
Abstract

Fast Scene Generation on General Purpose
Raster Systems •

Henry Fuchs
Gregory D. Abram

Eric D. Grant

University of North Carolina
at Chapel Hill

Image generation of scenes with over a thousand polygons can be generated
on a general purpose raster system rapidly enough for interactive use. We
report new results from an algorithm first reported in [Fuchs 1980], which
achieves this level of performance for a large class of applications in which the
world model changes much less frequently than the viewing position. Since this
algorithm is particularly simple to implement, it appears to be an attractive
alternative {for its class of applications) to the common Z buffer visible-surface
algorithm.

1. Introduction
The generation of realistic, colored images of 3D scenes has been a subject

of much study for nearly twenty years. Many visible-surface algorithms have
been developed for a variety of applications and machine environments {see, eg.,
[Sutherland, 1974] or [Foley, 1982]). However, for real-time interactive
applications, very expensive special purpose hardware is needed. Even if a
much lower image generation rate, of perhaps one or two per second, is
acceptable, we know of no {previously published) algorithm which can
accomplish this on a general purpose graphics system.

It is not surprising that the generation of rendered color images is
computationally expensive. Not only do the usual transformation, clipping and
perspective steps need to be performed {the ones independent of the particular
type of display or image generation algorithm) but visibility, and rendering
calculations must also be performed for every pixel in the image. General
purpose algorithms may take several seconds (or much longer) to generate
these images because they require either many calculations at each pixel or

• This work was supported in part by NSF grant MCS79-02593 and in part by NIH grant NS /HL
. 16759-01.

-1-

TR il-0!7

have significant overhead at a higher level in order to minimize the pixel
calculations.

Our own long-term goals are to have real-time 3D images generated in our
laboratory, for use in a wide range of interactive applications. Although we are
designing special purpose equipment for this ([Fuchs 1982]), in the immediate
future the images have to be generated with our current general purpose
graphics system. To generate these images, we are willing to sacrifice update
rate, down to even one or two per second. Further, we have found that many of
our applications (as well as those of others) have the significantly simplifying
property that the world model changes far less frequently than the viewing
position ([Schumacker, 1969]). Our aim, then, is to cut image generation time
by taking advantage of this simplification. We do so by by pushing much of the
visible-surface overhead into a preprocessing phase, thereby greatly reducing
the overhead at image-generation time. By doing so, we hope to make the
generation of realistic, colored images for our class of applications fast enough
to be useful in an interactive mode.

2. BSP-Tree Basics
This section briefiy reviews the Binary Space Partitioning algorithm (BSP

tree) as introduced in [Fuchs, 1980].

2.1. Motivation

In [Schumacker, 1969], Schumacker introduced the notion that the image
generation can be simplified in situations where the world model changes less
frequently than the viewpoint or direction of view of the observer. Many
applications have this property: a biochemist studying a complex molecule, a
physician examining an anatomical structure for signs of disease, an architect
(or her client) walking through a planned house or subdivision, an engineer
designing a mechanical part. However, the Schumacker approach's dependence
on manual intervention in the building of the internal data structure made it
difficult (and time consuming) to generate new databases, and thus limited its
general usefulness.

Although the current implementation of the BSP-tree algorithm is limited
to static world models (since whenever the world model changes, the
preprocessing data restructuring step must be invoked) we hope to ease this
restriction in the future.

In order for the algorithm to run fast, the entire BSP-tree should be in local
memory. Although this is not an inherent restriction in the algorithm, the
overall performance would be significantly degraded if parts of the tree had to
be swapped from backing store. Our implementation (detailed below) uses B
bit-planes of a 24-bit frame buffer to store a BSP-tree data structure with up to
approximately 5000 polygons.

2.2. Description of the basic algorithm

The algorithm consists of two components:

-2-

• , 1 t

• a one-time preprocessing module ("Make__tree") that converts the input
polygon list into the BSP-tree structure, and

• an image-generation module ("Traverse") which traverses this structure .
and generates the polygons in a back-to-front order. (Strictly speaking,
the order is not back-to-front, but is functionally equivalent to it.)

2.2.1. Building the BSP-tree
The fundamental notion is one of a separating plane: that is, given a plane in

the 3D scene and a viewing point, no polygon on the viewpoint side of the plane
can be obstructed by any polygon on the far side. Of course, if the viewpoint
should move to the other side of the plane, the obstruction priorities are
reversed [Schumacker, 1969].

