
PERFOIDlANCE EVALUATION
FOR SHALL BUSINESS COHPUTERS

by

William P. Wilson, Jr.

A Thesis submitted to the faculty of the
University of North Carolina at Chapel Hill
in partial fulfillment of the requirements
for the degree of Naster of Science in the
Department of Computer Science,

Chapel Hill

1981

~ro~
Reader

WILLIAM P. WILSON, JR. PERFORMANCE EVALUATION
FOR SMALL BUSINESS COHPUTERS.

(Under the direction of DR. PETER CALINGAERT)

ABSTRACT

This thesis explores the technical discipline of

computer systems performance evaluation as it relates to the

special needs of computers for small businesses. Topics

include: a brief overview of the technical aspects of

performance evaluation, especially as they relate to small

business systems; a discussion of the nature of small

business systems; and a description of a project conducted

to develop benchmarks for the evaluation of the performance

of small business systems.

-ii-

TABLE OF CONTENTS

page

FIGURES • • iv

PREFACE • • v

chapter

1. INTRODUCTION • . • • • 1

2. AN OVERVIEW OF PERFORNANCE EVALUATION • 4

3. SHALL BUSINESS SYSTEMS • 24

4. AN SBS WORKLOAD MODEL 31

5. CONCLUSION • • • 45

BIBLIOGRAPHY • • 47

-iii-

FIGURES

page

3.1 ADMINISTRATIVE AND FINANCIAL APPLICATIONS • 27

3.2 OFFICE AUTOMATION APPLICATIONS • • 28

4.1 ARITHMETIC OPERATIONS • • • 40

4.2 DATA MOVEMENT OPERATIONS 41

4.3 INPUT OUTPUT OPERATIONS • 41

4.4 FLmv OF CONTROL OPERATIONS 41

4.5 DECISION OPERATIONS • • . . • • 42

4.6 OPERATIONS PER TRANSACTION OR RECORD • 42

4.7 RATIOS OF REFERENCES TO DISPLAY VS COMP • • 42

-iv-

PREFACE

As a programmer on a project developing system

software to support small business applications, I have

dealt with the problem of trying to squeeze maximum

functional utility from a small computer while maintaining

adequate performance. The project initially failed to meet

its performance goals. The failure was largely due to a·

lack of concern for performance issues in the early stages

of development. The programmers on the project had no

formal exposure to performance evaluation and did not

consider the performance impact of many design decisions.

Because of the problems that I encountered in coaxing

performance from my own software, I resolved to learn

something about the discipline. This thesis serves as a

focus for that effort. It is an attempt to fill a personal

professional need, to complete a masters degree already

agonizingly long in the finishing, and to present some

information in a way that will aid other computer

professionals.

I would like to thank my adviser Dr. Peter Calingaert

for all of his assistance in preparing this thesis. I also

appreciate the help of the other members of my committee,

-v-

Dr. Connie Smith, and 1-lr. Erwin Danziger who provided

valuable input.

I would like to acknowledge the assistance of my

employer, Data General Corporation, which provided material

resources for this effort. Thanks go also to my co-workers

who provided the benifit of their experience, advice on

technical matters, and"moral support.

-vi-

Chapter 1

INTRODUCTION

Computer software, to be acceptable to its users, must

measure up to certain standards, or design criteria. These

criteria include functional adequacy, aesthetics and other

human factors, cost, reliability, and performance. This

document is concerned with performance. Specifically, it is

concerned with the relationship between performance and one

of the most rapidly growing segments of the computer

marketplace, that area refer red to as "small business

systems" (SBS). Although the problems of performance that

might be encountered in systems used to run small business

applications are not unique, they are important. More than

any other computer user, the small businessman is concerned

with getting maximum value from his data processing

equipment. His livelihood depends on it.

Throughout this document the term "system" or

"computer system" will be used to refer to a combination of

a computer (CPU and related hardware), system software

(operating system, compilers, utilities, etc.), and

applications software (financial programs, etc.). A small

business system is a system based on a small computer and

used primarilly for business applications.

-1-

The remainder of this document presents a broad,

cursory overview of both performance evaluation and small

business systems. In addition, it describes a project

conducted to construct a representative model of an SBS

workload and to examine the composition of that workload.

The text focuses on practical aspects of performance

evaluation; approaching the subject from a "how to do it"

point of view.

The thesis is organized into four chapters, of which

this is the first. Chapter two is a brief survey of

performance evaluation. Topics covered include performance

evaluation studies, workloads, measures of performance, and

performance evaluation techniques such as simulation and

measurement.

Chapter three explores the definition of small

business systems.

business systems

description of

Topics include a classification of small

by hardware configuration and price, a

systems software available with small

business systems, and a discussion of the various areas of

application for small business systems,

The fourth chapter describes a project undertaken at

Data General Corporation to develop a set of benchmarks for

small business systems. In addition, data gathered as part

of the benchmark validation process are used to support some

observations on the general nature of SBS workloads.

-2-

The thesis concludes in chapter five with a

reiteration of the goals of the document and some comments

on questions raised but not answered during the preparation

of the thesis.

-3-

Chapter 2

AN OVERVIEW OF PERFORMANCE EVALUATION

This chapter presents a cursory overview of some major

topics in performance evaluation. The objectives are to

provide a context for further reading, and a basis for the

discussion of performance evaluation relative to small

business systems.

The information in this chapter is drawn from a survey

of relevant literature. Specific attention is paid to

low-cost techniques that could be applied to small

interactive systems. Readers desiring more complete

coverage should consult the textbooks by Svobodova (1976)

and Ferrari (1978). For ongoing coverage of topics in

performance evaluation the interested reader can consult

almost any of the general computer science journals.

Specialized coverage is provided in Performance Evaluation

Review, a publication of the ACM Special Interest Group on

Measurement and Evaluation (SIG!1ETRICS); in Simuletter,

published by the ACM Special Interest Group on Simulation

(SIGSHl); in Performance Evaluation published by

North-Holland; and in the proceedings of various conferences

sponsored by SIG!1ETRICS, SIGSIM, the Computer Performance

-4-

Evaluation Users Group (CPEUG), the Computer Heasurement

Group (CHG), and the National Bureau of Standards (NBS).

