On the Complexity of Vector Computations in Binary Tree Machines

D. M. Tolle

W. E. Siddall

On the Complexity of Vector Computations in Binary Tree Machines
D. M. Tolle
W. E. Siddall*

University of North Carolina at Chapel Hill

Abstract

Computational complexity, analysis of algorithms, parallel processing

This paper estadishes upper and lower bounds for the time reguired to perform certain vector operations in a binary tree mactine of the kind introduced by Magb[1](Tolle[2] proposes another such machine.) This paper also cnaracterizes tae space-time tradeoffs available in such machines for certain vector operations.

The machines considered here consist of a conplete binary tree of "cells," each of which consists of a processor and a

[^0]small amount of memory. Let two n-vectors $x=$ $\langle x[1], \ldots . x[n]\rangle$ and $y=\langle y[1], \ldots \ldots, y[n]\rangle$ of atonic symbols ("atoms") be stored in the leaf cells of the tree, in left-to-right order, with at most one atom per cell, and with vector x lying entirely to the left of vector y - (The atoms might be floating point numbers, for instance.) Here is a small example:

Let a permutation be defined on the set $1, \ldots$. n. $_{\text {. }}$ Consider the problel of moving the elements of the two vectors along the arcs of the tree so that, for eacn i, xij] meets $y[q(i)]$ in some cell of the tree. This is a necessary step in computing any elefient-by-eleaent combination of x and y, such as the inner product. Assume that each arc of the tree is a twoway channel capable of moving one atom (and an associated subscript) betweef its two cells in each direction in one unit of time. We call the problem of bringing $x[i]$ together with $y[q(i)]$ for all $i, 1 \leq i \leq n$, the $n-v e c t o r$ matching problem or the problem of bringing two
n－vectors together．$H \in$ are interested bere in the amount of time needed to solve this problem，for varions perautations g．We vill see that the tine required depends upon the initial distribution of vector elements in the leaf cells of the tree．One important aspect of the distribution is the arount of space used by the two vectors：the number of leaf cells between and including the leaf cells occupied by x 1］ and $y[n]$ we assume that there is some means by which each cell can determine，at each time step，which of its arriving atoms should next be sent on，and along which arcs they should te sent．This assumption is easily satisfied for the most commonly encountered permatations，such as the identity and the reversal per⿴囗十⿴囗十力

Motation．The tyo vectors x and y have nelements each． 011 the logarithms in this paper are vase 2．Let $f(n)$ and $y(5)$ be functions of some integer quantity n ．Then ae say that $I(n)$ is $O(Y(n))$ if there is some positive constant c and some integer no such that $\| f(a)|\leq c *| g(n) \mid$ for all $n \geq$ no．He say that $\bar{I}(\mathrm{D})$ is $\theta(\mathrm{g}(\mathrm{n}))$ if there are positive constants ci and c2 such that $c 1 * g(n) \leq f(n) \leq c 2 * g(n)$ for all sufficiently large values of n ．Let h denote the height of the nachine tree．Notice that it n is θ（number＿of＿leat＿cells），then h is $\theta(\log (n))$ ．Ee say that a cell sees an element of a vector if the element initially lies in the subtree of shich that cell is the root．
profosition Q^{-}any n-vector matching can be done in $O(n+h)$ time.

Proof: Let the elements of x move up to the root cell of the tree and then be broadcast downvard to all the leaf cells of the tree. It takes h time steps for the first element of x to reach the root, another $n-1$ steps for the last element of x to reach the root, and another h steps for the last element of x to reach the leaf cells. (Notice that if h is $C(n)$, thicn is usually a reasonable assumption, then any $n-v \in c t o r$ matching can be done in $O(n)$ time. Kehs[3, pp-140-144 J has shour that if additional arcs are inserted in the tree, connecting eaca cell with its two horizontal neignoors, then any n-vector matching cal be done in sublinear time.)

Proposition 1. For the identity permutation, the n vector matching probler requires at least $\theta(\mathrm{D})$ time.

Progi: Consider the lowest cell, A, that sees at least half of each vector. We show that at least half the pairs (x[i],y[i]) are "split" by A, in the sense that at least one element of the pair must trayel through (or to) a in order to meet its partner. To show that a pair is split by a cell, it suffices to show that one eleant of the pair lies in one subtree of the cell and the other eleaent of the pair lies either in the other subtree of the cell or outside the
two subtrees of tae cell. He consider two cases:

Case 1. assume that $x[n]$ lies in A's left subtree. Then A's left son ust see at least half of x, and therefore cannot see as much as half of y (by the definition of A). Taus, the right half (at least) of y lies to the right of A's left subtree. We show that a splits each element of the right balf of y from its partner. The elements of y that Lie in a's riyat subtree are certainly split from their partners by a, since no element of x lies in a's right subtree. The part of y that lies to the right of a's right subtree must constitute no sore than half of y (else a could not sef at least ualf of y). Thus, the partners of the elements in that part of y all lie in A's left subtree; tnus, the elements of that part of y are are also split by a from their partners. Hence a splits each elenent of the right half of y from its partner.

