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INTRODUCTION 

W. Bartussek and D. L. Parnas introduced the "trace method" for specifying 

software in [1], at least partly, in response to Parnas' earlier observation 

that there was no "precisely defined notation for writing abstract 

specifications ••• that I feel to be useful".(9, p863] However, no foraal 

foundation was given. A formal foundation for the trace aetbod is necessary 

for (1) any rigorous description of the method, (2) the design of software 

support for the specification user, (3) the proof of a1sertions about trace 

specifications, and (4) the rigorous comparison of the trace method with other 

methods of abstract specification. 

This report contains the most important elements of a formal foundation 

for trace specifications: a syntax, a semantics, and a set of inference rules 

for trace specifications. Also included is a proof of a soundness theorem for 

the rules of inference vis-a-vis the semantics, and sample applications of 

this theorem to assertions concerning the consistency and completeness of 

trace specifications. Finally, the method is compared with the algebraic 

approaches, and the direction for future research is indicated. 

This report assumes an understanding of the infomal notion of "traces" as 

given in Ll] and an elementary knowledge of set theory as, e. g., given in 

[8]. Although no knowledge of formal logic is assumed, some background in 

logic as, e. g., can be obtained from [7] would be useful. 
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SYNTAX FOR TRACE SPECIFICATIONS 

The first step in formalizing the notion of a trace specification for a 

module M is to define precisely what such a specification is. Such a 

de.finition consists of giving a language ~ the specification is to be written 

in and then stating how the well-formed expressions of L can be combined so as 

to yield a specification. 

I. Language for Specifications 

~ is defined by giving its vocabulary and the formation rules used to 

combine vocabulary elements into well-formed expressions. 

A. Vocabulary 

The vocabulary of~ consists of parentheses (, ); the logical 

connectives-,&, v, -~, +-); the existential quantifier E; the equality 

symbol •; and the following additional elements. 

1. Trace Expression Variables: 

A, B, C, ••• possibly superscripted. 

2. Trace Expression Constants: 

e is the only trace expression constant. 
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3. Trace Predicates: 

Land 5 

4. Trace Functions: 

The dot (.) and V. 

5. Access Procedures: 

Any procedure supplied by the module to its users is an access 

~ . procedure. If the procedure returns a value it is a functional 

! procedure (called V-Functions in ll]). 

6. Domain Names: 

Any name used by the module to refer to a countable, nonempty 

set of values that a parameter or return value of an access 

procedure can assume is a domain name. Such domains are said to 

be named. 

1. Domain Constants: 

.. Any member of a named domain is a domain constant. The elements 

of a domain d are said to be of type d • 

8. Domain Variables: 

ad' bd' cd' ••• possibly superscripted, where d is a 

domain name. A domain variable of the form Cd is said to be 

of type d. 

9. Procedure Calls: 

If proc is an access procedure that takes n parameters, then 

( 1 n) • i . · proc ~ , ••• ,~ 1s a procedure call if each a 11 a doma1n 

constant or domain variable of the appropriate type to serve as 

! 
proc's ith parameter. Procedure calls to functional procedures 

are function calls. 
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B. Formation Rules 

1. Syntax Sentences: 

A syntax sentence is a string either of the form 

proc: (d 1) x ••• x (dn) or of the form 

proc: (d 1) x ••• x (dn) -~ (d) where proc is an access 

procedure. A di must be included for each parameter passed 

to the procedure and names the ith parameter's domain. The 

second form is used if and only if proc is a functional 

procedure, in which case d names the domain of the value 

returned by the procedure. 

2. Domain Sentences: 

A domain sentence is a string of the form d • D where d is a 

domain name and D is a description of the domain that specifies 

the objects in the domain and admissible operations upon them. 

An axiomatic description of the resulting structure must be 

available. 

3. Variables: 

variable --~ 

domain variableJ 

trace expression variable 

4. Trace Expressions: 

trace exeression --> 
trace expression constantl 

trace expression variableJ 
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5. 

i ,. 6. , 
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procedure cant 

trace expression.trace expression 

(Althou&h not a lan&ua&e prU.itive, it is su&&ested that the 

followin& notational abbreviation be employed to denote repeated 

strin&s of procedure calls. Let s be any nonempty strin& of 

procedure calls and let si/n be the string that results from 

replacing every domain variable of the form !i in s by 

an. For all mtn,~[s] is defined .. as follows: n :[s] • si/n .. 
and for all m>n ~:[s] • ~1s1. ~,js].) 

~ ~ .. 

