
A Space Improvement in

the Alternating Semantic Eval uatcr

Mehdi Jazayeri
Diane Pozefsky

TR 80-002

I .

~
l .
' ! i
-· ,
•

A Space Improvement in

the Alternating Semantic Evaluator

Mehdi Jazayeri

Department of computer Science

un;versity of North carolina

Chapel Hill, N. c. 27514

Diane Pozefs.lty

IBM

Research Triangle Park, N. c. 27709

Abstract

It is possible to reduce the space requirements of

pass-oriented attribute grammar evaluators by abandoning the

traditional bias towards evaluating an attribute as early as

possible. Two techniques for acb.iev.iilg this improvement are

presented. Empirical data show the superiority of these

techniques over traditional evaluation methods.

Keywords and phrases: alternating semantic evaluator,

attribute grammars, lazy evaluation. storage optimization.

- 1 -

.t.

1. INTRODUCTION

The Alternating Semantic Evaluator {ASE) was introduced

in (1] as a technique for evaluati~g attribute grammars [2] •

An improvement in the evaluation strategy aimed at minimiz-

ing traversals of the parse tree was proposed and subse-

quently implemented by Raiha and Saarinen [3]. Here we

introduce another optimization for ASE. The difference bet-

ween our current proposal and most other attribute evalua

tion strategies in the literature is that we advocate delay-

ing the evaluation of each attribute as long as possible.

In contrast, the assumption behind all current evaluation

strategies is that an attribute should be evaluated as soon

as possible--that is, as soon as the attributes it depends

on become available. We refer to our evaluators as la~y

evalgatgr§. Unlike Henderson and Morris's lazy evaluator

for LISP (4], we don't save actual computations. The advan-

tage we hope to gain is that by delaying the computation of

an attribute we shorten the time that the storage for the

attribute needs to be allocated and this in turn should

reduce storage requirements for all attributes. The point

we would like to emphasize is that the improvements o.f lazy

evaluation are achieved at .n.2 extra cost.

We will assume a basic knowledge of attribute grammars

and ASE. In the next section we introduc.e the notation used

in this paper. In section 3 we give two construction algor-

ithms for lazy evaluators. It is interesting that only the

- 2 -

' .
.!

construction algorithm is different from ASE; the evaluator

algorithm is the same. In section 4 we give test results

for comparing the performance of a lazy evaluator and a·

traditional evaluator in compilers for PL360, an Algol 60

subset, and two structured-FOBTBAN preprocessors. In .sec-

tion 5 we offer some conclusions.

2. NOTATION

An a·ttribute grammar is a context-free grammar with

attributes associated with each nonterminal. After each

production in the context free grammar, a number of semantic

rules are given which define the val'-les of the attrib'-ltes o.f

nonterminals of the production. The val'-le of an attrib'-lte

is defined as a function of the attributes that belong to

the same production. We define the relation gepeng§2.n over

the attrib'-ltes. a gependson b if in some semantic rule a is

defined in terms of b. lie will also use Ul?JW.g~Q.!l! which is

·the tra nsi ti ve clos'-lre of depend~on-

An Alternating semantic Evaluator evaluates all the

attributes of a given parse tree by making m passes over

that tree, evaluating the set A~ at each pass i. These

passes may be either left-to-right (left) or right-to-left

(riqht) over the parse tree. For each attribute x, pass(x)

is the number of the pass on which x is evaluated. An ASE

constr'-lctor produces the 11 sets, A1 through AM for a given

- J -

~

grammar. Each set A~ consists of the attriLutes evaluable

in pass i of any parse tree of the grammar.

For any two attributes x and y and pass i we define the

relation occursbefo£e such that an attribute x QCcu~sbefor~

y if during the tree traversal of pass i, attribute x is

visited before attribute y. The occursb~12~ relation

depends on the dir~ction of the pass. Since the traversal

order of each pass is fixed, the Q££~2R~t2~~ relation is

known at construction time for each grammar.

3. CONSTRUCTION ALGORITHMS

The original ASE construction algorithm, which we will

henceforth call forward w, stclrts with the initial assump

tion that all attributes are evaluable on the first pass.