The algorithm uses this simple notion to construct a binary tree of polygons
from the original polygon list (see Fig. 1). A polygon is selected from the list and
placed at the root of the tree. Each remaining polygon in the list is tested to
determine the side of the root polygon in which it lies and is then placed in the
appropriate descendent list. Any polygon which crosses the plane of the root
polygon is split along that plane and each part put in the appropriate list (see
pol)'gon 5 in fig. 2). This procedure is repeated recursively in the following way:
from each of these descendent lists, a polygon is selected to be the root of that
subtree, and the remaining polygons in this list are split by the plane of the root
of the new subtree (see polygon 2 fig. 3).

P:ROC Make.Jree (poly _jist) returns (BSP .Jree};

if (poly _jist is empty) return (NULL_J'REE)

else
f root <- select (poly_jist);

back_jist <- NULL; front_jist <- NULL;
foreach (polygon in poly _jist)

END

if (polygon is not the root)
f if (polygon in front of root) Addlist (polygon, front_jist);

else if (polygon is behind root) Addlist (polygon, back_jist);
else
! Split_poly (polygon, root, front_part, back_part);

Addlist (front_part, front_jist);
Addlist (back_part, back_jist);

return (Combine__tree (Make__tree (front_list),
root,
Make__tree (back_jist)));

-3-

'<
-2.J!_
Sat 5b

I
2

f
I

X I
I

~ I
I \

I
I

Figure 1: top view of scene

The choice of the root polygon strongly influences the size of the tree. In
the example illustrated in Figures 1-3, a better choice of the initial root would
be a polygon other than 3, for example polygon 5. Figure 4 illustrates a BSP-tree
with an initial choice of polygon 5. Note that the number of polygons in this tree
is the same as the number in the input polygon list, while in the example of
Figure 3, the tree is larger (6 polygons instead of the original 5). In reasonable
sized scene descriptions, the tree may grow substantially. In section 3.1 we
discuss strategies to keep the tree small and give results. ([Naylor, 1981]
develops bounds on the size of the BSP-tree and discusses many other related
issues.)

2.2.2. Image generation
Once the BSP-tree has been constructed, generating an image from any

point of view is simple. The tree is traversed in a special in-order fashion. At
each node of the tree, we determine whether the eye is in front of or behind the
node polygon. This result determines which subtree will be traversed first. The
order is always the same: traverse the "other side" subtree, output and paint
the node polygon, then traverse the "near side" subtree.

3. New Results

3.1. Tree size
When this algorithm was first introduced, there was concern that, in many

cases, the tree would be significantly larger than the original polygon list.
Indeed, there were fears that, given a list of N polygons, the BSP-tree may turn

-4-

•

front

Figure 2:
Mter one level
of resursion.
Polygon 3 chosen
as root.

back

Figuro 3:
A complete tree.

-5-

Figure 4:

An alternate tree
with polygon 5
at root .

PROC Traverse_J,ree (tree)
/* traverse an input BSP-tree and generate visible-surface image

the function Display handles transformation, clipping,
perspective division, lighting and rendering. all but the
rendering can be done elsewhere if deemed more efficient.

*/

if (tree is empty) return
else
! if (eye is in front of tree.root.polygon)

! Traverse_J,ree (tree.back_descendent);
Display (tree.root.polygon);
Traverse_J,ree (tree.front_descendent);

l
END

l
else
! Traverse_J,ree (tree.front_descendent);

Display (tree.root.polygon);

l

/*if back-facing polygons are to be considered
invisible, remove the previous line. • /

Traverse_tree (tree. back_descendent);

out to contain N 2 or more polygons! Although no tight bound has been yet been
found, from our experience the trees derived from most world model databases
are less than twice the size of the original polygon list; the largest found was
2.33 times. It should be noted that the image generation time does not increase
by nearly this factor of two since it is dominated by pixel-painting time and the
total pixel area of a model does not change as the polygons within it are split.
Table 1 indicates the input polygon list and BSP-tree sizes for the various
objects illustrated in Figures 6- 10.

We use the heuristic of selecting a root at each step whose plane cuts the
fewest other polygons in the list. In our first experiments, we made the
selection after examining every polygon in the list as a candidate for root. We
have since found, however, that selecting just a few candidates at random from
the list gives nearly as good results. These results are shown in table 1, which
indicates that near-minimal trees can be found by examining only about 5
candidate polygons at each level. The most startling result in this table is the
example of the "Old Well", (the longstanding symbol of UNC- Chapel Hill). In this
highly non-convex model of 356 polygons, this heuristic produces a tree which is
exactly the same size as the input polygon list.

