
OPTIMAL STORAGE MANAGEMENT 
IN A CELLULAR COMPUTER 

Donald F. Stanat 
Gyula A. Mago 

Al-006 

Index Terms: Cellular computers, divide and conquer algorithm, functional 
programming, network of microprocessors, optimal algorithms, parallel 
processing, reduction languages, storage management. 

This work was supported by NSF Grant MCS78-02778. Final preparation of the 
manuscript was done while the first author was a Visiting Scientist at the 
IBM San Jose Research laboratory. 

The authors are with the Department of Computer Science, University of 
North Carolina at Chapel Hill, NC 27514. 



ABSTRACT 

Optimal Storage Management in a Cellular Computer 

Donald F. Stanat and Gyula A. Mag& 
Department of Computer Science 

University of North Carolina at Chapel Hill 
Chapel Hill, NC 27514 

We consider a class of machines in which a program is an. 

expression stored in a linear array of cells, one expression 

symbol per cell. Empty cells can occur within and at the 

ends of the expression. Program execution requires shifting 

the symbols within the array (without changing their 

relative order) to provide specified numbers of contiguous 

empty cells adjacent to each symbol of the expression. 

Because symbols move simultaneously along the linear array 

of cells, an optimal pattern of movement is one that 

minimizes the maximum distance moved by any symbol. In the 

machine considered here, the expression array consists of 

the (connected) leaves of a full binary tree of cells. We 

describe an algorithm that uses the tree network to compute 

an optimal pattern of symbol movement and does so in time 

proportional to the height of the tree. The algorithm is 

asymptotically optimal for the given network topology. 
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I. Introduction 

In recent years, Backus [l,2] has introduced several classes 

of programming languages designed to_· overcome some of the 

objectionable features of contemporary high level programming 

languages such as FORTRAN and ALGOL. The interested reader is 

referred to the 1977 Turing Lecture [2] for a description of the 

state of Backus's work as of that time. Although Backus has 

proposed a number of language classes in the publications cited, 

their distinctions do not concern us here and we will refer to 

them simply as reduction languages. 

Mag6 recently proposed a basic machine architecture capable 

of executing reduction language programs efficiently; we will 

call these reduction language machines. The architecture of 

these machines is well-suited to reduction languages and exploits 

current electronic technology in a manner unavailable to von 

• Neumann computers. The interested reader is referred to Mago [3] 

for a definitive description. The work described here grew out 

of the storage management problem in the reduction language 

machines described in that paper. 

II. Reduction Languages ~ Reduction Language Machines 

A reduction language program is an expression, similar to an 

algebraic expression, but with more powerful operations. A 

reduction language program is executed by evaluating the 

expression. This is done by locating innermost applications, 
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which are subexpressions of the program that can be evaluated 

independently of the remainder of the program. Evaluating one 

innermost application will, in general, create others, just as 

replacing the innermost expression of a~ algebraic expression by 

its value will create new innermost expressions. When no 

unevaluated innermost applications remain, execution of the 

program is complete. Because reduction languages admit a variety 

of powerful operators, the value of an innermost application may 

be either longer or shorter than the application itself and the 

process of evaluating a single innermost application may result 

in the creation and evaluation of many more applications. Thus, 

a program can expand and contract during execution. 

One of the most attractive aspects of reduction languages is 

that all innermost applications are disjoint and are evaluated 

independently of the remainder of the program. Moreover, these 

languages have the Church-Rosser property, that is, the result of 

program execution does not depend on the order in which innermost 

applications are evaluated. This implies that all innermost 
~ 

applications of a reduction language program can be evaluated 

concurrently. Because reduction language machines are capable of 

evaluating arbitrarily many innermost applications concurrently, 

they exploit the potential parallelism of reduction languages in 

a natural way. 

A reduction language machine is essentially a full binary 

tree of microprocessors with connections between adjacent leaf 

cells as shown in Figure 1. The leaf cells form a linear array 
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Figure 1: 

The L Array 

The T 
Array 

Interconnection pattern of a reduction language 

machine. Circular nodes denote T cells; square nodes denote 

L cells. 
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** Figure 1 goes here ** 

called the L array (for Leaf or Linear). The internal cells form 

a binary tree called the T array (for Tree). All the L cells are 

identical except for those on the right and left ends: all the T 

cells are identical except for the root cell which handles a 

variety of special tasks. 

A program for a reduction language machine resides in the 

cells of the L array, one symbol per cell, stored in a left-to

right order. The text is not required to occupy contiguous cells 

of the L array: empty L cells may be interspersed among the 

occupied ones. Execution can be described briefly as follows: By 

communicating among themselves, the cells of the T and L networks 

determine the locations of the innermost applications. Then the 

processing capabilities of the tree of T cells are partitioned so 

that each innermost application has a subtree of the T network 

dedicated to it. The subtree then evaluates the innermost 

application. Evaluation of an innermost application requires a 

number of steps, including determining the operation to be 

performed, finding the operands, and replacing the expression by 

its value. Because the value of the innermost application may 

require more space than the expression itself, processing an 

innermost application often requires that additional space (in 

the form of empty cells of the L array) be provided in specific 

locations within and adjacent to the innermost application. The 

required space is provided by shifting contents of occupied cells 
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to the left or right within the L array. This movement, of 

course, must occur without overwriting any program text symbols, 

and must not usurp space required for the evaluation of other 

innermost applications. 

Ill. The Storage Management Problem 

Storage management is the repositioning of the contents of 

occupied cells of the L array to allow the evaluation of all 

innermost applications. For our purposes, the storage management 

problem can be described as follows: The L array contains a 

sequence of symbols, those of a reduction language program, in 

some of its cells. These symbols are stored in a left-to-right 

order, one symbol per cell, but not necessarily in contiguous 

cells. Requests for storage are made only by symbols of the 

program text. Each symbol requests a specific number of empty L 

cells to be provided on its immediate right and immediate left. 

A symbol may request a different number of cells on its right and 

left, and the number of cells requested may be zero. Space (in 

the form of empty cells) is to be provided only by shifting 

symbols (that is, the contents of occupied cells) so that empty 

cells are positioned in a way which satisfies all requests. 

Definition 1: A storage management problem consists of a finite 

sequence of cells, some of which are occupied, such that the 

symbol of each occupied cell has two associated nonnegative 

integers denoting its requests for empty cells on the left and 
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Problem 

!1x1ol - [-] . I ll22j1x3ol I I I lox~j 

Solutions 
I I . .. " .. 

A [ -, Ll rx!j x2TR-2j-Ri[L3 f3J~rx4lR4I-I Cost =2 
2 1 0 -1 -2 0 1 0 0 -1 -2 . .. • .. 

8 [J Llj xD x21 R2,R2J--f L31 x3JX4jR4J ___ j Cost =2 
2 1 0 -1 -2 0 2 1 0 -1 -2 

~~--~. . 
c I Ltj xtj I x2l R21 Ri}- [L.3-j x31 ·-Tx-4JR4] cost= 2 

1 0 0 -1 -2 0 2 1 0 0 -1 . ~ 't 

D I L1 jxtj X21 R21 R2 [L3JX3I_I __ T -- r4J R4 j Cost= 3 

1 0 -1 -2 -3 0 0 0 0 0 -1 

Figure 2: A storage managenent problem and four solutions, three of which are minimal cost. In the 
problem, given at the top, blank squares represent Ellpty cells in the L array, Xi denotes the ith 
symbol of the program text, and the left and right subscripts of Xi denote the llllllber of cells 
requested by Xi on its left and right respectively. In the solutions, Li and Ri derote cells 
reserved for fulfillin;~ the requests of Xi on the left and right respectively. Arrows denote 
IIOVE!!Mmt of text symbols. Integers below cell dividers are equal to the flow 011er the edge· 
be~n the cells; see Section IV. 
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right. A solution to a storage management problem consists of a 

set of magnitude-direction pairs, one pair for each occupied 

cell, such that if the symbol of each occupied cell is moved 

according to its pair, then the left-to-right order of the 

symbols is unchanged and the resulting sequence of occupied ana 

unoccupiea cells will be such that all requests are satisfied. 

Moreover, no empty cell is used to satisfy more than one request. 

Figure 2 illustrates a storage management problem and some 

possible solutions. The contents of a cell of the L array is 

moved by a succession of shifts to the right or left, 

** Figure 2 goes here ** 

i.e., the movement is contained within the L array itself. 

Because each L cell can contain only one symbol of the program 

text, text movement must be coordinated so that data are not 
.·, 

overwr1tten. We assume that buffers are used in shifting cell 

contents, so that, for example, the contents of a set of 

contiguous cells can be shifted simultaneously either to the 

right or left. However, the contents of one occupied cell cannot 

be shifted into an adjacent occupied cell unless that cell's 

contents is being shiftea in the same direction simultaneously; 

such an action would cause overwriting. Shifting the contents of 

a cell to its neighbor is assumed to take one time unit. 



6 

Text movement will require minimal time, and no overwriting 

will occur, if the contents of all occupied cells begin to move 

at the same time and move continuously until they reach their 

destination. Thus each occupied cell in L must be told in which 

direction and how far its symbol is to move. In the following, 

for the sake of simplicity, we often speak of moving or shifting 

an L cell, when we mean, in fact, moving the contents of the 

cell. 

