
A PRELIMINARY STUDY FOR THE FORMAL
FOUNDATION OF TRACE SPECIFICATIONS

by

John McLean

Department of Computer Science
University of North Carolina

Chapel Hill, NC 27514

presently with

80-014

Computer Science and Systems (Code 7593)
Naval Research Laboratory

Washington, DC 20375

!-
\

r-
•

INTRODUCTION

W. Bartussek and D. L. Parnas introduced the "trace method" for specifying

software in [1], at least partly, in response to Parnas' earlier observation

that there was no "precisely defined notation for writing abstract

specifications ••• that I feel to be useful".(9, p863] However, no foraal

foundation was given. A formal foundation for the trace aetbod is necessary

for (1) any rigorous description of the method, (2) the design of software

support for the specification user, (3) the proof of a1sertions about trace

specifications, and (4) the rigorous comparison of the trace method with other

methods of abstract specification.

This report contains the most important elements of a formal foundation

for trace specifications: a syntax, a semantics, and a set of inference rules

for trace specifications. Also included is a proof of a soundness theorem for

the rules of inference vis-a-vis the semantics, and sample applications of

this theorem to assertions concerning the consistency and completeness of

trace specifications. Finally, the method is compared with the algebraic

approaches, and the direction for future research is indicated.

This report assumes an understanding of the infomal notion of "traces" as

given in Ll] and an elementary knowledge of set theory as, e. g., given in

[8]. Although no knowledge of formal logic is assumed, some background in

logic as, e. g., can be obtained from [7] would be useful.

1

SYNTAX FOR TRACE SPECIFICATIONS

The first step in formalizing the notion of a trace specification for a

module M is to define precisely what such a specification is. Such a

de.finition consists of giving a language ~ the specification is to be written

in and then stating how the well-formed expressions of L can be combined so as

to yield a specification.

I. Language for Specifications

~ is defined by giving its vocabulary and the formation rules used to

combine vocabulary elements into well-formed expressions.

A. Vocabulary

The vocabulary of~ consists of parentheses (,); the logical

connectives-,&, v, -~, +-); the existential quantifier E; the equality

symbol •; and the following additional elements.

1. Trace Expression Variables:

A, B, C, ••• possibly superscripted.

2. Trace Expression Constants:

e is the only trace expression constant.

2

3. Trace Predicates:

Land 5

4. Trace Functions:

The dot (.) and V.

5. Access Procedures:

Any procedure supplied by the module to its users is an access

~ . procedure. If the procedure returns a value it is a functional

! procedure (called V-Functions in ll]).

6. Domain Names:

Any name used by the module to refer to a countable, nonempty

set of values that a parameter or return value of an access

procedure can assume is a domain name. Such domains are said to

be named.

1. Domain Constants:

.. Any member of a named domain is a domain constant. The elements

of a domain d are said to be of type d •

8. Domain Variables:

ad' bd' cd' ••• possibly superscripted, where d is a

domain name. A domain variable of the form Cd is said to be

of type d.

9. Procedure Calls:

If proc is an access procedure that takes n parameters, then

(1 n) • i . · proc ~ , ••• ,~ 1s a procedure call if each a 11 a doma1n

constant or domain variable of the appropriate type to serve as

!
proc's ith parameter. Procedure calls to functional procedures

are function calls.

3

B. Formation Rules

1. Syntax Sentences:

A syntax sentence is a string either of the form

proc: (d 1) x ••• x (dn) or of the form

proc: (d 1) x ••• x (dn) -~ (d) where proc is an access

procedure. A di must be included for each parameter passed

to the procedure and names the ith parameter's domain. The

second form is used if and only if proc is a functional

procedure, in which case d names the domain of the value

returned by the procedure.

2. Domain Sentences:

A domain sentence is a string of the form d • D where d is a

domain name and D is a description of the domain that specifies

the objects in the domain and admissible operations upon them.

An axiomatic description of the resulting structure must be

available.

3. Variables:

variable --~

domain variableJ

trace expression variable

4. Trace Expressions:

trace exeression -->
trace expression constantl

trace expression variableJ

4

5.

i ,. 6. ,

•

procedure cant

trace expression.trace expression

(Althou&h not a lan&ua&e prU.itive, it is su&&ested that the

followin& notational abbreviation be employed to denote repeated

strin&s of procedure calls. Let s be any nonempty strin& of

procedure calls and let si/n be the string that results from

replacing every domain variable of the form !i in s by

an. For all mtn,~[s] is defined .. as follows: n :[s] • si/n ..
and for all m>n ~:[s] • ~1s1. ~,js].)

~ ~ ..

