
ML/I Macro Processor: Implementation in PL/I

by
Jeffrey D. Liotta

A Thesis submitted to the faculty of The
University of North Carolina at Chapel Hill
in partial fulfillment of the requirements
for the degree of Master of Science in the
Department of Computer Science.

Chapel Hill

1980

'IJO -aYf

(Jr\oved by:

~~ Adviser

~ . ""1. e-R~ 1-

JEFFREY DEAN LIOTTA
ML/I Macro Processor: Implementation in PL/I
(Under the direction of DR. PETER CALINGAERT.)

ABSTRACT

ML/I is a general purpose macro language which provides for the user

specification of the argument delimiters of a macro, where each macro

may have several possible patterns of delimiters. Other language

features include nested and recursive macro calls and definitions,

macro-time assignment and conditional statements, an extensive macro-

time environment, the specification of a possibly variable number of

delimiters for each macro, and a method of defining multi-atom macro

names and delimiters. This particular implementation runs under OS/360

MVT Release 21.8 - Hasp II version 3.1 on the IBM 360/370.

I.

II.

2.1.
2.2.
2.3.
2.4.

- i -

TABLE OF CONTENTS

PREFACE •
INTRODUCTION

Description of Syntax •
Definitions
Differences Between Macro
Special Features of ML/I

.
. .

. .
Processors and Macro Assemblers . .

•

III. LANGUAGE FEATURES AND THEIR EFFECT ON SYSTEM DESIGN . .
3.1. The Specification of Construction Syntax

3.1.1
3.1.2
3.1.3

Fixed Delimiters • •
Option Lists • • •
Nodeplaces and Nodegos

•

3.2. Local Symbol Table Manipulation
3.2.1 Nesting of Definitions •
3.2.2 Deleting Local Symbols •

•

3.2.3 Organization of the Local Symbol Table
3.3. Unbounded Look-Ahead •
3.4. Lexical Analyzer

IV. CONCLUSION
. .

. .

. . 4.1.
4.2.

Uses of ML/I
Adaptability of a General-Purpose Macro Processor

v. APPENDICES.
BIBLIOGRAPHY. •

1

3

3
4

10
11

13

13
13
16
18
20
20
22
23
23
24

27

27
28

29

31

- ii -

LIST OF FIGURES

Figure 1: A Structure with Fixed Delimiters 15

Figure 2: A Structure containing an Option List 17

Figure 3: Structure with an Option List, Nodeplaces, and Nodegos 19

ML/I Macro Processor

1. PREFACE

The purpose of this thesis project was to write an implementation of
ML/I, a conditional macro language designed by P.J. Brown [1] supporting
both nested and recursive macro calls. Creating a processor for this
high-level language provided an opportunity to gain valuable insights
into the implementation and design of a general class of translation
programs, of which macro processors are but a member. In fact, the
implementation of ML/I's translator required many techniques more com­
monly associated with compilers than with macro processors.

This document describes several of the unusual characteristics of the
language and some of the problems which they created during the imple­
mentation of the processor. I have focused the discussion on those
features which reflect the general-purpose nature of ML/I and directly
relate to certain problems which arise when implementing other types of
translators.

Material accompanying this document includes an implementation of ML/I
to be run on OS/360, a logic manual describing the implementation, and a
reference manual describing the basic features and syntax of the macro
language.

ML/I Macro Processor

2. INTRODUCTION

Before examining ML/I, it is necessary to define some of the terms and
concepts discussed herein.

2.1 DESCRIPTION OF SYNTAX

The syntactic representations used in this document were borrowed from a
notation proposed by Niklaus Wirth [2). The main characteristics of
this notation are as follows:

(a) Alternation is represented by the metasymbol "I"·

(b) Repetition is represented by curly brackets. Thus, {atom}
implies that atom may optionally be omitted or repeated any
number of times.

(c) Optionality is represented by square brackets. Thus, ["+")
implies that the plus sign may be optionally omitted.

(d) Parentheses serve for grouping.

(e) Terminal symbols (literals) are enclosed in quote marks.

(f) Non-terminals (identifiers) are not enclosed within quote marks.

The above syntax can best be illustrated by means of the format used in
Wirth's article.

syntax = {production}.

production= identifier "=" expression 11 It . .
expression= term {"I" term}.

term = factor {factor}.

factor = identifier 1 literal I "(" expression ")"
" [

11 expression ~~]" 1 " { 11 expression "} ".

literal = """ 11character {character}"" 11
"·

Page 4 ML/I Macro Processor

2.2 DEFINITIONS

The following definitions are taken either from Dr. Brown's original
user manual or from my own reference manual (Appendix A).

PUNCTUATION CHARACTER- Any character which is not a letter or digit.

ATOM - A single punctuation character or a sequence of letters and
digits that is surrounded by punctuation characters. Also referred
to as a token.

NEWLINE MARKER - An artificial character inserted by the macro pro­
cessor at the end of each input record.

MACRO DEFINITION - The specification of a sequence of atoms which
subsequently is recognized within a piece of text as a call of this
macro. A definition includes

1. An atom or sequence of atoms referred to as the macro name.

2. The specification of zero or more multi-atom delimiters which
serve to delimit the various arguments of a macro call.

3. A closing delimiter which marks the end of a macro call.

4. A piece of replacement text which, when evaluated, textually
replaces the entire macro call within the scanned text.

MACRO - A sequence of atoms consisting of a macro name, arguments,
and delimiters. When encountered during the scanning of text, the
entire macro is replaced by the previously defined replacement text.

INSERT - A sequence of atoms consisting of an insert name, argument,
and closing delimiter. The insert's argument specifies a certain
quantity, such as a macro's argument, a macro's delimiter, or a
literal, which is to be inserted into the scanned text. The quantity
to be inserted is referred to as the insert text.

SKIP -A sequence of atoms consisting of a skip name, arguments, and
delimiters. Skips prevent the recognition of macro names, inserts,
and possibly other skips within certain pieces of text. The text
contained between the skip name and closing delimiter is essentially
"skipped" (i.e. not evaluated). Skips perform a function similar to
that of comments within most programming languages.

ML/I Macro Processor Page 5

CONSTRUCTION - A generic term for macro, insert, or skip.

GLOBAL CONSTRUCTION - A construction whose definition applies to all
subsequent text evaluation.

~ CONSTRUCTION - A construction which is recognized only within
the text in which it was defined. Local constructions are considered
global to any text subsequently called from the defining text.

OPERATION MACROS - Macros defined by the processor, not by the user.
Operation macros cause some predefined system action to occur.

ARGUMENT - The sequence of atoms occurring between any two delimiters
of a construction.

SOURCE TEXT - The text supplied as input to ML/I. The function of
ML/I is~evaluate this text.

REPLACEMENT TEXT - Text which, when evaluated, textually replaces a
macro call within the scanned text.

INSERT TEXT - Text which, as a result of an insert call, is to be
inserted:lnto the scanned text.

SCANNED TEXT - The text presently being evaluated by ML/I. The
scanned text can be source text, replacement text, or insert text.

VALUE TEXT - The text resulting from the evaluation of a piece of
scanned text.

OUTPUT TEXT - The text resulting from the evaluation of the source
text.

SYNTAX OF A CONSTRUCTION - The specification of a construction name,
the various delimiters of the construction, and the closing delimiter
of the construction. The macro processor uses this syntax in recog­
nizing a construction call within the scanned text.

DELIMITER NAME - A sequence of one
specification of a single delimiter.
syntactically as

or more atoms composing the
A delimiter name is described

Page 6 ML/I Macro Processor

delimiter.Jlame = atom {("WITH" 1 "WITHS") atom}.

If two atoms are connected by WITHS, any number of spaces (including
zero) may occur between the two atoms during the matching of the
delimiter. If WITH is used to connect the two atoms, no spaces may
occur between the atoms.

The following are examples of delimiter names:

1. COMPARE

2.

3. COMPARE WITH

4. INTERCHANGE WITHS (

5. END WITHS

Each of these examples is a specification.· of a sequence of atoms
which is to be recognized as a delimiter during the scanning of text.

LAYOUT KEYWORDS - Keywords which specify certain characters, or
sequence of characters within delimiter names. The layout keywords
are:

SPACE - a single space.

SPACES - a sequence of one or more spaces.

NL the newline marker.

SL - the startline marker.

As an example, a delimiter name representing the atom "DO" followed
by exactly two spaces followed by the atom "WHILE" would be written
as

DO WITH SPACE WITH SPACE WITH WHILE

Likewise, the specification of a delimiter consisting of the atom ")"
followed by one or more spaces followed by the end of line (i.e. new­
line marker)-wDuld be written as

) WITH SPACES WITH NL

If zero or more spaces were to separate ")" and the end of line
marker, the delimiter name would be written as

) WITHS NL

ML/I Macro Processor Page 7

DELIMITER SPECIFICATION - The specification of either a delimiter
name or an option list (see the subsequent definition).

DELIMITER STRUCTURE - A set of delimiter specifications. A delimiter
structure is defined by writing a structure representation, which
defines all the delimiters of a construction and the successor(s) of
each. Successors specify which delimiters to search for next when
scanning the construction call. A successor may be:

1. Null (signifying the closing delimiter).

2. Another delimiter specification within the structure.

3. A set of alternative delimiter specifications within the struc­
ture.

If a delimiter is matched during the scanning of a construction call,
the construction's delimiter structure is referenced to find the
successor(s) of the current delimiter. Subsequent text is then
scanned in an attempt to find this successor. This process continues
until a closing delimiter is found.

A supplement to the foregoing definitions of macro, insert, and skip
is the necessity to define a delimiter structure when defining a new
construction. In defining the delimiter structure, the user must
specify the name of the construction (often referred to as the name
delimiter) and the successor(s) of each delimiter that is not a clos­
ing delimiter. By designing a suitable delimiter structure, users
may define constructions with a variable number of arguments, con­
structions with optional arguments, and constructions with an
unbounded number of arguments.

FIXED DELIMITERS - Refers to a structure representation consisting of
a fixed pattern of delimiters. Each delimiter specification must be
a delimiter name. Option lists may not occur within this type of
structure. Thus, if delimiter name X is defined as the only succes­
sor of delimiter name Y, then upon finding delimiter X, the processor
knows that the next delimiter will be Y. This holds for all the
delimiter specifications of the fixed delimiter structure. Since
each delimiter has but a single possible successor, each call of the
construction will match the same pattern of delimiters. An example
of a structure representation consisting of fixed delimiters is

INTERCHANGE WITHS (,) WITHS NL

The specification of the construction's name delimiter is

INTERCHANGE WITHS (

the second delimiter specification is

Page 8 ML/I Macro Processor

and the closing delimiter specification is

) WITHS NL

Note that for each delimiter specification within the example's
structure representation, the succeeding delimiter specification con­
sists of a single delimiter name. Therefore, when the construction
is defined, the pattern of delimiters to be matched is fixed.

OPTION LIST - The mechanism used to specify that a delimiter has
several optional alternatives as successor. An option list is writ­
ten as

OPT branchl OR branch2 OR ••••••• OR branchN ALL

where each branch specifies a possible alternative successor of the
delimiter specification 'preceding the option list. There are two
restrictions placed on the branches of an option list.

1. Each branch must specify a unique sequence of atoms.

2. Each branch must begin with a delimiter name. This name is
optionally followed by a delimiter specification. Therefore,
the syntax of a branch is:

branch= delimiter_name {delspec}.

The successor of each branch is usually taken to be the delimiter
specification following the concluding ALL of the option list.

The structure representation

PRINT OPT X WITH SPACES WITH NL OR Y ALL ;

is an example of a structure containing an option list. The name of
the construction is "PRINT" and the closing delimiter is a semi-colon
(i.e. "; "). However, the structure's option list specifies two
alternative sequences of atoms for the second delimiter of the con­
struction. Thus, the delimiter following the construction name may
be either the letter "X" followed by a sequence of one or more spaces
followed by the newline marker (NL) or it may be the letter "Y".
These sequences are specified by the two branches of the option list,
that is, "X WITH SPACES WITH NL" and "Y".

NODES - Entities used to break up the purely sequential manner of
searching for succeeding delimiters. Nodes define a successor of a
delimiter to be a delimiter name or an option list elsewhere in the
structure representation. The syntax of a node is:

ML/I Macro Processor Page 9

node = nodeflag digit.

where the default value for nodeflag is the letter "N".

Nodes have two representations, nodeplaces and nodegos. Syntacti­
cally, a nodeplace and a nodego are the same. However, the meaning
of a node is implicit in its textual position within the structure
representation.

NODEPLACE - Represents the placing of a node at some position within
a structure representation. This node will be the object of a
nodego. Nodes may be placed only before a delimiter name or an
option list.

NODEGO - Represents the action of going to a nodeplace. Nodegos
stipulate that the search for delimiters is to continue at some point
in the structure representation marked by a nodeplace. Nodegos can
occur only at the end of a branch of an option list or at the end of
a structure representation.

An example of the use of nodes within a structure representation is

MCSKIP OPT , Nl OR Nl NL ALL

The name delimiter of the construction is "MCSKIP" and the second
delimiter is either "," or the newline marker (NL). The nodego Nl
following the comma (", ") within the first branch of the option list
implies that if this branch is matched then the next delimiter
specification of the construction is found by going to the nodeplace
of the same name (i.e. Nl). Note that this nodeplace occurs before
the second branch of the option list. Consequently, the construction
can have either two delimiters ("MCSKIP" and NL) or three delimiters
("MCSKIP", ",", and NL).

A structure representation specifying an unbounded number of delimit­
ers is

SUM Nl OPT + Nl OR - Nl OR ; ALL

The name of the construction is "SUM" and the structure's option list
contains three alternative successors to the name delimiter (i.e.
"+", "-", or ";"). If the atoms "+" or "-"are matched then the sub­
sequent nodego Nl specifies that the next delimiter is found by going
to the nodeplace Nl. Since this nodeplace occurs before the same
option list, a looping condition exists such 'that whenever a "+" or
"-" is matched as a delimiter, the next delimiter will be either"+",
"-",or";". If a";" is mS.tched, then the";" is recognized as the
closing delimiter and the scanning of the construction call is com­
plete. Therefore, the following sequences of atoms match this struc­
ture

Page 10 ML/I Macro Processor

SUM1+2 3·
'

SUM X + Y + Z +A - TOTAL - DIFF + MULT - 4 + 6;

SUM 1 ;

SYNTAX - Now that all the sub-components of a structure representa­
tion have been defined we can formalize their syntax.

structure_representation = delspec {delspec} [nodego].

delspec = [nodeplace] (delimiter_name 1 option_list).

delimiter....name = atom {("WITH" I "WITHS") atom}.

option_list = "OPT" brancQ...list "ALL".

branch_list = branch {"OR" [nodeplace] branch}.

branch= delimiter_name {delspec} [nodego],

2.3 DIFFERENCES BETWEEN l1ACRO PROCESSORS AND l1ACRO ASSEMBLERS

A common misconception encountered when discussing macro processors is
the confusion between the function of a general-purpose macro processor
and that of a macro assembler. Macro assemblers, by definition, are
tied to an assembly language. This association makes the task of
expanding macros much simpler. For example, in a macro assembler, the
delimiters of a macro call are often predetermined. Thus, the syntax of
a call is quite simple, since predetermined delimiters (such as commas)
are easily recognized as separating the macro's arguments. However, a
general-purpose macro processor, such as ML/I, has no knowledge of the
syntax of a construction call and must rely on the user to supply this
information when defining a construction.

Another major difference exists in the specification of the number of
arguments a construction may have. Many macro assemblers restrict the
number of arguments to a fixed amount, determined when the macro is
defined. ML/I, however, has an unusual feature which provides for a
variable number of arguments and delimiters for each construction. Con­
sequently, several calls of the same construction may have completely
different sets of delimiters separating the arguments of the call,

Macro assemblers may also require macro names to appear within certain
fields, such as the operation field, of a record. Only names within
this field are candidates for macro expansion. Since macro names are
restricted to certain fields, they obviously must be of a certain size.
A general-purpose macro processor cannot make this restriction. It must
process names and delimiters of any size occurring anywhere within the
source text.

ML/I Macro Processor Page 11

Of course, some macro assemblers are more flexible than the prototypical
one I have described, But, in general, the task of a macro processor is
more complex since it must recognize variable length macro names in
variable positions within the text, with variable syntax occurring in
varying forms of input.

2.4 SPECIAL FEATURES OF ML/l.

This document concentrates on several unusual characteristics which dif­
ferentiate ML/I from other macro languages. The following features were
chosen for examination because of their significant effect on the
overall system design.

1. Users specify the syntax of a construction call (i.e. users are
required to write a specification of the various delimiters when
defining a construction). Each newly defined construction may have
several different patterns of delimiters, with each pattern signi­
fying a different syntax for a construction call,

2. Users may define constructions having a variable number of argu­
ments and delimiters.

3. Multi-atom names and delimiters are allowed,

4, There is no restriction on nesting and recursion.

5. The format of macro calls is unrestricted (i.e. macros do not have
to appear in certain fields of a record).

ML/I Macro Processor

3. LANGUAGE FEATURES AND THEIR EFFECT ON SYSTEM DESIGN

3.1 THE SPECIFICATION OF CONSTRUCTION SYNTAX

The user specification of the syntax of a construction call was the most
difficult feature of ML/I to implement. This specification is used in
searching for the delimiters of a construction. Since constructions may
be defined as having a variable number of delimiters, as well as a vari­
able pattern of delimiters, the procedure which implements the delimiter
search is rather complex.

3.1.1 FIXED DELIMITERS

There seemed to be several alternative methods by which the structure
representation of a construction definition could be saved (where the
structure representation specifies the delimiters of a construction
call). If the representation was saved as a character string and essen­
tially interpreted at macro-expansion time, then the job of representing
the syntax within the processor would have been much simpler. However,
the ease of implementing this scheme would be offset by the length of
time it would take to recognize a call. If the structure representation
was processed and transformed into an internal representation when
encountered during the definition of a construction, then the task of
searching for delimiters would potentially be much faster. Since con­
structions are defined once but are called an unbounded number of times,
the latter approach was applied. Therefore, a parser transforms a
structure representation into a directed graph whenever a construction
is defined. The nodes of this graph contain information reflecting the
various patterns of delimiters which may occur during a construction
call.

An example of such a directed graph is illustrated in figure 1. This
example shows the graph created for a structure representation contain­
ing fixed delimiters. The name of the construction, together with a
pointer to the first node of the graph (i.e. ALPHA), is placed in the
symbol table. When the construction is called, the various delimiters
are found by following the sequence of pointers, beginning at ALPHA,
until a null pointer is encountered. Within the graph, a node of type 1
contains 2 pointers: one pointing to a delimiter specification and the
other pointing to the next node .. to be processed during the traversal of
the graph. Atoms are read in and compared against the appropriate
delimiter specification until a match is found. The search procedure
then advances from the corresponding type 1 node to the next node of the
graph and attempts to match the next delimiter of the construction. A
type 0 node is a pointer node and contains a pointer to the next node to

Page 14 ML/I Macro Processor

be processed (the need for type 0 nodes is explained within the subse­
quent section concerning option lists). A construction has been suc­
cessfully matched with its delimiters when a type 0 node is encountered
which has a null pointer value.

ML/I Macro Processor

EXAMPLE (1): INTERCHANGE WITHS (,) WITHS NL

I
NAME---->1 INTERCHANGE WITHS (

ALPHA
I
I
I
v

I _______ _

Page 15

I I I /1
I I I 1 I --------->1 0 I ----------->1 I I 1 I --------->1 0 I I I
'-'-'-1-1 l_l_l l_l_l_l_l l_l/_1

I I
I I
I I
I I
v v

I
I , I
I __ I

) WITHS NL

Figure 1. A Structure with Fixed Delimiters

Page 16 ML/I Macro Processor

3.1.2 OPTION LISTS

If constructions were required to consist of a fixed pattern of delimit­
ers (i.e. delimiter-0 is followed by delimiter-! which is followed by
delimiter-2 •••••), designing the directed graph would have been a
fairly simple process. However, a special feature, called an option
list, allows users to specify several alternative options as successor
to the previous delimiter. The syntax of an option list is:

OPT branch! OR branch2 OR ••••• OR branchN ALL

where each branch contains the specification of a possible successor to
the previous delimiter. These branches are grouped together within the
graph as a logical entity. Upon encountering a collection of branches,
the procedure which searches for delimiters will compare the current
atom against each branch of the option list for a possible pattern
match.

In comparing figure 1 against figure 2, it is apparent that the directed
graph becomes more complex whenever option lists are used. Two addi­
tional node types have been added to the graph. A type 2 node points to
the first branch of an option list (essentially the "head" of the list
of nodes which specify the various delimiters of the list). A type 3
node represents a branch of an option list. It contains 2 pointers: a
pointer to the delimiter specification node for that branch and a
pointer to the next branch of the option list. The matching of a delim­
iter against the branches of an option list is as follows: the pointer
is followed from the head (i.e. type 2 node) to the first branch of the
option list (i.e. type 3 node). The "delimiter" pointer of that type 3
node is followed and the current atom is compared against the branch's
delimiter specification. If a match is found, the sequence of pointer
nodes emanating from the corresponding type 1 node is followed. If a
match is not found, the "next branch" pointer from the originating type
3 node is followed and the process is repeated. This continues until
either a match is found or until the current atom has been unsuccess­
fully compared against each delimiter specification of the option list
(which is determined whenever a null value is encountered for the "next
branch" pointer of a type 3 node). If the atom does not match any of
the branches, it is considered to be part of the construction's argu­
ment; the next atom is read in and the process is repeated with the
first branch of the option list. A type 0 node pointing to another type
0 node (as occurs for the pointer node following the delimiter specifi­
cations "X WITH SPACES WITH NL" and "Y") signifies that the processing
of an option list has been completed. This situation must be detected
by the macro processor, thus necessitating the use of type 0 nodes as
special intermediary pointer nodes. _If type 0 nodes were not used, it
would be impossible to discern the termination of an option list when
traversing the nodes of the directed graph.

MLII Macro Processor

EXAMPLE (2): PRINT OPT X WITH SPACES WITH NL OR Y ALL

I
NAME-----)1 PRINT

ALPHA
I
I
v

1----

Page 17

I
I 2 I I
1-1--1

I I II
I 0 I ---------->1 I I 1 I ---------->1 0 I I I
1-1-1 1-'-'-1-1 l_ll_l

A A I
I I
I I
I v
I
I
I
I
I
I I ____________ _

v

I I I
I I I 3 I ------------1---------------->1 I I 3 I I I
l_l_l_l_l I 1_1_1_1 I_ I

I I I
I I I
I I I
I I I
v I v

--'-
1 I II I I I I

I I I 1 I ------->1 0 I I I
l_l_l_l_l l_l_l

I

I I I 1 I ------->1 0 I I
1_1_1_1_1 l_l_l

I
I
I
v

I
X WITH SPACES WITH NL I ___________________ I

I
I
I
I
v

y

Figure 2. A Structure containing an Option List"

Page 18 ML/I Macro Processor

3.1.3 NODEPLACES AND NODEGOS

If a delimiter matches a branch of an option list, the next delimiter
usually is assumed to be the delimiter specification following the key­
word ALL. However, nodeplaces and nodegos are used to define successors
elsewhere in the structure representation. A nodeplace marks the loca­
tion from which the search for a delimiter pattern begins. A nodego
signifies that the search is to continue at the specified nodeplace.
Since nod egos and node places are used frequently within option lists,
the representation of option lists becomes increasingly complicated. An
interesting problem arises when a delimiter matches a branch of an
option list and a nodego following that branch specifies that the next
delimiter specification can be found within a subset of the branches of
the containing option list. To handle this situation, a mechanism was
necessary for restricting searches to subsets of option lists.

Figure 3 is an example of a graph containing node places and nod egos.
The nodeplace Nl occurs before the keyword NL within the structure
representation

MCSKIP OPT , Nl OR Nl NL ALL

and the node go Nl follows the delimiter "," and precedes the keyword OR
of the same structure. The significance of a node such as Nl (i.e.