Case 2. Assume that $x[n]$ lies in A's right suotree. Then y[1] lies in A's right subtree, and an argument symmetrical to the one above shows that at least half the elements of x lie to the left of $A^{\prime} s$ right subtree and are split by A from their partmers in y -

Thus, in either case, at least $n / 2$ elements must travel to or through in order for the vectors to be brought together. This takes at least n/2 time units, which is

Proposition 2．Some n－vector matchings（including reversal）can be done in $\theta(s q I t(n))$ time，using日（4＊＊sgrt（n））space．

Proof：Assume for simplicity that $n=m(n+1)$ and that四 $=2 * * k$ ，for some integer k ．Then is $\theta(s q r t(n))$ ．He arrange each vector in blocks．Let the blocks of x be indexed from right to left and those of y be indexed from left to right．For each vector，let the i－th block （i＝1，．．．．．四）contain $2 i$ elements．ASSume that the permutation matches up（in some order）the elements of the i－th block of y with the i－th block of x ．Notice that the reversal permutation satisfies this assumption．）Let the first block of x and the first block of y lie in adjacent suitrees of heigat 1：

Tnen these two blocks can be brought together at node $A[1]$. in 3 units of time.

For each of the reaaining m-1 pairs of blocks, assume that the arrangement is this:

It is clear that tae i-th block of y can be brought together witn the i-th block of x at cell a[i]. usiny paths in the tree not used by earlier blocks, in time:

$$
\begin{aligned}
\text { Time }(i-t h \text { block }) & =2 i+\text { height }(\mathbb{A}[i])-1 \\
& =2 i+\text { beight }(\mathbb{A}[1])+2(i-1)-1 \\
& =4 i-1
\end{aligned}
$$

The maximp occurs for $i=n$, and thus the time taken for the entice n-vector matching is:

Time(m-th $\operatorname{Llock})=4 \mathrm{~m}-1<4 * \operatorname{sgrt}(\mathrm{n})-1$
vhich is $\theta(s q r t(n))$.

The space used by the yectors is

$$
\begin{aligned}
& 4 \mathrm{~m}+2 * *(\text { height }(A[B-1])) \\
= & 4 \text { 田 }+2 * *(\text { meight }(A[1])+2(m-2)) \\
= & 4 m+2 * *(2 a-2) \\
\leqslant & 4 * \operatorname{sgrt}(n)+(4 * * \operatorname{sgrt}(n)) / 4
\end{aligned}
$$

shich is $\theta(4 * * \operatorname{sgrt}(n))$.

Proposition 3- Every n-vector matching takes at least syIt (i) time。

르응: Let LCA[i] (Lowest Common ancestor of i) denote the (unique) cell of minimum height that sees both $x[i]$ and its partner $y[q(i)]$. Then $x[i]$ is in the left subtree and Yi. (i) is in the right subtree of LCA[i]. Notice that a given cell in the machine may serve as LCALi]for more than one value of i. Let d denote the number of distinct cells that serve as LCA[i] for one or more values of i. No tyo of thesed cells can be at the same height, because two distinct cells at the same heignt have disjoint subtrees and therefore cannot both see elements of both x and Y - For any

Abstract

values of i for wich c serves as LCALil. Then $d \geq$ n/max (\#ICA(c)), where the max is taken over all the cells of the machine. Since either $x[i]$ or $Y[q(i)]$ (or both) ast travel through (or to) LCA[i], it is clear that tie time required for the matching is at least max(\#CA(c)). It is also apparent that the time reguired is at least max(height(Lca[i])), taken over $i=1, \ldots . . n_{0}$

Now, assume that a given n-vector matching can be done in
 all d of the cells serving as LCA[i]'s must be at different heights, the hignest of them must have height at least $n / t(n)$. so the time required by the matching is at least $n / t(n)$. That is, $t(n) \geq n / t(n)$. Thus $t(n) * t(n) \geq n$, so $t(n) \geq \operatorname{sqr} t(n)$. (Notice that the space required is at least $(1 / 4) * 2 * *(n / t(n))-1$

Proposition 4. If the vectors are constrained to lie yithin $c * n * * p$ space, for any constants $c>0$ and $p \geq 1$, taen every n-vector matching takes at least $\theta(n / \log (n))$ time.

Progf: As was noted in the proof of proposition 3, the space needed to perform an n-vector matching in time $t(n)$ is at least $(1 / 4) * 2 * *(n / t(n))$. If the space is no more than $c * n * * p$, then $4 * c * n * * p \geq 2 * *(n / t(n))$. Taking logarithns of both sides, ve see that $2+\log (C)+p * \log (n) \geq n / t(n)$. so that $t(n) \geq n /\left(2+\log (c)+p^{*} \log (n)\right)$. which is $\theta(n / \log (n))$.

Proposition 5. If the yectors are allowed to use n**p space, for any constant $p>1$. then there are some distriputions of the vector elements for which some n-vector matchings (including reversal) cau be done in $\theta(n / \log (n)$) time.

