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1. IN~BODUCTION 

Proqraro testing is an important area cf software engineering 

which has received a great deal cf deserved attention 

recently (1). It appears that some corr.bination of techni­

ques from the frogram verification and the proqran testing 

areas will eventually emerge as the method of choice for 

software validation. One promising program testing rrethod 

is based on syml:olic e:recution (2). 

The approach is founded on the assum{:tion that it is iiq:os­

sible to test a program exhaustively on all possible data. 

One can, however, run the program with symbolic values for 

the input data and produce symbolic values for out{:ut data. 

In executing a Irogram symbolically, one also derives syro­

bolic expressions for conditions that ensure the execution 

of different paths in the program. '!he results of syrrbolic 

execution may be used in rrany applications including 

source-level debugging, test data generation, prograrr docu­

mentation, proofs of correctness and detection of serra:ntic 

errors that cannot be found statically. 

Many approaches to symbolic execution have been proposed and 

several systeros exist that are capable of executing prograros 

symbolically 13-S). The purpose of this paper is to provide 

a formal description of symbolic execution. we present the 

top-down development of a symbolic execution systerr and 

- 3 -



point out the important design decisions that distinguish 

the existing approaches from one another. The puq:cse of 

this paper is thus not to present a new testing rrethcdology 

but rather to provide a unified framework for understanding 

symbolic execution and for comparing the different techni-

ques. 

The major characteristic of the forll'ulation of syrrbclic exe­

cution presented· here is that it is §ID!g! Ql[!~!sg (6). 

There are many reasons for choosing this approach. Cne is 

that tools developed this way can be easily modified to work 

for different programming languages. This is precisely the 

attraction of syntax directed compilation. Another and more 

ireportant reason is that we believe it is ireportar:t to have 

a representation of programs which is suitable for different 

program processing tools such as editors, translators, 

debuggers, optimizers, verifiers, etc. Syntax trees can 

serve as this unifying representation if all the tools are 

syntax directed (7-8) • 

The remainder of this paper is organized as follows. In the 

next section we discuss the reajor components of a syrrbolic 

execution system. ~n section 3 we give our syntax directed 

formulation of symbolic execution. Section 4 contains three 

exarrples to sharpen the ideas presented and section 5 offers 

some conclusions based on this work. 
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2. CO!ECRENTS CF A SY!BCiiC EXECUTICH SYSTE" 

Figure 1 illustrates the major coroponents of a symbolic exe-

cution system • lie have included the user as a cotrponent in 

. order to emphasize the interactive nature of this systerr. It 

is the user who will direct the courses of action to be 

taken. In fact the forroulation we present would often not 

terminate if the user were not present. 

Symbolic evaluator is the component which scans the prograrr 

and executes each statement. 'I he size and complexity of 

expressions (boolean and otherwise) that the evaluator is 

required to evaluate grow quite rapidly. It is for this 

reason that a simplifier rrodule would te helpful. 

itself could be as powerful a systen as MACSYMA. 

This in 

In the 

absence of such a sophisticated simplifier, this is another 

place vbere the user can be relied upon to perforn the sim­

plifications. cur errphasis in this paper is on the synbolic 

evaluator component. lie assume the existence of a simrli-
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Fig. 1. components of a Syltbolic Execution system 
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3. SYNTAX DIRECTED POB!UIATICN OF SY!BOtiC EXECUTION 

In this section we present in detail the workings of the 

Symbolic Evaluator. Since the systett is syntax directed ve 

have' to assume a syntax for tbe langua9e. Pi9ure 2 9ives 

the grammar that is assumed by the algorithms vhicb follow. 

