
1 July 1981

A Conceptual Model Qf
~ Editing gng_ Formatting

Peter Calingaert

The University of North carolina
Department of canputer Science

New West 035A

Chapel Hill, NC 27514

81-oos

1

IN'lKDUCTICN

'!his report presents a conceptual JOOdel intended to facilitate the

description of editing and formatting systems, whether for evaluation or for

design. ihe texts to which the JOOdel applies are canposed of characters drawn

fran multiple alphabets. ihese may include super- and subscripts, as well as

italic and boldface characters, and sp:1ces of different widths, as long as the

finished text can be described in terms of lines of characters extending the

full width of a print column. Although such a characterization is less

general than the "boxes" and "glue" defined by Knuth [1], it does encanp:1ss

most business and scholarly documents.

The model distinguishes clearly between content and format, and relies on

the essential dissimilarility of a document's horizontal dimension to its

vertical dimension. The model identifies three major conceptual

representations

transformations

terminology.

of a text, describes seven editing, formatting, and other

on those representations, and introduces a consistent

Rather than invent a lot of new terminology to distinguish entities in

the model fran those in actual systems, I have chosen sane familiar phrases to

capitalize on their evocative power. If a reader interprets one of these

phrases in the context of an actual systan with which he or she is familiar,

the image evoked may be more specialized or more detailed than I intend. The

reader is therefore urged not to ascribe autanatically to model entities the

attributes of a similarly named entity in any real systan.

ihe objective of the systems considered is to produce a physical

representation of a text. ihere are two kinds of information embodied in the

text: content and format. In the final physical document, only the characters

that constitute the content appear explicitly. The format is implicit in

where the content appears. In the source text, however, the formatting

information occurs in the form of explicit format controls. Restructuring of

the text, performed by positioning its content according to the format

controls, which are simultaneously ranoved, is called formatting.

Modification of any p:1rt of the text, whether content or format, is called

editing.

2

FORMAT.riNG

The source text could be as concrete as a typescript for an OCR reader or

a manuscript to be copied by a keyboard operator, or it could be created

dynamically by an author working at a keyboard. The final physical document

consists of pages, each made up of lines, and produced by a device such as a

character- or line-printer, or a phototypesetter. These devices complete the

physical production of one line before proceeding to that of the next. There

is thus an essential asymmetry in the two axes of each page. Formatting

involves the vertical placement of lines, which have been previously defined

by the horizontal placement of characters. Format specifications are

therefore divided into two classes, horizontal and vertical.

Examples of horizontal specifications are line width, justification,

tabulation, and initiation of paragraphs. Examples of vertical specifications

are page depth, pagination, control of widows and orphans, page starts, and

floating of text to avoid splitting a table or other unit across a page

boundary. Same specifications have separate horizontal and vertical

components. llmOng these are footnotes and references thereto, and headers and

footers. Of the horizontal and vertical format specifications, same are

global in effect, with scope to the end of the text unless sooner rescinded.

Line width and page depth are examples. others are local, to be obeyed where

encountered, but without pervasive effect. Examples are tabulation and page

starts.

There are four major transformations in the formatting process. The

first is to convert the input text from a sequence of key strokes, or other

dynamic or static form, into a computer representation as a string of

characters. This can be thought of as capture of the key strokes, to obviate

their being repeated if the document is edited. The second step is to format

the characters horizontally into a set of lines, which in the printing

industry is called a galley. This step is equivalent to the "setting" of type

or "composition" of text. The third step is to format the lines vertically

into one or more columns on each of a book of pages. This is equivalent to

page "layout" or "makeup". The fourth step is to produce physical images of

the pages, typically on paper or on photographic film. Figure 1 depicts the

progression from input text to physical

forms represented by rounded boxes.

processing transformations.

document, through three intermediate

The rectangular boxes represent

3

'!be string of characters that result fran key stroke capture includes

content and format controls, both vertical and horizontal, all explicitly.

'!be galley of lines that results fran horizontal formatting includes explicit

content and vertical format controls, whereas the horizontal format

information is now inplicit in the content. The book of pages that results

from vertical formatting includes explicitly only the content. Both vertical

and horizontal format specifications are inplicit in the resulting document,

which is now fully formatted. These changes in the degree of formatting are

reflected in Fig. 2. It is true that the format controls may be retained,

rather than discarded, when formatting is performed. '!his is an

inplanentation convenience, however, and not a logical requiranent.

EDI~

A distinct editing transformation is defined for each of the three

distinct representations of the text, as depicted in Fig. 3. Whereas

formatting changes the mode of representation, but not the substance of the

text, editing can change both the substance and the representation. The

transformation performed by formatting can be viewed as being independent of

the content of the text, but governed by the format controls anbedded in the

text. Formatting requires no input other than the text to be transformed.

