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THE PORTABLE DPL COftPILER PROJECT 

by John E. Bishop (under the direction of David L. Parnas). 

Portability of a compiler is achieved by generating code 

for a pseudo-machine. This code is then translated into code 

for various real machines. The technique is combined with 

the use of templates, which are fixed translations of source 

code structures, to aid in the design of the compiler. A 

formal use of these templates partially specifies the 

source-to-object translation. Problems associated with the 

implementation of these techniques and v ith the project are 

documented, and solutions are suggested. 
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1.1 tHE~ CO!PILER 

Chapter I 

IBTRODOCTIOB 

In 1976 Edsger i. Dijkstra published ! Discipli~ of Pro

gramming [Dijkstra, 1976), in which he introduced and used a 

procedural algorithmic notation. In this notation, non-de

terminacy was a property of the major control structures. 

The fact that the order of evaluation was not specified ena

bled algorithms to be derived from a problem statement more 

easily. The notation was not a programming language; the 

book was not a manual. Despite the lack of formal presenta

tion -- Dijkstra did not even give a full BNF syntax -- the 

notation vas not hard to understand. 

Dr. David L. Parnas, of the Computer Science Department 

of the University of North Carolina at Chapel Bill, initi

ated a project to develop a compiler that would allow the 

book's notation to be used as a 

called this language Dijkstra•s 

programming language. We 

Programming Language (DPL). 

Our implementation vas to be portable, modular, student-ori

ented, and provide for inclusion of a program-holder module. 

Initially Dr. Parnas, Dr. Robert wagner of Duke University, 

and two graduate students -- James D. George and I -- were 
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involved. Ve started planning the compiler in January of 

1978, and by that summer added two other graduate students 

to aid in more detailed planning and in the writing of code. 

The next year vas spent programming, and by the end of the 

summer of 1979 the compiler vas running. During part of this 

time we were under the direction of Dr. aehdi Jazayeri. 

1.2 COITBNT Ql ~ tHBSI~ 

In this thesis I plan to discuss the organization of the 

compiler, covering the design of the compiler, the method 

used to achieve machine independence and the effect this 

method had on the module that generated code (the CG). I 

also describe a planning tool for code generation called 

•templates•, 

the code that 

and show how it made the task easier but made 

vas generated slightly less efficient. The 

faults of the compiler as a whole are discussed, and recom

mendations are suggested. 

The module I wrote is described in broad terms in chapter 

five, and in detail in the last appendix. Readers who are 

not interested in the internal details of this module need 

not read either. 

There are four appendices. The first is an attribute 

grammar describing the translation the CG performed. Part of 

this description is a BNF grammar of the input to the CG. 

This input, a tokenized form of the source, vas the 
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The translation of a construct 

is given in the form of the template for 

The second appendix is a listing of the real 

that construct. 

values of the 

elements of the IL, rather than the anemonics used in the 

first appendix. The third is a short explanation of the 

semantics of the Abstract !achine (the A!), for which the 

code vas generated, and of the A! assembly language in which 

the templates are written. The last appendix is the docu

mentation for the module I wrote. 

1. 3 POI!I Ql fiE If 

!y responsibility vas to design and write the aodule (the 

CG) that generated all but the array operation code from the 

intermediate language (IL) produced by the Front End (FE). 

The code I generated vas not aachine code for any machine, 

but a series of calls to another module, the Abstract 

!achine Assembler (A!A), whose role in achieving indepen

dence of a particular machine is detailed later. The tasks 

of these modules are sketched in the next chapter. 

1.4 !B!! THI RE!DER SHOULD KNOW, WHAT ji~ ~LEARNED 

I assume that any reader knows what a compiler does, and 

how. Some familiarity with formal grammars is needed, as is 

an acquaintance with FORTRAN and PL/I. It is not.necessary 

to have read ! Discipline 2! Programming, nor any of the 

other theses that came out of this project. 
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The fifth chapter is not part of the discussion of the 

project. Only those interested in the CG module' need read 

it. 

This thesis is about one particular project, and has two 

goals: to describe the DPL compiler project in particular, 

and to show how and where it failed or succeeded. -~hope 

that readers may become better software project leaders (or 

followers) by analyzing this example. 



Chapter II 

THE DPL PROJECT 

2.1 iQ~ OF THE fiOJICT 

Our major goal was the implementation of DPL by a compiler 

that would allow us to run all of Dijkstra•s algorithms A§ 

written with the addition of input and output statements to 

confirm their actions. Dr. Parnas wished to use DPL as the 

programming language in an introductory programming course 

at UNC, and thus wished to haYe a working compiler by the 

fall of 1978. It became clear that other goals would haYe to 

be sacrificed if this deadline were to be met, and deliYery 

was postponed a year. 

Correct execution of Dijkstra•s algorithms was only one 

goal of seYeral. A set of goals that was mutually-reinforc

ing consisted of portability, construction from modules that 

were independently designed and written, and the use of 

information-hiding. Other goals were that the compiler would 

be student-oriented, and allow addition of a program-holder 

module. we were also interested in the compiler's proYabil

ity. These goals were not offically ranked, but portability 

was the most important after the execution of Dijkstra•s 

algorithms, with information-hiding and modularity close 
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behind. These goals were all met, to some degree. This will 

be dicussed in chapter five. Efficiencr and small size vere 

never goals. 

2.1.1 

A portable program is one that 

many computers. ln example is 

is easily made to vork on 

a lHSI-standard PORTBlH 

subroutine that calculates cube roots, while an example of a 

non-portable program is a machine-language kerboard driver 

usable with only one kind of keyboard vith one kind of 

interface to one particular machine. Since different loca

tions have different machines, it is more complicated for a 

compiler to be portable: a portable compiler must generate 

code for these different machines, as well as run on them. 

This requires either generation of a high-level language or 

some re-writing of the code-generation module(s). l.f the 

compiler is written in a language the local machine cannot 

use, then the compiler itself must be translated. our 

approach tried to alleviate both of these problems. our com

piler vas written in ANSI-standard FORTRAN, for which almost 

every installation has a compiler, and it did not generate 

code for any particular machine, but for a simple machine ve 

had designed, called the Abstract ftachine (AK). This code 

vas designed to be easily translated into the appropriate 

"real" machine code. This had certain repercussions on the 

CG, and these will be discussed in chapter five. This 
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approach to portability is treated in more detail in chapter 

three. 

2.1.2 .llodulariti 

ftodularity is a familiar goal (Parnas, 1972]. A large 

task is divided into sub-tasks called modules. These sub

tasks can be further sub-divided, and those sub-divided, 

until a sub-task is sufficiently simple that a small program 

can do it. •Good" divisions are ones that lead to elegant, 

simple and independent sub-tasks; •bad", those that do not. 

A module is not necessarily a sub-routine, but subroutines 

are often part of a module. A good example would be the 

division of an interpreter into a driver, a program-holder 

module, a data-storage module, a parser and an operations 

module. 

2.1.3 ~formation-Biding 

Information-hiding is Dr. Parnas•s term for a method of 

designing modules (Parnas, 1972 (again)]. Each module con

ceals something. It may be the algorithm, the kind of data 

structure, or the representation of externally presented 

information. Such secrets belong to a particular module: no 

other module may know about them. This means that a user of 

a module cannot assume a certain internal structure or form 

of representation, 

used for a specific 

nor can a used module assume that it is 

purpose or by a specific user. The 
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module and its user share knowledge only of the function the 

module is to perform. Inter-module communication. is thus 

confined to the explicit interface of calls and. parameter 

passing, or reference to specified global variables. By not 

specifying the internal workings of a module, we have made 

it possible to change these workings, without forcing 

changes to other modules. As t4e specification of the inter

face describes all that need be known about the module, and 

all that its writer need know, the module may be written in 

isolation, without the need to consult with other program

mers. 

An example would be the specification of a symbol table 

by the calls to enter a symbol with certain attributes, or 

to retrieve the attributes of a symbol. The user neither 

knows or cares whether the symbol is inserted in a binary 

tree, hashed into an array, or linked into an unordered 

list, nor whether the attributes are kept separately, 

encoded into a bit vector or passed on to another attribute

saving module. If the user knew, for example, that symbols 

were stored into an alphabetically ordered binary tree, he 

might try to present the symbols in such an order that the 

tree was well-balanced. or the user might want to use the 

same encoding of the attributes as the symbol table, and the 

end result is that the symbol table and its user form one 

module. The two programmers must talk every day, and neither 

module can be changed without changing the other. Program-



9 

aers have enough lnforaation about their own aodule already; 

the technique of information-hiding prevents swaaping thea 
' with information about others. The thesis of information-

hiding is that the efficiency lost by hiding a secret is 

traded for the ease in writing and aaintaining aodules that 

do not It now it. 

But there is a proviso: the interface aust be well speci

fied. For a simple aodule, this can be easy, though even the 

simplest can have hidden subtleties, but for a coaplex 

aodule, it can be very hard. Consider the specification of a 

compiler. The attribute grammar appended to this thesis is 

not enough, as the translation of source names into memory 

locations is not specified. To specify that requires knowing 

the rules of scope and variable-reference in DPL. we used 

English and tables, and had difficulties in determining 

which module checks which rules (see 6.1.3.2). 

2.1." Stqde~ Orientation 

Undergraduates who are taking an introductory programming 

course are, by definition, unable to understand the workings 

of a large program like a compiler. If the compiler is writ

ten with neophyte use in mind, it will try to communicate 

with its users in terms of the code that they wrote. Thus, 

for example, error messages should give the number of the 

source line in which the error vas found, refer to all vari

ables by their source names, and explain the nature of the 
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error. our po1icy of information-hiding made this harder 

than it otherwise would have been: the CG often knew the 

nature of the error, the FE knew the name of the variable. 

Thus printing an error message that used a variable name 

required the co-operation of both modules, 1acking at times 

(see 6.1.2 and 6.1.3.2). 

2.1.5 Provabiliti 

If a program is provab1y correct, it 

cally shown that it generates correct 

can be mathemati

output from valid 

input. If the compiler were proven correct, this would mean 

that the final machine language program vas always a trans

lation of the DPL source and had the same semantics as the 

source. To show that one program had been correctly trans

lated would not be enough. To prove the compiler, it would 

have to be shown that any valid DPL program would be cor

rectly translated. 

An attempt at starting to show the correctness of the 

compiler is shoving that the AftA code sequences (the 

•temp1ates•, which we hope the compiler implements) are 

semantically the same as the DPL constructs they translate. 

If they are, and if the compiler can be proven to implement 

them, then it would be proven correct. 

An attempt at the task of proving the templates was 

undertaken by another graduate student at UNC. Whether or 
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not the compiler was correct, proving it so would be easi

er--perhaps possible--if it were well specified and' divided 

into isolated modules with fixed interfaces. Thus our inter-

est in provability reinforced our desire to use the technl-

que of inforaation-hiding. 

2.1.6 f{ogra. jolder 

A program holder [Parnas and Robinson, 1973] would hold 

soae fora of a DPL (or other language) program, perhaps in a 

tokenized or parsed fora. It would allow editing, preferably 

interactive, at the source code level. This editing would be 

syntax-oriented, not character-oriented. Thus one could 

change all occurrences of the variable 1 11' to 'BB' without 

changing other occurrences of the character string 1 11 1 • l 

program holder is not included as part of the compiler, but 

the break-down of the task into modules vas influenced by 

our desire to allow the introduction of one later.t 

2.2.1 Major Division 

To achieve these goals the compiler was divided into five 

modules, each with its own secrets. The Front End (FE) knew 

the nature of the source language and the names of the vari-

t A program holder for DPL had been built as one 
jects in the course •software Engineering' in 
of 1978. we knew it could be done. 

of the pro
the spring 
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ables. It also knew the rules for the inheritance of varia- · 

bles from one block into another. The code generator (CG) 

knew the method of code generation, the inheritance and 

scope rules, and the nature of the translation ( i·~- the 

templates), while the Array Manager (ARB) knew the method 

for implementing the DPL extensible arrays. The Abstract 

aachine Assembler (AMA) knew how the Abstract Machine code 

vas stored, what the real values of the mnemonics used as 

parameters were, and the timing and order of Uae production 

of the Abstract Machine code. Finally, the Abstract aachine 

(AM) knew how the code vas translated into the appropriate 

actions.z 

2.2.2 !lotivations 

This division vas motivated, in part, by the nature of 

the improvements we wished to add later. The division of the 

FE from the CG at a level close to the source made the 

Intermediate Language (IL), which vas the major interface, 

more like the source: the disadvantage of this vas that the 

CG had to know a great deal about the rules of DPL, as the 

FE could not hide these rules by presenting a simpler IL to 

the CG. If a program-holder were to be added, however, the 

IL's closeness to the source would become a major asset, 

z This can be accomplished either by interpretation or by 
further translation to some language (machine code) which 
the hardware then interprets. For wider coverage of these 
tactics, see the thesis by James Dalton George (George, 
1979]. 
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aaking the translation froa the internal IL to source and 

back easier. 

The division of the Abstract Kachine into the AKA and the 

AK was intended to simplify portablility; at first the func

tions of the AKA were provided by the AK. The separation of 

the assembly-like functions is intended to aake the re-writ

ing of the Aft for different machines an easier task. 

We envisioned future changes in the scope rules of the 

language. Dr. 

r11le s vi thout 

Parnas wished to be able to 

changing the compiler ( Parnas, 

change these 

Elliot, and 

Shore, 1975]. This aeant that those parts of the coapiler 

that knew the rules should be limited. To aid in the 

change, the FE vas required to replace all variables in the 

DPL source by unique symbols in the IL, thus making it pos

sible for the CG to assume that an occurrence of a particu

lar symbol always referred to the same variable, and allow

ing changes in the scope rules to be restricted in their 

impact to the FE. The isolation of the ABK made improve-

ments or modifications to the array implementation easier, 

though we had no specific plans there. 



14 

2.3.1 

The FE vas required to do the following: provide tokens 

from the IL version of a program, one at a time, upon 

request. The IL program vas guaranteed to be syntactically 

correct up to the most recent token. If there vere no more 

source, or if an error vere detected in the source, no more 

tokens would be produced, and a flag would be set to tell 

the CG that no more IL tokens would be produced. The IL is 

described in the first appendix by the Backus-laur grammar 

elements of the attribute grammar that presents the temp-

lates. Its most notable characteristics were that expres-

sions vere in postfix notation, and that variables had 

unique integer names. These names were to be consecutive 

integers, starting at one. 

Another set of functions in the FE vas associated vith 

constants in the program: each constant vas present in the 

IL as an integer constant name. Upon inquiry, the length of 

the constant (number of characters) could be found, and the 

•i•th character of any constant could be read. The charac-

ters could be read in any order, or re-read. 

In short, the goal for the FE3 vas the production of a 

simpified and unambiguous version of the source, vith as 

many of the syntactic rules of DPL hidden within it as vas 

possible. 
--------------------
3 Further detail on this module is available in the thesis 

by Karl K. Freund (Freund, 1979]. 
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2.~.2 Iu Abstract llachin§ and it§ &ssul!lfi 
. ' 

The lftl provided the CG with a set of callable routines 

whose parameters looked like the elements of assembly lan-
I 

guage statements: there were calls to generate code, to 

reserve and to initialize storage, and to create and define 

labels. The syntax of these calls vas simple and the seman

tics of the call, as opposed to the semantics of the code 

generated, were equally so. 

&n unusual feature vas that the name for a label had to 

be created by a special call before any reference to its 

name could be used in a code generation call. There could 

be forward reference to a label once the label had been 

created. Ho forward reference to storage was allowed. 

The A"A hid the Aft completely. The CG did not know the 

•real• format or values of Aft code, nor when the translation 

to real machine actions took place. Thus from the point of 

view of the CG, the lftA ~~ the lft. The goal of the lftl was 

to provide a flexible and powerful language for the CG, 

while assuring that the A" would remain simple, and thus 

ensure portability. 

2.3.3 

The Array Manager (ARM) module was large and complex, but 

its complexity did not affect the rest of the compiler. It 

consisted of the compile-time routines that generated the 
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run-time support routines, as well as the compile-time rou

tines that generated the code to link to the support rou

tines. It implemented the array operations of Dijkstra•s 

language, which meant that the ARft hid the secret of the 

semantics and implementation of these operations within 

itself. Note that neither the FE nor the CG knew the seman

tics of array operations, as the FE knew only their syntax, 

and the CG knew only when the ARft would have to be called. 

Like the CG, the ARft generated code through calls to the 

AMA. These routines were invoked at run-time by calling 

sequences generated at compile-time by calls to certain 

functions in the ARM. The interface to the CG might sound 

complex: a run-time environment with certain parameters in 

certain registers had to be prodaced by the code generated 

at compile-time before the ARB vas called at compile-time to 

generate the run-time calling of an array routine, yet des

pite the doable calling structure, the ARft vas easy for the 

CG to use as its syntax was simple. It was not as easy as it 

might have been (see 7.1.3.2). 

The secrets of the ARM were many and though perhaps 

interesting in themselves, had no effect on the rest of the 

project once the planning stage was past. In the beginning, 

though, it was the knowledge that the ARM would be allocat

ing and copying arrays of Aft storage that sparked the crea

tion of special Aft operations, of which two are not found in 
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any aachine. One ~ould allocate storage, one free it.• The 

others copied walues froa one sub-array to another. ls 

these instructions ~ere not used by the CG, the point of 

vie~ of this thesis, and as the interior of the lBft ~as sub-

ject to inforaation-hiding, little ~ill be said about the 

lBft. 

2.3.4 ~he ~ ~aerator 

Within the CG there ~ere submodules that hid inforaation 

from each other, and sub-goals for these aodules. The over-

all goal vas the translation of the IL to calls to the lftl, 

and insuring that the IL program presented vas semantically 

correct. Hidden within the CG vas its method, its data 

structures, and the semantics of DPL. It also isolated the 

FE from the ABft and the AM!, and the ARft and AKA from the 

FE. 

Given that the FE vas to have an interface to the program 

holder, and the ARft vas to implement the infinitely-extensi-

ble Dijkstra arrays, and the AMA-Aft pair machine indepen-

dence, one would have expected the CG to be experimental, 

too. It vas designed using information-hiding and modular

ity, and with st~dent use in mind, and it ~as written in 

portable FORTRAN, but the CG vas not innovative. Any 

• This kind of storage had to be assigned a type 
boolean, or character) before it could be used. 
respect, the AM is unlike any real machine (see 
The assignment of a type was called allocation; 
vas called freeing. 