Terms:

term --)

domain variable J

domain constant J

V(trace expression)

Assertions:

assertion -->

L(trace expression>}

trace expression!trace expression}

!!!:.!!•!!!:!! I
trace expression•trace expression}

-assertion J

(assertion & assertion>(

(assertion v assertion>l

(assertion _ _,. assertion) (

(assertion 4!--+ assertion) I
5

(Evariable)assertionJ

(variable)assertion

Assertions are said to be about the module M. Their parentheses

will be dropped from the outside of Boolean expressions for the

sake of readability when no ambiguity results. Each occurrence

of a variable v in an assertion (v)A or (Ev)A is said to be

bound. Occurrences that are not bound are free. An assertion

is closed if it contains no free occurrences of any variable.

II. Specification

A trace specification of a module is an ordered pair (syntax

specification, semantic specification). A syntax specification is an ordered

pair, whose first member is a finite set of syntax sentences corresponding

one-to-one with the access procedures for the module, and whose second member

is a finite set of domain sentences corresponding one-to-one with every domain

over which an access procedure's parameter or return values range. A semantic

specification is a recursively enumerable set of closed assertions about ·the

module.

Since all assertions in a trace specification are closed, we can abbreviate

assertions of the fora (v)A in a specification by A.

6

•

SEMANTICS FOR TRACE SPECIFICATIONS

We have yet to assign meanings to the symbols introduced in our trace

specification language. This is done by stating under what conditions

assertions in the language are true. As such, we must define a model and

define what it means for an assertion to be true in a aodel. This will also

allow us to make rigorous at least one sense of the concept of consistency for

a trace specification, i. e. having a model, and at least one sense of the

concept of sufficient-completeness for a trace specification, i. e. not having

models that yield 2 different values for a legal finite string of procedure

calls ending in a function call. Although 1 will further discuss these

semantic conceptions of consistency and sufficient-completeness later, it

should be clear that there is a model that makes V(!)•~ true iff there is an

implementation that returns ~ when accessed by the series of procedure calls

T. Hence, semantically inconsistent specifications have no implementation,

and specifications that are not sufficiently-complete in this semantic sense

have implementations that differ with respect to observable behavior.

Definition of Trace Model

A trace sequence is an ordered pair (D,I) where D is a set of domains and

1 is a function from syntactic constructs in L to their denotations in D. D

7

consists of one domain for each parame~er and return value domain, and one

domain, DT, which can intuitively be regarded as containing traces. Dt

contains the subsets DL, intuitively containing the legal traces, and

Dv, intuititively containing those traces that end in a function call.

~ contains the subset De, intuitively containing the null trace, such

that De f\ Dv • ~. Further, DT is such that x (DT implies that

x E De U {y: y • I[.](u,w) for some u ~ DT and w ~ Rng(Rng(I/{v: v is an

access procedureJ>>J. I meets the following conditions:

(1) IL•] • {<x,x): x E UD/

(2) l[L] • D L

(3) ILV] • f: Dv ll DL -~ U(D - DT)

(4) I[.] • f: DT x DT --> DT such that for all x, y, z in DT

(a) f(f(x,y),z) • f(x,f(y,z))

(b) f(x,y) • xif y (De

(c) f(x,y) • y if xE De

(d) f(x,y) E DT.., Dv if y f Dv u De

(e) f(x,y) G Dv if y E Dv

(f) f(x,y)(DT- DL if x f DL

(5) I[l] • {<x,y): x and y meet conditions (a) - (c) below{

(a) (x,y) E DT x DT

(b) for a 11 z (DT , I[.](x, z) ' DL iff 1 [•](y, z) ~ DL

(c) for all z' DT- De, I[.](x,z) E Dv (\ ~ iff

I [.](y, z) E Dv n ~ and I L •](X' z) t Dv 1\ DL ··>
I[V](I[.](x,z)) • I(V](I[.](y,z))

8

..

l

(6) Ildomain name]« D ~ DT

(7) Il•d] ~ ILd] where ~d is a domain variable or constant.

(8) I{traee expression] is defined as follows:

(a) I{e] t D
e

(b) Il T]' DT for any trace variable T

(e) Ilproeedure call with n parameters] • I{proc](ll!.iJ, ... IL!.nl>

where proc is the procedure of the call, !.i is the ith parameter

of the call, and ![procedure which takes n parameters] • f:

(Dp1, ••• ,Dpn> --) D* such that Dpi is that element of D

associated with the procedure's ith parameter and D* • Dv if the

procedure is a functional procedure, else D* • DT- Dv·

(d) ILT.R] • I[.](I[T],I[R]) where T and Rare any trace expressions.

For fixed D, a trace model is the set of all sequences S • (D,I) that are

identical except, perhaps, for what I assigns to domain variables, trace

variables, and trace expressions containing either of the former.