' Whether it is a nodeplace or a nodego) depends upon its textual position
within the structure representation. Thus in this example, if an atom
is found which matches the delimiter "," of the option list, the next
delimiter specification of the construction is actually contained within
a branch of the same option list. Notice that the type 0 node pointed
to by the delimiter specification node of "," points to a type 3 node
and not to another type 0 node. This configuration represents a nodego
to a branch of an option list.

In general, the implementation of option lists was the most difficult
task in the design of the directed graph. The elements of nodeplaces
and nodegos combined with the nesting of option lists within the
branches of other option lists resulted in the procedure which con­
structs the directed graph being the largest component of the macro pro­
cessor.

MLII Macro Processor Page 19

EXAMPLE(3): MCSKIP OPT , N1 OR N1 NL ALL

I
NAME-----)1 MCSKIP

ALPHA
I
I
I
v

I
I 2 II I
I_I_U

I
I
I
I
I
v

I ___ _

II
I 0 I I 1<---------­
l_ll_l

I I I
I I I 3 I ----------------------------->1 I I 3 I I I
1_1_1_1_1 --------------> 1_1_1_1 I_ I

I I I
I I I
I I I
I I I
I I I
v I v

__ I_
I I II I I I

I I I 1 I -------->1 0 I I I
l_l_l_l_l l_l_l

I

I I I 1 I -------->1 0 I I

I
I
I
I
v

'

Figure 3.

l_l_l_l_l l_l_l
I
I
I
I
I
v

NL

Structure with an Option List, Nodeplaces, and Nodegos

Page 20 ML/I Macro Processor

3.2 LOCAL SYMBOL TABLE MANIPULATION ---
Two language features in particular influenced the design of the local
symbol table; the block-structured nature of ML/I construction defini­
tions and the ability to delete randomly local definitions from the name
environment.

3.2.1 NESTING OF DEFINITIONS

In ML/I, any construction may be defined within the replacement text of
a macro, with "innermost" definitions overriding preceding definitions
of the same name. Once a macro's replacement text has been evaluated,
local constructions defined within that replacement text must be deleted
from the symbol table. The nesting of replacement texts within other
replacement texts leads to several levels of text evaluation. Construc­
tions defined at one level are recognized as such within any nested lev­
els unless they are overridden by new definitions.

The following example illustrates how ML/I naming conventions apply to
nested levels of text.

ML/I Macro Processor Page 21

SOURCE TEXT

local definition of macro Al

local definition of macro Bl

local definition of macro Cl

REPLACEMENT TEXT OF Al

local definition of insert Al

local definition of skip D2

Bl

Al

REPLACEMENT TEXT OF Cl

local definition of macro E2

Bl

D2

E2

Within the replacement text of Al, the called macro (i.e. Al) is rede­
fined as an insert. Consequently, the call of Al within Al's replace­
ment text actually refers to the new insert definition. Within the
replacement text of Cl, the symbol D2 is not recognized as a skip since
its definition was local to the replacement text of AI and thus no
longer applies. Likewise, E2 is not recognized as a macro within the

Page 22 ML/I Macro Processor

source text since it was defined within Cl's replacement text (and sub­
sequently was not recognized within the outermost nesting level).

Symbols may also be redefined within the same level of text evaluation.
For instance, in the example

local definition of insert Al

local definition of skip Al

local definition of insert Al

the symbol Al is defined successively as an insert, a skip, and another
insert with each definition overriding the previous one.

3.2.2 DELETING LOCAL SYMBOLS

The operation macros MCNODEF, MCNOSKIP, and MCNOINS added a certain com­
plexity to the manipulation of the local symbol table. These macros
permit users to delete all local macro, skip, or insert definitions.
For example, MCNOSKIP deletes all local skip definitions regardless of
the level of text evaluation. In the following example, the second
definition of SYM (as a skip) overrides the initial macro definition.
However, the subsequent call of MCNOSKIP deletes all current skip defin­
itions, resulting in the recognition of the second call of SYM as a
macro.

ML/I Macro Processor Page 23

local definition of macro SYM

local definition of skip SYM

SYM

MCNOSKIP

SYM

3.2.3 ORGANIZATION OF ~ LOCAL SYMBOL TABLE

The scheme used in implementing the symbol table was borrowed from the
BLISS-11 compiler [3]. A hash table is used in which each entry con­
tains

1. A pointer to a linked list (NT) of symbol names which hashed to the
same location (where each name may have more than one declaration).

2. A pointer to a linked list (ST) of symbol declarations whose names
hashed to this particular hash table entry. This list is main­
tained in reverse declaration order with the newest declaration at
the head of the list and the oldest declaration at the tail of the
list.

Upon exit from a particular level of text evaluation, the list ST is
followed and declarations are deleted until the next outermost nesting
level is reached. This is done for each hash table entry. To account
for the random deletion of local construction definitions, all linked
lists in the symbol table are maintained as doubly linked lists so that
any member may be deleted at any time.

3.3 UNBOUNDED LOOK-AHEAD

When using ML/I, users may define constructions having multi-atom names
and delimiters. This poses several problems to the procedure which
searches for the delimiters of~ a construction call. For instance, to
account for multi-atom delimiters, the searching procedure requires an
unbounded amount of look ahead when attempting to match a sequence of
atoms against a delimiter specification. This look-ahead is required
whenever an atom of the scanned text matches the first atom of a multi-

Page 24 ML/I Macro Processor

atom delimiter. The macro processor must then look ahead to attempt a
match of the subsequent atoms of the text against the remaining atoms of
the delimiter specification. Since several different delimiter specifi­
cations may begin with the same atom, an unsuccessful match necessitates
the restoration of the scanner to the state previous to the look-ahead.
The processor may then attempt to match some other delimiter name.

An example best illustrates the problem, Suppose the text to be scanned
contains the sequence

DO WHILE

and the construction names

DO WHILE (

and

DO WHILE NEXT (

are contained within the symbol table. The macro processor may first
try to match the sequence

DO WHILE (

When the semicolon following the atom sequence "DO WHILE" is scanned,
the macro processor determines that the sequence of atoms "DO WHILE ; "
does not match the construction name "DO WHILE (", However, it must not
discard these atoms but must rescan them (i.e. backup the scanner) in an
attempt to match the name delimiter

DO WHILE NEXT (

This process of matching multi-atom delimiters introduced two problems
which directly affected the scanner: the need to look ahead for the sub­
sequent atoms of the multi-atom delimiter and the need to back up the
scanner whenever it is determined that an inappropriate match has been
attempted. The organization of the scanner and its method of responding
to this situation are discussed in the next section.

3.4 THE LEXICAL ANALYZER

Owing to the nature of recursive and nested construction calls, the
macro processor's scanner does not enjoy the luxury of scanning a single
text segment. In fact, it often is called upon to return the next atom
from any of a number of different texts in different stages of scanning,
A consequence of this feature is that all information needed for scan­
ning must be passed, as parameters~, to the lexical analyzer. This
includes a flag indicating the text to be scanned and the column in
which the beginning of the next atom may be found. Since global vari­
ables may not be used in reflecting the state of the scan, any informa­
tion needed for resuming the scanning process must be returned via the

ML/I Macro Processor Page 25

parameter list.

The unbounded look-ahead which may be necessary when searching for
delimiters requires the ability to "reverse" the scanner. The structure
of the scanner makes this a fairly simple task. As stated, the scanner
is given a flag indicating the text to be scanned and a column number.
The flag is actually a pointer containing either the null value (for
when the source text is being scanned) or the address of the sequence of
text currently being scanned. Since the atoms scanned during the look
ahead process are saved, reversing the scanner involves the scanner
recursively calling itself to scan the "look-ahead" atoms and resuming
the scan at the point where the look ahead terminated. However, this
process becomes very complicated when the "look-ahead" atoms themselves
try to look ahead during the matching of a construction name.

ML/I Macro Processor

4. CONCLUSION

Many of the problems encountered during implementation derived from the
"generality" of ML/I. A less extensive, and thus more restrictive,
macro language probably would have resulted in a simpler and more effi­
cient implementation. However, in judging any macro language, one must
always consider the number of applications to which it may be applied.

In his user manual [4], P. J. Brown mentions several applications for a
general-purpose macro processor such as ML/I. Among these is the addi­
tion of extra statements and syntactic forms to an existing language so
as to adapt it to a particular need. He also discusses program parame­
terization, such as the inclusion of debugging statements, applications
in text editing and data format conversion, and using ML/I to implement
the code generation phase of a compiler.

In fact, ML/I is such a powerful macro language that it can be used to
produce compilers for high-level languages. Tanenbaum describes a
"compiler-compiler", implemented using ML/I macros, for a system pro­
gramming language [5]. Since ML/I provides automatic parsing, lexical
scanning, symbol table manipulation, and syntactic error handling, it is
suitable for implementing a compiler in a short amount of time.

The technique for implementing the compiler is fairly obvious. The
specification of the syntax of a macro call in ML/I is analogous to the
specification of the syntax of a programming language for a parser gen­
erator. The parser generator uses the supplied syntax to generate a
parser. ML/I uses the syntax to parse the source text - no parser is
generated. Code generation is performed by replacing the source state­
ments by the assembly code contained within a macro's replacement text.
Tanenbaum points out that the parsing does not use a context-free gram­
mar to define the language to be translated but rather requires the user
to provide a set of prototype statements (i.e. macros) which will drive
the parser. Each of these macros, which must begin with a unique series
of atoms, is a syntactic skeleton of a statement to be recognized.

The "compiler-compiler" implementors discovered several advantages in
using ML/I. The macro processor automatically detects certain syntactic
errors, such as missing delimiters, and issues appropriate error mes­
sages (semantic errors are not~~ automatically detected by ML/I). Since
the "compiler" is actually a macro processor, the source language enjoys
extensive macro facilities without the aid of a separate preprocessor.
ML/I also produces a listing of the source and translated code; addi­
tional routines which perform these functions are not needed. The

Page 28 ML/I Macro Processor

flexibility of ML/I was demonstrated by the large number of debugging
and performance monitoring aids which the implementors added to the com­
piler. These include: procedure call/return tracing, variable tracing,
assertion checking, a symbolic interactive debugger, and call frequency
statistics. In fact, the compiler even performs optimization.

As can be expected, using a macro processor to "compile" a program is
rather a slow process. However, statistics provided by Tanenbaum show
that the generated object programs tend to be both fast and compact when
compared with the code produced by compilers for other languages. This
is rather surprising when you consider that ML/I was designed to perform
the functions of a macro processor and not those of a compiler.

4.2 ADAPTABILITY OF A GENERAL-PURPOSE MACRO PROCESSOR

As noted, ML/I may be adapted to a wide range of uses, many of which are
not usually considered to be within the realm of macro processing. This
adaptability is, I believe, directly related to the flexibility of the
language. In fact, because of the restrictive nature of most macro
languages, many users would never consider the possibility of using a
macro processor for certain applications mentioned in the previous sec­
tion. Nevertheless, the ability of ML/I to deal with these situations
demonstrates that the text replacement capabilities of a general-purpose
macro language can be very powerful.

The environment in which the macro processor exists has a major impact
on its usefulness. If certain essential tools, such as a compiler, are
absent from a system, they could be implemented using ML/I in a fairly
short period of time. ML/I can also provide certain test-related capa­
bilities, such as adding debugging, program-tracing, or code­
instrumentation statements to routines. Of course, if such tools are
already available, then the attractiveness of using a relatively slow
macro processor diminishes. However, in any environment, the general­
purpose parsing capabilities of this macro processor make it a unique
and beneficial tool.

ML/I Macro Processor

5. APPENDICES

The documents listed below are appendices to this thesis. These docu­
ments are separate publications and as such are individually paginated
and formatted.

Appendix A - Reference Manual

Appendix B - IBM System/360 Implementation

Appendix C - Program Logic Manual

Appendix D - Source Listings (on microfiche inserted in
pocket in binding)

ML/I Macro Processor

BIBLIOGRAPHY

[1] Brown, P. J. (1'970). ML/I User's Manual, 4th Edition, University
of Kent at Canterbury. Available through:

Computing Laboratory
The University of Kent at Canterbury
Kent England CT2 7NF

[2] Wirth, N. "What Can We Do about the Unnecessary Diversity of
Notation for Syntactic Definitions?". Comm. ACM 20, 11 (Nov.
1977) 822-823. Copyright 1977 reprinting privileges were
granted by permission of the Association for Computing Machinery.

[3] Wulf, W., Johnsson, R., Weinstock, c., Hobbs, S., and Geschke, C.
The Design of an Optimizing Compiler American Elsevier, New York,
N.Y.,1975

[4] Brown, P. J. (1970). ML/I User's Manual, 4th Edition, University
of Kent at Canterbury. Page 1/1.

[5] Tanenbaum, A. "A General-Purpose Macro Processor as a Poor Man's
Compiler-Compiler" IEEE Transactions on Software Engineering Vol.
SE-2, No.2, pp.121-i25, June 1976

ML/I Reference Manual

I.

n.

III.

IV.

v.

VI.

- i -

TABLE OF CONTENTS

INTRODUCTION •

1.1. Preface • • •
1.2.
1.3.
1.4.

General Format and Purpose
Exceptions to the Original Definition
Description of Syntax •

TEXT •

MACROS •

3.1. Substitution Macros
3.2. Free Mode and Warning Mode

3.2.1 Free Mode
3.2.2 Warning Mode

3.3. Normal-Scan and Straight-Scan Macros
3.3.1 Normal-Scan Macros
3.3.2 Straight-Scan Macros •

INSERTS

SKIPS

5.1. Literal Brackets

MACRO-TIME ENTITIES

Macro Variables

•

•

6.1.
6.2. Syntax of Macro Variables and Macro Expressions

VII. THE ENVIRONMENT • •

7.1.
7.2.
7.3.

The Evaluation of Replacement Text
Global and Local Environments • •
Protected and Unprotected Inserts •

VIII. SCANNING AND EVALUATION

IX.

8.1.
8.2.
8.3.

Nesting and Recursion •
The Evaluation Process
Searching for Delimiters

• •

DELIMITERS AND DELIMITER STRUCTURES

•
•

•

•
• •

•

•
•

•

•

• •
•

• •

• 1

1
I
1
2

5

7

7
7
8
8
8
8
9

11

15

17

19

19
20

23

23
24
25

27

27
27
28

31

x.

XI.

XII.

-ii-

Specifying Delimiter Structures
Delimiter Specification •
Nodes and Option Lists •
Nodes, Nodeplace, and Nodego

•
•

•

9.1.
9.2.
9.3.
9.4.
9.5.
9.6.
9.7.

Points to Remember About Delimiters and Delimiter Structures
Keywords •••••
Exclusive Delimiters • • •

OPERATION MACROS •

10.1. Facts Concerning Operation Macros ••
10.2. The Specifications of the Operation Macros
10.3. NEC Macros

10.3.1. MCWARN •
• 10.3.2. MCINS

10.3.3. MCSKIP ••
• 10.3.4. MCDEF

10.3.5.
10.3.6.
10.3.7.

MCNOWARN, MCNOINS , MCNOSKIP, and MCNODEF
MCWARNG , MCINSG , MCSKIPG , and MCDEFG
MCALTER • • •

10.4. System Functions
10.4.1.
10.4.2.

MCLENG •
MCSUB • . .

10.5. Further Operation Macros
10.5.1.
10.5.2.
10.5.3.
10.5.4.

• MCSET
MCNOTE •
MCGO ••
MCPVAR •

ERROR MESSAGES . . .
11.1. The Context of an Error Message
11.2. List of Error Messages ••

11.2.1. ILLEGAL MACRO ELEMENT •
11.2.2. ARITHMETIC OVERFLOW ••
11.2.3. ILLEGAL INPUT CHARACTER
11.2.4. ILLEGAL MACRO NAME
11.2.5. UNMATCHED CONSTRUCTIONS

•

11.2.6.
11.2.7.
11.2.8.
11.2.9.
11.2.10.
11.2.11.
11.2.12.

ILLEGAL SYNTAX OF ARGUMENT VALUE
REDEFINED LABEL •
UNDEFINED LABEL • • •
STORAGE EXHAUSTED
SYSTEM ERROR
SUBSIDIARY MESSAGE • •
STATISTICS . . .

HOW TO USE ML/I . . .
12.1.
12. 2.
12.3.
12.4.

The Evaluation of Source Text • •
The Evaluation of Replacement Text
The Evaluation of Inserted Text •
Further Examples • • • •

•

•

•

•

. . . .

•

• •

•
•

•

•
•

•

.
•

•
• •
• • •

31
32
33
34
36
38
39

41

41
42
43
43
44
45
46
47
48
49
50
50
51
52
52
53
54
57

59

59
59
60
60
60
60
61
61
62
62
62
63
63
63

65

65
68
69
70

- iii -

XIII. EXCLUDED AND INCLUDED FEATURES •

XIV.

13.1.
13.2.

Exclusion List
Inclusion List

APPENDICES •

BIBLIOGRAPHY. • •

•

•

•

•

•

71

71
72

75

77

ML/I Reference Manual

1. INTRODUCTION

1.1 PREFACE

ML/I is a general purpose macro processor which supports both nested and
recursive macro calls. The language was designed by P.J. Brown, Univer­
sity of Kent at Canterbury, Canterbury, Kent, England. This manual is
based entirely on Brown's original ML/I user manual [1].

1.2 GENERAL FORMAT AND PURPOSE

In writing this manual, I kept two basic purposes in mind. One, I
intended it to serve as a supplement to the original, whereby users, who
are already familiar with ML/I, can reference the many features and
definitions of the language. This manual is not, in any way, meant to
replace or improve upon the original ML/I user manual written by P.J
Brown. Thus, I have presupposed that anyone using this manual has: (1)
read the original manual, and (2) is familiar with the basic constructs
of the language. The reader will therefore find very few examples in
this text (since it is not meant to be an introductory guide). What he
will find, hopefully, is a detailed description of both the semantics
and syntax of each of the significant features of the language. Since
each description is intended, to some extent, to be independent of any
other description, the reader may find some repetition of ideas occur­
ring in different segments of the manual. The principle behind this
repetition is to allow the user to reference certain segments of the
manual and to find a somewhat complete description, for a particular
feature, which contains all the necessary information which the user may
need.

My second purpose in writing this manual.was a simple one. I wished to
familiarize myself with the language definition before attempting to
write the program.

1.3 EXCEPTIONS TO THE ORIGINAL DEFINITION ---
Several of the features mentioned in this manual are not available in my
current implementation. These .. have been marked with a "*" and denoted
as "not implemented". Furthermore, any features that later were added
to the language by Dr. Brown are not implemented. These include stop
markers and controlled line markers. However, startline markers have
been implemented. The reader should refer to chapter 13 for a complete
list of both the excluded and included language features.

Page 2 ML/I Reference Manual

1.4 DESCRIPTION OF SYNTAX

The syntactic representations used in this manual were borrowed from a
notation proposed by Niklaus Wirth [2]. The main characteristics of
this notation are as follows:

(a) Alternation is represented by the metasymbol "I"·

(b) Repetition is represented by curly brackets. Thus, {atom}
implies that atom may optionally be omitted or repeated any
number of times.

(c) Optionality is represented by square brackets. Thus, ["+"]
implies that the plus sign may optionally be omitted.

(d) Parentheses serve for grouping.

(e) Terminal symbols (literals) are enclosed in quote marks.

(f) Non-terminals (identifiers) are not enclosed within quote marks.

The above syntax can best be illustrated by means of the format used in
Wirth's article.

syntax = {production},

production= identifier "=" expression " "

expression= term {"I" term}.

term

factor

literal

= factor {factor}.

= identifier 1 literal I "(" expression ")"
"[" expression "]" 1 "{" expression 11

}
11

•

= ""'"'character {character}"'""'.

In discussing the various features of ML/I, the following syntactic
definitions will be used:

(a) {II} - signifies a series of zero or more blanks. In most
instances, blanks can occur between the syntactic com­
ponents of a a production. For those cases where this may
not be obvious, I have attempted to clarify this point by
inserting {II} ,

(b) noblanks - implies
ponents.

that no blanks may occur between two com-

(c) atom= (letterldigit) {(letterldigit)},

ML/I Reference Manual Page 3

(d) punctuation_character - defined to be any character which is
not a letter or digit. (Note that a
blank is a punctuation character).

(e) neutraL.atom - if an atom is represented by this component,
then ML/I will make no attempt to recognize it as
an environmental name (i.e. construction name or
warning marker).

(f) construction= macro_call I insert I skip.

ML/I Reference Manual

2. TEXT

The term text refers to a (possible null) sequence of atoms. In dis­
cussing text, the following definitions apply:

Source Text - Text supplied as input to ML/I. The function of ML/I is
to evaluate this text. Temporary variables are not part
of the environment used in the source text's evaluation.
Any local construction defined in the source text is
equivalent to a global definition (in the sense that it
will be recognized in all subsequent text evaluation).
The only inserts which are allowed in the source text
are those which:

a. insert a numerical value literally

b. insert a numerical value through permanent or sys­
tem variables.

c. insert a label.

Replacement Text - When defining a substitution macro, the user must
specify a piece of replacement text. Upon
encountering a call of the macro, ML/I replaces the
entire macro call by the evaluated form of its
replacement text. ML/I uses both the macro's local
environment and the global environment in evaluat­
ing the text. Arguments of the macro are placed
into the replacement text by means of inserts. Any
construction (including the replacement text's own
macro) can be called from the text, and any insert
can appear within the text.

Inserted Text - Refers to a piece of text which is used to determine
the result of an insert call. Inserts are most fre­
quently used within replacement text to insert a
macro's arguments or delimiters. The text to be con­
sidered as inserted text is indicated by certain flags
within the insert (see chapter 4). Depending upon the
flag used, the inserted text may either be evaluated
or inserted literally (see section 7.3 for the evalua­
tion rules pertaining to inserts). Constructions,
including other inserts, may be nested within inserted
text.

Output Text - The text resulting from the evaluation of the source
text.

Page 6 ML/I Reference Manual

Scanned Text - Refers to the text presently being evaluated by ML/I.
The scanned text can be either source text, replacement
text, or inserted text.

Value Text - The text resulting from the evaluation of a piece of
scanned text.

ML/I Reference Manual

3. MACROS

In ML/I there are two types of macros: substitution macros and operation
macros. Substitution macros adhere to the more traditional viewpoint of
macros. Their purpose is to perform some type of text replacement.
Operation macros on the other hand are designed to perform some prede­
fined system action such as adding a macro name to the environment
(MCDEF), performing macro time arithmetic and assignment (MCSET), or
performing a macro time GO TO to a macro label (MCGO). Except for the
operation macros MCLENG and MCSUB, operation macros do not generate any
text.

3.1 SUBSTITUTION MACROS

Operation macros will be dealt with in chapter 10. This section is con­
cerned only with the definition of substitution macros.

To define a macro, the user must specify:

1. A delimiter structure (to be explained in chapter 9). The first
delimiter, called the name or zero delimiter, is the macro name.

2. The replacement text of the macro. Upon processing a macro, ML/I
replaces the entire macro call by the evaluated form of the
replacement text.

3. An integer (> 3) indicating the capacity of the macro. The capa­
city specifies the number of temporary variables to be allocated
and added to the local environment when the macro is called.

4. An on/ off option.
normal-scan macro.
straight-~ macro.

If· the option is
If the option is

The difference is

3.2 FREE MODE AND WARNING MODE ------

"on" then the macro is a
"off" then the macro is a
explained in section 3.3.

While evaluating a piece of text, ML/I uses the environment for the pur­
pose of recognizing macro calls. The recognition of a macro call
depends on whether the environment is in free mode or warning mode. In
free mode, every predefined macro name is recognized as the start of a
macro call. In warning mode, a warning marker must precede a macro name
if it is to be recognized as a macro call.

The syntactic form of a macro call for each of the modes is as follows:

Page 8 ML/I Reference Manual

3.2.1 FREE MODE

macra_call= name_delim [arg_list].

arg_list= {arg delim} arg closing_delim.

where name_delim is a predefined macro name of the form

name_delim= atom {atom}.

and the sequence of delimiters, delim, of macro_call is a pattern that
can be derived from the delimiter structure of the macro. The syntactic
forms of arg, delim, and closing_delim are described later during the
explanation of normal_scan and straight_scan macros.