Terms: 

term --) 

domain variable J 

domain constant J 

V(trace expression) 

Assertions: 

assertion --> 

L(trace expression>} 

trace expression!trace expression} 

!!!:.!!•!!!:!! I 
trace expression•trace expression} 

-assertion J 

(assertion & assertion>( 

(assertion v assertion>l 

(assertion _ _,. assertion) ( 

(assertion 4!--+ assertion) I 
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(Evariable)assertionJ 

(variable)assertion 

Assertions are said to be about the module M. Their parentheses 

will be dropped from the outside of Boolean expressions for the 

sake of readability when no ambiguity results. Each occurrence 

of a variable v in an assertion (v)A or (Ev)A is said to be 

bound. Occurrences that are not bound are free. An assertion 

is closed if it contains no free occurrences of any variable. 

II. Specification 

A trace specification of a module is an ordered pair (syntax 

specification, semantic specification). A syntax specification is an ordered 

pair, whose first member is a finite set of syntax sentences corresponding 

one-to-one with the access procedures for the module, and whose second member 

is a finite set of domain sentences corresponding one-to-one with every domain 

over which an access procedure's parameter or return values range. A semantic 

specification is a recursively enumerable set of closed assertions about ·the 

module. 

Since all assertions in a trace specification are closed, we can abbreviate 

assertions of the fora (v)A in a specification by A. 
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SEMANTICS FOR TRACE SPECIFICATIONS 

We have yet to assign meanings to the symbols introduced in our trace 

specification language. This is done by stating under what conditions 

assertions in the language are true. As such, we must define a model and 

define what it means for an assertion to be true in a aodel. This will also 

allow us to make rigorous at least one sense of the concept of consistency for 

a trace specification, i. e. having a model, and at least one sense of the 

concept of sufficient-completeness for a trace specification, i. e. not having 

models that yield 2 different values for a legal finite string of procedure 

calls ending in a function call. Although 1 will further discuss these 

semantic conceptions of consistency and sufficient-completeness later, it 

should be clear that there is a model that makes V(!)•~ true iff there is an 

implementation that returns ~ when accessed by the series of procedure calls 

T. Hence, semantically inconsistent specifications have no implementation, 

and specifications that are not sufficiently-complete in this semantic sense 

have implementations that differ with respect to observable behavior. 

Definition of Trace Model 

A trace sequence is an ordered pair (D,I) where D is a set of domains and 

1 is a function from syntactic constructs in L to their denotations in D. D 
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consists of one domain for each parame~er and return value domain, and one 

domain, DT, which can intuitively be regarded as containing traces. Dt 

contains the subsets DL, intuitively containing the legal traces, and 

Dv, intuititively containing those traces that end in a function call. 

~ contains the subset De, intuitively containing the null trace, such 

that De f\ Dv • ~. Further, DT is such that x ( DT implies that 

x E De U {y: y • I[.](u,w) for some u ~ DT and w ~ Rng(Rng(I/{v: v is an 

access procedureJ>>J. I meets the following conditions: 

(1) IL•] • {<x,x): x E UD/ 

(2) l[L] • D L 

(3) ILV] • f: Dv ll DL -~ U(D - DT) 

(4) I[.] • f: DT x DT --> DT such that for all x, y, z in DT 

(a) f(f(x,y),z) • f(x,f(y,z)) 

(b) f(x,y) • xif y ( De 

(c) f(x,y) • y if xE De 

(d) f(x,y) E DT.., Dv if y f Dv u De 

(e) f(x,y) G Dv if y E Dv 

(f) f(x,y)( DT- DL if x f DL 

(5) I[l] • {<x,y): x and y meet conditions (a) - (c) below{ 

(a) (x,y) E DT x DT 

(b) for a 11 z ( DT , I[.]( x, z) ' DL iff 1 [ • ]( y, z) ~ DL 

(c) for all z' DT- De, I[.](x,z) E Dv (\ ~ iff 

I [ .]( y, z) E Dv n ~ and I L • ](X' z) t Dv 1\ DL ··> 
I[V](I[.](x,z)) • I(V](I[.](y,z)) 
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(6) Ildomain name]« D ~ DT 

(7) Il•d] ~ ILd] where ~d is a domain variable or constant. 

(8) I{traee expression] is defined as follows: 

(a) I{e] t D 
e 

(b) Il T]' DT for any trace variable T 

(e) Ilproeedure call with n parameters] • I{proc](ll!.iJ, ... IL!.nl> 

where proc is the procedure of the call, !.i is the ith parameter 

of the call, and ![procedure which takes n parameters] • f: 

(Dp1, ••• ,Dpn> --) D* such that Dpi is that element of D 

associated with the procedure's ith parameter and D* • Dv if the 

procedure is a functional procedure, else D* • DT- Dv· 

(d) ILT.R] • I[.](I[T],I[R]) where T and Rare any trace expressions. 