3.2. Simple implementation in a graphics processor
Although it may be clear from section 2.2 that the algorithm can be simply

expressed in a high level language with recursion, what may be less obvious is
that the image generation component is simple enough to be implemented

-6-

~I

•

Output for varying Treemaking time•
Figure name Size of input number of candidates for 5 candidates

(and number) polygon list 1 3 5 15 (seconds}

Old Well (large} 1000 2426 1304 1176 1032 448.2
(Fig.s 6a,b}

carotid artery 952 1816 1246 1194 1107 219.9
(Fig. B)

shuttle (Fig. 9) 418 2092 1201 1095 972 144.2
3cubes (Fig. 10) 216 402 279 263 240 15.4
Old Well (small) 356 1125 384 378 356 45.0

(not shown}
ribbon plot 368 1478 929 797 660 66.4

(not shown)
Klein bottle 450 1475 1118 1035 990 272.7

(not shown}
robot arm 266 975 650 587 440 52.7

(not shown}

Table 1: tree making statistics

entirely within a programmable graphics processor. Our implementation runs
on an lkonas RDS3000 raster graphics system, which has a programmable
AM2900-based internal processor. The run-time component consists of 1309 64-
bit microcode words, of which only 218 words implement the BSP-tree part of
the image generation algorithm, while the rest (1091 words) implement the
transformations, clipping, perspective and polygon painting routines that are
needed in any 3D image generation system.

3.3. System speed
Table 2 indicates the time needed to generate the images illustrated in

Figures 6 - 10. Because some of the speed of this implementation is due to a
relatively fast graphics processor, it may be useful to analyze where the
efficiencies are due to the algorithm itself (rather than the processor), to
determine the utility of the algorithm independent of the processor on which it
is implemented. To do this, we compare it with the most similar previous
algorithm, the widely used Z (or depth) buffer algorithm (see, eg., [Foley, 1982]).
The BSP-tree algorithm has a fixed per-polygon overhead of the tree traversal;
this consists-of a) the maintenance of a stack of tree return pointers for
traversing tl_le tree, and b} performing the inner product at each node to
determine which way to turn next. The Z buffer, on the other hand, has none of
this polygon overhead, but has the extra burden of calculating the Z, comparing,
and possibly updating Z at erwh pixel. There is then a tradeoff between this
per-polygon overhead and the per-pixel overhead, and it appears that until the
average polygon size becomes very small (a few pixels) that the per-polygon

• Written inC under UNIX on a VAX 111780 .

-7-

Figure name
and number

Old Well (big, Fig.s 6a.b)
3 atoms (Fig. 7)
Artery (Fig. B)
Shuttle (Fig. 9)
3 cubes (Fig. 10)

Number of polygons
in tree

1005
1440
1039
923
280

Image generation rate
(frames per second)

small image large image

1.58
1.84
2.29
2.56
4.81

1.05
1.53
1.66
1.94
2.46

t' Table 2: image generation statistics

h. overhead of the BSP-tree will be considerably less burdensome than the per
pixel overhead of the Z buffer algorithm. This analysis, of course, is only valid
for applications which can conform to the two limitations of the BSP-tree
algorithm: a static world model and sufficient local memory to hold the BSP
tree.

4. Future Work

4.1. Removing static world model restrictions
In the present implementation of the algorithm, whenever the world model

changes, the entire BSP-tree must be rebuilt. From table 1, one can see that it
takes a minute or two for this process. We are working on various alternatives to
allow relaxing this restriction. We are considering the situation in which there is
only limited change in the world model. One such example might be when the
range of motion of the moving objects is known; such as airplanes which always
fty above the airport and land only on runways, or automobiles which remain on
the road, or parts of molecules which only move in certain restricted ways, or
doors which only swing on their hinges. With this knowledge, we might be able to
construct a series of convex regions, which always contain the moving object.
The BSP-tree of the world model could be constructed such that no root
polygons cuts this region. This causes all the polygons of the moving object to
end up in their own subtree, which may then be transformed independently
from the rest of the scene by using a nested transformation matrix at the root
of this object's subtree (see Figure 5).

4.2. Anti-Aliasing
We are currently experimenting with adding anti-aliasing to the image

generation using a sub-pixel mask similar to the latest Evans and Sutherland
digital scene generator, the CT-5 ([Schumacker, 1980]). This technique involves
maintaining a binary mask of, say, 4x4 sub pixels at each pixel. The polygons are
painted front-to-back, and are sampled at the subpixel resolution, with the
binary mask indicating the subpixel areas which have already been covered by a
polygon. We note that the BSP-tree can generate a front-to-back (equivalent)
order of polygons simply by reversing the order of the traversal (i.e., instead of
far side; node polygon, near side, the order becomes near side, node polygon, far

-8-

,t

' •

"--\ ...--_ \ I
-\ \ ~~ -Group1 , 1 \ 1 \ 1 of building•.