3.2.2 WARNING MODE

* (not implemented)

macro_call= warning_marker name_delim [ar~~ist].

arg_list= {arg delim} arg closing_delim.

where warning_marker is a predefined warning marker of the form

warning_marker- atom {atom}.

and the definitions of name_delim and the sequence of delimiters in
arg_list are the same as they were under free mode.

3.3 NORMAL-SCAN AND STRAIGHT-SCAN MACROS ----
Upon encountering a piece of text, whether source, replacement or
inserted text, ML/I searches for the secondary delimiters (as specified
by the macro's delimiter structure) until the closing delimiter is
found. The manner in which ML/I scans a macro call depends upon whether
the macro is a normal-scan or straight-~ macro.

3.3.1 NORMAL-SCAN MACROS

For normal-scan macros, nested constructions are recognized during the
search for the delimiters of the macro call. If a nested construction
is encountered during the search, then ML/1 will search for the delimit­
ers of the nested construction before continuing the search for the

ML/I Reference Manual Page 9

outermost macro's delimiters.

Therefore, for normal scan macros, we have

arg= {arg_list}.

(Note that arg can be empty)

arg_list= macro_call I insert I skip 1 neutral-atom.

delim= macro_call {delim_list} I insert {delim_list}

skip {delim_list} 1 neutral_atom {delim_list}.

(Note that delim cannot be empty)

delim_!ist= macro_call I insert I skip I neutral-atom.

closing_delim= delim 1 name_delim.

where delim is a delimiter which has been specified (by the macro's
delimiter structure) as a legal successor of the preceding delimiter of
the macro call. The closing_delim of a macro_call is a delimiter which
has been specified as the last delimiter of the macro call (i.e. has no
successor).

3.3.2 STRAIGHT-SCAN MACROS

Whereas the scanning of a normal-scan macro call involves the recogni­
tion of nested constructions, the scanning of a straight-scan macro does
not. Therefore, for a straight-scan macro call, the syntactic formats
for arg, delim, and closing_delim are:

arg= {neutraL_atom}.

(again arg can be empty)

delim= neutral-atom {neutraL_atom}.

closing_delim= delim.

(again delim cannot be empty)

where delim and closing_delim have the same specifications imposed on
them from the delimiter structure as in the case of normal-scan macros.

In this instance, the form of neutral_atom in a call of a straight-scan
macro does not imply that neutral_atom cannot be a macro, insert, skip
name or a warning marker. However, it does mean that ML/I will not
recognize it as such.

Page 10 ML/I Reference Manual

The replacement texts of both normal-scan and straight-scan macros are
evaluated in the same manner. The important point to remember about
substitution macros is that a macro call is always replaced by some
piece of text, possibly null, which is the output text derived from the
evaluation of the macro's replacement text. Since this replacement text
may itself contain macro calls, the process of evaluating a macro call
implies recursion.

ML/I Reference Manual

4. INSERTS

Inserts are used to insert certain quantities (i.e.
ers, literals, labels, or text resulting from the
ments or delimiters) into portions of the text (see
evaluation rules pertaining to inserts).

arguments, delimit­
evaluation of argu­
section 7.3 for the

To insert a quantity, the user writes an insert whose syntactic defini­
tion is given by:

insert= insert_name insert_arg closing_delim.

where insert_name is a previously defined name of an insert of the form

insert __ name= atom {atom}.

and closing_delim is a previously defined closing delimiter of the
insert of the form

closing_delim= atom {atom}.

Upon encountering an insert, ML/I evaluates the insert argument,
insert_arg, and obtains the evaluated form of the argument,
evaLinsert_arg. Therefore, the original insert argument can contain
macro calls, inserts, skips, or neutral atoms. Thus its syntactic for­
mat can be represented as:

insert_arg= construction {insert_arg} I neutral_atom {insert_arg}.

Once ML/I has obtained eval_insert_arg through evaluation, the following
syntactic forms and actions hold:

evaLinsert~rg= {#} [flag) {#} macro_expression.

flag= "A" I "B" I "D" I "L" I "W" {II} "A" I
"W" {II} "B" I
"W" {II} "D" •

Page 12 ML/I Reference Manual

Next, ML/I must interpret macro_expression and the interpretation must
return a value "N". This value is used to reference the Nth argument,
arg_N, or the Nth delimiter, delim_N, of the macro whose replacement
text contains the insert which is currently being evaluated by ML/I. If
"N" is used incorrectly (e.g. the Nth argument or delimiter is refer­
enced and doesn't exist), then an error message is produced.

The following cases show the relationship between "N" and flag. Cases
(a)-(f) are defined only for those inserts which appear within the
replacement text of a macro (since they refer to the arguments or delim­
iters of a macro call).

a. flag= "A" (N must be ~ 1)

When this flag is used, ML/I takes the Nth argument Jf the macro
call, deletes any leading and trailing spaces, and evaluates it.
The text resulting from this evaluation is used as the value of the
insert (i.e. the text to be inserted).

b. flag= "B" (N must be~ 1)

ML/I does the same as in case (a) except that leading and trailing
spaces are not deleted from the Nth argument before it is
evaluated.

c. flag= "D" (N must be ~ 0)

As in case (b) except that the Nth delimiter is being evaluated
rather than the Nth argument. The Nth delimiter is defined as the
delimiter following the Nth argument. Delimiter zero is taken to
be the name of the macro.

d. flag= "W" {II} "A" (N must be~ 1)

As in case (a) except that the Nth argument, with leading and
trailing blanks deleted, is not evaluated but is inserted
literally. If the Nth argument is either a macro call, insert, or
skip, then it will not be recognized as such by ML/I (i.e. it is
not evaluated).

e. flag= "W" {II} "B" (N must be~ 1)

As in case (d) except that leading and trailing blanks are not
deleted from the argument before it is inserted literally.

f. flag= "W" {II} "D" (N must be ~ 0)

As in case (e) except that we are now considering the Nth delim­
iter, not the Nth argument. ·Again the Nth delimiter is not
evaluated but is inserted literally.

ML/I Reference Manual Page 13

g. flag= "L" (N must be~ I)

"L" indicates that a macro label is being defined for the text in
which the insert occurs and "N" is taken to be the number of the
new macro label. The label, if acceptable, is added to the current
environment (most likely to be used later as the subject of a
macro-time GO TO statement). In order to be acceptable, a label
must not be multiply defined within a piece of either replacement
text or inserted text. Therefore, each label to be inserted within
a piece of text must be unique to that text (i.e. N must be dif­
ferent for each label). An exception to this rule occurs during
the evaluation of the source text. Labels can be inserted into the
source text but they are not added to the environment (i.e. they
cannot be the subject of a backward GO TO statement). Therefore,
there is no requirement that macro-time labels in the source text
be unique. Labels are local to the piece of text in which they
were defined; consequently, one can use the same label numbers in
different pieces of text. Note that in the case of inserts which
use this flag, nothing is actually inserted into the text.

h. If flag does not exist, then N can be any integer. In this case,
the text to be inserted is N represented as a character string.
The character string does not contain any leading blanks and is
preceded by a sign only if N is negative.

ML/I Reference Manual

5. SKIPS

Skips are used to prevent the recognition of macro names, inserts, and
possibly other skips within certain pieces of text (i.e. they cause
ML/I to skip the evaluation of a piece of text). Comments constitute a
primary use of skips. If the beginning and end of a comment are defined
as a skip, then macro names can appear within the comment without being
subject to recognition and evaluation.

The syntactic form of a skip is:

skip= name_delim [{arg delim} arg closing_delim].

where name_delim is a previously defined skip name of the form

name_delim= atom {atom}.

and closing_delim is a closing delimiter which has previously been
defined as such in the skip's delimiter structure. As with macro calls,
the sequence of delimiters, delim, can be derived from the skip's delim­
iter structure.

To define a skip, therefore, the user must specify:

1. A delimiter structure.

2. Three on/off options whose values and meanings are given below:

a. text option:

on - The arguments of the skip are copied over to the value
text.

off - The arguments are not copied.

b. delimiter option:

on - The delimiters of the skip are copied over to the value
text.

off - The delimiters are not copied.

Page 16 ML/I Reference Manual

c. matched option:

on- The skip is a matched skip (described below).

off- The skip is a straight-skip (described below).

Note that a skip differs from a macro in that it has no replacement
text. The portions (possibly null) of a skip that are copied over to
the value text depend entirely upon the independent setting of the text
and delimiter options.

How ML/I scans a skip depends on whether it is a matched or straight
skip. The process of scanning a skip is similar to that of scanning a
macro call. Upon encountering a skip, ML/I uses the skip's delimiter
structure to search for the specified delimiters until a closing delim­
iter is found, With straight skips, however, no other skips are recog­
nized during the scan for the closing delimiter. On the other hand, the
scanning of a matched skip does involve the recognition of any nested
skips. ML/I will search for the delimiters of any nested skips before
continuing the search for the delimiters of the outermost skip. In both
cases during the scan, neither macro calls nor inserts will be recog­
nized within the skip.

An analogy can be drawn between the scanning of a matched skip and the
scanning of a normal-scan macro. The single difference is that only
nested skips are recognized within matched skips, whereas any construc­
tion will be recognized during the scan of a normal-scan macro. An even
closer comparison can be made between straight skips and straight-scan
macros. In fact, a straight skip can be represented as a straight-scan
macro (but not vice-versa).

To complete the syntactic definition of skip we have:

1. straight skips

arg= {neutraL_atom}.

delim= neutral_atom {neutral_atom}.

closing_delim= delim.

2. matched skips

arg= {(neutral_atom I skip)}.

where delim and closing_delim are defined as for straight-skips.

Note that in both straight and matched skips, all spaces not defined as
part of a delimiter are absorbed into the beginning or end of an argu­
ment. Also, as with straight scan macros, the form of neutral_atom does
not mean that macro names and insert names cannot be nested within a

ML/I Reference Manual Page 17

skip. However, it does indicate that any nested, non-skip constructions
are not to be recognized as such (i.e. ML/I makes no attempt to ini­
tiate a search for their closing delimiters).

5.1 LITERAL BRACKETS

When using ML/I, it is recommended that the user has, as part of his
environment, a skip definition whose matched and text options are
enabled and whose delimiter option is disabled. This type of skip,
called a literal bracket, is used to copy a piece of text literally over
to the value text. In processing such a skip, ML/I will drop the
literal brackets and take the skip's argument to be the result of the
skip. The only constructions that will be recognized within this argu­
ment are other skips (remember that macro calls and inserts are never
recognized as such within skips).

ML/I Reference Manual

6. _MA_C_R_O-_TI_ME_ .:EN;.;;T::.:I:.:T:.:I.:E:cS

Since ML/I is a conditional macro processor, it contains certain
features known as macro-time entities. These entities include a macro­
time assignment statement (MCSET), a macro-time conditional GO TO state­
ment (MCGO), macro labels, and macro variables. Very often, the result
of evaluating a piece of replacement text depends upon the delimiters
used in the macro's call. By writing a macro's replacement text in an
appropriate manner, the user can use these macro-time entities to test
the delimiters of the call and generate text accordingly. Thus ML/I
provides for the implementation of a simple programming language which
may be utilized during text evaluation.

6.1 MACRO VARIABLES

Macro variables are entities which can be used, at macro time, for a
variety of purposes. Certain applications of macro variables include
the controlling of the operation of ML/I, the insertion of a macro
variable's integer value into a piece of text, and the testing of condi­
tions for the alteration of processing during the evaluation of replace­
ment text, The MCSET operation macro allows the user to perform arith­
metic operations on macro variables; the MCGO operation macro permits
the testing of these macro-time variables and the possible alteration of
the flow of evaluation, depending on the outcome of the test. Thus,
macro variables are very often used as switches during the evaluation of
the replacement text of either a macro with a variable number of argu­
ments or a macro with a variable pattern of delimiters.

There are three types of macro variables:

1. Permanent variables -denoted as P1,P2,P3... Before beginning the
evaluation of the source text, ML/I will allocate an
implementation-defined number of permanent variables which are
added to the global environment and remain in the environment for
the duration of the evaluation. Additional permanent variables may
be allocated and added to the environment by means of the operation
macro MCPVAR (see section 10.5.4). Permanent variables have no
initial values and can be used for whatever purposes the user
desires.

2. System variables - denot~d as S1,S2,S3 •••••• , System variables
control the operation of ML/I. ML/I adds an implementation-defined
number of system variables to the global environment before begin­
ning the evaluation of the source text. Unlike permanent vari­
ables, system variables are assigned initial values. These values
can be changed at any time by the user (by means of the MCSET

Page 20 ML/I Reference Manual

macro) but care must be taken in doing so. The user is not allowed
to add or delete system variables from the global environment. The
appendix describes the initial values and meanings of the system
variables.

3. Temporary variables- denoted as T1,T2,T3 ••••••• Before evaluating
the replacement text of a macro call, ML/I adds a certain number of
temporary variables (usually three) to the macro's local environ­
ment. These temporary variables remain in the macro's local
environment for the duration of the replacement text's evaluation.
The number of temporary variables allocated is given by the capa­
city of the macro (see section 10.3.4). The first three temporary
variables of each local environment are assigned the initial values
described in section 7 .1. The user can use the MCSET operation
macro to assign values to any of the temporary variables (including
T1, T2, and T3). Note that temporary variables can be used only
within the replacement text of a macro; therefore, there are no
temporary variables in the environment during the evaluation of the
source text. Since macro calls can be nested within other macro
calls or appear within a macro's replacement text, there may be
several allocations of temporary variables existing at the same
time. Each allocation is local to a different environment.

6.2 SYNTAX OF MACRO VARIABLES AND MACRO EXPRESSIONS ---- --
To reference a macro variable, the user
"T") and an unsigned positive integer.
is indicated by

"P" noblanks "N"

specifies a letter ("P", "S", or
Thus the Nth permanent variable

where "N" is an unsigned positive integer. The syntactic specification
of a macro variable is therefore:

macro_variable= "T" noblanks subscript 1
"S" noblanks subscript I
"P" noblanks subscript.

subscript= macro_variable 1 positive_integer.

positive.....integer= "1" I "2" I "3" 1 •••••

where the macro variable being referenced is indicated by the value of
subscript.

During evaluation, the user can perform macro-time arithmetic by means
of macro expressions. The syntactic format of a macro expression is:

ML/I Reference Manual Page 21

macro_expression= term {("+"I"-") term}.

term= primary {("*" I "/") primary}.

primary= [("+"1"-") noblanks] operand.

operand= unsigned_integer I macro_variable.

unsignecLinteger= "0" I "1" I "2" I "3" 1 ••••

where "*" denotes multiplication and "/" denotes division. The result
of division is rounded off to the largest integer not exceeding the
exact result. Upon performing the arithmetic operations of a macro
expression, ML/1 will return an integer value. This value must not
exceed an implementation defined maximum integer value. Overflow and
division by zero are detected and reported as errors.

ML/I Reference Manual

7. THE ENVIRONMENT

During evaluation, ML/I uses What is called the environment to determine
the output text derived from the evaluation of macro calls, inserts, and
skips. Therefore, the environment must originally contain any macro
names, insert names, skip names, and warning markers which the user
wishes to be recognized by ML/I. Additional constituents of the
environment are imposed by the requirements of inserts. Inserts may
reference the arguments or delimiters of a macro call; therefore, these
too must be added to the environment. Macro variables can be used
either by inserts or certain operation macros, implying that they are a
part of the environment as well.

7.1 THE EVALUATION OF REPLACEMENT TEXT

Now let us consider the case of evaluating the replacement text of a
macro call. The environment before the call is encountered consists of:

1. Some macro names and definitions (considered in this context to be
global to the upcoming call).

2. Some insert names and definitions (again considered global to the
call).

3. Some skip names and definitions (also global to the call).

4. A number of system and permanent variables (also global to the
call).

Upon encountering and scanning the call, the environment is supplemented
by:

5. The arguments of the call.

6. The delimiters of the call.

7. A number of temporary variables (at least 3) determined by the capa­
city of the macro. The first three temporary variables have as ini­
tial values:

T1 The number of arguments of the current macro call.

T2 The number of macro calls, including operation macros, so far
performed by ML/I. Since this number is unique for each
call, it can be used by macros for the purpose of placing
labels within the output text.

Page 24

T3 -

ML/I Reference Manual

The current depth of nesting of macro calls. The depth of
nesting is defined as the number of macros currently being
processed. For instance, let us suppose that we have a macro
FIRST which has within its replacement text a call of a macro
SECOND which in turn has in its replacement text a call of
the macro THIRD and furthermore these are the only macros
which are to be called. If FIRST is embedded in the source
text, then T3 for FIRST is 1, T3 for SECOND is 2, and T3 for
THIRD is 3. Calls of operation macros do not count in the
setting of T3.

While evaluating a macro's replacement text, the environment may be
further supplemented by:

B. Macro labels- added to the environment by means of inserts.

9. New macro, insert, and skip definitions. These new definitions are
considered local to the called macro's replacement text and global
to all macros called from within this replacement text.

This, therefore, is the environment which is used in evaluating the
replacement text of a macro. Note that the process of setting up a new,
distinct environment will be repeated for any macros called from within
this replacement text.

7.2 GLOBAL AND LOCAL ENVIRONMENTS

In the previous section, the environment was described by means of its
constituents. Constituents (5) - (9) of this description are considered
local to the called macro's environment. They are added to the environ­
ment upon encountering, scanning, and evaluating a macro call. They are
deleted from the environment upon the completion of the processing of
the macro's replacement text. However, constituents (1) - (4) will
remain in the environment upon the resumption of the evaluation of the
text which follows the macro call. When this evaluation has been com­
pleted, some of the members of constituents (1) - (3) may be deleted
from the environment (since these constituents in turn may have been
local to the text). The members of constituent (4) are never deleted.
Constituents (1) - (7) are fixed before the evaluation of the replace­
ment text begins; constituents (8) and (9) may be added to the environ­
ment during the evaluation of the replacement text.

Now suppose we are evaluating the replacement text of a macro OLD. Dur­
ing this evaluation, we encounter the definition of a previously unde­
fined macro NEW (i.e. MCDEF NEW AS< ••••• >). This macro definition is
then added to constituent (9) (i.e. it is a local macro definition).
In the evaluation of the remaining portion of OLD's replacement text and
in the replacement text of any macro called from within this remaining
portion, NEW will now be recognized by ML/I as a macro call. But upon
the return to the text which originally called OLD, NEW will no longer
be recognized as a macro name. In other words, upon encountering a
local macro definition, the definition is added to the current text's

ML/I Reference Manual Page 25

local name environment, thus becoming part of the global name environ­
ment of all macros called from the subsequent portion of the current
text. However, this definition is not added to the local name environ­
ment of the containing text. If NEW had been defined as a global macro
name (by using MCDEFG instead of MCDEF), then it would be recognized as
a macro in all subsequent text evaluations, including the evaluation of
the text which originally called OLD. This implies that during the pro­
cessing of a macro's replacement text, the global name environment can
be changed, and any such changes will affect all subsequent text evalua­
tions. To change the global name environment, the operation macros
MCWARNG, MCINSG, MCSKIPG, and MCDEFG are used. Note that global con­
structions defined by these operation macros cannot be deleted from the
environment.

7.3 PROTECTED AND UNPROTECTED INSERTS

* (protected inserts are not implemented - all inserts default to unpro­
tected)

An exception to the definitions of the preceding section concerns pro­
tected inserts. For protected inserts, if the arguments or delimiters
of a macro call are to be inserted, they are evaluated under the local
environment which was in force when the macro call was originally
scanned. Any changes in the local name environment made while evaluat­
ing the replacement text will not affect the evaluation of the arguments
or delimiters specified by the insert. If the insert is unprotected
then the inserted text is evaluated under the environment which was in
force when the insert was encountered.

In our example of the OLD macro, if NEW was the first argument of OLD's
macro call and an insert with a flag of "Al" was encountered after the
processing of MCDEF NEW AS (••••• >, NEW would not be recognized as a
macro name during the evaluation of the argument. On the other hand, if
the insert were unprotected, ML/I would recognize NEW as a macro name
during the evaluation of the first argument and the text to be inserted
would become the evaluated replacement text of NEW. If NEW had been
defined as a global macro name, then it would be recognized as such
whether the insert were protected or not.

The same type of action applies to local definitions of inserts, skips,
or warning markers. When one of these construction definitions is
encountered, it will be added to the current text's local name environ­
ment. Whether these local definitions will be recognized as such during
the evaluation of any inserted text will again depend upon the type of
insert (i.e. protected or unprotected).

ML/I Reference Manual

8. SCANNING AND EVALUATION

8.1 NESTING AND RECURSION

ML/I supports both nested and recursive construction calls. This means
that any construction can be called from within any piece of text
(source, replacement, or inserted text). A consequence of this feature
is that the arguments of a macro call may themselves contain calls of
other constructions, including a call of the containing macro. Like­
wise, it is possible to call a macro from within its own replacement
text (or even redefine a macro, by means of MCDEFG - either from within
its own replacement text or from within a piece of inserted text).

8.2 THE EVALUATION PROCESS

The process of evaluation involves the recognition of any environmental
names (i.e. construction names or warning markers) which occur in the
scanned text. In evaluating text, ML/I must at the same time scan the
text. This is done by taking each atom of the text, one by one, and
comparing it against a table of environmental names. Any atom which
does not match a table entry is copied over to the value text unchanged.
If a match is found, then (depending on the match) the following actions
are taken:

1. For macros - ML/I searches for the macro's closing delimiter (see
next section). The macro call (i.e. macro name, arguments, and
delimiters) is not copied over to the value text; rather, the
macro's replacement text is evaluated and the result derived from
this evaluation is used as the value text resulting from the macro
call. Note: leading and trailing blanks are not deleted from the
replacement text before evaluation. Therefore, care must be taken
in defining the replacement text of any macro which is to be called
from a highly structured source program (e.g. assembler language
program).

2. For inserts - ML/I searches for the closing delimiter of the insert
and evaluates the insert argument. Depending upon the evaluated
form of the argument, the insert may or may not be replaced by
text. In either case, the insert (i.e. name, argument, and delim­
iter) is not copied over t9 the value text.

3. For skips - ML/I searches for the closing delimiter of the skip.
The value of the skip (i.e. the text to be printed) depends on
whether or not the text and delimiter options have been set.

Page 28 ML/I Reference Manual

4. For warning markers (* not implemented) - ML/I attempts to recog­
nize the next atom as a macro name. If a macro name does not fol­
low a warning marker, an error message is produced.

In some cases, the evaluation of a piece of text does not include the
recognition of certain environmental names. This can occur in the fol­
lowing situations:

1. During the scanning of straight skips and straight-scan macro calls
- no nested constructions are recognized.

2. In matched skips only nested skips are recognized.

3. In warning mode - macro names are recognized only after warning
markers.

When recogn1z1ng an environmental name, ML/I must deal with multi-atom
names. Upon scanning an atom which is the first atom of a multi-atom
name, ML/I will continue the scan, attempting to match the newly scanned
atoms with the remaining atoms of the name. The same process is used in
matching multi-atom secondary delimiters. If the end of the current
piece of text is reached before finding the remaining atoms of the name,
the preceding atoms are not considered by ML/I as part of an environmen­
tal name (i.e. they are copied over to the value text unchanged).

8.3 SEARCHING FOR DELIMITERS

Upon recognizing a construction name, ML/I references the construction's
delimiter structure and initiates a search for the secondary delimiters
of the call. This search terminates when the closing delimiter is
found. Note that if the construction name is also defined as a closing
delimiter, then a search is not necessary. If, during the search, ML/I
encounters the end of the current piece of text without finding the
closing delimiter, then the construction is considered unmatched and an
error message is produced (for an exception to this rule see section 9.7
concerning exclusive delimiters).

Since ML/I provides for nested constructions, it is possible to
encounter a call of another construction during the search for a closing
delimiter. If this occurs, ML/I will search for the delimiters of the
nested construction before continuing the search for the delimiters of
the containing construction. An additional point to be noted is that
any nested constructions encountered during the search for a containing
construction's closing delimiter are not immediately evaluated. Since
many of these nested constructions occur within the arguments of macros,
they will be evaluated if and when· the argument is inserted with an
appropriate flag ("A" or "B").