Editing, on the other hand, performs a transformation on the text, governed by

information provided fran outside the text. Means are therefore required to

capture these editing cO!!I!!allds, as shown in Fig. 4. Dashed lines represent

command flow, whereas solid lines represent text flow.

Character eaiting modifies the text represented as a string of

characters. Because an explicit vector of indices into the character string

is as long as the string, most users will prefer to specify the target of

their modifications not by index, but by context. This is a very practical,

but not a logical, requiranent. The basic operations of character editing are

to insert, delete, and replace characters or, more generally, substrings of

characters. A special case of character editing is text creation by insertion

into a previously empty text. This sinply uses the character editor as the

transducer that captures the input text. Because the text content and both

horizontal and vertical format controls are present in the character string,

character editing alone suffices to make any modification desired in the final

document.

4

~ editing modifies the text represented as a galley of horizontally

formatted lines. Editing commands to change horizontal format control

redefine how the characters are grouped into lines. Editing commands to

change vertical format control have no visible effect on the galley, but

result ultimately in a different page layout. In principle, line

commands to modify content should insert, delete, and modify lines.

editing

A newly

inserted or modified line may, however, not really be a line if in fact it

does not meet the horizontal format specifications. A typical example is

inserting so many characters into a line that its width exceeds the maximum.

In such an event, reformatting to produce new lines is requested implicitly by

the editing command.

~ eaiting modifies the text represented as a book of horizontally and

vertically formatted pages. Editing commands to change format controls

clearly result in a different setting of characters into lines and a different

layout of lines into pages. In principle, page editing commands to modify

content should insert, delete, and modify pages. A newly inserted or modified

page may, however, not really be a page for failure to meet both vertical and

horizontal format specifications. In such an event, reformatting to produce

new pages is requested implicitly by the editing command.

IMPLEIDNI'ATION

Probably no existing system implements all seven transformations

described by the model. Implementations of nontrivial subsets thereof are

common, however, and may be editors, formatters, or combined editor

formatters.

Editors

Pure editors, to avoid issuing implicit reformatting requests, do not

manipulate either lines or pages. '!hey are character editors, even though

many treat the character string as being composed of "lines" of characters.

'lhese "lines" often correspond to punched cards or card images, or to lines on

a terminal. '!he "lines" are usually mnnbered for reference by the editor.

For some editors, use of line numbers is the only way to direct the editor's

attention to a particular location in the text. For most editors, however,

context-finding commands perform that function. '!he "line" structure is often

appropriate to text whose content is a computer program. More flexible

5

editors ~.g. OCCAM [2]) do not impose a ·"line" structure on the character

string. SUch editors rely on context to reach a particular location in the

text.

Editors intended for batch mode operation can be implemented separately

from the input transducer. Much more common, however, is the combination of

input transducer and character editor into a system for the initial entry and

modification of arbitrary strings of text.

Formatters

Pure formatters accept as input a string of characters, already entered

and edited. They perform the horizontal and vertical formatting functions,

which may or may not be clearly segregated in the implementation. Production

of output may be incorporated in the formatter function, especially on a

microprocessor-based system, but it is often provided separately as a service

of the operating system. Some formatters ~.g. SCRIP!' [3]) require an input

string that is organized into "lines". In most cases this requirement is due

to basing the design on the use of card images.

There is wide variation among formatters in the extent of function they

provide. The sirrplest may provide little more than line justification and

pagination, whereas the most powerful offer extensive facilities. These

include left-, center-, and right-aligned tabulation, hanging indention,

automatic hyphenation, avoidance of widows and orphans, footnote placement,

"floating keeps", and automatic generation of index and table of contents.

6

Editor-fOrmatters
An editor-formatter system can be canposed of an editor and a formatter

bolted together. One example of this type of system is APLTEXT[4], which

canbines a context-finding character editor with a separate formatter. The

division between horizontal and vertical formatting is also sharp, and it is

possible for the user to view his text as a galley of lines, prior to vertical

formatting.

Another type of editor-formatter is the .l.ine. eC!i tor, which performs line

editing and the associated horizontal reformatting. Either the line editor

incorporates horizontal formatting capability, or it invokes reformatting of

the original character string by a separate horizontal formatter. In the

former case, the formatting component must be able to accept already formatted

lines as input. In the latter, the editing component derives either

formatting commands for the horizontal formatter or editing commands for a

separate character editor, which then presents modified input to the

formatter. These secondary commands are represented in Fig. 5 by dotted

lines, to distinguish them fran the primary commands supplied to the line

editor. Whether line editing and horizontal formatting are implemented

together or separately, need arises to determine what horizontal format

controls were present in the unformatted text. Unfortunately, formatting is

not uniquely reversible, because there are many equivalent ways to specify the

same placement of content information. A redundant representation of the text

can, however, retain the format controls for this purpose.