Definition of truth in a model

Given our definition of trace model, we must now define what it is for

such a model to be a model of a particular trace specification. We do this by

defining what it is for an assertion to be true in a model.

Consider any trace model M composed of sequences Si • (D,Ii). Let T

and T' be any trace expressions and let t and t' be any terms. Following

9

Tarski [10], we will define truth in terms of satisfaction.

(1) Si satisfies L(T) iff Ii[T] t Ii{L].

(2) Si satisfies t•t' iff I*ilt] and I*i[t'] are both defined and

I*i[t)•I*i[t'] where I*i{x] • Ii[x] if x is a term not of the

form V(T) and I*i(x] • Ii(V](I(x]) otherwise.

(3) Si satisfies T!S iff (Ii[T],Ii(S]) t Ii[!'].

For any assertions A and B and any variable v, we employ the standard

definition of satisfaction. That is

(1) Si satisfies -A iff Si fails to satisfy A.

(2) Si satisfies A & B iff Si satisfies A and Si satisfies B.

(3) Si satisfies A v B iff Si satisfies A or Si satisfies B.

(4) Si satisfies A --t B iff Si satisfies B or Si fails to satisfy A.

(5) Si satisfies A ~-) B iff Si satisfies both A and B or si

satisfies neither A nor B.

(6) Si satisfies (Ev)A iff there is a Sj in M such that Sj satisfies

A and Ij is like Ii except perhaps in what it assigns to v and to

trace expressions containing v.

(7) Si satisfies (v)A iff A is satisfied by every Sj in M such that

Ij is like li except perhaps in what it assigns to v and to trace

expressions containing v •.

An assertion is true in M iff it is satisfied by every Si in M.

10
•

M is a model for a trace specification iff every assertion in the

specification is true in M.

An assertion A is a semantic consequence of a specification S, written

S~A, iff A is true in every aodel of S

11

•

TRACE DEDUCTIVE SYSTEM

An alternative to the semantic concept of consistency for a trace

specification discussed in the previous section is that one cannot derive

V(!)•!, V(!)•!', and -!•!' from the specification for any trace expression!·

An alternative to the semantic concept of sufficient-completeness for a

specification is that whenever L(T.C) is derivable from the specification for

any finite string-of procedure calls T and function call£, then one can

derive V(!•£)•! for some domain constant d. In the next section 1 will

examine the relation between these syntactic conceptions of consistency and

sufficient-completeness vis-a-vis their semantic counterparts. However, we

must first formalize these concepts of consistency and

sufficient-completeness. This requires a precise definition of derivation.

The following definition of derivation is based on a trace deductive

system t~at has been designed to make derivations relatively easy to

construct. Systems that lend themselves more easily to computerized

verification of derivations have been constructed from this one by replacing

the tautology rule by modus ponens and supplementing the axiom set with a

complete set of axioms for sentential calculus as can be found, e. g., in

[7]. Possible extensions and modifications to the system presented here are

discussed at the end of this section. The definition of derivation will refer

to axioms and rules of inference as defined below.

12

Let v be any variable; t any term or trace expression; d any domain

variable; P any procedure call; and !• !• and£ any assertions. !t/s is the

result of replacing every free occurrence of t in ! by s except where such a

substitution would result in a bound occurrence for s.1 t is of the 1aae

type as v if t is a trace variable or expression and v is a trace variable, or

if t is a domain variable or constant of type ! and v is a domain variable of

type !·

Axioms

(1) (Ev)v•t, where v and t are the same type, t not of the fora V(T) for any

trace expression T.

(2) (v)(! -~ !) --> (! -~ (v)!), where v is not free in !•

(3) ((v)! & (Ev)v•t) --) !v/t, where !V/t is well-formed.

= (4) (Ev)v•t --) t•t

(5) t•t 1 --> (A ~~ A 1), where A 1 is a well-formed assertion and is like A - - - .
except for possibly having some occurrences of t 1 where A has t.

(6) T•T.e

(7) T•e.T

(8) . T!R (--+

(S)((L(T.S) 1--) L(R.S)) &

! (9) L(e)

(-S•e --~

(((Ed)V(T .S)•d 4-_., (Ed)V(R.S)•d) &

((Ed)V(T.S)•d -~ V(T.S)•V(R.S)))))

13

(10) L(T.S) --~ L(T)

(11) (Ed)V(T.£)•d ~-) L(T.£), where C is a functional procedure call that

returns values of the same type as d.

(12) -(Ed)V(T.£)•d, where C is any non-functional procedure call.

(13) -(Ed)V(e)•d

(14) -T•e -->

(ES)((Ea11) ••• (Ea1n)T•S.C1 v ••• v

(Eak1) ••• (Eakm)T•S.Ck) where Ci is a call on the ith

procedure of S with aij as the jth parameter of the call.

