
On the Complexity of Vector Computations
in Binary Tree Machines

D. M. Tolle
W. E. S i dda 11

January 1981

TRB0-013

..

on the complexity of Vector computations in Binary Tree

llachines

D. II. Tolle

il. E. Siddall*

University of North carolina at Chapel Hill

Computational complexity, analysis ot algorithms, parallel

processing

This paper estaDlishes upper and lower bounds for the

time reguired to perform certain vector operations in a

binary tree macuine ot the lind introduced by !lag~[1].

{Tolle[2] proposes another such machine.) This paper also

cnaracterizes tue space-time tradeoffs available in such

machines for certain vector operations.

The machines considered here consist ot a complete binary

tree of "cells," eacb of alllicb consists of a processor and a

• w. E. Siddall's contribution to this work vas supported by
National Science Foundation grant IICS-7802778.

PAG.E 2

memory. Let two n-vectors X = small amount of

<x(1 J- ••• , xi n]> and y = <y(1], ... , y(n]> of atoaic

syabols ("atoms") be stored in t.he leaf cells of the tree,

in left-to-right order, with at aost one atoa per cell,

wit.h vector x lying entirely to t.he left of vector y.

atoms might be floating point numbers, for instance.)

is a small example:

and

(X .he

Here

Let a per a uta tion 11 be defined on the set 1, ••• , n.

consider th& proDlem of moving the elements of the two

vectors alony tne arcs ot the tree so that, for eac11 i, ll(i)

aeets YI g {i) J in some cell oi tbe tree. Tllis is a necessary

step in computing any element-by-eleaent combination ot x

and y, such as the inner product. Assume that each arc of

the tree is a two-way channel capable of moving one atom

(and an associated subscript) between its two cells in each

direction in one 11nit of time. lie call the prob.lem of

bringing x(i] toget.her vitil y{q(i) J for all i, 1 S i s n,

the n-vector aatching problem or the problem of bringing two

PAG.E 3

n-vectors toget~er. We are interested nere in the amount ot

time needed to solve this problem, for various permutations

g. we will see that the time required depends upon the

initial distribution of vector eleme~ts in the leaf cells of

the tree. One important aspect of the distribution is the

amount of space used by the two vectors: the number of leaf

cells oetween and including the leaf cells occupied by X(1]

and y[n). We assume that there is some means by which each

cell can determine, at each time step, which of its arriving

atoms soould next be sent on, and along which arcs they

soould te sent. Tnis assumption is easily satisfied for tne

most commonly encountered permutations, such as the identity

and the reversal permutations.

Notaj;ion. 'Ihe two vectors x and y have n elements each.

All the logarithms in this paper are Dase 2. Let ftn) and

~{n) be functions of some integer quantity n. Then we say

that t(nj is O(y{nj) if there is some positive constant c

and some integer nJ such that jf(n)j s c*Jg(n) j for all n ~

nO. lie say that f (n) is Ei (g (n)) if ti<ere are positive

constants c1 and c2 such that c1*g (~j s f (n) s c2*g(n) for

all sufficiently large values of n. Let h denote the height

of tne machine tree. Notice that it n is

8(numoer_of_leat_cells), then his 8(log(n)). ie say that a

cell ~~§ an element of a vector if the element initially

lies in the subtree of which that cell is the root.

UQ.Eosition Q.

o (nth) time.

PAGE 4

Any n-vector matcning can be done in

froo£: Let the elements of x move up to the root cell of

the tree and then he broadcast downward to all t4e leaf

cells of the tree. It takes h time steps for the first

element of x to reacn the root, another n-1 steps for the

last element of x to reacb the root, and another h steps for

tue last element of x to reach the leaf cells. (Notice that

if his O(n), whicD is usually a reasonable assumption, then

any .n-vector matcning can he done in O(n) time. Kehs(3, pp.