The storage management process can be divided into two 

phases: preparation and text movement. Preparation consists of 

determining and communicating to each occupied cell the 

magnitude-direction pair that specifies how the symbol contained 

in the cell should move. Text movement is the actual movement of 

the cell contents. The time required for the second phase, text 

movement, is the maximum distance moved by the contents of any 

cell along the L array. 

Definition 2: The cost of a solution S to a storage management 

problem P is the largest magnitude of the set of magnitude

direction pairs comprised by the solution S, i.e., the cost of S 

is the maximum distance moved by any symbol in the sequence of 

cells. A solution S to a storage management problem P is said to 

be minimal £2!! (or optimal) if the cost of S is no greater than 

that of any other solution to P. 

In Fig. 2, solutions A, B and C are minimal cost; D is not. 

The following proposition is easily proved. 
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Proposition 1: lf P and P' are storage management problems over 

the same linear array of cells such that the set of occupied 

cells and the set of requests of P' are subsets of those of P, 

then a minimal cost solution for P' -~ill cost no more than a 

minimal cost solution for P. 

The problem we address in this paper is the design of an 

algorithm to compute minimal time solutions to storage management 

problems. Moreover, we would like the preparation phase of this 

algorithm to be as small as possible. lt is clear from the 

interconnection diagram of Figure 1 that the only paths for 

information flow which can involve the entire L array are along 

the L array itself and through the root node. Bence, a solution 

can be computed entirely within the L array, or by using 

information paths through the root cell. The time required by a 

preparation phase which occurs entirely within the L array is 

prohibitive. Thus, an asymptotically optimal preparation phase 

for the given interconnection pattern involves 

~~ passing information and performing computations in 

an upward wave through the tree, starting with the L 

cells and proceeding to the root, with the time and 

space required for the computations at each level, 

including the root, bounded by constants, and then, 

b) passing information and performing computations in a 

downward ~ from the root to the L cells so that each 

L cell receives its part of the solution information, 

with the time and space requirements for the 

computations at each level bounded by constants. 
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If a minimal time solution can be found in this way, then for an 

L array consisting of n cell~, the preparation phase would 

require O(log n) time, and the text movement phase would require 

minimal time. In this paper we develop algorithms for execution 

by the L and T cells to compute a minimal time solution with one 

upward wave of information going from the L array to the root of 

the tree followed by a downward wave from the root to the cells 

of the L array. The time and space requirements for the 

computations performed by any cell are bounded by constants; thus 

the solution described here is an O(log n) (and therefore 

asymptotically optimal) algorithm for finding an optimal solution 

to any storage management problem. 

The storage management algorithm described by Mag6 [3) is 

similar to the one we develop here in that the preparation phase 

requires a single wave up and down through the tree. The 

solution computed by Mago's algorithm, however, is not optimal. 

IV. The Strategy of the Algorithm 

In order to tell each occupied cell of the L array wnich 

direction and how far it should move, we consider the contents of 

each occupied cell and each cell request to be units which move 

along the L array. A flow of these units will be calculated by 

the T array for each edge of the L array. The magnitude of the 

flow over an edge represents the number of non-blank symbols plus 

cell requests that will be moved over the edge, where cell 

' . 
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requests are considered to originate in the cell of the 

requesting symbol. The direction of the flow specifies the 

direction in which symbols and requests are to be shifted over 

the edge. Figure 2 gives examples of flow values. With the 

algorithm described here, the flow calculated for an edge is 

communicated to the L cell immediately to the. right of the edge; 

thus, each L cell (except the one on the extreme left of the L 

array) is told the magnitude and direction of the flow across the 

edge to its left. The flow along the edge adjacent to an 

occupied cell can be used to calculate the movement for the 

contents of that cell in the following way. Consider any 

occupied L cell C and suppose that the flow over the edge to its 

left is an integer f, where a negative value of f denotes a flow 

to the left and a positive value a flow to the right. (The cell 

on the extreme left end of the L array is told that there is a 

zero flow over the nonexistent edge on its left.) If C has 

requested p cells on its left, then the contents of C should move 

f+p, where a positive value indicates a move to the right and a 

negative value a move to the left. 

Each cell C of the T array is responsible for computing the 

flow over a single edge of the L array, namely the edge which 

lies between its left descendant leaves and its right descendant 

leaves; we say each T cell is associated with this edge of the L 

array which, in the diagram of Figure 1, lies directly beneath 

it. During the upward wave, each T cell computes parameters that 

determine a tentative flow for its associated edge. During the 

downward wave, each T cell computes the actual flow over its 
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associated edge. This information is then carried to the proper 

L cell by the downward wave. 

The upward wave begins with each L cell computing the 

parameters of a tentative partial solution to the storage 

management problem. Each L cell constructs this solution solely 

on the basis of whether it contains a symbol, and if so, the 

requests of the symbol. During the upward wave each T cell 

receives parameters of tentative partial solutions computed by 

its two sons; these parameters are used by the T cell to compute 

the parameters of a larger tentative partial solution by marrying 

the partial solutions of its sons. The upward wave ends when the 

root node has computed the parameters of its tentative solution. 

To begin the downward wave, the root node incorporates the 

constraint that there can be no flow in or out of the endpoints 

of the L array. Each T cell other than the root receives from 

its parent node comparable constraints in the form of 

restrictions on the flow in and out of its leftmost and rightmost 

descendant leaves. After a T cell has received its constraints, 

it modifies its solution to satisfy the constraints, computes the 

flow over its associated edge, and communicates constraints to 

each of its sons. The computed flows are carried along with the 

downward wave until they reach the appropriate L cell, where they 

are used to determine the-movement required of the symbol in each 

occupied cell as described earlier in this section. 

The success of the algorithm depends on the fact that no 

cell is required to find an entire solution to the problem posed 
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in its leaves; instead, each cell finds only part of the 

solution, including the flow over its associated edge. Thus the 

solution for the entire machine is computed by the conglomeration 

of T and L cells, and the solution for the leaves of any T cell C 

is computed by C together with its descendants. (If C is any L 

or T cell, we mean by "the leaves of c• the set of L cells that 

are descendants of C.) With this made explicit, we now begin to 

speak simply of a cell computing a solution when we mean, in 

fact, that the cell is computing its share of a solution, where 

this share is represented by a set of parameter values. 

V. Compact Minimal Cost Solutions 

The set of parameters computed by each cell C during the 

upward wave characterizes a set of minimal cost tentative 

solutions of the storage management problem posed by the leaves 

of c. To find these parameters, each cell C assumes that 

immediately to the right and left of its leaves there is an 

arbitrary number of empty L cells that can be used to satisfy 

requests made by its leaves. If C is aT cell, the set of its 

leaves is the union of the leaves of its two sons; thus C can 

construct a tentative solution for its leaves by marrying the 

tentative solutions of its sons. Marriage of the two 

subsolutions may require resolving conflicting demands for some L 

cells. The cell C resolves conflicts by constructing a solution 

which involves moving some occupied leaves of its left son 

further to the left, those of its right son further to the right, 
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or both. Even if the two subsolutions do not have conflicting 

requirements, the tentative solution computed by C will not 

generally consist simply of the combined solutions of its sons. 

Instead, C will shift both occupied and requested cells in order 

to make its own tentative solutions as compact as possible (to 

minimize conflict with other partial solutions) without 

compromising their minimal cost. After computing the parameters 

of its own tentative solutions, each cell passes the parameters 

to its parent cell. To make these notions precise, we now give a 

number of definitions and state some preliminary results. 

Definition 3: The specific set of cells which would be either 

occupied or requested by implementing a solution S to a storage 

management problem is called the configuration of s. The 

leftmost cell of a configuration is the left end of the 

configuration, similarly for the right end. The span of a 

configuration is zero if the configuration is empty, otherwise it 

is the distance from the left end of the configuration to the 

right end plus one. A configuration is said to have~ internal 

blanks if it is nonempty and every cell between the left end and 

the right end of the configuration is either occupied or 

requested. We will often refer informally to the "right end of a 

solution,• the "span of a solution" or "moving a solution• by 

which we mean respectively the right end of a configuration, the 

span of a configuration or moving the configuration of the 

solution referred to. 
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During the upward wave, each L ana T cell c computes a set 

of parameters that characterizes the set of minimal cost 

solutions with the smallest spans for the storage management 

problem in the leaves of c. 

Definition 4: Let P be a storage management problem whose 

requests sum tor, and let P' be the storage management problem 

obtained by adding r unoccupied cells to each end of the array of 

P, thus ensuring adequate space for text movement to either the 

right or left. A compact minimal cost (erne) solution S to P is a 

set of magnitude-direction pairs such that S is a minimal cost 

solution to P' and the span of every other minimal cost solution 

to P' is at least as large as the span of s. 

In Fig. 2, solutions A, B and C are all minimal cost, but 

only A and B are compact minimal cost. Note that a erne solution 

to P is not a solution to P but rather a solution to P' where P' 

is obtained by adding blank cells to both enos of the array which 

contains P. During the upward wave, each cell C will fino the 

parameters of all erne solutions to the storage management problem 

in its leaves. These parameters include the cost, the location 

of the left and right ends, and the number of internal blanks. 

The following propositions characterize some important properties 

of erne solutions. 