Some rules are left unspecified for simplicity. It is 

really immaterial what these rules are; they do not affect 

our results. Figure 3 gives the syntax trees corresponding 

to the first four productions of the grarrmar. The ambiguity 

of the grammar does not affect the results presented here; 

we can use any of possibly many syntax trees 9enerated for a 

program. Figure 4 gives an example prograrr and its syntax 
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Fig. 2. Fragment of a sample grarrrrar 

1 prog -> stateuent 

2 statement -> statement ; stateuent 

3 statement -> ,\! eipression !.!!!!! .statement 

~l!.!l statement 

4 statement -> ~hili expression 

~ statell~nt g.9 

5 statement -> assi911ment-statement 

6 statement -> read-state«ent 

7 statement -> vrite-staterrent 

L-----------
tree. 
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Pig. 3. Syntax trees .for the e:uJq:le language 
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We next discuss the structure of th~ evaluator. 
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The description here emphasizes the conceptual organization 

of the evaluator rather than a precise and detailed irrfle-

rrenta tion. we make extensive use of data and frocedural 

abstraction. 
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Fig. 4. Samfle proqrall' and. syntax tree 

read (A,B); 
!! A>B 

.!l!i.D MAX:= A 
!i.l.U M AX : = B 
.,i· ... _ ... 
write (l'!AX) 

1 proqrarr 

I 
2 corrpound-statenent 

~------3 read (A, E) corrpound-statenent 4 

/.~ 
5 if-statell'ent vrite(MAX) 8 ______ , ______ 

A>E MAX:=A MAX:=B 
6 1 
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The symbolic evaluator is a li'Ultipass alqorithrr, each fass 

beinq a recursive traversal of the syntax-tree. When a node 

is visited at each pass, the evaluator performs actions 

which depend on the statements described by that node. 

Each node N of the syntax tree has a number of attributes: 

• U~, which indicates the syntactic construct repre­

sented by the node (coupound-staterre·nt, while-state-

rrent, etc.) ; 

• l!ll!erite~ !lD.!iiQ.!)!Ile!Jj;, which represents the syrrbolic 

environments inherited from the statenents that in 

some computations are executed before the construct 

represented by N; 
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• §I!l!llllil§!l ~!l!A~S!!lll!!!!!• which represents the sym­

bolic environments which hold after the execution of 

the construct represented ty H. 

To specify these attributes, the record notation N.type, 

N.inh and N.syn will be used in the paper. In an irrplernen­

tation, each node N might be accessible through a pointer P. 

Similarly, P.inh (P.syn) can te a pointer to the inherited 

(synthesized) environment and assignment ·of envircnrrents can 

be implemented as pointer assignments. 

An environment is represented by a set of pairs; the ele-

ments of a pair are a 

I~D!) and a table of 

boolean expression (called a £QD§1-

program varia-bles and their symbolic 

values. The constraint specifies the condition ULder which 

a particular control_path is executed and the table contains 

symbolic expressions for all the variables assigned along 

that path. The environment contains this information about 

all control paths thus far examined. A constrair.t that is 

identically false indicates that the associated path cannot 

be traversed in any computation; a true constraint, on the 

other hand, indicates that the path is always traversed (for 

exan·ple, the first statement of a progran usually has a true 

constraint). Finally, an environment that is empty indicates 

that nothing has been computed. After each pass is exe­

cuted, the synthesized environment for the root of the tree 

represents the result of symbolic execution of a r.unber of 

program control paths. 
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The following procedure, 

execution by a rrultiple scan of the tree. 

ll~S<!S.l!U multipass; 
.!!!i: .ill nodes N ~ 

N. inh <- empty 
!!.9.& 
1!! B be the root of the syntax tree; 

B.inh <- {(T,empty)}; 

performs syrrbolic 

!hi!! the user requests a new pass gg £~1! pass(B) gg 
!!lS rrul tipass 

Procedure E~§§ which performs the actual scanning of the 

tree, produces the result of each pass for the user. 

ll~!!£!2.l!I! pass(E:node); 
!!!! s be R's son; 
s.inh <- R.inhUS.inh; 
S<!ll process. (S) ; {symbolically execute the staterr<S.r.ts 

which derive frore s using s.inh as the inherited environn:ent}; 
Jl.syn <- s~syn; 

display R.syn to the user; 
R.inh <- empty; s.syn <- eit·pty 

{These assignments are in preparation for the next pass} 

Procedure .EIQ£!§! calls on a specialized procedure depending 

on the statement type. 