One further point should be stated concerning the search for secondary
delimiters - ML/I requires that all the delimiters of a construction

ML/I Reference ~!anual Page 29

call lie within the same piece of text (i.e. the delimiters can all be
found within either the source text, the same replacement text, or the
same inserted text).

ML/I Reference Manual

9, DELIMITERS AND DELIMITER STRUCTURES

In order to separate the arguments of a construction call, certain atoms
or sequences of atoms, called delimiters, must be defined. The name of
the construction is known as the name delimiter or delimiter zero. The
delimiter following the Nth argument is defined as the Nth delimiter.
The last delimiter of the call is called the closing delimiter. Note
that the name delimiter is the only delimiter not preceded by an argu­
ment. All the other delimiters, called secondary delimiters, are pre­
ceded by an argument which in turn is preceded by some other delimiter
(possibly the name delimiter).

In some cases, a construction may consist of a single delimiter which
simultaneously serves as a name delimiter and a closing delimiter.
Other constructions, such as inserts, may have only one argument which
is preceded by the construction's name delimiter and followed by the
construction's closing delimiter. Still other constructions, such as
macros and skips, can have either a variable number of arguments or a
conceivably unbounded number of arguments.

The delimiters of a construction are used by ML/I in the following way.
During the process of evaluating a piece of text, ML/I will compare each
atom of the scanned text with a table of construction names. When a
match occurs, ML/I will proceed to search for the secondary delimiters
(if any) of the construction. The search is terminated upon finding the
construction's closing delimiter, Therefore, when defining a new con­
struction, the user must have some means of specifying the name(s) and
possible secondary delimiters of the construction. This is accomplished
by means of a delimiter structure.

Since the delimiter structure is referenced during the search for the
secondary delimiters of a construction, it must contain not only the
name or names of a construction but also those delimiters (if more than
one) which are to follow the name delimiter in the construction's call.
Thus the delimiter structure must specify a sequence of delimiters which
is to be used during the search for the construction's secondary delim­
iters.

9.1 SPECIFYING DELIMITER STRUCTURES

In order to define a new construction, certain operation macros must be
called. In defining a new macro, the user must call MCDEF or MCDEFG;
for new inserts, the user calls MCINS or MCINSG; and for new skips, the
macros MCSKIP or MCSKIPG are called. Each of the these operation macros
has as one of its arguments the specification of the new construction's
delimiter structure. This section contains both the syntactic format

Page 32 ML/I Reference Manual

and meaning of this specification.

In defining a delimiter structure, the user writes a structure represen­
tation which specifies:

1. All the delimiters contained in the structure.

2. The successor(s) of each delimiter.

Before describing the syntactic form of a structure representation, it
is first necessary to describe its sub-components.

9.2 DELIMITER SPECIFICATION

The most basic member of a structure representation is the delimiter. A
delimiter may be a single atom or a sequence of several atoms. The user
specifies a single delimiter by writing a delimiter~· delim_name, of
the form

delim_name= atom [{atom_list}].

atoJJLlist= "WITH" atom I "WITHS" atom.

where "WITH" and "WITHS" are reserved keywords (described along with
other keywords in section 9.6) and atom is described syntactically by

atom= layout_keyword I non _ _layout_keyword

layout_keyword= "SPACE"I"SPACES"I"TAB"I"NL"I"SL".

The components of layout-keyword are described in section 9.6 and
non_layout __ keyword is any atom not recognized as a layout_keyword.

The reason for the sub-component layout-keyword is that the user may
wish to specify either spaces, tabs, newline markers, or startline mark­
ers as part of delim_name. For instance, there are many operation mac­
ros which have a newline as their closing delimiter. Thus NL is used to
represent the newline marker that is appended, by the inpu~program, to
the end of every record. In a similar manner the user may wish to indi­
cate either a tab or a newline as part of a multi-atom delimiter. Lay­
out keywords allow him to do so.

The simplest case of a structure representation is the specification of
a delimiter structure with fixed- delimiters. This structure is
represented by writing down the delimiters in the order in which they
are to appear within the construction's calL The first delimiter is
the name delimiter, the next delimiter is the successor of the name
delimiter, the next delimiter the successor of this delimiter, and so on

ML/I Reference Manual Page 33

until the closing delimiter.
delimiters can be written as

A structure representation with fixed

structure_representation= delim_name {delim_name}

Note that if a delim_name is followed by another delim_name and neither
is a punctuation character, then they must be separated by one or more
spaces, tabs, or newlines so that they can both be recognized as
separate atoms.

9.3 NODES AND OPTION LISTS

One of the special features of ML/I is its capability to define con­
structions with a variable number of arguments as well as constructions
with various patterns of delimiters where each pattern gives a unique
meaning to the construction. Consequently, the user must have some
means of specifying constructions whose delimiter structures are not
composed solely of fixed delimiters. The devices for permitting the
specification of these more intricate structures are known as nodes and
option lists. The problem in defining the delimiters of a structure
remains the same as that of a structure with fixed delimiters. The
structure must still identify the name(s) of the construction and the
successor of each secondary delimiter that is not defined to be a clos­
ing delimiter. The difference now is that each delimiter can have a
list of possible alternative successors and the successor of each delim­
iter is no longer constrained to being the delimiter specification which
directly follows the delimiter.

The option list mechanism is used to designate the alternative succes­
sors of a delimiter (as well as designating the alternative names of a
construction). The format of an option list is denoted by

option_list= "OPT" branch list "ALL".

branclLlist= branch {"OR" [nodeplace] branch}.

where "OPT", "OR", and "ALL" are reserved keywords. The meanings of
branch and nodeplace are described later in this section.

Before going any
del_spec, which
option....list.

further, we need to define a delimiter specification,
is used to specify either a delim_name or an

Page 34 ML/I Reference Manual

del_spec= [nodeplace] delim_name I [nodeplace] optioa~ist.

Each branch of an option_list specifies either a delimiter or a delim­
iter followed by the specification of its succeeding delimiters.

branch= delim_name {del_spec} [nodego].

Usually the successor of the last del_spec of each branch is understood
to be the del_spec following the terminating keyword "ALL" of the option
list. Consequently, when every delim_name within a branch has been
matched, ML/I will continue the search for the delimiters at the point
following the "ALL" which concludes the containing option list. This
rule is overridden by means of nodes.

9.4 NODES, NODEPLACE, AND NODEGO

Nodes are used to break up the purely sequential manner of searching for
a succeeding delimiter. Nodes can be placed both by means of a node­
place (which indicates a location in the structure representation) and
gone to by means of a nodego (which stipulates that the search for
delimiters is to continue at some point in the structure representation
marked by a nodeplace). The point at which the search is to continue
must be either a delimiter name or an option list.

The action of placing a node indicates a position in the structure
representation which may be the object of a nodego. A nodeplace is
represented by:

nodeplace= nodeflag noblanks unsig_pos_integer.

unsig_pos_integer= "1" 1"2" I "3" I "4" I •••••••

where nodeflag is usually the letter "N" but can be changed to either a
single letter or digit by the operation macro MCALTER.

Nodes can be placed before, but never after, the "OPT" of a new option
list; after an "OR" of an option list; or before a delim_name which is
not contained in an option list. To place a node, the user writes a
nodeplace at the desired point in the structure representation. Each
nodeplace within the structure must have as its unsig_pos_integer a
number which is unique to the containing representation. Any positive
integer (in any sequence the user wishes) may be used. Any nodeplace
within a structure representation is local to that representation and is
not associated in any way with any other node occurring within a dif­
ferent structure.

ML/I Reference Manual Page 35

If a node is placed immediately before the "OPT" of an option list, then
the action of going to this node specifies that the next delimiter to be
searched for is one of the alternatives of the option list. In some
cases, a node may be placed immediately after an "OR" of an option list.
This signifies that the action of going to the node predicates that the
next delimiter is either the delim_name following the nodeplace or else
is to be found in one of the subsequent branches of the containing
option list.

Now that nodeplace has been defined, the meaning of nodego can be
presented in more detail.

The syntactic representation of nodego is:

nodego= nodeflag noblanks zero_or_pos_integer.

zero_or_pos_integer= "0"1 "1" 1"2" 1"3" 1 "4 "I ••••

where nodeflag is the same flag as was used in the definition of node­
place.

Notice that a node of "NO" can be used as a nodego but not as a node­
place. The node "NO" is used to designate an exclusive delimiter
(described in section 9.7). If "NO" is the'successor of some delimiter,
then this delimiter is interpreted as an exclusive delimiter. Any other
nodego must specify a node which occurs somewhere in the structure
representation.

A nodego can occur only at the end of a branch of an option list (i.e.
immediately before an "OR" or an "ALL") or at the very end of the struc­
ture representation. To go to a node, the user simply writes a nodego
at the desired point in the structure representation. The nodego can go
to any point in the structure representation at which a nodeplace can
legally occur. Syntactically, a node place and a nodego are the same.
However, the meaning of a node is implicit in its textual position
within the structure representation.

Now that all the sub-components of a structure representation have been
defined, its syntactic definition can be presented.

structure_representation= del_spec {del_spec} [nodego].

Note that this definition applies both to delimiter structures with
fixed delimiters and to those structures without fixed delimiters.

Page 36 ML/I Reference Manual

9.5 POINTS TO REMEMBER ABOUT DELIMITERS AND DELIMITER STRUCTURES

When specifying a delimiter structure, the user should be aware of the
following facts.

1. Whereas null arguments are allowed, null delimiters are not.
Delimiters must consist of at least one atom.

2. Multi-atom delimiters are allowed. In specifying the delimiter
name, the various atoms of the name are connected by either "WITH"
or "WITHS" (see section 9. 6 for an explanation of the difference
between these two keywords).

3, The definition of each construction must include a specification of
the construction's delimiter structure.

4. A closing delimiter is a delimiter with no successor in the delim­
iter structure.

5, The scanning of a construction call continues until a closing
delimiter is found.

6. If a construction has several alternative names, then each name
must be a unique sequence of atoms.

7, Each branch in an option list must be a unique sequence of atoms.

8. Apart from the preceding two restrictions, the delimiter specifica­
tions of a structure need not be unique.

9. For each secondary delimiter defined within a delimiter structure,
there must be some sequence of successors leading from the name
delimiter to the secondary delimiter.

10. Every argument of a construction must be followed by one of the
construction's delimiters.

11. The delimiters of a macro call are added to the macro's environ­
ment.

12. Delimiters are not evaluated when a call is scanned. However, they
may be evaluated when inserted.

13, A construction is considered unmatched if the conclusion of the
current piece of text is encountered while the processor is still
searching for the closing delimiter of a construction. An excep­
tion is provided by exclusive delimiters (described in section
9. 7).

14. Do not choose an argument of a construction to be the same as the
next secondary delimiter being searched for by the macro processor.
If you must use an argument which is the same as the next delim­
iter, then enclose the argument in literal brackets.

ML/I Reference Manual Page 37

15, All the delimiters of a construction should be contained in the
same piece of text.

16. The insertion of a delimiter cannot alter or affect the containing
text's local name environment.

17. Several different delimiter names can all begin with the same atom
or series of atoms. The processor will always try to match the
longest delimiter name (this applies to name delimiters as well).

18, Generally, the user should choose delimiter names which are dif­
ferent from all construction names or warning markers defined in
the current environment. If a series of atoms can be interpreted
by the processor in more ways than one (i.e. either as a construc­
tion name, warning marker, or secondary delimiter), then the fol­
lowing precedence rules apply:

a. The macro processor checks to see if the series of atoms is an
exclusive delimiter of the current construction call.

b. If not (a) then the macro processor checks to see if the
series of atoms is part of a longer delimiter name.

c. If not (b) then the macro processor will check to see if the
series of atoms is a secondary delimiter of the current con­
s true t ion call.

d. If not (c) then the macro processor will check to see if the
series of atoms is a local environmental name (i.e. construc­
tion name or warning name)

e. If not (d) then the series of atoms is compared against the
table of global environmental names.

f. If a match is found in either (d) or (e), the most recent
definition applies.

19. Since arguments of operation macros are evaluated before being pro­
cessed and delimiter structures occur as the arguments of certain
operation macros, it is recommended for most cases that one enclose
the delimiter structure in literal brackets when it is being used
as an operation macro's' argument. This prevents any delimiters
occurring in the structure from possibly being recognized as macro
calls.

20, If two atoms are connected by "WITH" in delim.__name, it is an error
if both of the atoms are not punctuation characters.

21, A nodego must refer to a · nodeplace which occurs somewhere in the
structure.

22. "NO" cannot be placed.
the previous delimiter

However, it can be gone to (signifying that
is an exclusive delimiter).

Page 38 ML/I Reference Manual

23. Only closing delimiters can be defined as exclusive delimiters.

24. A nodeplace cannot be placed after an "OPT".

25. Tbe user should try to minimize the number of delimiter specifica­
tions within a structure representation in order to minimize the
amount of storage needed to store the structure.

26. Keywords cannot be used as delimiters.

27. Two nodes cannot be placed in succession.

28. Each nodeplace within a structure must be unique.

29. Each "OPT" of an option list must have a matching "ALL".

30. Each delimiter structure must have a closing delimiter.

9.6 KEYWORDS

The following is a list of keywords which can be used within a structure
representation.

WITH - Reserved keyword, can be used only within the specification of
delim_name. Within delim_name, any two atoms joined by "WITH"
must not have any intervening spaces between them when used as
part of the specified delimiter. It is an error to have two
atoms within delim_name connected by "WITH" if neither of the
atoms is a punctuation character.

WITHS - Reserved word, can be used only within the specification of
delim_name. The two atoms joined by "WITHS" within delim_name
can have zero or more intervening spaces between them when
used as part of the specified delimiter.

SPACE - Layout keyword, can be used only within the specification of
delim_name. The keyword "SPACE" represents the specification
of a single space as the value of an atom specified within
delim_name.

SPACES - Layout keyword, can be used only within the specification of
delim_name. The keyword "SPACES" represents the specifica­
tion of a sequence of one or more spaces as the value of an
atom specified within delim_name.

TAB - (* not implemented). Layout keyword, can be used only within the
specification of delim....name. ~~ The keyword "TAB" represents the
specification of the tab character as the value of the specified
atom within delim_name.

NL - Layout keyword, can be used only within the specification of
delim_name. Tbe keyword "NL" represents the specification of the

ML/I Reference Manual Page 39

newline marker as the value of an atom specified within
delim_name.

SL - Layout keyword, can be used only within the specification of
delim_name. The keyword "SL" represents the specification of the
startline marker which can be appended optionally to the start of
each line of input text. Setting the system variable Sl to 1
will invoke this option.

OPT - Reserved word, signifies the beginning of an option list.

OR- Reserved word, used to separate the branches of an option list.

ALL - Reserved word, indicates the end of an option list.

N noblanks zero_pr_pos_jnteger - Reserved word, represents a node.

Each of the preceding keywords can be changed by the MCALTER operation
macro described in section 10.5.4.

9.7 EXCLUSIVE DELIMITERS

* (not implemented)

During the process of evaluating a piece of text (whether source text,
replacement text, or inserted text), ML/I will usually encounter a con­
struction call where

construction_call= construction_name {delim_list}.

construction-name= macro_name 1 insert_name I skip_name.

delim_list= {argument delim} argument closing_delimiter.

and the format of argument depends upon whether construction_name speci­
fies a macro, insert, or skip.

The construction_call, from the construction_name to the
closing_delimiter, is not copied over to the value text. Rather, ML/I
isolates the entire construction_call, evaluates it, and copies the
evaluated form of the call (possibly null) over to the value text.
Thus, the evaluation of the scanned text resumes at the point immedi­
ately following the construction's closing delimiter.

Exclusive delimiters provide an exception to the foregoing processing
method. If the closing delimiter of a construction call is defined as
an exclusive delimiter, then upon isolating the constructioiLcall, the
closing delimiter will not be included as part of the call. Therefore,
when the evaluation of the scanned text resumes, it proceeds from the
construction's exclusive delimiter and not from the point immediately

Page 40 ML/I Reference Manual

following it.

The advantage of having such a feature is best exemplified by nested
constructions. Suppose we had a macro REPLACE which takes only one
argument and has a newline marker as its closing delimiter. Suppose the
argument of a call of REPLACE is a nested macro call. Thus the call of
REPLACE is of the form:

REPLACE nested macro call NL

Now if the nested macro call has as its closing delimiter a newline,
then NL is needed to match both the nested macro call and the call of
REPLACE. Since ML/I searches for the delimiters of nested constructions
before searching for the delimiters of containing constructions, NL will
be used first to match the nested macro call. If it has been declared
as an exclusive delimiter of the inner macro, then the search for the
closing delimiter of REPLACE will begin with the same NL, thus causing
REPLACE to be matched with its closing delimiter. Consequently, by
employing exclusive delimiters, the user can use the same delimiter to
close out several nested constructions as well as the containing con­
struction.

In the preceding example, the nested macro call, without its closing
delimiter of NL, is treated as the first (and only) argument of REPLACE.
Now suppose that within the replacement text of REPLACE, the user wishes
to insert the argument (i.e. nested macro call) using an insert flag of
either "A" or "B". Since NL was not included as part of the nested
macro call, the evaluation o~the argument will find it to be unmatched.
In such a situation, ML/I applies the following rule; if the Nth argu­
ment of a macro call is a construction and if during the process of
inserting the Nth argument the construction is found to be unmatched,
then ML/I will examine the Nth delimiter of the containing macro to see
if this delimiter (or the sequence of atoms which begin the delimiter)
is defined to be an exclusive delimiter of the nested construction. If
so, the nested construction is considered matched. In the case of a
nest of apparently unmatched constructions, the same process is applied
in turn to each construction.

One further point should be mentioned concerning exclusive delimiters.
Exclusive delimiters can be used only within macro calls and skips. In
the case of macros, an exclusive delimiter is not taken to be part of
the macro's call. However, it is treated like any other delimiter in
that it is added to the macro's local environment, thus making it eligi­
ble for insertion into the macro's replacement text. Exclusive delimit­
ers, for skips, are not considered as part of the skip and therefore are
not affected by the skip's delimiter option.

ML/I Reference Manual

10. OPERATION MACROS

10.1 FACTS CONCERNING OPERATION MACROS

This chapter describes the operation macros which are used by ML/I to
perform certain predefined system actions. In discussing these macros,
the user should be cognizant of the following facts:

1. Operation macros are defined by ML/I, not by the user, and serve an
important role in the functioning of the macro processor.

2. The definitions of the operation macros are used to initialize the
name environment.

3. The names of all operation macros begin with "MC".

4. The arguments of all operation macros are evaluated before being
processed (since the arguments may contain calls of substitution
macros, operation macros, inserts, or skips). Any leading or
trailing spaces are deleted before the evaluation. In most cases
the user will wish to inhibit this evaluation, particularly in the
case where NL is the closing delimiter of the operation macro and
the macro'slast argument extends over several lines (i.e. con­
tains one or more NL markers). In situations such as this, the
user should enclose the operation macro's arguments in literal
brackets.

5. Operation macros, except for the system functions MCSUB and MCLENG,
do not generate any value text when called.

6. Operation macros can be called from within any piece of text.

7. The majority of the operation macros are known as NEC (name
environment changing) macros. They are used either to add to or to
delete from the local and global name environments.

8, Any operation macro which defines a new construction must have a
specification of the construction's delimiter structure as an argu­
ment.

Page 42 ML/I Reference Manual

10.2 THE SPECIFICATIONS OF THE OPERATION MACROS

In describing the individual operation macros, I have chosen to use a
format similar to that used in Dr. Brown's original manual. Therefore,
the following subsections are used to describe each operation macro.

(!) Purpose

(l) General form -

(l) Restrictions -

gives the syntactic format of a call of the
macro.

gives the syntactic formats of the arguments of
the operation macro.

(i) Order of evaluation - describes the order of the evaluation of
the arguments. The order is sequential
if this subsection is omitted. If a NEC
macro has been called, the environment is
changed only when all of the arguments
have been successfully evaluated.

(~_) System action - describes the action performed by ML/I. The
term "current environment" refers to the
environment in force when the macro was called.

ML/I Reference Manual Page 43

10.3 NEC MACROS

The name environment changing macros are described in this section.

10.3.1 MCWARN

* (not implemented)

Purpose - to define a local warning marker.

General form - "MCWARN" argument NL

Restrictions - argument= deli~name.

System action - the argument is added to the current environment as a
local warning marker. The definition of a local warn­
ing marker immediately places the current environment
in warning mode (see section 3.2.2).

Page 44 ML/I Reference Manual

10.3.2 MCINS

* (partially implemented - inserts are unprotected by default; there­
fore the user need not specify either "P" or "U" when defining an
insert)

Purpose to define a local insert

General form -

Restrictions -

System action -

"MCINS" argb NL

or

"MCINS" arga " If

'
argb NL

argb= delim_name delim_name.

a rga= "P" I ''U".

argb is taken to be the delimiter structure of a new
local insert definition. The name delimiter of the
structure is added to the current name environment.
The insert is "protected" if arga is absent and is
defined to be "unprotected" only if arga is present
and is represented by the letter "U".

ML/I Reference Manual

10.3.3 MCSKIP

Purpose - to define a local skip.

General form -

Restrictions - argb=

arga=

"MCSKIP" argb NL

or

"MCSKIP" arga II It

• argb NL

structure_representation.

"M" {if} skip_list I
"D" {if} skip_list I
"T" {if} skip_list.

skip_list= "M" {if} skip_list
"D" {if} skip_list
"T" {II} skip_list.

Page 45

System action - argb is taken to be the delimiter structure of a new
local skip definition. The name delimiter of the
structure is added to the current name environment.
The setting of the skip options is done by means of
arga - if arga contains an "M", the matched option is
set; if it contains a "T", the text option is set; and
if it contains a "D", the delimiter option is set. If
arga is absent, none of the options is set. If argb
contains a "," and arga is absent, then the "," should
be enclosed in literal brackets. This prevents ML/I
from interpreting the "," as the delimiter between
arga and argb.

Page 46 ML/I Reference Manual

10.3.4 MCDEF

Purpose- to define a local macro.

General form -

Restrictions -

''MCDEF" argb "AS" argc NL

or

"MCDEF" argb "SSAS" argc NL

or

"MCDEF" arga "VARS" argb "AS" argc NL

or

"MCDEF" arga "VARS" argb "SSAS" argc NL

arga= macro_expression.

argb= structura_representation.

argc must be enclosed in literal brackets if either:
(1) the user wishes to delay the evaluation of the
replacement text until the macro is called, or (2) argc
contains newline markers which can be interpreted as
the closing delimiter of MCDEF.

Order of evaluation - arga, argc, argb

System action - argb is taken to be the delimiter structure of a new
local macro definition. The name delimiter of the
structure is added to the current name environment.
The macro's replacement text is specified by argc
(remember that leading and trailing blanks are deleted
from argc before it is evaluated). The capacity (i.e.
the number of temporary variables to be added to the
macro's local environment) is taken to be MAX(arga,3).
If 'arga "VARS'" is absent, the capacity is three by
default. If MCDEF is called with the delimiter "AS",
the new macro is considered to be a normal-scan macro;
if it is called with the delimiter "SSAS", the new
macro is considered a straight-scan macro (see sec­
tions 3.3.1 and 3.3.2).

ML/I Reference Manual Page 47

10.3.5 MCNOWARN, MCNOINS, MCNOSKIP, AND MCNODEF

* (MCNOWARN is not implemented, since there are no warning markers)

Purpose to delete local constituents of the current environment.

General form - (a) "MCNOWARN"

(b) ''MCNOINS"

(c) ''MCNOSKIP"

(d) "MCNODEF"

System action - MCNOWARN - deletes all local warning markers from the
current environment. If no global warning markers are
defined, then the current environment is placed in
free mode (see section 3.2.1). A call of "MCWARN"
must always be preceded by a warning marker.

MCNOINS - deletes all local insert definitions from
the current environment.