For fixed D, a trace model is the set of all sequences S • (D,I) that are 

identical except, perhaps, for what I assigns to domain variables, trace 

variables, and trace expressions containing either of the former. 

Definition of truth in a model 

Given our definition of trace model, we must now define what it is for 

such a model to be a model of a particular trace specification. We do this by 

defining what it is for an assertion to be true in a model. 

Consider any trace model M composed of sequences Si • (D,Ii). Let T 

and T' be any trace expressions and let t and t' be any terms. Following 
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Tarski [10], we will define truth in terms of satisfaction. 

(1) Si satisfies L(T) iff Ii[T] t Ii{L]. 

(2) Si satisfies t•t' iff I*ilt] and I*i[t'] are both defined and 

I*i[t)•I*i[t'] where I*i{x] • Ii[x] if x is a term not of the 

form V(T) and I*i(x] • Ii(V](I(x]) otherwise. 

(3) Si satisfies T!S iff (Ii[T],Ii(S]) t Ii[!']. 

For any assertions A and B and any variable v, we employ the standard 

definition of satisfaction. That is 

(1) Si satisfies -A iff Si fails to satisfy A. 

(2) Si satisfies A & B iff Si satisfies A and Si satisfies B. 

(3) Si satisfies A v B iff Si satisfies A or Si satisfies B. 

(4) Si satisfies A --t B iff Si satisfies B or Si fails to satisfy A. 

(5) Si satisfies A ~-) B iff Si satisfies both A and B or si 

satisfies neither A nor B. 

(6) Si satisfies (Ev)A iff there is a Sj in M such that Sj satisfies 

A and Ij is like Ii except perhaps in what it assigns to v and to 

trace expressions containing v. 

(7) Si satisfies (v)A iff A is satisfied by every Sj in M such that 

Ij is like li except perhaps in what it assigns to v and to trace 

expressions containing v •. 

An assertion is true in M iff it is satisfied by every Si in M. 

10 
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M is a model for a trace specification iff every assertion in the 

specification is true in M. 

An assertion A is a semantic consequence of a specification S, written 

S~A, iff A is true in every aodel of S 

11 
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TRACE DEDUCTIVE SYSTEM 

An alternative to the semantic concept of consistency for a trace 

specification discussed in the previous section is that one cannot derive 

V(!)•!, V(!)•!', and -!•!' from the specification for any trace expression!· 

An alternative to the semantic concept of sufficient-completeness for a 

specification is that whenever L(T.C) is derivable from the specification for 

any finite string-of procedure calls T and function call£, then one can 

derive V(!•£)•! for some domain constant d. In the next section 1 will 

examine the relation between these syntactic conceptions of consistency and 

sufficient-completeness vis-a-vis their semantic counterparts. However, we 

must first formalize these concepts of consistency and 

sufficient-completeness. This requires a precise definition of derivation. 

The following definition of derivation is based on a trace deductive 

system t~at has been designed to make derivations relatively easy to 

construct. Systems that lend themselves more easily to computerized 

verification of derivations have been constructed from this one by replacing 

the tautology rule by modus ponens and supplementing the axiom set with a 

complete set of axioms for sentential calculus as can be found, e. g., in 

[7]. Possible extensions and modifications to the system presented here are 

discussed at the end of this section. The definition of derivation will refer 

to axioms and rules of inference as defined below. 
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Let v be any variable; t any term or trace expression; d any domain 

variable; P any procedure call; and !• !• and£ any assertions. !t/s is the 

result of replacing every free occurrence of t in ! by s except where such a 

substitution would result in a bound occurrence for s.1 t is of the 1aae 

type as v if t is a trace variable or expression and v is a trace variable, or 

if t is a domain variable or constant of type ! and v is a domain variable of 

type !· 

Axioms 

(1) (Ev)v•t, where v and t are the same type, t not of the fora V(T) for any 

trace expression T. 

(2) (v)(! -~ !) --> (! -~ (v)!), where v is not free in !• 

(3) ((v)! & (Ev)v•t) --) !v/t, where !V/t is well-formed. 

= (4) (Ev )v•t --) t•t 

(5) t•t 1 --> (A ~~ A 1 ), where A 1 is a well-formed assertion and is like A - - - . 
except for possibly having some occurrences of t 1 where A has t. 