E~2£iS~! process(N:node); 
£~.§! N.type .9! 

corepound-statement: s.;~ll compound-statereent(N); 
if-statement: cal! if-statement (N) ; 
while-statement: fill while-statement {N) ; 
assignment: ~!! assignment-:-statemer.t{N) ; 
read-statement: £§!! read-statement(N); 
vrite-stateitent: ~!! vrite-statemert(N) 

!US< 
!!)g process 
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The actual processing of statements is performed by the spe­

cialized procedures of which there is one for each statenent 

(node) type. 7he following procedures give the flavor of 

these procedures. It is this set of procedures th·at differs 

when a different language is to be treated. 

J<I.Q!<§Al!S! conpound-stateroent fCS:node); 
ln S1, s2 be the left and right sons of cs respectively; 
S1.inh <- CS.inh Us1.inh; 
£All process (51); 
s2. inh <- S1.synU S2.inh; 
S!ll process (52); 
cs.syn <- S2.syn; 
C5.inh <- empty; 51.syn <- empty; 52.syn <- ero.pty 

~!H1 compound-stateroent 

J<I.QS~.l!I~ if-statement (IS:node) ; 
~1 B be the expression which appears in the condition 
let 51, 52 be the_ nodes corresponding to the true and the 

false branch·, respectively; 
S1.inh <- combine· (IS.inh,E) US1.inh; 
S2.inh <- corobine (IS.inh,ng1 !) U S2.inh; 

(function combine is described telov} 
SAll process (51); 
£All process (52); 
I5.syn <- S1.synUS2.syn; 
I5.inh <- empty; 51.syn <- empty; S2.syn <- enpty 

~IH1 if-statement 

All inherited attributes are initialized to empty to indi-

cate that nothing has been evaluated yet. During each pass 

all the alternative branches of condition statenents are 

symbolically executed. Therefore, one single pass performs 

a symbolic execution of all paths if the prograro is loop 

free. 
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.J2!.Q£~!!!!U while-statement (IIS:.node) ; 
!it E be the e~pression which appears in the condition; 
!!! s be the son of liS corresponding to the loop body; 
s.inh <- combine(liS.inh,E)US.inh; 
s;illl process (S); · 
ws.syn <- combine(WS.inh,~.Q! E) 
liS.inh <- s.syn; s.syn <- empty 

i!l.!! while-statenent 

In a while-statement node, liS, ve store the effect of going 

through the loop one more time in liS.inh; IIS.syn is for the 

case when the· condition is false and the loop is not iter-

a ted. Thus after the first pass, IIS.syn carries the envi-

ronroent indicating no loop e~ecutions at all. 

the environment for exactly one loop iteration • 

.El:.QS<i!!YJ;~ assignment-statement (AS:node) ; 
AS.syn <- AS.inh; 
I.Q~ ~s;h pair in is.syn ~.Q 

IIS.inh holds 

i! there is an entr.y in pair.table for the 
variable .beinq· assigned 

!~!l update its symbolic value 
JlS! create ar. entry for the variable and 

initialize its .symbolic value 
fi 
.9.9.& 
AS.inh <- errpty 

!ill.!! assignment-statement 

The above procedures are for typical staterrent types. one 

other statement deserves mention: the read-staterrent. The 

reading of a variable can be treated just like an assignrrent 

to the variable except that the value to be assigned has to 

be rranufactured by the systezr. l'or each "read X" statement, 

the value assigned will be ~i where i-1 is the rurrber of 

tiro,es a value bas been read into X prior to the execution of 

this read statement. Thus x1, x2, ••• will be the successive 

values assigned to X by successive read statements. 
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., 

And finally, the function ~g~!in! which has been used in the 

above procedures for manipulating constraints is given 

below. 

