
modules are considered.



eage,s5.as8.ana
L4,
mov seg. y(r5), r3 /2
cmp po_min y(r5), r3 /2
jot LS5 /1
cmp e _n y_ 1(r5), r3 /2
jit L6 /3
mov ec.c.v_1(r5), r4 /2
L9:mov (rd)+, seg_x_1(r5) /3
mov (rd)+, ed_c. y_1l{(r5) /3
mov ed_c_y. . 1(r5), 10 /2
sub r3, 0 /1
mov r0, ed_y_l_s(r5) /2
mov {rd)+, r0 /2
mov r0, seg_z_1i{r3) /2
mov r0, pi_z{rS) /2
mov (r4)+, r0° /2
mov r0, seg_sh 1(r5) /2
mov r@, pi_sh(rh) /2
mov ed_n. v_1l{r5), r4 /2
mov réd, et_c_v_1(r5) /2
mov 2(r4), ec_n_y. 1{r5} /3
mov ed_c_y_1(r5), r2 /2
sub ed_n_y.1l{r5), r2 /2
mov r2, ed_i{r5) /2
mov {r4}+, rl /2
- sub seg_x_1{(r5), rl /2
Bxt t0 /1
div r2, ro _ /D
mov 0, ed_dx_1(r5) /2
mov r0, rl /1
nul ed_y_l_s(r5), rl /M
agd rl, seg_x_1(r5) /2
mov Sxstart, r0 /2
mov $xstep, r2 /2
neg 2 /1
mov seg.x_1(r5), r3 /2
bic r2, r3 ' /1
sub r3, r0 /1
jge L100GO /1
adé $xstep, £l /2
L10000:
L10001:mov r0, eda_x_l_s{r5) /2

H OO0 OHODOD H O H OFk M N i R R e e Okl N O O

loop control

if (1hs)

then section

VERTEX.

LHS

w3



B4

eage.B.as.ana
~adé r0, seg.x_1(r3) /2 1
mov ed. cx_l(r5), rD /2 1
ash Sxstep, rl /2 0
mov r0, eé_cx_1(r5) /2 1
mov {rd)+, rl /2 1
sub Beg_z_1{r5), rl /2 1
sxt g0 /1 0
civ ed_i{r5), ¢0 . /D
mov r0, eo_az_l{r5} /2 i
mov rl, rl /1 0
mul ed_y_l_s{r5), ri /M
add rl, seg.z_.l(r5) /2 1
mov seg_z. 1{r5), pi.z(r5) /3 2
nov eé&_¢z_1(r5), ro0 /2 1l
ash Systep, r0 /2 [
mov r0, ed_cz_1(r5) /2 1
mov {r4}+, ril /2 1
sub seg_sh_1(r5), rl /2 1
SXt. r0 /1 0
Giv ed_1i{r5}), r0 /D
mov t0, ed_tsh_1(r5) /2 i
mov rld, rl /1 0
mul ea_y_l_s(r5), rl /¥
adé rl, seg_sh_1(r5) /2 1
mov rl, pi_sh(r5} /2 1l
mov. ed_ash_1{r5), 0 /2 1
ash S$ystep, 10 /2 0
mov r0, ed_d&sh_1{rb) /2 1
cnp ec_mx_v_(r5), rd /2 1l
jhis Lico02 /1 0
mov r5, r0 /1 0 <¢<<|assume average time
aaa $poly, r0 /2 0 [through this section
jbr L10003 /1 ] lis 5 memory cycles
£10002:mov r4, r0 /1 0 }
L100G3:mov 0, ed. n_v_1{r5) /2 1 [ L4<Y
L7: '
mov seg_y{r3}), 13 /2 1
cmp ed_n_y_1(r5), r3 /2 b
jle L10004¢ /1 0 )
cmp ed_c.y_1(:-%), ed_n_y_1l(rs) /3 2 <<<¢<lignore looping,
jat L9 /3 0 <<<<]use 7 cycles

ent of lhs



edge,S.as.ana

L10004:L8:L6:
chnp ec_h.y r{r5), r3

jlt L10

L13: :

mov ec_c_v_r{r5), 4
nov r4, seg_x_r{r5)

mov (r4)+, r0

mov r0, ed_c_y r{r5)
sub r3, r0

mov r0, ed y_r_s(r5)

mov (r4}+, seg_z_r(r5)

mov (r4)+, seg_sh_r({r5)

mev ec_n_v_r(r5), r4
mov rd4, ec_c_v_r(r5)

mov 2(r4), ec_n_y_r(zr5)

mov ed_c_y_r{rd), r2
sub ec_n_y_r(rd), r2
mov r2, ec.i(rs)

mov f{r4)+, rl-

sub seg_x_r{r5), rl
sxt 0

aiv r2, ro

mov r0, ecd_éx_r{rs)

mov 0, rl
mul ed_y.r s(r5), rl
aod rl, seg_x_r(r5)