(integer, 
In this 

3.4.1.2). 
un-typing 
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interesting aspects follow froa its place in the coapiler, 

and its relation to the other aodules, not froa a new pars

ing or generating aethod. It did perfora alone the tradi

tional task of compilation: it parsed a high-level source 

language, checked it for errors, 

aachine. 

and generated code for a 



Chapter III 

BlCHIBE IBDBPBIDEICE 

3.1 'fHE PBOBLB!I 

A cursory definition of machine independence has been 

given. It is a problem of several inputs and several out

puts, vhich can be called the 1-by-N problem: given ! input 

languages, to be translated into N output machine codes, hov 

many translators must be built? In our case, I equals one, 

Dijkstra•s Programming Language, and N equals the number of 

machines on which will the compiler vill eventually run. In 

general, 

for each 

the straightforward answer is !IN translators, one 

possible pairing. There are ways to reduce the 

total number of translators, one of which gives an !ltN solu

tion. 

3.2 tHE ~NERAL INTEB!IEDIATE LANGUAGE SQLU'fiOI 

If ve divide each translator into two partial-transla

tors, and add a suitably-defined new language, the first 

half can be given the task of producing this new language 

from one of the ! inputs, and the second that of translating 

from the new language to one of the N outputs. The new lan

guage is an intermediate between the input and the output 

languages. This means two translations for each pairing of 
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of input and output forms where the other had one, but the 

total number of translators is reduced, to one for each of 

the ft inputs, and one for each of the N outputs. This is 

the •intermediate language' solution, and has been widely 

used.s 

3.3 QY~ lHTEBBEPilTE LliGOAGIS 

For ft equal to one (our case) there would seem to be no 

advantage to using an intermediate language as measured in 

terms of the total number of translators. Our intermediate 

language, however, is chosen so that writing the II second-

half translators is far easier than writing II complete 

translators. 

In fact, we have not one but two intermediate languages: 

the one that functions as the intermediate for purposes of 

portability is called Abstract l!achine code (All code), while 

the other is called Intermediate Language (IL). This latter 

is a tokenized and processed form of the source that is the 

input for the CG module. Either or both of these could func-

tion as intermediate languages. Thus several input languages 

could be processed into It, which could be the input to any 

number of translation programs, just as is All code. 

--------------------
s An early proposal was for UNCOL, a Universal £omputer Qri

ented 1anguage, in 1958 {Strong, ~ j!., 1958), but the 
idea is older, and may pre-date computers or writing. 
[George, 1979] lists later references in his bibliography. 
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This use of IL as an intermediate language is not as 

likely as is the use of the Aft language, because IL is very 

aucA like DPL, and not general enough to allow easy transla

tion of an arbitrary high-level language into it. Another 

or a aodification or extension of DPL, 

could easily be translated into IL, allowing a coapiler for 

such a new language to be built very quickly. 

Any intermediate language must be specified both syntac-

tically and semantically. Good methods exist for context-

free syntactic definition, and adequate ones for semantic 

definition (which is usually given the burden of defining 

the context-sensitive parts of the syntax, too). 

3.4.1 Justification gt featgre~ 

We designed an intermediate language that looks like an 

assembly language for a register-file machine (see 3.4.1.1) 

This decision, and others about the Aft, must be justified. 

Why didn't we choose some other fora for Aft code? As an 

example, the IL is already partially in postfix and par-

tially in prefix form, and a little more processing would 

give a completely pre- or postfixed version of the program, 

suitable for execution by a stack-oriented interpreter, or 

translation into real machine code. Quadruples• are well 

• Also known as •three-address-code'. Commands have four 
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known as an intermediate code, too; why not use thea? 

Again, the Aft is defined as having bit, integer, character, 

pointer and instruction data types, but it could have been 

defined with floating-point numbers also, or with only 

strings of bits. auch of the design of the Aft may be just 

the personal preference of the designer, but the foregoing 

questions show the need for justification of the features of 

the Aft and Aft A. 7 

3.4.1.1 Register-File lachine 

A •register-file' machine is one that has two levels of 

memory: the 1 file• is the larger of the two, and allows only 

limited operations on its contents, while the •registers• 

allow a much larger set of operations. Typically, the con-

tents of an element of the file must be read into a register 

before an arithmetic or logical operation aay be performed 

on it. Some machines sub-divide each of these two levels. 

The PDP-11/45 and the IBft System/360-75 are both 

•register-file• machines. 

As an IBft System/360-75 and a PDP-11/45 were available to 

us in the University at Chapel Hill, we chose a register- · 

file organization for the Aft to simplify implementation 

--------------------
parts: an operation, the two operand addresses, 
address where the result is to be stored. Thus '+ 
is the equivalent of the PL/I 1 C=A+B;'. 

and an 
A,B,C 1 

7 Some answers to these questions may be found in (George, 
1979], along with much more detail on the design decisions 
of the AM. 
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here. Another reason vas the fact that aost installations 

have such a aachine. Baking Aft code close to real aachine 

language aakes translation into real aachine code easier 

than for any other fora, and generation, rather than 

interpretation, vas our goal. This was one of the fev deci-

sions aade on the basis of efficiency.• The Aft had three 

kinds of aeaory. Tvo were the register(s) and file of a 

register-file aachine, and the third vas allocated and freed 

by certain A! operations. This kind of aeaory vas introduced 

to aake the ARft simpler, as well as to allow the Aft to check 

the references to array elements. As I am not familiar with 

the ARB, I know little of this feature, and will say little 

of it. It was, however, not efficient. 

Thus pre- or postfix code was ruled out, as being unlike 

real machine language, wheras the use of quadruples vas 

ruled out to make register allocation the responsibility of 

the CG, not of the programmer of,the local A!. 

3.4.1.2 Data Types and Strong Typing 

Bost machines have only one type of storage: a string of 

bits (usually of specific length: 4, 8, 12, and others). 

This string can be interpreted in many ways: as a number, 

characters, boolean values, or (part of} an instruction. 

a James D. George's estimate for his IBM-360 version of the 
Aft vas that each AM instruction vas translated by 4.2 
IBM-360 instructions, while AM data were not expanded in 
translation. see 6.3. 
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Which interpretation is being used by a progra• cannot be 

told by inspection of the bits. This is not true of the lB 

meaory: each piece of lB storage has a type associated with 

it, and references to it that try to use it as a different 

type cause a trap to occur. This association is called 

•strong typing", and vas introduced to enhance the ease with 

which errors in variable reference could be detected. The lB 

is a machine that checks operands to ensure they have the 

correct type before each operation. This helped find errors 

in the CG. It also simplifies the task of transporting the 

AM.' As bits and integers can not be converted to each 

other, for exaaple, the number of bits in an integer does 

not have to be specified. The particular set of types vas 

chosen for convenience; bits, integers and characters occur-

red in DPL, pointers and instructions in the templates. 

3.4.2 Similarity !Q Jachi~ 'anqgaqe 

Though a compiler could generate code with no forward 

references, it would require the ability to hold at least 

part of the translated program in the code generator. This 

function is readily separable from that of code generation, 

and it vas so separated, becoming the task of the ABA 

(Abstract Bachine Assembler). The code generator nov can 

make forward reference to locations in code, which simpli-

--------------------
• But the extra expense of run-time checking in the AK makes 

transporting the compiler more difficult. This part of the 
AK will probably be ignored (see 6.2). 
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fies its task, while the AliA resolves thea for use by the 

All. This means that the All code looks like an assembly lan

guage to the CG, but a machine language to the 111. It 

should thus be easier to transport. 

3.4.3 R!fferences i!2! nachine Language 

The important differences between 111 code and real 

aachine code are the fact that a given aemory location is 

bound to a particular type, and that only instructions aay 

have aliases (more than one name). The special •allocate• 

and 'free• instructions are another difference. The 111 is 

not a Von Neumann machine as instructions aay not be changed 

by the action of other instructions. Type conversions are 

usually impossible, as noted in 3.4.1.2. The only conver

sions that are legal are froa the integers 0 through 9 to 

the corresponding characters and ~ ~§!• and this must 

be done explicitly with an instruction. This means that 

tricks available to other compilers like doubling a nuaber 

by shifting logically left one position are not allowed. The 

lack of aliasing means that there is only one way to access 

any memory location that is not an instruction. This helps 

reduce errors that otherwise could not easily be detected. 

These differences enhance portability, as it is precisely 

in the area of type conversion and instruction-modification 

that machines differ most. One machine will be like another 

in the way integers are added (assuming no over- or under-
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flow) but they will differ on which bits of tae instruction 

specify the use of an index register, or whether ASCII or 

EBCDIC is used. 

1 difference that hinders portability is the special kind 

of memory allocated and freed by the ARK. The major justifi

cation for this feature vas that it allowed the Aft to know 

the type of each element at run-time, and thus to check the 

use of each element. The •allocate' command gives this kind 

of memory a type, and 1 free 1 removes the type. Free memory 

of this kind cannot be accessed. The Aft is made larger and 

more complicated by this feature. 

3.5 llfiCTS OJ tHE ~ Qf ~ £0ftPILIR 

The effects on the rest of the compiler were limited by 

our use of the principles of information-hiding and modular

ization to one module. This was the user of the AK, the CG. 

The module in between these two, the AKA, vas not affected 

at all by the design of our machine. 

Even so, there were only a fev effects on the CG: in the 

use of forward references as explained previously, and in 

memory management and the choice of Aft instructions the CG 

produced. There vas a minor effect on the register alloca

tion sub-module. 

In terms of AM memory management, the strongly typed 

nature of AM memory names and labels meant that reuse could 
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not change the type, that arrays could be reused only as 

arrays of the same size (I speak here of AM arrays, not DPL 

arrays), and that labels could never be reused. This meant 

that any program for reusing memory had to segregate all 

memory by type and arrays by size. For this reason no reuse 

of memory vas assumed in the initial design, though the cur-

rent version does reuse scalars.ao 

As I did not know the relative costs of instructions or 

of the various addressing methods, because they changed from 

one target machine to another, I vas not motiYated to ayoid 

using an expensive intruction or kind of memory access 

within an instruction, replacing thea by two or more cheaper 

accesses or instructions. Thus there are no machine-lan-

guage tricks in the CG,'' such as using repeated addition 

rather than multiplication. 

Finally, the AK definition did not specify the number of 

registers, beyond granting at least three for use by the CG. 

A simple register-allocation algorithm vas used to allocate 

these registers, with an AK parameter to the CG giving the 

number of registers hidden within the sub-module. 

--------------------
10 The FE detects the potential for reuse: the CG implements 

it. 

at Except for the routine CONVRT, which translates IL char
acters, coming from FORTRAN through the FE, into Aft char
acters, which are AM-defined. This routine should be 
thought of as part of the AM, rather than the CG, as it 
is machine-dependent. 
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TBIIPLA'l'IS 

4.1 !)EPUIUOI 

In machine-shop or sewing terms, a template is a pattern 

that aids in the cutting or shaping of material.&Z It is 

usually not of the same material as the final product and it 

may be different in other ways. For example, a template may 

be a mirror image, or a negative, or convex w.here the final 

product is concave. A simple instance of a template is a 

straight-edge. The final product is a straight line. on a 

surface, in pencil, ink or as a groove, while the template 

is a solid object. 

The computer language equivalent to a straight-edge could 

be a simple macro skeleton: it defines a final product, it 

is not of the same material (format or language) as the 

final product, and it can be used again and again. llacro 

skeletons can become more sophisticated, defining and rede

fining themselves, with internal variables and conditions, 

but 11hen they do so, they become a new string-processing 

language rather than a simple, rigid, unchanging form on 

--------------------
12 Webster's ~~ world 

ally a thin plate, 
object or shape•. 

Dictionary calls it •a pattern, 
for forming an accurate copy 

nsu
of an 



which a final product can be shaped. 

templates. 

4.2 ~ TEBPLATES 

29 

They are no longer 

Our templates were very much like simple macros. The 

skeleton or fora of the Aft translation of an IL source con-

struct vas described by giving source constructs with formal 

parameters, and listing for each construct a sequence of ABA 

calls, using those parameters, and Aft variables created 

within the macro. 

Assembler (AliA) 

Templates included the Abstract ftachine 

calls that generated code (given here as 

pseudo-assembly statements to avoid explaining the syntax of 

the AliA), and calls to the Front End (FE) and the Array san-

ager (ARll) , as well as a few simple control stateaents such 

as • for each object[ i] 4Q action{ i]'. -

A simple example of a DPL-style template should clarify 

the foregoing, and make the the second example, the real 

template for the •do od' construct, easier to understand. 

Suppose that DPL had a data type of 'COUNTER', with three 

operations, •zero•, •increment• and 'decrement•. Then each 

operation would require a template.a3 

&3 The meaning of the AliA language used in these templates 
is described in detail in appendix c. 
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I 
I source: INCiEIIEHT SYIIBOL 

• template: LOAD I!' Ba, All name of SYftBOL 
I ADDP Ba, 1, Ill, II 
I STOI!' !Ia, All name of SYIIBOL 

• J source: DECBEIIENT SYIIBOL 
I template: LOAD.F Ba, All name of SYIIBOL 
I SUBF Ba, 1, Hll, II 

• STOF Ra, All name of SYIIBOL 
I 
I source: ZEBO SYIIBOL 
I template: LOAD.F Ba, 0, 1111, II 
I STOF :aa, All name of SYilBOL 

• j 
I I 

Pirst, note that while the translation of a construct 

implies more than generation, such actions as symbol table 

management and checking of the correctness of Yariable 

reference are not included in the templates, as they are 

implementation-dependent. Also, the templates describe the 

translation of correct input only. 

Further, as register allocation is machine-dependent, it 

is not explicit either here or in the first appendix. 

Register management is implied by use of Ba, Bb, or B1, R2, 

B3 to specify the names of registers. The directive that a 

certain quantity is to appear in a certain register, or to 

appear in a register that is not a certain register, is seen 

in the template for the •do od• construct belov. However, 

in the templates we used during planning and coding, regis

ter allocation and freeing vere explicit, as ve had decided 
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on a particular allocation method (described in section 

Y.1. 7). 

• I 
I 

• I 

• I 

• I 
I 

• I 
I 
I 
I 
I 
I 
I 
I 
I 

• I 
I 
I 
I 
l 
I 
I 

source: DOOD one !2!: ~ (!!.) 2! 
[ <expression i> <lstmtln i> ] EJIDLST . 

template: JU!PL START, NR, D 
for ~q 2! !A§ n set§ <expression i> <lstmtln i> 
[ GUARD!: STOP ·. B 1, SA VJ!:, JIR, D 

] 

GUARDS <-
GIIUft 
SAVE 
SUCCESS: 
START: 

LOOP: 

template for <expression i> 
into register EA 

CJCB Ra, TRUE, BB, D, NE, SAVE, JIR, Z 
template for <lstmtln i> 
JU!PL SUCCESS, RR, D 

GUARD1, GUARD2, ••• , GUARDn 
DC n 
DS POI 

lift liP 
lllll!l' 
JLKL 
LOADF 
.}LKL 
SUBF 
CJCF 

GUARDS, BR, II, SRAIIE, HR, D 
GNU!!, NR, ft, SNUI!, NR, D 
SHUFL, IIR, D 
Rb, [n - 1 ], BR, I! 
R1, GUARDS, Ri, II 
Rb, 1, NR, II 
Rb, 0, NR, II, GE, LOOP, IIR, D 

I 
I 
I 
I 
I 
I 

• I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Here a template refers to other templates, and there are 

local variables, such as 'SAVE' and 'GNUII', as well as para-

meters such as •n•, the number of guards, and the use of 

control statements. 

4.3 ~~ Ql TEMPLATE~ 

These templates are only a way for describing transla-

tions, and a tool for thinking about these translations of 
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source language constructs, and not an original invention.•• 

aany cospiler-writers say already use sose sisilar sethod of 

specifying the translation. However, we tried to use tesp-

lates in a formal, consistent way, writing templates for 

each of the constructs, trying to find errors in the tesp-

lates, trying to sisplify thea, and aake relationships in 

the source language, as between the 'if fi' and 'do od' con-

structs, isply relationships in the templates and thus in 

the lft code. Only when this had been done did I start cod-

ing the CG. ie used templates as planning tools and a 

record of the translation we intended to sake, and as a for-

mal specification that could be proven correct. For if a 

tesplate could be proven formally to be sesantically equiva

lent to the source construct, then that part of the cospiler 

would be proven correct, insofar as it realized the transla-

tion specified by the template. The attempt to prove the 

templates uncovered several errors that might have otherwise 

gone undetected until late in system-testing tiae.as This 

shows the worth of templates in the debugging process. 

t• Templates have various names in different books. calinga
ert uses the macro analogy, and calls them •skeletons• 
(Calingaert, p183J. lho and Ullman, treating the more 
general case of •syntax directed translation•, call them 
•semantic actions•, and give a template-like example for 
simple expressions (lho and Ullman, pp245-295, with the 
example pp 266-267]. 

ts These were sometimes very subtle errors which would have 
been very hard to discover, let alone track down. How
ever, the compiler that was proven correct is the one 
that existed at a certain time: later changes, though 
minor, may have invalidated this proof. see Steve Bello
Yin's dissertation [Bellovin, in preparation]. 
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•• 4 lRYAJTAGJS 

Xt vas as a planning and design tool that the templates 

vere most useful. They could be developed and changed inde

pendently. ie could postpone definition of the exact trans

lations of sub-constructs while defining the translation of 

major constructs. Templates vere also independent of the 

method chosen to parse the IL or of the method chosen to 

generate code. As templates specified only the result, they 

were independent of the structure of the compiler, and yet 

could be used to predict problems and to determine vhat 

infona tion would have to be available at a given point in 

the compilation. A template could say, for example, that a 

certain construct required two distinct registers, or a jump 

to the code that vas the translation of the construct that 

followed this one, or that a certain construct would require 

its own save location. If there vas difficulty in writing a 

template, this might mean that the source construct being 

considered for translation vas poorly divided into subcon

structs, and that we should try rewriting the source gram

mar. Last, the A8 code for a given construct could be inves

tigated for possible optimizations, for functions that could 

become sub-templates, and, in the early stages of design, 

for often used code sequences that might be candidates for a 

new AM instruction. 
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•• 5 PISAD!AIJAGES 

The templates we used, despite their virtues, did not 

take the place of designing and writing the actual compiler, 

as they do not specify a program, a representation of data, 

or the various support routines that a compiler must have 

(such as a symbol table, a register allocator, or memory 

manager). The actions the compiler is to take may be speci

fied, but hov these actions are to be accomplished is not. 