!Y!l£!ign combine (l!NV:environment, BXP:expression):environment; 
!~ each pair in l!IIY gg 

X <- symbolic evaluation of BXP using syntolic . 
values of· variables stored in pair.table; 

pair.constraint <- pair.constraint s!lS X 
.QQl 
.uturn (EN V) 

!UlS combine 

The approach to symbolic EXEcution presented above is meant 

to be straightforward and easily-understood. It is not 

meant to be efficient and it is not. In this section we.dis-

cuss some important aspects of the above formulation and 

some refinements of it that can affect the efficiency of an 

iirplen~entation. le alsc:) contrast and COII'pare the different 

approaches to symbolic execution. 

The first factor which contributes to the efficier:cy of the · 

above approach is the degree of interaction with the sinpli-

fier. In principle, the simplifier can be invoked only 

after each pass, in order to discard any pairs in the syn­

thesized environment of the root that have false cor.st-

raints. However, a-considerable reduction of processing time 

and storage space in the management of environments can be 
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gained if the simplifier is called after each titre that 

function combine is invoked. We call a fair whose corst-

raint has the value false an l!J!!i.lU!.i!ll!i J<.Ql[l!Ytati.QI• since 

the condition that would enable the traversal of the control 

path cannot be satisfied. symbolically executing the pro-

gram with such enlironments is wasteful and can l:e avoided 

if a simplifier i~ used. The user can also provide this 

service interactively if.a powerful sitrflifier is not avail-

able. 

A second way to increase the efficiency of the evaluator is 

to avoid visiting every node at every pass, as the present 

evaluator would do even if processing certain nodes car. be 

known not to yield any new informatio:r:. In some cases, the 

sytrbolic execution of a pass may assure that synbolically 

executing certain nodes in the next pass will not synthesize 

any new enviromrents (i.e. the synthesized envircr.nent will 

be empty). In particular, if the program does not cor:tain 

any loops, every pass aft.er the first will fail to produce 

any new information since the synthesized environment of the 

root will be empty. This, of course, is the direct result 

of the fact that in tbe first pass all the control paths 

will have been exarrined. 

As given here, the multipass algorithtr can only halt as a 

consequence of a user command. This reflects the intrir:si-
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cally non-terrrinating process of symbolically executing pro­

qrans in qeneral. It is reasonable, however, to try to 

automatically stop the process if it can be guranteed that 

more passes will not produce any new inforrration. This 

would ha.ppen after all program paths have been examined. 

Althouqh in general this condition cannot be expected to 

occur, it will occur for programs without loops (after one 

pass) and for proqrams with only indexed loops. In other 

words, the process is indeed terminating for programs wbich 

have only a finite nurrber of.control ~atbs. 

This can, in fact, be considered to be a special case of the 

qeneral problem which we · call I~DjJD! £2ni]1s!iS~§· One 

could imagine cases where one more pass would produce new 

·inforrration, but not for all control .t=aths. That is, in 

qeneral, one would like to avoid processing those control 

paths for which ·no new information .will result. As a spe­

cial case, this would avoid an entire pass once all paths 

have been eihausted. 

To accomplish this, we could use a qlobal variable ACTIVE, 

as well as a boolean-valued attribute active at each node. 

The purpose of a node's ·active attribute is to indicate 

whether further processinq of the node should be attempted 

(true value) or not (false value). 'Ihe purpose of the glo­

bal ACTIVE is to mark the nodes• active attributes cor-
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rectly. Procedure ~!Q£!§§ is modified to test a node's 

active attribute and "process" the node only if it is 

active. Before the first pass, multipass would initialize 

all active attributes to true and the global ACTIVE to 

.false. During each pass, after the synthesized .enviromrent 

of a node is computed, the current value of ACTIVE is 

assiqned to the node's active attribute. Just after the 

call to procedure process in procedure while-statereent, 

ACTIVE is set to true if s.syn is not empty. The descen­

dants of a while node are also marked a~ active if the node 

is so marked~ 

set to fals~. 