MCNOSKIP - deletes all local skip definitions from the
current environment.

MCNODEF - deletes all local macro definitions from the
current environment. The user cannot delete operation
macros from the environment because their definitions
are global.

Note that for each of the preceding macros, the name delimiter is also
the closing delimiter.

Page 48 ML/I Reference Manual

10.3.6 MCWARNG, MCINSG, MCSKIPG, AND MCDEFG

* (MCWARNG is not implemented)

Purpose to define global warning markers, inserts, skips, and mac­
ros.

General form -

Restrictions -

System action -

the same syntax as used for the equivalent local macro
definitions.

the arguments have the same syntactic restrictions as
have the arguments of the corresponding local defini­
tions.

the actions performed by each of the preceding global
macros are equivalent to the actions performed by the
corresponding local macros. The only difference is
that the constituents defined by these macros are
added to the global, not the local, name environment.
Global constructions cannot be deleted from the
environment by any of the macros defined in the previ­
ous subsection.

ML/I Reference Manual Page 49

10.3.7

Purpose

MCALTER

to alter either the secondary delimiters of operation macros
or the keywords (both layout and reserved) used in structure
representations.

General form - "MCALTER" arga "TO" argb NL

Restrictions - arga= atom.

argb= atom.

Furthermore, arga must specify either a secondary
delimiter of an operation macro or a keyword used in
structure representations. Also, it is required that
the length of argb be less than or equal to the length
of arga.

Order of evaluation argb, arga

System action - whenever a situation arises in which arga would have
been used, the user must now use argb. It is important
to remember that MCALTER has a global effect. If a
user wishes MCALTER to have a local effect only, then
he must call MCALTER again to change the altered argu­
ments back to their original form.

Page 50 ML/I Reference Manual

10.4 SYSTEM FUNCTIONS

This section describes the operation macros known as system functions.
There are two things to remember about system functions:

1. They are the only operation macros which return a piece of text
'When evaluated.

2. They have ")", not NL, as their closing delimiters.

10.4.1 MCLENG

Purpose - to find and return the length of a character string.

General form -

System action -

"MCLENG" {II} "(" arga ")"

where arga yields, upon evaluation, a character string
and "(" is part of the macro name.

ML/I returns a numerical value, represented as a char­
acter string, with leading spaces deleted. A sign
precedes the value only if it is negative. The value
returned represents the number of characters in the
evaluated form of arga.

ML/I Reference Manual Page 51

10.4.2 MCSUB

Purpose to find and return a substring.

General form - "MCSUB" {II} "(" arga " " '
argb "," argc ")"

where "(" is part of the macro name. The evaluation of
arga, argb, and argc will yield, respectively, a char­
acter string, a numeric value, and a numeric value.

Order of evaluation - arga, argb, argc

(see below concerning the evaluation of argc)

System action - in describing the substring returned by a call of
MCSUB, the following definitions hold:

L = the number of characters in the evaluated form
of arga.

RB =

VB =

RC =

the numeric result derived from the evaluation
of argb.

(RB if RB) 0
(
(L+RB if RB ~ 0

the numeric result derived from the evaluation
of argc.

VC = (RC if RC) 0
(
(L+RC if RC ~ 0

The values of VB and VC describe a valid substring of arga only if

1 < VB < VC < L - -
If this relation holds, then MCSUB returns a substring of arga which
begins at character position VB and extends for VC-VB+l characters. The
first character of arga is defined to be in character position one. If
the relation does not hold, MCSUB returns a null string.

Page 52 ML/I Reference Manual

10.5 FURTHER OPERATION MACROS

The remainder of the operation macros are described in this section.

10.5.1 MCSET

Purpose to perform macro-time assignments to macro variables.

General form -

Restrictions -

System action -

"MCSET" arga "=11 argb NL

arga= macro_variable.

where the evaluation of arga must yield the name of a
macro variable which exists in the current environment.

argb= macro_expression.

the result returned by argb is assigned to the macro
variable returned from the evaluation of arga.

ML/I Reference Manual Page 53

10.5.2

Purpose

MCNOTE

to allow the user to generate his own error and debugging
messages.

General form - "MCNOTE" arga NL

System action - arga is treated as if it were a system message (i.e.
it is printed on the ERROR file). Three lines are
skipped before printing the message. After printing
the message, ML/I prints the context of the call of
MCNOTE (see section 11.1 for an explanation of the
context of an error message).

Page 54 ML/I Reference Manual

10.5.3 MCGO

Purpose- to perform a macro-time GO TO or conditional GO TO.

General form -

Restrictions -

(a) "MCGO" arga NL

(b) ''MCGO" arga del_1 argb cond argc NL

del_1 = "IF" 1 "UNLESS".

cond = "=11 I "BC" I "EN" "GE" I "GR II.

where "BC" means Belongs to Class,
"EN" means Equals Numerically,
"GE" means Greater than or Equal to,
"GR" means GReater than.

arga= {II} "L" noblanks macro_expression.

where macro_expression must

1. yield a non-negative result

2. yield a positive (i.e. >O) result if MCGO is
called from the source text.

If cond= "BC" then argc= "I" "L"
stands for the class of identifiers, "L"
class of letters, and "N" stands for
numbers.

If cond= "EN" I "GE" I "GR" then

argb= macro_expression.

and

argc= macro_expression.

"N" where "I"
stands for the
the class of

Order of evaluation - argb, argc, arga

In the conditional form of MCGO (form (a)), arga
is evaluated only if the condition is true.

ML/I Reference Manual Page 55

System action - a comparison, yielding either a true or false value, is
made between the results derived from the evaluation of arga and argc.
The comparison made depends upon the value of cond in the following way:

1. If cond= "=" then a character comparison is made. The comparison
yields a true value if and only if argb and argc are identical
strings of characters.

2. If cond= "BC" then a character comparison is made. If argc= "I",
the comparison yields a true value if and only if:

argb= {letter 1 digit}.

If argc= "L", the comparison is true if and only if

argb= {letter}.

If argc= "N", the comparison is true if and only if

arg b= { ["+" "-"]} {digit}.

3, If cond= "EN" 1 "GE" 1 "GR" , a numerical comparison is made. The
comparison is true if and only if the evaluated form of argb is
respectively equal to, greater than or equal to, or greater than
the evaluated form of argc.

The relationship between deL_! and the value which the comparison yields
is described below:

1. If del_ I = "IF" and the comparison yields a false value, then no
further action is taken by ML/I. If the comparison is true, then
the actions of form (b) are performed.

2, If deU = "UNLESS" and the comparison is true, then no further
action is taken. If the comparison is false, then the actions of
form (b) are performed.

Page 56 ML/I Reference Manual

~ (1) System action

Let "N" be the value derived from the evaluation of arga (remember that
arga is a macro_expression). Then the action performed by ML/I depends
upon "N" in the following way:

1. If N>O, ML/I changes the point of scan to the point represented by
macro label N. There are two ways in which ML/I determines this
point:

a. If macro label N is present in the current environment, ML/I
takes the new point of scan as the point associated with the
macro label. A macro label is present in the current environ­
ment if it has been previously placed in the environment by
means of an insert.

b. If macro label N is not in the current environment, ML/I will
initiate a forward search for an insert which places macro
label N in the environment. If during the search, a macro
call or skip is encountered, ML/I will suspend the search for
the macro label and will begin a search for the closing delim­
iter of the encountered construction. The only inserts which
are evaluated during the search for the macro label are those
which occur outside any macro calls. During this search, no
value text is generated and no macros are called (except po8=
sibly during the evaluation of an insert argument). An error
message is produced if the end of the current piece of text is
found without encountering an insert which places macro label
N. Upon encountering the designated label, ML/I will begin
the scanning and evaluation of the text at the point immedi­
ately following the insert which placed the label. At the
same time, the macro label is associated with this point and
added to the current environment.

2. If N=O, ML/I discontinues the processing of the current piece of
text and continues the processing of the previous piece of text.
As a result, a MCGO to a label of "LO" can only occur within
inserted text or replacement text. An error message is produced if
the user attempts to MCGO to "LO" within the source text.

ML/I Reference Manual Page 57

10.5.4 MCPVAR

Purpose - to allocate extra permanent variables.

General form -

Restrictions -

System action -

''MCPVAR" NL arga _

arga= macro_expression.

let N be the result derived from evaluating arga and
let M be the number of permanent variables currently
in existence. If N>M, N-M extra permanent variables
are allocated and added to the environment. These new
permanent variables are not assigned initial values.

ML/I Reference Manual

11. ERROR MESSAGES

11.1 THE CONTEXT OF AN ERROR MESSAGE

Upon detecting an error, ML/I will print an error message on the ERROR
file. This message consists of a description of the error together with
a print-out of the context in which the error occurred. The context
indicates:

1. The line number in which the error occurred. This line number
refers to the text which was being scanned at the time the error
was detected.

2. A list of all the macro calls and inserts which were in the process
of being evaluated. If the name delimiters and the closing delim­
iters of these macro calls and inserts are not on the same line of
text, the line numbers of both the beginning and end of the calls
and inserts will be printed.

3. A list of all the arguments of any macro in which an error has
occurred. These arguments are printed literally (i.e. not
evaluated).

4. When printing a layout character (such as a series of spaces, a
newline marker, etc.), the corresponding layout keyword (enclosed
in parentheses) is used. See section 9.6 for a list of layout key­
words. A piece of null text is printed as "(NULL)".

5. If two atoms of a delimiter were connected by "WITHS" in the struc­
ture representation, a space will be inserted between the two atoms
when the multi-atom delimiter is printed.

6. If, when printing an error message, ML/I finds that the message is
greater than 60 characters in length, the first and last 26 charac-
ters (separated by "•••••• ")will be printed.

11.2 LIST OF ERROR MESSAGES ---
The following is a list of the error messages produced by ML/I (regard­
less of the implementation).

Page 60 ML/I Reference Manual

11.2.1 ILLEGAL MACRO ELEMENT

Message flag number IS ILLEGAL MACRO ELEMENT

Description this error can occur either: (1) when using an insert
which references the arguments or delimiters of a macro
call and these arguments or delimiters do not exist; or
(2) when using number to reference a macro variable
which does not exist.

System action - the current operation macro or insert is aborted.

11.2.2 ARITHMETIC OVERFLOW

Message - ARITHMETIC OVERFLOW

Description - this error can occur during the evaluation of a macro
expression or a subscript when either: (1) attempted
division by zero has been detected; or (2) overflow has
occurred (i.e. the calculated number exceeds the
implementation-defined maximum value}.

System action - the current operation macro or insert is aborted.

11.2.3 ILLEGAL INPUT CHARACTER

Message -

Description -

ILLEGAL INPUT CHARACTER

a character of the source text is not a member of the
implementation's character set.

System action - the illegal character is replaced by "?" (defined to
be the error character).

11.2.4 ILLEGAL MACRO NMIE

* (not implemented, since there are no warning markers)

Message - ILLEGAL MACRO NMIE AFTER WARNING, VIZ atom

Description an atom which follows a warning marker is neither a
macro name, nor the beginning of a multi-atom macro
name. If this error occurs within an argument of a
normal-scan macro, it will be detected both when the
macro call is scanned and when the argument is inserted.

System action - the warning marker is ignored (i.e. it is not copied

ML/I Reference Manual Page 61

over to the value text and the atom which follows it
is not treated as a macro name),

11.2.5 UNMATCHED CONSTRUCTIONS

Message DELIMITER name [{OR~}] OF (MACRO) name
(SKIP) -­
(INSERT)

IN LINE number OF CURRENT TEXT NOT FOUND

Description - this error occurs when an unmatched construction has
been encountered. The line number printed indicates the
line in which the construction's name delimiter can be
found. The list of delimiters printed indicates the
delimiter(s) for which ML/I was searching when the error
occurred. This error is detected during the search for
a delimiter only upon reaching the end of the scanned
text.

Possible causes -

System action -

there are two conditions most likely to cause this
error:

1. A construction nested within an argument or
delimiter of the given construction may have
caused ML/I to mismatch delimiters (i.e. it
may have taken a delimiter of the outer con­
struction to be a delimiter of the inner con­
struction),

2. The construction's structure representation may
have been specified incorrectly by the user.

the text, from the construction's name delimiter to
the current point of scan, is ignored by ML/I (i.e.
the result from evaluating the construction is the
null string). /

11.2.6 ILLEGAL SYNTAX OF ARGUMENT VALUE

Message ARGUMENT number HAS ILLEGAL VALUE, VIZ value

Description the syntax of an argument of an operation macro or
insert is not correct. See the appropriate sections for
the correct syntax.

System action - the current operation macro or insert is aborted.

Page 62 ML/I Reference Manual

11.2.7 REDEFINED LABEL

Message LABEL number IS MULTIPLY-DEFINED

Description - an insert which placed a label specified a label number
not unique to the current environment.

System action - the new label definition is ignored.

11.2.8

Message

UNDEFINED LABEL

LABEL REFERENCED IN LINE number OF
NOT FOUND

Description - an attempt has been made to MCGO to an undefined label.
This error is detected only when the scanning process
reaches the end of the current text (remember that ML/I
initiates a forward search for the label if it is not in
the current environment).

Possible causes - the user may have attempted a backward MCGO in the
source text. Since labels placed in the source text
are not added to the environment, the user can MCGO
only forward to a label. Another possible cause of
error could be the user's attempt to MCGO from one
piece of text to another. Unmatched constructions
are another source of error. If an unmatched con­
struction is encountered, any MCGO currently being
processed will be unable to find the desired label.

System action - ML/I changes the point of scan to the end of the
current text.

11.2.9

Message -

STORAGE EXHAUSTED

PROCESS ABORTED FOR LACK OF STORAGE
[POSSIBLY DUE TO other messages?]

Description - ML/I has used up all the available storage. If the
current text is the source text, the messages of 11.1.5
and 11.1.8 will be printed to indicate any unmatched
constructions or unfound labels.

Possible causes storage must be allocated for construction defini­
tions, macro variables, the arguments and delimiters
of macro calls and skips (including the arguments
and delimiters of nested macros), and the name
environment. Thus, an unmatched macro call in the
source text (or a call with a very long argument)

ML/I Reference Manual Page 63

11.2.10

Message

can readily use up all the available storage. A
very deep nest of calls or an endless recursive call
can also cause this problem.

SYSTEM ERROR

SYSTEM ERROR

Description - a machine or operating system error has occurred. An
error in the implementation of ML/I may also cause this
error.

System action - the current process is aborted.

11.2.11

Message -

Description

11.2.12

Message

SUBSIDIARY MESSAGE

(MACRO) name ABORTED BECAUSE OF FOREGOING ERROR
(INSERT)--

this message will be printed whenever an error causes an
operation macro or insert to be aborted. It is printed
in addition to the message which describes the error. A
null value is returned whenever a construction is
aborted.

STATISTICS

AT END OF PROCESS: number LINES, number CALLS

Description - this message is printed at the end of the processing of
the source text. The values printed include the number
of source text lines scanned and the number of macro
calls performed.

MLII Reference Manual

Before applying the macro processor to a piece of text, the user must
first initialize the name environment. A certain amount of initializa­
tion is done by the processor itself. For instance, the operation macro
definitions and default values for certain system variables are pre­
supplied. But any macro, insert, or skip definitions that the user
wishes to employ must be added to the environment before their calls are
encountered in the text.

12. 1 ~ EVALUATION OF SOURCE TEXT

It is recommended that the user append to the start of his source text
any construction definitions which he plans to use in the remainder of
the text processing. These definitions must be processed before the
associated construction calls are encountered. If a large number of
definitions are to be processed, then they may be stored in a macro
library (see the appendix concerning macro libraries),

Normally, the user will wish to have in the environment certain con­
struction definitions which can be used during the processing of all
subsequent text. A good example of such a definition is a literal
bracket. The name delimiter of the literal bracket should be an atom
(or sequence of atoms) that normally would not appear in the original
source text. For example, in pre-processing a PLII program, the atoms
I$ (with $1 as the closing delimiter) would be a good choice for a
literal bracket. This particular definition would be

}!CSKIP MT, I WITH $ $ WITH I

Another construction which is useful in the environment is an insert
definition. Since macros would be very limited if they did not have the
ability to insert arguments (and, in }~II's case, delimiters) into their
replacement text, the user should define an insert definition which can
be used in all subsequent source or replacement text processing. The
same constraints are imposed on choosing the insert name as with the
choice of the name of a literal bracket.

In addition to the two foregoing construction types, the user should
define those macros which he~ wishes to be recognized and expanded.
These macros (as well as any previously defined skips and inserts) will
be recognized as such during the subsequent evaluation of either the
source text or any replacement text or inserted text whose evaluatidn is
brought about due to the evaluation of previous text.

Page 66 MLII Reference Manual

The following text serves as an example of the processing involved in
the evaluation of source text. Note that construction definitions usu­
ally appear on (but are not constrained to) one line of source text per
definition.

MCSKIP MT, I WITH $ $WITH I
MCINS %.
MCDEF # AS I$ WITH SPACE WITH $1
MCDEF INSERT#THE#FIRST#ARGUMENT INSERT#THE#SECOND
#ARGUMENT END AS I$ %Al.
%A2. %D2. $1
THE TEXT WILL NOW BE PROCESSED. THE FIRST MACRO CALL
INSERT THE FIRST ARGUMENT I$ THIS IS THE FIRST ARGUMENT $1
INSERT THE SECOND ARGUMENT I$ THIS IS THE SECOND
ARGUMENT $1 END
MCNODEF
$MCDEF DON WITH ' WITH T RECOGNIZE A SKIP AS I$ %WA1. #
%WA2. # %WA3. $1
TRY THE MACRO DON'T I$ ARGl $1 RECOGNIZE I$ ARG2 $1 A
I$ ARG3 $1 SKIP. THE TEXT RESULTING FROM THE EVALUATION
OF THIS MACRO (WITH # FOLLOWING EACH OF THE INSERTED
ARGUMENTS) IS :
I$ I$ ARGl $1 II
I$ ARG2 $1 # I$ ARG3 $1 # (NOTE: THE MACRO CALL $DON'T
RECOGNIZE A SKIP IS NOT RECOGNIZED WITHIN THIS SKIP) $1

The output resulting from the evaluation of the preceding text would be:

THE TEXT WILL NOW BE PROCESSED. THE FIRST MACRO CALL
THIS IS THE FIRST ARGUMENT

THIS IS THE SECOND
ARGUMENT END

TRY THE MACRO I$ ARGl $1 #
I$ ARG2 $1 II
I$ ARG3 $1 • THE TEXT RESULTING FROM THE EVALUATION
OF THIS MACRO (WITH # FOLLOWING EACH OF THE INSERTED
ARGUHENTS) IS:
I$ ARGl $1 II

I$ ARG2 $1 # I$ ARG3 $1 # (NOTE: THE MACRO CALL DON'T
RECOGNIZE A SKIP IS NOT RECOGNIZED WITHIN THIS SKIP)

Several points should be mentioned concerning this evaluation.

1. The skip definition MCSKIP MT, I WITH $ $ WITH I is a matched skip
with the text option enabled. Any occurrence of this skip will

ML/I Reference Manual Page 67

cause the text between its delimiters to be copied over to the out­
put text with the delimiters dropped. The importance of a matched
skip is best illustrated by the last example of this skip. It is
imperative that the atoms "$/" of one of the innermost skips not be
recognized as the closing delimiter of the outermost skip. There­
fore, since the outermost skip is a matched skip, the skips nested
within the first skip are matched with their delimiters before the
outermost skip is matched with its delimiters. Furthermore, since
only other skips are recognized within matched skips, the warning
marker and macro call "$ DON'T RECOGNIZE A SKIP" are not recognized
as such (note: if this call had been recognized, the macro would
have had null arguments).

2. The definition MCDEF II AS /$ WITH SPACE WITH $/ will cause every
occurrence of "II" to be replaced by "WITH SPACE WITH". Since the
arguments of all operation macros are evaluated, the specification
of "INSERTIITHEIIFIRSTII •••• " will be expanded into "INSERT WITH SPACE
WITH THE WITH SPACE WITH FIRST •••••• " and thus results in the
intended structure representation. Notice that " WITH SPACE WITH "
was enclosed within literal brackets in order to include the lead­
ing and trailing blanks.

3. The structure representation of the definition MCDEF
INSERTIITHEIIFIRST. • • • • will be expanded as previously mentioned.
The replacement text of the macro is enclosed within literal brack­
ets in order to prevent the attempted insertion of the non-existing
arguments and delimiters (since the definition occurs within the
source text). Again this situation is due to the evaluation of the
arguments of an operation macro. Note that a call of this macro
results in the insertion into the output text of the first argument
on one line and the second argument and closing delimiter on the
next line. This is caused by the occurrence of the newline marker
between %Al. and %A2.

When this macro is called, the arguments will be evaluated (since
an insert flag of "A" is used). Thus, the text resulting from the
macro call occurring within the source text consists of "THIS IS
THE FIRST ARGUMENT.
THIS IS THE SECOND
ARGUMENT END"

Since the arguments were enclosed within literal brackets, their
evaluation resulted in the dropping of the enclosing brackets.

4. The macro definition MCDEF DON'T RECOGNIZE A • • • • • has several
interesting features. Again the replacement text must be enclosed
within literal brackets in order to prevent the evaluation of the
inserts. When the replac~ment text of the macro is evaluated, the
resulting text will consist of the unevaluated first argument fol­
lowed by "#", the unevaluated second argument followed by "II", and
the unevaluated third argument followed by "II". Notice that "II" is
no longer recognized as a macro since the operation macro MCNODEF
had previously deleted all macro definitions from the local

Page 68 ML/I Reference Manual

environment.

12.2 ~ EVALUATION OF REPLACEMENT TEXT

The evaluation of replacement text is very similar to the evaluation of
source text. There are, however, a few differences which prove to be
unique to its evaluation.

In defining a construction definition within the source text, the defin­
ition will be applicable to all subsequent text evaluation. However,
this is not true for any definition encountered during the evaluation of
a piece of replacement text. The new construction will be recognized
during the evaluation of any inserted text resulting fro~ the processing
of an insert encountered within the replacement text, or during the
evaluation of the replacement text of any macros called from within the
original replacement text. But upon the completion of the evaluation of
the replacement text in which the definition occurred, the definition
(as well as any other definitions which occurred in that replacement
text) will be deleted from the name environment.

This type of construction definition nesting is analogous to the defini­
tion of symbols in a block structured programming language. Any symbol
defined at a certain block level will be recognized at that level and
within any blocks nested within that block (unless shielded by an inner
definition of the same symbol). However, the symbol will no longer be
recognized once the block in which it was defined has been terminated.
The only difference between this type of symbol definition and the
definition of constructions in ML/I is that the same construction name
can have several different definitions at the same level of macro nest­
ing. The latest definition will always be used.

The final significant contrast between the evaluation of the two types
of text involves the relationship between the insertion of macro labels
and the operation macro MCGO. It is legitimate to insert a macro label
into the source text but the label itself will not be added to the
environment. Thus, MCGO cannot be used to perform a backward macro-time
GO TO to a macro label within the source text. However, any macro label
inserted into a piece of replacement text will be added to the macro's
environment and can be the object of a backward MCGO.

The following example is a possible way of writing the replacement text
of the DO macro used in Dr. Brown's original user's manual [3]. The
macro name is DO, the second delimiter is TIMES, and the closing delim­
iter is REPEAT. The constructions defined in the section on source text
evaluation will be used (since they apply to the replacement text of any
macros called from within the source text).

ML/I Reference Manual

%L1.MCSET T1=%A1.
%A2.
MCSET T1=T1-1
MCGO L1 IF T1 GE 1

Page 69

The macro could be used in conjunction with the following code to com­
pute the factorial of 5.

J=1
K=1

DO 5 TIMES
J=J*K
K=K+l

REPEAT

The expansion of the macro would produce the following code:

J=1
K=1
J=J*K
K=K+1
J=J*K
K=K+1
J=J*K
K=K+l
J=J*K
K=K+l
J=J*K
K=K+l

12.3 THE EVALUATION OF INSERTED TEXT

Inserted text refers to the arguments and delimiters of a macro call
which, because of an insert with a flag of either A, B, or D, may be
evaluated and inserted into a piece of replacement text.