Rules of Inference

(1) Tautology: if! is a tautological consequence (as, e. g., determined by a

truth table) of a (possibly empty) set of earlier lines in a derivation, then

! may be entered as a line in the derivation.

(2) Universal Generalization: if! appears as an earlier line in a derivation,

then one may enter (v)! as a line in the derivation.

(3) Existential Interchange: if A appears as an earlier line in a derivation

and B is like ! except for having one or more occurrences of (Ev) where A has

-(v)- or vice versa, then one may enter B as a line in the derivation.

A derivation from a trace specification S is a finite sequence of lines,

each of which is either (1) an assertion contained in the semantic

specification of s, or (2) an axiom or an assertion justified by a rule of

inference.

14

An assertion A is derivable from s, written S ~A, iff there is a derivation

from S that has A as a last line

Possible Extensions and Modifications

The above system is minimal in that although 1 think it correctly

represents the traces method as described in [1], it could be extended by the

addition of further axioms that reflect modifications to the original

description of the method. Such an extension includes stronger axioms for

trace equality and axioms that allow for a more radical form of nondeterminism

than allowed for here -- i.e. one in which the !!!! implementation may return

different values for the same string of function calls at different times.

1 chose not to make these extensions part of the system described here for

two reasons. First, extensions can be justified only in so far as they

improve the traces specification method, and it's not clear to me that the

either of these extensions do that. Second, such extensions would lead to a

more complicated definition of model than the one presented in the last

section and hence, make it harder to verify that a specification has a model.

The former extension requires more restrictions to be placed on I[.] so as to

render, e. g., I[.)(I[w],I[x]) ~ I[.]{I[y),I[z]) if x and z are distinct

procedure calls and hence, also necessitates the inclusion of a new subset

Dp of Dr consisting of the denotations of procedure calls. The latter

extension requires either the inclusion of temporal elements in the semantics

~ or the elimination of V(T)•V(T) as a theorem of the system unless we introduce

15

the membership relation into the language and regard the denotation of V(T) as

a set or a bunch (as defined in (4]) of return values. Nevertheless, the

various ways of implementing these extensions merit discussion.

Axiom (8) requires that if T!R, then for any nonempty trace expression S

such that T.S returns a value, R.S returns the saae value. This requirement

is incompatable with the inclusion of equivalent, nondeterministic trace

expressions unless, as suggested above, we regard such expressions as

returning, e. g., sets of values. An alternative would be to replace axiom

(8) by one that required merely that T.S and R.S are indistinguishable

i. e. knowing merely that Q is either T.S or R.S and that Q returns a

particular value ~ is insufficient for concluding that Q is T.S or that Q is

R.S. However, we can make the distinction between knowing that Q is T.S or

R.S, on one hand, and knowing that Q is T.S or knowing that Q is R.S, on the

other, only by vastly supplementing the system, e. g., by adding axioms

sufficient to define a proof predicate [2] or an intensional operator [5].

A second property of the system given here is that there are few

restrictions on trace equality. Modifications to the system appear below that

rule out such possibilities as there being two, finite strings of procedure

calls that are equal but not identical.

(1) Change the occurrence of ·-~' in axiom (14) to '~+ '.

16

•

(2) Add the followin& two new axioms:

(i) -£1•£2 where £1 and £2 are any two nonidentical procedure

calls.

(ii) T.£1•s.£2 f-+ (T•S & £t•£2) where £1 and £ 2 are any

procedure calls •

17

SOUNDNESS THEOREM

We have seen a semantic conception of consistency and of sufficient

completeness and we have seen a syntactic conception of consistency and of

sufficient-completeness. However, we have yet to bridge the gap between

them. The following theorem is fundamental in establishing this bridge.

Theorem: An assertion A is derivable from a specification S only if it is a

semantic consequence of s, i. e. S~A .. S~A.

Proof: Assume that M is a model of S. We will prove the theorem via

induction on the length of A's derivation.

Assume that S ~mA •-> S~A , for all ~n where S ~mA means that A is

derivable from S by a derivation of m steps. We must show that S ~nA -~

S~A. If the nth line is an assertion contained in s, the proof is trivial

since, by assumption, M models s. If the nth line is licensed by an axiom or

rule of inference, we have the following possible cases:

(1) If A was inferred by axiom (2) or a rule of inference, then its truth

follows by familiar argument from the induction hypothesis since we have

employed the standard definition of truth for all connectives and every

18

I
! •
I
I

•

assertion in the semantic specification of a trace specification is closed

(ruling out possible problems with the application of Universal

Generalization).