Proposition 2: For any storage management problem P, all erne 

solutions to P have the same cost, the same span and the same 

number of internal blanks. 
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Problem 

Solutions 

A[~~ 

8 I Xi I R 1 I X21 

Figure 3.: A storage management problem for which there are 

two erne solutions with different endpoints. 
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Proposition 3: For any storage management problem P, exactly one 

of the following two assertions holds: 

a) The positions of the left ends of all erne solutions to P are 

the same, as are the positions of the right ends of all 

cmc solutions. 

b) There are exactly two erne solutions, neither of which has 

internal blanks, and the left ends of the two solutions 

are adjacent, as are the right ends of the two 

solutions. 

Definition 5: A erne solution s to a storage management problem P 

is leftmost (rightmost) if the left end of S is at least as far 

left (right) as the left end of any other erne solutionS' toP. 

If assertion a) of Proposition 3 holds for some problem P, then 

all erne solutions to P are botn leftmost and rightmost; if 

assertion b) of Proposition 3 holds, then there is a single 

leftmost erne solution and a single rightmost erne solution and 

they are distinct. Figure 3 illustrates a storage management 

problem for which assertion b) holds. 

** Figure 3 goes here ** 

A cell constructs a erne solution for its leaves by modifying 

and combining the erne solutions of its sons. Conceptually this 

is done by moving the subsolution configurations to the left or 

right while making them as compact as possible. The next lemma 
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characterizes the cost and span that results when a erne solution 

is moved. 

Proposition 4: Let P be a storage management problem, and let S 

be a solution to P with b internal blanks and cost c. For any 

integer k ~ 0, if there are at least max(O,b-k) blanks available 

to the right of S, then there is a (not necessarily unique) 

solutionS' to P such that the following hold: 

a) the left end of S' is k cells to the right of the left ~nd 

of S, 

b) the cost of S' is c + k, and 

c) the number of internal blanks inS' is b- min(2k,b). 

We denote any such solution S' by R(S,k). The analogous 

assertion obtained by replacing right with left and left with 

right also holds, and the resulting solution is denoted by 

L(S,k). If Sis a erne solution, any solution of the form L(S,k) 

or R(S,k) will be called a modified erne solution. 

The solution R(S,k) is obtained by pushing the left end of s 

to the right by k cells, which eliminates up to k internal 

blanks. If S has more than k blanks, the right end of s is 

simultaneously pushed to the left until either all the internal 

blanks are eliminated or the right end has been moved k cells1 

thus R(S,k) has up to 2k fewer internal blanks than S. 

Proposition 5: The class of modified erne solutions is closed 

under the operators L and R. In particular, if S is any erne 

solution and k and m are nonnegative integers, then 
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L(L(S,k) ,m)=L(S,k+m) and 

L(R(S,k) ,m)cX(S,n), 

where X is either Lor Rand min(k,m) s n s max(k,m). 

Moreover, if the number of internal blanks in a solutionS is no 

less than 2k, then L(S,k)=R(S,k), and therefore, 

L(R(S,k),m)•L(S,k+m). The corresponding assertions obtained by 

replacing all occurrences of L and R by R and L respectively also - - - -
hold. 

Proposition 6: lf S is a erne solution to a storage management 

problem P, then R(S,k) is compact and minimal cost in the sense 

that if S' is a solution to P and the left end of S' is k cells 

to the right of the left end of s, then S' is at least as costly 

as R(S,k) and the span of S' is at least as great as that of 

R(S,k). The assertion remains true when all occurrences of~. 

left and right are replaced by L, right and left respectively. 

It follows from Proposition 6 that if S is a erne solution to 

a subproblem P, and it is necessary to accommodate other 

subsolutions by, for example, moving the left end of S to the 

right by k cells, then the least expensive and most compact 

solution available is R(S,k). We will often impose two 

constraints, one at each end. This will only be done, however, 

when the solution has a sufficient number of internal blanks so 

that both constraints can be satisfied. Proposition 5 assures us 

that the successively imposed constraints will have the same 

effect as a single constraint and the result, again by 

Proposition 6, is assured to be as economical as possible. 
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VI. The Upward Wave: Computing the erne Solutions 

To be able to compute the parameters of its cmc solutions 

during the upward wave and to participate in computing the global 

solution during the downward wave, each cell C computes the 

following integer-valued parameters during the upward wave. 

a) tCELLS: the number of L cells which are descendants of C. 

b) COST: the cost of any cmc solution to the storage management 

problem in the leaves of C. 

c) LEFT: specifies location of the left end of the leftmost erne 

solutions relative to the leftmost L cell descendant of 

c. If the value of lEFT is negative, it is equal to 

the number of additional blank L cells to the left of 

the leaves of C which are used by the leftmost erne 

solutions computed by C. If the value of LEFT is 

positive, then it is equal to the number of unoccupied 

and unrequested L cells that can be used to satisfy 

requests of cells to the left of the leaves of C 

wi.thout disturbing any erne solution to the problem in 

the leaves of c. 

d) RIGHT: this parameter is analogous to LEFT; it specifies the 

right end of the ·rightmost erne solutions. 

e) BLANKS: the number of internal blanks (unoccupied and 

unrequested cells) between the left end and right end 

of any erne solution to the storage management problem 

in the leaves of c. This is a measure of how much the 

solution can be "squeezed." 

f) ARB: a single bit of information to indicate whether the 



positions of the left and right ends of the erne 

solutions found by c are unique. If the endpoints of 

all erne solutions are the same, then ARB=O. If there 

are two different positions for erne:· solutions, as in 

Fig. 3, then ARB=l. Note that the positions of the 

endpoints of all leftmost erne solutions are LEFT and 

RIGHT + ARB; the positions of the endpoints of all 

rightmost erne solutions are LEFT +ARB and RIGHT. Tne 

span of any erne solution is equal to tCELLS - LEFT -

RIGHT - ARB. 

The six parameters listed above are computed by each L and T 

cell during the upward wave. Each L cell computes the values 

directly, based only on whether it is occupied, and if so, the 

number of cells requested on its right and left. Each T cell 

computes its parameters based on the parameters of its sons. 

Specifically, each T cell will receive the parameter values of 

its left son as the input parameters tCELLSl, COSTl, LEFTl, 

RIGHTl, BLANKSl and ARBl. The corresponding parameter values of 

the right son will be received as the input parameters tCELLS2, 

COST2, LEFT2, RIGHT2, BLANKS2 and ARB2. After computing its own 

values of these parameters, each T cell other than the root will 

pass the values to its father cell. (We take parameter passing 

to be by value between cells; thus although LEFTl of each T cell 

is initialized to the value of LEFT in its left son, assigning a 

new value to LEFTl does not change the value of LEFT in the son 

node.) In computing the values c•f its parameters, a T cell C 

will generally change the values of its input parameters to 



X y 
0 !. 0 0 

#CELLS COST LEFT RIGHT BLANKS ARB 
-

A 2 1 -1 -1 0 I 
-

B 2 0 -2 0 0 0 
--

c 4 2 -2 -2 0 1 

Figure 4: Parameter values computed by three T cells during 

the upward wave. 



At least one subtree of C bas no occupied L cells. 
A Neither subtree of C has any occupied L cells. (C constructs 

the empty solution.) 
B The right subtree of C has occupied L cells but the left subtree 

does not. (C adopts the solution of its right son.) 
C The left subtree of C has occupied L cells but the right subtree 

does not. (C adopts the solution of its left son.) 
II Both subtrees of C have occupied L cells. 

A The cmc solutions of the sons of C do not overlap. 
1 The cost of the cmc solution of the left son is no greater than 

that of the right son. (The cmc solution of the left son 
is moved right zero or more cells and compacted.) 

2 The cost of the cmc solution of the right son is less than that 
of the left son. (The erne solution of the right son is 
moved left and compacted.) 

B The erne solutions of the sons of C overlap 
1 The solutions overlap by a single cell and the position of 

neither solution is unique, i.e., ARB= 1 for both 
solutions. (The overlap is actually nonexistent; the two 
solutions combine into a single solution with ARB= 1.) 

2 The solutions of the sons of C overlap by more than one cell or 
the endpoints of the solution of at least one son are 
unique. 

a The left solution costs at least as much as the right and 
the difference in cost is at least as great as the 
overlap remaining after use of the ARB spaces. (The 
solution of the left son is moved to the left zero or 
more cells and compacted.) 

b The right solution costs less than the left solution and 
the difference in cost is at least as great as the 
overlap remaining after use of the ARB spaces. (The 
solution of the right son is moved to the right and 
compacted.) 

c The overlap after use of the ARB spaces is greater than the 
difference in cost between the two solutions. (Both 
solutions are be compacted and moved outward until 
overlap is eliminated.) 

Figure S: Case structure of the algorithm UP TCELLS executed 
by each cell C of the T network. The way in which C 
constructs its cmc solution is described parenthetically 
for each of the cases. 
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describe the way the solutions for its sons are to be changed to 

obtain the cmc solution to the storage management problem of the 

cell c. Fig. 4 shows the parameter values computed by a small 

tree during the upward wave. 

** Figure 4 goes here ** 

The algorithms for computing the cmc solutions by the L 

cells and T cells during the upward wave are UP LCELLS and 

UP TCELLS respectively. These algorithms are given in the 

Appendix. UP LCELLS is quite straightforward, but UP_TCELLS is 

not. A very high level description that ignores some important 

details of UP TCELLS is given in Figure 5. 

