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Image generation of scenes with over a thousand polygons can be generated 
on a general purpose raster system rapidly enough for interactive use. We 
report new results from an algorithm first reported in [Fuchs 1980], which 
achieves this level of performance for a large class of applications in which the 
world model changes much less frequently than the viewing position. Since this 
algorithm is particularly simple to implement, it appears to be an attractive 
alternative {for its class of applications) to the common Z buffer visible-surface 
algorithm. 

1. Introduction 
The generation of realistic, colored images of 3D scenes has been a subject 

of much study for nearly twenty years. Many visible-surface algorithms have 
been developed for a variety of applications and machine environments {see, eg., 
[Sutherland, 1974] or [Foley, 1982]). However, for real-time interactive 
applications, very expensive special purpose hardware is needed. Even if a 
much lower image generation rate, of perhaps one or two per second, is 
acceptable, we know of no {previously published) algorithm which can 
accomplish this on a general purpose graphics system. 

It is not surprising that the generation of rendered color images is 
computationally expensive. Not only do the usual transformation, clipping and 
perspective steps need to be performed {the ones independent of the particular 
type of display or image generation algorithm) but visibility, and rendering 
calculations must also be performed for every pixel in the image. General 
purpose algorithms may take several seconds (or much longer) to generate 
these images because they require either many calculations at each pixel or 
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have significant overhead at a higher level in order to minimize the pixel 
calculations. 

Our own long-term goals are to have real-time 3D images generated in our 
laboratory, for use in a wide range of interactive applications. Although we are 
designing special purpose equipment for this ([Fuchs 1982]), in the immediate 
future the images have to be generated with our current general purpose 
graphics system. To generate these images, we are willing to sacrifice update 
rate, down to even one or two per second. Further, we have found that many of 
our applications (as well as those of others) have the significantly simplifying 
property that the world model changes far less frequently than the viewing 
position ([Schumacker, 1969]). Our aim, then, is to cut image generation time 
by taking advantage of this simplification. We do so by by pushing much of the 
visible-surface overhead into a preprocessing phase, thereby greatly reducing 
the overhead at image-generation time. By doing so, we hope to make the 
generation of realistic, colored images for our class of applications fast enough 
to be useful in an interactive mode. 

2. BSP-Tree Basics 
This section briefiy reviews the Binary Space Partitioning algorithm (BSP

tree) as introduced in [Fuchs, 1980]. 

2.1. Motivation 

In [Schumacker, 1969], Schumacker introduced the notion that the image 
generation can be simplified in situations where the world model changes less 
frequently than the viewpoint or direction of view of the observer. Many 
applications have this property: a biochemist studying a complex molecule, a 
physician examining an anatomical structure for signs of disease, an architect 
(or her client) walking through a planned house or subdivision, an engineer 
designing a mechanical part. However, the Schumacker approach's dependence 
on manual intervention in the building of the internal data structure made it 
difficult (and time consuming) to generate new databases, and thus limited its 
general usefulness. 

Although the current implementation of the BSP-tree algorithm is limited 
to static world models (since whenever the world model changes, the 
preprocessing data restructuring step must be invoked) we hope to ease this 
restriction in the future. 

In order for the algorithm to run fast, the entire BSP-tree should be in local 
memory. Although this is not an inherent restriction in the algorithm, the 
overall performance would be significantly degraded if parts of the tree had to 
be swapped from backing store. Our implementation (detailed below) uses B 
bit-planes of a 24-bit frame buffer to store a BSP-tree data structure with up to 
approximately 5000 polygons. 

2.2. Description of the basic algorithm 

The algorithm consists of two components: 
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• a one-time preprocessing module ("Make__tree") that converts the input 
polygon list into the BSP-tree structure, and 

• an image-generation module ("Traverse") which traverses this structure . 
and generates the polygons in a back-to-front order. (Strictly speaking, 
the order is not back-to-front, but is functionally equivalent to it.) 