(6) T•T.e 

(7) T•e.T 

(8) . T!R (--+ 

(S)((L(T.S) 1--) L(R.S)) & 

! (9) L(e) 

(-S•e --~ 

(( (Ed)V(T .S)•d 4-_., (Ed)V(R.S)•d) & 

((Ed)V(T.S)•d -~ V(T.S)•V(R.S))))) 
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(10) L(T.S) --~ L(T) 

(11) (Ed)V(T.£)•d ~-) L(T.£), where C is a functional procedure call that 

returns values of the same type as d. 

(12) -(Ed)V(T.£)•d, where C is any non-functional procedure call. 

(13) -(Ed)V(e)•d 

(14) -T•e --> 

(ES)((Ea11) ••• (Ea1n)T•S.C1 v ••• v 

(Eak1) ••• (Eakm)T•S.Ck) where Ci is a call on the ith 

procedure of S with aij as the jth parameter of the call. 

Rules of Inference 

(1) Tautology: if! is a tautological consequence (as, e. g., determined by a 

truth table) of a (possibly empty) set of earlier lines in a derivation, then 

! may be entered as a line in the derivation. 

(2) Universal Generalization: if! appears as an earlier line in a derivation, 

then one may enter (v)! as a line in the derivation. 

(3) Existential Interchange: if A appears as an earlier line in a derivation 

and B is like ! except for having one or more occurrences of (Ev) where A has 

-(v)- or vice versa, then one may enter B as a line in the derivation. 

A derivation from a trace specification S is a finite sequence of lines, 

each of which is either (1) an assertion contained in the semantic 

specification of s, or (2) an axiom or an assertion justified by a rule of 

inference. 
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An assertion A is derivable from s, written S ~A, iff there is a derivation 

from S that has A as a last line 

Possible Extensions and Modifications 

The above system is minimal in that although 1 think it correctly 

represents the traces method as described in [1], it could be extended by the 

addition of further axioms that reflect modifications to the original 

description of the method. Such an extension includes stronger axioms for 

trace equality and axioms that allow for a more radical form of nondeterminism 

than allowed for here -- i.e. one in which the !!!! implementation may return 

different values for the same string of function calls at different times. 

1 chose not to make these extensions part of the system described here for 

two reasons. First, extensions can be justified only in so far as they 

improve the traces specification method, and it's not clear to me that the 

either of these extensions do that. Second, such extensions would lead to a 

more complicated definition of model than the one presented in the last 

section and hence, make it harder to verify that a specification has a model. 

The former extension requires more restrictions to be placed on I[.] so as to 

render, e. g., I[.)(I[w],I[x]) ~ I[.]{I[y),I[z]) if x and z are distinct 

procedure calls and hence, also necessitates the inclusion of a new subset 

Dp of Dr consisting of the denotations of procedure calls. The latter 

extension requires either the inclusion of temporal elements in the semantics 

~ or the elimination of V(T)•V(T) as a theorem of the system unless we introduce 
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the membership relation into the language and regard the denotation of V(T) as 

a set or a bunch (as defined in (4]) of return values. Nevertheless, the 

various ways of implementing these extensions merit discussion. 

Axiom (8) requires that if T!R, then for any nonempty trace expression S 

such that T.S returns a value, R.S returns the saae value. This requirement 

is incompatable with the inclusion of equivalent, nondeterministic trace 

expressions unless, as suggested above, we regard such expressions as 

returning, e. g., sets of values. An alternative would be to replace axiom 

(8) by one that required merely that T.S and R.S are indistinguishable 

i. e. knowing merely that Q is either T.S or R.S and that Q returns a 

particular value ~ is insufficient for concluding that Q is T.S or that Q is 

R.S. However, we can make the distinction between knowing that Q is T.S or 

R.S, on one hand, and knowing that Q is T.S or knowing that Q is R.S, on the 

other, only by vastly supplementing the system, e. g., by adding axioms 

sufficient to define a proof predicate [2] or an intensional operator [5]. 

A second property of the system given here is that there are few 

restrictions on trace equality. Modifications to the system appear below that 

rule out such possibilities as there being two, finite strings of procedure 

calls that are equal but not identical. 

(1) Change the occurrence of ·-~' in axiom (14) to '~+ '. 
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(2) Add the followin& two new axioms: 

(i) -£1•£2 where £1 and £2 are any two nonidentical procedure 

calls. 

(ii) T.£1•s.£2 f-+ (T•S & £t•£2) where £1 and £ 2 are any 

procedure calls • 
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SOUNDNESS THEOREM 

We have seen a semantic conception of consistency and of sufficient

completeness and we have seen a syntactic conception of consistency and of 

sufficient-completeness. However, we have yet to bridge the gap between 

them. The following theorem is fundamental in establishing this bridge. 