The text first presents the major types of evaluation

studies, discussing the reasons for performing each type.

The second section reviews basic techniques for evaluating

performance with cost and accuracy as primary

considerations. The major topics covered in this section

are performance measures, methods of evaluation, and

workloads. The third section discusses performance

evaluation of small business systems, relating the

evaluation of SBS's to that of large systems.

2.1 Performance Evaluation Studies

Performance evaluation is the subdiscipline of

computer science that is devoted to the analysis and

improvement of the performance of computer systems.

Performance evaluation is generally done to provide

information to solve a problem. There are three main

classes of problems that utilize performance information in

their solutions: comparison problems, where the performance

of two or more computer systems are compared; analysis

problems, where the performance of a single system is

scrutinized; and performance projection problems for systems

not available for analysis. These three classes of problems

serve as foci for studies of computer systems performance,

-5-

Comparison studies of the performance of different

computer systems are used in a variety of situations. The

most noteworthy is the so-called "selection" problem, which

involves contrasting the performance of different computer

systems to determine which provides the best performance.

This type of study is most often used in competitive

purchase or lease situations, where a potential customer is

comparing different vendors' systems. Note that performance

evaluation should, in most instances, be a secondary

criterion in selection, functional adequacy and cost being

prime considerations. Dujmovic (1979) discusses the role of

performance evaluation as part of a formal process of

evaluation for selection. Gay (1980) describes a selection

study v1here a benchmark was developed to compare the

performance of several interactive systems.

Comparison is also used in performance improvement

problems to track the actual changes in system performance

that occur because of changes in system implementation or

hardware configuration. A well established performance

evaluation methodology can give a good description of

performance changes over the development phase of a new

product.

Analysis studies evaluate the performance of a

single system. The goal of performance analysis is to find

ways to improve the performance of the system. A system

under analysis may be a new system being developed, or an

-6-

existing system that is being adjusted to perform optimally

for its workload. Performance analysis can detect system

bottlenecks and other performance problems before they

become costly drains on system resources. By analyzing the

performance characteristics of a system under development,

problems in performance can be detected early and solved.

Projection studies predict

systems, by using a kn01vledge of

system and its probable workload.

the performance of

the structure of the

Projection studies

conducted as part of the design of a new system allow for

early decisions with regard to marketability and may guide

development away from non-productive paths, thus making

better use of expensive development manpower [See Dowdy et

al. {1979), Sangunetti {1979), Smith and Browne {1979)].

Another major use of projection is in capacity

planning. Larger computer installations project the growth

of their workloads, study the effects of that growth on

performance and plan changes in the system hardware and

software needed to maintain performance. Lo {1980)

describes several experimental case studies in capacity

planning.

2.2 A General Approach !Q Performance Evaluation

The approach to performance evaluation is essentially

that of problem solving. The performance analyst first

determines the objectives of a study {comparison for

-7-

selection, analysis for improvement, projection for

development planning, etc.). He then determines what data

are needed to carry out the objectives and designs

experiments to produce that data. He must then determine

the most economical method of conducting the experiments,

construct and install appropriate tools, perform the

experiments, and then interpret the results. This process

is, of course, not nearly as clear-cut as it sounds.

Information acquired at any step may make it necessary to

repeat previous steps and gather more or different

information.

2.2.1 Performance Measures

In section 2.1 the reasons for performance evaluation

were discussed. These reasons lead directly to the goals of

any performance evaluation study. It is important that the

goals of a study be well defined before embarking, for it is

very easy to become sidetracked on interesting but

irrelevant issues, or to become enthralled with tool

building. The first step in a performance evaluation study

is a determination of goals. The second step of a

performance evaluation study is the determination of the

data that will describe the performance of the system.

These data are called "measures" or "indices" of

performance. There are three types of performance measures:

responsiveness, productivity, and utilization.

-8-

Responsiveness is a measure of the quickness of the

system in processing commands. Responsiveness is generally

measured by "response time" in interactive situations and

"turnaround time" in batch situations.

Response time is the time necessary to process a

transaction. A transaction is loosely defined as a useful,

measurable unit of work. The response time of an

interactive transaction is the interval measured from the

keystroke that dispatches the transaction for processing, to

the point at which the system is ready to receive another

command.

Absolute measures of response time may be useful in

comparing the relative speed of two systems, but it is the

quality of the response time that is of interest to computer

users. Response-time quality is determined by several

factors including response-time variability, and the users'

perception of the complexity of the transaction.

Schneiderman (1980) reviews several recent studies in this

area.

The traditional measure of responsiveness in batch

si tua ti ons is turnaround time, the elapsed time from the

submission of a job to the time at which the output is

available to the user.

Productivity or throughput is the measure of

system performance that indicates the amount of work that a

-9-

system is able to do in a given period of time. It is

generally expressed in instructions per second, transactions

per hour, or some other work:time ratio.

uses

Utilization is

its resources.

the efficiency with which a

It is generally measured

system

as the

percentage of time that a resource is in use relative to the

time that it is available for use. Utilization is used for

bottleneck detection by comparing the utilizations of

various key resources (such as CPU time and I/0 channel

time). If one resource is being used much more than

another, that resource may be a bottleneck preventing

cost-effective use of the entire system.

The foregoing measures are strongly interrelated. A

study might examine the effect on throughput of workload

changes that increase the utilization of a particular

resource. Another commonly studied interaction is the

relationship between throughput and response time.

As an example, consider a system that can process up

to 200 transactions per hour while maintaining a response

time under two seconds. If more terminals are added the

system can process 400 transactions per hour, but the

response time goes to ten seconds. The productivity of the

system is higher, but at the expense of degraded response

time. In this situation, one would question the

desirability of more productivity.

-10-

2.2 .2 klethods .f..QJ:. Gathering Measures

Once the goals of a performance evaluation study have

been determined and proper

technique for producing the

measures selected,

measures may be

the actual

considered.

There are three techniques for producing performance

measures. They are distinguished by the way that they

represent the system to be measured the "system model."