But the real objection aims at the heart of any use of 

templates: they are too rigid and too simplistic, and make 

no allowances for inter-construct optimization. lot only do 

they not allow for the detection of common sub-expressions, 

they do not even allow for the simple avoidance of 

jumps-to-jumps, or elimination of store-load pairs. Indeed, 

if one investigates the templates in the first appendix, he 

will notice that all arithmetic operands are loaded into 

registers, whereas many loads could be saved by not loading 

the right-hand operand, and using another of the memory 

addressing options. This is an inefficiency ve avoided in 

the CG, but not by modifying the templates (but this could 

have been done, as is explained in the next section). 

4.6 l!I-UPS FOR TE!PLATES 

A simple answer to these objections might follow the 

identification of templates with macros and suggest condi

tionally choosing which part of a template is to be used. 
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But nov our templates are no longer simple, no longer 

invariant. If we do t~is, ve ~ave lost t~e major advantage 

of templates, their simplicity. Thus a better answer would 

be to build simple templates, design a compiler using them, 

and then refine the compiler. Conditional templates are 

beginning to specify A~ rather than ~- The latter is 

more valuable as a planning tool. 

l second pass over the l!l code generated by the ineffi

cient templates might eliminate redundant store-load pairs, 

and help with jump-to-jumps, and perhaps eliminate unneces

sary loads in expression evaluation. This second pass, how

ever, could know only the local structure, and would have to 

be conservative·in its changes. 

A simple method exists, however, that can alleviate some 

of these problems. It does not provide for the optimization 

of common sub-expressions, but can help in the expression 

evaluations and eliminate some of the store-load pairs. 

Where the source construct leads to an inefficient template, 

perhaps the source construct can be divided into tvo or more 

related constructs, thus rewriting the grammar of the source 

language. Each of these constructs would have its own temp

late. The choice of templates is still unconditional, the 

source bas not been changed, and some efficiency can be 

gained. This was done for assignment statements. The ini

tial IL had one assignment statement construct only, for 
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autiple assignments. ~he template for these vas inefficient 

for an assignment to only one target. The assignaent stat

aents were divided into two classes: •single' and 'plural'. 

The old template vas assigned to 1 plural 1 , and a new one 

avoiding a redundant store-load vas aade for •single'. The 

IL vas not changed. 

As an exaaple of this solution, expressions could also be 

formally divided to avoid the unnecessary loading of a 

right-hand operand. Distinguish between the production used 

for an operation that has a variable or constant operand and 

the production used for an operation both of whose operands 

are sub-expressions. Each will have its own teaplate. The 

template of the first kind can use the direct aeaory refer

ence to the variable or the location holding the constant. 

The template for the second type will use the register 

reference of the old template. 

This could be carried even further, to allow the immedi

ate mode to be used in constant references. 
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THE CODE GEJERATOB 

5.1 ! SHORT DESCRIPTIO! 

5.1.1 ~ope of Qapter 

The compiler was divided into several modules, two of 

which, the AR" and the CG, generated code. The 1Rft is not 

covered in this thesis. The CG modllle did call the FE, AftA 

and ARM, but none of these needs to be documented other than 

as sources or targets of information. Thus only the CG, as 

I wrote it, will be described.l6 

5.1.2 overview 

The CG consisted of a parser, which called a set of 

semantic routines on recognition of syntactic structures. 

The semantic routines would sometimes generate code, calling 

the AliA for that purpose, and sometimes would modify various 

tables that described the variables or the code that had 

already been produced. 

--------------------
16 ftodifications subsequently introduced by others to ay 

code may be described without spe~ial notice where they 
are corrections of hugs in my vers~on. llhere they are not 
corrections, they will not be mentioned. 
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The semantic routines also used various service routines 

within the CG, such as the register allocator. Semantic rou

tines also called routines in the ARft to generate array-han

dling code, and in the FE to get the description of a con

stant in the source program. 

Each major division of the CG will be given a short des

cription in the rest of tais chapter, but for details the 

reader is refered to the fourth appendix, where the FORTRAN 

code is described. 

5.1.3 ~ Parser 

The CG parses the IL source program with an LL(1) table

driven parser. The tables were generated, prior to slight 

modification to make the• FORTRAN 1 DATA' statements rather 

than PL/I initializations, by a program written by a gradu

ate student here, Robert Keeler, who had left before we 

started the compiler. 

The parser 

required by 

uses a service module to maintain 

an LL(1) parse (see 5.1.5, where 

module is covered). 

the stack 

the stack 

The entries in the table encode the actions to be taken 

by the parser. If the parse cannot continue, the entry 

reveals the error, and gives a unique number for each kind 

of error. If there is no error, the entry determines the 

actions to be taken by the parser. The possible actions are 
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reading a new token, popping the top element off the grammar 

stack, and pushing the right-hand side of a production onto 

the grammar stack. Bore than one action may be specified. If 

a production's right-hand side is to be pushed, the table

entry encodes the number of the production. The sequence of 

popping the top element off the stack and pushing the 

right-hand side of a production is called applying the pro

duction. 

If the table-entry says that no error has occurred, and 

some production aay be applied, a semantic routine caller is 

called. It has the fora of a gigantic •case• statment (simu

lated in FORTRAN) and calls small subroutines for most of 

the possible productions. 

duction in the IL grammar. 

There is one case for each pro-. 

In some of these cases, a small subroutine is called tQ 

perform the associated semantic action, while for a fev, the 

action is simple enoug'h that it is performed within the case 

statement branch. Thus, on recognition of the beginning of' 

a 1 dood • construct, a routine is called to generate the 

beginning of the template, and another when the end of the 

construct is recognized. 

5.1.4 seaanti£ Bouti!~ 

These semantic routines communicate vith.each other bf 

means of four stacks, one for each of the major divisions of 
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the routines: there is one for the •do od• and 1 if fi 1 con

structs, one for expressions, one for the guards within aQ 

'if fi• or 1 do od•, and one that helps in the generation of 

code to evaluate the •cand• and •cor• operations. Another 

stack serves the LL(1) parser, as mentioned before. 

Some of the semantic routines vill be sketched here: all 

are covered in the fourth appendix. 

5.1.5 Stac1t llodul§ 

Five stacks in all are provided by the stack module, 

though some of them could be replaced by one stack. These 

five are separate for tvo reasons: some stacks could not be 

coalesced, as their combined usage is not LIFO, and clarity 

and maintainability are increased by having one stack for 

each function. Other LIFO elements in the compiler are con

tained within other modules, such as the symbol table, or 

the 1 INDOOD 1 table that records the nesting depth of 'dood's 

within the nested blocks of the program. 

5.1.6 ~ymbol Tabl§ 112dule 

Variables in the IL are entered into a symbol table with 

their attributes. The symbol table and the functions associ

ated with it form a separate sub-module which allows entry, 

retrieval, block entry and exit, inheritance from an enclos

ing block with new attributes, and dumping of the table as a 

debugging aid. 
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The PE also has a symbol table, used to translate source 

names into IL names. The CG•s table holds the following 

attributes for each IL name: lft location that holds its 

Yalue, initilzation status, accessibility status, initial 

scope, current scope, and type. The source naae is not 

known. 

5.1.7 Jegister Allocation todqle 

The other semantic routines call the register allocation 

module to allocate or release registers. The CG assumes 

there are at least three distinct registers, 

more (the number is available from the lft). 

and possibly 

In all cases, a request must indicate the type of the 

register and register life must be LIFO. Before a register 

may be released, all registers allocated after its alloca

tion must have been released. It is one of the aost restric

tive features of this module that both the compile-time and 

the run-time history must follow this rule. Both allocation 

and release must specify the same type. If these conditions 

are not met, erroneous code will be generated--the aodule 

cannot detect misuse. · 

This module is easily both the most individual and the 

most far-reaching in its effects, and thus deserves some 

discussion. I decided to make my register allocator LIFO in 

order to make it simple to write, and to make the allocation 
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of an arbitrary number of registers independent of the nua

ber, as veil as independent of the constructs of the lan

guage and of the rest of the compiler. The LIFO restriction 

proved confining, as an unexpected part of the CG-1Bft inter

face (see 7.1.3.2) • The awkwardness of tais aodule is due 

to the fact that it vas the first one I wrote, and that it 

vas designed before the CG-ABK interface vas fixed in its 

final form. 

The initial version of the allocator generated code to 

stack the registers• contents at run time. An improved ver

sion, saving time and space, generated loads and stores from 

Aft temporaries, whereas the current version tries to reuse 

these temporaries as well. 

5.1.8 A!! Interface Buffe{ aoutines 

To enable the compiler to continue to check the source 

code after an error has been detected and code can no longer 

be generated, the CG and the ABK call the AKA through buffer 

routines that call the AKA only if an error flag is not set. 

They can also print the AM code if a debug flag is set. 

5.2 POSSI~~ IKPROYKEBTS tQ %BE Qi 

FORTRAN space usage could be much improved by linearizing 

the parse tables in the FE and the CG. But 'optimizing• 

FORTRAN code is beyond the scope of this thesis. 
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Because the CG treats each language construct in isola

tion, there is no easy vay to •odify it to reduce greatly 

the amount of 11'1-cod~ used by linking constructs together or 

sharing code between constructs. The cG vas not designed to 

generate the 11ost efficient 11'1 code, but to i•plement the 

templates. In view of the ti•e constraints, efforts to 11ake 

the CG •ore efficient than it vas already (due to its clear 

and straight-forward design) would have been counter-produc

tive. 

There is, however, plenty of room for the maintainers of 

the compiler to improve it. This might best be achieved by 

reducing the amount of 11'1 storage used for variables and 

instructions. A few suggestions follow. 

5.2.1 Better Templates 

Improvement of the templates so that they would require 

fewer 11'1 variables and generate fewer instructions is rela

tively easy in concept, but I can think of no good candi

dates other than the expression templates. They have 

already been discussed in the chapter on templates (4.6). 

5.2.2 

First, the scalar variables- and the CG's teaporaries can 

be reused. DPL arrays are already being reused, as they are 

simulated by the ARI'I rather than being Al'l arrays. The code 

for this reuse has been written and tested.t7 It is 
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described the fourth appendix. ihile not assuming any 

particular characteristic of the IL variables, such as block 

structure, it does assume that the IL is not in error when 

it says that a certain variable may be freed. 

5.2.3 )eaoval 2! Indeterminacy 

Second, the shuffling of the arrays of pointers to guards 

that introduces some uncertainty (to the writer of the DFL 

program, not to the analyzer of the compiler) into the eval-

uation of guards within a •do od' or 'if fi' requires a sub-

routine call, and the existence of a subroutine, let alone 

the probable extra real machine code that must be generated 

to perform all the indirect references.•• This Aft sub-rou-

tine and the calls to it could be eliminated, if the loss of 

non-sequential and changing guard evaluation vas not felt to 

be damaging to the semantics of DPL. 

5.2.4 aiscellaneous 

Improvements of the kind often called •optimizations• 

such as elimination of jumps-to-jumps and re.dundant store

load pairs across construct boundaries may be very difficult 

to achieve given the current structure of the CG. If the Aft! 

allowed reading and rewriting of its contents, a second pass 

&7 It is being used in the latest version in the register 
allocator, but not in the rest of the CG. 

•• But this is precisely what the CG is not supposed to 
know, and shows that old habits of programmers die hard. 
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over the code could improve it. It would take considerable 

redesign to make the evaluation of common sub-expressions 

take place only once. 

Superficial improvements can be made to the FORTRAN 

itself in the CG which would make it more readable. These 

are not listed here1 as they are not related to the struc

ture of the CG. They are in the fourth appendix, where they 

apply. 

5.2.5 lollowing the Jgles 

Considerable work is also needed to make the DPL compiler 

follow all the rules of DPL that relate to initialization, 

type, and inheritance. Dijkstra requires that corresponding 

variables and expressions in multiple assignment statements 

have the same type. The CG does not check for type compati

bility in multiple assigments or in array initializations, 

though where this would be done is noted in the appendix. 

!ore recent versions of the compiler do perform some of 

tb.ese checks. 

Further, if one branch of an •if fi' has an initializa

tion for a variable, all the branches must have an initiali

zation for the same variable, QQ matter hoi deeplY burieg in 

enc~g !!locks m;: other £Qnstructs. Because initialization 

in 'if fi's must occur in parallel, two initializations for 

the same variable are not tagged as an error by the CG. 
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The refinement of the initialization EUle enforcement 

would bring our version of DPL closer to that used in j Ri!

cipline g! Programming. Other differences between the lan

guage our compiler implements and the language ve tried to 

implement are listed in 6.2. 



Chapter JI 

~BB DPL COKPILBB A•D ITS GOlLS 

The DPL compiler has been in use by students since the 

beginning of 1980, no member of the team that designed or 

wrote it is nov involved with the compiler, and so it is 

fair to ask how well the project aet its goals. 

It is only fair to mention that considerable work has 

been done on the compiler since I left the project, result

ing in auch iaproveaent, according to Dr. Parnas [Parnas, 

personal communication, 1980]. This chapter details the 

state of the compiler for the early fall of 1979. 

6.1 iYI!ING DPL PBQGBAftS ~ MBITTE~ 

As yet, there has not been an effort to run all of the 

programs in Discipline Q! Programming though this would be 

an obvious way to check the compiler's fulfillment of our 

major goal. Certain differences between the DPL of the book 

and our DPL exist, but will probably not cause problems. 

The goal, however, is not met. 
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There are three •ajor differences: the addition of input 

and output (IO), the fact that the binary booleaa operations 

haTe been implemented in a manner that changes their seman

tics, and the inability of the compiler to detect certain 

errors of initialization status. Mone of these inYalidates 

correct programs, but the third difference •akes it harder 

for students to find errors in incorrect ones. 

6.L1 l!R!! ~ Ogtpgt 

Dijkstra describes no IO for his notation. We added input 

and output in a way ve feel follows the spirit of the lan-

guage: the user, as the outermost block, •ay specify the 

initialization of three input and three output arrays. Bach 

of the two (input and output) consists of one array of each 

type (integer, boolean and character). At the end of the 

program's execution the output arrays are printed. 

Rather than make the user write all the DPL for this 

outer block, only the initial values of the input arrays 

need be specified. Input is normally perfor•ed with the 

1 lopop 1 operation on an input array, and output with the 

1 hiext• operation on an output array, but the arrays may be 

accessed in any legal fashion.•• The ability to perform IO 

--------------------
19 'Lopop' removes the element with the lowest index from 

the array, shortening it, 'hiext• adds a nev element 
above the one with.the highest index, increasing the size 
of the array. · 
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should not affect the running of Dijkstra•s programs. 

6.2.2 

Our compiler does not implement the logical operations 

•and' and •or•. Bather than evaluate both operands in all 

cases, the second operand is not evaluated if the first det

ermines the result (for example, •true or x• is always 

•true•). we call these new operations •cand' and •cor•. I 

do not know why the decision vas made to implement these 

operations rather than the logical ones. Given the lack of 

side-effects to the evaluation of expressions, this should 

not be detrimental either. 

6.2.3 Unenforced ~~ 

The rules about the use of initialized and uninitialized 

variables that the compiler does not enforce should have no 

effect on the running of correct programs. The lack contri

butes, however, to my judgement on the compiler in the last 

section of this chapter, and to the compiler's suitability 

for student use. The errors that the compiler does not 

detect and their effect on student use of the compiler are 

detailed in the section on student-orientation (5.4.3). 

6.2.4 l!eonentiation 

Our compiler allows the binary operation of exponentia

tion, which Dijkstra does not use. There is no effect on any 

of the goals. 
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6.3 IQiTlBILITY 

Until another computer facility uses our compiler and its 

own version of the AS to build a DPL compi1er, the portabil

ity of the compiler can only be the subject of an educated 

guess. 

James D. George, the designer of the Aft and the only per

son who has written an Aft to date, is pessimistic about the 

likelihood that other installations will arite Aft's to 

transport the compiler. In characteristica1ly cautious 

terms, he says: 

I could not categorically deny two 
possible assertions about the Abstract 
ftachine: 

1. It is too dificult to implement. 

2. It does not exploit target
machine power well. 

[George, 1979, p. 130] 

For the implementer elsewhere the choice is probably bet-

ween using our compiler and writing a new Aft and writing his 

or her own compiler, using a high-level language and such 

tools as parser generators, pre-written symbol table rou-

tines, or already-existing assemblers. 

is likely to be the expected effort. 

The deciding factor 

George, in his thesis [George, 1979, p. 132), estimates 

that his version of the AM on the IBft 360 took him two man-
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aonths, not including the time it took to learn about the Aft 

or the IBII 360. His All does not perform run-time type-check

ing, a deviation from the definition, and he vas, of course, 

very familiar vith the All. 

In contrast, Gary Bishop of this department wrote a DPL 

compiler as a course project, and estimates that he spent 

one aan-aonth on it [Bishop, 1980, personal communication]. 

His version has certain faults: there is no character data 

type, and there are no error messages for type and initiali

zation constraints, and none for run-tiae errors. Twice the 

effort, tvo man-months, would certainly improve the product. 

They might not improve it enough to be used as a student 

compiler. 

As the estimated time for transporting the compiler is 

the same as the time for writing one's own compiler, I do 

not think it likely that the compiler will be transported 

elsew.here. When the time needed to understand the Aft is 

added to the time needed to write an All, transporting would 

seem the more difficult task. Our goal of easy portability 

is only partially achieved. 

6.4 STUDENT QBIENTATIO~ 

When one considers the compiler as a tool for naive stu-

dents, the DPL compiler has certain obvious 

provides enough information to its user that 

problems but 

both the kind 
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of error and its location can usually be found. These 

faults are described in the rest of this section as is the 

guestion of oar compiler's diagnostic aids (again, the 

reader is reminded that some of the faults have been cor

rected in versions of the compiler later than the one this 

thesis treats). 

6.4.1 Jaril9le lames ~ !essages 

!any messages do not refer to a source variable, for 

example •missing semicolon' or •guard expression is not boo

lean•. Those that do are more informative if they can spe

cify which variable is the guilty one: thus ,.x" 'is anini

tiali~ed and cannot be used in an expression• is a more 

useful message for a student than •uninitialized variable in 

an expression•. The DPL compiler messages generated by the 

CG are not in terms of the source variable, but like the 

second example, only name the problem. 