(2) If A was inferred by axiom (1), then it is of the form (Ev)v-t where v and

t are of the same type and not of the form V(trace). This is true in all

models given the interpretation of such terms and of identity.

(3) If A was inferred by axiom (3) then it is of the fora ((v)P & (Ev)v•t) -->

Pv/t where Pv/t is well-formed. Its truth follows from the fact that

(Ev)v•t is true if and only if t denotes some object in the domain that is

of the same type as v. Given that t is such a term, the axiom reduces to

a special case of (v)P --> Pv/t, which is true by standard argument.

(4) If A was inferred by axiom (4) then it is of the form (Ev)v•T -~ t•t.

The truth of this formula follows from the fact that for every denoting

term t, t•t is true.

(5) If A was inferred by axiom (5) then it is of the form t•t' --> (P ++ P')

where P' is like P except for some possible occurrences of t•. If t•t' is

not satisfied in some sequence, then A is satisfied by that sequence. · If

t•t' is satisfied by the sequence, then P I--) P', and therefore A, is

satisfied by that sequence.

(6) If A was inferred by axiom (6) or (7) then it is of the form T•T.e or

T•e.T. By definition of I[.), I[T.e) • I[T] • I[e.T] for any Tin any

sequence •

19

(7) If A was inferred by axiom (8) the it is of the form T!R. 4--+ (S)((L(T .S)

~-) L(R.S)) & (-S•e --) (((Ed)V(T.S)•d f-_. (Ed)V(R.S)•d) & ((Ed)V(T.S)•d

-• V(T.S)•V(R.S))))). If T!R is satisfied by a sequence then

I[T.S] E DL if and only if ILR.S] ~ DL' and therefore (S)L(T.S) t-~

L(R..S) will be satisfied by the sequence. Further, for any S that is not

the null trace, V(T.S) will be defined iff V(R..S) is and V(T.S) • V(R..S).

Therefore, the right hand side of S will be satisfied. If TiT' is not

satisfied by S then one of the above condition must fail making the right

hand side not satisfied as well. Hence A is true.

(8) If A was inferred by axiom (9) then it is of the form L(e). But for any

model this is true since I[e] is contained in I(L].

(9) If A was inferred by axiom (10) then it is of the form L(T.S) -~ L(T).

This is true on all models by the definition of I[.].

(10) If A was inferred by one of axioms (11)-(13) then its truth follows

from the fact that V is defined on all and only legal traces that are in

Dv and the fact that any trace expression ending in a function call is

in Dv while neither the empty trace nor any trace expression ending in

a non-functional procedure call is in Dv·

(11) If A was inferred by axiom (14) then it is of the form -T•e -->

where Ci is a call on the ith procedure of S with aij as the jth

parameter of the call. Its truth can be seen by noting that if an

element of DT is not the empty trace expression, then it must be equal

to I[.](u,w) for some w f Rng(Rng(I/(v: vis a procedure}>> where u may be

the empty trace.

20

!

Corollary: A trace specification is syntactically consistent if it is

semantically consistent.

Proof: If a trace specification is not syntactically consistent, then it is

easy to see that there must be some trace expression T such that (Ex)V(T)•x &

-V(T)•V(T) is derivable from the specification. By the Soundness Theor .. ,

this assertion must be a semantic consequence of any aodel of the

specification. But since the assertion is false in all .odels, the

specification can have no ao4els.

Corollary: A trace specification is sufficiently-complete in the synt'actic

sense only if it is sufficiently-complete in the semantic sense.

Proof: If a trace specification is not sufficiently-complete in the ••antic

~ sense, then there is some finite strina of procedure calls T endina in a

•

•

.
function call and domain constants a and b such that a ~ b yet I[V](I[T)) •

I(a] in one model and I(V](I[T]) • I(b] in another. By the definition of

legality in ll], L(T) must be derivable, yet by the soundness theorem, there

can be no domain constant d such that V(T)-d is derivable since I(d] would

have to be equal to both Ila] and I(b] while I(a] ~ I(b].

It is an open question as to whether the system is complete, i. e. whether

the converse of the theorem (and of the theorem's corollaries) holds. This

point is further discussed below in the section on future research •

21

APPLICATIONS

Application ~ Consistency Proofs

By the first corollary of the previous section one can prove a

specification consistent (in either sense of the term) by giving it a model.

As an example it can easily be shown that the following stack module is

consistent when supplemented by first order number theory.

Stack Specification:

a and b are assumed to be a type integer, while r and s are assumed to be of

type name.