The three techniques are analytic modeling, simulation, and

measurement or experimentation. These techniques vary in

their cost, applicability, ease of use, and accuracy. The

choice of which one to use depends on the availability of

the real system, the urgency of the situation, the resources

available in both manpower and money, and the degree of

accuracy required.

Analytic modeling uses a mathematical formulation as

the model of the system to be evaluated. The workload is

represented as parameters of that formulation and the

measures are produced by solving either analytically or

numerically. Analytic modeling is, in general, the cheapest

form of performance evaluation. It is also the least

accurate and requires mathematical skills not usually

present in small business environments. It is frequently

used in research and in first-approximation feasibility

studies for advanced development.

There are two types of analytic models: deterministic

and probabalistic. Deterministic models express the system

-11-

ana its workloaa as a set of equations that may be solvea

numerically or analytically. The main problem with

deterministic moaels is that of representing complex,

aynamic systems in a formulation that is both accurate ana

mathematically tractable.

Probabilistic moaels relate the inputs ana outputs of

a system probabilistically. In one form of probabilistic

moael, the Markov model, the system ana its workload are

expressed as a state-transition system with probabilistic

relationships between the states. The most commonly used

form of Narkov model is the queueing moael in which the

system is representea as a set of service centers connectea

by queues. Requests are serviced and movea through the

system probabilistically. Such a system may be solvea

numerically to proauce performance measures.

For a more complete aiscussion of analytic moaeling

see Svobodova (1976) chapter 3, ana Ferrari (1978) chapter

4. Some recent practice oriented stuaies of the use of

analytic modeling incluae Dowdy et al, (1979), ana Kienzle

ana Sevcik (1979),

Simulation is another frequently used technique that

can give performance information at a much lower cost than

actual implementation ana measurement. Simulation

implements a moael of the system that actually mimics the

important activities of the system. Stimuli generated by

the workload moael arive the simulator, which generates

-12-

information

information

about the system

can then be used

model's activity.

to predict how the

This

actual

system would behave under similar circumstances. There are

several commercially available software packages for

simulation (e.g. GPSS). For more complete coverage see

Svobodova (1976) chapter 5, and Ferrari (1978) chapter 3.

Recent papers by Unger and Parker (1979) and Sanguinetti

(1979) describe techniques for combining projective

simulation and systems design.

Measurement or experimentation is

used technique in performance evaluation.

studies the system serves as its own model.

a frequently

In measurement

Data-gathering

instruments are placed in the system, a workload is run, and

selected aspects of performance are measured. Measurement

is often used in selection problems, where a standard

workload (or benchmark) is run on several different systems

in order to compare their performance. Another common use

of measurement is in improvement studies where a system's

performance is measured with the objective of finding

improvements.

There is a considerable body of literature on

measurement. General concepts and techniques are summarized

in Svobodova (1976) chapter 6, and in Ferrari (1978) chapter

2. A good example of a generalized measurement system is

presented by McDaniel (1977) •

-13-

In any exercise in performance measurement, the

measures to be gathered determine the tools. Tools may vary

in complexity from simple timers built into a program to

complex event-trace recording mechanisms.

All tools have certain common characteristics. They

are all made up of three parts. Data are gathered by a

"sensor" or "probe" part, which is placed in the system to

be measured and detects activity of interest. The probe

feeds its information to a "transformer" part, which

converts it into usable form. The transformed data are then

passed to an "indicator," which makes it available to the

human user. Note that these three parts represent logical,

not necessarily physical, divisions of function. In the

actual implementation of a tool, the parts may be

indistinguishable.

When considering tools, the overall objectives of the

measurement study should be kept in mind. Tools vary in

their cost, both to build and to use. Major differences may

also be found in applicability, scope, resolution, and

accuracy. Implementors of performance evaluation tools

should pay particular attention to a characteristic called

interference, also called measurement artifact, which is the

tendency of a tool to affect the performance of the system

that it is measuring. A tool causing interference can

invalidate any measurements that it produces unless the

interference is controlled statistically.

-14-

Tools are divided into two general classes based on

whether they are implemented using hardware or software.

Hardware tools are electronic devices connected by

wires to key points in the electronics of the system to be

evaluated. They record pulses or other electronic

manifestations of the behavior of the subject system. The

transformer part of such an instrument consists of

amplifiers or other electronics. The indicators may consist

of pulse counters or graphic recorders. A common technique

is to use a micro or mini computer as a transformer with a

CRT or printer to display the results. The microprocessor

can even accumulate the raw data for later analysis and can

be programmed to do almost any type of pre-reduction

desired.

Hardware

interference.

tools generally produce little or no

With the use of microcomputers they are not

much more expensive than software. One limitation of their

application is the difficulty of detecting some of the more

complicated higher-level system events with them. Some

common uses of hardware measurement tools are to monitor I/0

channel and CPU activity, and to collect memory address and

instruction traces.

Software tools are implemented as routines placed in

the software of a system to be measured. Software tools are

easy to install by a programmer with some knowledge of the

system to be monitored. They are extremely flexible and can

-15-

detect events on almost any level. It should be noted,

however, that software tools, if not used carefully, can

introduce a great deal of interference; thus experiments

using them should be carefully controlled.

2.2.3 Modeling the Workload

In order to have meaning, measures of performance must

be related to the workload under which they are observed.

To this end, one of the first steps of any performance

evaluation project is to compose a model of the workload on

~1hich the performance evaluation is to be based. The

workload of a system can be defined as the "set of all

inputs (programs, data, commands) the system receives from

its environment" (Ferrari, 1978).

All workload models are based on abstractions of

actual or potential workloads. The actual or potential

workloads are referred to as "real workloads." The real

workload for a given model could be an actual production

workload, or the projected workload of a new system.

Most performance evaluation studies require some way

to exercise the subject system model under a controlled or

known workload. But real workloads are ornery beasts. In

production environments the workload changes at the

collective whim of the users, making it difficult to

describe the workload at any given moment, much less control

it. If an analytic or simulation model of the system is

-16-

being used, the workload often has to be expressed as a

probability distribution or as a set of events.

For these and other reasons, workload models are

constructed to meet the needs of particular performance

studies. A workload model is a simplified version of a real

workload.