** Figure 5 goes here ** 

VII. The Downward Wave: Computing the Flows 

During the upward wave, each T cell computes parameters for 

all erne solutions to the storage management problem in its 

leaves. Each cell resolves conflicts between the erne solutions 

of its sons, but assumes an unlimited supply of empty cells 

beyond its leftmost and rightmost leaves. During the downward 

wave, the finite extent of the L array is taken into account. 

This is done by using input parameters LEFTC and RlGHTC of each T 
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cell to specify the left and right ends within which the T cell 

must find a solution for its storage management problem. 

Passing a negative value of LEFTC to_a cell C means that C 

may use a solution which extends beyond its leftmost leaf by 

-LEFTC cells; a positive value of LEFTC means that satisfying the 

requests to the left of the leaves of C will utilize LEFTC L 

cells extending to the right from the leftmost L descendant of c. 

Therefore, if LEFTC is positive, some of the leftmost L 

descendants of C are not available for solving the storage 

management problem in the leaves of C. RIGHTC specifies the 

right constraint in the same way. The parameters of the erne 

solution computed in the upward wave by each T cell include LEFT, 

RIGHT, LEFTl, BLANKSl, RIGHTl, LEFT2, BLANKS2, RIGHT2 and ARB; 

these values are used during the downward wave. If the 

constraints LEFTC and RIGHTC lie outside the bounds LEFT and 

RIGHT of its erne solution, then the cell can implement one of its 

erne solutions. Otherwise, it must compute a new solution, by 

"shifting and squeezing" the erne solution computed in the upward 

wave. While finding the parameters of a solution within the 

limits specified by LEFTC and RIGHTC, each T cell will compute 

new values of LEFTCl and RlGHTCl and communicate them as 

constraints to its left son. New values of LEF~ and RIGH~lwill 

specify constraints for the right son. 

Each T cell also calculates the flow of occupied and 

requested cells across its associated edge and communicates this 

value to its right son via the output parameter FLOW. Moreover, 



L Array + • 

\Edge associated with C 

Figure 6: Cell C computes the flow along its associated 

edge. The value of this flow travels ~1ith the do~mward wave 

along the bold edges from cell C to the L cell to the right 

of the edge associated with C. 
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every cell except the root will receive a flow value DFLOW from 

its father; this value will be transmitted unchanged to its left 

son. Figure 6 shows the path of a flow value from the T cell c 
.. 

which computed it to the L cell to the right of the edge 

associated with c. 

** Figure 6 goes here ** 

In summary, each T cell except the root will receive 

parameters LEFTC, RlGHTCand DFLOW from its father; the root cell 

will assign the value of 0 to these variables. Every T cell 

(including the root) will transmit parameters LEF~l, RIGH~land 

DFLOW to its left son and LEFTC2, RIGHTC2and FLOW to its right 

son. 

At the end of the downward wave, each L cell receives the 

parameter DFLOW from its father; this parameter specifies the 

flow over the edge to the immediate left of the cell (where the 

edge is imaginary in the case of the leftmost L cell). From this 

value, each occupied L cell determines in the manner described 

earlier the distance and direction that its contents is to move. 

VIII. Proofs of Correctness and Optimality 

In this section we give informal proofs that the principal 

algorithms presented in the Appendix are correct, i.e., if all 

requests of a storage management problem can be satisfied, then 
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these algorithms find a minimal cost solution as characterized in 

Definition 2. Proofs of the lemmas are omitted to conserve 

space. Note that parameters are passed between procedures by 

reference; thus the same parameter name may be used as both an 

input and output parameter. 

The algorithm UP TCELLS uses a pair of procedures HOVEL and 

MOVER to move cmc solutions to the left or right both to resolve 

conflicts and to make solutions more compact. When HOVEL is 

given a positive integer k and the parameters of a cmc solution 

S, it computes the parameters of the modified erne solution L(S,k) 

as defined in Proposition 4. Similarly, HOVER finds the 

parameters of R(S,k). (The applicability of the procedures HOVEL 

and MOVER is not restricted to erne solutions. During the 

downward wave, these procedures are applied to modified erne 

solutions to produce the parameters of other modified erne 

solutions.) The first lemma asserts the correctness of MOVEL and 

MOVER. 

Lemma 1: If P is a storage management problem and S is a modified 

erne solution to P with parameters LEFT, RIGHT and BLANKS, then 

the procedure MOVEL(k, RIGHT, BLANKS, LEFT) finds the parameters 

of a modified erne solution whose right end is k cells to the left 

of the right end of S. Si~ilarly, MOVER(k, LEFT, BLANKS, RIGHT) 

finds the parameters of a modified solution whose left end is k 

cells to the right of the left end of s. 

Theorem 1: During the upward wave, each L cell (using the 
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procedure UP_LCELLS) and T cell (using the procedure UP TCELLS) 

computes the correct values of LEFT, BLANKS, RIGHT, ARB, and COST 

for all cmc solutions of its storage management problem. 
-

Moreover, every T cell computes parameters of modified cmc 

solutions for its sons that are consistent with its own erne 

solution. These parameters are LEFTl, BLANKSl, RlGHTl, LEFT2, 

BLANKS2, and RIGHT2. The parameters ARBl and ARB2 of the 

modified erne solutions are equal to ARB of the T cell itself. 

Proof: The proof is by induction on the height h of the cell, 

where the height of each L cell is zero and the height of each T 

cell is one greater than the height of its sons. For the basis 

step, the cell is an L cell and hEO, The parameters of the cmc 

solution are computed by the L cell algorithm UP LCELL. A erne 

solution for a single cell never requires any movement of an 

occupied cell, hence its cost is zero and therefore the solution 

is minimal cost. If the L cell is occupied with left request p 

and right request q, then any solution must occupy one cell and 

request p+q cells. The solution found by the L cell algorithm 

has a span of p+q+l cells; it follows that the solution is cmc. 

Since the solution has no internal blanks and is unique, BLANKS 

and ARB are set to zero. This completes the basis step. 

For the induction step, we assume that C is a T cell, 

which is provided with the parameter values of all cmc 

solutions for its two sons: C is to find the cmc solution 

for its own storage management problem by finding compatible 

modified cmc solutions for its two sons. Note that the set 
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between Sl and 52, is greater than BLANKS! + AVAIL. If 

these conditions are met, Sl is moved to the right by an 

amount large enough to eliminate all its internal blanks and 

all the blanks between 51 and the leftmost solution of S2i 

then the value of RIGHT! is adjusted to represent the fact 

that its position (as a subsolution of S) will be one cell 

more to the right if rightmost solutions are used. In the 

second subcase of Case ll.A.l, the conditions for ARB to be 

1 do not hold. Sl is moved to the right until either all 

internal blanks of 51 and all blanks between Sl and 52 are 

eliminated, or 

the cost of 52. 

adding ARB2 to 

the cost of the repositioned 51 is equal to 

The leftmost solution of 52 is chosen by 

RIGHT2i this guarantees that S will be as 

compact as possible. The resulting component solutions of S 

consist of the leftmost solution of 52 plus the result of 

applying MOVER to the rightmost solution of 51. To 

summarize Case Il.A.l, the value of LEFT2 is unchanged1 the 

value of RIGHT2 is either unchanged or changed by the 

addition of ARB2. The values of LEFTl and RIGHT! are set by 

MOVER, except that RIGHTl is further modified by subtracting 

1 if the position of 5 (and hence the repositioned Sl) is 

arbitrary. The cost of S is equal to that of 52 and 

therefore minimal if 52 is cmc. Furthermore, since 51 was 

moved as far as possible· to the right and 52 was moved as 

far as possible to the left without increasing the cost of 

5, 5 is compact and therefore cmc. This completes the 

treatment of Case II.A.l. Case II.A.2 is analogous, except 
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that Sl is more expensive than 52; thus the roles of Sl and 

52 are reversed and the costs o.f Sl and 52 are not equal. 

Case ll.B treats those situations in which the 

solutions Sl and 52 overlap. The algorithm first sets the 

parameter NEED equal to the number of cells by which the 

solutions overlap; Case ll.B is then .broken into two 

subcases. 

Case ll.B.l applies only when NEED=l and ARBl=ARB2=1; 

this represents two arbitrary solutions positioned so that 

the conflict is resolved if either the rightmost or leftmost 

solutions of both Sl and 52 are used. Thus the conflict is 

only a manifestation of the representation of the arbitrary 

solutions Sl and 52. The two solutions Sl and 52 fit 

together without adjustment, giving a solution s with ARB=l. 

LEFTl, RlGHTl, LEFT2 and RIGHT2 are unchanged. Since s is 

essentially the union of Sl and 52, the cost of s is the 

larger of the costs of Sl and 52; hence S is minimal cost. 

Since S has no internal blanks, it is clearly compact. This 

completes the discussion of Case ll.B.l. (If the test for 

Case ll.B.l fails, it is still possible that there will be 

an overlap of only one cell between the solutions Sl and 52, 

and that adequate space will be provided by the ARB spaces. 

Such cases are handled in Case ll.B.2.) 