Syntax:

PUSH: (int) x (name)

POP: (name)

TOP: (name) --) (int)

DEPTH: (name) --) (int)

int • the set of integers

name • the set of finite character strings

22

Semantics:

(1) L(T) --) L(T.PUSH(a,s))

(2) L(T.TOP(s)) f-) L(T.POP(s))

(3) T.DEPTH(s)\T ·

(4) T.PUSH(a,s).POP(s);T

(5) -r•s -~ T.PUSH(a,s).PUSH(b,r)iT.PUSH(b,r).PUSH(a,s)

(6) L(T.TOP(s)) --) T.TOP(s)!T

(7) L(T) -~ V(T.PUSH(a,s).TOP(s))•a

(8) L(T) --) V(T.PUSH(a,a).DEPTH(s))•V(T.DEPTH(s))+l.

(9) (L(T) & -r-s) --) V(T.PUSH(a,s).DEPTH(r))•V(T.DEPTH(r))

(10) V(DEPTH(s))•O

Stack Model:

Note that only those aspects of the model that are invariant across sequences

i of the model must be given in order to specify it uniquely. Let s be any naae

variable or constant and i any integer variable or constant. D • int U name U

DT where DT • {x: x is a possibly empty string of procedure calls

without variables}.

I[e] • the empty string

I[t] • t if t is an integer, a name, or a procedure call involving no

variables. If the call contains variables, l[t] is the call once each

variable v has been replaced by I[v].

I[L] • (x: x is in DT and such that to the left of every POP(s) and

t TOP(s) in x there are more PUSH(i.s)'s than POP(s)'sJ.

23

l[V] • a function f from those elements. of I[L] that end in TOP or DEPTH, to

the integers such that for every x E Dom(f), f(x) • n if (1) x ends in

DEPTH(s), and n is the number of PUSH(i,s)'s in x ainus the number of POP(s)'s

in x, or (2) x ends in TOP{s) and, scanning x froa right to left, PUSH{n,s) is

the first occurrence of a PUSH(i,s) in x that cannot be paired with a

previous, unpaired POP(s).

I[.] is the concatenation function

I{i] • J<x,y): x,y € DT and x and y are identical except perhaps in the

order of their procedure calls after both x and y have been subjected to the

following procedure}:

1. Remove all DEPTH's.

2. Reaove every TOP that is such that the initial string of the trace up

through it is an element of l[L].

3. Remove. the first and last call of all strings of the fora

4.

PUSH{i,s) ••• POP(s), where ... is any {possibly eapty) string of

procedure calls that contains neither POP{s) nor PUSH(i,s) for any i.

Repeat #3 as long as possible.

Application to Completeness Proofs

The second corollary to the soundness theorem can be employed to prove

that a specification S is not sufficiently-complete (in both senses) if we

give two models M1 and M2 for S and show that there is a value trace A

and domain constant a such that V{A) • ~ is true in M1 and false in H2•

As an example, I will prove the following keysort specifications, adapted froa

24

!' i

..,

•

i
I •

. .

•

a similar one suggested by David Parnas, incomplete2:

Keysort Specification:

It is assumed that a, a', b, b', x, andy are of type integer.

Syntax:

INSERT: (int) x (int)

REMOVE:

FRONT: -~ (pair)

int • the set of integers

pair • (<x,y): x & int & y " int l

S . 3 emant1cs :

(1) L(T) --) L(T.INSERT(a,b).REMOVE)

(2) L(T.FRONT) ~-) L(T.REMOVE)

(3) L(T.FRONT) --) T.FRONT!T

(4) V(T.INSERT(a,b).FRONT)•(a,b) -~

(T.INSERT(a,b).REMOVEiT v

(V(T.FRONT)•(a,b) &

T.INSERT(a,b).REMOVErT.REMOVE.INSERT(a,b)))

(5) -V(T.tNSERT(a,b).FRONT)•(a,b) ~

T.INSERT(a,b).REMOVE!T.REMOVE.INSERT(a,b)

(6) V(INSERT(a,b).FRONT)•(a,b)

25

(7) V(T.FRONT)•(a,b) ~

(V(T.INSERT(a',b').FRONT)•(x,y) --)

((a(a 1 & x•a & y•b) v

(a>a' & x•a' & y•b') v

(a•a' & x•a & (y•b v y•b'))))

Interpretation:

M1 and M2 agree on the following:

(1) D, DT' I[e], I(.] and I[t] where t is an integer ordered pair or

procedure call are analogous to the model for the stack specification.

(2) I{L] •/ x: x C DT and such that to the left of every REMOVE or FRONT

in x there are more INSERT's than REMOVE's).

The interpretation of and V depend on the following normalizing algorithm

which takes as input strings of procedure calls:

NORMAL(string):

1. If string I DL• then abort.

2. Remove each occurrence of FRONT from string.

3. Label the ith INSERT from the left and the jth REMOVE from the left in

string INSERTi and REMOVEj respectively. Call the key and the ordered

pair associated with INSERTi, keyi and pairi respectively.