When selecting a modeling technique, a number of

factors must be balanced to produce an acceptable model.

Workload models, like any other models, differ in their

cost, which is always a prime consideration. Three other

criteria are of special importance for modeling workloads.

These are representativeness, reproducibility, and

compactness.

If a workload model is to be representative, it must

faithfully simulate the real workload in the aspects that it

strives to model.

A reproducible workload model is one that produces

the same effects each time it is used. Reproducibility can

be difficult to achieve in multiprogramming workloads. This

is because the interactions between the effects of different

processes are important, and timing is difficult to control.

This can be especially difficult in comparison problems

where different system characteristics can change the timing

of the model.

-17-

Compactness is a measure of the degree of detail in

the model. A very compact model is usually less detailed,

less representative, and cheaper to use than a less compact

model.

The design of a workload model involves trade-offs

between representativeness and the other characteristics.

The more representative a model, the more complex and less

compact it is.

A workload model is constructed like any other model.

A description is formulated based on key characteristics

abstracted from the real workload. This model is then

implemented in the form of a computer program or

mathematical formulation. The descriptive value of the

model is tested by using it to predict the behavior of the

real workload. Adjustments are made to the model and the

process is repeated until the model functions properly. It

is then used in place of the real workload in performance

evaluation studies.

The process of modeling a workload can be pictured as follows.

Abstract -> Formulate -> Construct -> Calibrate -> Use

Note that, at any step, feedback can occur to any previous

step. It could be determined during formulation or any

later step that more information on the nature of the real

workload is needed. This would require a return to the

abstraction step to gather that information. During model

-18-

use, the discovery that the model construction is difficult

to use could motivate reformulation or changes to the

construction.

Abstraction is the step in which the characteristics

of the real workload are determined. It can be a conceptual

or experimental procedure and, in fact, is usually both.

The experimenter comes to some conclusions about the nature

of the workload either by observation of production

workloads or consideration of the uses of the system.

Once information about the nature of the workload has

been acquired it can be put back together in a model. This

is the formulation step. One way of formulating the model

is to describe the workload in terms of smaller models

called job models, which describe portions of the overall

workload. A job model represents a well defined set of

resource demands, and is generally based on some

identifiable component of the real workload. A full

workload model is formulated by combining job models.

Once the workload model has been formulated, it must

be implemented in some form that can be utilized by the

system model. This is the construction step. The form

of implementation will depend on the type of system model to

be used.

The implementation of a workload model on a real

system requires the translation of the model formulation to

-19-

a set of programs, which can then be executed. Such a model

is known as an "executable model." A workload model that is

to be used with an analytic or simulation model of the

system will be implemented as a statistical description of

the resource demands or in some other numerical form. Such

a workload model is known as a "non-executable" model. Of

the two types of models, the non-executable ones tend to be

cheaper and easier to use because they are more compact than

executable models.

Executable models are heavily used in selection.

problems where they are generally implemented as a set of

programs and data taken from a production workload. When a

production workload does not exist, job models can be taken

from· a library of job models with known characteristics.

The job models can be tuned to produce the desired resource

demands. Predefined job models for performance evaluation

are also known as "kernels".

Executable and non-executable workload models are

types of "synthetic" workloads. Synthetic workloads are

used in performance studies where a great degree of workload

control is desired because of reproducibility requirements

or a requirement for representativeness in specific aspects

of the workload. There is another type of workload, called

a "natural" workload, which is a production workload running

in its natural environment. Natural workloads are used for

gathering information for tuning a system or for final

-20-

validation of design decisions made on the basis of

evaluation using synthetic models. Natural workloads tend

to be cumbersome to work with, non-compact, impossible to

reproduce, but very representative.

Once the model is constructed it is calibrated by

comparing its resource utilization characteristics with the

real workload. The actual method of calibration will depend

on how the model is implemented. If the model differs

substantially from its

involve re-evaluation

real workload, calibration

of the formulation with

information from the real workload.

may

new

When the performance analyst is satisfied that the

workload model is representative enough for the needs of the

study, it may be put to use driving the system model,

which produces the desired measures of performance.

More complete discussions of workload modeling may be

found in Ferrari (1978) chapter 5, and Svobodova (1976)

chapter 4. Some practice oriented articles include Nolan

and Strauss (1974), who discusses workload modeling with an

orientation towards selection problems; Oliveret al. (1974) 1

and Sreenivisan and Kleinman (1974) who discuss experiences

in the use of synthetic benchmarks; and Spooner (1979a,b,c),

and Bashioum (1979) who describe a project concerned with

the benchmarking of interactive systems.

-21-

2.3 Performance Evaluation and Small Business Systems

Performance evaluation of small business systems (SBS)

has much in common with that of larger systems. Differences

emerge mainly as matters of scale and economics. The end

users of small business systems will not generally have the

resources or desire to conduct performance evaluation

studies themselves. This situation differs from the large

systems environment where computation centers generally have

systems and operations staffs. This enables them to spend

time tuning their systems. Such institutions are able to

prepare and execute substantial comparative studies prior to

acquiring new equipment or software. The small systems user

will depend more on published comparisons of system

performance when selecting new systems, and will have to

settle for whatever performance he gets with the systems he

has. These constraints place the burden of performance on

the system developer who must augment his knowledge of

systems development vli th knowledge of the workload

encountered in the SBS environment. Systems designed for

small businesses must be adapted more to the small systems

environment.

There is very little in the technical literature which

focuses directly on the performance evaluation of SBS' s.

Some recent articles by Dyal and Dewald (1979), and Huff

(1979) present the methodology and results of the

performance evaluation of some specific systems. Lewis

-22-

based SBS's on the (1978) compared three microprocessor

basis of suitability and performance.

the findings of the comparisons and

His article presents

makes

suggestions for improvements in such SBS's.

some

Jalics

general

(1978)

compares the performance of minicomputer systems vs. large

computer systems using simple COBOL benchmarks. He

documents several areas that show drastic, if unsurprising,

differences.

-23-

Chapter 3

SMALL BUSINESS SYSTEMS

This chapter presents information on the nature of

small business systems (SBS's). Section 3.1 is a review of

the market for, and vendors of SBS's, with projections for

market growth. The second section describes the price and

hardware configurations of SBS's. Section 3.3 discusses the

common applications of SBS's. The chapter concludes with a

description of system software typically available with

these systems.