Ll4:mov eé_ax_r(r5y, 0

ash Systep, r0
mov 0, ea_ax_r(r5)

tst (rd)+

mov (rd)+, rl .
sub seg_z_r{r5), rl
sxt rd

Giv eg_i(r5), ro0

mov rlQ, eg_dz_r({r5)

mov r0, rl
mul ea_y.r_s{r5), rl
aad rl, seg_z_r{r5)

nov ec_az.r{r5}, 10
ash Systep, r0
mov rf, ec_cz_r{r5)

mov {r4)+, rl

O ke OHM O RO O O RN HRe N N HORNE He o R

O

if {(rhs)

then secticon

VERTEX

RES

g5
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edge.s,as.ana

sub seg_sh_r{r5), rl
sxt rd

aiv ed_i{zr5), 0
mov r0, ec_ash_r{r5)

mov 0, ri
mul ed y.r_s(r3), rl
adé rl, seg_sh_r{r5}

mov eé_ash_r{cs), r0
ash $ystep, 0
mov r0, ed_ash_r{r3}

mov .5, t0
add $-244, ro
cmp r4, 0

jhi L100G7
mov ed_mx _v_{r5), 0
ibr L1000B

L10007:mov rd4, r0 .
add S—-(vertex_size*2}, r0
L10008:mov rD, ec_n. v r(rs)

Lll:cmp ed_n_y.r(fS), seg_y(r5)

jle L1GC0S

cmp ed _c.y_r{rd), ec_n_y r{r5)

gt L13

L10009:L12:L10:

Chp ea_n_y_r(g5). ec_n_y._1{r5)

jle rigol

mov ed.n_y_r{rd), r0

jbr . L1001l

Li0010:mov ed_n_y.1(r5), 0
L100ll:mov r0, seg_i({rh)

tst ed_x_l_s(r5)
Jeq L15

mov seg_z_r{r5), rl

sub seg_z_1(r5), rl

sxt r0

mov geg_Xx_r (r5), r2

sub seq_x_1{r5}, r2

giv r2, r0

mov r0, ri

wmul ec_x_1_s(r5), rl
add seg_z_1(r5), rl

mov rl, seg_z_1{x5)

mov rl, pi_z(rb)

mov ség_sh_r(rS), rl
sub seg_sh_1(r5), rl

o o

o oo [ & HOOOHOODOO f el =0

P D b O R ORROM D RO

<<<<|this section estimated to

itake 6.5 memory cycles,
{average.

|
<<

<<<<lignore looping, use 1
enc rhs

Beg_il = ... VERTEX

<<<<|this section estimated
lto take 6.5 memory
icycles, average.

<k

if

¢<<<then section

| (probability of
entering this section
is assumed to be .3;
time requirea, 21.5
memory ecycles plus
one multiply and one
divide, average.)



sxt
aiv
mov’
mul
aaa
ROV
mov
clr

L15:
jbr

edge.E.a5.2na

0
r2, ro0
r0, rl
ec_x_1_s({r5), rl
seg_sh_1(r5), rl
rl, seg_sh_1(r5)

rl, pi_sh(rs)
ed_x_1 s5{r5)

L&

L5:L3:

O e e e o O

<<<<lend if

1
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B3 CGDE FEOH SEGHENTBODY1.C AND SEGHENTEODYZ.C

The following section of assembler code is the result of
the SEGHMERTBODY1.C and SEGHENTBODYZ2.C from Appendix A. Ho
other modules are considered.




gsegment.s.as.ana

L5:L3:

Lé:

mov seq x_1(r5}, r4 /2
mov rd, rl /1
Bxt 0 /1
éiv $(xstep/2), 10 /D
mov r0, r2 /1
adad seg_zr_ptr{z5), b /2
mov rG, pi_z b p(r5) f2
mov r0, pi_z_s_p{r5) /2
mov r2, rd /3
adé seg_ir_ptr(r5), r0 /2
mov r0, pi_im_pt{r3) r2
mov seg_x_r(r5), r3 /2
sub r4, 3 /1
mov seg_z_r{r5), rl /2
sub seq_z_1(r5), rl /2
sxt x0 /1
aiv r3, r0 /D
ash $2, o /2
mey r0, pi_dz{r5) f2
mov seg_sh_r{r5), rl /2
sub seg_sh_1l(r5), rl /2
sxt rd /1
Giv r3, 0 /D
ash $2, r0 /2
mov r0, pi_ésh(r5) /2
mov 3, rl /1
sXt r0 /1
aiv $(xstep/2); 0 /D
aad rl, pi_z_s_p(rS) /2
/inner loop, here

aaé ea_ax_1l(r5), seg _x_1(tr5) /3
ada ed_ax_r{r5), seg_x_r(c5) /3
adgd ed_dz_l{r5), seqg_z_1(r5) /3
mov seg z_1{r5), pi_z(r5) /3
aad ed_dz_r(r5), seg_z_r(r5) /3
.aad eg_dsh_1(r5), seg_sh 1l(r5) /3
‘mov seqg_sh_1{r5}, pi.sh{r5) /3
add ec_dsh_r(z5), seg_sh r{r5) /3
sub $100, seg_zr_p(r5) /3
sub $100, seg_ir_p{rbh} /3
sub Systep, seg_y(r5} /3
Lé:cmp seq_i(r5), seg_y(r5) /3
jlt L6 /1