Theorem: An assertion A is derivable from a specification S only if it is a 

semantic consequence of s, i. e. S~A .. S~A. 

Proof: Assume that M is a model of S. We will prove the theorem via 

induction on the length of A's derivation. 

Assume that S ~mA •-> S~A , for all ~n where S ~mA means that A is 

derivable from S by a derivation of m steps. We must show that S ~nA -~ 

S~A. If the nth line is an assertion contained in s, the proof is trivial 

since, by assumption, M models s. If the nth line is licensed by an axiom or 

rule of inference, we have the following possible cases: 

(1) If A was inferred by axiom (2) or a rule of inference, then its truth 

follows by familiar argument from the induction hypothesis since we have 

employed the standard definition of truth for all connectives and every 
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assertion in the semantic specification of a trace specification is closed 

(ruling out possible problems with the application of Universal 

Generalization). 

(2) If A was inferred by axiom (1), then it is of the form (Ev)v-t where v and 

t are of the same type and not of the form V(trace). This is true in all 

models given the interpretation of such terms and of identity. 

(3) If A was inferred by axiom (3) then it is of the fora ((v)P & (Ev)v•t) --> 

Pv/t where Pv/t is well-formed. Its truth follows from the fact that 

(Ev)v•t is true if and only if t denotes some object in the domain that is 

of the same type as v. Given that t is such a term, the axiom reduces to 

a special case of (v)P --> Pv/t, which is true by standard argument. 

(4) If A was inferred by axiom (4) then it is of the form (Ev)v•T -~ t•t. 

The truth of this formula follows from the fact that for every denoting 

term t, t•t is true. 

( 5) If A was inferred by axiom ( 5) then it is of the form t•t' --> (P ++ P') 

where P' is like P except for some possible occurrences of t•. If t•t' is 

not satisfied in some sequence, then A is satisfied by that sequence. · If 

t•t' is satisfied by the sequence, then P I--) P', and therefore A, is 

satisfied by that sequence. 

(6) If A was inferred by axiom (6) or (7) then it is of the form T•T.e or 

T•e.T. By definition of I[.), I[T.e) • I[T] • I[e.T] for any Tin any 

sequence • 
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(7) If A was inferred by axiom (8) the it is of the form T!R. 4--+ (S)( (L(T .S) 

~-) L(R.S)) & (-S•e --) (((Ed)V(T.S)•d f-_. (Ed)V(R.S)•d) & ((Ed)V(T.S)•d 

-• V(T.S)•V(R.S))))). If T!R is satisfied by a sequence then 

I[T.S] E DL if and only if ILR.S] ~ DL' and therefore (S)L(T.S) t-~ 

L(R..S) will be satisfied by the sequence. Further, for any S that is not 

the null trace, V(T.S) will be defined iff V(R..S) is and V(T.S) • V(R..S). 

Therefore, the right hand side of S will be satisfied. If TiT' is not 

satisfied by S then one of the above condition must fail making the right 

hand side not satisfied as well. Hence A is true. 

(8) If A was inferred by axiom (9) then it is of the form L(e). But for any 

model this is true since I[e] is contained in I(L]. 

(9) If A was inferred by axiom (10) then it is of the form L(T.S) -~ L(T). 

This is true on all models by the definition of I[.]. 

(10) If A was inferred by one of axioms (11)-(13) then its truth follows 

from the fact that V is defined on all and only legal traces that are in 

Dv and the fact that any trace expression ending in a function call is 

in Dv while neither the empty trace nor any trace expression ending in 

a non-functional procedure call is in Dv· 

(11) If A was inferred by axiom (14) then it is of the form -T•e --> 

where Ci is a call on the ith procedure of S with aij as the jth 

parameter of the call. Its truth can be seen by noting that if an 

element of DT is not the empty trace expression, then it must be equal 

to I[.](u,w) for some w f Rng(Rng(I/(v: vis a procedure}>> where u may be 

the empty trace. 

20 
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Corollary: A trace specification is syntactically consistent if it is 

semantically consistent. 

Proof: If a trace specification is not syntactically consistent, then it is 

easy to see that there must be some trace expression T such that (Ex)V(T)•x & 

-V(T)•V(T) is derivable from the specification. By the Soundness Theor .. , 

this assertion must be a semantic consequence of any aodel of the 

specification. But since the assertion is false in all .odels, the 

specification can have no ao4els. 

Corollary: A trace specification is sufficiently-complete in the synt'actic 

sense only if it is sufficiently-complete in the semantic sense. 