Yet another type of editor-formatter is the~ e(!itor, which performs

page editing and the associated horizontal and vertical reformatting.

Examples include many commercially-available systems dedicated to word

processing. Their users can view a text in fully formatted pages, specify

editorial changes to either content or format, and then examine the result.

If the lines of one page can be stored as a rectangular array of characters,

page formatting capability can be readily incorporated in the page editor.

This organization also permits the page editor to serve as the input

transducer. otherwise, the page editor can derive secondary commands either

to separate formatters or to a line editor. As for a line editor, retention

of a redundant representation of the text is helpful.

7

CXH:LUSIOO

'lbe foregoing model identifies three major conceptual representations of

a text, describes seven transformations on those representations, and

introduces a consistent terminology. The model is intended to facilitate the

description of text-prep:~ration systems, whether for evaluation or for design.

The concentration on representations and transformations provides a framework

for basing implementation decisions on the logical requirements of the

application. 'l.Wo simple examples will suggest why this is so. (1) The model

shows the domains of the languages for editing and formatting. 'lbe degree of

coordination desired between the languages is clearly dependent upon the

extent of integration of the editing and formatting functions. (2) The

decanposition of the over-all task into functional modules can be guided by

the decomposition of the model. The designer can choose whether to segregate

the conceptually distinct transformations.

In comparing and discussing text-processing systems, it will be helpful

to avoid the terminological confusion that has plagued the discussion of

operating systems. Although I decry premature or excessive standardization,

and hold no strong brief for the nomenclature presented herein, proposing it

may serve as a challenge to others to suggest better.

REFERmCES

1. Donald E. Knuth. :;rEK .srul ME.'rAFOOT: ~ Directions in ty:pesetting. Digital

Press, Bedford (MA) , 1979.

2. James Sneeringer. User-interface Design for Text Editing: A case Study.

Software== Practice ang Experience ~(5): 543-557, September-october 1978.

3. Waterloo SCRIPI' REFERENCE MANUAL, University of Waterloo, Waterloo

(Ontario), 12 July 1979.

4. IBM. An APL Text Editor and composer. Document SH20-1089, 1973.

input
text

physic

docum

~

INPUT .. STRING OF _..., HORIZONTAL

CAPTURE CHARACTERS FORMATTING

OUTPUT BOOK OF \ .. VERTICAL - -PRODUCTION PAGES FORMATTING

Figure 1. Progression fran Input Text to Physical Doct.Dnent

"

It

(
.....

.. ./ -

CAPTURE

PROD'N.

CHARACTERS
UNFORMATTED CONTENT

HORIZONTAL FORMAT CONTROLS

VERTICAL FORMAT CONTROLS

LINES

HORIZ.

FORM.

HORIZONTALLY FORMATTED CONTENT

VERTICAL FORMAT CONTROLS

PAGES
HORIZONTALLY AND VERTICALLY

FORMATTED CONTENT

Figure 2. Changes in Degree of Formatting

VERT.
FORM.

- CAPTURE - CHARACTERS HORIZ. FORM.
~ - ~

'- CHARACTER
~

EDITING

f '\' It
LINE ~

LINES
EDITING)

/

'\. _/

PAGE

/') EDITING ~

'I ~
.... PROD'N. PAGES VERT. FORM. ~ - - - ~

Figure 3. Logically Distinct Editing Transformations .

-;ll

E-

CAPTURE

editing

commands

PROD'N. ... -

.... - CHARACTERS I >I HORIZ. FORM. t----.

r
'- CHARACTER

~
EDITING

~
I , _______ ~ (

LINE

<---- ----- ----· LINES
EDITING

-------..,
I

~
'\... ..;

PAGE

~ EDITING I'\

PAGES ~ I VERT. FORM. IE:-/

Figure 4. Primary Editing Cormnands

input

text

physical

document

CAPTURE CHARACTERS

CHARACTER

EDITING

I
I ________ ...J

I)J HORIZ. FORM. t-----....

I .
• . • •

.
.

• .
• • • •

!
I . . •

LINE

I
I
I

!
I
:
!
!
i .
:

primary

commands

-- ------,

PAGE

EDITING

PROD IN. PAGES

.......
• • • .
• • :
• • • •

EDITING

.. : : .. ········-····· ,~
!
i
• • : • • • •

~-----; VERT. FORM. ~

Figure 5. Derived Editing and Formatting Coounands