4. For k•l to the number of REMOVE • s in string, eliminate the pair

INSERT j REMOVEk such that the following conditions are met:

(a) INSERT j is to the left of REMOVEk in string.

(b) If INSERTi is to the left of REMOVEk' then keyi ~ keyj"

(c) i)j =-> (a) or (b) fails for INSERTi.

26

t.

..

(3) IlV] • a function f from those strings in I[L] that end in FRONT to

ordered pairs of integers (a,b). f(T) • (a,b) iff when after the rightmost

FRONT of T has been replaced by REMOVE, (a,b) • pairi where INSERTi is

the last INSERT to be removed when the modified T is subjected to NORMAL.

(4) I[!] • [<x,y): x,y 4 DT and when x and y are subjected to NORMAL,

either NORMAL aborts for both of them or NORMAL(x) • NORHAL(y) after RORMAL(x)

and NORMAL(y) have been sorted into ascending order such that

INSERTi (INSERTk if keyi (keyj or if keyi • keyj & i<' jJ.

For M2, the interpretation of ~and V are as above, but with step (4) of

NORMAL changed as follows:

4'. For k•l to the number of REMOVE's in string, eliminate the pair

INSERTj REMOVEk such that the following conditions are met:

(a) As before.

(b) As before.

(c) If there is an i less then j such that keyi • keyj' then

there is an n less than j such that pairn • pairj and for all •

less than n key• > keyj

(d) i , j ·~ (a), (b), or (c) fail for INSERTi

To see that the keysort specification is incomplete one must merely note

that if we consider A • INSERT(l,S).INSERT(1,6).FRONT then V(A) • (1,6) in

M1 and V(A) • (1,5) in M2•

27

COMPARISON ~ ~ ALGEBRAIC APPROACH

The reader will notice two differences between the trace method for

specifying software modules and the more algebraic approaches as epitomized,

for example, by Guttag and Horning L3]. The first is that the so ... called "type

of interest" or TO! is never mentioned in a trace specification. For example,

within the stack specification, the word "stack" is never used. As such, the

specification corresponds more closely to how the user actually sees a stack

module, viz. a set of access procedures with certain properties, than the

algebraic method which gives relations between the possible "values" stacks

can assume. Treating stacks as values renders it necessary to provide error

values for stacks to assume and to provide unnecessary functions in order to

start, i. e., map an empty value space to an initial stack. Further, by

obliterating the distinction between a function call and the value returned by

that call, the algebraic approach renders it impossible to represent a

sequence such as call1.ca11 2 except by treating call1 as a parameter

of call2• Hence, procedures that affect the "inner state" of the module

without returning a value (called 0-Functions in [1]) and procedures that do

not take parameters cannot be represented in a natural manner by the algebraic

approach.4 Finally, the absence of a TOI within the specification helps

to insure a totally behavioristic specification of the module. The mere

inclusion of the word "stack" within the specification is a step toward

28

suagenina imple~aentation since it sug~su that for each stack name there

must be some object in the implementation, for example an array, that

corresponds to that stack. ln certain enviroa.ents, however, it may be aore

desirable to have only one data structure which stores names and values

• toaether.

The second difference between the two aetbods concerns the lanauagea

involved. The trace aetbod makes free use of first order logic with identity

while most algebraists prefer more testrictive languages. As such, the trace

method allows for much more expressive power. An example is the use of the

existential quantifier in axiom (11) to say that any legal trace expression

ending in a function call must return some value without saying what that

value is. This allows, e. g., for the specification of an integer generatina

module whose only restriction is· that it returns a different integer each time

• it is called. Such a module can be specified by the single syntax sentence

GEN: --) (int) coupled with the two assertions L(T) and -S•e -->

-V(R.S)•V(R). The reader should find it enlightenina to try to specify this

same module algebraically since he will run into problems, not only in trying

to capture the nondeterainism of the module, but also, as discussed above, in

trying to represent sequences of function calls. Although the richness of the

trace language implies that consistency and sufficient-completeness will be

harder to establish with the trace method, nobody bas found a sufficiently

rich language for which consistency and completeness are decidable. Further,

the soundness proof given here is an important step toward coming up with a

uniform method for establishing trace specifications consistent. The next

29

. ~

step is described as an area for future research.

In spite of the differences between the two approaches, the generality of

the term "algebraic" will allow for the developaent of algebraic models that

are formally equivalent to the trace method.S The algebraic approach

stimulated the developaent of the trace approach, and the two approaches are

quite similar when compared to such alternatives as the "operational

definition" and the "abstract model" approaches [6]. Time and energy should

not be lost in a debate between the two approaches while practitioners await

usable specification tools.