These attributes are thus placed in set A1• Examination of

the semantic rules of the grammar forces the elimination of

some attributes trom this set. These are then assumed to

belong to AA. This process is repeated until all attri-

butes have been assigned to a set Ai- The following is the

part of the algorithm which forms the set At for pass i.

for ~£!! attri.bute x in A~

verify that for every attribute y such that x ~~eeQgsoD

y, pass (y) <i .QI. {pass (y) =i and y occ;ut:shSl!ore x)

- 4 -

3. 1

2ti!~'!i:~ delete x and all attributes z such that z

~2~2n! x from Ai and insert them in Ai~f •

We now give two methods for producing lazy evaluators.

'
The first method which we call l!tckxard ~l&£1iQ!! is a

simple transformation of the origi~al algorithm. Instead of

assuming initially that all attributes are evaluable on the

first pass and deleting those that are found not to be, ve

assume all attributes are evaluable on the last pass and

delete those that are needed before the last pass. Because

the number of required passes is not known in advance, some

postprocessing is needed to renumber the passes in reverse

order of their production. In this algorithm, pass "1 n is

the first pass produced by the constructor but the last pass

for the evaluator. Renumbering the passes is a simple task

and requires O(A) steps where A is the number of attributes.

The algorithm section above may be restated thus:

for ~ attribute x in A

verify that for every attribute y such that y d~QS~a

x, pass(n<i ~ (pass(y)=i Ang x 2££~§~1~~ y)

gtherwis~ delete from Ai• the attribute x and all

attributes z such that x depensJ~ll! z and insert them

in AC:+t •

The. postprocessing is simple:

- 5 -

-'

t -

renumber eacn set A;,, to Arn-i.-t\

The second method of producing lazy evaluators is called

pass compression and is considerably more complicated. The

basic idea is that first the original construction algorithm

is used and m sets Ai are produced. Then, in a postprocess

ing step, an attempt is made to move an attribute definition

forward (toward A-) as close as possible to its first use.

An attribute can be moved to the pass on which it is first

used or to the pass prior to it, depending on the Q.C~ursQ~-

fo'e relation.

In order to move eacll attribute only once, we want the

final position of the ~nd\ln! attribute y to be defined

before we attempt to move the attribute x that g~£gnd2Qn y.

In order to do this, we want to process the later passes

first, that is, process the m passes in reverse order ..

Within a pass, however, if a d~eendsQ!!. b we must process

a before b lest we miss a possibly useful movement. That

is, we can move ~ to a later pass and then move ~ up to it;

if we attempt to move ~ first, it would be blocked by a's

dependence on it. one would therefore like to perform a

topological sort on the attributes asigned to a pass. This,

however, is not possible. Look, for example, at the depen-

- 6 -

dency graph segment of Figure 1.

. ·---,
I a I t I X

g-~
I a I t I I II Z

/---J.
4-r--,

L..t

r---T-·~
I a I h I X I c I e I Y , ___ ..,_._.._ .. , ___ ... ___ J

Figure 1. Dependency graph of a ring

The arrows indicate the. flow of information; if a geE~ng22n

b, then the arrow will point from b to a. a(X) and b(X)

clearly must be evaluated on the same pass. Further, we

have both a g~peng22n b and b dependson a. When we have a

group of attributes that show this type of dependence, the

movement decision will have to be made for the entire group

together.

We refer to such a group as a ri~g. Formally, a set of

attributes x, , x.t ,.. • x,., fora a ring il.I for all i, 1<i<n-1,

- 7 -

...

! '

A bit matrix

representation of depengson! will show these attributes as

having identical rows and columns. This matrix is also

helpful in ordering the attributes of a pass for processing:

by sorting the attributes by the total number of attributes

that they dep~nd on (number of ones in a row of the matrix),

we can determine which attributes must be processed first

(see .below) ..

Once we have determined the members of the ring, we move

all its elements to the earliest pass that every one can be

moved to. Before we give the postprocessing algorithm, we

offer some further clarifying remarks.

