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This paper estaDlishes upper and lower bounds for the 

time reguired to perform certain vector operations in a 

binary tree macuine ot the lind introduced by !lag~[ 1]. 

{Tolle[ 2] proposes another such machine.) This paper also 

cnaracterizes tue space-time tradeoffs available in such 

machines for certain vector operations. 

The machines considered here consist ot a complete binary 

tree of "cells," eacb of alllicb consists of a processor and a 
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memory. Let two n-vectors X = small amount of 

<x( 1 J- ••• , xi n ]> and y = <y( 1 ], ... , y(n ]> of atoaic 

syabols ("atoms") be stored in t.he leaf cells of the tree, 

in left-to-right order, with at aost one atoa per cell, 

wit.h vector x lying entirely to t.he left of vector y. 

atoms might be floating point numbers, for instance.) 

is a small example: 

and 

(X .he 

Here 

Let a per a uta tion 11 be defined on the set 1, ••• , n. 

consider th& proDlem of moving the elements of the two 

vectors alony tne arcs ot the tree so that, for eac11 i, ll( i) 

aeets YI g {i) J in some cell oi tbe tree. Tllis is a necessary 

step in computing any element-by-eleaent combination ot x 

and y, such as the inner product. Assume that each arc of 

the tree is a two-way channel capable of moving one atom 

(and an associated subscript) between its two cells in each 

direction in one 11nit of time. lie call the prob.lem of 

bringing x(i] toget.her vitil y{q(i) J for all i, 1 S i s n, 

the n-vector aatching problem or the problem of bringing two 
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n-vectors toget~er. We are interested nere in the amount ot 

time needed to solve this problem, for various permutations 

g. we will see that the time required depends upon the 

initial distribution of vector eleme~ts in the leaf cells of 

the tree. One important aspect of the distribution is the 

amount of space used by the two vectors: the number of leaf 

cells oetween and including the leaf cells occupied by X( 1] 

and y[n ). We assume that there is some means by which each 

cell can determine, at each time step, which of its arriving 

atoms soould next be sent on, and along which arcs they 

soould te sent. Tnis assumption is easily satisfied for tne 

most commonly encountered permutations, such as the identity 

and the reversal permutations. 

Notaj;ion. 'Ihe two vectors x and y have n elements each. 

All the logarithms in this paper are Dase 2. Let ftn) and 

~{n) be functions of some integer quantity n. Then we say 

that t(nj is O(y{nj) if there is some positive constant c 

and some integer nJ such that jf(n)j s c*Jg(n) j for all n ~ 

nO. lie say that f (n) is Ei (g (n)) if ti<ere are positive 

constants c1 and c2 such that c1*g (~j s f (n) s c2*g(n) for 

all sufficiently large values of n. Let h denote the height 

of tne machine tree. Notice that it n is 

8(numoer_of_leat_cells), then his 8(log(n)). ie say that a 

cell ~~§ an element of a vector if the element initially 

lies in the subtree of which that cell is the root. 
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o (nth) time. 
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Any n-vector matcning can be done in 

froo£: Let the elements of x move up to the root cell of 

the tree and then he broadcast downward to all t4e leaf 

cells of the tree. It takes h time steps for the first 

element of x to reacn the root, another n-1 steps for the 

last element of x to reacb the root, and another h steps for 

tue last element of x to reach the leaf cells. (Notice that 

if his O(n), whicD is usually a reasonable assumption, then 

any .n-vector matcning can he done in O(n) time. Kehs(3, pp. 