'[o start any pass after the first, ACTIVE is 

A further optimization can he effected in the way the des­

cendants of a while node are marked active. The straight­

forward way is to sin:ply rescan all such nodes and 1rark 

them. A less inefficient way is to have a global variable 

GO. The decision whether to process a node N is now (GC 2!: 

active).. During a pass, whenever an active while node is 

encountered, GC is set to true. This will ensure that the 

node's children will be processed even if they are ~rarked 

inactive. ie therefore do not need to rescan the node's 

children sireply to mark them. GC is initialized to false at 

the beginning of every pass. 
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Further refinements of the approach are possible at:d in some 

cases desirable. IE have treated the table corr,ponent of 

environments as an abstract object into which objects can be 

inserted and from which objects can be retrieved. The par­

ticular representation chosen can ,affect the perforrrance of 

the system. DISSICT (3) uses a linear list of variables 

ordered on the instruction counter. ll better approach is to 

use lexicographic ordering ,of variables to speed up the 

search,. The reason (3) uses the instruction counter order-

inq is because of arrays. le propose to use the instruction 

counter ordering only for the array elements within each 

array entry. 'fh,at is, the array name is used to find a 

location in a lexicographically oredered table; this loca­

tion holds a pointer to a list of array elements ordered on 

the instruction counter. 

Another important aspect of any symbolic execution systen is 

how it treats loops. lie have decided to exan.ir.e loops 

through multiple passes. Cheatham et al (5) have the very 

interesting approach of deriving a recursive equation which 

describes the effect of the loop. No iteration is necessary 

in their scheme. The approach is not applicable in general 

but they claim that practical programs are handled ade­

guately. 
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Another refinement possible with respec.t to loops has to do 

with the application of symbolic exection to error detec-

tion. In particular, assume an inherited env ircrment of a 

loop node which has the constraint C1 is used to execute the 

node and an environment is synthesized with 

If C2 implies C1, it is guaranteed that the 

constraint c2. 

loop will not 

terminate. Yhis information would be valuable to the pro-

grammer and he should he informed of it. 

Another error that is easily detected is use of a variable 

before it has been assigned. This car. be checked wher. an 

attempt is made to search the table fer the value cf a vari­

able and it does not exist. Processing of this environment 

should be terminated at this point with an appropriate mes­

sage to the user. 

our scheme can also be modified slightly to indicate at the 

end of each pass not only the information about the control 

paths examined but also what fraction of control paths were 

traversed. This information would be useful in deciding 

whether to perfcrm another pass. 

A final feature that would be useful for a programmer and 

can be incorporated into our system is the ability to force 

the symbolic execution of certain paths. This could be 

accomplished by calling pass, not with the root node, but 
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the node that marks the beginning of the path to be exa­

mined. The inherited environment of the node nust, of 

course, be initialized first and some other minor nodifica­

tions to pass are also necessarJ. 

4. FXA!!PLES 

In this . section we give three examples of the use of the 

symbolic evaluator. 'Ihe first is a program with r.o loops; 

the second is a program with tvo loops but no.arrays; the 

final example il.lustrates hov arrays may be treated. The 

exarrples should help clarify the workings of the evaluator. 

Exa!!J!le 1: straightline program. 

The table below shows the values.of the attributes for the 

nodes of the program tree in Figure 4. 
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step I node attribute value --------------------------------------------------------------
1 I 2 
2 I 3 
3 I 3 
4 I 4 
5 I 5 
6 I 6 
7 I 6 
8 I 1 
9 I 7 
10 I 5 

I 
11 I 5 
12 I 6 
13 I 7 
1 4 I 8 

I 
15 I 8 

I 
16 I 4 

I 
17 I 4 
18 I 5 
19 I a 
20 I 2 

. I 
21 I 2 
22 I 3 
23 I 4 
24 I 1 

I 
26 I . 2 

I 
I 
I 
I 
I 
f 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
1 

inh 
inh 
syn 
inh 
inh 
inh 
syn 
in.h 
syn 
syn 

inh 
syr. 
syn 
inh 

syn 

syn 

inh 
syn 
syn 
syn 

inh 
syn 
syn 
syn 

syn 

I 
I 
I 
I 
I 

{ {'1', errpty)l 
n 

{('I,[ A: a 1,B: b 1 )) } 
" .. 