1~0-144) has shown that if additional arcs are inserted in

the tree, connecting eacu cell with its two horizontal

neignvors, then any n-vector matching can be done in sub

linear time.)

groposition 1· For the identity permutation, the n

vector matching problem requires at least 8(n) time.

f~£2!: consider the lowest cell, A, that sees at least

half of each vector. we show that at least half the pairs

(x(i],y(i)) are •split• by A, in the sense that at least one

element or the pair must travel through (or to}

to aeet its partner. To show that a pair is

A in order

split by a

cell, it suffices to show that one eleaent of the pair lies

in one subtree of the c£11 and the other element of the pair

lies either in the other subtree of the cell or outside the

PAGE 5

two subtrees of toe cell. we consider two cases:

case 1. Assume that x[n] lies ill A's left subtree. Then

A's left son must see at ~east aalf of x, and therefore

cannot see as mucn as halL of y (by the definitio~ of A).

!aus, the right halt (at least) of y lies to the right of

A's left subtree. we show that A splits each element of the

right half of y from its partner. The elements of y that

lie in A's riyat sulltree are certainly split from their

partners b~ A, since no element of x lies in A'~ right

subtree. The part of y that lies to the right of A's right
-.

subtree must constitute no more than half of y (else A could

not see at least uali of y). Thus, the partners of the

elements in that part of y all ~ie in A's left subtree;

tnus, the elements of that part of y are are also split by A

from their partners. Hence A StJlits each element of tile

right half of y from its partner.

Case 2. Assume that Jt[n] lies in A's right suJJtree.

Then y[1) lies in A's right subtree, and an argument

symmetrical to the one above shows that at least. half the

elements of x lie to the left of A's right subtree and are

split by A from t4eir partners in y.

Thus, ~ either case, at least n/2 elements must travel

to or tbrougi1 A in order for the vectors to be .brought

together. This tates at least n/2 time units, which is

PAGE 6

e (n).

f.kQROSition ~- Som£ n-vector watchings (inc~uding

reversal) can be done in e(sqrt(n)) tiae, using

6(4**sqrt(n)) space.

Assume for simplicity that n = a (mt1) and that

m = 2**k, for some integer k. 1hen 111 is e(sqrt(n)). lie

arrange each vector in a blocks. Let the blocks of x be

indexed from ri~ht to left and those of y be indexed from

left to rignt. for each vector, let the i-th block

(i = 11 ••• 1 m) contain 2i elements. Assume that the

permutation aatches up (in some order) tne elements of the

i-th nlock of y with the i-th block of x. {Notice that the

reversal permutation satisfies this assumption.) Let the

first block of x and the first block of y lie in adjacent

subtrees of heignt 1:

Blod< 1 of X BlocK 1 of y

PAGE 7

lnen these two blocks can be brought toqether at node A{1J,

in 3 units ot time.

For each of the remaining m-1 pairs of blocks, assume

tnat the arrangement is this:

~Cell A1
(1: 2, ... , 1"1'\J

.l. +h blod< T /'•
=

ofx~ .
1 First L- blod<s

'\4'> bloc.l<
of y

of)(4>1& y

It is clear that tne i-th block of y can be brought together

witb the i-t.n block of x at cell A(i], usin,1 paths in the

tree not used by earlier blocks, in time:

lime (i-th !llock) "' 2 i + height (A(i]) -1

= 2i + height (A(1)) t 2 (i-1) -1

= 4i - 1

Tbe maximum occurs for i = m, and thus the time taken for

the entire n-vector matching is:

Time(m-th ~lock) = 4m- 1 < 4•sqrt(n) -1

which is e(sgrt(n)).

The space used by the vectors is

4m t 2**(height (A{m-1 Jl)

= 4m t 2** (beigilt (A{ 1]) t 2 (m-2))

= 4m t 2**(2m - 2)

< 4*sqrt(n) t (4**sqrt(n))/4

wnich is e(4**sgrt(n)) •

PAGE 8

.f!Q.llOSition J.

s<,Jrt (n) time.