Since we are moving attributes as late as possible, there

is no processing reguired of the final pass; t.herefore the

outer loop begins with the next to last pass. Attributes

are ordered and processed with those with the most dependen-

cies first. The reason for this order is that if 9 depend-

son k. they are not part of a ring, and they are evaluated

on the same pass, we want to attempt to move s and then e.
since Q could not be moved to a pass later than s· Clearly

9. has at least one more dependency than e so the decreasing

number of dependencies is the correct order. This is nor-

mally a method that can be used to get a topological sort on

the relation transpose(dependson). As we pointed out ear-

lier, a topological sort would fail, but the algorithm does

- 8 -

. .

give us a valid ordering. After this auch of the sort has

been done, the al~orithm can identify rings by a pair-vise

comparison between all possible attributes with the same

number of dependencies •

i •

A~goritha ~s-comeression:
I* process each pass,P *I
[Q~ P := N-1 !2 1 ~ -1
.d2

sort the attributes to be evaluated on pass P by
decreasing number of dependencies;

identify any rings within the groups of attributes with
the same number of dependencies;

ill each attribute x of the pass in order

if x is not a member of a ring

thgn I* process a single attribute */
find the set Y = {YIY dependson x};
m = min (pass (y)) ;

~·Y
!t x occursbefore y for all y a Y such that

pass (y) - m

then move x to pass m

else move x to pass m-1

ll x is the first member of the ring encoun
tered

~ I* process entire ring *I
find the set Y = {yjy geeepgson x• and

x• is a member of the ring being
processed}

it X' QCCUrSb~fO£!l
ring and all y
= m

y for all x• in the
Y such that pass(y)

then move all ring members to pass m

~l§g move all ring members to pass m-1

- 10 -

..
'J

v.,
i

i.

'

The cost of the algorithm is dominated by the inspection

of the ~~~n* relation and is O(AZ) where A is the total
I

number of attributes in the grammar. Note the complexity of

the ASE algorithm is 0(A3) and the ~e§nd§gn! relation needs

to be available for the construction algorithm anyway.

4. EMPIRICAL DATA

The motivation for using lazy evaluators is to save space

by delaying the allocation of storage for attributes. We

have run some sample grammars to measure the possible sav-

ings and also the difference between the performance of the

pass-compression and the backward selection algorithms.

In order to compare the performances· of the different

algorithms we need to define the criteria. We make the fol

lowing definitions.

The Ps~s-life of aR !£tr\b~ is m-n+1 where m is the

number of the pass on v.hich the attribute is used for the

last time* and n is the number of the pass on which the

attribute is evaluated. The pass-life of an attribute indi-

cates the minimum number of passes during which storage must

be allocated for the attribute.

The e&vet:ag~ l!.!.§i-li.fe 21 A .2A~S §ti~tj.on ~ All attri

~ grammar is defined as the average of the pass-lives for

all its attributes. Two possible pass selections for the

- 11 -

~-

...,.
' .

/

I •

•

same attribute grammar may be compared by their pass-lives

because a lower number indicates that less storage is

required.

Another useful measure for a particular pass selection is

is actiu fL"om the pass it is defined on until the p_ass in

which it is last 11sed.. The reason for 11sing thi~ meas11re is

that it is not necessarily the time-space product that we

want to minimize, as the average pass life vou~d, but the

maximum space req11ired. It should be noted that more accu-
' rate figures would take into accoWi t the relaiive occur-

rences of nonterminals and their attributes in ~arse trees.
I

To our knowledge, such figures are not availablel

The pass-compression algorithm is quite expe~sive to run

and we have only tested it on small grammars.! On these

cases, only once was the peL'formance of the pass! compression

different from backward selection in the number. of passes:

it required one less pass (i.e., all of tae att~ibutes were
I

moved from one pass). In the other cases, th~ number of

passes were the same but the characteristics of the passes

were different. When there is a difference, backward selec
!
I

tion gives love.r average pass life (better time-space pro-

duct) and pass compression gives smaller maximum nuaber of

active attributes (lower max s·torage).