The rules pertaining to the evaluation of inserted text are the same as
those relating to the evaluation of replacement text.

Page 70 ML/I Reference Manual

12.4 FURTHER EXAMPLES

This chapter was intended to serve as a rudimentary guide to the defini­
tion of constructions and the use of these constructions (along with the
operation macros) in the evaluation of text. For more detailed examples
on how to use ML/I, the reader should refer to Dr. Brown's original user
manual, particularly chapter 7. For any discrepancies between the ori­
ginal definition of ML/I and my implementation, the exclusion list of
chapter 13 should be consulted.

ML/I Reference Manual

13. EXCLUDED AND INCLUDED FEATURES

13.1 EXCLUSION LIST

The following language features have been excluded from my implementa­
tion of ML/I:

I. Exclusive delimiters - the absence of exclusive delimiters prevents
a user from using the same closing delimiter in the matching of
several nested construction calls. If a construction does not have
either a newline or startline marker as its closing delimiter, the
omission of exclusive delimiters will not be a serious drawback.
The user must simply specify the correct number of closing delimit­
ers when matching nested calls. If a construction has either new­
line or startline as its closing delimiter (and the construction
may be used in a situation where exclusive delimiters will be
needed), then it is recommended that the construction be defined
with some other closing delimiter.

2. A consequence of not having exclusive delimiters is that a struc­
ture representation cannot be followed by a nodego (i.e. NO).
Therefore, the last delimiter specification of a structure
representation must specify the closing delimiter.

3. The first delimiter specification of a structure representation
cannot be an option list - it must be a delimiter name specifica­
tion. This prevents the user from using a single definition to
define several different names for the same construction. The user
can achieve the same effect by repeating the construction defini­
tion separately for each of the names.

4. Because of the preceding two exceptions, the syntax of a structure
representation is now:

structure_representation= delim_name {del_spec}.

5. When matching a series of atoms against the construction names in
the environment, longer environmental names do not necessarily take
precedence over shorter names. If two names begin with the same
series of atoms, then the processor will attempt to match the most
recently defined name first. If the user wishes the longer name to
take precedence, its definition should occur after the definition
of any other name having the same initial atoms. The same concept

Page 72 ML/I Reference Manual

applies to the matching of a secondat"y delimiter. If several
branch names of an option list begin with the same atoms, the pro­
cessor will first attempt to match the branch names closest to the
beginning "OPT" of the option list. The precedence of a longer
secondary delimiter within an option list can be forced by defining
it as the first branch of the list.

6. A space or a series of spaces cannot be defined as the initial atom
of a construction name. This feature was excluded mainly to
improve the speed of the processor. However, the user can still
specify that a space or sequence of spaces should be searched for
during the matching of the secondary atoms of a multi-atom delim­
iter. Therefore, the name delimiters

MOVE WITH SPACE WITH SPACE WITH FROM

and

MCSUB WITHS (

are still legal delimiter definitions.

7. All inserts are unprotected. Therefore, the environment used in
evaluating a piece of inserted text is the one that was in effect
when the insert was encountered, not the environment which was in
effect when the call containing the inserted text was encountered.

B. Warning markers are not implemented. If a warning marker were
added to the environment (thus placing the environment in warning
mode), then macros would be recognized only if they were preceded
by a warning marker. The same effect can be achieved by using
literal brackets. If the user does not wish a macro to be recog­
nized within a piece of text, then he should enclose the macro name
within literal brackets.

13.2 INCLUSION LIST

The following features are present in my implementation but do not
appear in the original definition:

1. In the operation macro MCGO, the numerical comparison operators are
supplemented by:

NT - meaning Not Equal

LT - meaning Less Than

LE - meaning Less than or Equal to

ML/I Reference Manual Page 73

2. Since the writing of a correct structure representation may be dif­
ficult for someone unfamiliar with ML/I, the following error mes­
sages pertaining to structure representations have been included in
the implementation. Each message is self-explanatory.

A. AN "OPT" WHICH BEGINS AN OPTION LIST DOES NOT HAVE A TERMINAT­
ING "ALL".

B. TWO NODES OCCUR IN SUCCESSION WITHIN AN OPTION LIST

C. A NODE OCCURS AFTER THE BEGINNING "OPT" OF AN OPTION LIST

D. A BRANCH OF AN OPTION LIST DOES NOT HAVE A NAME

E. TWO OF THE BRANCH NAMES OF AN OPTION LIST CAN MATCH THE SAME
PATTERN OF DELIMITERS (I.E. THEY ARE NOT UNIQUE)

F. A KEYWORD HAS BEEN USED AS A DELIMITER

G. TWO NON-PUNCTUATION CHARACTERS ARE CONNECTED BY "WITH" WITHIN
A DELIMITER NAME SPECIFICATION

H. A NODE OCCURS WITHIN A DELIMITER NAME SPECIFICATION

I. A NODE IS MULTIPLY DEFINED WITHIN AN OPTION LIST

J. A NODEGO WITHIN AN OPTION LIST REFERS TO AN UNDEFINED NODE

K. THE STRUCTURE AS WRITTEN IS UNCONNECTED

L. A DELIMITER NAME SPECIFICATION CONTAINS AN ILLEGAL ATOM

M. A NODEGO FOLLOWS A STRUCTURE REPRESENTATION

N. WARNING - A NODEPLACE PRECEDES THE SINGLE DELIMITER NAME OF A
STRUCTURE REPRESENTATION

ML/I Reference Manual

14. APPENDICES

The following appendix contains instructions on the use of this imple­
mentation. Certain system dependencies (such as the initial values of
system variables) are presented.

Appendix B - IBM System/360 Implementation

ML/I Reference Manual

BIBLIOGRAPHY

[1) Brown, P. J. (1970). ML/I User's Manual, 4th Edition,
University of Kent at Canterbury.
Available through:

Computing Laboratory
The University of Kent at Canterbury
Kent, England CT2 7NF

(2] Wirth, N. "What Can We Do about the Unnecessary Diver­
sity of Notation for Syntactic Definitions?". Comm.
ACM 20, 11 (Nov. 1977) 822-823. Copyright 1977 -
reprinting privileges were granted by permission of the
Association for Computing Machinery.

[3) page 2/4, ML/I User's Manual, 4th Edition, University
of Kent at Canterbury.

IBM System/360 Implementation

- i -

TABLE OF CONTENTS

I. RESTRICTIONS AND ADDITIONS 1

II. OPERATING INSTRUCTIONS AND I/O 1

III. MACRO LIBRARIES . . . 2

IV. RESTRICTING THE CHARACTER POSITIONS WITHIN A RECORD 3

v. PROGRAM PARAMETERS 3

VI. CHARACTER SET 4

VII. ERROR MESSAGES . . 4

VIII. INTEGER CALCULATIONS 4

IX. LAYOUT KEYWORDS . . . 4

x. S-VARIABLES 5

ML/I Reference Manual - Appendix A

1. RESTRICTIONS AND ADDITIONS

This implementation of ML/I contains all the features described in the
ML/I User's Manual (4th edition, August 1970) with the exception of
those features mentioned in the exclusion list of Chap. 13 of the Refer­
ence lmnual. The inclusion list of that chapter describes several addi­
tional features.

2. OPERATING INSTRUCTIONS ~!/0

To run ML/I under OS/360 MVT Release 21.8 - Hasp II Version 3.1 (taking
the input form a disk dataset and sending the results to another disk
dataset), the following JCL must be used:

I /MLI EXEC PGM=MLI ,PARM=, I ' ...• ' ...• ,
//STEPLIB DD DSN= ••••••• ,DISP=SHR,UNIT=DISK
//SOURCE DD SYSOUT=A,
II DCB=(RECFM=VB,BLKSIZE=141,LRECL=137)
//SYSPRINT DD SYSOUT=A,
II DCB=(RECFM=VBA,BLKSIZE=141,LRECL=137)
//RESULTS DD DSN= ••••••• ,DISP=SHR,UNIT=DISK
//DEBUG DD SYSOUT=A,
II DCB=(RECFM=VB,BLKSIZE=141,LRECL=137)
//PLIDUMP DD SYSOUT=A
//INPUT DD DSN= ••••••• ,DISP=SHR,UNIT=DISK

If no parameters are used, the EXEC card is simply

/ /MLI EXEC PGM=MLI

(see section 5 for a list and description of the program parameters).

The following files are used by the macro processor:

1. INPUT - the file containing the source text to be evaluated.

2. SOURCE - the file on which the listing of the source text is
printed.

Page 2 ML/I Reference Manual - Appendix A

3. RESULTS - the file on which the result of the evaluation of the
source text is printed.

4. SYSPRINT - the system print file (also used to hold the results of
the evaluation of the source text).

5. DEBUG - the file on which all error messages are printed.

Output can be suppressed on any of the four output files (SOURCE,
RESULTS, SYSPRINT, DEBUG) by specifying

//filename DD DUMMY

where "filename" is the particular file not to be used for output.

Output may be controlled during processing by changing the values of S20
- S22 (via the operation macro "MCSET").

S20 = 0 turns SYSPRINT listing off
1 " " " " on

S21 = 0 turns RESULTS listing off
1 " " " " on

S22 = 0 turns SOURCE listing off
1 " " " 11 on

The initial values of the S-variables are described in section 10.

3. MACRO LIBRARIES

If a dataset containing a set of construction definitions (i.e. a macro
library) is to be used, then the INPUT card might appear as:

//INPUT DD DSN=MACRO.LIB,DISP=SHR,UNIT=DISK
II DD DSN=MLI.INPUT,DISP=SHR,UNIT=DISK

where "MACRO.LIB" is the macro library and "MLI. INPUT" contains the
source text to be evaluated.

ML/I Reference Manual - Appendix A Page 3

4. RESTRICTING THE CHARACTER POSITIONS WITHIN A RECORD

The S-variables S11 and S12 can be set to restrict the character posi­
tions within a line of input. This is generally used for card input to
ignore (i.e. not evaluate) the first column and the last eight columns
(73 to 80) of the record, but it may be used on any input device. The
processor ignores a character unless

S11 < column number < S12

where 'column number' means 'the character position within a record'.
Initially, S11 has the value 2 ~nd S12 is set to 72 (note: if S12(S11,
then a newline marker is the only character evaluated for each input
record).

5. PROGRAM PARAMETERS

The following parameters may be used when calling ML/I

Parameter Default Value

LRECL- the length of an input record 80

SYSVAR# - the number of system variables 24
to be added to the environment

HT __ SIZE - the size of the local and 31
global construction definition
hash tables

Sll - the value of system variable 11 2

S12 - the value of system variable 12 72

S22 - the value of system variable 22 1

An example of parameter usage is

//MLI EXEC PGM=MLI,PARM='/LRECL=133,S11=1,S12=133'

which causes input records of 133 bytes to be read in by the macro pro­
cessor. Furthermore, evaluation will begin in column 1 and end in
column 133. All input records must be of fixed length.

Page 4 ML/I Reference Manual - Appendix A

6. CHARACTER SET

The character set is the full EBCDIC character set (including lower case
letters and control characters).

7. ERROR MESSAGES

Error messages are sent to the file DEBUG. In printing any text (such
as arguments and delimiters) within an error message, only the first 50
characters of the text (followed by " ••••• ") will be printed.

8. INTEGER CALCULATIONS

The initial environment contains ten permanent variables and (as a
default) 24 system variables. All permanent variables are initialized
to zero. All integers in, or derived from macro expressions, have a
precision of 31 bits. Overflow is detected and reported as an error.

9. LAYOUT KEYWORDS

The following layout keywords are used in this implementation:

SPACE meaning a space

SPACES meaning a sequence of one or more spaces

NL meaning a newline

SL meaning a startline marker

ML/I Reference Manual - Appendix A Page 5

10. S-VARIABLES

There are 24 S-variables available. This number can be increased (but
not decreased) through the use of the program parameter "SYSVAR#". The
meanings and initial values of these variables are the following.

Variable Initial Value

S1 not used 0
S2 the source line count 1
S3 not used 0
S4 if 0 then print the context 0

of an error message after a
call of "MCNOTE"

SS-S10 not used 0
Sll starting column 2
S12 ending column 72
S13-S19 not used 0
S20 (see section 2) 1
S21 (see section 2) 1
S22 (see section 2) 1
S23-S24 not used 0

ML/1 Logic Manual

- i -

TABLE OF CONTENTS

I. INTRODUCTION 1

II. SYSTEM ORGANIZATION • 3

2.1. Initialization Routines 3
2.2. Scanning Routines 3
2.3. Symbol Table Routines 4
2.4. Operation Macro Routines 4
2.5. Construction Routines 4
2.6. Text Forming Routines • 4
2.7. Storage Releasing Routines 5
2.8. Evaluation Routines 5
2.9. Printing Routines • 5
2.10. Macro Expression Routines 5
2.11. Error Routines 5
2.12. Statistical Information 6

III. MODULES 7

3.1. MLI • 8
3.2. PUNCINT 8
3.3. !NIT • • 8
3.4. SCANSRC 8
3.5. SCANNER • • 8
3.6. SCAN • 8
3.7. MATCHNM • 9
3.8. DELS 10
3.9. ALTRDEL 11
3.10. LOCDEF • 11
3.11. GLOBAL • • 16
3.12. MATCH • • 19
3.13. PRINT • • 19
3.14. FORMTXT • • 19
3.15. OUTPUT • • • • • • 20
3.16. MACRO • • • 21
3.17. SKIP • • • • 21
3.18. INSERT • • • 21
3.19. INS TEXT • • • • • 22
3.20. ARGFREE • • •.. • • • 22
3.21. MCINS • • • • 23
3.22. MCSKIP • • • • 23
3.23. MCDEF • • • • 24
3.24. MCNO • • • • • 24
3.25. MCALTER • • 24

3.26.
3.27.
3.28.
3.29.
3.30.
3.31.
3.32.
3.33.
3.34.
3.35.
3.36.
3.37.
3.38.
3. 39.
3.40.
3.41.
3.42.
3.43.
3.44.
3.45.
3.46.
3.47.
3.48.
3.49.
3.50.

MCLENG
MCSUB
MCSET
MCNOTE
MCGO •
MCPVAR •

•
•

DELETE
EVALARG
RELEASE
STRUC
MACEXPR
TERM •
PRIMARY
OPERAND
MACVAR
FETCH
PRNTDEL
PRINTXT
CONTEXT
MCERRS
ERR! •
ERR2 •
ERR3
ERROR
STATS

•

•

•

•

•
•
•

•
•

•

•

•

IV. EXTERNAL VARIABLES

v.

4.1.
4.2.
4.3.
4.4.
4.5.
4.6.
4.7.

5.1.
5.2.
5.3.
5.4.
5.5.

Secondary Delimiters
Reserved Keywords
Layout Keywords

• Character Sets
Input/Output Variables
Environmental Variables
Scanning Variables

SYSTEM FILES

INPUT
SYSPRINT
RESULTS
SOURCE •
DEBUG

•

•

•

• •

- ii -

•

•

•

•

•
• •

•

•

•

25
25
26
26
26
27
27
28
28
28
33
33
34
34
35
35
36
36
36
36
37
37
38
38
38

39

39
41
43
44
44
46
48

51

51
51
51
51
51

- iii -

LIST OF FIGURES

Figure 1: Name Table Associations • 14

Figure 2: Threaded Lists 15

Figure 3: Global Symbol Table 18

Figure 4: A Structure with Fixed Delimiters 30

Figure 5: A Structure containing an Option List 31

Figure 6: Structure with an Option List, Nodeplaces, and Nodegos 32

ML/I Logic Manual

1. INTRODUCTION

This manual describes the organization and external interfaces of the
various modules which constitute the ML/I macro processor. The manual
does not explain the algorithms or internal characteristics of the pro­
grams, but relies on the internal documentation of each program for an
explanation of the module's behavior.

In describing the individual modules of the macro processor, the basic
function and external interfaces of each module will be stated.
Diagrams illustrating certain data structures (such as the symbol table
or certain directed graphs) are provided to assist in the modification
of the routine.

The ML/I macro language itself is described in the language reference
manual. Briefly, ML/I is a nested, recursive, conditional macro
language in which multi-atom names and delimiters may be defined by the
user. The language can be classified as general purpose since it
accepts any form of input.

ML/I Logic Manual

2. SYSTEM ORGANIZATION

The basic function of the macro processor is to scan the source text and
evaluate each atom as it is scanned. The evaluation of an atom deter­
mines whether the atom is the beginning of a local or global construc­
tion (i.e. macro, skip, or insert). If a construction is found, then
the construction is matched with its delimiters and the appropriate
action is taken. The process is recursive since both the replacement
text and the arguments of a macro may be scanned and evaluated.

This section describes the system organization by classifying routines
according to their functions. Subsequent sections describe the external
interfaces of each module, external variables, and the files used during
the processing of text.

2.1 INITIALIZATION ROUTINES

MLI !NIT PUNCINT

Before evaluating the source text, the macro processor must initialize
the macro-time environment. The initialization process includes: read­
ing in the run-time parameters, allocating and initializing the system
variables, allocating the permanent variables, initializing the number
of temporary variables to zero, initializing the reserved keywords, the
layout keywords, the node flag, and the secondary delimiters of the
operation macros, initializing such special characters as the end of
text marker (OMEGA), the newline marker (NL), etc., initializing the
character sets, setting flags to be used during subsequent text evalua­
tion, allocating the local and global symbol tables, and adding the
operation macro definitions to the local symbol table.

2.2 SCANNING ROUTINES

SCANSRC SCANNER SCAN MATCHm! DELS OUTPUT ALTRDEL

After the environment is initialized, SCANSRC is called to scan and
evaluate the source text. In evaluating any piece of text, SCANNER and
SCAN are called repetitively. SCANNER returns the next atom from a
piece of text and SCAN evaluates this atom. If SCAN determines that an
atom matches the first atom of a possibly multi-atom construction name,
then MATCHNM is called in an at.tempt to match the remaining atoms of the
construction name. If a match is discovered, then the routine DELS will
find the remaining delimiters of the construction. Note that when a
construction name is matched with its subsequent delimiters, the con­
struction is not necessarily evaluated. For instance, constructions

Page 4 ML/I Logic Manual

nested within the
ment is inserted.
routine OUTPUT is

arguments of a macro are evaluated only when the argu­
If a matched construction is not to be evaluated, the

called to transmit the arguments and delimiters to the
appropriate medium.

2.3 SYMBOL TABLE ROUTINES

LOCDEF GLOBAL MATCH MCNO STRUC

There are three routines which manipulate the symbol table: LOCDEF, GLO­
BAL, and MCNO. LOCDEF adds a new construction definition to the local
symbol table, GLOBAL adds a new definition to the global symbol table,
and MCNO deletes entries from the local table. The routine MATCH deter­
mines whether a construction name is already in a symbol table and the
routine STRUC constructs a directed graph to be used in searching for
the arguments and delimiters of constructions contained in the symbol
tables.

2.4 OPERATION MACRO ROUTINES

MCINS MCDEF MCSKIP MCNO MCALTER MCLENG
MCSUB MCNOTE MCGO MCPVAR MCSET

The names of the operation macro routines are self-explanatory in that
they correspond to the operation macros described in the reference
manual. The only difference is the routine MCNO which implements the
operation macros MCNODEF, MCNOINS, and MCNOSKIP.

2.5 CONSTRUCTION ROUTINES

MACRO SKIP INSERT INS TEXT

As with the operation macros, the routines which implement the various
constructions are given the obvious names MACRO, SKIP, and INSERT. For
instance, MACRO performs the actions associated with the processing of a
macro. The routine INSTEXT is used to insert either an argument or a
delimiter of a macro into the output text.

2.6 TEXT FORMING ROUTINES

FORMTXT

The routine FORMTXT forms a linked list of text by concatenating an atom
to a piece of previously formed text. Linked lists of text are used
frequently within the macro processor. Such lists are used in forming:
the arguments and delimiters of construction calls, the replacement text
of macros, the names of constructions, etc.

ML/I Logic Manual Page 5

2.7 STORAGE RELEASING ROUTINES

RELEASE ARGFREE

Linked lists of text, containing various types of information, can
quickly deplete available storage. Such a situation can occur when the
arguments of a construction are being stored. If the construction is
called several times during the evaluation of text, then the linked
lists containing the arguments of the various activations of the con­
struction may occupy considerable space. Thus, storage must be released
once it is no longer needed.

The routine RELEASE releases the based storage containing the arguments
and delimiters of a construction which has just been processed. ARGFREE
is used to release the storage containing the evaluated argument of a
construction call.

2.8 EVALUATION ROUTINES

SCAN EVALARG DELETE

Evaluation involves the comparison of an atom against the construction
names contained within the local and global symbol tables. The routine
SCAN performs this comparison and takes the appropriate actions when a
match is found. The module EVALARG evaluates the arguments of an opera­
tion macro and the routine DELETE deletes leading and trailing blanks
from a piece of text before it is evaluated.

2.9 PRINTING ROUTINES

PRINT

The routine PRINT prints an atom on the output files SYSPRINT and
RESULTS.

2.10 MACRO EXPRESSION ROUTINES

MACEXPR TERM PRIMARY OPERAND MACVAR FETCH

The preceding routines are used in the evaluation of macro expressions.

2.11 ERROR ROUTINES

ERROR
MCERRS

ERR1
CONTEXT

ERR2
PRINTXT

ERR3
PRNTDEL

Errors reported during macro processing are those relating to macro
expressions, illegal arguments, erroneous structure representations, and
unfound. closing delimiters. The reference manual provides more

Page 6 ML/I Logic Manual

information concerning these error messages.

2.12 STATISTICAL INFORMATION

STATS

The routine STATS prints statistical information at the end of the pro­
cessing of the source text. This information includes the number of
source lines scanned, the number of macros called, and the constructions
remaining in the environment at the end of the text processing.

ML/I Logic Manual

3. MODULES

The macro processor consists of 50 external routines. The division of
the entire program into external routines was formed, for the most part,
on the basis of function. For example, each of the operation macros has
a corresponding module designed to implement that operation macro.
There are modules which process a macro, print error messages, evaluate
arguments, and form a sequence of text.

There are two obvious interfaces to any external routine; the interface
as specified by the formal parameters of a routine, and the interface
suggested by the use of external variables. A subsequent section of the
manual describes the external variable interface; this section illus­
trates the various module interfaces. In describing the module inter­
faces, each module is listed together with a statement of the function
of the module, the formal parameters of the module, and lists of those
routines which call the module and those routines called by the module.

3.1 MLI

~tion: the main routine for the ML/I macro processor. This routine
initializes the environment to be used in all subsequent text evalua­
tion.

Parameters:

1. LRECL - the maximum length of an input card.

2. SYSVAR./1 - the number of system variables to be added to the
environment.

3. HT_SIZE - the size of the hash tables.

4. Sll - the value of system variable 11.

5. 512 - the value of system variable 12.

6. 522 - the value of system variable 22.

Called Ex_: (none)

Calls: !NIT, PUNCINT, SCANSRC, STATS

Page 8 ML/1 Logic Manual

3.2 PUNCINT

Function: initializes the set of punctuation characters.

Parameters: (none)

Called _!>z: MLI

Calls: (none)

3.3 !NIT

Function: adds the operation macro definitions to the local name
environment.

Parameters:

1. STRUC_REP- the structure representation of an operation macro.

Called by: ML I

Calls: FORMTXT, LOCDEF, STRUC

3.4 SCANSRC

Function: scans and evaluates the source text.

Parameters: (none)

Called }>y: ULI

Calls: SCAN, SCANNER

3.5 SCANNER

Function: returns the next atom from a piece of text.

Parameters:

1. SRCPTR- points to the text card being scanned.

2. COL - the column in which the scan for the next atom of the text
will resume.

3. ATOU - the atom to be returned.

4. SCANTYPE - the type of the scan.

ML/I Logic Manual Page 9

5. TEMPCARD - the card currently being scanned.

Called E_l: SCANSRC, MATCHNM, DELS, LOCDEF, GLOBAL, MATCH, OUTPUT, MACRO,
SKIP, INSERT, INS TEXT, MCALTER, MCSUB, MCNOTE, MCGO, EVALARG, STRUC,
FETCH, PRNTDEL , PRINTXT

Calls: ARGFREE, CONTEXT, SCANNER

3.6 SCAN

Function: evaluates an atom to see whether it is the beginning of a con­
strue tion name.