= OO0 WO Ok O bt Okt =0 MO OO

ON M HEMRODNODNRBRDR

pointers SEG.

delta values

more with pointers

calc. next row values

loop control
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8.4 CODE FROE PIXELBODY.C

The following section of assembler c¢ode is the result of
the PIXELBGDY.C from Appendix A. ¥o other modules are con-
sidered.



mov
mov
mov
mov
mov

L4:
cmp
le
cmp
Jge
mov
nov

L7:
aga
aat

pi_
Pi.
pi_
Fi_
pi_

r4d,
rl,

ri,
r0,

pixel.s.as.ana

z_s_p(r5), rd

z_b_p{r5), r3:

im_pt(rd), r2
z(r5), rl
sh{r5}, r0

3
L5
*r3
L7
*r3
*r2

pi_ash(r5), ri
pi_dz(r5), rl

Lé:cmp (r2)+, (r3)+

jbr

L5:13:

L4

bt D bt ot ot ot et

[~ I Ry

setup pointers SEG.

loop control PIX.
test z buffer

replace’

upcate values

upadate peinters

loop control

q1



Appendix C
STATISTICAL CHARACYERISTICS OF SELECTED SCEMES
Ye will now give a few samples of the statistics collect-
ed on the scenes. For each scene, statistics were collected
for each processor in a uaiprocessor, &- and i6-processor
splitter and interlace schenes, and 1é6~-processor hybrid
schemes. Thus, statistics were collected for 57 processors
per scene.
In the statistics, the following ahbreviations are used:
i« ¥ data: number of vertices per polygon
2. Yy data: polygon height in scan iines assigned to this
processor {i.e. the number of segments processed for
this poiygon)
3. x data: not used

. 1 data: segment leagth in pixels assigned to this
processaor

5 D data: depth complexity per pixzel
6. area stats: nusber of pixels covered by each polygon

7. vertex time: average nunmber of vertices per polygon *
vt

8. segnent time: the average number of segments per po-
lygon #* St

9. pixel time: the average nupber of pixels per polygon
¥ Pt

§0. poly overhead: Gt

1i. avg poly time: vertex time 4 edge (i.e. segment) time
4+ pixel time 4 poly overhead

211 of the above times refer tc memory cycles.
The notation

fni = n

- g2 -
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indicates that m data points had value n. Thus, for vertex
data, [3] = 10 means that 10 triangles {a 3 vertex polygon)
were processed by this processor for this scene.

W#e have arbitrarily chosen figure 15 to use as an exam—
ple. Below are the statistics from a few processors working
on that scene. Each chosen processor #ill be identified,
and then its statistics listed.

Ca UNIPROCESSOR

The following statistics are from a uniprocessor working
on fiqure 15.






98

106.0.1ist

v cata
245 cata points
avg=2,947581, sti.cev=0.696531, var=0,485155
cistributicn
[1]=2 [2]1=54 [3])=153 [4]=34 [5]=4 [6]=1

y data
24E cata peints
ave=5.659516, stc.cev=26,242748, var=688.681824
c¢istribution
[11=31 [21=9%5 [3]1=68 [4]=23 [{5]=7 [6]1=11 [11]=2 [14}=4
[15)=4 [731=1 [280]=1 [302]=1 ’

no x stats

1 cata
1411 cata points
. ave=178.046768, stc.dev=222,982391, var=49721,144531
cistribution