- 12 -

-·

We have done a much more thorough comparison of the for-

ward and backward selection algorithms .. In addition to

small example grammars th.at were used for examination of

pass-compression, five sizable grammars were also compared

for their storage requirements under the forward and back-

ward ASE schemes. These grammars were: two dif.ferent ver-

sions of s-FORTRAN (a structured FORTRAN preprocessor) .• an

ALGOL-60 subset, and two versions of PL360. Figures 2 and 3

show the results of the comparison for these large grammars.

These figures need little interpretation. The first

table shows that the space-time product for ASE is higher

than for lazy ASE (LASE). The second table shovs that the

maximum number of attributes that need to be stored during

evaluation are less with LAS! than with AS!-- sometimes con-

siderably less. These figures together confirm our expecta-

tion that memory requirements for lazy evaluation are less

than for original ASE.

I
'

/
/

/
/

/ -
/

• total attribute-~asses with backward selection

Pigure 2:

/

/

lttrib~te passes fer co~plete graarrars

/

/

/
/.

/

/ .•
/

/
/ . .

max liv~ attributes with tackward selection

Piqure .3: Ma~ live attributes for corr~lete grarrrrars

l
I

· .. !J

5. CONCLUSIONS AND DISCUSSION

The universal assumption made with respect to attribute

grammar evaluators is that one must evaluate an attribute as

soon as possible. This assumption is not valid if one is

interested in economy of space during evaluation of the

grammar. We have presented two methods for converting an

existing evaluator, ASE, into one that works according to

the assumption that an attribute should be evaluated as late

as possible .. we presented experimental data that indicate

that these so-called lazy evaluators are indeed capable of

reducing storage requirements.

Hany interesting questions are suggested by this vork.

What is the exact relationship between backward selection

and pass compression? For example, when will they produce

different numbers of passes? Is the extra cost of pass com-

pression ever justified? we suspect not. we believe that

the difference stems more from the direction (left or right)

of the first pass selected. can lazy evaluation be applied

to other evaluation strategies such as that of [5]? Are the

comparison criteria we have used adequate? Some of the

deficiencies with these measures is discussed in [6] but can

we can do better with more sophisticated measures?

Whatever the answers to these questions might he, the key

point of this paper is that backward selection produces bet-

ter results than forward selection and this improvement is

- 15 -

I 7
'!'

I .
I

lffi

l

~ained at nQ extra cost. The forward selection algorithm

which is implemented in several systems should, therefore,

be used only if an external reason exists.

Acknowledqeaents

1'he large qrammars used in this study were obtained from

the computer Science Depa.rtm~nt of the University of Hel-

sinki. This work was supported in part by the National Sci-

ence Foundation Grant No. MCS77-03729.

- 16 -

I

'""

F..EFERENCES

(1] Jazayeri, M. and K.G. Walter, "Alternating Semantic
Evaluator", eropteding§ 2! ~ 1&A Anaa~l C2Afik9D2e.
Minneapolis, October 1975.

1

[2] Knuth, D.E., "Semantics of Context Free Languages",
llat.J!eaattci! ~§lillii l.U.2.U -'• 2, 1968.

[3] Raiha, K-J. and M. Saarinen, "An Optimization of the
Alternatinq semantic Eva~uator", l!l1~!.A!i2B. f~22ess!-ng
~~~§ §, 3, June 1977. 

(4] Henderson, P. and Morris, J.H., "A Lazy Evaluator," 
koamunication§ 21 ~ lkl• Volume 4, Number 1, January 
1961, pp. 51-55. 

(5] Kennedy, K. and S. K. Warren, "Automatic Generation of 
Efficient Evaluators for Attribute Grammars", ~2W.t.!U!~ 
Rec2rg 21 ~ ~~ ~ Syapo§~9! ga ~in2i2~ 21 
~rograaa\ng LiA9JAg~, Atlanta, January 1976. 

(6] Pozefsky, D., "Building Effi.cient Pass-Oriented 
Attribute Grammar Evaluators", Ph.D. Dissertation, 
computer Science Department, University of North 
Carolina, April 1979 (UNC ~R-79-006). 

- 17 -