The test for Case ll.B.2 is the negation of that for 

ll.B.l. This case first tries to reduce the overlap of Sl 

and 52 by choosing the leftmost solution of Sl and the 
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rightmost solution of 52: this is done simply by adding ARBl 

to RIGBTl and ARB2 to LEFT2. The value of NEED is then 

recomputed: it will have decreased from the original value 

by 0, 1 or 2, and its new value can be any nonnegative 

integer. In the following discussion of Case 11.8.2, Sl and 

52 denote the results of this modification. 

Cases II.B.2.a and II.B.2.b apply when the solutions 51 

and 52 differ so much in cost that the cheaper one can be 

moved far enough to eliminate the overlap without increasing 

its cost beyond that of the more costly solution. Case 

II.B.2.a treats the case in which the cost of 51 is no 

greater than the cost of 52 and the difference in the costs 

of Sl and 52 is at least as great as the value of NEED. The 

algorithm first uses MOVEL to move 51 to the left 

sufficiently far to eliminate the overlap between the 

component solutions. The resulting solution 51' for the 

left son, however, may still contain internal blanks and 

have a cost less than that of 52; in that case, the solution 

can be made more compact by applying MOVER to push Sl' to 

the right far enough either to eliminate all the internal 

blanks or to increase further the cost of the left 

subsolution until it is equal to that of 52; we call the 

result s1•. Thus Sl is first moved far enough left to 

eliminate all the overlap, giving 51': then Sl' is made as 

compact as possible giving 51•. The resulting composite 

solution s, may, in fact, be one for which ARB should be set 

to 1. This will be the case if ARB2 is 1, s1• has no 

J 
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internal blanks, and if Sl" could be moved left one more 

cell without its cost surpassing that of 52. If all these 

conditions are met, then the parameters LEFTl and LEFT2 are 

decremented by l to give the positions of the leftmost 

component subsolutions, and ARB is set to 1. Otherwise, the 

positions of the left and right ends of all solutions for C 

are the same and ARB is set to 0. Note that in Case 

II.B.2.a, S consists essentially of 52 together with the 

result of repositioning 51. Since the cost of the left 

component solution is never allowed to exceed that of 52, 

the cost of 5 is equal to that of 52, hence 5 is minimal 

cost if 52 is. Moreover, within the cost constraint, the 

left subsolution is made as compact as possible while 

eliminating the overlap1 hence S is also compact and 

therefore erne. 

Case II.B.2.b is analogous to II.B.2.a with the roles 

of 51 and 52 reversed except that the cost of Sl is properly 

greater than that of 52. 

The last subcase, Case II.B.2.c, applies when the 

solutions 51 and 52 overlap and the difference in cost is 

sufficiently small that both solutions must be moved 

outward. At this point, ARBl and ARB2 have already been 

added to RIGHTl and LEFT2 respectively, giving leftmost and 

rightmost solutions for 51 and 52. The first action i~ this 

case is to move the less costly of 51 and 52 away from the 

overlap until the two subsolutions have the same cost. NEED 
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is then recomputed. 

If NEED is even, then it suffices to push each of the 

now equally costly subsolutions away from the overlap by a 

distance of NEED/2 to obtain the erne solution for S: in this 

case, ARB is set equal to 0. 

Now suppose NEED is odd and the component solutions Sl 

and 52 are equally costly. Both solutions must be moved 

away from the overlap by at least LNEED/2J, and at least one 

of the solutions must be moved by rNEED/21. Since moving 

solutions away from the overlap by k cells makes the cost of 

S at least k greater than the cost of the subsolution being 

moved, it follows that neither subsolution should be moved 

by more than rNEED/21, and the cost of Swill be the cost of 

Sl (which is equal to the cost of 52) plus rNEED/21. The 

question, therefore, is how to make the span of S as small 

as possible without increasing the cost by more than 

rNEE~n. 

There are essentially three distinct actions that can 

be performed on each subsolution. Since they are symmetric 

we consider only the left subsolution Sl. Suppose the 

number of internal blanks in Sl is greater than NEED, i.e., 

BLANKSl > NEED. Since NEED is odd, applying HOVEL to Sl for 

rNEED/21 cells causes the left end of the new solution to be 

further right than when HOVEL is applied to Sl with only 

LNEED/2J cells. Since the left end of the resulting 

component solution Sl' directly affects the span, and since 
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we know that applying MOVEL to 51 for rNEED/21 cells will 

not increase the cost beyond a minimal value, it follows 

that if BLANKS! > NEED then we should apply MOVEL to Sl for 

fNEED/21 cells. Moreover, ARB=O since-moving the left end 

of Sl a smaller distance to the right would leave internal 

blanks in the left subsolution and moving it further to the 

right would increase the cost over the minimal value. Note 

that if BLANKS! > NEED, then the action taken on Sl is not 

affected by the action taken on S2, and the resulting 

solution S has ARB=O. 

Now suppose NEED is odd and BLANKS! ~ NEED. We first 

consider the various ways that S1 can be moved to the left 

by either rNEED/21 or LNEED/2J cells and all internal blanks 

eliminated from the left subsolution without increasing its 

cost by more than rNEED/21. Most simple is to apply MOVEL 

to Sl for INEED/21 cells: the left subsolution is moved to 

the left rNEED/21 cells, 'all internal blanks are eliminated, 

and the cost of Sl is increased by rNEED/21. Similarly, if 

BLANKS! < NEED and MOVEL is applied to Sl for LNEED/2J 

cells, then Sl is moved to the left LNEED/2J cells, all 

internal blanks are eliminated, and the cost is increased by 

lNEED/2J. Finally, if BLANKSl=NEED, then applying MOVEL to 

Sl for LNEED/2J cells moves Sl to the left for LNEED/2J 

cells, leaves a 

cost by L NEED/2.J. 

single internal blank, and increases the 

Applying MOVER to this resulting solution 

for a single cell does not change the right end of the 

solution and eliminates the single remaining blank at a 
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determine at this point if a solution exists to the global 

storage management problem. If a solution does not exist, 

an error is signalled; otherwise the root computes the flow 

over its associated edge and the constraints for its sons. 

For T cells other than the root, the values of LEFTC and 

RIGHTC are received from the parent node. In proving that a 

node C at a distance k from the root, k > 0, computes the 

flow and constraints for its sons, the induction hypothesis 

asserts that the T cell under consideration, as well as all 

its brother nodes, received correct values of LEFTC and 

RIGHTC from its parent node, and that there exists a 

modified erne solution that satisfies these constraints, 

i.e., for each T cell with a trivial solution, 

LEFTC + RIGHTC < #CELLS 

and for a cell with a nontrivial solution, 

LEFTC - LEFT + RIGHTC - RIGHT< BLANKS. 

We now arque that any T cell, given correct values of 

LEFTC and RIGHTC, will compute a correct value for the flow 

over its associated edge. This computation is performed in 

Step 2 of DOWN. While keeping track of all possible sets of 

solution endpoints was important during the upward flow, 

during the downward flow each T cell need only work with a 

single arbitrary erne solution. For this reason, the first 

action in Step 2 is for C to choose (arbitrarily) the set of 

parameters of the rightmost erne solutions for subsequent 

use. Step 2 then treats four mutually exclusive cases. In 
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Case I, C has no L cell descendants that are occupied and 

therefore C computed the trivial erne solution during the 

upward wave. Any flow over the associated edge of C will 

result from other subsolutions extending tnto the L cells of. 

C. The movement of symbols or requested cells into L cells 

of C from the left will be signalled by a positive value of 

LEFTC. If this value is greater than #CELLS/2, then there 

is a nonzero flow to the right over the associated edge of 

C. Since there are #CELLS/2 cells of L that are left 

descendants of C, the value of the flow is LEFTC - #CELLS/2. 

If the value of LEFTC is less than or equal to #CELLS/2, 

there is no flow to the right over the associated edge of C. 

The argument is similar for RIGHTC. In each case, these flow 

values are of the smallest possible magnitude consistent 

with the constraints LEFTC and RIGHTC. This completes the 

treatment of Case I of Step 2. 

Case II applies when the left subtree of C contains no 

occupied L cells but the right subtree does. In this case, 

the erne solution of C is essentially the erne solution of its 

right son, modified by the availability of additional empty 

L cells on the left. SQUEEZEl, called with the parameters of 

the erne solution of C and the constraints LEFTC and RIGHTC, 

is used to modify the solution of C. By Lemma 2, SQUEEZEl 

finds the 

LEFTC and 

cheapest solution that satisfies the constraints 

RIGHTC. The flow over the associated edge is of 

the smallest possible magnitude consistent with the modified 
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erne solution found by SQUEEZEl. If LEFTC > #CELLS/2, then 

(as in case I) there is a flow of magnitude LEFTC - #CELLS/2 

to the right over the associated edge of C. On the other 

hand, if the modified erne solution of the right son of C 

extends into the L cells of the left son, then LEFT2 < 0 and 

there is a flow to the left whose value is LEFT2. Case III 

of Step 2 is analogous to Case II. 

Case IV applies when both the left and right subtrees of 

C have occupied L cells. The procedure SQUEEZE2 is used to 

modify the component subsolutions of C if this is necessary. 