1~0-144) has shown that if additional arcs are inserted in 

the tree, connecting eacu cell with its two horizontal 

neignvors, then any n-vector matching can be done in sub

linear time.) 

groposition 1· For the identity permutation, the n

vector matching problem requires at least 8(n) time. 

f~£2!: consider the lowest cell, A, that sees at least 

half of each vector. we show that at least half the pairs 

(x(i],y(i)) are •split• by A, in the sense that at least one 

element or the pair must travel through (or to} 

to aeet its partner. To show that a pair is 

A in order 

split by a 

cell, it suffices to show that one eleaent of the pair lies 

in one subtree of the c£11 and the other element of the pair 

lies either in the other subtree of the cell or outside the 
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two subtrees of toe cell. we consider two cases: 

case 1. Assume that x[n] lies ill A's left subtree. Then 

A's left son must see at ~east aalf of x, and therefore 

cannot see as mucn as halL of y (by the definitio~ of A). 

!aus, the right halt (at least) of y lies to the right of 

A's left subtree. we show that A splits each element of the 

right half of y from its partner. The elements of y that 

lie in A's riyat sulltree are certainly split from their 

partners b~ A, since no element of x lies in A'~ right 

subtree. The part of y that lies to the right of A's right 
-. 

subtree must constitute no more than half of y (else A could 

not see at least uali of y). Thus, the partners of the 

elements in that part of y all ~ie in A's left subtree; 

tnus, the elements of that part of y are are also split by A 

from their partners. Hence A StJlits each element of tile 

right half of y from its partner. 

Case 2. Assume that Jt[n] lies in A's right suJJtree. 

Then y[ 1) lies in A's right subtree, and an argument 

symmetrical to the one above shows that at least. half the 

elements of x lie to the left of A's right subtree and are 

split by A from t4eir partners in y. 

Thus, ~ either case, at least n/2 elements must travel 

to or tbrougi1 A in order for the vectors to be .brought 

together. This tates at least n/2 time units, which is 
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e (n). 

f.kQROSition ~- Som£ n-vector watchings (inc~uding 

reversal) can be done in e(sqrt(n)) tiae, using 

6(4**sqrt(n)) space. 

Assume for simplicity that n = a (mt1) and that 

m = 2**k, for some integer k. 1hen 111 is e(sqrt(n)). lie 

arrange each vector in a blocks. Let the blocks of x be 

indexed from ri~ht to left and those of y be indexed from 

left to rignt. for each vector, let the i-th block 

(i = 11 ••• 1 m) contain 2i elements. Assume that the 

permutation aatches up (in some order) tne elements of the 

i-th nlock of y with the i-th block of x. {Notice that the 

reversal permutation satisfies this assumption.) Let the 

first block of x and the first block of y lie in adjacent 

subtrees of heignt 1: 

Blod< 1 of X BlocK 1 of y 
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lnen these two blocks can be brought toqether at node A{1J, 

in 3 units ot time. 

For each of the remaining m-1 pairs of blocks, assume 

tnat the arrangement is this: 

~Cell A1 
(1: 2, ... , 1"1'\J 

.l. +h blod< T /'• 
= 

ofx~ .
1 First L- blod<s 

'\4'> bloc.l< 
of y 

of )( 4>1& y 

It is clear that tne i-th block of y can be brought together 

witb the i-t.n block of x at cell A(i], usin,1 paths in the 

tree not used by earlier blocks, in time: 

lime (i-th !llock) "' 2 i + height (A( i ]) -1 

= 2i + height (A( 1 )) t 2 (i-1) -1 

= 4i - 1 

Tbe maximum occurs for i = m, and thus the time taken for 

the entire n-vector matching is: 



Time(m-th ~lock) = 4m- 1 < 4•sqrt(n) -1 

which is e(sgrt(n)). 

The space used by the vectors is 

4m t 2**(height (A{m-1 Jl) 

= 4m t 2** (beigilt (A{ 1 ]) t 2 (m-2)) 

= 4m t 2**(2m - 2) 

< 4*sqrt(n) t (4**sqrt(n))/4 

wnich is e(4**sgrt(n)) • 
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.f!Q.llOSition J. 

s<,Jrt (n) time. 