2.2.1. Building the BSP-tree 
The fundamental notion is one of a separating plane: that is, given a plane in 

the 3D scene and a viewing point, no polygon on the viewpoint side of the plane 
can be obstructed by any polygon on the far side. Of course, if the viewpoint 
should move to the other side of the plane, the obstruction priorities are 
reversed [Schumacker, 1969]. 

The algorithm uses this simple notion to construct a binary tree of polygons 
from the original polygon list (see Fig. 1). A polygon is selected from the list and 
placed at the root of the tree. Each remaining polygon in the list is tested to 
determine the side of the root polygon in which it lies and is then placed in the 
appropriate descendent list. Any polygon which crosses the plane of the root 
polygon is split along that plane and each part put in the appropriate list (see 
pol)'gon 5 in fig. 2). This procedure is repeated recursively in the following way: 
from each of these descendent lists, a polygon is selected to be the root of that 
subtree, and the remaining polygons in this list are split by the plane of the root 
of the new subtree (see polygon 2 fig. 3). 

P:ROC Make.Jree (poly _jist) returns (BSP .Jree}; 

if (poly _jist is empty) return (NULL_J'REE) 

else 
f root <- select (poly_jist); 

back_jist <- NULL; front_jist <- NULL; 
foreach (polygon in poly _jist) 

END 

if (polygon is not the root) 
f if (polygon in front of root) Addlist (polygon, front_jist); 

else if (polygon is behind root) Addlist (polygon, back_jist); 
else 
! Split_poly (polygon, root, front_part, back_part); 

Addlist (front_part, front_jist); 
Addlist (back_part, back_jist); 

return (Combine__tree (Make__tree (front_list), 
root, 
Make__tree (back_jist))); 
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Figure 1: top view of scene 

The choice of the root polygon strongly influences the size of the tree. In 
the example illustrated in Figures 1-3, a better choice of the initial root would 
be a polygon other than 3, for example polygon 5. Figure 4 illustrates a BSP-tree 
with an initial choice of polygon 5. Note that the number of polygons in this tree 
is the same as the number in the input polygon list, while in the example of 
Figure 3, the tree is larger (6 polygons instead of the original 5). In reasonable
sized scene descriptions, the tree may grow substantially. In section 3.1 we 
discuss strategies to keep the tree small and give results. ([Naylor, 1981] 
develops bounds on the size of the BSP-tree and discusses many other related 
issues.) 

2.2.2. Image generation 
Once the BSP-tree has been constructed, generating an image from any 

point of view is simple. The tree is traversed in a special in-order fashion. At 
each node of the tree, we determine whether the eye is in front of or behind the 
node polygon. This result determines which subtree will be traversed first. The 
order is always the same: traverse the "other side" subtree, output and paint 
the node polygon, then traverse the "near side" subtree. 

3. New Results 

3.1. Tree size 
When this algorithm was first introduced, there was concern that, in many 

cases, the tree would be significantly larger than the original polygon list. 
Indeed, there were fears that, given a list of N polygons, the BSP-tree may turn 
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Figure 2: 
Mter one level 
of resursion. 
Polygon 3 chosen 
as root. 

back 

Figuro 3: 
A complete tree. 
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An alternate tree 
with polygon 5 
at root . 



PROC Traverse_J,ree (tree) 
/* traverse an input BSP-tree and generate visible-surface image 

the function Display handles transformation, clipping, 
perspective division, lighting and rendering. all but the 
rendering can be done elsewhere if deemed more efficient. 

*/ 

if (tree is empty) return 
else 
! if (eye is in front of tree.root.polygon) 

! Traverse_J,ree (tree.back_descendent); 
Display ( tree.root.polygon); 
Traverse_J,ree (tree.front_descendent); 

l 
END 

l 
else 
! Traverse_J,ree (tree.front_descendent); 

Display (tree.root.polygon); 

l 

/*if back-facing polygons are to be considered 
invisible, remove the previous line. • / 

Traverse_tree (tree. back_descendent); 

out to contain N 2 or more polygons! Although no tight bound has been yet been 
found, from our experience the trees derived from most world model databases 
are less than twice the size of the original polygon list; the largest found was 
2.33 times. It should be noted that the image generation time does not increase 
by nearly this factor of two since it is dominated by pixel-painting time and the 
total pixel area of a model does not change as the polygons within it are split. 
Table 1 indicates the input polygon list and BSP-tree sizes for the various 
objects illustrated in Figures 6- 10. 