Every n-vector matching takes at least

f~.t:: Let LCA{ i] (Lowest Common Ancestor of i) denote

the (unique) cell of minimum height that sees both ~[i] and

its partner y[q(i) j. 7hen x[i] is in the left subtree and

1'L <i (i)] is in the rignt subtree of LCA{ i]. Notice that a

given cell in the machine may serve as·LCA{i] for more than

one value ot i. Let d denote the number of distinct cells

that serve as LCA{i] for one or more values of i. He twc of

these d cells can he at the same height, because two

distinct cells at the same heigDt have disjoint subtrees and

therefore cannot both see elements of both x and y. For any

cell c in the machine, let tLCA(c) denote the number of

PAGE 9

values of i for wbich c serves as LCAli]. Then d 2

~/ma~(ILCA(c)), wilere the aax is taken over all the cells of

the machine. suce either x(i) or J(q (i)] (or both) •ust

travel through (or to) LCA{i], it is clear that the time

required for the matching is at least max(tLCA(c)).

also apparent that the time re~uired is at least

max(heiyilt (L...:Ai_i])), taken over i = 1, ••• ,n.

It is

Now, assume that a given n-vector matching can be done in

time t(n). Then max(tLCA(c)) S t(n), sod 2 n/t(n). Since

all d of the cells serving as LCA[i]'s must be at different

heights, the hignest oz; tnem must Jlave height at least

n;t~n), so the time required by the matching is at least

n/t(n). ihat is, t(n) 2 n/t(n). Thus t(n)*t(n) 2 n, so

t (n) i! S<Jrt (n). (Notice tbat the space required .is at least

(1/4)*2**(D/t(n)).)

f.ropQsition !!.· If the vectors are constrained to lie

within c*n**P space, tor any constants c > 0 and p 2 1, tl:len

every n-vector matching takes at least e(n/log(n)) time.

As was noted in the proof of Proposition 3, the

space needed to perform an n-vector matching in time t(n) is

at least (1/4J*2**(n/t(n)). ~f the space is no more than

c*n**P• then 4*c*n**P 2 2**(n/t(n)). Taking logarithms of

both sides, we see that 2tlog(cJ+p*loq(n) ~ n/t(n), so that

t(nJ 2 n;(2tlog(c)tp*log(n)), which is 6(n/log(nJ).

PAGE 10

£!oposition 2· If the vectors are allowed to use n••p

space, for any constant p > 1, then there ace so11e

distriDutions of tne vector elements for which so11e n-vector

11atchin~s (including reversal) can be done in e{n/log(n))

time.

~!i!£~ of Proof: Given p > 1, choose K = 2/(p-1). As in

the proof of Proposition 2, break the ~ and y vectors into

&locks of element~, but let each blocK be of size

approximately s = ~n;lo~(n). Then each vector has roughly

n/&kn;log(n)) = lo~(n)/k blocks. Arrange the blocks as in

the froof or Proposition 2. l.etting m denote the n1111Der of

illocil;s, li€ see that tile time reg11ired is:

s t height(A[m)) - 1, which is ro11ghly

kn;log(L) t 2&log{n)/k- 1) + log(kn/log(n))

= kn;log(n) t (1t2/k)log(n) t log(k) - 2- log(log(n)),

which is 8(kn/log(n)) = 8(2n/Hp-1)1og{nJ)) = 8{n/lOg(n)).