SQUEEZE2 is passed the parameters of both subsolutions and 

the constraints LEFTC and RIGHTC. If the erne solution 

computed by C does not violate the constraints, the 

subsolution parameters are unchanged; otherwise one or both 

subsolutions are modified to satisfy the constraints. In 

either case, the resulting subsolutions are guaranteed by 

Lemma 3 to be the cheapest modified erne solutions consistent 

with the given constraints, and these subsolutions are used 

to determine the flow over the associated edge of c. To be 

precise, if after execution of SQUEEZE2 the value of RIGHTl 

(LEFT2) is negative, then the subsolution of the left 

(right) son extends beyond its L cells and causes a flow 

over the associated edge of C into the L cells of the right 

(left) son. The value of the flow is equal to -RIGHTl 

(LEFT2). 
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Finally, we show that in Step 3 of DOWN, each T cell 

computes correct values of LEFTC and RIGHTC for each of its 

sons. The values for the left son are named LEFTCl and 

RIGHTCl; for the right son they are L&FTC2 and RIGHTC2. 

These values must be consistent in that subsolutions are not 

allowed to overlap. Moreover, the constraints given to each 

T cell C must admit a solution to the storage management 

problem of C that is part of a minimal cost global solution. 

By the induction hypothesis, we assume LEFTC and RIGHTC have 

the desired properties. The outer constraints transmitted 

to its sons by a cell C, LEFTCl and RIGHTC2, are assigned 

the values of the received or computed constraints LEFTC and 

RIGHTC respectively; this assures that the solutions for the 

sons of C will be contained in the space alloted to the 

solution for C and thus will not overlap with solutions to 

their right or left. It also assures that the inner 

constraints, RlGHTCl and LEFTC2, can be assigned to satisfy 

the feasibility and minimal cost requirements. The values of. 

the inner constraints RlGHTCl and LEFTC2 are determined 

using the flow across the edge ass~ciated with C. In every 

case, this flow is of the smallest possible magnitude 

consistent with the component modified erne solutions, and 

the magnitudes of RIGHTCl and LEFTC2 are equal to the 

magnitude of the flow. The values of RIGHTCl and LEFTC2 are 

chosen to allow room for movement of occupied cells and cell 

requests across the associated edge of C when such movement 

is required, and otherwise are set to 0; this guarantees the 
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Figure 7: A storage management problem for which minimizing 

maximum symbol movement and minimizing maximum flow result 

in different solutions. In the solutions, the label R 

denotes cells reserved to satisfy the requests of X. 

Solution A minimizes maximum symbol movement; solution B 

minimizes maximum flow. 
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two measures of cost result in different optimal solutions. 

** Figure 7 goes here ** 

The algorithms given for the original problem handle this 

variant without change except for UP_LCELLS which computes 

the erne solution for a single cell of the L array. The 

algorithm for the L cells for the case in which the flow is 

to be minimized is given as the last algorithm of the 

Appendix as UP_LCELLS#2. This algorithm is similar to 

UP LCELLS except that each L cell "centers" its erne solution 

around itself, and computes a cost equal to the maximum 

distance that the erne solution extends beyond the cell 

itself. Thus only the definition of cost and the algorithm 

executed by the L cells need be changed to minimize maximum 

flow; the remaining definitions, propositions, lemmas, 

theorems and procedures go through unaltered. 

X. Conclusion 

Efficient resource management is important in any 
, 

computing system. In a machine of the type described by Mago 

[3], storage management is performed repeatedly during 

program execution and therefore has a sizeable impact on 

execution speed. We have described algorithms to be 

executed by the cells of the network to produce an optimal 

solution in minimal time. The algorithms make it possible 
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for the conglomeration of cells to solve a qlobal problem 

even though each cell has access to only a small part of the 

problem specification. 

As Mag6 has observed in [3], the machine size can easily 

be chanqed; for example, two machines, each with k L cells, 

can be used to construct a machine with 2k L cells by addinq 

a root node (whose sons are the root nodes of the original 

machines} and connecting a single pair of newly adjacent L 

cells. This robustness of the desiqn is supported by the 

algorithms we have described; with the exception of the root 

cell, the algorithm to be executed is determined only by the 

cell type and is unaffected by the position of the cell in 

the array or the total number of cells. 

The algorithm is also interesting in its own riqht. The 

strateqy of the algorithm bears some resemblence both to 

dynamic programminq and recursive divide and conquer 

techniques, but differs in that no agent ever possesses a 

qlobal solution to the problem. The algorithm exploits the 

network topology in a way similar to the techniques used by 

Bentley and Kung [4] ; in fact, the results we describe can 

be viewed as specifyinq a network which produces a solution 

to the flow problem desc~ibed in Stanat and Mag~ [5] in 

O(log n} time and usinq a network with 2n - 1 cells. 
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Appendix 

The following algorithms are executed by the L and T cells 

during the upward and downward waves. Parameter passing 

between procedures is by reference; the same parameters can 

serve for both input and output. See Sections VI and VII for 

documentation. 

procedure UP_LCELLS 

/¢ Executed by each L cell at the beginning of the upward 

/¢ wave. This procedure has no input other than the cond-

/¢ ition of the L cell. 

#CELLS +- 1 

if the cell is unoccupied then -- --
LEFT +- 1 

RIGHT +- 1 

else - /¢ The cell ·is occupied. 

let p and q be the number of cells requested on the left 

and right respectively by the symbol in the L cell. 

LEFT +- -p 

RIGHT+- -q 

end if --
BLANKS, ARB, COST +- 0 

send LEFT, RIGHT, BLANKS, ARB, COST and #CELLS to parent node - ...... 
end UP_LCELLS -
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The algorithm UP_TCELLS must often find L(S,k) or R(S,k) for 

a erne solution S of one of its sons. When passed the 

appropriate subset of the parameters of a erne or modified 

cmc solution S, the procedures MOVEL and MOVER find the 

corresponding parameters of the modified erne solutions 

L(S,k) and R(S,k) respectively. The procedures MOVEL and 

MOVER are used in an analogous way during the downward wave 

by the procedures SQUEEZEl and SQUEEZE2. 

procedure MOVER (k, LEFT, BLANKS, RIGHT) 

/¢ The left end of a modified erne solution is to be moved 

/¢ right by k cells. The parameters LEFT, BLANKS and RIGHT 

/¢ initially contain values of the original solutions. 

/¢ They are to be assigned values for new solutions which 

/¢ are as compact as possible without costing more than 

/¢ necessary for accomodation of the shift to the right. 

/¢ Called by UP_TCELLS, SQUEEZEl and SQUEEZE2. 

OLDBLANKS ~ BLANKS 

BLANKS ~ max {0, OLDBLANKS - 2*k} 

/¢ The value of LEFT + RIGHT + BLANKS must remain unchanged. 

RIGHT ~ RIGHT + OLDBLANKS - BLANKS - k 

end MOVER 
~ 
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/¢ Case I.B: The right subtree has occupied L cells 

/¢ but the left subtree does not. 

case I.B: LEFTl = #CELLSl and RIGHT2 ¢ #CELLS2 -- -
LEFT ~ LEFT2 + #CELLSl 

RIGHT ~ RIGHT2 

BLANKS .. BLANKS2 

ARB .. ARB2 

COST .. COST2 

end case I .B ---
/¢ Case I.C: The left subtree has occupied L cells 

/¢ but the right subtree does not. 

case I.C: LEFTl ¢ #CELLSl and RIGHT2 = #CELLS2 --- -
LEFT .. LEFTl 

RIGHT .. RIGHTl + #CELLS2 

BLANKS .. BLANKSl 

ARB~ ARBl 

COST .. COSTl 

end case I.C _ _........_ 

end case I ----
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j¢ Case II: Both subtrees have occupied L cells. 

case II: LEFTl ¢ #CELLSl and RIGHT2 ¢ #CELLS2 -- -
/¢ Find difference between costs of solutions. 

DCOST ~ ICOSTl- COST21 

/¢Case II.A: The erne solutions of the sons do not overlap. 

case II.A: RIGHTl + LEFT2 ~ 0 --
/¢ Find number of empty cells between solutions. 

AVAIL ~ RIGHTl + LEFT2 

/¢ Case II.A.l: The cost of the erne solution of the 

/¢ left son is no greater than that of the right son. 

case II.A.l: COSTl ~ COST2 -
/¢ Use rightmost erne solution of left son. 

LEFTl ~ LEFTl + ARBl 

/¢First subcase of Case II.A.l: New solution will 

/¢ have ARB = 1. This will occur only if expensive 

/¢ solution already has an ARB space and all blanks 

/¢ in cheap solution and between solutions can be 

/¢ squeezed out. 

if ARB2 = 1 and DCOST > BLANKSl + AVAIL then - ........ -
MOVER (BLANKSl + AVAIL, LEFTl, BLANKSl, RIGHT1) 

/¢ Modify left solution with ARB space. 