3.1 Narket Growth and Dominant Vendors

According to a

(1980), manufacturers

report by International Data Corp.

sold in 1979 an estimated total of

236,000 small computer systems for business use. By June

1980 the installed base included approximately 478,000

systems worth a total of $6.1 billion. The same study

projects an installed base of 3,489,000 systems by 1984 with

a value of $30.3 billion, an increase of 620% in the number

of systems installed!

A number of manufacturers are rushing to cash in on

this bounty. The list includes several traditional business

-24-

computer suppliers and minicomputer manufacturers who are

gearing up to be competitive in this potentially lucrative

market. Of this group of established manufacturers IB~I

leads the pack by several lengths, with other well known

names from the computer industry such as NCR, Burroughs, and

DEC vying for the part the giant can't consume. In addition

to the established suppliers, there are several new entries

to the game with Wang Laboratories setting a shining example

for would-be entrepreneurs.

3.2 System Configurations

Small Business Systems are distinguished from large

business systems by price and scope of application. Since

base system price is determined largely by the hardware

configuration, a small business system can be characterized

by its hardware components.

There are two main divisions in the price structure of

the SBS market: low-priced systems costing between $5,000

and $30,000 with software, and (relatively) high-priced

systems costing between $20,000 and $200,000.

Low-priced systems are sold primarily by retail

electronics vendors such as Tandy Radio Shack, various

specialty computer stores, and office equipment suppliers.

They may be purchased either off the shelf or by mail.

Systems in this category cost between $5,000 and $20,000

when bought mail order or off the shelf. When a system is

-25-

bought from a supplier of custom business systems prices

rise to the $10,000 to $30,000 range. These suppliers

provide customized software and more personal service than

the off-the-shelf and mail-order suppliers. Systems in this

10\ver-priced market are generally configured around an

eight-bit or sixteen-bit microprocessor. They carry from 4K

to 64K bytes of random-access memory, and can be equipped

with cassette tape or floppy disc holding up to two million

bytes of on-line storage.

single-user systems, and

hard-copy printer.

These systems are one-terminal

are usually configured with a

Host of the dollar volume in the small business

systems market comes from sales of high-priced systems.

They are bought by businesses with gross incomes betv1een

$1,000,000 and $25,000,000 a year. These organizations buy

computers from suppliers who specialize in providing

computer systems for particular markets, such as

manufacturers, construction

doctors, and lawyers. These

systems are generally built

contractors, wholesalers,

"high end" small business

around hardware produced by

major suppliers such as IBM, DEC, Hewlett-Packard, Data

General, Wang, Burroughs, and Prime. These systems use

16-bit and 32-bit CPU's, carry 64K to 2M bytes of

random-access memory, and have from 10 to 500 Megabytes of

on-line disk storage. The systems support from 1 to 16

concurrent users of CRT terminals. They may be configured

with more than one line printer and support a number of

-26-

other peripherals such as magnetic tape, punched cards,

optical character recognition devices, letter quality

printers, typesetters, and data communications devices.

3.3 Applications Software

SBS applications fall into three major categories:

administrative and financial applications, office automation

applications, and industry-specific applications. The

primary applications are administrative and financial.

Figure 3.1 provides a list of some of the most common

administrative and financial applications.

General Ledger
Accounts Payable
Accounts Receivable
Payroll
Invoicing
Order Entry
Inventory Control

Figure 3.1
Administrative and Financial Applications

The second important group of applications is in the

area known as office automation. The primary application

here is word processing, which helps to automate typing and

other document preparation functions. A word-processing

system allows the use of other document management

functions, such as electronic filing and electronic mail.

-27-

Figure 3.2 provides a more complete list of functions

falling in the office automation classification.

Word Processing
Electronic Mail
Electronic Filing
Meeting Scheduling
On-line Appointments Book
Travel Planning
On-line Telephone Book

Figure 3.2
Office Automation Applications

One final area of application that is important is

"industry-specific applications". Each industry has a set

of applications that are amenable to automation and for

which software is available. Some examples are as follows:

insurance claims handling for doctors and dentists; client

accounting for lawyers, accountants, and professional

consultants; and special technical applications for

engineers.

3.4 System Software

The system software for SBS' s is usually made up of

adaptations of general-purpose software with additions to

enhance applications programming productivity. One major

aid to productivity is the applications generator, which

produces program skeletons based on descriptions of the

input, output, and general function of an application. Such

-28-

a skeleton may often be used as is or may be enhanced by a

programmer to produce a polished application. The primary

languages provided with SBS's are BASIC, COBOL, and Assembly

language. Most of the applications software currently

available is written in BASIC, but COBOL is now offered by

all of the major vendors and is seeing increasing use.

Operating systems for SBS's are similar to other

operating systems for the same size machines. They provide

such standard resource management facilities as schedulers,

file systems, and printer spooling. Additional features

designed specifically for business use involve file system

enhancements to support keyed files (also called indexed or

indexed sequential files). These are disk files that

contain additional information (called indexes) that allows

the file to be read sequentially in several different orders

without re-sorting. The index information also allows fast

lookup of single data records based on the value of a key.

Other features now being provided as system software

for SBS' s include forms management software for designing

screen and printer layouts, programs for doing simple data

entry and file updating, batch processing, and

communications. (Almost all systems provide a

communications facility that allows the SBS to emulate an

IBM 2780 workstation.) Some larger SBS systems now provide

such advanced features as database management with query

facilities, and network communications.

-29-

3. 5 Literature

There is a plethora of publications covering the SBS

marketplace. General trade publications such as Datamation,

Computerworld, and Electronic News contain new product

announcements and articles of interest on various topics

relating to SBS's. A publication from Data General Corp.,

The Insiders Guide .1;Q Small Business Systems, contains a

discussion of SBS's oriented to a naive, prospective

purchaser. Datapro Reports on Minicomputers contains

detailed descriptions of most of the major SBS products on

the market today and is updated on a continuous basis. All

SBS suppliers will supply information on the capabilities of

their own products.