The amo11nt of space used is oo11nded aDove by

2**heig.llt(ALm]) 1 ' which, for sufficiently large n, is no more

than 2**({1+2/k)lo~(n)), which is n**P•

(A rigorous proof, using the ceiling function, is

straig.lltforward but tedious)

PAG.E 11

If the vectors are constrained to lie

within c•n space, for some constant c ~ 2, then every n

vectcr matchin~ reyuires at least e(n) time.

f!QQf: Let B£1] denote the lowest cell that sees both

ll,[nj and n 1]; x(n] must be ill its lett subtree, y{1.] in its

£~gat. Consider the seyuence li{1j, Bi2], •••• of ~isA!

anc~§!Q~ cells of B(1]: those ancestors of B(1] that have

BL 1 J in their left subtree. suppose that B(It J is tile lo11est

ri~ht ancestor cell of ll{ 1] that sees all of y. (It may be

1.)

Every element of y lies in the right subtree ot exactly

one h{i J- Since no element of x lies in the right subtree

of any R(i), any element of y that lies in the right subtree

of HLiJ is split ny B[i] from its partner in x. l.et C

denote ceiling(lo~(c)). If Its 2tC, then some B[i] aust

split at least D/(2fC) elements of y from their partners in

x.

It ~ > 2tc, consider the penultimate 1tC of the Eli]:

Bi k-C-1 J, ll(i.-e J, ••• , Bi k-1]. Each of these sees at least

twice as many of the cells between y(1] and y[n] (inclusive)

as its predecessor does. Thus, · B{~-1] sees at least

s•2**(Ct1) of these cells, 11here s is the nuaber of them

seen J:Jy B[.k-C-2]. Since y uses no aore than c•n cells, ve

have:

PAGE 12

and thus s s n;2. This implies that tbe number of e~eaents

of y seen by the fiLst k-C-2 cells of t~e right-ancestor

sequence is no more than n;2, and thus that the numheL of

elements of y seen by ~e last Ct2 cells in their rigbt

subtrees is at least n;2. ihus, some R{i) splits at least

n/(2*'Ct2)) pairs of elements. ~ence, the time required to

do the matching is at least e(n).

Summary

For the class of binary tree machines considered here,

tvo disjoint n-vectors, stoLed vith at most one vector

element per cell in the leaf cells of tne tree, can be

brouynt together (matched) element by element, according to

any permutation, in O(nth) time, where h is the height of

the tree. If tne space occupied by the two vectors

(including any interspersed empty leaf cells) is only

linear, then at least linear time is required to bring them

together, regardless of the permutation. If the vectors

occupy polynomial spacE, then at least etn/log(n)) time is

required. Some matchings (such as reversal) can be done in

e(n;log(n)J time if t•e ~ectors are allowed to occupy n••p

space, for any p > 1.

be done in 8(syrt(n))

Some matcaings (such as ~versal) can

time if the vectors are allowed to

occupy 8(4**sqrt(n)) space. HoMever, no matching can be

PAGE 13

done in less than s~rt(n) time, and some aatcnings (such as

identity) always require at least linear time, regardless of

the amount of space ·used ty the vectors.

Ackno11ledyeaents

lhanks to Hollins Williams,

akin to Proposition 1. Thanks

11ho conjectured something

also to Don stanat, for

asking whether all n-vector matchings require 6(n) time in

these macuines, and for helpful suggestions concerning the

paper. Special thanks to Gyula Mag6, for inventing tee

machine that makes these questions interesting. l' urt.her

thanks to all tne above and to Anne Presnell, Boy Paryas,

l.ee liackman, and Vicki Ba.ker for taeir comments on this

paper.

Beferences

1. Mag6, Gyula A. "A net11ork of microprocessors to execute

reduction languages." T11o parts. Internationa,l ,Journal

~ Coaputei and lntoraa,tion ~iences 8, 5 (October 1979)

and 8, 6 (December 1979).

PAGE 14

2. Tolle, D- ft. "Coordination of computation in a binary

tree of processors: a machine design.• Ph.D.

dissertation, Department ot Computer Science, University

of North Carolina at Chapel Hill. Ln preparation.

3. Kens, David B. "A routing network for a machine to

execute reduction lanyuages." Pb.D. dissertation,

tepartaent of Computer science, University ot North

carolina at Chapel Hill, 1978.