Parameters:

I. ATOM- the atom to be evaluated.

2. SRCPTR - indicates the input medium.

3. TEXTPTR - points to the piece of text in which the evaluated atom
is to be stored.

4. OLDLNGTH - the length of the text card in which the evaluated atom
is to be stored.

5. COL - the column in which the scan for the next atom of the text
will resume.

6. TEMPCARD - the card currently being scanned.

Called ?y: SCANSRC, DELS, MACRO, INSERT, INSTEXT, EVALARG

Calls: MATCHNM, DELS, MACRO, SKIP, INSERT, MCINS, MCSKIP, MCDEF, MCNO,
MOOTER, MCLENG , MCSUB , MCSET , MCNOTE , MCGO , MCPV AR, OUTPUT , FORMTXT ,
PRINT

3.7 MATCHNM

Function: matches the remaining atoms of a possibly multi-atom delim­
iter.

Parameters:

I. ATOM- an atom of the scanned text.

2. SRCPTR - points to the text in which the subsequent atoms of the
delimiter may be found.

3. COL - the column in which the scan for the next atom of the

Page 10 ML/I Logic Manual

delimiter will resume.

4. TEMPCARD - the text card currently being scanned for the atoms of
the delimiter.

5. MATCHED - flag indicating that the procedure matched a delimiter.

6, DELIM__NAME - points to the delimiter name specification for the
delimiter which the procedure is trying to match.

7, DELIM - points to the head of the linked list of text containing
the delimiter which the procedure has matched.

8. LAST_ATOM - the last atom scanned during the matching of a delim­
iter.

Called E2: DELS, SCAN

Calls: FORI1TXT , SCANNER

3.8 DELS

Function: finds the remaining delimiters of a construction call.

Parameters:

1. ALPHA - points to the head of the directed graph to be used in
searching for the delimiters of the construction.

2, ARGHEAD - points to the head of the argument list of the construc­
tion.

3. DELHEAD - points to the head of the delimiter list of the construc­
tion.

4. #_OF_ARGS - the number of arguments of the construction.

5. SRCPTR - points to the text currently being scanned.

6. COL - the column in which the scan for the next atom of the text
will resume.

7. TEMPCARD- the card currently being scanned.

8. ERR - flag indicating that the end of the text was reached before
the construction's closing delimiter was found.

9. CONSTRUC __ TYPE - the type of construction for whose delimiters are
being searched.

10, CONSTRUC_NAME - the name of the construction.

ML/I Logic Manual Page 11

11. LEVEL - indicates whether the construction is an operation macro
(i.e. has a nesting level of -1).

12. LAST_ATOM - the last atom scanned during the matching of a delim­
iter.

13. MTSKIP - flag indicating whether the construction whose arguments
and delimiters are being formed is nested within a matched skip.

14. STRSCAN - flag indicating whether the construction whose arguments
and delimiters are being formed is a straight-scan macro.

Called~: SCAN

Calls: ALTRDEL, ERR3, FORMTXT, MATCHNM, SCAN, SCANNER

3.9 ALTRDEL

Function: converts the representation of an operation macro's secondary
delimiter to the delimiter's current value.

Parameters:

1. DELATOM- the secondary delimiter of an operation macro.

Called ~: DELS

Calls: (none)

3.10 LOCDEF

Function: adds a construction name to the local environment.

Parameters:

1. NAMEPTR- points to the text containing the new construction name.

2. CONSTRUCQ- qualifier for "CONSTRUC".

Called ~: INIT, MCDEF, MCINS, MCSKIP

Calls: MATCH, SCANNER

Resultant Data Structure:

LOCDEF builds the symbol table of local construction names. The local
symbol table consists of a hash table (containing two pointers) and
three types of doubly linked lists. The operations performed on the
symbol table are table look-up, insertion, and deletion. The doubly

Page 12 ML/I Logic Manual

linked lists of the symbol table are necessary in order to provide for
the easy deletion of table entries.

The symbol table resulting from this procedure is utilized by SCAN in
matching an atom with a construction name, by MCNO in deleting construc­
tions from the environment, and by STATS in providing statistical infor­
mation (such as the current local constructions) at the end of the
evaluation of the source text.

The following examples illustrate the data structures which may be asso­
ciated with a particular hash table entry. In this example, the con­
struction names "MCSUB (", "X (", and "X;" have all hashed to the same
location. The construction "MCSUB (" is an operation macro and was the
first construction associated with this entry. Next the skip "X (" was
entered at block level 0 (i.e. in the source text). This definition was
followed by the insert definition "X (" also occurring within the source
text. The last entry made from the source text was the macro "X;".
Finally , in block level 1 the skip "X (" was entered and in block level
2 the macro "X;" was entered. The example illustrates the data struc­
ture as it would appear during the evaluation of text at block level 2.
For simplicity, the example has been split into two parts. ~The first
part (figure 1) shows the name table associated with the hash table
entry and the constructions associated with each name table entry. The
second part (figure 2) shows the threaded lists used in determining the
most recent construction entries (see the internal documentation of LOC­
DEF for further details).

ML/I Logic Manual

The format of the data structure is:

HASH TABLE
ENTRY

I I I
I THRD_HEAD I NT_HEAD 1------------> NAME TABLE ENTRIES
I I I

v

I
I
I
I
v

I
I
I
I
v

Page 13

CONSTRUCTIONS ASSOCIATED WITH
THE NAME TABLE ENTRIES

where each construction entry is of the form:

I
I UP CONSTRUCTION BLOCK LEVEL OF
I POINTER TYPE THE DEFINITION
I __________ --------
1
I CONSTRUCTION INFORMATION
I
I
I BACKWARD DOWN FORWARD
I THREAD POINTER THREAD
I ______________ _

Page 14

HASH TABLE
ENTRY

ML/I Logic Manual

I
MSUB WITH (I X WITHS (X WITH ;

'-----
A A A
I I I

--.,.----'- '-- '--,..--
' ill I I Ill 1--->1 I I Ill I 1--->1 I I Ill 1/1
I I -1--->1/141 IMCSUBI I 1<---1 141 I lXI 1<---1 141 I lXI/I
l_l_l I I L1 II '-'-' '-'-' 11-'-'-1 1-1-111-'-' I I

A I A I A I
I I I I I I
I I I -----1

_1__v _, v _, __ v __ _
I I I II I I II I I
I I 3 I -1 I I I 1 I 1 I I I 0 I 2
l ___ l __ l I I l_l I l __ l_l __
I OPHACRO I I SKIP I I MACRO
I INFORMATION I I INFORMATION I I INFORMATION
L I I I I _____ _

I BKWD I / I FRWD I I BKWD I FRWD I I BKWD I I FRWD
ITHRD I / ITHRD I !THRD I ITHRD I ITHRD I ITHRD
I __ ll_l __ l I l_l_l __ l '--'-'-'--

Figure _1_.

A I A I
I I I I
I I I I ___ , __ v _, __ v __ _

I I I I I I
I I 2 I 0 I I 0 I 0 , ___ ,_, , __ ,_, __
I INSERT I MACRO
I INFORMATION I INFORMATION

'-- '----;----
' BKWD I FRWD I BKWD I / I FRWD
I THRD I I THRD I THRD I / I THRD
I l_l_l I __ I/_J __

A I
I I
I I

__ l __ v __ _
I I I
I I 1 I 0

'---'-'--1 SKIP
I INFORMATION
I
IBKWD I /iFRWD
ITHRD I I iTHRD , __ ,,_., __

Name Table Associations

MLII Logic Manual

I
I I I HASH TABLE ENTRY
1_1_1_1

I

IUP I
IPTRI 3 1-1 I , __ ,_,_,
I OPMACRO I
I INFORMATION I
1- I
I IDWNI II
I IPTRI I I

'-'-'--11-1
I A
I
I
I
I
I
I

I
I
I

I
v

I
I
v

I !UP I !UP I
I IPTRI 1 I 1 I IPTRI 0 I 2 I
I l_l_l_l J_L_I_I
I I SKIP I I MACRO I
I !INFORMATION! <--- !INFORMATION!
I L I I I I
I I IDWNI I I I IIDWNI I
I I IPTRI I I I I IPTRI I
I LU_I_I_I I I l_l_l_l_l
I I A I I I
I I I I ---------------
-------- I -----------------

I __ v, __ _

!UP I !UP I
IPTRI 2 I 0 I IPTRI 0 I 0 I

'--'---'-' '---'-'-' I INSERT I I MACRO I
------> !INFORMATION! !INFORMATION!

I__ I I I
I IDWNI I I IDWNI I
I IPTRI I I IPTRI I
I_I_L_LU U. J_I_U

I A I I A I
I I I -------- I I
I ----1----------------1----
1 I I
--------1----------------­_______ v_

!UP I I I
IPTRI 1 I 0 I

'--'-'-' I SKIP I
-----1-----1-----) !INFORMATION!

I I I_. I
I I I IDWNI I
I ---------- IPTRI I
I 1--L-1-1-1
I I

Figure ~· Threaded Lists

Page 15

Page 16 ML/1 Logic Manual

3.11 GLOBAL

Function: adds a construction name to the global environment.

Parameters:

1. NAMEPTR- points to the text containing the new construction name.

2. GLOBAL.._CONSTRUCQ - qualifier for "GLOBAL_CONSTRUC".

Called EI.: MCDEF, MCINS , MCSKIP

Calls: MATCH, SCANNER

Resultant Data Structure:

Since the only operations performed on the global symbol table are table
lookup and insertion, the data structure used to represent the global
symbol table is much simpler than the one used to represent the local
symbol table. The global symbol table consists of a hash table in which
each entry contains a single pointer, and two types of singly linked
lists.

The symbol table resulting from this procedure is used by SCAN in match­
ing an atom with a construction name and by STATS in providing statisti­
cal information (such as the current global constructions) at the end of
the source text evaluation.

The following example displays a hash table entry (with associated
linked lists) as it might appear after the processing of at least 3 dif­
ferent nesting levels of text evaluation.

ML/I Logic Manual

The format of the data structure is:

HASH TABLE
ENTRY

I I
I NT_HEAD 1------------> NAME TABLE ENTRIES
I I

I
I
I
I
v v v

CONSTRUCTIONS ASSOCIATED WITH
THE NAME TABLE ENTRIES

where each construction entry is of the form:

I
I CONSTRUCTION
I TYPE

I_ --------------------
1
I CONSTRUCTION INFORMATION
I
I
I DOWN
I POINTER
I __________ _

Page 17

Page 18

HASH TABLE
ENTRY

I
I ------>
'--1

I
I

A WITH

A
I

____ l-:----.,--:-
1 I

I 4 I I I A I ------->
I_LU_I_I_I

I
I
I

v

I
1 I

ML/I Logic Manual

X WITH

A
I

--.,.-----,-:-:-1 --,;-1

I 4 I I I X I I I
l__l_l_l __ l_l /_I

0

I
I
I

v

'-- I
I I
I SKIP I MACRO
I INFORMATION I INFORMATION
I '-
I I
I NULL LINK I I
I I I

I
I
I
I
v

I
I 2

'--------
1
I INSERT
I INFORMATION
I _____ _

I
I NULL LINK
I __ -----

Figure 1.• Global Symbol Table

ML/I Logic Manual Page 19

3.12 MATCH

Function: compares two construction names to see whether they match.

Parameters:

1. NAMEPTR# - points to the text containing the new construction name
currently being compared against each entry in a name table.

2. CONPTR# - points to the text containing the construction name asso­
ciated with a name table entry.

Called Ex.: GLOBAL, LOCDEF

Calls: SCANNER

3.13 PRINT

Function: prints an atom on the output file.

Parameters:

1. ATOM- the atom to be printed.

Called Ex.: SCAN, SKIP, INSERT, INSTEXT, MCLENG, MCSUB

Calls: (none)

3 .14 FORMTXT

Function: adds an atom to a piece of text being formed.

Parameters:

1. ATOM- the atom to be added.

2. CARDLNGTH - the length of the text card that is currently being
formed.

3. TQ# - a pointer to the piece of text in which the atoms are
currently being stored.

Called Ex.: DELS, EVALARG, !NIT, INSERT, INS TEXT, MATCHNM, MCLENG, MCSUB,
OUTPUT, SCAN, SKIP, STRUC

Calls: (none)

Page 20 ML/I Logic Manual

3.15 OUTPUT

Function: transmits the delimiters and arguments of a construction call
to a sequence of text (maintained internally as a linked list).

Parameters:

1. TEXTPTR- points to the text card currently being used to store the
argument of the outermost construction.

2. OLDLNGTII - the length of the text card currently being used to
store the argument of the outermost construction.

3. ARGHEAD - points to the head of the argument list of the nested
construction.

4. DELHEAD - points to the head of the delimiter list of the nested
construction.

5. #_OF_ARGS - the number of arguments of the nested construction.

Called .£l.: SCAN

Calls: FORMTXT , RELEASE , SCANNER

3.16 MACRO

Function: processes a macro call.

Parameters:

1. #_OF_ARGS- the number of arguments of the macro.

2. ARGHEAD - points to the head of the argument list of the macro.

3. DELHEAD - points to the head of the delimiter list of the macro.

4. TEXTPTR - indicates the output medium.

5. OLDLNGTH - the length of the text card in which the atoms of the
evaluated replacement text are to be stored.

6. MACROQ - points to the structure containing the information neces­
sary for the processing of the macro.

7. LOCAL- flag indicating whether the macro's definition is local or
global.

Called .£l.: SCAN

Calls: MCNO, RELEASE, SCAN, SCANNER

ML/I Logic Manual Page 21

3.17 SKIP

Function: processes a skip.

Parameters:

1. #_OF_ARGS- the number of arguments of the skip.

2. ARGHEAD - points to the head of the argument list of the skip.

3. DELHEAD - points to the head of the delimiter list of the skip.

4. TEXTPTR - indicates the output medium.

5. OLDLNGTH - the length of the text card in which the text resulting
from the skip is to be stored.

6. SKIPQ - points to the structure containing the information neces­
sary for the processing of the skip.

7. LOCAL - flag indicating whether the skip's definition is local or
global.

Called by: SCAN

Calls: FORMTXT, PRINT, RELEASE, SCANNER

3.18 INSERT

Function: processes an insert.

Parameters:

1. ARGHEAD- points to the head of the argument list of the insert.

2. DELHEAD - points to the head of the delimiter list of the insert.

3. TEXTPTR - indicates the output medium.

4. OLDLNGTH - the length of the text card in which the text resulting
from the insert is to be stored.

5. PREVSRCPTR - indicates the input medium.

6. PREVCOL - the column (within the card that was being scanned when
the insert was encountered) where the search for the atom immedi­
ately following the insert will begin.

Called £!: SCAN

Calls: ARGFREE, CONTEXT, ERR2, FORMTXT, INSTEXT, MACEXPR, MCERRS, MCNO,
PRINT, PRINTXT , RELEASE , SCAN, SCANNER

Page 22 ML/I Logic Manual

3.19 INSTEXT

Function: inserts either an argument or a delimiter of a macro call into
the appropriate output medium.

Parameters:

1. INARG- indicates whether the text to be inserted is an argument or
a delimiter.

2. EVALUATE - indicates whether the text is to be evaluated before it
is inserted.

3. DELETE_SPACES indicates whether leading and trailing spaces
should be deleted from the text before it is inserted.

4. N - indicates the argument or delimiter to be inserted.

5. TEXTPTR- indicates the output medium.

6. OLDLNGTH - the length of the text card in which the value of the
insert is to be placed.

7. ERR- indicates that an error occurred during the attempted inser­
tion of a piece of text.

Called~: INSERT

Calls: DELETE, FORMTXT, MCNO, PRINT, SCAN, SCANNER

3. 20 ARGFREE

Function: frees the storage associated with an evaluated argument of a
construction call.

Parameters:

1. HEADARG - points to the sequence of text cards used to store an
evaluated argument of a construction call.

Called ~: INSERT, MCDEF, MCINS , MCSKIP , SCANNER, MCALTER, MCLENG,
MCSUB, MCSET, MCNOTE, MCGO, MCPVAR

Calls: (none)

ML/I Logic Manual Page 23

3.21 MCINS

Function: processes an insert definition.

Parameters:

1. OPMAC - the name of the operation macro (either ''MCINS" or
"~ICINSG").

2. ARGHEAD - points to the head of the argument list of the operation
macro.

3. DELHEAD - points to the head of the delimiter list of the operation
macro.

Called ~: SCAN

Calls: ARGFREE, CONTEXT, ERR2, ERROR, EVALARG, GLOBAL, LOCDEF, RELEASE,
STRUC

3.22 ~!CSKIP

Function: processes a skip definition.

Parameters:

1. OPUAC - the name of the operation macro (either "MCSKIP" or
''MCSKIPG").

2. ARGHEAD- points to the head of the argument list of the operation
macro.

3. DELHEAD - points to the head of the delimiter list of the operation
macro.

4. #_OF_ARGS - the number of arguments of the operation macro.

Called ~: SCAN

Calls: ARGFREE, CONTEXT, ERR2, ERROR, EVALARG, GLOBAL, LOCDEF, RELEASE,
STRUC

Page 24 ML/I Logic Manual

3.23 MCDEF

Function: processes a macro definition.

Parameters:

1. OPMAC - the name of the operation macro (either "MCDEF" or
"MCDEFG").

2. ARGHEAD - points to the head of the argument list of the operation
macro.

3. DELHEAD - points to the head of the delimiter list of the operation
macro.

4. #_OF_ARGS - the number of arguments of the operation macro.

Called ~: SCAN

Calls: ARGFREE, CONTEXT, ERR2, ERROR, EVALARG, GLOBAL, LOCDEF, MACEXPR,
MCERRS, RELEASE , STRUC

3.24 MCNO

Function: deletes construction definitions from the local name environ­
ment.

Parameters:

1. OPMAC - indicates whether a particular construction or all con­
structions defined at the current level of text evaluation should
be deleted.

Called?~: EVALARG, INSERT, INSTEXT, MACRO, SCAN

Calls: (none)

3.25 MCALTER

Function: alters either the secondary delimiters of operation macros or
the keywords used in structure representations.

Parameters:

1. ARGHEAD - points to the head of~~ the argument list of the operation
macro.

2. DELHEAD - points to the head of the delimiter list of the operation
macro.

ML/I Logic Manual Page 25

Called ~: SCAN

Calls: ARGFREE, CONTEXT, ERR2, EVALARG, RELEASE, SCANNER

3.26 MCLENG

Function: determines the length of its argument.

Parameters:

I. ARGHEAD - points to the head of the argument list of the operation
macro.

2. DELHEAD - points to the head of the delimiter list of the operation
macro.

3. TEXTPTR - indicates the output medium.

4. OLDLNGTH- the length of the text card in which the value of the
operation macro is to be inserted.

Called _b_z: SCAN

Calls: ARGFREE, EVALARG, FORMTXT, PRINT, RELEASE

3.27 MCSUB

Function: accesses a substring.

Parameters:

I. ARGHEAD- points to the head of the argument list of the operation
macro.

2. DELHEAD - points to the head of the delimiter list of the operation
macro.

3. TEXTPTR - indicates the output medium.

4. OLDLNGTH- the length of the text card in which the value of the
operation macro is to be inserted.

Called ~: SCAN

Calls: ARGFREE , CONTEXT, ERR2, EVALARG, MACEXPR, MCERRS , RELEASE,
SCANNER, PRNTXT, PRINT

Page 26 ML/I Logic Manual

3.28 MCSET

Function: implements the macro-time assignment statement.

Parameters:

1. ARGHEAD- points to the head of the argument list of the operation
macro.

2. DELHEAD - points to the head of the delimiter list of the operation
macro.

Called Ex_: SCAN

Calls: ARGFREE , CONTEXT , ERR2 , EV ALARG, FETCH, MACEXPR, MCERRS , OPERAND ,
RELEASE

3.29 MCNOTE

Function: generates a user defined error message.

Parameters:

1. ARGHEAD- points to the head of the argument list of the operation
macro.

2. DELHEAD - points to the head of the delimiter list of the operation
macro.

3. SRCPTR - points to the text that was being scanned at the time the
call of "MCNOTE" was encountered.

Called Ex_: SCAN

Calls: ARGFREE, CONTEXT, EVALARG, RELEASE, SCANNER

3.30 MCGO

Function: implements the macro-time "GO TO" statement.

Parameters:

1. ARGHEAD - points to the head of the argument list of the operation
macro.

2. DELHEAD - points to the head of the delimiter list of the operation
macro.

3. # ___ OF ___ ARGS - the number of arguments of the operation macro.

ML/I Logic Manual Page 27

4. PREVSRCPTR - points to the text that was being scanned at the time
the call of "MCGO" was encountered.

5. PREVCOL - the column within the scanned text where the scan for the
next atom following "MCGO" will resume.

6. PREVTEMPCARD - the card that was being scanned at the time the call
of "MCGO" was encountered.

Called ~: SCAN

Calls: ARGFREE, CONTEXT, ERR2, EVALARG, MACEXPR, MCERRS, RELEASE,
SCANNER, SCAN

3.3I MCPVAR

Function: allocates extra permanent variables.

Parameters:

I. ARGHEAD- points to the head of the argument list of the operation
macro.

2. DELHEAD - points to the head of the delimiter list of the operation
macro.

Called ~: SCAN

Calls: ARGFREE , CONTEXT , ERR2 , EV ALARG , MACEXPR, MCERRS , RELEASE

3.32 DELETE

Function: provides for the deletion of trailing blanks from a piece of
text.

Parameters:

I. ARG- pointer to the head of a linked list of text whose trailing
blanks are to be deleted.

2. PTR - pointer to the text card in the linked list which contains
the last non-blank atom.

3. LAST-POSITION - the length of the text card with deleted trailing
blanks.

Called~: INSTEXT, EVALARG

Calls: (none)

Page 28 ML/I Logic Manual

3.33 EVALARG

Function: evaluates an argument of an operation macro.

Parameters:

1. TEMP - points to the head of a text card sequence containing an
argument to be evaluated.

Called~: MCALTER, MCDEF, MCGO, MCINS, MCLENG, MCNOTE, MCPVAR, MCSET,
MCSKIP , MCSUB

Calls: DELETE, FORMTXT, MCNO, SCAN, SCANNER

3. 34 RELEASE

Function: releases the storage associated with the arguments and delim­
iters of a construction call.

Parameters:

1. #_OF_ARGS- the number of construction arguments.

2. ARGHEAD- points to the head of the construction argument list.

3. DELHEAD - points to the head of the construction delimiter list.

Called by: INSERT, MACRO, MCALTER, MCDEF, MCGO, MCINS, MCLENG, MCNOTE,
MGPVAR,lfCSET, MCSKIP, MCSUB, OUTPUT, SKIP

~: (none)

3.35 STRUC

Function: transforms a structure representation into a directed graph
which can be used to find the delimiters of a construction call.

Parameters:

1. STRUC- the structure representation used to construct the directed
graph.

2. ERR - flag used to indicate an illegal structure representation.

3. NAME - points to the delimiter specification of the construction
name.

4. #_OF_DELNMS - the number of delimiter name specifications within
the structure representation.

ML/I Logic Manual Page 29

5. U_OF_OPTS - the number of option lists within the structure
representation.

Called ~: MCDEF , MCINS , MCSKIP

Calls: ERROR, FORl1TXT , SCANNER

RESULTANT DATA STRUCTURE: The directed graph must be constructed so as
to allow for option lists, option lists nested within other option
lists, nodegos, and fixed delimiters. It must also take into considera­
tion the specification of multi-atom delimiters.

The graph resulting from this procedure will be applied in the routine
DELS during the search for the delimiters of a construction call. Thus,
if any modifications are made to the structure of the graph, correspond­
ing alterations must be made within DELS.