We use the heuristic of selecting a root at each step whose plane cuts the 
fewest other polygons in the list. In our first experiments, we made the 
selection after examining every polygon in the list as a candidate for root. We 
have since found, however, that selecting just a few candidates at random from 
the list gives nearly as good results. These results are shown in table 1, which 
indicates that near-minimal trees can be found by examining only about 5 
candidate polygons at each level. The most startling result in this table is the 
example of the "Old Well", (the longstanding symbol of UNC- Chapel Hill). In this 
highly non-convex model of 356 polygons, this heuristic produces a tree which is 
exactly the same size as the input polygon list. 

3.2. Simple implementation in a graphics processor 
Although it may be clear from section 2.2 that the algorithm can be simply 

expressed in a high level language with recursion, what may be less obvious is 
that the image generation component is simple enough to be implemented 
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Output for varying Treemaking time• 
Figure name Size of input number of candidates for 5 candidates 

(and number) polygon list 1 3 5 15 (seconds} 

Old Well (large} 1000 2426 1304 1176 1032 448.2 
(Fig.s 6a,b} 

carotid artery 952 1816 1246 1194 1107 219.9 
(Fig. B) 

shuttle (Fig. 9) 418 2092 1201 1095 972 144.2 
3cubes (Fig. 10) 216 402 279 263 240 15.4 
Old Well (small) 356 1125 384 378 356 45.0 

(not shown} 
ribbon plot 368 1478 929 797 660 66.4 

(not shown) 
Klein bottle 450 1475 1118 1035 990 272.7 

(not shown} 
robot arm 266 975 650 587 440 52.7 

(not shown} 

Table 1: tree making statistics 

entirely within a programmable graphics processor. Our implementation runs 
on an lkonas RDS3000 raster graphics system, which has a programmable 
AM2900-based internal processor. The run-time component consists of 1309 64-
bit microcode words, of which only 218 words implement the BSP-tree part of 
the image generation algorithm, while the rest (1091 words) implement the 
transformations, clipping, perspective and polygon painting routines that are 
needed in any 3D image generation system. 

3.3. System speed 
Table 2 indicates the time needed to generate the images illustrated in 

Figures 6 - 10. Because some of the speed of this implementation is due to a 
relatively fast graphics processor, it may be useful to analyze where the 
efficiencies are due to the algorithm itself (rather than the processor), to 
determine the utility of the algorithm independent of the processor on which it 
is implemented. To do this, we compare it with the most similar previous 
algorithm, the widely used Z (or depth) buffer algorithm (see, eg., [Foley, 1982]). 
The BSP-tree algorithm has a fixed per-polygon overhead of the tree traversal; 
this consists-of a) the maintenance of a stack of tree return pointers for 
traversing tl_le tree, and b} performing the inner product at each node to 
determine which way to turn next. The Z buffer, on the other hand, has none of 
this polygon overhead, but has the extra burden of calculating the Z, comparing, 
and possibly updating Z at erwh pixel. There is then a tradeoff between this 
per-polygon overhead and the per-pixel overhead, and it appears that until the 
average polygon size becomes very small (a few pixels) that the per-polygon 

• Written inC under UNIX on a VAX 111780 . 
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Figure name 
and number 

Old Well (big, Fig.s 6a.b) 
3 atoms (Fig. 7) 
Artery (Fig. B) 
Shuttle (Fig. 9) 
3 cubes (Fig. 10) 

Number of polygons 
in tree 

1005 
1440 
1039 
923 
280 

Image generation rate 
(frames per second) 

small image large image 

1.58 
1.84 
2.29 
2.56 
4.81 

1.05 
1.53 
1.66 
1.94 
2.46 

t' Table 2: image generation statistics 

h. overhead of the BSP-tree will be considerably less burdensome than the per
pixel overhead of the Z buffer algorithm. This analysis, of course, is only valid 
for applications which can conform to the two limitations of the BSP-tree 
algorithm: a static world model and sufficient local memory to hold the BSP
tree. 