: [11=462 [2]1=155 [3]=64 {[4]1=28B ({5]=23 |

[71=4 {8}=2 [2]=1 {101=3 [111=6 [12]=6 {131=4 [15]=1
1201=1 [22]=1 [25]=1 [28]=1 [301=1 [33]=1 [35]=1 [38]=1 [41]=] {4
[43]=1 [44]=1 [46]=1 [4B]=1 [51]=1 [53]1=2 [54]1=2 [55]=1 [36]=2 [5
[56]=1 [59]=2 [60]=1 [611=1 [62]=3 [64]1=2 [65]=1 [66]1=2 [67]=1 (6
[69)=2 [70)=2 [72]=3 {[74]1=2 [75]=1 [76]=2 {77]=1 [78}=2 [80}=3 |
[82]=2 [B4]=2 {B5]=1 [B6]=2 [B7]=1 [8B]=2 [%0]=3 [91]=1 [B2]=1 |
[94]=2 [95]=2 {96]}=1 {971=1 {983=2 1991=1 [100]=1 [101}=2 [1l02]=
{104}=1 [105]=1.[106]1=3 {108]=1 [109]=2 [}10])=1 {111]=1 [1ll2]=
{1161=1 [118}=1 [120)=1 [1221=1 [124]=1 [126]=1 [12B8]=1 [13C]=
[134]1=1 [136]=1 [138]=1 [140]=1 [142]1=1 [144)=1 [l46]=1 {148}
[152]=1 [1541=1 [156]=1 {15B1=1 [160]=1 [162)1=1 {164)=1 [166]
[170]=1 [172]1=1 [174]=1 [176}=1 [178]=1 {1801=1 {1B2]=1 {184]
[186)}=1 [190]=1 [192]=1 [1%4])=1 [196}=1 {198]1=1 {200]=1 {202}=1
[206]=1 [20B]=1 [210]=1 [212]=1 [214]=1 [216)=1 [218]=1 [220}=1 (222
[224]=)1 [226]=1 {226]=1 {2301=1 ([232)=1 [234]=1 [236)=1 [23§]=1 {240
[242]=1 [244)=1 [246]=1 [248]=) [250]=1 [252]=1 [254]=1 [256}=1 [25&]
[260]1=1 {2621=1 [264&]=1 [266]1=1 [268)=1 [2701=1 {272]=1 [274)=1 [Z276]
[278]=1 [2BO}=1 [262]=1 [264]=1 [2B6}=1 [2BB}=] [290}=1 [292]=1 [284]=1
[206)=1 [298)=1 [300)=1 [302]=1 {304])=1 {306]=1 [30B]=1 [310]=1 [312}=1
[314}=1 [316]=1 [318)=1 {3201=1 [322]=1 [324}=1 o {326]=1
{3268]=1 [330]=1 [332]1=1 [334]=1 [336}=1 [338)=1 [34C}=1 [342]=1 [34¢}=1
{346]=1 [348)=1 [350]=1 [352]=1 [354]=1 [356}=1 [358]=1 [3601=1 [362}=1
[364]=1 {366)=1 [368]=1 [370)=1 [372)=1 [374]=1 [376])=1 [378}=1 [380)=1
[382]=1 [3B4]=1 [366]1=1 [388]1=1 [390)=1 [392)=1 [394]=1 [3%6]=1 [396}=1
[400]=1 [402]=1 [404]1=1 [406]1=1 {40B]=1 [410)}=1 [412]=1 [414}=1 [416]=1

8
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G

106.0,1ist
[4168]=1 [420]=1 [422]=1 [424]=1 {426)=} [428]=1 [4303=1 [432)=1 [434]=1
[4361=1 [43B]=1 [440]=1 [4421=1 [444]=1 [446])]=1 [448]=1 [450]=1 [452]=1
[454}=1 [456]=1 [45B]=1 [460]=1 [d462]=1 [464]=1 [466])=1 [46E]1=1 [470}=1
[472)=1 [4741=1 [476]=1 [478]=1 [480}=1 [482)=1 [484)=1 [4B61=1 [488]=1
[4901=1 {492]=1 [454]=1 [496]=1 [49B3=1 [500]=1 [502]=1 [5041=1 [506]=1
[50&}=1 [510]=1 [512]=35Z2
D cata
262144 cata points
ave=0.958344, stc.Gev=0,90213], var=0,813840
¢istribution
[01=107520 [1}1=59386 [2]=94945 [31=35 {4]=42
[5]1=31 {61=68 ({7]=22 [8]=21 ([9]=24 [l0}=22 [111=10 [12]=E

[13]=4 [14]1=2 [16i=2 {17]=1 [1%]=1

area stats

nunber of points 246

mean=1013.600793

variance=128303424.000000, stC.Gev,.=11327.110352

vertex time $41,162476 (4.047641%): segment time 8%5.943542 (3.866071%):
pixel time 21273.017578 (81.48B5503%): poly overhead 135.000066 (0.597795%)

avg poly time 23252.123047: total scene time 5766526,500000

ent of stats
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C.2 SPLITTER-~-4 PBOCESSOR {SLOEBEST)

The following statistics are froe the lower right proces-
sor of a 4 processor splitter machine (micro nusmber 1).




v gata

72 cata points

ayg=2,2638E69,

Gistribution
[1]1=21

Y cata

72 data points

avg=5,.277778,

cistribution
[l1=41

ne X stats

1l adata

666 datz points
ave=165,.362274,
distribution

f91=1
[25]=1
[50]=1
[60}=1
{70]=2
[80]=2
[907=1
£160]=1
{105]=3
[11B]=1
{127]=1
[136]=1
{145]=1
{154]=1
[163]=1
[172]=1
[181)=1
{190] =1
[199]=1
[208]=1
[215]=1
[224]=1
[233]=1
[242]=1
{251)=1

{1]=58 .