Every n-vector matching takes at least 

f~.t:: Let LCA{ i] (Lowest Common Ancestor of i) denote 

the (unique) cell of minimum height that sees both ~[i] and 

its partner y[q(i) j. 7hen x[i] is in the left subtree and 

1'L <i (i) ] is in the rignt subtree of LCA{ i ]. Notice that a 

given cell in the machine may serve as·LCA{i] for more than 

one value ot i. Let d denote the number of distinct cells 

that serve as LCA{i] for one or more values of i. He twc of 

these d cells can he at the same height, because two 

distinct cells at the same heigDt have disjoint subtrees and 

therefore cannot both see elements of both x and y. For any 

cell c in the machine, let tLCA(c) denote the number of 



PAGE 9 

values of i for wbich c serves as LCAli]. Then d 2 

~/ma~(ILCA(c)), wilere the aax is taken over all the cells of 

the machine. suce either x( i) or J( q (i) ] (or both) •ust 

travel through (or to) LCA{i], it is clear that the time 

required for the matching is at least max(tLCA(c)). 

also apparent that the time re~uired is at least 

max(heiyilt (L...:Ai_i])), taken over i = 1, ••• ,n. 

It is 

Now, assume that a given n-vector matching can be done in 

time t(n). Then max(tLCA(c)) S t(n), sod 2 n/t(n). Since 

all d of the cells serving as LCA[i]'s must be at different 

heights, the hignest oz; tnem must Jlave height at least 

n;t~n), so the time required by the matching is at least 

n/t(n). ihat is, t(n) 2 n/t(n). Thus t(n)*t(n) 2 n, so 

t (n) i! S<Jrt (n). (Notice tbat the space required .is at least 

(1/4)*2**(D/t(n)).) 

f.ropQsition !!.· If the vectors are constrained to lie 

within c*n**P space, tor any constants c > 0 and p 2 1, tl:len 

every n-vector matching takes at least e(n/log(n)) time. 

As was noted in the proof of Proposition 3, the 

space needed to perform an n-vector matching in time t(n) is 

at least (1/4J*2**(n/t(n)). ~f the space is no more than 

c*n**P• then 4*c*n**P 2 2**(n/t(n)). Taking logarithms of 

both sides, we see that 2tlog(cJ+p*loq(n) ~ n/t(n), so that 

t(nJ 2 n;(2tlog(c)tp*log(n)), which is 6(n/log(nJ). 
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£!oposition 2· If the vectors are allowed to use n••p 

space, for any constant p > 1, then there ace so11e 

distriDutions of tne vector elements for which so11e n-vector 

11atchin~s (including reversal) can be done in e{n/log(n)) 

time. 

~!i!£~ of Proof: Given p > 1, choose K = 2/(p-1). As in 

the proof of Proposition 2, break the ~ and y vectors into 

&locks of element~, but let each blocK be of size 

approximately s = ~n;lo~(n). Then each vector has roughly 

n/&kn;log(n)) = lo~(n)/k blocks. Arrange the blocks as in 

the froof or Proposition 2. l.etting m denote the n1111Der of 

illocil;s, li€ see that tile time reg11ired is: 

s t height(A[m)) - 1, which is ro11ghly 

kn;log(L) t 2&log{n)/k- 1) + log(kn/log(n)) 

= kn;log(n) t (1t2/k)log(n) t log(k) - 2- log(log(n)), 

which is 8(kn/log(n)) = 8(2n/Hp-1)1og{nJ)) = 8{n/lOg(n)). 

The amo11nt of space used is oo11nded aDove by 

2**heig.llt(ALm ]) 1 ' which, for sufficiently large n, is no more 

than 2**({1+2/k)lo~(n)), which is n**P• 

(A rigorous proof, using the ceiling function, is 

straig.lltforward but tedious) 
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If the vectors are constrained to lie 

within c•n space, for some constant c ~ 2, then every n

vectcr matchin~ reyuires at least e(n) time. 

f!QQf: Let B£1] denote the lowest cell that sees both 

ll,[nj and n 1]; x(n] must be ill its lett subtree, y{1.] in its 

£~gat. Consider the seyuence li{1j, Bi2], •••• of ~isA! 

anc~§!Q~ cells of B(1]: those ancestors of B(1] that have 

BL 1 J in their left subtree. suppose that B( It J is tile lo11est 

ri~ht ancestor cell of ll{ 1] that sees all of y. (It may be 

1.) 