Sketch of proof: Given $p>1$, choose $k=2 /(p-1)$. As in the froof of proposition 2, break the x and y vectors into clocks of elements, but let each block be of size approximately $s=k n / l o y(n)$. Then each vector has roughly $n /(k n / \log (n))=\log (n) / k$ blocks. arrange the blocks as in the froof of proposition 2. Letting m denote the numder of blocks, we see that the time required is:

```
s + beignt(A[m]) - 1, which is roughly
    kn/log(i) + 2(log(n)/k - 1) + log(kn/log(n))
    =kn/log(n)+(1+2/k)\operatorname{log}(n)+\operatorname{log}(k)-2-\operatorname{log}(\operatorname{log}(n)).
```

wich is $\theta(\operatorname{kn} / \log (n))=\theta(2 n /((p-1) \log (n)))=\theta(n / \log (n))$. The amount of space used is bounded above by 2**height(A[田]: which, for sufficiently large $n_{\text {a }}$ is no more than $2 * *((1+2 / k) \log (n))$, which is $n * * p$.
(A rigorous proof, using the ceiling function, is straightforward but tedious)

Rroposition 6. If the vectors are constrained to lie within c*n space, for sowe constant $c \geq 2$, then every $n-$ vector matching requires at least $\theta(n)$ time.
prgof: let $R[1]$ denote the lowest cell that sees both $x[n]$ and $y(1] ; x[n]$ must be in its left subtree, $y[1]$ in its rigat. Consider the sequence b[1], $\mathrm{B}[2]$, of right ancestor cells of $B[1]:$ those ancestors of $R[1]$ that have E[1] in their left subtree. Suppose that R[k] is the lowest right ancestor cell of $R[1]$ that sees all of y. (k may be 1.)

Every element of y lies in the right subtree of exactly one $k[i]$ Since no element of x lies in the right subtree of any Riij, any element of y that lies in the right subtree of $\mathrm{B}[\mathrm{i}]$ is split $\mathrm{D} y \mathrm{~B}[\mathrm{i}]$ from its partner in x . Let C denote ceiling(loy(c)). If $k \leq 2+C$, then sone $B[i]$ must split at least $u /(2+C)$ elements of y from their partners in \mathbf{x}.

If $k>2+C$, consider the penultimate $1+C$ of the $R[i]:$ $B[k-C-1], R[k-C], \ldots, E[k-1]$. Each of these sees at least twice as many of the cells between $y[1]$ and $y[n]$ (inclusive) as its predecessor does. Thus. $B[k-1]$ sees at least s*2**(C+1) of these cells, shere s is the nuaber of ther seen by $\mathrm{b}[\mathrm{k}-\mathrm{C}-2]$. Since y uses no more than c . n cells, ve have:

```
2*c*s \leq s*2**(C+1) \leqc*a,
```

and thus $s \leq n / 2$. This inplies that the number of elements of y seen by the first $k-C-2$ cells of the right-ancestor seguence is no more than $n / 2$. and thus that the number of elements of y seen by tne last $C+2$ cells in their right subtrees is at least $n / 2$ Inus, some $R[i]$ splits at least n/(2* (C+2)) pairs of elements. Hence the time reguired to do the matching is at least $\theta(n)$.

Surmary

For the class of binary tree machines considered here, two disjoint n-vectors, stored vith at most one vector element per cell in the leaf cells of the tree, can be brougat together (matched) element by element, according to any yermutation, in $O(n+h)$ time, where h is the height of the tree. If tae space occupied by the tyo vectors (including any interspersed empty leaf cells) is only linear, then at least linear time is required to bring them together, regardless of the permutation. If the vectors occupy polynomial space, then at least $\theta(n / \log (n))$ time is required. Sope matchings (such as reversal) can be done in O(n/log(n)) time if the vectors are allowed to occupy $n *=p$ space, for any p $>$ i. Some matchings (such as merersal) can be done in $\theta(s y r t(n))$ time if the vectors are alloved to occupy $\theta(4 * * s q[t(n))$ space However, no matching can be
done in less than sgrt (D) time, and some matcnings (such as identity) alyays require at least linear time, regardess of the anount of space used by the vectors.

Acknowledyements

Thanks to Hollins Williams, who conjectured something akin to Eroposition 1. Thanks also to Don Stanat, for asking yhether all n-vector matchings require $\theta(n)$ time in thest machines, and for helpful suggestions concerning the paper. Special thanks to gyula Mago, for inventing the machine that makes these questions interesting. Further thanks to all the above and to Anne Presnell, Roy Pargas, Lee Nackman, and Vicki Baker for taeir comments on this paper.

References

1. Hago, Gyula A. "A network of microprocessors to execute reduction languages." Two parts. International Journal of Copputer and Information Sciences 8. 5 (October 1979) and 8, 6 (December 1979).

2. Tolle, Da Ho MCoordination of computation in a binary tree of processors: a machine design. ${ }^{\text {B }}$ Ph. D. dissertation, Department of Computer Science, University of North Carolina at Chapel Hill. In preparation.

[^0]: * W. E. Siddall's contribution to this york was supported by Vational Science Foundation grant MCS-7802778.