RIGHT1 ~ RIGHT1 - 1 

BLANKS~ 0 

·. 
ARB .. 1 
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/¢ Second subcase of Case II.A.l: New solution 

/¢ will have ARB = 0. 

else - /¢ ARB2 = 0 or DCOST S BLANKSl + AVAIL 

MOVER (min {DCOST, BLANI<Sl + AVAIL}, 

LEFTl, BLANKSl, RIGHTl) 

RIGHT2 ~ RIGHT2 + ARB2 

BLANKS ~ BLANKSl + BLANKS2 + RIGHTl + LEFT2 

ARB<- 0 

end if --
/¢ Set remaining parameters for Case II.A.l 

LEFT<- LEFTl 

RIGHT <- RIGHT2 

COST<- COST2 

end case II.A.l .,_,_. ~ ~.. .... 
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/¢ Case II.A.2: The cost of the erne solution of the 

/¢ left son is greater than that of the right son. 

case II.A.2: COSTl > COST2 - RIGHT2 ... RIGHT2 + ARB2 

/¢ First subcase of Case II.A.2: New solution will 

/¢ have ARB = 1. This will occur only if expensive 

/¢ solution already has an ARB space and all blanks 

/¢ in cheap solution and between solutions can be 

/¢ squeezed out. 

if ARBl = 1 and DCOST > BLANKS2 + AVAIL then - - --
MOVEL (BLANKS2 + AVAIL, RIGHT2, BLANKS2, LEFT2) 

/¢ Modify right solution with ARB space. 

LEFT2 ... LEFT2 - 1 

BLANKS+- 0 

/¢ Second subcase of Case II.A.2: New solution 

/¢ will have ARB = 0. 

else -
MOVEL (min {DCOST, BLANKS2 + AVAIL}, 

RIGHT2, BLANKS2, LEFT2) 

LEFTl +- LEFTl + ARBl 

BLANKS +- BLANKSl + BLANKS2 + RIGHTl + LEFT2 

ARB+- 0 

end if --/¢ Set remaining parameters for Case II.A.2 

LEFT +- LEFTl 

RIGHT +- RIGHT2 
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COST +- COST1 

end case II.A.2 .........._. ~ ..... ,.. 
end case II .A 
~~ ...... ,. 

/¢ Case II.B: The erne solutions of the sons overlap. 

case II.B: RIGHTl + LEFT2 < 0 

NEED+- -(RIGHT1 + LEFT2) /¢ Size of overlap. · 

/¢ Case II.B.1: The solutions overlap by a single cell 

/¢ and neither solution has unique endpoint positions. 

case II.B.1: NEED= 1 and ARB1 = 1 and ARB2 = 1 

LEFT +- LEFTl 

RIGHT +- RIGHT2 

BLANKS+- 0 

ARB+- 1 

COST+- max {COST1,COST2} 

end case II.B.l ------
/¢ Case II.B.2: The solutions of the sons overlap by 

/¢ more than one cell or the endpoints of at least 

/¢ one solution are unique. 

case II.B.2: NEED > 1 or ARB1 = 0 or ARB2 = 0 - -
/¢ Reduce overlap with ARB if possible. 

RIGHT1 +- RIGHT1 + _ARBl 

LEFT2 +- LEFT2 + ARB2 

NEED +- NEED - ARB1 - ARB2 
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/¢Case II.B.2.a: The left solution costs no more 

/¢ than the right and the difference in cost is at 

/¢ least as great as the overlap after use of the 

/¢ ARB spaces. 

case I I. B. 2. a: COST! S: COST2 and NEED s; DCOST - -
/¢ Eliminate overlap by moving left solution. 

MOVEL (NEED, RIGHTl, BLANKSl, LEFTl) 

/¢ Make left solution as compact as possible. 

MOVER (min {DCOST - NEED, BLANKSl}, 

LEFTl, BLANKSl, RIGHTl) 

/¢ Determine whether new solution has ARB = 1 

/¢ and set remaining parameters. 

if DCOST > NEED and ARB2 = 1 -
and RIGHTl + LEFT2 = 0 then -- -ARB<- 1 

BLANKS<- 0 

/¢ Adjust component solutions for ARB. 

LEFTl <- LEFTl - 1 

LEFT2 .. LEFT2 - 1 

else ............. 
ARB .. 0 

BLANKS <- BLANKSl + BLANKS2 

end if _.....,.. 
LEFT<- LEFTl 

RIGHT <- RIGHT2 

COST<- COST2 

end case II.B.2.a 
~~ """"''"''"'" .... ~ 
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/¢ Case II.B.2.b: The left solution costs more than 

/¢ the right and the difference in cost is at least 

/¢ as great as the overlap after use of the ARB spaces. 

case II.B.2.b: COSTl > COST2 and NEEDs DCOST - .. --~ .... ----
/¢ Eliminate overlap by moving right solution. 

MOVER (NEED, LEFT2, BLANKS2, RIGHT2) 

/¢ Make right solution as compact as possible. 

MOVEL (min {DCOST - NEED, BLANKS2}, 

RIGHT2, BLANKS2, LEFT2) 

/¢ Determine whether new solution has ARB = 1 

/¢ and set remaining parameters. 

if DCOST > NEED and ARBl = 1 - -and RIGHTl + LEFT2 = 0 then - -ARB+- 1 

BLANKS+- 0 

/¢ Adjust component solutions for ARB. 

RIGHTl +- RIGHTl - 1 

RIGHT2 +- RIGHT2 - 1 

else 
.. , .. ',. 

ARB+- 0 

BLANKS +- BLANKSl + BLANKS2 

end if --
LEFT+- LEFTl 

RIGHT +- RIGHT2 

COST+- COSTl 

end case II.B.2.b 
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/¢ Case II.B.2.c: The overlap after use of the 

/¢ ARB spaces is greater than the difference in 

/¢ cost between the right and left solutions. 

case II.B.2.c: NEED> DCOST --- ..,.. . 
/¢ Move cheaper solution until costs are equal. 

if COSTl < COST2 then ....... ....,.._..... 

MOVEL (DCOST, RIGHTl, BLANKSl, LEFTl) 

else 
""'"""" 

MOVER (DCOST, LEFT2, BLANKS2, RIGHT2) 

end if --
/¢ The two solutions still overlap but they 

/¢ now have equal costs. Recompute overlap. 

NEED ~ NEED - DCOST 

/¢ If the overlap is even the solutions can 

/¢ be moved outward by the same amount. 

if NEED is even then ....... .,.,.._ 
MOVEL (NEED/2, RIGHTl, BLANKSl, LEFTl) 

MOVER (NEED/2, LEFT2, BLANKS2, RIGHT2) 

BLANKS ~ BLANKSl + BLANKS2 

ARB~ 0 

/¢ In the remaining cases the overlap is 

/¢ odd. The new solution will have ARB = 1 

/¢ iff all blanks are squeezed out by 

/¢ movement of the subsolutions. 



else if BLANKSl > NEED and BLANKS2 > NEED then --
/¢ New solution will have blanks 

MOVEL ( rNEED/21 1 RIGHTl1 BLA.,..KS1 1 LEFTl) 

MOVER (rNEED/21 1 LEFT2 1· BLANKS2 1 RIGHT2) 

BLANKS + BLANKSl + BLANKS2 + 1 

ARB+ 0 

end if 

else if BLANKSl > NEED and BLANKS2 ~ NEED then 
•. .- ./.,,/¥ -., -..~ ... ..,...- _..,...,..,. 

MOVEL (rNEED/21 1 RIG~Tl 1 BL~"'KS1 1 LEFTl) 

MOVER (LNEED/2J 1 LEFT2 1 BLANKS2 1 RIGST2) 

if BLAN:!CS2 > 0 then 
....._ --···-

MOVEL (1 1 RIGHT2 1 BLANKS2 1 LEFT2) 