Proof: If a trace specification is not sufficiently-complete in the ••antic 

~ sense, then there is some finite strina of procedure calls T endina in a 

• 

• 

. 
function call and domain constants a and b such that a ~ b yet I[V](I[T)) • 

I(a] in one model and I(V](I[T]) • I(b] in another. By the definition of 

legality in ll], L(T) must be derivable, yet by the soundness theorem, there 

can be no domain constant d such that V(T)-d is derivable since I(d] would 

have to be equal to both Ila] and I(b] while I(a] ~ I(b]. 

It is an open question as to whether the system is complete, i. e. whether 

the converse of the theorem (and of the theorem's corollaries) holds. This 

point is further discussed below in the section on future research • 
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APPLICATIONS 

Application ~ Consistency Proofs 

By the first corollary of the previous section one can prove a 

specification consistent (in either sense of the term) by giving it a model. 

As an example it can easily be shown that the following stack module is 

consistent when supplemented by first order number theory. 

Stack Specification: 

a and b are assumed to be a type integer, while r and s are assumed to be of 

type name. 

Syntax: 

PUSH: (int) x (name) 

POP: (name) 

TOP: (name) --) ( int) 

DEPTH: (name) --) (int) 

int • the set of integers 

name • the set of finite character strings 
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Semantics: 

(1) L(T) --) L(T.PUSH(a,s)) 

(2) L(T.TOP(s)) f-) L(T.POP(s)) 

(3) T.DEPTH(s)\T · 

(4) T.PUSH(a,s).POP(s);T 

(5) -r•s -~ T.PUSH(a,s).PUSH(b,r)iT.PUSH(b,r).PUSH(a,s) 

(6) L(T.TOP(s)) --) T.TOP(s)!T 

(7) L(T) -~ V(T.PUSH(a,s).TOP(s))•a 

(8) L(T) --) V(T.PUSH(a,a).DEPTH(s))•V(T.DEPTH(s))+l. 

(9) (L(T) & -r-s) --) V(T.PUSH(a,s).DEPTH(r))•V(T.DEPTH(r)) 

(10) V(DEPTH(s))•O 

Stack Model: 

Note that only those aspects of the model that are invariant across sequences 

i of the model must be given in order to specify it uniquely. Let s be any naae 

variable or constant and i any integer variable or constant. D • int U name U 

DT where DT • {x: x is a possibly empty string of procedure calls 

without variables}. 

I[e] • the empty string 

I[t] • t if t is an integer, a name, or a procedure call involving no 

variables. If the call contains variables, l[t] is the call once each 

variable v has been replaced by I[v]. 

I[L] • (x: x is in DT and such that to the left of every POP(s) and 

t TOP(s) in x there are more PUSH(i.s)'s than POP(s)'sJ. 
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l[V] • a function f from those elements. of I[L] that end in TOP or DEPTH, to 

the integers such that for every x E Dom(f), f(x) • n if (1) x ends in 

DEPTH(s), and n is the number of PUSH(i,s)'s in x ainus the number of POP(s)'s 

in x, or (2) x ends in TOP{s) and, scanning x froa right to left, PUSH{n,s) is 

the first occurrence of a PUSH(i,s) in x that cannot be paired with a 

previous, unpaired POP(s). 

I[.] is the concatenation function 

I{i] • J<x,y): x,y € DT and x and y are identical except perhaps in the 

order of their procedure calls after both x and y have been subjected to the 

following procedure}: 

1. Remove all DEPTH's. 

2. Reaove every TOP that is such that the initial string of the trace up 

through it is an element of l[L]. 

3. Remove. the first and last call of all strings of the fora 

4. 

PUSH{i,s) ••• POP(s), where ... is any {possibly eapty) string of 

procedure calls that contains neither POP{s) nor PUSH(i,s) for any i. 

Repeat #3 as long as possible. 

Application to Completeness Proofs 

The second corollary to the soundness theorem can be employed to prove 

that a specification S is not sufficiently-complete (in both senses) if we 

give two models M1 and M2 for S and show that there is a value trace A 

and domain constant a such that V{A) • ~ is true in M1 and false in H2• 

As an example, I will prove the following keysort specifications, adapted froa 
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a similar one suggested by David Parnas, incomplete2: 

Keysort Specification: 

It is assumed that a, a', b, b', x, andy are of type integer. 