{10]=3
{28]=1
[51]=2
[61}=1
f71}=1
{8ll=1
fg1i=2

[101}=3
[110]=1
1118)=1
[{128]=1
f137]=1
[146]=1
f155]=1
[164)=1
[173]=1
[182)=]1
[181] =1
[206]=1
[209]=1
[216)=]1
f225)=1
[234]=1
[243]=1
{252]=1

106.1210.1ist

5td.dev=0.985815,

121=17

[3]=29

{4])=4

sté.dev=42,077713,

[2]=18

{3]=10

{491 =1

std.Gev=%9,872553,

[2]=7

[11]=4
{301=1 [33]=1 {[36]=1 {36]=l
[52]=1 [53]=1 {54]=2 [55]=1
[62]=2 [63}=1 {[64}=2 [65]=l
[721=2 [73]=1 [74]=] [75]=2
[B2]=) {83]=2 [&4]=1 [BD]=2
{92]1=1 [83]=2 [94]=]1 [951=1

fio2]=1
[111]=1
{120]=1
f128]1=1
[138]=1
[147}=1
{156])=1
[165]=1
[174)=1
[183]=1
fie2}=1
[201}=1
[210]=1
{217]=1
[226]=1
{235]=1
[244)=1
[253]1=1

[3]=9

f12]=2

i1031=2
{112} =2
{121]=1
{130}=1
f139]1=1
f148]=1
[157])=1
[166])=1
[175]=1
[184)=1
[193}=1
[202]=1
[2111=1
[21B]=]1
{227]=1
[236]=1
[245])=1
[254]=1

[4] =14

[13]=2

[104])=2
[113}=1
{122])=1
(131}=1
[140]1=1
(1491=1
{i58]=1
[167]=1
[176])=1
[185]1=1
[194]=1
[203]=1

var=0.972029
{5]=1

var=17706.534058
[256])=2

var=9974.614258

151=7

[15]=1

f105]1=1
[114]1=1
[123]1=1
[132)=1
{141]1=1
[150]=1
{158]=1
[168])=1
{17711
[1B61=1
{185]=1
[204]=1

{41)=1
[56]=1
[66]=1
[76]=1
[86]=1
[96)=2

{6j=1

[17]=1

[43]1=1
[57]=2
[67]1=2
{771=1
[871=1
[87])=1
[1061=3
{115]=1
[124]=1
[133]=1
[142]=1
[151]) =1
{160]=1
{169]1=1
[178]=1
{187]=1
[1%6]=1
{205]=1

f1071=2
[1161=1
[125}=1
[134]}=1
[143]=1
[152]=1
{161]=1
{1701=1
{1756]=1
{186]=1
[1971=1
[206]=1

[212]=1
f219)=1 (220]=1
fz28]=1 {225}=1
[2371=1 {238]=1
[246]=1 [247]=1

(213)=1
{221]=) {222]=1
[230]=1 {231}=1
[239]1=1 [240]=1
[248]=1 [248}=1

{255}=1 [256}=306

{168] =1
{117]=1
[126]=1
{135]=1
[144]=1
[1531=1
[162)=1
[1711=1
{180]=1
[189]=1
{198} =1
[207]=1
[214]=1
[223]=1
{232]=1
{241]=1
[250]=1



a9

106.p210.1ist
D aata
65536 cdata points '
avg=1.72628E, std.cev=0,480B64, . war=0,231231
aistribution _
[1]=18264 [2]=47154 [31=17 ([4)=26 [5]=3 [6]1=16

[7]=4 [8]=4 [8]=5 (10)=5 [11}=3 [12}=3

area stats

nurber of points 72

mean=1571.305766

variance=84465440.000000, std.dev.=9%190.507813

vertex time 722.859680 (2.046302%): segment time 1465.88B8916 (4.145701%):
pixel time 32997.421875 (53.410507%): poly overheac 135.000000 (0,3934&7%)
avg poly time 35325,171875: total scene time 2543412,500000

enc of stats
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€.3 JIHTERLACE--4 PROCESSOE (SLOHEST)

The following statistics are from the
in a 4-processor interlace configuratiosn.
the slovest.

slowest processor
Bicro number 2 is




106.£201.1ist

v cata
248 cata points
avc=2.947561, std.bev=0,696531,
Gistribution
fl}=2 {2]1=54 [3]=153

y aata
248 cata points
avg=2,919355, sti.dev=13,128150,
cistribution
[0}=14 [1]1=134 [21=71
[37}=1 [140}=1 [151]=1

ne x stats

1 aata )
724 cata points
avg=86.664368, stc.dev=110.906457,
distribution
[o)=112 [11=222