30

•

FUTURE RESEARCH

Future research in the trace method can take various forms. First of all,

the desirablity and feasability of extending the aodel so as to allow, e. g.,

more nondeterainism in specifications and stricter identity conditions between

trace expressions should be explored. Second a completeness theorem that

every consistent set of assertions has a model must be proven.6 This

theorem will enable research to begin on a model theoretic approach to proving

specifications sufficiently-complete and when coupled with the soundness

theorem, will complete the bridge between the semantic concepts of consistency

and sufficient-completeness and their syntactic counterparts, thus justifying

both of them. Third, alternative methods for proving specifications

consistent and sufficiently-complete should be studied, a project 1 am

currently engaged in. Fourth, methods for proving the correctness of

implementations and the correctness of programs using modules must be

developed. Fifth, software support should be developed in order to check

specifications for well-formedness, consistency, and sufficient-completeness,

as well as to provide quick implementations of specifications. This will

allow for the development of much more complex programs, especially where

correct specifications are necessitated either by financial reasons or by

security reasons. A pilot project to develop such software was undertaken at

UNC. Finally, the notation should be extended to allow for more compact and

readable specifications.

31

Questions of a more theoretical nature stem from· the inability to say

certain things within first order logic. For example, it is impossible to

force axiomatically every trace expression variable to denote only finite

strings of procedure calls or when dealing with trace expression variables

that do denote infinite strings of procedure calls, to restrict equality so

that such expressions are equal only if they are identical. Since higher

order logics are incomplete, this lack of expressive power must be endured.

Nevertheless, issues concerning practical consequences of this fact should be

explored. •

32

' I

ACKNOWLEDGEMENTS

The influence of David Parnas' work on this paper is obvious. He has also

provided helpful criticism of an earlier draft of this paper, as have David

: ... Weiss, Mila Majater, and Donald Stanat. Karen DWyer, who led the pilot team

for developing software support mentioned earlier, pointed out several

mistakes in an earlier draft, and Mark Nixon provided some very useful

conversation along the way •

...

•

33

FOOTNOTES

1. The notion of occurrence used here is the standard one as used, e. g., in

[7] extended so as to regard trace expressions that occur within other trace

expressions as occurring in any assertion that the latter occurs in.

2. It should be noted that the incompleteness is deliberate in order not to

specify what the module does if duplicate keys appear, beyond stating that

such keys are allowed and precede all pairs with greater keys.

3. Strictly speaking, assertions (4) - (7) of this specification are

ill-formed since (a,b) is not a variable. Rigor can be maintained by treating

the assertion V(T.FRONT)•(a,b) as an abbreviation for FIRST[V(T.FRONT)]•a &

SEC[V(T.FRONT))•b where FIRSTL(x,y)]•x and SEC((x,y)]•y.

4. On the other side of the coin, it should be noted that the trace method

makes a sharper distinction between function calls and the values they return

than do many programming languages. As such the trace method cannot represent

calls that take as a parameter the return value of another call as naturally

as the algebraic method.

5. First order logic is, after all, a cylindric algebra.

34

6. It should be noted that I have recently proven a system that is slightly

stronger than the one presented here complete.

35

BlBLIOGaAPHY

{1] Bartussek, Wolfram and Parnas, David L. Using Traces to Write Abstract

Specifications for Software Modules, UNC Technical Report lrR 77-012

(1977).

[2] GOdel, Kurt. "Uber formal unentscheidbare Sitze der Principia aaatheaaatica

und verwandter Systeme, I", Monatshefte fur Mathematik und Physik,

XXXVIII (1931), pp. 179-98.

[3] Guttag, John and Horning, J. "The Algebraic Specification of Abstract

Data Types,"!£!.! InforaaatiC:a, X (1978), pp. 27-52.

{4] Behner, Eric. Siaaple Set Theory for Computing Science, CSRG Technical

Report #102 (1979)

lS] Hughes, G. E. and Cresswell, M. J. An Introduction to Modal Logic

(Norwich 1968).

l6] Liskov, Barbara and Berzins, Valdis. "An Appraisal of Prograaa

Specifications", Research Directions in Software Technology, ed. P.

Wegner (Cambridge, Massachusetts 1979).

36
-·-

[7] Mates, B. Elementary Logic, 2nd ed. (New York 1972).

l8] Monk, J. Introduction to Set Theory (New York 1969).

[9] Parnas, David L. "The Use of Precise Specifications in the Development of
~

..
Software", Information Processing 77, ed. B. Gilchrist (New York 1977) •

[10] Tarski, A., "The Concept of Truth in Formalized Languages", reprinted in

Logic, Semantics, Metamathematics (Oxford 1956).

37