Syntax: 

INSERT: (int) x (int) 

REMOVE: 

FRONT: -~ (pair) 

int • the set of integers 

pair • (<x,y): x & int & y " int l 

S . 3 emant1cs : 

(1) L(T) --) L(T.INSERT(a,b).REMOVE) 

(2) L(T.FRONT) ~-) L(T.REMOVE) 

(3) L(T.FRONT) --) T.FRONT!T 

(4) V(T.INSERT(a,b).FRONT)•(a,b) -~ 

(T.INSERT(a,b).REMOVEiT v 

(V(T.FRONT)•(a,b) & 

T.INSERT(a,b).REMOVErT.REMOVE.INSERT(a,b))) 

(5) -V(T.tNSERT(a,b).FRONT)•(a,b) ~ 

T.INSERT(a,b).REMOVE!T.REMOVE.INSERT(a,b) 

(6) V(INSERT(a,b).FRONT)•(a,b) 
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(7) V(T.FRONT)•(a,b) ~ 

(V(T.INSERT(a',b').FRONT)•(x,y) --) 

((a(a 1 & x•a & y•b) v 

(a>a' & x•a' & y•b') v 

(a•a' & x•a & (y•b v y•b')))) 

Interpretation: 

M1 and M2 agree on the following: 

(1) D, DT' I[e], I(.] and I[t] where t is an integer ordered pair or 

procedure call are analogous to the model for the stack specification. 

(2) I{L] •/ x: x C DT and such that to the left of every REMOVE or FRONT 

in x there are more INSERT's than REMOVE's). 

The interpretation of and V depend on the following normalizing algorithm 

which takes as input strings of procedure calls: 

NORMAL( string): 

1. If string I DL• then abort. 

2. Remove each occurrence of FRONT from string. 

3. Label the ith INSERT from the left and the jth REMOVE from the left in 

string INSERTi and REMOVEj respectively. Call the key and the ordered 

pair associated with INSERTi, keyi and pairi respectively. 

4. For k•l to the number of REMOVE • s in string, eliminate the pair 

INSERT j REMOVEk such that the following conditions are met: 

(a) INSERT j is to the left of REMOVEk in string. 

(b) If INSERTi is to the left of REMOVEk' then keyi ~ keyj" 

(c) i )j =-> (a) or (b) fails for INSERTi. 
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(3) IlV] • a function f from those strings in I[L] that end in FRONT to 

ordered pairs of integers (a,b). f(T) • (a,b) iff when after the rightmost 

FRONT of T has been replaced by REMOVE, (a,b) • pairi where INSERTi is 

the last INSERT to be removed when the modified T is subjected to NORMAL. 

(4) I[!] • [<x,y): x,y 4 DT and when x and y are subjected to NORMAL, 

either NORMAL aborts for both of them or NORMAL(x) • NORHAL(y) after RORMAL(x) 

and NORMAL(y) have been sorted into ascending order such that 

INSERTi ( INSERTk if keyi ( keyj or if keyi • keyj & i<' jJ. 

For M2, the interpretation of ~and V are as above, but with step (4) of 

NORMAL changed as follows: 

4'. For k•l to the number of REMOVE's in string, eliminate the pair 

INSERTj REMOVEk such that the following conditions are met: 

(a) As before. 

(b) As before. 

(c) If there is an i less then j such that keyi • keyj' then 

there is an n less than j such that pairn • pairj and for all • 

less than n key• > keyj 

(d) i , j ·~ (a), (b), or (c) fail for INSERTi 

To see that the keysort specification is incomplete one must merely note 

that if we consider A • INSERT(l,S).INSERT(1,6).FRONT then V(A) • (1,6) in 

M1 and V(A) • (1,5) in M2• 
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COMPARISON ~ ~ ALGEBRAIC APPROACH 

The reader will notice two differences between the trace method for 

specifying software modules and the more algebraic approaches as epitomized, 

for example, by Guttag and Horning L3]. The first is that the so ... called "type 

of interest" or TO! is never mentioned in a trace specification. For example, 

within the stack specification, the word "stack" is never used. As such, the 

specification corresponds more closely to how the user actually sees a stack 

module, viz. a set of access procedures with certain properties, than the 

algebraic method which gives relations between the possible "values" stacks 

can assume. Treating stacks as values renders it necessary to provide error 

values for stacks to assume and to provide unnecessary functions in order to 

start, i. e., map an empty value space to an initial stack. Further, by 

obliterating the distinction between a function call and the value returned by 

that call, the algebraic approach renders it impossible to represent a 

sequence such as call1.ca11 2 except by treating call1 as a parameter 

of call2• Hence, procedures that affect the "inner state" of the module 

without returning a value (called 0-Functions in [1]) and procedures that do 

not take parameters cannot be represented in a natural manner by the algebraic 

approach.4 Finally, the absence of a TOI within the specification helps 

to insure a totally behavioristic specification of the module. The mere 

inclusion of the word "stack" within the specification is a step toward 
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suagenina imple~aentation since it sug~su that for each stack name there 

must be some object in the implementation, for example an array, that 

corresponds to that stack. ln certain enviroa.ents, however, it may be aore 

desirable to have only one data structure which stores names and values 

• toaether. 