[6]=2 [7)=2 [Bl=1 flol1=1 [13]=1

var=0.4B85155
[5]=4

var=172.34B328
[6]=2

var=12300,245023

[31=10

{181=1

61=2 [27)=1 {28}=2 [28)=1 [30]=2 [31]=1 [32]=2 [34]=3
71=2 {38)}=1 [35}=2 [40]=1 [41]=1 {42]=2 [43]=1 [44]=2
1=2 l48}=1 {48])=1 [50]=2 [51]1=1 [52]=3 {54]=1 [55]=1
]=1 [62]=1 [64)}=1 [66]=) [6B]=1 [70}=1 [72]=1 {74]=1

01=1 [102i=1 [104]=1 [106}=1 [108]=l

7

o

0)1=1 [82)=1 [B4]=1 [B6]=1 {BB]=1 [9G]=1 [52]=1 [94]=1
0

18]=1 [120]=1 [122}=1 [124]=1 [126}=1 [128]=1

54}=1 [156]=1 [15B]1=1 [1l60]=1 [162]=l
72}=1 [174]}=1 [176]=1 [17B]=1 [l80]=1
90]1=1 [192}=1 {194]=1 [196]=1 {[19B]=1
08]=1 [210)=1 [212}=1 [214]=1 [216]=1
26]=1 {[228)}=1 [230]=1 {232]=1 ([234]=1

[2
[3
[4
[6
(8
[1
[1
E136]=1 [138]=1 [140}=1 [1421=1 [144])=1
1
[1
[1
[2
[2
[2441=) [246]1=1 [248]=1 {250}=1 [252)=1

D data
65536 cata points
ave=0.957413, sté,aev=0,905534,
aistribution
[0)=26880 [11=14914

[13}1=2 [1€6]=1 [19]=1

[112]=1
{1301=1
{148]=1
{166]=1
[1le4]=1
{2021=1
(220)=1
[238)=1

[256]=17¢6

var=0,.819953

[2]=23671
[5]=2 {6]=14 [7)=3 [B]=2 [8]=5 [10]=10

104

[B]=4.

Pt bt e
W
ot

[242]1=1



loa

106.£201,1ist

area Stats
number of points 248
mean=253.003963 variance=80065BB.500000, S5tG.dev.=2629,945066

vertex time 941,162476 {13.71272B%): segment time 470,177429 (6.850480%):
pixel time 5313.083456 (77.411566%): poly overhead 139.000000 (2.02522%%)
avg poly time 6863.423340: total scene time 1702129.000000

enu of stats
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C.& SPLITTER~—-16 PROCESSOR {SLOEEST)

The following statistics are fros the slovest processor
of a 16-processor splitter comfiquration. Micro spumber 1
vas the slowest.




o

106.p4l0.1ist

v data
2 data points
avg=4.000600, stad,Gev=0,000000, var=0.000000
aistribution :
{4]1=2

¥ cata
2 azta points
avg=128,000000, stc.cev=0.000000G, var=0.000000
cistribution
[L28]=2

ne X stats

1 data
256 aata points
avg=128.000000, std.cev=(.000000, var=0.000000
aistribution
[1268]1=256

D data
16384 aata points
avg=2,000000, . stc.cev=0.000000, var=0.000000
distribution
{2]=16364

area stats
number of points 2
mean=16364.000000 variance=0.000000, 5td.aev.=0.000000

vertex time 1277.199951 (0.349244%): segment time 20224.000000 (5.530153%):
pixel time 344064.000000 (94.082603%): poly overhead 139.C000060 (0.03B00%5%)
avg poly time 365704,187500: total scene time 731408.375000

ent of stats
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C.5 SPLITTER-—16 PROCESSOR (SHUTTLE PROCESSQOR)

The following statistics are froa micro pumber 7 in a
16-processor splitter configuration.




1ol

106.pd31.1ist

v data
51 data points ' ]
ave=2,74504%8, std,aev=0(,588868, var=0,346790
cistribution

[2)=17 [3]=30 {4]=4
y data :
51 data points
avg=6,117647, sté.aev=19.533426, var=3B81.554810
aistributicn

[11=20 [2]=16 [3]=10 [49%]=2 [128])=1

no x stats

1l cata
312 data points
avg=67,.211540, stc.dev=55,997704, var=3135,742676
cistribution