The error is, however, detected and pinpointed to a par

ticular statement (but see the next subsection) and, in most 

cases, will be enough to enable the student to correct his 

or her program. The major weakness is that in long expres

sions or in multiple assignments, there may be several pos

sible variables at fault. A suggested solution to this prob

lem is given in the next chapter (7.2.5) • 
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6.4.2 ~ ~nd stateaent luaberioq 

lfhen the FE reads a DPL program, it prints a copy. .This 

copy has line numbers. In the IL produced by the FE, there 

are statement nuabers, which are used by the CG to pinpoint 

the statement in which an error has been detected. Unfortu

nately, these two sets of numbers are not the saae: a state

ment may be split into several lines, or a line aay contain 

several statements. 

l solution to the confusion produced by a message refer

ring to statement ten, which is printed on line eight, is 

proposed in the next chapter (7.2.5) • 

6.4.3 undetected Jrrors 

There are rules about the use of initialized and unini

tialized variables that the compiler cannot enforce, as it 

does not detect a mistake by the prograamer. Possible mis-

takes are failing to initialize a variable in all branches 

of an 'if fi•, failing to make all the intializations for a 

variable of the same type, failing to match the types of 

array-intialization elements vith the declared type of the 

array, and mismatching the types of left and right-hand 

sides in a multiple assignment. Further, the compiler does 

not check the type of an array index in all array opera

tions, and the incorrect type (for example, a boolean index 

value) will cause the program to fail. 
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If a student makes one of these errors it will become 

visible only at run-time, and only if the erroneous code is 

executed. The symptoms will be a message from the Aft, com

plaining about invalid register types, and the program will 

halt. There will be no output printed from tAe output 

arrays. 

gram mer. 

This will be very little help to the student pro-

Suggested solutions to the problems of initialization are 

in the following chapter (7.2.6) and, in more detail, in the 

documentation describing the CG. 

6.4.4 ~ of Diagnostic ~ 

The PL/C compiler, used at ONC-CB in the introductory pro

gramming course, does more than echo and number the source 

program and list the output: it produces a number of aids, 

such as depth-of-nesting numbering beside each line, an 

identifier cross-reference, and, in the event of an abnormal 

end, a short trace, in terms of the PL/C statment numbers. 

The DPL compiler produces none of these aids. 

We deliberately did not include such aids in our initial 

design. The goal of student-orientation might seem to 

require that our compiler help the student by producing such 

aids. Though there is (and vas) disagreement on this topic, 

it is not the task of this thesis to do more than note that 

we did what we had planned in the way of diagnostic aids. 
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6.5 JQR2M!!l11 ABD IBFORBlTIOJ BIPIIG 

Our desire to make full use of the techniques of division 

into modules and of information-hiding was fulf1lled, and 

very fruitful: when the time came to put our separately

written modules together, there were no problems at the 

interfaces. This is a remarkable testimonial. 

Further, when a totally new team of programmers vas 

adding major improvements. they vere made with relative ease 

and almost no change to the inter-module interfaces (Parnas, 

personal communication. 1980]. This, too, is an indication 

of the benefits of these techniques. 

There are parts of the compiler where ve could have used 

the techniques more thoroughly but did not. Had we done so, 

I am certain the compiler would have been simpler to write 

and debug. 

Thus the FE has an interface in tvo parts to the CG, but 

only needed one. The first and major portion is the IL, 

available through a function call to NEXTOK in the FE. The 

second is the constant-holder part of the FE, which returns 

the length and elements of constants through tvo functions. 

For a more unified interface, the constants could have been 

embedded in the IL, and the responsibility for the charac

ter-to-boolean or character-to-integer conversion could have 

been given to the FE. 
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Within the CG, the only module whose interior I know, 

there are tables that would have been hidden within a subao

dule if I had known earlier that I would need thea. An exam

ple is a table INDOOD, recording the depth of, 1 do od' nest

ing for each block: this would have been part of the stack 

aodule, but my need for it did not become apparent until 

after the stack module vas finished and its interface bread

cast to all the CG in the fora of a common block vith the 

stack names. Rather than try to find all the references to 

the common block, I added a nev table. This, and a other 

few instances in the CG, had no impact on the rest of the CG 

or the other modules. 

6.6 li0YAB1LJTI 

One version of the templates has been proven correct: so 

far as the compiler realizes the templates, it is correct. 

The effort to prove the templates uncovered many errors in 

the templates (mostly in register usage) that would have 

been very hard to detect otherwise. Though proving the temp

lates correct vas not a goal, it has been very useful. 

6. 7 Jll!LIVERJ MH 

We did not meet our delivery date. The compiler took more 

than twice as long as had been planned, twenty months rather 

than nine. Here we did not meet our goal. 
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6.8 UPIC!EKI 

Though efficiency vas never a goal of the project, it is 

proper to ask whether or not the DPL compiler is so ineffi

cient that it will not be used. This is also relevent to the 

possibility of transporting the compiler elsewhere: if it is 

inefficient, that is all the more reason to write one's own 

compiler. 

As an example, the saae algorithm vas run on the PL/C and 

the DPL compilers, with the following compilers. zo The st.a-

tistics are given beneath the program listings.z& 

I did not try to favor one or the other language, but. 

PL/C may have an advantage in better input and output opera-

tions. The difference is still immense: almost tvo orders 

of magnitude more time to execute, , more than tvo orders of 

magnitude more compilation time, and almost three times the 

aemory use. Another measure is the cost, where the ratio 

favors the PL/C job: eighteen cents to three dollars and 

three cents, a factor of seventeen. While the DPL compiler 

has other goals than efficiency, it is only fair to remember 

that the PL/C compiler is made larger by its extensive 

error-correction capacity. 

--------------------
zo Note the use of the IO operations on the special arrays 

'iinput• and •ioutput•. 

21 Due to the accounting method used, the totals are not 
always the sums of the component entries. 



begin 
glovar iinpot, iootpot; 
pri var i, x; 

x vir int, iinput:lopop; 
i vir int := 1; 

do i <= 20 -> 
i, l[ := i + 1, l[ + 1 

od; 

ioutput: hiext (x) 
end 

CPU tiae, seconds 
coapile: 8.8 
run: • 8 
total: 9.6 

other time: 14.4 

aeaory in K: 446 

disk accesses: 762 
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TRY: PI!OCEDIJRE OPTIONS (lll!ll) ; 
DELClRE (I, I) FIXED BiliARY; 

GET LIST 
I = 1; 

DO WHILE 
I= I 
I = I 
END; 

PUT LIST 
EIID TRY; 

.06 

.01 

.1 

3.11 

160 

146 

(I) ; 

(I <= 20); 
+ 1; 
+ 1; 

(I) ; 

The efficiency of the All is not the problem, though the 

real machine code has about 4.2 IBII 360 instructions for 

each 111 instruction (George, p.112). The generated code is 

not the problem, as it is not overly inefficient. The prob

lem lies in the size of the compiler and the many passes 

over the source program. 

6.9 iUDGEREIIT OR THE DPL £011PILBB 

The compiler is late, it fails to enforce rules that are 

basic to the language, it is inefficient and its error mes

sages can be less than useful. ·clearly, there is a lot left 
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to do before the DPL compiler can be judged a success. 

Neither can it be dismissed as a failure: our compiler has 

made good on some of its goals, and partially achieved the 

others. It lies in the area of the •low pass• or 

1 gentleman•s c•: too good to throw away, but disappointing. 



Chapter YII 

COBCLUSIOBS, BBCOBBBBDATIOJS 

7.1 &BY TBIIGS 81BT IROIG 

There were tvo reasons for the lov quality and late 

delivery of our compiler: an inexperienced team and poor 

communications within the team. Our optimism lead to an 

early predicted delivery date, making the delivery seem 

later than it would have been if we had appreciated the dif

ficulties ahead. Each of these three aspects of vhat vent 

wrong will be discussed. 

7.1.1 

Hone of the graduate students in the project had written a 

compiler before nor had any had formal instruction in the 

subject. Though eager to start, we were slowed by our need 

to learn how to do what we were doing. 

Thus the parse method initially chosen for the CG was 

recursive descent, despite the difficulty in simulating 

recursion in FORTRAN, as I did not know there were parse-ta

ble generators available, or that other techniques of pars

ing would still allow me to generate the whole of a template 

in one (or two) subroutines. This decision stood until Dr. 
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ftehdi Jazayeri persuaded ae to ose another, aore practical 

aethod, when the project was over a year old. 

We did not worry about the size of the compiler until the 

end of the project: then we were aaazed. A little fore

thought would have allowed the coapiler to operate as sev

eral passes, rather than having the PE, CG, AKA, and ARM all 

present at the saae tiae. ftore experienced people aight have 

foreseen this. 

We also underestimated the aaount of tiae it would take 

us to learn how to use the AftA and Aft, to use the module 

specification technique of traces [Bartussek and Parnas, 

1977], and to learn to use FORTRAN. our initial optiaism 

became pessimism as the project continued long past our pro

jected delivery date. Neither was justified by the actual 

state of the project. 

7.1.2 1nter~diate ~anggag~ Iaprove~!t§ 

ftore experienced people might also have noticed that we 

were proposing to parse the source language twice, once in 

the FE and once in the CG, but that the intermediate fora 

vas not designed to make the CG 1 s parser small and simple. 

If the IL had been only slightly modified, with each con

struct unambiguously flagged at its beginning, the CG 1 s 

parse tables would be much reduced. 
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ln example aay make this clear. It is only in the sixth 

element of the IL statement that an array initialization and 

a multiple assignment vhose first identifier is being ini-

tialized are distinct. To mate both the problem and the 

solution clearer, I give the IL. Here the items in KAJOS-

COLES are IL tokens, those in miniscules are variables, and 

non-terminals are in <brackets>. The IL is shown only for 

the beginning of the construct. 

Intermediate Language 

<array initialization> ::= 
ASSIGN name ft!RK1 INITZN <type> ARRYSN ••• 

<multiple assignment> ::= 
ASSIGN name KARK1 INITZN <type> KARK2 another-name 

suggested form 

<array initialization> ::= 
ARRAYINIT name <type> • • • • 

<multiple assignment> ::= 
KOLTSN name INITZN <type> ••• 

••• 

We experienced problems communicating decisions and 

definitions during the project. These problems were due to 

the choice of Dijkstra•s book as the language definition, to 

aisunderstandings, and to lack of distribution of informa-

tion within the team. If a language definition had been 

written in advance, by one person, much time would have been 

saved that we spent looking in the book (for example, to 
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find whether or not there were character variables), or in 

disputation. 
! 

7.1.3.1 Probleas with the Book 

! Discipline .Q! Proqrauing had no index, did not gather 

all the definition of the notation in one place, and did not 

include a foraal graaaar. There was no definition of input 

or output. It was hard to use as a reference. 

7.1.3.2 Sis understandings 
I 

There were a few aisunderstandings that did not get 

straightened out until after they had led to redundant or 

awkward code. Both the PE and the CG thought that checking 

variable inheritance vas part of their function: thus both 

do it. Though the AM is designed to trap on detection of an 

attempt to divide by zero, or to take a residue aodulo zero, 

the CG generates tests before division or residue opera

tions. 

An example of awkwardness due to inadequate interface 

specification is the conflict of the CG's register alloca-

tion method with the ARM's interface to the CG: to the CG, 

registers are arbitrary and allocated by a submodule, to the 

ARM, registers are named and their use is defined by the 

programmer. Thus before each call to the ARM generated by 

the CG all registers must be allocated, and all freed after 

the call, to preserve LIFO usage of registers. This means 

extra loads and stores for parameters to the ARK. 
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ie had not realized that register allocation would be 

part of an interface using registers, nor that an interface 

involving shared storage locations aight be less likely to 

create probleas. 

7.1.3.3 Unbroadcast Revs 

Certain decisions (for example, the form of the IO ve 

would add to DPL) did not get successfully broadcast from 

the decider to the rest of the team. Further, questions 

about overall design did not get quick answers froa the 

leader. 

7.1.4 Conceptqal Ia~itl ~ lJ!! Hands 

In ay opinion, if one person had extracted a foraal 

definition of DPL from Dijkstra•s book, designed an exten

sion for IO, and sketched the secrets and tasks of the 

aodules within the compiler, the result would have been less 

wasted tiae in the beginning, and a better understanding by 

the rest of the team of both the task at hand and how long 

it would take. 

The ftYthical aan ftonth [Brooks, 1975, p 47] discusses the 

temptation to put idle hands to work, even when the current 

task is best done by those already working. This aay be the 

reason that the compiler was designed by a committee (Dr. 

Parnas, Dr. Wagner, Jim George and me), rather than by one 

person alone. 
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7.2 &2! tQ llJ TBII§S 

The following few, short suggested solutions aay not 

cover all the faults of the DPL compiler. 

however, they should improve it. The first suggestion is 

aimed at the past, rather than the future. The documenta-

tion for the CG covers some of the fixes in more detail 

(with code, in a few cases). Solutions are described under 

the head of the goal they foster. Some faults have already 

been solved in more recent versions of the compiler. 

7.2.1 ~ortening !Ai ~ •eeded 

The two largest modules could have been split, reducing 

the size of each sub-module. These modules could have been 

written by different people, thus shortening the over-all 

time. In both cases, the internal interface vas specified by 

the writer of the large module even though it vas not split. 

If the CG had been divided into two sub-modules, one of 

which parsed and provided utilities such as the symbol table 

and the stack module, while the other generated code and 

allocated registers, the CG might be easier to maintain, and 

all the rules might have been enforced. 

If the A~A and the A~ had been written by two different 

people, two A~'s could have been written, and the· portabil-
' 

ity of the compiler tested to a greater extent. 
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Stgdent-orientatiop 

The line-number versus stateaent-nuaber problem could be 

best solved by each stateaent, vould be available to the 

source-echoing submodule. CO!!OH, initially set to zero and 

increaented at the beginning of each statement, vould be 

available to the source-echoing subaodule. It vould label 

each echoed line vith the number of the first statement on 

it. 

The FE should also be extended to include a routine that 

vould print the DPL name of a variable in the IL vhen called 

by the CG. This naae is already available in the FE's char-

acter holder submodule. The names of variables could then 

be printed in error messages. 

7.2.J Implementing RE1 

To check the type of expressions in a aultiple assign

ment, vithin an array initialization, or in array opera

tions, the routine CTYPOK, described in the CG 1 s documenta

tion should be added to the CG. It is called after an 

expression has been generated, and coapares the type of the 

expession to the type expected. Both of these are in COMMON 

blocks already. 

Checking that initializations proceed in parallel in the 

branches of an 1if fi' is harder. I can think of two possi

ble avenues to a solution, one at compile-time and one at 

run-time. 
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During coapilation, a list of the variables that aust be 

initialized within a particular •if fi• could be built for 

each 'if fi•. Tae list would be built while translating the 

first branch, and checked within the others. If a nev varia

ble vas initialized, or if one of the listed variables vas 

not initialized, that would be an error. As the 'if fi's can 

be nested, there would be a set of lists, and this aight 

require a lot of code and storage. 

These lists would be checked on initialization of a vari

able, as an expansion of the routine CASSB6. 

If the compiler left an Aft version of the symbol table, 

with type and initialization inforaation, a run-tiae routine 

called for each initialization before the assignaent vas 

aade could check that those assignaents that were aade were 

correct. This approach, however, could not detect required 

initialization& that were not made. 

A simpler solution is to change the aessage printed by 

the Aft when the generated code trys to load or store an 

object of a different type than the referenced area of sto

rage contains. This would usually imply an initialization 

error in the source. If the message were "Probable error in 

initialization of variable in •if fi' "• rather than ".Reg 

type err", the other solutions would not be needed. 
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Bfficiencr 1!J Port§Rilitv 

I recommend removing the trap aechanisa from the defini

tion of the 1!.22 This would have two good effects: the lB 

will be easier to implement, it is simpler, and tae real 

machine code produced will be smaller and thus run faster. 

What error-checking is needed can provided by code generated 

by the CG, or by the real machine. 

7.2.5 Epilog 

The fact that I nov feel I could do a much better job is 

indicative of the amount I learnt as a member of tae project 

team. I hope that our experience will help others to do bet

ter without the slowness and pain of learning by experience. 

--------------------
22 Dr. Parnas disagrees with this recommendation. 
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~~~BIBO~E GllBBll 

This attribute grammar serves three functions: it pre

sents a BNF grammar of the IL that vas the source language 

produced by the FE for the CG; it lists the templates which 

were used to translate constructs into 1ft code; and it for

mally specifies the translation, and thus the the CGI with

out over-specification. Two things should be noted, however: 

the specification is not complete, and the verr important 

question of register management is ignored. 

The ARM and the code it generates are ignored, as is the 

code generated to allow input and output. 

Further, what is more important from a formal point of 

view, the translation of source symbols into AM memory loca

tions is unspecified. From a practical point of view, how

ever, it is unimportant, as any function that maps elements 

of the source into a part of AM memory without overlaps is 

enough. This is only true if the source is correct, and all 

variable references follow the scope rules. But templates 

assume correct input. For a full specification we would 

need a more powerful notation. 
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Bow information is save for later use is aot included. 

This aakes some productions seem useless: they aay have ao 

translations in code, but are none the less iaportant. 

Register allocation is deterained by the iapleaentor, and 

is not properly part of a teaplate. The templates may 

express requirements for the register allocation algorithm 

to meet. I have tried to show these by the use of specific 

register names: ~.g. B1 is register one, aa or Bb an arbi

trary register. still, the templates say only •with result 

in B1 1 , and do not say how this is to be done. 

&.1 IOTATIOI ~ 

Each rule in the IL grammar is numbered, and the corres

ponding translation equivalence is below it. Code that is 

emitted and IL terminals are in CAPITALS, IL non-terminals 

are in <bracketed miniscules>, indicies in unbracketed ain

iscules, while restrictions and explanitory material are in 

qnderlined ~lish, to advoid a complicated new formalism. 

Braces ( ] are added for clarity. Thus a grammatical rule in 

IL might be: 

<non-terminal> ::= one Q£ more [terminal(s)] 

The sequence 

top to bottom. 

shortened form: 

.us one or more [<nonterminal(s)>]. 

of generation in the translations is from 

Initilizations of arrays are given in a 
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Arrayname (*) <-- list of yalu~. 

This stands for the long sequence of SETs and NULLs after 

a DSA. Otherwise, tbe reservation of storage is explicit. 

For explainations of the AMA code, see Appendix c. As it is 

there, the type-specifying suffix 'B'. •c•, 'F', 'P', or 'L' 

is replaced by • • to avoid useless repetition of the same 

template. 