'. \ - \ trees, etc,

""".......------ -
!~-----------------------

I[]\ - -

B-L-----------------------
Qroup 2

of buildings,
trees, etc.

Figures 5a and 5b: non-static scene handling

side). The contributions of the current polygon to a particular pixel's color are
determined by the number of sub pixels within that pixel of which this polygon is
visible. This contribution is accumulated in the RGB pixel value in the image
frame buffer.

5. Summary and Conclusions
We have shown that the BSP-tree visible-surface algorithm generates

images rapidly enough to be useful in interactive applications and that it can be
easily implemented in a programmable graphics processor. Further, we have
shown that in all cases encountered so far, that the tree size stays within
reasonable bounds. We are currently using the system to study reconstructed
surfaces of human arteries and density distributions of organic molecules. Our
experience indicates that it is a viable (and faster) alternative to the commonly
used Z buffer in many situations.

-9-

Finally, we note that this algorithm may be increasingly attractive as new
raster graphics hardware systems become available. At least one new
commercially available system {Megatek 7200 [Foley, 1982]) and several
experimental designs {[Clark 1980], and [Fuchs, 1982]) concentrate on fast
rendering of lines and polygons. It appears that these systems will most easily
and directly generate realistic images of 3D scenes from a back-to-front ordered
list of polygons. Since many can be expected to have transformation and
clipping hardware, all that remains to be done in software is to generate the
ordered list of polygons, something which can be achieved quite handily by the
BSP-tree algorithm.

Acknowledgements
We would like to thank the many people at UNC-CH and elsewhere who have

assisted us with this research: Gregg Podnar and Yehuda Kalay {CMU), Mike
Connally {Yale), James R. Smith {NASA-Johnson Space Center), Richard A.
Weinberg {Cray Research), and Sandy Bloomberg and Brian Siritzky {UNC) all for
kindly allowing us the use of their graphic databases, Gary Bishop {UNC) for
programming tools, and Mike Pique {UNC) for photographic assistance.

References

Clark, James H. and Marc R. Hannah {1980), "Distributed Processing in a High
Performance Smart Image Memory", LAMBDA, 4th Quarter, pp. 40-50.

Foley, J.D. and A. Van Dam (1982), "Fundamentals of Interactive Computer
Graphics", Addison Wesley, Reading, Mass.

Fuchs, Henry, Zvi M. Kedem, and Bruce F. Naylor (1980), "On Visible Surface
Generation by A Priori Tree Structures", Computer Graphics (Proc. SIGGRAPH
'80), Vol. 14, No. 3, July, 1980, pp. 124-133.

Fuchs, Henry, John Poulton, Alan Paeth, Alan Bell (19B2),"Developing Pixel
Planes, A Smart Memory-Based Raster Graphics System", Proceedings,
Conference on Advanced Research in VLSI, Cambridge, Mass. January 25-27, 1982

Newman, W.M. and R.F. Sproull (1979), "Principles of Interactive Computer
Graphics (2nd. ed.)", McGraw-Hill, New York.

Schachter B.J. (1981), "Computer Image Generation for Flight Simulation", IEEE
Computer Graphics and Applications, Vol. 1, No. 4, October, 1981

Schumacker, R.A. (1980), "A New Visual System Architecture", Pro c. Second
Interservice/lndustry Training Equipment Conf., Salt Lake City, Utah, Nov. 1980,
pp. 94-101.

Schumacker, R.A., B. Brand, M., Gilliland, and W. Sharp, (1989), "Study for
Applying Computer Generated Images to Visual Simulation", Tech. Report No.
AEHRL-TR-69-14, (AD 700375), US Air Force Human Resources Lab.

Sutherland, I.E., R.F. Sproull and R.A. Schumacker {1974), "A Characterization of
Ten Hidden-Surface Algorithms", Computing Surveys, Vol. 6, No. 1.

-10-

Figures 6a,b:
Two views of the UNC Old Well.
These images are generated
from a BSP-tree with 1005

polygons.

Figure 7:
Three simulated atoms, as created
by Michael Connally of Yale. The
BSP-tree has 1440 polygons.

Figure 8:
A section of a human carotid
artery 1 reconstructed from
CAT scans by Sandra Bloomberg
and Brian Siritzky. The
BSP·tree has !039 polygons.

Figure 10:
3 interlocking cubes. The
BSP-trce has 280 polygons.

Figure 9:

The space shuttle, courtesy
James R. Smith of NASA-Johnson
Space Center and Richard A.
Weinberg of Cray Research.
The BSP-tree has 923 polygons.