. [1]1=38 [2]=8 [3}=10 {41=15 [5}l=6 {6]=2 {71=3 {Bl=3

{9y=2 [101=4 [111=5 ({12}=3 [13}=3 [14]}=1 [15]=2 [16]1=1 [171=2
[18]=1 [19)i=1 [20)=2 [21]=1 [22]=2 [23]1=1 [24]=1 [25])=2 {26]=1 [27]=1
[281=2 [29]1=1 [30]=2 [31]=) {32]=1 [33}=2 (34]=1 [35]=1 [36]=2 [37]=1
i38}=2 13%9]1=1 ([40]=1 [41]=2 [42]}=1 ([431=2 [44])=1 [45]=) [46]1=2 [47]=1
[48]=1 [49)=2 [51]=1 [54}=1 [57]1=1 {59]=1 [62]=1 [64]=1 [67]=1 [70]=1
[72]=1 [75]=1 [781=1 [GO}=1 [B3]=1 {[65]=1 [8B}=1 [51]=1 [53]=1 [56]=1
[99]=2 {101])=2 {103]=1 [104]=1 [105]=) [106]1=]1 {1071=1 {109]=2 [112)=l
{128)=128
D oata
16384 cata points
avg=1,279%07, sté.dev=0.558281, var=0,311678
distribution
[1]=12103. {2} =4153 {3]1=17 [{4]=27 [5])=2 {61=20
{71=5 [8]=5 {8]1=6 [10]1=4 ([111=1 [12}=1

area stats
number of points 51
mean=411.176514 wvariance=5306968.500000, std.Gev.=2303.685751

vertex time B76.509627 (8.255873%): segment time 966.586257 ({9.104323%):
Pizel time B634.707031 (81.330566%): poly overheac 139.000000 (1.305245%)



101

106.p431.1ist

avg poly time 10616.804688: total scene time 541457.062500

enc of stats
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€.6  IHTRRLACE--16 PROCESSOR {(SLOMEST)

The following statistics are from the slowest Bricto in a
16~processor interlace configuration. Kicro number 3 is the
slovest.
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a9

106.£430.1ist

v cata
248 data points
avg=2,947581, sta.d8ev=0,696531, var=0.485155
cistribution

[1}1=2 [2]=54 [3}=153 [4]=34 [5]=4 [6]=1
y Gata
248 data points
avg=1,439516, std.cdev=6,588447, var=43,407635
cistribution

[01=85 [1]=137 {21=13 ([3]=i0 ({18]=} ([701=1 [76]=1
ne x stats
1 éata
357 gata points
avg=44,4398777, sti.oev=55,717445, var=3104.433594
distribution

[01=64 [1]l=1lCC {2]=2 [3}=6 [4] =3 [6]=1 [g}l=1

[12]=1 [l4]=1 {15]=2 [16}=1 [17)=2 {187=1 [191=2 {20]=1 [21]=1

[221=2 [23]1=1 [24}=1 [25]1=2 [26]}=) [27)=2 [28)=1 [31]=1 [33]=1 [35]=1
[37]=1 {39]=1 [41]=1 [43]=1 [45]=1 [47])=1 [45]=1 {51])=1 [53]1=1 [55}=]
[571=1 [59]=1 {[61]=1 [63]=l [65]=1 [67]=1 [6O]}=1 [711=1 [73]=1 [75}=1
[771=1 [79]=1 [81}=1 [83]=1 [B5]=1 [B7]=1 [B9]=1 [91]}=1 [93]=1 [95]=1
{97]1=1 [99]=1 [101]=1 {103)}=1 {105]=1 {[1071=1 [109]=1 {111}=1 [113]=1
[115)=1 [117]=1 [1iS8)=1 f121)=1 [123]=) {125]=1 [127}=1 [12E]=89
D aata
16384 data points
avg=0,966323, stc.dev=0,915125, var=0.837454
distribution

[0}1=6656 [1]1=3714 [2}=5893 [5)=2 [6]=7

t7]=2 {gl=1 [8]1=3 [10}=4 [11l]1=1 ([13]=1

area stats
number of points 248
mean=63,971771 variance=509367.187500, std.aev.=713.695646

vertex time 941.162476 (34.79129B8%): segment time 281.596771 (10.4055%%):
pixel time 1343.407227 (45,660757%): poly overhead 139.000000 (5.138316%)




jro

5 106.£430.1ist

avg poly time 2705.166504: total scene time 6708B1,312500

enc of stats
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C.7  INTEBLACE--16 PROCESSOR (PASTEST)

The following statistics are from the fastest emicro in a
i6-processor interlace configuration. MNicro number 8 is the
fastest.
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Vi