Every element of y lies in the right subtree ot exactly 

one h{i J- Since no element of x lies in the right subtree 

of any R(i), any element of y that lies in the right subtree 

of HLiJ is split ny B[i] from its partner in x. l.et C 

denote ceiling(lo~(c)). If Its 2tC, then some B[i] aust 

split at least D/(2fC) elements of y from their partners in 

x. 

It ~ > 2tc, consider the penultimate 1tC of the Eli]: 

Bi k-C-1 J, ll( i.-e J, ••• , Bi k-1 ]. Each of these sees at least 

twice as many of the cells between y(1] and y[n] (inclusive) 

as its predecessor does. Thus, · B{~-1] sees at least 

s•2**(Ct1) of these cells, 11here s is the nuaber of them 

seen J:Jy B[.k-C-2]. Since y uses no aore than c•n cells, ve 

have: 
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and thus s s n;2. This implies that tbe number of e~eaents 

of y seen by the fiLst k-C-2 cells of t~e right-ancestor 

sequence is no more than n;2, and thus that the numheL of 

elements of y seen by ~e last Ct2 cells in their rigbt 

subtrees is at least n;2. ihus, some R{i) splits at least 

n/(2*'Ct2)) pairs of elements. ~ence, the time required to 

do the matching is at least e(n). 

Summary 

For the class of binary tree machines considered here, 

tvo disjoint n-vectors, stoLed vith at most one vector 

element per cell in the leaf cells of tne tree, can be 

brouynt together (matched) element by element, according to 

any permutation, in O(nth) time, where h is the height of 

the tree. If tne space occupied by the two vectors 

(including any interspersed empty leaf cells) is only 

linear, then at least linear time is required to bring them 

together, regardless of the permutation. If the vectors 

occupy polynomial spacE, then at least etn/log(n)) time is 

required. Some matchings (such as reversal) can be done in 

e(n;log(n)J time if t•e ~ectors are allowed to occupy n••p 

space, for any p > 1. 

be done in 8(syrt(n)) 

Some matcaings (such as ~versal) can 

time if the vectors are allowed to 

occupy 8(4**sqrt(n)) space. HoMever, no matching can be 
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done in less than s~rt(n) time, and some aatcnings (such as 

identity) always require at least linear time, regardless of 

the amount of space ·used ty the vectors. 

Ackno11ledyeaents 

lhanks to Hollins Williams, 

akin to Proposition 1. Thanks 

11ho conjectured something 

also to Don stanat, for 

asking whether all n-vector matchings require 6(n) time in 

these macuines, and for helpful suggestions concerning the 

paper. Special thanks to Gyula Mag6, for inventing tee 

machine that makes these questions interesting. l' urt.her 

thanks to all tne above and to Anne Presnell, Boy Paryas, 

l.ee liackman, and Vicki Ba.ker for taeir comments on this 

paper. 

Beferences 

1. Mag6, Gyula A. "A net11ork of microprocessors to execute 

reduction languages." T11o parts. Internationa,l ,Journal 

~ Coaputei and lntoraa,tion ~iences 8, 5 (October 1979) 

and 8, 6 (December 1979). 



PAGE 14 

2. Tolle, D- ft. "Coordination of computation in a binary 

tree of processors: a machine design.• Ph.D. 

dissertation, Department ot Computer Science, University 

of North Carolina at Chapel Hill. Ln preparation. 

3. Kens, David B. "A routing network for a machine to 

execute reduction lanyuages." Pb.D. dissertation, 

tepartaent of Computer science, University ot North 

carolina at Chapel Hill, 1978. 