·~'EMP' is always an unused scalar location of the appro

priate type. 
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1. <program> ::~ <block> 
t(<program>) = JUMPL BEGIN, NR, D 

MSG1 (*) <-- 'ABORT STMT EXECUTED' 
ABORT: WRITN PRINTER, !SG1, NB, M, 25, NB. M 

HAL TN 
MSG2 ( *} <-- 'NO GUARD OF I.FFI Tl'WE' 
IFBORT: WRITN PRINTER, MSG2, Nl, M, 22, NB. B 

HAL TN 
MSG3 (*) <-- 'ATTEMPT TO DIVIDE 13'! ZERO' 
ZERDIV: WRITN PRINTER, MSG3, Nl, M, 26. NR, M 

HAL TN 
MSG4 (*) <-- 'ATTEIIPT TO TAKE ZI;EO MODULO' 
ZERMOD: WBITN PRINTER, MSG4, NB, !l 0 27, IB, d 

HAL TN 
SHUFL~ 

LOOP: 

DONE: 

RETURN 
SNAME 
SNUN 
TRUE 
FALSE 
LINENUM 
BEGIN: 

STOP R1, RETURN, NR, 0 
LOADP R2, SNAME, NR, D 
LOADF R3, 0, NR, I! 
LOADP R1, R3, R2, BX 
STOP R1, TEMP, NR, D 
LOADF R3, 1 NR, D 
CJCF R3, SlUM, NB, I, GB, DONE, IB, D 
LOADP R1, R3, R2, BX 
SUBF R3, 1, NR, 11 
STOP R1, R3, R2, BX 
ADDF R3, 2, NR, M 
LOADP R1, TEMP, NR, D 
LOADF &3, SNDM, NR, I 
STOP R1, R3, R2, BX 
JDMPL RETURN, NR, I 
DS POI 
DS POI 
DS POI 
DC '1'B 
DC 'O'B 
DS FXD 
t (<block>) 
HALT I 

2. <block> ::= <ldecl> <lstmtln> <lfreeables> 
t (<block>) = t(<lstmtln>) 

3. <ldecl> : := <decl> <ldecl > 

4. <ldecl> ::~ ENDLST 

5. <decl> : := GLOVAR .I VIRVAi< I PRIVAR I GLOCON i \IIRCON ! l?RICON 

6. <lstmtln> ::= <stmtln> <lstmtln> 
t (<lstmtln>) = t (<stmtln >) t (<lstmtln>) 

7~ <lstmtln> ::= ENDLST 
t (<lstmtln>) = 

a. <lfreeables> .. - i <lfreeable> 



9. <lfreeables> ::= BNDLST 

10 <statln> ::= LIHUK i <stat> 
(where 0 < i ) 

t (<sUtln>) = !KKF i, BR, K, LIHENU!, NR, D 
t(<stat>) 

11. <stat> ::= PGK <block> 
t(<stat>) = t(<block>) 

12. <stat> ::= DOOD one~ more (a) 2! 
[ <expression i> ,<lstatln i> ] ENDLST 

t(<stat>) = .JUIIPL START, liB, D 
for ~~ of ~ n sets <expression 1> <lstatln 1> 
[ GUARD!: STOP R 1, SAVE, HR, D 

t(<express1on i>) 
illto r;eqister Ra 
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C.JCB Ra, TRUE, NR, D, HE, SAVE, NR, I 
t ( <lstm tln i>) 

JUIIPL SUCCESS, NR, D 
] 

GUARDS <-
GNU!! 

GUARD1, 
DC 

GUARD2, ••• GUARDn 
n 

SAVE 
SUCCESS: 

DS POI 

START: 

LOOP: 

II 811 P 
KKKF 
JLKI. 
LOADF 
JLKI. 
SUBF 
CJCF 

GUARDS, NR, M, SNAKE, NR, D 
GNUK~ BR, II, SNOK, NR, D 
SHUFL, BR, D 
Rb, [n - 1], NR, II 
R1, GUARDS, Ri, XI 
Rb, 1, NR, !I 
Rb, O, NR, B, GE, LOOP, NR, D 

13. <stat> :: = IFFI ~ Q!: more (a) of 
[ <expression i> <lstmtln i> ] ENDLST 

t(<stmt>) = JUMPL START, NR, D 
for ~ch of the n ~2 <expression i> <lstmtln 1> 
[ GUARDi: STOP R1, SAVE, HR, D 

GNUM 
SAVE 
GUARDS 
START: 

t(<expression i>) 
into register l! 

CJCB Ra, TRUE, NR, D, NB! SAVE, BR, I 
t(<lstatln i>) 

JUMPL SUCCESS, NR, D 

DS 
DS 

<-- GUARD1, 
MKMP 
MMMF 

n 
POI 
GUARD2, ••• GUARDn 

] 

GUARDS, NR, II, SNAKE, NR, D 
GNU!!, NR, M, SNUM, NR, D 



LOOP: 

SHUFL, IB, D 
Bb, [n- 1], IB, I 
B1, GOlBDS, Bi, II 
Bb, 1, IB, II 
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JLKL 
LOADF 
JLKL 
SUBF 
CJCF 
JU!IPL 

Bb, 0, IR, II, GE, LOOP, liB, D 
IFBORT, 11!, D 

SUCCESS: 

14. <stmt> ::= SKIP 
t{<stmt>) = 

15. <stmt> ::= ABOl!T 
t(<stmt>) = 

16. <stmt> ::= ASSIGN 
t(<st.t>) = 

11. <stmt> ::= 1SSIG11 
t(<stmt>) = 

i 

i 

JU!IPL ABORT, IR, D 

ARBYOP HIBEll 
LOADF B2, All111, IB, I 

!ali. A!:UL manager for 

ARBYOP LORE!! 
LOADF B2, 1111111, IB, I 

call arra:r: l!lnager for 

18. <stmt> ::= ASSIGN i ARRYOP HIEIT <expression> 
t(<stmt>) = t(<expression>) 

llith the result i!! .b 
STO_ Ba, TEMP, IR, D 
LOADF R2, i, IR, II 
LOADP R3, TEI!P, NB, II 

BIB Ell 

,LORE I! 

call arra:r: ~anager ~ HIEIT 

19. <stmt> ::= ASSIGN i ARRYOP LOEXT <expression> 
t(<stmt>) = t(<expression>) 

vith the usult i! .b 
STOF Ra, TEI!P, 11!, D 
LOADF 1!2, i, IR, I 
LOADP R3, TEMP, IR, ll 
~ ~ra:r: manager for LOEXT 

20. <stmt> ::= ASSIGN i ARRYOP SHIFT <expression> 
t(<stmt>) = t (<expression>) 

.!!ill lli result ill .b 
STOF Ra, TEIIP, IR, D 
LOA DF 1!2, i, 1111!, II 
LOADP R3, TEMP, IR, ll 

!all. arra:r: tanager ~ SHifT 

21. <stmt> ::= ASSIGN i ARRYOP SWAP <expression 1> <expression 2> 
t(<stmt>) = t(<expression 1>) 

Jith the resglt ill lU . 
t {<expression 2>) 



with the result ill ~ 
LOADF B2. i. HB, ft 

call j{ray aanager !2r ~ 
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22. <stat> ::= ASSIGN i. ARRYOP ALT <expression 1> <expression 2> 
t(<stat>) = t(<expression 1>) 

with the result ill i1 
t (<expression 2>) 

with the r~sult ill JU 
LOADl' B_2, i, liB, ! 

call array manager for llLT 

23. <stat> ::= ASSIGN i IIARK1 <i.nit> SiftPSH <expression> 
t(<stat>) = t(<expression>) _ 

with the~~ ill~ 
STO_ Ba, t(i), liR, D 

24. <stat> .. -.. - ASSIGN i URK1 <i.nit> llARK2 j POP HIPOP 
t (<stat>) = LOADF B2, j, NB, ll 

call trray manager for BIPOP 
STO - B3. t (i), liB, D 

25. <stat> ::= ASSIGN i IIARK1 <i.nit> llABK2 j POP LOPOP 
t(<stat>) = LOADF B2, j, liB, ll 

£9!! array aapager for LOPQP 
STO - R3, t (i), liB, D 

26. <stat> : := ASSIGII i1 URK1 <i.nit> lllBK2 !IIJLTSlf <init> 
one 2£ .!!.Ore ingices i2, i3, 
• i(n - 1) , in 
.!!!Uil 2£ ao re [<expression j>] 

t(<stmt>) = 12£ ~ <expression j>, 
[ t(<expression j>) 

i!U2. 11 
STO_ B3, TEIIPj, NB, D ] 

for each i {j) , from j = n 12 
[ LOAD B3, TE!IPj, HB, D 

STO_ B3, t(i(j)), NR, D ] 

26. <stat> ::= KULTSN i MllRK1 <i.ni.t> ARRYSN 
Q!i._g 2£ !!2.ll [ j(k) ] ENDLST 

t (<stmt>) = LOADF Ra, 0, JIB, D 
for each 1£ 

[ KIIK t ( j (k) ) , liB, ll, ARRAY_, NB, 
ADDF Ba, 1, NR, II 

• 

! 

Ba 

£!!! array manager ill !ni-
tiali~atj.on 

28. <init> ::= ACTIVE I INITZN <type> 
t(<init>) = 

29. <expression> ::= <postfix> ENDLST 
t (<expression>) = t (<postfix>) 

] 



20. <postfix> ::= SISPLV i 
t(<postfix>) =LOAD_ Ba, t(i), JB, D 

31. <postfix> ::= PBOPEBTY i <array property> 
<array property> : := DOS .I LOB I HIB I HIGH I LOW 
t (<postfix)> = LOADF B2, i, JB, II 

76 

~ Array ftanager for array property 
naaed. DOll, LOB, and HIB all return 
their Yalue in 1!1, HIGH and LOW in B3. 

t(<array property>) = 

32. <postfix> ::= CONSTN <type> i 
t (<postfix>) = 

call front End 12 get tslue gt 
constant gaaed 'i' Q! the 1n!!l. 
specified 

LOAD_ Ba, constant, JB, a 

33. <type> ::= INT I BOOL I CHAR 

34. <postfix> ::= SUBSCR i <expression> 
t(<postfix>) = t(<expression>) into r!l,gister 9 

call Array ~anaqer to ~ ~ 
•expression• th element of the 
array named 'i'. 
vhich ~!§ the Yalu~ into 
register three 

35. <postfix> ::= <postfix> NEG 
t(<postfix>) = t(<postfix>) ln!2 registe~ i 

LNEGF Bi, NV, lli, BM 

36. <postfix> : := <postfix> NOT 
t (<postfix>) = t (<postfix>) into register ! 

L.NOTB lli, NV, Bi, Bll 

37. <postfix> ::= <postfix> ABS 
t(<postfix>) = t(<postfix>) j£.to register ! 

NOFLIP: 

CJCF Ri, 0, llB, D, GE, NOFLIP, Nll, D 
LNEGF Bi, NV, Ri, BS 

38. <postfix>~== <postfix 1> <postfix 2> PLUS 
t(<postfix>) = t(<postfix 1>) into registe~ ! 

t(<postfix 2>) !nto register j (j ~ i 
distinc1) 

ADDF Ri, NV, Rj, Bft 

39. <postfix> ::= <postfix 1> <postfix 2> SINUS 
t(<postfix>) = t(<postfix 1>) !gto register i 

30. <postfix> ··= •• 

t(<postfix 2>) into reqiste{ j (j ~ i 
!lis tinct) 

SUBF Ri, NV, llj, Bll 

<postfix 1> <postfix 2> TiftES 
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t(<postfix>) = t(<postfix 1>) ia!Q register i 
t.( <postfix 2>) j,nto register j (j !!£ i 
distinct) 

ftULFF Bi, NV, Bj, B! 

41. <postfix> ::= <postfix 1> <postfix 2> DIVIDE 
t(<postfix>) = t(<postfix 1>) ~register i 

t(<postfix 2>) i!l12 register j (j m ! 
distinct) 

CJCF Rj, 0, IR, K, EQ, ZERDIV, IR, D 
DIVF Ri, NV, Rj, B! 

42. <postfix> ::= <postfix 1> <postfix 2> MODULO 
t(<postfix>) = t(<postfix 1>) jn!Q register ! 

t(<postfix 2>) ~ register j (j and i. 
4istinct) 

CJCF Rj, O, IR, ft, EQ, ZEBftOD, RR, D 
!ODF Ri, NV, Rj, Bft 

43. <postfix> ::= <postfix 1> <postfix 2> CARD 
t(<postfix>) = t(<postfix 1>) ~ register i 

FAIL: 

CJCB Ri, TRUE, NR, D, NE, FAIL, NE, D 
t(<postfix 2>) in1Q ~~ter i (the ~ 
one) 

44. <postfix> ::= <postfix 1> <postfix 2> COB 
t(<postfix>) = t(<postfix 1>) in1Q register i 

PASS: 

CJCB Ri, TRUE, NR, D, EQ, PASS, NR, D 
t(<postfix 2>) .in.!.2 J;:~gister i (j.he sam~ 
~) 

45. <postfix> ::= <postfix 1> <postfix 2> LESS 
t(<postfix>) = t(<postfix 1>) into ~gi§~ ! 

t {<postfix 2>) into register j {! ~ j 
distinct) 

CJC_ Ri, NV, Rj, BK, LT, YES, NR, D 
LOADB Rk, FALSE, NR, D 
JUKPL DONE, NB, D 

YES: LOADB Rk, TRUE, NR, D 
DONE: 

46. <postfix> : := <postfix 1> <postfix 2> EQUAL 
t(<postfix>) = t(<postfix 1>) !gto register i 

t(<postfix 2>) into J;:egist~ j (j, and j 
distinct) 

CJC_ Ri, NV, Rj, BK, EQ, YES, NR, D 
LOADB Bk, FALSE, NR, D 
JUKPL DONE, NR, D 

YES: LOADB Rk, TRUE, NR, D 
DONE: 

47. <postfix> ::= <postfix 1> <postfix 2> !ORE 
t(<postfix>) = t(<postfix 1>) in1Q ~gister ! 
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t(<postfix 2>) ~ Iiqister j (! ~ j 
distinct) 

CJC_ Bi, NV, ij, BM, GT, YES, BR, D 
LOADB Bk, FALSE, JR, D 
JUKPL DONE, BR, D 

YES: LOADB Bk, TRUE, BB, D 
DONE: 

48. <postfix> ::= <postfix 1> <postfix 2> REQUlL 
t(<postfix>) = t(<postfix 1>) ~register i 

t {<postfix 2>) ,into u!li§UI j (i ~ j 
distinct) 

CJC_ Bi, NV, ij, Bft, BE, YES, BB, D 
LOADB Rk, FALSE, Hi, D 
JUMPL DONE, NR, D 

YES: LOADB Rk, TRUE, NR, D 
DONE: 

49. <postfix> ::= <postfix 1> <postfix 2> NLESS 
t(<postfix>) = t(<postfix 1>) 1n12 ~gister i 

t(<postfix 2>) jnto {eqist~ j (i and j 
distinct) 

CJC_ Ri, NV, Rj, BM, GE, YES, NB, D 
LOADB Bk, FALSE, NB, D 
JUMPL DONE, NB, D 

YES: LOADB Rk, TRUE, NR, D 
DONE: 

SO. <postfix> ::= <postfix 1> <postfix 2> NMOBE 
t(<postfix>) = t(<postfix 1>) into ~ister i 

t(<postfix 2>) into £~gister j (i and j 
9istinct) 

CJC_ Bi, NV, Bj, Bft, LE, YES, NR, D 
LOADB Rk, FALSE, BR, D 
JUKPL DONE, NB, D 

YES: LOADB Bk, TRUE, BR, D 
DONE: 

51. <postfix> ::= <postfix 1> <postfix 2> POWER 
t(<postfix>) = t(<postfix 1>) into ~gi§ter i 

t(<postfix 2>) into feqister j (i and j 
distinct) 

STOF Ri, TEKP, NR, D 
LOADF Ri, O, NR, K 

LOOP: CJCF Rj, 0, NR, K, LE, DONE, NR, D 
ftULIF Ri, TEMP, NR, D 
SUBF Bj, 1, NB, K 
JUftPL LCOP, HR, D 

DONE: 



Appendix B 

IBTEi!EDIATE LAIGOlGI BIE!OIICS 

In actual fact~ the Intermediate Language vas nuaeric: 

the values of the anemonics used in the attribute graaaar 

are given in the table below. 

' ' ABORT 12 HI EXT 57 )!EQUAL -38 

' ABS -27 HIGH 51 BLESS -39 
~ ACTIVE 21 HI POP 62 Nil ORE -40 

• ALT 61 HIRE!! 55 NOT -36 

• ABRU 0 IFFI 9 PGII 7 

• lRRYOP 13 INITZN 20 PLUS -28 

• ARBISN 15 I!IIT 52 POP 18 
I ASSIGN 10 LESS -35 PO WEB -41 

• BOOL 53 LIN Uti 99 PRICON 6 

• ClliD -33 LOB 48 PBIVAB 3 

• CHAR 54 LOEIT 58 PROPERTY 44 
l CONS TN 43 LOPOP 63 SCALAR 0 
I COR -34 LOR EM 56 SHIFT 59 
I DIVIDE -31 LOW 50. SIIIPLV 46 

• DOll 49 lllBK1 14 SillPSB 17 
I DOOD 8 llARK2 16 SKIP 11 
l ENDLST 0 III NUS -29 SUBSCR 45 

• EQUAL -36 llODULO -32 SWAP 60 

• GLOCOB 4 II ORE -37 TIMES -30 

• GLOVAR 1 liDLTSN 19 V.IBCON 5 

• HIB 47 NEG -25 VIRVAB 2 

• 



There vas also an end-of-file 

generate at the end of the IL. 

Its value vas -100. 
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•arter that the FE would 

It vas not part of the lL. 

Note that operations were negative, and all others were 

positive, with the exception of SCALli and liBlY, which were 

dropped from the IL. They are included here for historical 

interest. 



Appendix C 

SEBAITICS OF THE ABA AID THE Aft 

The AM is a simple machine. It has a nuaber of registers, 

an area of aeaory that can be addressed, and is very like 

any siaple aachine. The innovative parts were not used by 

the CG, though the ARB did, as noted below, ask the Aft to 

allocate and free aeaory. The teaplates in the first appen

dix are in a pseudo-assembly language, but there should be 

no difficulty in understanding that through the aachine code 

described here, as the use of instruction labels is obvious, 

and the pseudo-operations DS, and 'DC should also be clear. 