106.£402.1ist
v aata
246 cata points
avg=2.947581, stc.Gev=0,696531, var=0,465155
aistribution
f11=2 {2)}=54 [3]=1i53 {4]1=34 [5}=4 {6ij=1
Y aGata
246 cata points
avg=1,330645, stc.aev=6,.561400, var=43,051971
gistribution = o
] [0}=104 [1]=131 [2]=2 i4]=E [18]1=1 [70]=1
[75]1=1
no x stats
1l data
330 Gata points
avg=47,236362, std.dev=56.242733, var=3163.245117
Gistribution
[06]1=79% [1]=B0 [2]=4 [3]=4 f4]1=1 {61=1 {9]= [11}=1
[12]=1 {13)=2 ({14}=2 [15)=1 1{16}=1 (171=2 [is]=1 [19}=2 {20]=1
[21)=1 [221=2 [231=1 [24]=1 {25]1=2 [26]=1 {27]=1 {[29]=1 [31]=1 [33]=1
{35]=) [37]1=1 [39}=1 [41]1=1 [43}=1 [45]=1 [47])=1 [49]=]1 [51}=1 [53]=1
[55}=1 [57]=1 [5%9]=1 [61]1=1 [63)=1 [65]=1 [67]=1 [69]=1 [71]=1 [73]1=1

[75]=1 [77]=1 [79]=1 [B81]=1 {83]=1 {B5)=1 [87]=1 [B9)=1 [91]=1 [53]=1
[95]=1 [97]=1 {99]=1 [101]=1 {1031=1 [105]=1 [107]}<1 [108]}=1 [1ll1l]=l
{113]=1 [115]=1 [117}=1 {119]=1 [l21}=1 [123}=1 [125}=1 [127]=1 [1l26]=8B7

P deta

163b4 cGata points

avg=0,951416, std.dev=0,.901809, var=0,813259
cistribution

[01=6784 [1)1=3702 [2)=5878 [3)=1 [4]1=4
(51=1 {6}=6 [7]=2 [E&]=2 [10]=4

area stats
number of points 248
mean=62.854B847 variance=494255,312500, std.caev,.=703,032959

vertex time 941.162476 (35.162426%): segment time 276.50000 (10.330215%):
pixel time 1319,951782 (49,314236%): poly.overhead 139.000000 (5.193128%)



"3

106.£402.1ist
avg poly time 2676.614258: total scene time 663800.312500

ena of stats
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€8 BYBRID-~-16 PROCESSOR {SLOWEST)

The folloving statistics are from the slowest micro in a
jé-processor hybrid coanfiguration. The slowest aicro is mi-
cro bukber 3 ip the lower riqght guadrant.




s

106.h1011l.1ist

Vv aata
72 Gata points - :
avg=2,263869, sta.dev=0,985915, var=0.972029
¢istribution .

{1]1=21 [23}=17 [3]=25 [4]1=¢ [51=1
y data
72 Gata points
avg=4,972222, sté.dev=20,986068, var=440,415894
distribution

f01=2 [1}=57 {2}=10 {25]=1 ([128]=2

no x stats

1l cata
358 céata points
avg=79,036316, std.aev=52.553192, var=2761.837891
distribotion :

{0]1=23 [1])=31 [2}=12 ([3]=8 i4]=1 [5}=2 {

[11)=1 [14}=1 [17]=1 [19]=1 [22]=1 {25]=2 [26]=1
[29)=1 [30]=2 [31]=1 [32]=2 [33]=1 [34]=1 [35]=2 [36]=1 [
[39]=1 [40)=2 [41}=1 [42}=]1 [43])=2 [44]=1 [45]=1 [46]=2 |
[491=1 [50]=2 [511=2 [52]=2 [53}=2 [54]=2 [55]=]1 [56])=2 E
[

—_—
It
-

[58]=1 [60]=1 [61]=) [62]=]1 [63]=1 [64]=1 [65]=1 [66]=1
[69)=1 [70)=1 [71]=1 [72}=1 [73]=1 [74]=1 [75)=1 [76]=1
[79]=1 [80)=1 [B1]=1 [B2]=1 [B3]=1 [B4]=1 [B5]=1 [B6]l=1 [E7
[89]=1 [90]=1 [91]=1 [92])=1 [93)=1 [94]=1 {95]=1 [96)=1 {97]=
[95)=1 [100]=1 [101]=1 [102]=1 [1l03]=1 [104]=1 [1§5]1=1 [1l06]=1
[lo8)=1 [l05]=) [1301=1 {111j=1 [112])=1 [113]=1 [114)=1 [115]}=1 {
{117)=1 [116}=1 [118]=1 [130]=1 [121]=1 [122}=1 [123]}=1 [124]=1 [
{126)=1 [127])=1 [128]=153
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D data
16384 data points
avg=l,7265990, sta.Gev=0,487709, var=0.237860
gistribution
[11=4573 [2]1=11782 [3}=6 [4}=11 [5]=2 [6]=2
[7]=2 [B]=1 [9] =2 [11]1=2 [12]=1

area stats
number of points 72 .
mean=392,986267 ° variance=5271475.000000, stc.aev,=22%5,969236




i1

106.h1011.1ist

vertex time 722.B59680 (7.296244%): segment time 7906.000000 {7.976115%):
pixel time 8252.711914 (83.322250%): poly overhead 138%.0006000 {1.403392%)

avg poly time 9904,571285%: total scene time 71312%.,125000

enu of stats