4. Future Work 

4.1. Removing static world model restrictions 
In the present implementation of the algorithm, whenever the world model 

changes, the entire BSP-tree must be rebuilt. From table 1, one can see that it 
takes a minute or two for this process. We are working on various alternatives to 
allow relaxing this restriction. We are considering the situation in which there is 
only limited change in the world model. One such example might be when the 
range of motion of the moving objects is known; such as airplanes which always 
fty above the airport and land only on runways, or automobiles which remain on 
the road, or parts of molecules which only move in certain restricted ways, or 
doors which only swing on their hinges. With this knowledge, we might be able to 
construct a series of convex regions, which always contain the moving object. 
The BSP-tree of the world model could be constructed such that no root 
polygons cuts this region. This causes all the polygons of the moving object to 
end up in their own subtree, which may then be transformed independently 
from the rest of the scene by using a nested transformation matrix at the root 
of this object's subtree (see Figure 5). 

4.2. Anti-Aliasing 
We are currently experimenting with adding anti-aliasing to the image 

generation using a sub-pixel mask similar to the latest Evans and Sutherland 
digital scene generator, the CT-5 ([Schumacker, 1980]). This technique involves 
maintaining a binary mask of, say, 4x4 sub pixels at each pixel. The polygons are 
painted front-to-back, and are sampled at the subpixel resolution, with the 
binary mask indicating the subpixel areas which have already been covered by a 
polygon. We note that the BSP-tree can generate a front-to-back (equivalent) 
order of polygons simply by reversing the order of the traversal (i.e., instead of 
far side; node polygon, near side, the order becomes near side, node polygon, far 
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Figures 5a and 5b: non-static scene handling 

side). The contributions of the current polygon to a particular pixel's color are 
determined by the number of sub pixels within that pixel of which this polygon is 
visible. This contribution is accumulated in the RGB pixel value in the image 
frame buffer. 

5. Summary and Conclusions 
We have shown that the BSP-tree visible-surface algorithm generates 

images rapidly enough to be useful in interactive applications and that it can be 
easily implemented in a programmable graphics processor. Further, we have 
shown that in all cases encountered so far, that the tree size stays within 
reasonable bounds. We are currently using the system to study reconstructed 
surfaces of human arteries and density distributions of organic molecules. Our 
experience indicates that it is a viable (and faster) alternative to the commonly 
used Z buffer in many situations. 
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Finally, we note that this algorithm may be increasingly attractive as new 
raster graphics hardware systems become available. At least one new 
commercially available system {Megatek 7200 [Foley, 1982]) and several 
experimental designs {[Clark 1980], and [Fuchs, 1982]) concentrate on fast 
rendering of lines and polygons. It appears that these systems will most easily 
and directly generate realistic images of 3D scenes from a back-to-front ordered 
list of polygons. Since many can be expected to have transformation and 
clipping hardware, all that remains to be done in software is to generate the 
ordered list of polygons, something which can be achieved quite handily by the 
BSP-tree algorithm. 
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Figures 6a,b: 
Two views of the UNC Old Well. 
These images are generated 
from a BSP-tree with 1005 

polygons. 

Figure 7: 
Three simulated atoms, as created 
by Michael Connally of Yale. The 
BSP-tree has 1440 polygons. 



Figure 8: 
A section of a human carotid 
artery 1 reconstructed from 
CAT scans by Sandra Bloomberg 
and Brian Siritzky. The 
BSP·tree has !039 polygons. 

Figure 10: 
3 interlocking cubes. The 
BSP-trce has 280 polygons. 

Figure 9: 

The space shuttle, courtesy 
James R. Smith of NASA-Johnson 
Space Center and Richard A. 
Weinberg of Cray Research. 
The BSP-tree has 923 polygons. 