-30-

Chapter 4

AN SBS WORKLOAD MODEL

This chapter describes the development of a set of

benchmarks for small business systems. The development

methodology is based on procedures for the development of

workload models described in section 2.2.3. Topics covered

are the development goals, a characterization of the real

workload, the method used to construct the model, and the

techniques used to verify the representativeness of the

model.

4.1 Development Goals

The development of the benchmarks was motivated by a

need to compare the performance of several existing and

newly developed SBS's. Of particular interest were measures

of performance as a function of the number of active

terminals. The benchmark development was conducted as an

adjunct to an ongoing SBS development effort. Factors

including manpower costs, time constraints, and hardware

resources affected the choice of approach, and led to five

primary requirements for the benchmarks.

-31-

1) Tractability. The benchmarks had to lend

themselves to frequent use. Long setup times and cumbersome

operating procedures were not acceptable.

2) Reproducibility. The primary use of the benchmarks

would be in comparison experiments; therefore, they had to

produce the same loading effects each time they were run.

3) Portability. Because they were to be used with

several different operating systems, the benchmarks had to

be as system-independent as possible. This goal was

achieved by implementing the benchmarks in standard COBOL.

4) Representativeness. One of the primary uses of the

information to be produced by the benchmarks was to help

justify the replacement of existing products. It was

important that the benchmarks be demonstrably representative

of the real workloads that they modeled. The results of a

special experiment designed to assure this characteristic

are presented later in this chapter.

5) Implementation cost. Because the benchmarks were a

tool rather than a revenue-producing product, the

implementation costs had to be as low as possible. Manpower

costs were

package as

controlled by

a base and

measurement process.

using an

modifying

-32-

existing

it to

applications

automate the

4.2 Characterization Qf ~ ~ Workload

The first step in constructing a workload model is to

describe the real workload. The SBS workload was described

by dividing the programs that constitute it into five

classes determined by program function: data entry, data

maintenance, query, report generation, and batched update.

~ entry functions accept information from

applications user via the interactive terminal.

information is checked for validity and consistency.

checking often involves reading files to see whether

information is consistent with other data. The

the

This

The

the

new

information is then used to update one or more detail and

summary files.

~ maintenance functions are used to delete or

change data already existing in a database. The

applications user provides the program with selector

information to specify the data to be changed. The selected

information is then located and displayed to the operator.

If the function is CHANGE, the user provides the new

information, and the program checks its validity and updates

the various detail and summary files. If the function is

DELETE, the user is asked to confirm the deletion and the

appropriate files are updated.

Query functions are used to find and display small

quantities of information to the waiting user. Generally,

-33-

the query function displays information from the database

with very little summarization or interpretation. Query

functions do not generally update any files, but may do more

file reading than do entry or update functions.

B~go.:t g~n~ration functions are similar to query

functions in that they produce formatted displays of the

information in the database. They are different in that

they operate on larger volumes of data and may perform

summarization and interpretation. They generally take a

relatively long time to complete, and are often run as part

of the evening batch stream.

Batched ugdate functions are non-interactive and are

run periodically to combine detail and log files into new

summary and master files.

byproduct.

They often produce reports as a

Applications systems consist of several subsystems

that apply the five primary functions to different sets of

files. For example, the four most common applications are

accounts payable (AP), accounts receivable (AR), payroll

(PR), and general ledger (GL). These applications all

involve data entry, data maintenance, query, reporting, and

batch update functions. AP applies them to vendor and AP

transaction files; AR to customer and AR transaction files;

PR to employee and personnel record files;

journal and ledger account files.

-34-

and GL to

In designing the benchmarks, the assumption was made

that all programs implementing a given function have similar

performance characteristics, regardless of their

applications. Adopting this assumption, the makeup of an

SBS workload can be expressed as a quintuple <E,M,Q,R,U>

where:

E is the number of

functions;

terminals used for data entry

M is the number of terminals used for data maintenance

functions;

Q is the number of terminals used for query functions;

R is the number of terminals used for report generation

functions; and

U is the number of terminals used for batched updates.

(A batch stream is considered to be an active terminal.)

The sum of the elements of the quintuple is the total number

of active terminals.

4.3 Constructing .t.b..§. !IJodel

An existing applications package, written in COBOL,

was used as a base from which to construct the automated

-35-

benchmark programs. The base programs were selected from a

set of programs within the Accounts Receivable (AR)

subsystem. Local applications programmers felt that the AR

programs were reasonably representative and probably easiest

to modify. The specific functions selected were invoice

entry for data entry, invoice change/delete for data

maintenance, customer invoice query for query, and midday

invoice register print for report generation. No batch

update program was selected because of time constraints and

because such programs are generally run outside of normal

operating hours.

The model was constructed by modifying the real COBOL

programs used to implement these functions. The

mod if i cations allowed the programs to run

non-interactively.

The following assumptions guided the conversion process.

1) The overhead induced by actually typing the data

from the keyboard is not significant relative to other

activities, such as data file manipulation and screen

formatting. This assumption meant that the programs did

not have to be driven externally.

2) The data file manipulations performed by the

programs are a significant part of the workload. The sizes

of the records and the number of keys associated with the

-36-

data generally dictate the amount of overhead associated

with each I/0 operation.

3) The number of operations that use files shared with

other programs in the workload has a significant effect on

the amount of concurrency control overhead (collisions on

locked records) generated by the workload.

The function models were produced by removing from the

real programs, ACCEPT statements that were used to read data

from the terminal. The real programs were then modified so

that they took input data from tables rather than from a

user at a terminal. Computation, data types, screen

formatting, and data file operations were left largely

unchanged. Extra logic required to control the flow of the

program was kept to a minimum.

The actual number of terminals to be assigned to each

of the functions was based intuitively on consultation with

application specialists who concurred that the proportions

were reasonable. To control the workload and collect timing

information a supervisory program was written that

dispatches the function models, records their start and stop

times, and produces reports from the measurement sessions.

4.4 Model Calibration~ Validation

In this project the assumption was made that the only

model calibration needed would be in the determination of

-37-

the values of the elements of the quintuple. This

determination was based on intuition and on knowledge of

real-world situations.