The following are examples of structure representations and the graphs
built by STRUC from these representations. The first example (figure 4)
shows a structure with fixed delimiters, the next (figure 5) shows a
structure containing an option list, and the last example (figure 6)
depicts a structure with an option list, nodeplaces, and nodegos. Note
that, when building a graph, the specification of the construction's
name delimiter is not included as part of the graph but is returned
separa·tely (pointed to by the parameter NAME). The head of the graph
(pointed to by ALPHA) is actually the second delimiter specification of
the structure representation.

Page 30 ML/I Logic Manual

EXAMPLE (1): INTERCHANGE WITHS (,) WITHS NL

I
NAME---->1 INTERCHANGE WITHS (

1-------------------

ALPHA

I
I
I
v

I I I /1
I I I 1 I --------->1 0 I ----------->1 I I 1 I --------->1 0 I I I
1-1-1-1-1 1-1-1 l_l_l ___ l_l l_l/_1

I I
I I
I I
I I
v v

I
I I) WITHS NL
l ___ l

Figure 4. A Structure with Fixed Delimiters

MLII Logic Manual

EXMIPLE (2): PRINT OPT X WITH SPACES WITH NL OR Y ALL

I
NAME----->1 PRINT

ALPHA
I
I
I
v

I ___ _

Page 31

I I I I I I
I 2 I I
1-1--1

I 0 I ---------->1 I I 1 I ---------->1 0 I I I
l_l_l I_U_I_I l_l/_1

A A I
I I I
I I I
I I v
I I
I I
I I
I I
I I
I I

I 1-------------------------
1

v I
I

I I I I I
I I I 3 I ------------1---------------->1 I I 3 I I I
U_l_l_l I U_L_I/_1

I I I
I I I
I I I
I I I
v I v

__ I_

I
I
I
I
I
I
I
I
I
I
I

___ I_

I I I I I I I I I
I I I 1 I ------->1 0 I I I
1-1-1-1-1 1-1-1

I
I
I
v

l
X WITH SPACES WITH NL I

-------------1

I I I 1 ------->1 0 I I I
I_U_I_I 1-1-1

I
I
I
v

I
I y
I __

Figure 2_. A Structure containing an Option List

Page 32 ML/1 Logic Manual

EXAMPLE(3): MCSKIP OPT , N1 OR N1 NL ALL

I
NAME----->1 MCSKIP

ALPHA
I
I
I
v

I
I 2 I I I
I_LU

I
I
I
I
I
v

I ___ _

I I I I
I 0 I I 1<---------­
l_l/_l I

I
I
I
I
I
I

I I I
I I I 3 I ----------------------------->1 I I 3 I I I

I
I
I
I
I
I
I
I
I
I

l_l_l_l_l --------------> LU_I /_I
I I I
I I I
I I I
I I I
I I I
v I v

__ I_ __ I _

I I I I I I I I I I
I I I 1 I -------->1 0 I I I
1-'-'-1-1 1-1-1

I

I I I 1 I -------->1 0 I I I
I_U_I_I 1-1-1

I
I
I
I
I
v

I
I I
l __ l

Figure -~·

I
I
I
I
v

I
NLI

I

Structure with an Option List, Nodeplaces, and Nodegos

ML/I Logic Manual Page 33

3.36 MACEXPR

Function: evaluates a macro expression.

Parameters:

1. MCEXPR - points to the text containing the macro expression being
evaluated.

2. EXPRERR - indicates that an error occurred during the evaluation of
the macro expression.

Called~: INSERT, MCDEF, MCGO, MCPVAR, MCSET, MCSUB

Calls: FETCH, TERM

3.37 TERM

Function: evaluates a term contained within a macro expression.

Parameters:

1. MCEXPR - points to the text containing the macro expression being
evaluated.

2. EXPRERR - indicates that an error occurred during the evaluation of
the macro expression.

3. EXPRCOL - indicates the position within the macro expression where
the search for the next terminal will begin.

4. EXPREOF - indicates that the end of the macro expression has been
encountered.

5. TERML - the next terminal of the macro expression.

Called ~: MACEXPR

Calls: FETCH, PRIMARY

Page 34 ML/I Logic Manual

3.38 PRIMARY

Function: evaluates a primary contained within a macro expression.

Parameters:

1. MCEXPR - points to the text containing the macro expression being
evaluated.

2. EXPRERR - indicates that an error occurred during the evaluation of
the macro expression.

3. EXPRCOL - indicates the position within the macro expression where
the search for the next terminal will begin.

4. EXPREOF - indicates that the end of the macro expression has been
encountered.

5. TERML - the next terminal of the macro expression.

Called ~: PRIMARY, TERM

Calls: FETCH, OPERAND, PRIMARY

3.39 OPERAND

Function: evaluates an operand contained within a macro expression.

Parameters:

1. MCEXPR - points to the text containing the macro expression being
evaluated.

2. EXPRERR - indicates that an error occurred during the evaluation of
the macro expression.

3. EXPRCOL - indicates the position within the macro expression where
the search for the next terminal will begin.

4. EXPREOF - indicates that the end of the macro expression has been
encountered.

5. TERML - the next terminal of the macro expression.

Called ~: MACVAR, MCSET, PRIMARY

Calls: FETCH, MACVAR

ML/I Logic Manual Page 35

3.40 MACVAR

Function: evaluates a macro variable contained within a macro expres­
sion.

Parameters:

1. MCEXPR - points to the text containing the macro expression being
evaluated.

2. EXPRERR - indicates that an error occurred during the evaluation of
the macro expression.

3. EXPRCOL - indicates the position within the macro expression where
the search for the next terminal will begin.

4. EXPREOF - indicates that the end of the macro expression has been
encountered.

5. TERML - the next terminal of the macro expression.

Called ~: OPERAND

Calls: FETCH, OPERAND

3.41 FETCH

Function: assigns the next terminal of a macro expression to the parame­
ter "TERML".

Parameters:

1. MCEXPR - points to the text containing the macro expression being
evaluated.

2. EXPRCOL - indicates the position within the macro expression where
the search for the next terminal will begin.

3. EXPREOF - indicates that the end of the macro expression has been
encountered.

4. TERML - the next terminal of the macro expression.

Called ~: MACEXPR, MACV AR, MCSET, PRIMARY, OPERAND, TERM

Calls: SCANNER

Page 36 ML/I Logic Manual

3.42 PRNTDEL

Function: transmits a delimiter name specification to the debugging
file.

Parameters:

1. PTR- points to the delimiter name specification to be printed.

Called~: CONTEXT, ERR3, STATS

Calls: SCANNER

3.43 PRINTXT

Function: transmits a piece of text to the debugging file.

Parameters:

1. PTR - points to the head of the sequence of text cards containing
the text to be printed.'

Called~: INSERT, CONTEXT, ERR2

Calls: SCANNER

3.44 CONTEXT

Function: prints the context of an error message.

Parameters: (none)

Called ~: ERR3, INSERT, MCALTER, MCDEF, MCGO, MCINS, MCNOTE, MCPVAR,
MCSET, MCSKIP, MCSUB, SCANNER

Calls: PRINTXT, PRNTDEL

3.45 MCERRS

Function: prints the error messages pertaining to the evaluation of
macro expressions.

Parameters:

1. ERRFLAG- the number of the error message.

2. VALUE - the value resulting from the evaluation of the macro

ML/I Logic Manual Page 37

expression.

Called ~: INSERT , MCDEF , MCGO , MCPV AR , MCSET , MCSUB

Calls: ERRI

3.46 ERRI

Function: prints an error message when an illegal macro variable has
been used.

Parameters:

1. FLAG- the flag (either "T", "P", or "S") which identifies the type
of the macro variable.

2. N - the value of the subscript associated with the flag.

Called~: MCERRS

Calls: (none)

3.47 ERR2

Function: prints an error message when an argument of an insert or
operation macro has an illegal value.

Parameters:

1. N- the number of the illegal argument.

2. ARGHEAD - points to the head of the construction argument list in
which the erroneous argument was detected.

Called~: INSERT, MCALTER, MCDEF, MCGO, MCINS, MCPVAR, MCSET, MCSKIP,
MCSUB

Calls: PRINTXT

Page 38 ML/I Logic Manual

3.48 ERR3

Function: prints an error message when the end of the scanned text is
reached during the search for the closing delimiter of a construction.

Parameters:

1. OPTLIST - flag indicating whether the name specifications of the
missing delimiters were contained within an option list.

2. NODEPTR - pointer to either the delimiter name specification of a
delimiter or the head node of the option list in which the specifi­
cations of the missing delimiters are contained.

3. CONSTRUC_TYPE - the type of the unmatched construction.

4. CONSTRUC_NAME - pointer to the delimiter name specification of the
unmatched construction.

Called~: DELS

Calls: CONTEXT, PRNTDEL

3.49 ERROR

Function: prints the error messages pertaining to structure representa­
tions.

Parameters:

1. MESSAGES- the number of the error message.

Called~: MCDEF, MCINS, MCSKIP

~: (none)

3.50 STATS

Function: prints certain statistical information at the termination of
the processing of the source text.

Parameters: (none)

Called ~: MLI

Calls: PRNTDEL ---

ML/I Logic Manual

4. EXTERNAL VARIABLES

This section describes the external variables used by the various rou­
tines. The relatively large number (72) of external variables is a by­
product of the relatively low usage of many of these variables. The
secondary delimiters of the operation macros, for instance, are initial­
ized by MLI, altered by MCALTER, and used by ALTRDEL when scanning for
the delimiters of the operation macros. Since the majority of the
secondary delimiters are used by only these three routines, it is
unnecessary to pass these variables to other routines used in the scan­
ning process. The few variables which are used extensively (such as
LRECL, RECSIZE, and OMEGA) are assigned values during the initialization
stage of the processing and are not subject to change.

The external variables can be categorized into 7 logical groups: the
secondary delimiters of the op~ration macros, the reserved keywords, the
layout keywords, the character sets used in scanning text, the
input/output related variables, the variables which constitute the
environment used in scanning text, and the variables relating to the
scanning process itself.

4.1 SECONDARY DELIMITERS

The following external variables represent the various secondary delim­
iters of the operation macros. Any of these variables may be changed
through a call to the operation macro MCALTER.

CHARACTER(1) EXTERNAL

COMMA The secondary delimiter",".

Used in: ALTRDEL, MCALTER, MLI

EQUAL The secondary delimiter "=".

Used in: ALTRDEL, MCALTER, MLI

PAREN The secondary delimiter ")".

Used in: ALTRDEL, MCALTER, MLI

Page 40 ML/I Logic Manual

CHARACTER(2) VARYING EXTERNAL

AS The secondary delimiter "AS".

Used in: ALTRDEL, MCALTER, MLI

BC The secondary delimiter "BC".

Used in: ALTRDEL, MCALTER, MCGO, MLI

EN The secondary delimiter "EN".

Used in: ALTRDEL, MCALTER, MCGO, MLI

GE The secondary delimiter "GE".

Used in: ALTRDEL, MCALTER, MCGO, MLI

GR The secondary delimiter "GR".

Used in: ALTRDEL, MCALTER, MCGO, MLI

IF The secondary delimiter "IF".

Used in: ALTRDEL, MCALTER, MCGO, MLI

LE The secondary delimiter "LE".

Used in: ALTRDEL, MCALTER, MCGO, MLI

LT The secondary delimiter "LT".

Used in: ALTRDEL, MCALTER, MCGO, MLI

NE The secondary delimiter "NE".

Used in: ALTRDEL, MCALTER, MCGO, MLI

TO The secondary delimiter "TO".

Used in: ALTRDEL, MCALTER, MLI

ML/I Logic Manual Page 41

CHARACTER(4) VARYING EXTERNAL

SSAS The secondary delimiter "SSAS".

Used in: ALTRDEL, MCALTER, MCDEF, MLI

VARS The secondary delimiter "VARS".

Used in: ALTRDEL, MCALTER, MLI

CHARACTER(6) VARYING EXTERNAL

UNLESS The secondary delimiter "UNLESS".

Used in: ALTRDEL, MCALTER, MLI

4.2 RESERVED KEYWORDS

This section contains the external variables which represent the
reserved keywords used within structure representations.

CHARACTER(!) EXTERNAL

N The nodeflag

WITH/I

Used in: MCALTER, MLI, STRUC

The special character used to represent the reserved
word "WITH" •

Used in: MATCHNM, MLI, PUNCINT, STRUC

WITHS# The special character used to represent the reserved
word "WITHS".

Used in: MATCHNM, MLI, PUNCINT, STRUC

Page 42 ML/I Logic Manual

CHARACTER(2) VARYING EXTERNAL

OR The reserved word "OR".

Used in: MCALTER, MLI, STRUC

CHARACTER(3) VARYING EXTERNAL

ALL The reserved word "ALL".

Used in: MCALTER, MLI, STRUC

OPT The reserved word "OPT".

Used in: MCALTER, MLI, STRUC

CHARACTER(4) VARYING EXTERNAL

WITH The reserved word "WITH".

Used in: MCALTER, MLI, STRUC

CHARACTER(S) VARYING EXTERNAL

WITHS The reserved word "WITHS".

Used in: MCALTER, MLI, STRUC

ML/I Logic Manual Page 43

4.3 LAYOUT KEYWORDS

The layout keywords, which represent such layout characters as spaces,
newlines, and startlines, are listed in this section.

CHARACTER(1) EXTERNAL

NL The newline marker appended to the end of each input
record.

Used in: FETCH, INSERT, MCGO, MCLENG , MCNOTE , MCSUB ,
MLI, PRINT, PRINTXT, PRNTDEL, PUNCINT,
SCAN, SCANNER, SCANSRC, STRUC

SL The startline marker optionally appended to the beginning
of each input record.

Used in: FETCH, INSERT , INS TEXT, MCGO , MCLENG , MCNOTE ,
MCSUB, MLI, PRINT, PRINTXT, PRNTDEL, PUNCINT,
SKIP, SCAN, SCANNER, SCANSRC, STRUC

SPACE# The special character representing the layout
keyword "SPACE".

Used in: MATCHNM, MLI, PUNCINT, PRNTDEL, STRUC

SPACES# The special character representing the layout
keyword "SPACES".

Used in: MATCHNM, MLI, PUNCINT, PRNTDEL, STRUC

CHARACTER(2) VARYING EXTERNAL

NL$ The layout keyword for the newline marker.

Used in: MCALTER, MLI, STRUC

SL$ The layout keyword for the startline marker.

-
Used in: MCALTER, MLI, STRUC

Page 44 ML/I Logic Manual

CHARACTER(5) VARYING EXTERNAL

SPACE The layout keyword "SPACE".

Used in: MCALTER, MLI, STRUC

SPACES The layout keyword "SPACES".

Used in: MATCHNM, MCALTER, MLI, STRUC

4.4 CHARACTER SETS

The following variables constitute the character sets used in determin­
ing the lexical class of a character. There are only two lexical
classes: alphanumeric characters and punctuation characters.

CHARACTER(62) EXTERNAL

ALPHANM The alphanumeric characters.

Used in: MCALTER, MLI, SCANNER

PUNCHAR The punctuation characters (i.e. all non-alphanumeric
characters, including the multi-punch characters).

Used in: MCALTER, MLI, SCANNER

4.5 INPUT/OUTPUT VARIABLES

The following external variables are used in transmitting information.

FIXED BINARY EXTERNAL

LRECL The maximum length of an input card (and thus of
an atom).

Used in: DELS, EVALARG, GLOBAL, INSERT, INSTEXT, LOCDEF,
MACEXPR, MACRO , MATCH, MATCHNM, MCALTER , MCGO ,
MCNOTE, MCSET, MCSUB, MLI, PRINTXT, PRNTDEL,
OUTPUT, SCAN, SCANNER, SCANSRC , SKIP , STRUC

ML/I Logic Manual

OUTCOL Indicates the column within the current record of the
output file in which the writing of any subsequent
text will begin.

Used in: SCANSRC, PRINT

RECSIZE The maximum length of a text card.

Used in: DELETE, DELS, EVALARG, FETCH, FORMTXT, !NIT,
INSERT, INS TEXT, GLOBAL, LOCDEF , MACRO ,
MATCH, MATCHNM, MCALTER, MCGO, MCLENG, MCNOTE,
MCSKIP, MCSUB, MLI, OUTPUT, PRNTDEL, PRINTXT,
SCANSRC, SCANNER, SKIP, STRUC

FIXED BINARY CONTROLLED EXTERNAL

LINE# The line number indicating which input card or text
card currently is being scanned.

Used in: CONTEXT, ERR3, EVALARG, INSERT, INSTEXT,
MACRO , MATCHNM, MCGO , MCNOTE , MCSUB ,
PRINTXT, OUTPUT, SCAN, SCANNER, SCANSRC,
SKIP, STATS

OLDCOL The column in which the scan for the subsequent
atoms of a piece of text will commence in following
the "rescan" of a previous portion of text.

Used in: MATCHNM, SCANNER

POINTER CONTROLLED EXTERNAL

OLDSRC Indicates the sequence of text which is to be scanned
following the "rescan" of a previous portion of text.

Used in: MATCHNM, SCANNER

CHARACTER(LRECL) CONTROLLED EXTERNAL

INCARD A card from the input file.

Used in: SCANNER, SCANSRC

Page 45

Page 46 ML/I Logic Manual

CHARACTER(SYSV AR(I 1) - 1) CONTROLLED EXTERNAL

HEADER The first (A-1) columns of the input card (where "A"
is the value of system variable 11).

Used in: PRINT, SCANNER, SCANSRC

CIIARACTER(RECSIZE) CONTROLLED EXTERNAL

SRCARD The text card containing the subsequent atoms of the
text which is to be scanned following the "rescan"
of a previous portion of text.

Used in: SCANNER, MATCHNM

CIIARACTER(LRECL - SYSVAR(12)) CONTROLLED EXTERNAL

TRAILER The portion of the input card beyond column Z (where
"Z" is the value of system variable 12).

Used in: PRINT, SCANNER, SCANSRC

4.6 ENVIRONMENTAL VARIABLES

The variables which constitute the macro-time environment are listed
below.

FIXED BINARY EXTERNAL

MACALLS The number of macro calls performed.

Used in: MACRO, MLI, SCAN, STATS

PERMVR# The number of permanent variables in the environment.

Used in: MACVAR, MCPVAR, MCSET, MLI

SYSVAR# The number of system variables in the environment.

Used in: MACVAR, MCSET, MLI, SCANNER

ML/I Logic Manual

FIXED BINARY CONTROLLED EXTERNAL

CURARG# The number of arguments in the environment.

Used in: INSTEXT, MACRO, MLI

TEMPVR# The number of temporary variables in the environment.

Used in: MACVAR, MACRO, MCSET, MLI

FIXED BINARY(31,0) CONTROLLED EXTERNAL

SYSVAR(l:SYSVAR#) The system variables.

Used in: MACVAR, MCNOTE, MCSET, MLI, PRINT,
SCANNER, SCANSRC

TEMPVAR(l:TEMPVR#) The temporary variables.

Used in: MACVAR, MACRO, MCSET

POINTER EXTERNAL

PRMHEAD Points to the head of the list of permanent
variables.

Used in: MACVAR, MCSET, MLI

PRMTAIL Points to the tail of the list of permanent
variables.

Used in: MCPVAR, MLI

Page 47

Page 48

POINTER CONTROLLED EXTERNAL

CURARGS Points to the head of the argument list in the
environment.

Used in: INSTEXT, MACRO

CURDELS Points to the head of the delimiter list in the
environment.

Used in: INSTEXT, MACRO

CURLABS Points to the head of the macro-time label list
in the environment.

ML/I Logic Manual

Used in: EVALARG, INSERT, INSTEXT, MACRO, MCGO, MLI

4.7 SCANNING VARIABLES

The following external variables are used during the scanning and
evaluation of text.

FIXED BINARY EXTERNAL

HT_SIZE The size of the hash tables.

Used in: GLOBAL, LOCDEF, MCNO, MLI, SCAN, STATS

LAB# The number of a label being searched for.

Used in: INSERT, MCGO

GOSTART Indicates the line number on which the forward scan
for a macro-time label began.

Used in: MCGO, SCAN

MCLEVEL The current nesting level of .macro calls.

Used in: MACRO, MLI

ML/I Logic Manual

NESTLVL The current nesting level of text evaluation.

Used in: EVALARG, INSERT, INSTEXT, MACRO, MCDEF, MCGO,
MCINS, MCNO, MCSKIP, MLI

BIT(l) EXTERNAL

EOF The end of file flag.

Used in: DELS, MCGO, SCANNER, SCANSRC

LABSRCH Flag indicating whether a search for a
macro-time label is in progress.

Used in: DELS, INSERT, MCGO, MLI, SCAN

BIT(!) CONTROLLED EXTERNAL

EVAL Indicates whether a construction is to be
evaluated.

Used in: INSERT , INS TEXT, MACRO , SCAN, SCANSRC

INSKIP Indicates that the construction whose arguments and
delimiters are to be formed is nested within a skip.

Used in: MLI, SCAN, DELS

CHARACTER(1) EXTERNAL

RESCAN The special character used to mark the end of a
piece of source text to be rescanned.

Used in: MATCHNM, MLI, PUNCINT, SCANNER

CHARACTER (I) VARYING EXTERNAL

OMEGA The end of text marker. This variable is of varying
length so that it will be compatible with a formal

Page 49

Page 50 ML/I Logic Manual

argument of FORMTXT.

Used in: DELETE, DELS, EVALARG, FETCH, INIT, INSERT,
INSTEXT, MACRO, MATCH, MATCHNM, MCALTER,
MCGO, MCLENG, MCNOTE, MCSUB, MLI, PRINTXT,
PRNTDEL, PUNCINT, OUTPUT, SKIP, STRUC

POINTER EXTERNAL

CONTXT# Pointer to the top member of the stack of structures
containing context information.

Used in: CONTEXT, MCNOTE, MLI, SCAN

EXTERNAL STRUCTURES

DECLARE 1 LCTABLE(O:(HT_SIZE-1)) /* THE HASH TABLE CONTAINING */
CONTROLLED /* THE LOCAL CONSTRUCTION */
EXTERNAL, /* DEFINITIONS * /

2 NT_HEAD /* POINTS TO THE HEAD OF THE * /
POINTER, /* NAME TABLE ASSOCIATED WITH */

/* THIS HASH TABLE ENTRY */

2 THRDJIEAD /* POINTS TO THE HEAD OF THE * /
POINTER; /* LINKED LIST OF CONSTRUCTION*/

/* DEFINITIONS THAT WERE */
/* ENTERED INTO THE NAME TABLE*/
/* ASSOCIATED WITH THIS HASH */
/* TABLE ENTRY */

DECLARE 1 GLTABLE(O:(HT_SIZE-1))
CONTROLLED
EXTERNAL,

2 NTJIEAD
POINTER;

/* THE HASH TABLE CONTAINING */
/* THE GLOBAL CONSTRUCTION */
/* DEFINITIONS */

/* POINTS TO THE HEAD OF THE */
/* NAME TABLE ASSOCIATED WITH */
/* THIS HASH TABLE ENTRY */

ML/I Logic Manual

5. SYSTEM FILES

There are 5 files used by the macro processor. This section describes
the purpose for which the files are used and the routines which use each
file.

5.1 INPUT

Purpose: contains the source text to be scanned.

Used .£r: SCANSRC, SCANNER

5.2 SYSPRINT

Purpose: to produce a hardcopy listing of the text resulting from the
macro expansion of the source text. This file normally defaults to the
system print file.

Used .£r: SCANSRC , PRINT

5.3 RESULTS

Purpose: to retain a machine readable version of the text resulting from
the macro expansion of the source text. This file is normally a user
supplied data set.

~ .£r: SCANSRC, PRINT

5.4 SOURCE

Purpose: contains the listing of the original, unexpanded source text.

~ .£r: SCANSRC, SCANNER

5.5 DEBUG

Purpose: contains the system error messages.

Used .£r: SCANSRC, SCANNER, INSERT, MCINS, MCSKIP, MCDEF, MCALTER, MCSUB,
MCSET, MCNOTE, MCGO, MCPVAR, PRNTDEL, PRINTXT, CONTEXT, MCERRS, ERR!,
ERR2 , ERR3, ERROR, STATS