The second difference between the two aetbods concerns the lanauagea 

involved. The trace aetbod makes free use of first order logic with identity 

while most algebraists prefer more testrictive languages. As such, the trace 

method allows for much more expressive power. An example is the use of the 

existential quantifier in axiom (11) to say that any legal trace expression 

ending in a function call must return some value without saying what that 

value is. This allows, e. g., for the specification of an integer generatina 

module whose only restriction is· that it returns a different integer each time 

• it is called. Such a module can be specified by the single syntax sentence 

GEN: --) (int) coupled with the two assertions L(T) and -S•e --> 

-V(R.S)•V(R). The reader should find it enlightenina to try to specify this 

same module algebraically since he will run into problems, not only in trying 

to capture the nondeterainism of the module, but also, as discussed above, in 

trying to represent sequences of function calls. Although the richness of the 

trace language implies that consistency and sufficient-completeness will be 

harder to establish with the trace method, nobody bas found a sufficiently 

rich language for which consistency and completeness are decidable. Further, 

the soundness proof given here is an important step toward coming up with a 

uniform method for establishing trace specifications consistent. The next 
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step is described as an area for future research. 

In spite of the differences between the two approaches, the generality of 

the term "algebraic" will allow for the developaent of algebraic models that 

are formally equivalent to the trace method.S The algebraic approach 

stimulated the developaent of the trace approach, and the two approaches are 

quite similar when compared to such alternatives as the "operational 

definition" and the "abstract model" approaches [6]. Time and energy should 

not be lost in a debate between the two approaches while practitioners await 

usable specification tools. 
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FUTURE RESEARCH 

Future research in the trace method can take various forms. First of all, 

the desirablity and feasability of extending the aodel so as to allow, e. g., 

more nondeterainism in specifications and stricter identity conditions between 

trace expressions should be explored. Second a completeness theorem that 

every consistent set of assertions has a model must be proven.6 This 

theorem will enable research to begin on a model theoretic approach to proving 

specifications sufficiently-complete and when coupled with the soundness 

theorem, will complete the bridge between the semantic concepts of consistency 

and sufficient-completeness and their syntactic counterparts, thus justifying 

both of them. Third, alternative methods for proving specifications 

consistent and sufficiently-complete should be studied, a project 1 am 

currently engaged in. Fourth, methods for proving the correctness of 

implementations and the correctness of programs using modules must be 

developed. Fifth, software support should be developed in order to check 

specifications for well-formedness, consistency, and sufficient-completeness, 

as well as to provide quick implementations of specifications. This will 

allow for the development of much more complex programs, especially where 

correct specifications are necessitated either by financial reasons or by 

security reasons. A pilot project to develop such software was undertaken at 

UNC. Finally, the notation should be extended to allow for more compact and 

readable specifications. 
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Questions of a more theoretical nature stem from· the inability to say 

certain things within first order logic. For example, it is impossible to 

force axiomatically every trace expression variable to denote only finite 

strings of procedure calls or when dealing with trace expression variables 

that do denote infinite strings of procedure calls, to restrict equality so 

that such expressions are equal only if they are identical. Since higher 

order logics are incomplete, this lack of expressive power must be endured. 

Nevertheless, issues concerning practical consequences of this fact should be 

explored. • 
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FOOTNOTES 

1. The notion of occurrence used here is the standard one as used, e. g., in 

[7] extended so as to regard trace expressions that occur within other trace 

expressions as occurring in any assertion that the latter occurs in. 

2. It should be noted that the incompleteness is deliberate in order not to 

specify what the module does if duplicate keys appear, beyond stating that 

such keys are allowed and precede all pairs with greater keys. 

3. Strictly speaking, assertions (4) - (7) of this specification are 

ill-formed since (a,b) is not a variable. Rigor can be maintained by treating 

the assertion V(T.FRONT)•(a,b) as an abbreviation for FIRST[V(T.FRONT)]•a & 

SEC[V(T.FRONT))•b where FIRSTL(x,y)]•x and SEC((x,y)]•y. 

4. On the other side of the coin, it should be noted that the trace method 

makes a sharper distinction between function calls and the values they return 

than do many programming languages. As such the trace method cannot represent 

calls that take as a parameter the return value of another call as naturally 

as the algebraic method. 

5. First order logic is, after all, a cylindric algebra. 
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6. It should be noted that I have recently proven a system that is slightly 

stronger than the one presented here complete. 
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