In model validation it is important that the model

components -- in this case the programs implementing the

various functions -- accurately represent the programs from

which they were derived. A separate experiment was

conducted to provide this information and, in addition, to

collect certain abstract information about SBS workloads.

The validation experiment was conducted by collecting

frequency distributions of operations for the real and model

programs, and comparing to see whether the dynamic

composition of the model was similar to that of the real

application.

The data collection process was made easier by the

fact that the COBOL compiler on one of the systems to be

tested generates a pseudo-code that is executed by an

interpreter. Recording instruments for the model validation

experiments were added to the interpreter to gather the

desired frequency distributions. (Actual performance

measures were taken using an interpreter without the

validation experiment instruments in order to reduce

measurement artifact.)

In order to validate the comparisons of the real and

model programs, the compiler-generated operations were

-38-

divided into five classes roughly corresponding to groups of

COBOL source statements. The programs were compared on the

percentage of the total number of operations falling into

each class. The classes were as follows.

* Arithmetic operations. Generated from ADD, SUBTRACT,

MULTIPLY, DIVIDE, and COMPUTE statements.

* Data movement

statements.

operations. Generated from MOVE

* Input I Output operations. Generated from READ, WRITE,

REWRITE 1 START 1 DISPLAY 1 and ACCEPT statements. The

COBOL compiler allowed DISPLAY and ACCEPT stat'ements

that could move whole screens full of data in one

operation.

*

*

Flow of

and GOTO

control operations. Generated from PERFORM

statements. Note that each paragraph of a

program has code at the end to return to an invoking

PERFORM when appropriate.

Conditional operations. Generated from IF statements.

Two other statistics were also gathered and compared.

One was the number of operations needed to process a single

interactive transaction. The other was the ratio of

-39-

references to the two available numeric data types. The two

types are {in COBOL terms): USAGE IS COMPUTATIONAL, which is

implemented as a two's complement binary integer; and USAGE

IS DISPLAY, which is implemented as an ASCII character

string {also known as zoned decimal). The collection of

this latter statistic was motivated by an article by Jalics

{1978) which indicates that operations on these two numeric

data types have significantly different performance

characteristics on small business systems.

Figures 4.1-4.7 show the results obtained from

executing the real and model programs. The model and the

real program had reasonably similar performance profiles for

al~ four of the programs run.

Data Entry
Query
Change/Delete
Report Generation

Average

~ Program

14.32
19.06

7.56
7.23

12.04

Figure 4.1
Arithmetic Operations

Percent of Total

-40-

Model

12.87
17.24

7.09
4.96

10.54

Data Entry
Query
Change/Delete
Report Generation

Average

Data Entry
Query
Change/Delete
Report Generation

Average

Data Entry
Query
Change/Delete
Report Generation

Average

~ Program

19.11
22.46
26.49
14.40

20.62

Figure 4.2
Data Movement Operations

Percent of Total

~ Program

1. 76
1.86
2.87
1.18

1.92

Figure 4.3
Input/Output Operations

Percent of Total

~ Program

11.62
11.32
11.79
15.01

12.44

Figure 4.4
Flow of Control Operations

Percent of Total

-41-

Nodel

18.86
23.23
27.12
11.85

20.26

Nodel

1.59
1.37
2.51
1.00

1.61

Model

11.39
11.02
10.96
15.25

12.16

Data Entry
Query
Change/Delete
Report Generation

Average

Data Entry
Query
Change/Delete
Report Generation

Re.al Program

48.97
42.55
48.54
60 .so

50.14

Figure 4.5
Decision Operations

Percent of Total

Re.al Program

4163
1167
1811
1364

Figure 4.6

No del

50.53
44.50
49.41
65.84

52.57

Nodel

3634
1045
1855
1289

Operations per Transaction or Record

Data Entry
Query
Change/Delete
Report Generation

References to

Re..1i1 Program

5.21
9.13
2.88
1.69

Figure 4.7
Approximate Ratios of
DISPLAY vs. COHPUTATIONAL

-42-

Model

3.08
8.32
2.42
1.21

Type Data

4.5 ~ Observations Qll ~ Workloads

The following observations were made in the course of

building and testing the benchmarks. It is not known

whether or not these are general characteristics of small

business systems, but they were thought to be significant

enough for inclusion in this discussion.

The data presented in Figure 4. 7 indicate that the

data types supported by a SBS could have a significant

effect on the performance of a system. Numeric data

represented as character strings (DISPLAY) experienced a

significantly larger number of references than did data

represented as binary integers (COHPUTATIONAL). The

inherent slowness of DISPLAY arithmetic could make data

types a significant factor in the workload.

The relatively large component of the workload

represented by decision statements (Figure 4.5) is

surprising. Even though visual inspection of the benchmark

source code indicated that IF statements make up a sizable

component of the program, the very large number of

conditional operations seen at run time was not expected.

The very low I/0 component (Fig 4.3) seen in the

operation frequencies was not expected, although it is

consistent with observations from visual inspection of the

program source code. The pseudo-code I/0 operations have a

relatively high semantic content, and the dynamic

-43-

frequencies probably do not

contribution to the workload.

reflect their actual

One interesting effect observed while testing the

benchmarks is that there is a "knee" in performance which is

related to data file size. The knee occurs at different

file sizes on different systems and is probably due to the

organization of the index files and the way that they are

buffered.

Conventional wisdom has it that I/0 is a very large

component of commercial workloads. Although I/0 was only a

minor aspect of this study, experience in production

environments indicates a need for more investigation of this

aspect of SBS workloads. Some interesting measures are: (1)

channel throughput, differentiating between disk and screen

I/0; (2) record size distributions for disk I/0; and (3) the

number of keys per record. Other interesting topics for

study are the effect of file sharing on performance, and the

frequencies of collisions on shared files and records in

real workloads.

-44-

Chapter 5

CONCLUSION

In the next ten years computers will become as

important a tool of the small business as the typewriter is

today. It will be the responsibility of the designers and

builders of those systems to make cost effective, productive

tools with a sensitivity to the special needs of the small

user.

The writing of this thesis served as a focus for an

investigation of the applicability of techniques for

performance evaluation to the special needs of SBS's.