I use these in preference to the lBl calls to avoid the 

question of relative timing of the GETL and the SET_, but 

will give a table of equivalences (ignoring tiaing, using 

the generic- type convention). 

j • I g~~do-Assembly !ll I 
j I 
j name DS type GETL (name, type, SCA, P) j 
I name DC value GETL (name, type, SCA, P) I 

• SET (name, type, value, F) 

• (values are written as 1 a 1 B--BIT, 1 1 1 --CHR, n--FXD) 1 
I label: GETT (label, F) I 
j TAG! (label, F) I 
j I 
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An Aft program is a sequence of instructions and a set of 

named memory and instruction locations. These locations are 

referenced in the instructions by three parameters (or por

tions of the instruction, if you will). Their meaning is 

defined in the first table. The meanings of the instruc

tions are defined in the next three tables. 

c.1 APDRESSIIG OfTIOIS 

For each addressing method used {and others offered but 

not used) I will describe the effective address using the 

•contents of• operation, written 'C( ) 1 , and the indexing 

operation, written '[ ]'. 1 liame• refers to a location in Aft 

memory, either an scalar, or an array, in which case an 

index is needed to complete the reference (except for point

ing to an array, when the use of an index is forbidden). 

The address is described in three parameters: L, R, and 

F. L is a name or a register designation, R is a register 

designation, and F is one of the following flags: 

At one point ve considered another flag setting, for the 

case where both the name of an array and the index into it 

were known at compile-time. It would have been convenient 
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I I 
I .liM !kilning Comments I 
I I 

• B C(ll) register holds a name I 

• D L a name I 
I II no address, operand is bmediate with value L I 
I I C(L) = C ( D ) indirection I 
I I L[ C(R) ] index in register I 
I I 
I Bll ll register name I 

• BX C(ll)[ C (L) ] index and name in registers 
I BY C (ll)[ L] index is iamediate I 
I IB C(C(R)) = C ( B ) • I IX C (L{ C (ll) ]) = C ( X ) I 
J III L+C(ll) 1 must be integer I 
I I 
I BIX C (C(R)[ C (L) ]) ) = C ( BX ) I 
I BIY C(C(B) (L])) = C( BY ) I 
I I 

for such references, as the code generator would not have to 

generate code to load one of elements into a register, nor 

would a register have to be allocated to hold either the 

index or the name of the array. This •y• flag ( definition 

~L] ) vas finially rejected on the grounds that in a real 

machine one of two would have to be loaded into a register, 

and that asking the porter to perform this action would be 

making the task too dificult. It would only have been used 

by the ARII. 

C.2 1§1 INSTRUCTIOH §II 

The instructions are executed sequentially, starting at 

the first one. This order of execution is modified by some 

operations as noted below, and by trapping. Each instruc-
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tion has an associated address, by which the transfer of 

execution can be described. The transfers associated with 

the trapping aechanisa will be treated in the next section. 

ls in the teaplates, I will use an underscore (_} to 

replace one of the type-specifying suffixes. Thus rather 

than describe LOADB, LOlDC, LOlDF, and so on, I will des

cribe LOAD_. Where there are constraints on the types that 

aay be suffixed to the generic coaaand, the comaand will be 

listed with the various type suffixes. Thus 1 ADDF 1 rather 

than 'ADD_' is listed, as only PXD data aay be added. 

The three parameters that specify an effectiYe address 

will be replaced by 1 EA 1 • Where an effective operand is 

expected (that is, where imaediate aode is legal) I will use 

'EO'. Except for immediate aode, it is always true that 

C( El ) =EO. The operation of copying from right to left is 

written as '<-•. Thus the first line of the table below is 

to be read •the contents of B become a copy of the effectiYe 

operand•. Note that LCFF and LFFC only allow conversions 

from the CHARs 1 0123456789 1 to the FXDs 1, 2, 3, 4, 5, 6, 7, 

8, 9 and yice versa. !l! i§ •not•. 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

• • I 
I 

• I 

• I 

• I 
I 
I 

• I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

• I 

Operation 
LOAD_ R, EO 
STO R, EA 
JUIIPL EA 
JLKL 1!, EA 

CJC_ 

!IIIII 
ANDB 
ORB 
XORB 
LNOTB 
SRB 
SLB 
ROTRB 

E01, EA2 
1!, EO 
R, EO 
a, BO 
R, EO 
1!, EO 
R, EO 
R, EO 

ADDF R, BO 
SUBF 1!, EO 
IIULIF R, EO 

IIULFF 1! 1 EO 

DIVF a, EO 
IIODF 1!, EO 
LNEGF 1! 1 EO 
LCFF R, EO 

LFFC R, EO 

DBLL R1 EA 

DIILF R, EA 

HALTN 
NOPN 
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' !leaning 1 
C( B)~~ I 
C ( E1 ) <- C ( R ) I 
execution continues at EA 1 
C( R ) <- the address of the 

next instruction 
execution continues at EA 
F is a coaparison, one of: 
(<, =. >, ]<, ]=, ]>}; 
if ( c ( R ) F EO } is true, 
execution continues at EA, 
otherwise as usual 
C ( BA2 ) <- E01 
C ( 1! ) <- C ( I! ) I andt EO 
C( I!) <- C( I! ) Iori BO 
C ( B ) <- C ( I ) ]= EO 
C( I! ) <- ] EO 
C( I ) <-shift C( B ) BO bits right 
C( B ) <- shift C( B ) EO bits left 
c ( I! ) <- rotate C ( I ) EO (aod 16) 
bits right 1 
C ( B ) <- C ( R ) + BO I 
C ( I! ) <- C ( B ) - EO I 
C ( B ) <- C( I ) * EO I 

upper half of product 1 
C ( R ) <- C ( B ) * EO I 

lover half of product 1 
C ( B ) <- C ( R ) / EO I 
C ( R ) <- C ( ll ) aod EO I 
C ( I! ) <- - EO I 
C( B) <-integer version ofl 

the character EO 1 
C( :a ) <- character version 1 

the integer EO 1 
c ( B ) <- c ( R ) - 1; then if 

the nev content is not zero 
continue execution at EA 1 

C ( EA ) <- C ( EA ) - 1; then I 
if the new content is notl 
zero continue execution at 
the location c ( R ) 1 

execution stops 1 
nothing happens 1 

I 
I 
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C.3 J!!PPIIG ftBCBAIISft 

The trapping mechanism works in the following vay: the 

Aft detects an error, of class •i•, it continues execution at 

the location pointed to by the 'i'th element of a special 

array TIIAPS, initialized by the commands that can terminate 

a trap: ARft (most are just TRETH). There are three vays to 

leave a trap routine: note that JOftPL will not vork when a 

trap has occurred, and one of the instructions below must be 

executed to return to normal operation. 

I I 
I 'l'COH continue execution at the I 
I instruction within which the! 
I trap occured. I 
I TRETH continue execution at the I 
I instruction after the one I 
I within whick the trap I 
I occured. I 
I TENDL EA continue execution at EA. I 
I I 
I I 

The CG did not use the Aft trapping mechanism. Explicit 

tests for zero were performed before division and modulo, 

rather than using the Aft trap for zero-division and zero-mo-

dulo. All traps that occur are thus errors of the compi-

ler•s, not the user•s. 
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C.4 lUtJ!UC'UOifS IQt .!liD II %B !;§ 

Other instructions that the CG did not use were designed 

for the Array Banager (ARK). These are described here for 

t.he sake of coapleteness only. To aid understanding of 

these instructions, the reader aust ltnov that untyped AK 

storage is held as an array of eleaents called Lefts. 

I 
J 
I 
J 
I 

·I 
I 
I 
I 
I 
I 
I 
I 
I 

• I 

• I 

• I 

I 
I 

KSA_ !01, E02, EOJ, E04, EOS I 
for i : 0 to EOS do 1 

C( E01 )( E02 + i] <- C{ EOJ ){ E04 + i] 
end . I 

lfLCKP EA C( EA ) <- the nuaber of LCK units I 
ALLOK E01, E02, EOJ, EA allocate E02 units of LCKJ 

starting at index E01 to 1 
to he type EOJ. The new naae 
of this array is L; 1 
C ( EA ) <- L I 

FREEK E01, E02, EOJ, EA free the array naaed EA, of 
type EOJ. This corresponds 
to the E02 units of LCK 1 
starting at E01 that vas 1 
previously allocated by an 
ALLOK call I 

I 
I 



Appendi:l: D 

DOCUKBirATIOI OF TBI CG 

In this appendix the Code Generator will be docuaented. 

This is a description of the generator I wrote, not of the 

abstract generator that is partially specified in Appendix 

A. I plan to describe the CG in the following aanner: first 

the routines vhich do not generate code, starting vith the 

service routines, going on to the parsing routines, and the 

non-cod~ producing semantic routines, second those routines 

that do generate code, starting vith the ones that do not 

call others, and thence to the aore complicated expresssion 

generators. 

This documentation assumes a faailiarity vith PORTBAN, 

and coaaon data structures such as stacks, and tables. I 

will not specify ownership of a common block by a caller 

vhich owns the block only to assure that the values in the 

common block do not change. As the Astract Kachine language 

elements were given hidden values, which were held by varia

bles in common blocks accessable to the CG, I will use only 

the variable names, not the values. All variables are INTEG

ERs or LOGICALs, and explictly declared in the code. These 

declarations vill also not be specified. 
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ls a guide to myself and other maintainers of the code 

generator, I put a 'G' on the names of routines that gener

ated code, and a •c• on the other•s names. 

After the thumbnail description of each module I show how 

to call it, and the meaning of the parameters. Parameters 

that are changed or set by a routine are prefixed with an 

asterix (*l· 

For each routine, all errors detected are listed, with 

their associated numbers (for reporting to CERRPT), and the 

sub-modules it calls. 

The 181 routines are called indirectly, so that code gen

eration may be traced by setting a flag: thus G!TT is 

replaced in the CG by GH!TT, which calls G!TT, and may print 

the values of the parameters. The buffer routines have an 

•a• added to the corresponding llfl name. 

D.1 BBROR REPORTING jND D!TBCTIO! 

When a routine detectes an error, it branches to its end, 

by-passing all non-error code, to a label number of nine 

thousand or more. The error flag passed in is set to a 
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unique number specifying the error, and CERRPT (C-EBror-ae

PorT) is called, with the flag as its sole paraaeter. This 

routine prints a aessage giying the current line number, the 

current token (for debugging purposes - but possibly a later 

version of the Front End could retrieye the source token 

that gave rise to the IL token) and a aessage describing the 

error. raplementation errors, such as stack overflow, are 

printed with leading equal signs, others with leading stars. 

CEBRPT calls uo routines. 

CEBBPT (error-number) 

Errors detected: unknown error code 

Calls: nothing 

D. 2 AU I!Jl'F!! JOUTIIIS 

(no number) 

The CG and the ABK use these routines, rather than call

ing the AKA directly. Each routine checks the flag in the 

common block /CGKORE/. If it is true, the AKA is called. If 

not, it is not (a never version also has a flag that con

trols printing the parameters to the AKA, in the same man

ner). These routines are exactly like the AKA's, except for 

the names, and thus will not have their parameters listed. 

They are: GHETL, GHETT, TRAGI, SHETB, SHETC, SHETF, SHETP, 

DHSA, KODES, KODE9, and KODE16. 

They detect no errors. 
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D.3 IBJ 3T&CIS 

Tae stack routines provide LIFO stacks for the rest of 

the compiler. There are five stacks named via common block 

variables in /CSTACK/, and five functions: initialization, 

pop, push, top and eapty, provided by CSTKZH (C-STacK-IRi

tialize), CPOP, CPOSH, CTOP and CE!PTI. Tae stacks are held 

in a common named /CLIPO/, along with their depth in !XDEEP, 

and an array of pointers to the top element of each stack. 

overflow, underflow and invalid stack name are dectected, as 

is calling CTOP of an empty stack. The current depth is 

thirty, but as !IDEEP is used everywhere, only the declara

tions in CSTKIB and the initialization of !IDEEP need be 

changed to change the depths. All stacks have the same 

depth, but this probably does not reflect their real depth 

in use. Hone of these routines call any other module, 

except CERRPT. 

CSTKIH (*error flag) 

Errors detected: none 

CPOP (name of stack, *error flag) 

Errors detected: invalid stack name 81 

stack underflow 82 

Calls: nothing 
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CPUSH (name of stack, item to push, •error flag) 

Errors detected: invalid stack naae 79 

stack overflow 80 

Calls: nothing 

CTOP (naae of stack, item at top, •error flag) 

Errors detected: invalid stack name 83 

stack empty 84 

Calls: nothing 

CEMPTY (naae of stack, •true if empty, •error flag) 

Errors detected: invalid stack name 86 

Calls: nothing 

The parser is a LL(l) table-driven parser, using the 

stack named GBAK (GRAMmar stack). The parser gets nev tokens 

from the IL by calling NXXTOK (a buffer routine for the FE's 

NEXTOK which man print new tokens as a debugging aid) and 

then calls GSEKAN to perfora semantic actions. Errors 

detected in the IL are reported to CGEPH, whereupon parsing 

is stopped. CGEPH is a FE routine, and is not described 

here. 
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Given a token and a non-terainal on t&e top of the stack, 

tae token's type is translated into an index, and it and the 

aon-terainal are 11sed to look up an action in the parse 

table. GSEKAH is called for actions that are not errors, and 

is passed the nuaber of the production in the IL graaaar, 

the c11rrent non-terainal on the stack, the translated index 

for the token •s type, and the token. An error flag is also 

passed. If t.lle action specified requires the application of 

a production (the replaceaent of the current non-terainal by 

a string of terminals and non-terainals) then CREPLC is 

called and passed the production nuaber and an error flag. 

A peculiarity of the parse is the necessity to accept 

arbitrary numbers as variable naaes. There is a token type 

•arbitrary number•, but the incoming token that is accepted 

as such is not arbitrary, 

but a specific number. 

as far as the parse is concerned, 

Thus arbitrary numbers must be 

translated into this special number. It aust be known when 

an abitrary number is expected, so that the action table row 

for the token •arbitrary number• aay be referenced. To do 

this, a list of the non-terminals that can be on the top of 

the stack when the token expected is an arbitrary number is 

in a common block /CGARBN/ (CG-ARBitrary-Humber). Another 

common block, /CPHTAB/ (C-PHront end-Table) holds an array 

that allows translation of the tokens that are not 

•arbitrary number' into token types and hence indices into 
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the parse action table. The parse action table is in the 

common block /GPARTB/ (G-PARse-TaBle). 

CREPLC (C-REPLaCement of stack elements) uses a produc

tion table in the common block /GPROTB/ (G-PROduction-TaBle) 

and the stack commands to replace the top non-terminal by 

the set of elements in the table specified by the production 

number. T¥0 other items in the common block guard against 

requests to replace elements according to a non-existent 

production. 

GPARSE (*error flag) 

Errors detected: FE error error flag + 1 

(sent to FE only) 

Calls: stacks, NXXTOK, CBEPLC, GSEKAN, CGEPH 

CREPLC (production number, •error flag) 

Errors detected: invalid production number 1 

Calls: stacks 

D.S !HE SJRBQL !ABLE 

The symbol table module provides six functions: initial

ization, entry of a symbol with attributes, inspection of a 

symbol's attributes, dumping of the table, block entry, 
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block exit* and inheritance of a syabol froa the next outer

aost block vita a nev scope. The last three assuae a block

structured language, and aay need to be changed if DPL is 

changed, hut the aodule design should aake this easy. 

The table is in the common block /CGSTAB/, along with 

various pointers into the table, and a stack to help handle 

inheritance. The items in this common block are described 

below. 

As the symbols are guaranteed to he positive integers in 

sequence from some initial positive integer, it is easy to 

aap thea into indices (1, 2, 3, •••• n) in the table. 

TSTABT, initially set to -100, is the offset to he sub

tracted from the symbols to give the index. The table is of 

limited size--currently only two hundred symbols can be 

accomodated. The upper limit for a symbol is given in T!AI, 

which is equal to TSTART + 200. The last new symbol will 

have the largest index, and the next will go in the table 

element with an index one larger. This next index is held in 

TTOP. 

Each symbol has seven attributes, the last of which is a 

pointer into the stack of scopes. TOP points to the next 

free element on the stack, LAST to a position on the stack 

corresponding to the last entry into a block. The stack, 
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called STACK, can hold one hundred entries. Each entry has 

three parts: a pointer (index) into the table, a scope, and 

a pointer (index) to an entry further down in the stack. 

The null pointer ·is represented by zero. Thus a syabol has a 

table entry that points to a scope entry in the stack, and a 

chain leads downwards from each scope entry to entries for 

the scope of that symbol in an enclosing block. The boundar-

ies between blocks are entries in the stack, too, linked to 

other block boundaries downwards, but only the last field is 

used: the first two are zeros. 

TABLE STACK 
<----TSTART 

I I I I 
I --.,..--,,.----,~1 I I 

i---> 1 attributes >>----------. I 1 <------TOP 
1 of symbol I <---. 1 1 scope 1 
I J 1---+----<< of >>------. 

TTOP--> I I j-> I symbol I I 
I I 1--------1 I 
I I I block I <---t--LAST 
I I I boundary I I 
I_ I I »+-----+--· 
I I <--Til AX I I I I 
I I I old I <---1 I 

I scope I I 
I I I 
I block 1 <-------
1 I 

• i • is the index (symbol - TSTART) of the most recently 
entered symbol. 

At the bottom of the stack is a block boundary that is 

linked to itself. This is put in during initialization. 
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97 

constants aeaning 

•uninitialized variable•, 

•accessable in this block•, 

block•: VIB, HONVIR, YES, NO. 

and 13. 

• initialized variable', 

and • inaccessable in this 

Actual values are 10, 11, 12, 

lone of these routines call any others (except for 

CEBRPT) 

CSINIT (C-Symbol table-INITialize) initializes the table 

and the stack, and gives values to the elements of /CGCSYft/. 

CSNTB (C-Symbol table-eNTeR} enters attributes for a symbol, 

setting TSTABT and TftAX if the symbol is the first one, and 

creates an entry for the symbol on the stack if this is the 

first time attributes have been entered for it. CSJSPC 

(C-Symbol table-iNSPeCt) retrieves attributes, getting the 

scope from the topmost stack entry for this symbol. CSII and 

CSOUT (C-Symbol table-IN, c-symbol table-OUT) are called on 

block entry and exit, respectively. CSIH adds a block boun

dary marker to the stack, updates LAST, and aakes all sym

bols in the next outermost block inaccessable. CSOUT mates 

all symbols in this block inaccessable, removes the entries 

for them from the stack, setting their pointers in the table 

to the next entry in the chain downwards, removes the block 

boundary, and then makes all entries in this block, which 

vas the next outermost block, accessable. CSNHBT (C-Symbol 
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table-iNHeRiT) adds a new entry to the stack for a given 

syabol if it is in the next outeraost block. CSJBBT does pot 

check whether the scopes or types allow inheritance. CSDOSP 

(C-Syabol table-DOSP) prints the attributes and current 

scope for all syabols that have been entered in the table. 