ml§li 
BLA. .. KS + BLANKSl + BLANKS2 + RIGHTl + LEFT2 

ARB+ 0 

end if 

~~~~ ~~ BL~"'KSl ~ NEED ~~ BLA,..KS2 > NEED ~~e~ 

MOVEL (LNEED/2l 1 RIGHT1 1 BLANKS1 1 LEFTl) 

~f BLANKS 2 > 0 ~ 

MOVER (1 1 LEFT1 1 BLAllKSl 1 RIGHTl) 

end if 
, . ._.,v ~ .. -

MOVER (rNEED/21 1 LEFT2 1 BLANKS2 1 RIGHT2) 

BLANKS + BLANKSl + BL~"'KS2 + RIGHTl + LEFT2 

ARB+ 0 

end if 

else /¢ BLANKSl ~ NEED and BLANKS2 ~ NEED 
"""'~ 

/¢ All blanks will be eliminated 

MOVEL ( NEED/2 1 RIGHT1 1 BLANKS1 1 LEFTl) 

MOVER ( rNEED/21 1 LEFT2 1 !lLANKS2 1 RIGHT2) 

BLANKS + 0 
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ARB+- 1 

RIGHT1 +- RIGHT1 - 1 

LEFT2 +- LEFT2 - 1 

end if --LEFT+- LEFTl 

RIGHT +- RIGHT2 

COST+- max {COST1,COST2} + rNEED/21 

end case II.B.2.c 
~~ , .... -.... .._, 

end case II.B.2 
~ ~ \ .......... ... 

end case II. B ......... _........ .............. 
end case II 
..,__ - """" 

if the cell is not the root cell then - -send LEFT, RIGHT, BLANKS, ARB, COST and #CELLS to 

parent node. 

end if - """ 
end UP TCELLS -

-

PAGE 58 



PAGE 59 

The procedure DOWN is executed by each T cell C during the 

downward wave; it computes both the flow over the associated 

edge of C and constraints on the modified erne solutions of 

the sons of C. These computations use the parameters 

computed by C during the upward wave. Satisfying the 

constraints imposed on the erne solution of C is done by 

shifting and squeezing the modified erne solutions of its 

sons. If only one son has a nontrivial solution, shifting 

and squeezing is done by the procedure SQUEEZEl; if both 

sons have nontrivial solutions, it is done by SQUEEZE2. 

. . 
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procedure SQUEEZEl (LEFT, BLANKS, RIGHT, LEFTC, RIGHTC) 
,....,_ .. .., .. "'lo, .... -

/¢ Reposition a erne solution whose parameters are LEFT, 

1¢ BLANKS, and RIGHT so that it lies within the boundaries 

/¢ given by LEFTC AND RIGHTC. Replace LEFT, BLANKS and 

/¢ RIGHT by the values for the new solution. This 

/¢procedure assumes a solution is possible, i.e., 

/¢ LEFTC - LEFT + RIGHTC - RIGHT < BLANKS 

/¢ SQUEEZE! is used by DOWN. 

/¢ Calculate the number of cells that overlap 

/¢ on the left and right. 

LDEMAND ~ LEFTC - LEFT 

RDEMAND ~ RIGHTC - RIGHT 

/¢ If both LDEMAND and RDEMAND are less than or equal 

/¢ to zero, the present solution is adequate. If 

/¢ either demand is positive, the solution must be 

/¢ moved. It suffices to move it in the direction of 

/¢ the largest demand. 

if LDEMAND > RDEMAND and LDEMAND > 0 then 

MOVER (LDEMAND, LEFT, BLANKS, RIGHT) 

else if RDEMAND > LDEMAND and RDEMAND > 0 then 
~ ,.,._ ...........,_. ~ 

MOVEL (RDEMAND, RIGHT, BLANKS, LEFT) 

end if --end SQUEEZEl -
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procedure SQUEEZE2 (LEFTl, BLANKSl, RIGHTl, LEFT2, BLANKS2, 

RIGHT2, LEFTC, RIGHTC) 

/¢ Alter two subsolutions of a rightmost erne solution so 

/¢ that the two new subsolutions do not conflict and lie 

/¢ within the boundary constraints LEFTC and RIGHTC. This 

/¢procedure assumes a solution is possible, i.e., 

/¢ LEFTC - LEFTl + RIGHTC - RIGHT2 < 

/¢ BLANKSl + BLANKS2 + RIGHTl + LEFT2 

/¢ SQUEEZE2 is used by DOWN. 

/¢ Calculate the number of cells that overlap 

/¢ on the left and right. 

LDEMAND ~ LEFTC - LEFTl 

RDEMAND ~ RIGHTC - RIGHT2 

/¢ Satisfy the left constraint. 

if LDEMAND > 0 then MOVER (LDEMAND, LEFTl, BLANKSl, RIGHT!) - -end if --
/¢ Satisfy the right constraint. 

if RDEMAND > 0 then MOVEL (RDEMAND, RIGHT2, BLANKS2, LEFT2) - -end if - -
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• 
/¢ Measure the overlap of the two subsolutions and if a 

/¢ conflict has arisen, resolve it. Note that no overlap 

/¢ can occur unless MOVEL or MOVER has caused the number of 

/¢ available end cells and internal blanks of one subsolution 
: 

/¢ to go to zero. In this case, the other subsolution must 

/¢ have space available to absorb the overlap. 

OVERLAP~ -(RIGHTl ~ LEFT2) 

if OVERLAP > 0 then --
/¢ Find subsolution with space available and move it 

/¢ to eliminate the overlap. The number of available 

/¢ end spaces on the left is LEFTl - LEFTC. 

if BLANKSl + LEFTl - LEFTC > 0 then - -
MOVEL (OVERLAP, RIGHTl, BLANKSl, LEFTl) 

else -MOVER (OVERLAP, LEFT2, BLANKS2, RIGHT2) 

end if --
end if --"-

end SQUEEZE2 -
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procedure DOWN 

/¢ Executed by each T cell during the downward wave. 

/¢ Step 1********************************************** 

/¢ Obtain constraints on solution to storage management 

/¢ problem for L array descendants and a flow value into 

/¢ the leftmost L cell descendant. 

case I: The T cell C is the root of the T array. --
/¢ Determine if a solution exists. 

if LEFT + RIGHT + BLANKS + ARB < 0 then ..... --
no solution exists; print message and return 

else /¢ A solution exists. -
/¢ Impose constraints on solution boundaries 

/¢ and set flow into the leftmost L cell to 0. 

LEFTC, RIGHTC, DFLOW ~ 0 

end if ,.._.., ........ 
end case I ---

case II: The T cell C is not the root of the T array --
receive LEFTC, RIGHTC and DFLOW from parent T cell ,........ ~ 

end case II 
_...........,._ 

/¢ End of Step 1 



PAGE 64 

/¢ Step 2********************************************** 

/¢ Compute flow for the associated edge of T cell c. 

/¢ Choose rightmost erne solutions arbitrarily 

LEFT + LEFT + ARB 

LEFTl + LEFTl + ARB 

LEFT2 + LEFT2 + ARB 

/¢ Case I: No L cell descendants of C are occupied. 

case I: LEFTl = tCELLS/2 and RIGHT2 = #CELLS/2 
~ --- """""J.r.' 

if LEFTC > tCELLS/2 then .......... ..............-.·~-.' 

FLOW + (LEFTC - #CELLS/2) 

else if RIGHT C > #CELLS/2 then 
v-.-•''·· v.~ -..,v • ......., 

FLOW + -(RIGHTC - tCELLS/2) 

end if 

else FLOW + 0 
'-·-····· 

end if 
,-·~· ""·v 

end case I •... _. ...... . . ....... 

/¢ Case II: All left descendant L cells of C are unoccupied 

/¢ but some right descendant L cells of C are occupied. 

case II: LEFTl = ICELLS/2 and RIGHT2 ~ tCELLS/2 r-.-.-..-... ,..,,~· w~·.,; 

SQUEEZE! (LEFT, BLANKS, RIGHT, LEFTC, RIGHTC) 

if LEFTC > ICELLS/2 then FLOW + (LEFTC - tCELLS/2) - ~ 
else if LEFT < tCELLS/2 then """'_ ..... .,...,., ~ 

FLOW + LEFT - tCELLS/2 

end if 

else FLOW + 0 
~ 

end if "-..... ............ 

end case II 
.,.~ ..... V\."~ .,..,., 
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/¢ Case III: Some left descendant L cells of C are occupied 

/¢ but all right descendant L cells of C are unoccupied. 

case III: LEFTl # tCF.LLS/2 and RIGHT2 = tCELLS/2 _ ......... ~ ~ 

SQUEEZEl (LEFT, BLANKS, RIGHT, LEFTC, RIGHTC) 

if RIGHTC > liCELLS/2 then FLOW + -(RIGHTC - liCELLS/2) . .,.., ~ 

else if RIGST < iCELLS/2 then 
...,..,... ... _............ -···· 

FLOW + liCELLS/2 - RIGHT 

end if ,...,._., . .............., 

else FLOW + 0 

end if 
~ V..-" 

/¢ Case IV: There are both left and right descendants of 

/¢ C which are occupied L cells. 

case IV: LEFT 1 # #CELLS/2 and RIGHT2 # #CELLS/2 
"'" ....-.-·. •r.•. ·- ,,: ...... ·.·-

SQUEEZE2 (LEFTl, BLANKSl, RIGHTl, LEFT2, BLANKS2, 

RIGHT2, LEFTC, RIGHTC) 

if RIGHTl < 0 then FLOW + -RIGHTl 
····-~ r...,,.,._...._ 

else if LEFT2 < 0 then FLOW + LEFT2 end if . .,.,J'_· ... •. .......... 1"'\1..-·......,·. 

else FLOW + 0 
....... , • .J'\.. ~ 

end if 
~ . """ "'""" 

/¢ End of Step 2 

. ' 
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/¢ Step 3*~******************************************** 

/¢ Compute constraints for the solutions of left and right sons. 

LEFTCl ... LEFTC 

RIGHTCl .. -FLOW 

LEFTC2 .. FLOW 

RIGHTC2 .. RIGHTC 

/¢ End of Step 3 

send LEFTCl, RIGHTCl and DFLOW to the left son of C. -- -send LEFTC2, RIGHTC2 and FLOW to the right son of C. - -
end DOWN -
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proce?ur~ UP_LCELLS#2 
• 
/¢ Modified L cell procedure to minimize maximum flow during 

/¢ storage management; see Section IX. 

/¢ 

/¢ Executed by each L cell at the beginning of the upward 

/¢ wave. This procedure has no input other than the cond-

/¢ ition of the L cell. 

#CELLS +- 1 

if the cell is unoccupied then 
....... -

LEFT +- 1 

RIGHT +- 1 

BLANKS, ARB, COST+- 0 

else ----let p and q be the number of cells requested on the left 

and right respectively by the symbol in the L cell. 

LEFT+- -r(p+q)/21 

RIGHT+ -r(p+q)/21 

if p + q is even then ARB +- 0 else ARB +- 1 - - -
end if --COST +- r ( p+q) /21 

BLANKS+ 0 

end if --
send LEFT, RIGHT, BLANKS, ARB, COST and #CELLS to parent node 
.............._ ' -
end UP_LCELLS#2 
""""" 