Although most of the major topics of performance evaluation

were mentioned, the focus of the investigative work was on

characterizing the workloads of SBS' s. In the course of

this investigation several questions were raised that could

not be dealt with ~1i thin the time constraints of the

project. Such questions as "What are acceptable response

times for SBS' s?", and "What are the throughput

requirements?" are of special importance to the SBS

developer. Much of the general work in performance

evaluation is applicable to these ana other SBS related

questions. Where general research cannot provide the

answers, specific investigation will be required to provide

-45-

developers with the information they need to produce cost

effective information management tools for small business,

-46-

BIBLIOGRAPHY

Adams, J. C., Currie, w. s., and Gilmore, B. A. c., "The
Structure and Uses of the Edinburgh Remote Terminal
Emulator." Software Practice .iallii Experience ,a,
4, pp. 451-459, July-August 1978.

Bashioum, D. L., "Benchmarking Interactive Systems:
Calibrating the l~odel." Performance Evaluation
Review~' 2, pp. 35-41, Summer 1980.

Data General Corp., ~ Insider's Guide to Small Business
Computers. Data General Corp., Westboro, Mass., 1980.

Data General
Reference.
undated.

Corp. 1

Data
Interactive Cobol Programmer's

General Corp., Westboro, ~lass.,

Datapro Reports Qll Minicomputers, Datapro Research Co.,
Delran, New Jersey, updated monthly.

DOivdy, L. w., Agrawala, A. K., Gordon, K. D., and Tripathi,
s. K., "Computer Performance Prediction via Analytical
Modeling -- An Experiment." Proceedings Conference on
Simulation, Measurement, and ~!odeling Qf Computer
Systems, Boulder, pp. 13-18, 1979.

Dujmovic, J. J., "Criteria
Evaluation." Performance
pp. 259-267, Fall 1979.

for Computer Performance
Evaluation Review ,a, 3 1

Dyal, J. 0., and DeWald,
Performance Analysis."
,a, 3, pp. 269-275, Fall

W. , "small
Performance
1979.

Ferrari, D., "Workload Characterization
Computer Performance ~!easurernent."
pp. 18-24, July-August 1972.

Business
Evaluation

Systems
Review

and Selection in
Computer 2, 4,

_______ , Computer System Performance Evaluation.
Prentice-Hall, Englewood Cliffs, New Jersey, 1978.

Gay, A. R., "Benchmarking a Multi-Access System.", Software
-- Practice .a.nQ Experience lQ, l, pp. 45-55 1 January
1980.

-47-

Hellerman, H., and Conroy, T. F., Computer Systems
Performance. McGraw-Hill, New York, 1975.

Huff, R. W.,
System."
277-284,

"System Characterization
Performance Evaluation

Fall 1979.

of a Retail Business
Review .ll., 3, pp.

International Data Corp., :r.ll.e Small Computer Marketplace.
#2103, International Data Corp., Waltham, Mass., 1979.

Jalics, P. J., "Performance of COBOL programs on Mini vs.
Large Computer Systems." SIGMINI Newsletter ,!, 4,
pp. 17-23, August 1978.

Kienzle, M. G., and Sevcik, K. c., "A Survey of Analytic
Queueing Models of Computer Systems." Proceedings
Conference Qn Simulation, Measurement, .rulli ~lodeling
of Computer Systems, Boulder, pp. 113-129, 1979.

Lewis, T. G., "Performance Evaluation of Three
Based Systems in a Small Business
SIG~liNI Newsletter ,!, 4, pp. 9-16,

Lo,

Hicroprocessor
Environment."
August 1978.

T. L., "Computer Capacity
Network Models." Performance
pp. 145-152, Summer 1980.

Planning Using Queueing
Evaluation Review .;!., 2,

Lucas, H. c., Jr., "Performance Evaluation and Monitoring"
Computer Suryeys ~, 3, pp. 79-91, September 1971.

McDaniel, G., "METRIC: A Kernel Instrumentation System for
Distributed Environments." In Proceedings Sixth
Symposium on Operating Systems Principles, pp. 16-18,
November 1977.

Nolan, L. E. and Strauss, J. c., "Workload Characterization
for Timesharing System Selection." Software
Practice .rulli Experience A., 1, pp. 25-39,
January-t-larch 1974.

Oliver, P., Baird, G., Cook, M., Johnson, A., and Hoyt, P.,
"An Experiment in the Use of Synthetic Programs for
System Benchmarking." Proceedings AFIPS Conf.
(NCC). A.l, pp. 431-438, 1974.

Sanguinetti, J., "A Technique for Integrating Simulation and
System Design." Proceedings Conference .Qn

Simulation, Measurement, and Modeling Qf Computer
Systems, Boulder, pp. 163-172, 1979.

-48-

Shneiderman, Ben, Software Psychology. Winthrop,
Cambridge, Mass., 1980.

Smith, C., and Browne, J. C., "Performance Specifications
and Analysis of Software Designs." Proceedings
Conference Qll Simulation, Measurement, and Nodeling
Qf Computer Systems, Boulder, pp. 173-182, 1979.

Spooner, C. R., "Benchmarking Interactive Systems."
Proceedings Summer Computer Simulation Conference, pp.
791-798, Toronto, July 1979a.

___ , "Benchmarking Interactive Systems: Producing the
Software." Performance Evaluation Review, .!l., 3, pp.
249-257, Fall 1979b.

___ , "Benchmarking Interactive Systems: Modeling
Application." Proceedings CPEUG Conference,
Diego, Oct. 1979c,

the
San

Sreenivisan, K., and Kleinman, A. J., "On the Construction
of a Representative Synthetic Workload."
Communications of the 11Ql 1.2, 3, pp. 127-133, March
1974.

Svobodova, L., Computer Performance and Evaluation Methods:
Analysis and Applications. Elsevier, New York, 1976.

Unger, B. W., and Parker, J. R,, "An Operating System
Implementation and Simulation Language (OASIS)."
Proceedings Conference Qn Simulation, Measurement,
.<ill..d Modeling of Computer Systems, Boulder, pp.
151-161, 1979.

-49-