CSINIT (*error flag) 

Errors dected: none 

CSNTR (syabol, abstract aachine naae, initial scope, 

initialization status, type, array or scalar status, 

accessability, •error flag) 

Errors detected: invalid syabol 29 

CSNSPC (syabol, *abstract machine naae, 

•current scope, •initializtion status, •type, 

•array or scalar status, •error flag) 

Errors detected: invalid syabol 30 

no entry for symbol 31 

CSIN (*error flag) 

Errors detected: stack overflow 32 

CSOUT (*error flag) 

Errors detected: none 



CSNHBT (symbol, new scope, •error flag) 

Errors detected: invalid symbol 

uninheritable symbol 

stack overflow 

CSDUHP (*error flag) 

Errors detected: none 

D.6 JI!OBI !ABlGE!ER% 

33 

34 

35 
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In the initial design, there vas no re-use of aeaory. 

When a new symbol vas encountered, a unique location in Aft

memory vas assigned to it, using the AKA call GETL (*memory 

name, Aft type, AK sort, •error flag). For arrays, as the 

array manager used the symbol as a naae, this aemory loca

tion was thrown away and not used. In any case, once a block 

had been left, there vas no recovery of the lK-memory 

assigned to the variables in that block. 

At the end of each block the FE provides a list of dead 

variables, variables which never again will be referenced. 

For each of these symbols, CFREE (C-FBEE) is called. If the 

symbol vas an array, the ABft routine for recovering memory 

is called by CFREE. There exists, however, code in CFBEE 

(as comments) that calls a a routine for recovering scalar 

storage. The change in CFREE is minor: if an scalar, CFREES 

(C-FREE-Scalar) is called. To use these recovered locations, 
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through CHAaES (C-HASE-Scalar). 
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scalar syabols is aade 

CIABES abd CFBEES exist, 

but are not part of the released coapiler. These two rou

tines aaintain four stacks, one for each Aft type, putting a 

returned Aft aemory naae on the appropiate stack, and return

ing a naae when requested off the top of the appropiate 

stack. If the stack is eapty, GETL is called. 

The stack and its pointers are aaintained in the coaaon 

block /CGRAftE/ K(4), STAC (30, 4). The K(i) are initialized 

to 1 in CIRIT, described later. 

CFREE (syabol naae, •error flag) 

Errors detected: symbol not in table 

unable to save scalar 

unable to save array 

Calls: ABM, CERRPT 

12 

13 

14 

CFREES (Aft name for symbol, AM type, •error flag) 

Errors detected: invalid type (no code yet) 

Calls: CEBBPT 

CNAMES (*Aft name, AM type, •error flag) 

Errors detected: invalid type 

Calls: ABA, CERBPT 

(no code yet) 
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When these are compiled and linked in, they can he given 

error codes in sequence with those of the compiler. 

0.7 CB!CKZIG Ql !SSlGJKBJ~ TlBGI!S 

1 set of little routines check the entries for syabols 

that are assigned to in assignment statements. They inspect 

the symbol table entry for that symbol, save the lK aeaory 

naae, and the type, and check that the initialization status 

is correct: though here auch more checking could be done, as 

some of the language definitions were too hard to implement 

in this first version (a further discussion of this point is 

found in chapter six). 

The diagram below shows the· calling sequence of these 

little routines for the various kinds of assignment state

ments. It should help the understanding of the prose that 

follows. 

When the first symbol is found in an assignment statement 

CASSN1 is called: it saves the symbol in a common block for 

the other routines in this module to use. /CGMULT/ BUM, 

INDX, TAB (30, 2) hold, respectively, the number of symbols 

encountered so far in the parse of a statement, the number 

of expressions encountered, and a table of two elements for 

each symbol: its name and type. CASSN1. sets the first two 

to one and zero, and records the symbol as the It name. 
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Bootines Called for stateaent Types _______ CASSN1 ______ __ 

I I 
if initialized if virgin 

C1SSH5 CASSN6 
I CASSN7 

I •------------
----------•-------- I I 1 if array initialization 

if siaple if aultiple, ClSSN9 
<code for expr> { for all the rest ClRRI1 
GSI!PS ( of the targets : 1 

( I { for each 
( __ ClSSN4__ { expression: 
{ I I { I 
{initialized virgin {<code for expr> 
{ C1SSN5 CASSN6 { C!ULT4 
{ I C1SSN7 { I 
{ I I I 

I GAS!il!Y 
{ for each 
{ expression: 
( I 
( <code for expr> 
( C!!ULT4 
( j 

Gl!ULTS 

If the assignment is not an initialization, then CASSNS 

will be called next. It checks the syabol table entry for 

the syabol in TAB (NUll, 1) and puts its 1! memory name and 

All type in to TAB (NUll• 1 and 2) • overwriting the II. name. 23 

If this is an initialization, the symbol table is checked by 

CASSN6, but until the type is known no more can be done. 

Later, when the IL type for the symbol is known. CASSN7 is 

called. and it requests an All memory name for the symbol, 

Z3 A possible improvement to this would be to make TAB three 
wide. rather than two. Both the IL and the 11'1 name of a 
symbol would be available, and the use of TAB would be 
clearer. 



103 

records the naae and AM type in TAB as CASSIS does, and 

enters thea in the symbol table. 

Only later in an initialization woald the compiler be 

able to tell whether or not it is an array that is being 

initialized. If it is, CASSB9 is called. It changes the sym

bol table entry to indicate that this symbol is an array, 

and throws away the new AM name.z• As an array initializa-

tion continues, the initial index is aet. It will be fol-

loved by a list of initial values. TAB (HUM + 1 through 30, 

2) is set to reflect the expected types of expression to 

come: the initial index should be an integer, the rest of 

the same type as the array is being initialized to. 

In a multiple assingment statement more target symbols 

follow. For each one, CASSN4 is called. It pats the symbol 

into the next location in TAB, and increments NUft. Thus the 

number of targets is counted. CASSN4 is thus like CASSN1, 

and it is also followed by either CASSNS, or by CASSN6 and 

CASSN7. Note that the compiler cannot handle the interleav--

ing of array initializations with other assignments in a 

multiple assignment statement, though mixtures of initiali

zations and non-initializations in a single statement are no 

trouble. 

--------------------
z• See 1 ftemory Management•. Under certain circumstances, 

this AM location can be re-used. 
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Kith it 

hegins the documentation of tae code-generation routines. 

The right-hand side of an assignaent or array-initializa

tion stateaent is a list of one or aore expressions. If 

there is only one, it is a •siaple• assignaent, and once the 

single expression has been parsed and code has been gener

ated for it, CSiftPS (C-SiftPle-aSsignaent) is called. The 

compiler has described the location of the result of the 

expression in the common block /CTlBGT/ (see the expression 

aodule for details). CSiftPS uses TAB (1, 2) and /CTABGT/ 

TYPE to check that the type of the target is the saae as 

that of the result, and calls GlSSM (G-lSSigN) to generate 

the code to aake the assignment. If the result, as described 

in /CTABGT/, is not in a register, CSiftPS calls CftDLT4 

(C-ftULTiple assignment) to generate code to load the result 

into register three, first. 

In multiple assignments or array initializations, after 

the code for an evaluation of an expression has been gener

ated, CftDLT4 is called. It generates code to load the result 

into register three, and increments INDX in /CGftDLT/ to 

count the number of expressions. This does not overwrite the 

previous contents of register three, as CMULT4 requests that 

register from the register allocater, which is described 

later. At the end of the list of expressions, another rou-
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tine is called. If this is an array assignaent, GASHRT 

(G-ASsigH-aBraY), is called, if a aultiple assignaent, 

GKULTS (G-KULTiple-aSsign). GKULTS checks that the nuaber 

of expressions and 

then calls GASSN 

the nuaber of targets is the same, 

and the register allocater to aake 

and 

the 

assignments, using the Aft memory naaes for the targets saved 

in /CGMULT/ TAB. 

************* Pix-up for type-checking *************** 

It is in this aodule that type-checking of aultiple-as

signaent (and array initialization) results should take 

place, but does not. To add it, after the production 

<ENDEXPB> ::= 

in GSEMAN, a routine CTYPOK (*error-flag) should be called. 

It would be: 

c 

c 

9000 

CTYPOK (P) 

COMMON /CTARGT/ NAME, FLAG, TYPE 

COMMON /CGMULT/ NUB, IHDI, TAB 

INTEGER NAME, FLAG, TYPE, NUM, IMDI, TAB (30, 2), P 

IF (TYPE .NE. TAB (INDX, 2)} GO TO 9000 

p = 0 

BETUBN 

p = new error nwnber 

CALL CERRPT (P) 
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RETURN 

END 

This would be called after CftULT4 had increaented ZBDI. 

******************* End of fix-up ********************* 

To return to the aodule as it exists, GASBRY puts the 

results in an Aft array, puts the type, lover bound, and 

upper bound in another Aft array, and calls the array aan

ager. The tvo Aft arrays are parameters for the array aan

ager. 

CASSN1 (IL name, •error flag) 

Errors detected: none 

calls: nothing 

CASSNS {*error flag) 

Errors reported: unknown IL name 67 

inaccessahle variable 68 

unitialized variable 69 

assignment to an array 70 

assignment to constant 71 

Calls: symbol table, CEBRPT 



CASSN6 (*error £1ag) 

Errors reported: unknown IL name 72 

inaccessable variable 73 

assignment to constant 74 

initialization within 

dood construct 85 

Calls: symbol table, CEBBPT 

CASSN7 (type, •error £1ag) 

Errors reported: invalid type specified 75 

unknown variable 76 

Calls: symbol table, CFBEES 

CASSN9 (*error £1ag) 

Errors reported: unknown variable 

Calls: symbol table, CFBEES 

CABRY1 (terror flag) 

Errors detected: none 

Calls: nothing 

CASSN4 (IL name, •error flag) 

Errors detected: none 

Calls: nothing 

GMULTS (*error flag) 

76 

Errors reported: differing numbers of assignment 

107 



targets and results 77 

calls: register allocator, GASSH 

CftDLT4 (*error flag) 

Errors reported: none 

Calls: nothing 

CSlftPS (*error flag) 

Errors reported: target and expression 

not saae type 

Calls: register allocator, GASSN 

D.8 ISSIGJftERT QQ~ GEBEBATIOJ 

78 
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The generation of the code to perform the assignment is 

done by tvo little routines. This is really a sub-module of 

the previous one, 

generates code to 

ter(s). 

which checks the assignment statement and 

put the result into the proper regis-

GASSN is very simple: it is a case on the type of the 

result, generating a store command. 

GASNBY generates code to put the results of the expres

sions in an array initialization into parameters for the 
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array manager subroutine that mates the assignment. The 

array values are put in an Aft array of the right type, the 

initial index and calculated high index and type are put in 

another, and tvo registers are loaded vith pointers to these 

arrays. 

GASSB (name of variable, type of variable, register 

result is in, •error flag) 

Errors detected: invalid type 2 

Calls: AKA, CERBPT 

GASHRY (•error flag) 

Errors detected: invalid type 

Calls: AftA, ARK, CEBRPT 

D.9 iiGlSTEB lLLOCAT!O~ 

1 

I made a simplifying assumption about register usage: it 

vould be LIFO, that is, no register could be freed until all 

registers allocated after it had been freed. This had to be 

true of both compile-time and run-time register usage. Thus 

registers tend to be allocated on entry into a construct, 

and freed on exit, and the name of the register that can be 

use is ,saved by the iffi and dood generation routines on 

their stack, DOIP. 
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The register aanager routine is CBEGftH (C-BEGister-ftaH

ager, the c- because, though it generates code, it is a coa

pile-tiae service) and has five functions. ihich function is 

desired is indicated by a parameter, whose value is hidden 

in the common block /CGBEG/. The functions are named IBIT, 

HAftED, !BY, BEL and DIPF. The FOBTBAH variables with those 

names hold the appropriate value. IHIT initializes the 

register manager, BEL frees a register, BAKED allocates a 

named register, ABY allocates a register and returns its 

naae, and DIFF allocates a register different from the one 

named, and returns its name. Registers are always allocated 

as a certain type, and aust be freeed as that type. 

The common block /CGBftN/ holds the data structures that 

the manager uses. STATBG (i) holds the depth of use of 

register 'i'. Each tiae it is allocated, the depth is incre

mented, each time it is freed, it is decremented. The depth 

cannot be negative. TYPEBG holds several stacks, one for 

each register. TYPEBG (i, j) holds the type of the 'j'th 

deep allocation of register •i•. Thus TYPEBG (STATBG (i), i) 

holds the current type of register •i•. The old contents of 

a register that is going to be allocated are stacked. In the 

old version of CBEGftN, these stacks are in the Aft, and code 

is generated to push and pop. In the never version, the old 

contents are stored in an Aft scalar, whose name is then 

stacked. These stacks are simulated in FORTRAN, not Aft. As 
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all register usage is assumed to be LIFO (last-in-first-out) 

both at run-time and during compilation, either vill vork. 

Because the different functions have different parameter 

seaantics, the calling format is listed five tiaes. 

CBEGMB (INIT, don't care, don't care, don't care, •error 

flag) 

CREGMB (HAMED, name of register, type it vill be, •error 

flag) 

CREGftB (ANY, •name of register allocated, type it vill 

be, *error flag} 

CREGMN (REL, name of register, type it vas, •error flag) 

CREGMN (DIFF, •input as name of register to be different 

from and output as name allocated, type of register, •error 

flag) 

Errors detected: invalid operation 24 

invalid type 25 

non-LIFO use 26 

stack overflow (our error) 27 

invalid name of register 28 

Calls: AHA, (if nev version) CFREES, CHAHES 
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D.10 fUJ-tlB! SUPPQRT 

The Array Banager routines are not covered here, but the 

CG did generate the shuffling routine (to shuffle the poin

ters to guards in an iffi or dood) in GSHQPL, and the four 

traps: zero divide, zero modulo, no guard of an iffi true, 

and abort statement execution in GTBlP (nov part of the ABB, 

vith other trap routines, along vith GABORT). GlBORT gener

ated the abort message trap code. 

The Shuffle routine does a circular shift, 

each print a short message and halt. 

the others 

The Fortran routine GSHUPL sets up three variables in a 

common block: /CSBQPL/ SBUPL, SllBE, and SNUB. SHUPL holds 

the AMA name of the shuffle routine, SBlBE and SNUB are ABA 

scalar pointers to parameters for the routine. They are used 

by the dood and iffi-generation routines. 

GTHAP has several common blocks that hold the ABA names 

of the various trap routines. They should be obvious: 

/CGABRT/ ABORT, /CBIB/ ZEBDIV, ZER!OD, and /CIF/ IPBORT. 

GSHUFL (*error flag) 

Errors detected: none 

Calls: ABA 



GTRAP (*error flag) 

Errors detected: none 

Calls: AKA 

GABORT (•error flag) 

Errors detected: none 

Calls: AKA 

D.11 !BRAt-POP QPEBlTIQR 
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One of the new operations that DPL introduced vas the 

array-pop, where a given array has its highest or lowest (by 

index) element removed, and a specified variable is set to 

the value of that element. GSEKAN calls GPOP to generate the 

code to perform the operation. GPOP will check that the 

array to be popped is indeed an array, and that it is ini

tialized, and will allocate three registers and generate a 

call to the array manager. The element to be popped will be 

returned at run-time in register three (R3), and the assign

ment is made by a call to GlSSH. 

GPOP (hipop or lopop, •error flag) 

Errors detected: variable not an array 62 

array not initialized 63 

command neither "hipop" nor •lopop" 64 

Calls: ARK, AKA, register allocater 
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D.12 QTBEi !li!I OPEilTIOIS 

DPL has many other array operations. they fall into two 

classes: those that alter an array, using the result of some 

expression, and those that return a Yalue froa an array des

cription. The routine GARYOP does the first kind, the rou

tine GARY the second. Those that return Yalues can be ele

ments of an expression; the others cannot. 

GARYOP uses the name of the array (in /CGftULT/ TAB (JUft, 

1)), checking that it is an aray, initialized, and accessa

ble. It then performs a case statement (simulated in FOR

TRAN) based on the operation to generate code, allocate 

registers, call the appropriate lift compile-time routine and 

free the registers again. For some array operations, there 

must be one or more parameters. If there is one, it is be 

found in the location described in /CTARGT/ (described in 

the expression section of this documentation: a name, a 

type, and a flag, which is .TRUE. if the name is a name of a 

register, .FALSE. if it is a memory location), or if there 

are two results, the first is in register three (R3), and 

the second is described in /CTARGT/. In some cases, the 

parameters to the run-time ARft must be stored in a tempo

rary, and a pointer loaded. 

************** TYPE-CHECKING NEEDED ******************* 
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Where there are two or more operands, only the last is 

described in /CTARGT/ for type-checking. To check the oth-

ers, a routine must be called .for the appropriate production 

in GSE5AN: CTYPOK is the obvious choice. Thus /CG5ULT/ must 

be set up reflect the expected types: usually a FXD index 

and then eithei: another index oi: an element of the array's 

base type. 

/CTABGT/ should also be checked •ithio.GABYOP. 

The table would be set up on seeing the operation, and 

checked by CTYPOK on completion of the expressions. 

************** END OF NEEDED CHECKS ******************* 

GARY is also basically a case statment after a check of 

the symbol table enti:y foi: the array~ Tl•e calling sequence 

is simpler in GARY, as the parameters to the AR5 are more 

similiar for these operations than for the first class. As 

GARY generates the code for part of an expression, it has 

parameters that describe pai:t of an expression: an opera

tion, and one or two operands. 

GARYOl? (operation to perform, *error flag) 

Eri:ors detected: reference to non-array or unitialized array 59 

invalid ar:ray operation 60 

invalid type of array 61 

Calls: ARM, AMA, register allocater, CERRPT, symbol table 
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GARY {operation to perform, first operand name, flag {.TRUE. 

if first operand is in a register), type of first operand, 

second operand name, flag {.TRUE. if in a register}, 

second operand type, *er:ror flag) 

Errors detected: array name result of cacuiation (in register) 86 

array name not in symbol table 87 

name not array name 88 

invalid operation 

Calls: ARM, liMA, symbol table, register allocater, CERRPT 

n. n 

The driver owns all the common blocks of the CG, and all 

the common blocks of the other modules as well. It may vary 

from installation to installation. It will always do the 

following: call the AM to get a description of the AM's 

limitations, and put that information into common blocks; 

call initialization routines for all modules, including the 

CG; call the CG ·to generate code; and call the AM to finish 

generation and start excution or to save the All program gen

erated. 

The CG's initialization routine is CIIHT. It calls the 

ini tiali za tion routines of the register allocater, the sym-

bol table, and the stacks. It sets several constants, 

69 
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including the naaes of the I/O vectors, creates the paraaet

ers for calling the ARB, and calls the routine that gener

ates the run-tiae support routines (GSHDFL, and so on). 

Pinially, it lables the beginning of the prograa. 

Input and output (through-put) is done with six pre-de

fined arrays, two of each type. One set is input, and aay be 

low-popped, the other is output, and aay be high-extended. 

Other array operations on these arrays are legal. lt the end 

of the prograa they are printed out by code generated by the 

routine COTVEC (C-oOTput-Vector). 

aain routine 

Errors detected: none 

Calls: l!, ARM, PE, CG (CINIT and GPlRSE) 

CINIT '*error flag) 

Errors detected: none 

calls: register allocatee, stacks, symbol table, AMA, 

GSHUPL, GTBAP (though a new version has aerged 

the old GTBAP with the ARM's traps) 

CUTVEC (*error flag) 

Errors detected: none 

Calls: AMA, ARM, register allocatee 
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D.14 SBBABTIC lCTIOB SBLECTIO• 

GSBBAB (G-SEftANtic-action) selects a semantic action when 

called by GPARSE. There are two kinds of production: those 

in which there is no replacement of the item on the top of 

the stack, and those in which the item is replaced by a 

string of non-terminals and terminals. In the second case, 

we have a production number to use in a case statement, but 

in the first we have to use the item on the top of the 

stack, as the production number is zero. The translation of 

the item on the top of the stack into a pseudo-production 

number is done via a computed go-to. 

For most of the productions, nothing is done. For a few, 

like the one that gives the line nuaber, code is generated, 

while for the rest, either soae information is saved, or a 

subroutine is called, or both. Information is saved in the 

following coamon blocks: 

/CGINDO/ THIS, OK, INDOOD (10): this records whether or 

not initialization is legal at this point in the parse. If 

we are in a do-od, it is not legal, unless we are also 

inside a block which itself is inside the do-od. At any 

tiae, we are in block number THIS, and INDOOD (THIS) equals 

OK if initilization is possible, that is, if we have not yet 

entered a do-od group, or have left the outermost do-od 

group in this block. INDOOD (THIS) is incremented for each 



119 

entry into a do-od, decruented for each exit. THIS is 

incremented for each entry into a block, decremented for 

each exit. If necessary, the size of IVDOOD can be 

increased. 

/CGSEM/ SCOPE, SNAKE, STIPE: these record information to 

be used in the next few productions: SCOPE saves the scope 

for a list of declarations, STIPE and SBAftE save the type 

and IL name of variable and constant references. 

/CGrOK/ CTOK, LINE hold the current token and the current 

line number at compile-time. 

/CGLIIE/ LIIENO is the Aft! location in which the line 

number is stored at run-time. 

GSEftAN (production number, non-terminal on top of GEA! 

stack, 

class of token, token, •error flag) 

Errors detected: invalid production 

of an non-terminal 65 

of a terminal 66 

Calls: A!A, COTVEC, symbol table, GDO, GOD, GIF, GFI, 

GABORT, CFREE, GCEND, GGOARD, CGDNSP, GARROW, CGEBDGC, 

CASSN1, GARYOP, GAEYEX, CftULT4, CASSR9, CASSB4, CSIBPS, 

GftULTS, CASSN6, CASSNS, CASSN7, COROP, CBIBOP, CPAVAR, 

CONST, GEXPE, GSEXPR, CARRI1, GASNRI, GPOP, CERRPT 
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D.15 llll liD ~ COISTBUCfS 

There are four routines that generate these constructs, 

and five more that generate the code for the guarded command 

set that is the heart of each construct. , These routines 

communicate through the tvo stacks DOIF and GUABDS in the 

stack module. The first half of IFFI or DOOD gets labels and 

a save location for a pointer, allocates R1 and a arbitrary 

register, and codes a jump to the beginning of the control 

section (bypassing the code that vill be generated from the 

guarded command set) and stack the following: 

DOIF GUARDS 

topl 1 topl I 

:--n-a_m_e-·o~f~s-a_v_e~l~o-c_a_t~i-o-n--: ~----::----• I 0 I 
I I I I 
I label SUCCESS I I I 
~---- I I • I 
I label START I I · I 
I I I • I 
1 name of array FRONT 1 I I 
I I 
J name of abitrary register 

• • • • • • j 

The second half of the IFFI or DOOD construct generates 

code to do the looping and branching that does the action of 

the construct. The arbitrary register is released, as is B1. 

The calling sequence for the guarded command set routines 

is GGUARD to start a particular guard, GARROW to test the 
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guard, GENDGC at the end of a set of coaaands, and GGCEND at 

the end of the set of guards,before the iffi or dood con

trol. 

The stack GUARDS holds the nuaber of guards encountered 

so far on the top, with the labels to the code that will 

evaluate the guards beneath it. GGUARD gets a new label, 

defines it, and stacks it, increaenting the count. CGDIISP 

(written by Dan Lanbeth) tests the result of the guarding 

expression to be it is of type 'Bit•, and in register one, 

GARROW generates code to test the result, GEHDGC to return 

to either the controlling loop (if a dood) or the next 

stateaent (if an iffi). GGCEIID defines the array FRONT, in 

the stack DOIF, setting its eleaents to be pointers to the 

guard- evaluation routines. 

GUARD stack: Before and after GGUARD 
top I I top! I 

I number of guards I I nuaber + 1 I 
I I I I 
I label of guard n I I label of guard n+1J 
I -· I I 
1 label of guard n-11 I label of guard n I 
L -· I I 
I • • • I I ••• I 
I_ I J I 
I label of guard 1 I I label of guard 1 I 
I I I I 
I I I I 

GDO and GOD do not directly affect the common block 

/CGIHDO/ as might be expected. GSERAN does the bookkeeping 

when it calls one or the other. 
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The routine CGIHTO is called by CGDNSP. It generates 

code to put a result into a particular register, vhen that 

register is already allocated. If the result is already in a 

register, it assumes that only that register aust be freed 

to aake the target register accessable. In actuality, it is 

always called to put the result of a guard expression evalu

ation into R1 (register one). 

************* IHITIALIZATIOH CHECK HEEDED **************** 

I can't figure out how to check initializations within an 

1 iffi' to sake sure they're duplicated in each branch. The 

code for the assignaents does check to insure the types are 

the saae. 

The best I can suggest is building a list, for 

1 iffi 1 , of the variables that have to be initialized, 

checking each branch to aake sure they do. It would 

tough. The lists would be built and checked in CASSH6. 

**************** END OF HEEDED CHECK ********************* 

each 

and 

be 

GDO (*error flag) 

Errors detected: none 

Calls: A~A, stack 

GOD (*error flag) 

Errors detected: none 



calls: AKA, stack 

GIF (*error flag) 

Errors detected: none 

Calls: Aft!, stack 

GFI (*error flag) 

Errors detected: none 

Calls: Aft!, stack 

GGUARD (*error flag) 

Errors detected: none 

Calls: AKA, stack 

CGDHSP (*error flag) 

Errors detected: non-boolean guard result 

Calls: CGIHTO 

GARROW (*error flag) 

Errors detected: none 

Calls: AKA, stacks 

GENDGC (*error flag) 

Errors detected: none 

Calls: AKA, stack 

GGCEHD (*error flag) 
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87 



Errors detected: none 

Calls: AMA, stack 

CGIHTO (target register, *error flag) 

Errors detected: none 

calls: AMA, register allocater 

D.t6 JIPBBSSIOBS 
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In the IL, expressions are in post-fix polish notation. 

Thus a simplified version of the CG's algorithm is: 

The discussion below vill give 

that does each part, and discuss 

the naae of the routine 

the coaplications that 

arise in implementing the algorithm above. For example, the 

AMA provided unary operations only combined vith loads: 

LNEGP and LNOTB. Thus the ONOP portion vas aodified as fol-

lovs: 

GSEKAN stacks all operators. When a variable referance 

has been parsed, GSEMAN calls GSEXPR to check it, and GSEXPB 

calls GEXPB. When a constant has been parsed (and the value 

retrieved from the FE by a call to CONST), GSEMAH calls 

GEXPB directly. GBXPB is the routine that performs most of 

the case statement in the algorithm above. It calls GONOP 
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if {token is operand} 
then case (stack-top} 

esac 

OHOP --> {if {token is aot register} 
then {allocate register a 

gen "load B, token• 
token is nov B} 

gen "stack-top token, token" 
pop stack} 

BIBOP -> push token 
else -> (node := stack-top 

pop stack 
// stack-top •ust be a BIHOP // 
if (node is register} 

then {gen •stack-top node, token• 
token is nov node} 

else if {token is register and stack-top 
is a comautati¥e operation} 

then gen •stack-top token, node" 
else (if token is not register} 

pop stack} 

then {allocate B 
gen •load a,token• 
gen •stack-top B, node• 
token is B} 

else {gen •store token, te•p" 
gen •load token, node" 
gen •stack-top token, te•p" 

else push token 

OBOP ---> {if (token is not register} 
then (allocate register R 

gen •unop a, token• 
token is BJ 

else gen •unop token, token" 
pop stack} 

and GBINOP to generate code for the ordinary operations, and 

CXTBCT to generate code that vill call the 11ft to get an 

array element. The CG, you see, considers subscripting to 

be a binary operation. CPA VAB (written by Dan Lambeth) 

checks the array name, stacking it as an operand. It is 

called from GSEftAN. 
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The stack BXPB is used by this module, with the following 

encoding: each element has two stack elements describing it. 

An operator has a zero (0) stacked on top, an operand has 

its type stacked on top of it. If the type is positiTe, the 

operand is in a register, if it is negative, the operand is 

in am Aft memory location. This is different from the normal 

system in the CG, where the type is always positive, and a 

flag describes whether or not the operand is in a register. 

GSEftlN does not know the encoding above. 

CONOP and CBINOP are called by GSEftAN to stack operands. 

Note the distinction: CONOP, CBINOP stack operators, GUNOP, 

GBINOP generate code for the operations. 

GEXPR calls various sub-routines to generate code, but 

there is one tricky thing that should be noted: •cand' and 

•cor• are not handled as ordinary binary operations, but 

decomposed into two unary operations. This had to be done, 

as the second operand may not be evaluated if the first 

gives the result of the •cand' or •cor•. Thus, when one or 

the other is seen by GEXPR, it calls a routine to generate 

some code for the first half, stacks a fictitious unary 

operator that vill tell it to generate the second half on a 

later call. This accounts for the GCAND1 and GCAND2, GCOR1 

and GCOR2, and the extra operators in the IL common block. 
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The •cor• and 'cand' routines communicate through the 

stack called 'CANDS'. In it they stack a label in the code 

that is the end of the evaluation of the operation, and the 

name of the register that the result should be in. 

When GEXPR returns, it has set some of its parameters to 
I 

describe the result. If the stack is empty, this is the 

final result, if not, it is an intermediate result. Ele-

ments of the common block /C'l'ARGT/ are set by GSE!IAN to des-

cribe this result: its name, its type, and whether or not 

the name is a register name. 

GBINOP is fairly complicated: it must ensure that regis-

ters are handled in LIFO fashion. It attempts to minimize 

register usage by not loading operands anless they must be 

loaded3 This may reguice swapping the first and second ope-

rands. The resalt is always put into the "oldest" register. 

If two registers were used, the "yoanger" will be freed. 

*********** WARNING *********** 

GBIIOP is the routine most likely to have been modified 

by other p~ogrammers since I left the project. What is writ-

ten here may not be true anymore. 

******** END OF WARNING********** 
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CONST calls the FE to get a value for a constant. If the 

constant is boolean, it can only be •true• or 'false'# so 

only the length (4 or 5) needs to be knowno Note that CONST 

returns an AM name holding the constant, rather than the 

constant itself. 

£ill!ii.I calls ~NVRT, which is .the Qnly !J!9Chin$til,!iill!\llldan.!;. 

£QUti!l!il in th& £Q. It translates L1 ch~£~~£g£§ i~tq AM £ha£

acters. J;;!!£g_ shoul.Q. be !~]SeQ i!..Mtll !U!l§ROrtj,n_g th~ .Qi !hat 

CONYRT .!:ill §till 1':2!:!· 

CUNOP {operator, •error flag) 

Errors detected: none 

Calls: stack 

CBINOP (o pex:a tor, *en:or: flag) 

Errors detected: none 

calls: stack 

GSEXPR {IL name of variable, •error flag) 

Errors detected: variable uninitialized 

variable inaccessable 

Calls: CERRPT, symbol table, GEXPR 

11 

18 

CONST {IL name of constant, type expected, •value. *error flag) 

Errors detected: invalid length of constant 

invalid character in an integer 

invalid type of constant 

19 

20 

21 

\ 
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character constant too long 

invalid character (s) in boolean 

Calls: FE, AMA, CERRPT, CONVRT, CNAMES {memory allocation) 

******************************************************** 

* * * CONVRT {*AM character, IL character value) * 

* * * Errors detected: none 

* * Calls: none 

* 
* 
* 

* * ********** THIS ROUTINE IS MACHINE-DEPENDANT !********** 

GEXPR {token name, token type, flag if in register, 

22 

23 

*result name, result type, flag if result in register, 

*error flag) 

Errors detected: binary operation expected, not found 42 

Calls: stack, GCAND1, GCAND2, GCOR1. GCOR2, GUNOP, GARY, 

GBINOP, CXTRCT, CERRPT 

GCAND1 {token name, type, flag if in register, *error flag) 

Errors detected: invalid type of operand 43 

Calls: stack, AMA, register allocater 

GCAND2 (token name, type, flag if in register, *result name, 

result type, flag if result in register, *error flag) 

Errors detected: invalid type 51 

Calls: stack. AMA, register allocater 

GCOR1 (token name, type, flag if in register, *error flag) 



Errors detected: invalid type of operand 

Calls: stack, AMA, register allocater 
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1+7 

GCOR2 {token name. type, flag if in register, *result name, 

result type, flag if result. in register, *error flag) 

Errors detected: invalid type of operand 55 

GUNOP (operation. token name, type, flag if in register, 

result name, result type, flag if result in register, 

*en:or flag) 

Errors detected: invalid operation 

invalid type of operand 

Calls: AMA, register allocater, CERRPT 

10 

11 

GBINOP (operation, token name, type, flag if in register, 

result name, result type, flag if result in r:egister, 

*er:r:oc flag) 

Er:rors detected: invalid oper:ation 

exponentiation of non-integers 

comparison of unalike types 

arithmatic on non-integers 

unknown operation 

calls: AMA, register: alloca ter, CERR!.'T, memory allocter 

GARY is described in the module 'othex: Array Operations• 

CXTRCT (array name, array type, flag if name in register. 

4 

6 

7 

8 

9 

\ 
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index naae, index type, flag if index in register, 

result naae, result type, flag if result in register, 

•error flag) 

Errors detected: array name in register 

index not an integer 

array name not in syabol table 

array not access able 

array not initialized 

naae not name of an array 

Calls: symbol table, register allocater, lftA, ABB, CBBBPT 

D.17 fOBTBAI CODING PBACTIC~ l! til ~ 

The CG's routines are coded in a way that I think will 

help others aaintain thea. The practices are as follow: 

1. When an error is detected, a GOTO is made to a label 

number of 9000 or greater. Thus the in-line code is 

always concerned only the normal case. 

2. ln error causes a return code to be set to a unique 

· number. The routine then returns. 

return to the in-line code. 

Thus there is no 

3. Parameters are either input and unmodified or output 

and set by the called routine. 

36 

37 

38 

39 

40 

41 



4. The follo~ing are the constructs used: 

Construct 

if B then 51 else 52 

while B do 5 

case i of 
1: 51 
2: 52 

esac 

1.1 
L2 

1.1 

L2 

L1 

L2 
Ll 

POBTRAN 

:IP ( .JOT. B 
51 
GOTO 1.2 
52 

:IF ( • NOT. B 
5 
GOTO L 1 

GOTO (L 1, 1.2, 
51 
GOTO LN 
52 
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) GOTO L1 

) GOTO L2 

L3), :I 

5. CO~HON storge is assumed static. lamed commons are 

used to hold special parameters in Yariables vith 

mnemonic names. 



BIBLIOGJIAPBt 

Aho. Alfred v. and Ullman. Jeffry D. f[incipl~s R{ ~o1piler 
pesign Beading, ftassachusetts: lddison-iesley, 1977 

Bartusset, Wolfram and Parnas, David L. •using ~races to 
Write Abstract Specifications for Software lodules•. UBC 
iepor! Bo. I! 77-01~: University of Borth carolina at 
Chapel Bill, Dece1ber 1977 

Bellovin, Stephen. ferifiably correct ~ ~Deration using 
~icatc Transforaers Chapel Bill. Borth Carolina: 
University of Borth Carolina at Chapel Hill. in 
preparation 

Brooks, Frederick P. Jr. the lythical lan-Ronth lenlo Part, 
California: Addison-wesley, 1975 

calingaert, Peter. Assemblers, eoapilers and Program 
Translation Potomac, ftaryland: Computer Science Press, 
1979 

Dijkstra, Edsger i. A piscipliAt 2! Prograaaipg Englewood 
Cliffs, N.J.: Prentice-Hall, 1976 

Freund, Karl ft. The design and Abstract Specification 2! ~ 
lranslator aodnlt Chapel Bill 1 B.C.: University of Borth 
Carolina at Chapel Bill,1979 

George, Jaaes D. Jr. !A Abstract b£1!.irul .!!i! U !M .12 
Compiler fQrtability Chapel Bill, B.c.: University of 
North Carolina at Chapel Bill,1979 

Parnas, David L. •on the 
Systems into !lodules": 
1972 

Criteria to be used on Decomposing 
~omm. AC! pp330-336, December 

Parnas, David L. A Program Holder !odule Pittsburgh, 
Pa.:carnegie-!ellon University Department of computer 
Science, June 1973 

Parnas, David L. •on the Heed for Fewer Restrictions in 
Changing Compile-Time Environments" (co-author with i.D. 
Elliot and J.E. Shore),~- 21 the Int~rnational 
~ompu~ Symposium 1975, Borth Bolland Publishing Co. 



Strong, J. et al. "The Problea of Programaing 
coaaunications with Changing ftachines": Coaa. A£A 
pp12-18, volume 1, number 8 1958 

134 