I { (a1>b1,[ A:a 1,B:b1 ])} 
1 {(a1>t1,[A:a1,B:b1,1!AX:a1])} 
I { (a1,>b1,[ A:a1, E:b1 )) } 
I {(a1-.>b1,[A:a1,B:b1,!!AX:I:l1 ))} 
I {(a1>b1,[A:a1,B:t1,11AX:a1]), 

·I (a1-.>t1,[ A:a1,E:b1 ,I!AX:b1 ]) } 
1 enpty 
1 enpt y 

·I enpty 
I {(a1>t1,[A:a1,B:b1,!!AX:a1]), 
I (a1-.>b1,[A:a1,B:b1,MAX:b1])} 
1 {(a1>b1,[ &:a 1,B:b1,1'1AX:a1]), 
I (ah>b1;[ A:a1,E:b1,!1AX:b1 ))} 
I ((a1>b1,[A:a1,B:b1,1!AX:a1J), 
I (ah>b1,[ A:a1,E:b1,!!AX:b1 ])} 
I e1q:ty 
I empty 
1 errpty 
I ((a1>b1,[ A:a1,B:t1,!!AX:a1)), 
I (a1-.>b1,[ A:a1,E:b1,!!.AX:b1 )I} 
I empty 
I emt:t·y 
1 erepty 
I ( (a 1>b 1, [A: a 1 , B: b 1 ,I! AX: a 1 ]) , 
I (a1-.>b1,[A:a1,E:b1,1!AX:b1 ])} 
I enpty 

At the end of the pass the values of attr.ibutes at all nodes 

except the root are errpty. 

The output produced covers all control· faths. It indicates 

that the program result depends on the relationship of the 

values read for A and B. 
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The following prograro and its syntax tree show the behavior 

of the system on programs· with loops. 

I:=O; 
read (X); 
~i.l!i x,=o 
.!}.Q I:=I+1; 

read (X) 
od· --.a 
vhi.!!! I>O 
do write (I) ; 

I:=I-1 

1 prog 

I 
2 cs 

~~ 
3 I:=O CS 4 

5 rea~~s 6 

~~ 
7 iS WS 11 

/""- /~ 
X,=O e"cs I>O CS 12 

·/~ /~ 
I:=lf1 read(X) vrite(I) I:=I-1 

9 10 13 14 
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step I node attribute value ---------------------------------------------------------------
0 I 1 I inh ((T,elfpty)} 
1 I 2 I inh R 

2 I 3 I inh H 

3 I 3 I syn { (T ,[I: 0 ])} 
4 I 3 I inh erorty 
5 I 4. I inh f (T,[I:O ])} 
6 I 5 I inh .. 
7 I 5 I syn { (T,[I:O ,X:x1 ]) l 
8 I 5 I inh elfJ?ty 
9 I 6 I inh ( ('f, [I: 0, X: x 1 ]) } 
10 I 7 I inh .. 
11 I 8 I in h. ( ( x1 ~=O, [ I: 0, X: x1 ]) } 
12 I 9 I inh II 

13 I 9 I syn ((xh=O,[I:1,X:x1])} 
14 I 9 I inh · eiTJ:tY 
15 I 10 I inh ((xh=O,[I:1,X:x1 ]ll 
16 I 10 I syn ((x1~=0,[I:1,X:x2])} 

17 I 10 I inh enrty 
18 I 8 I syr. ((x1~=0,[I:1,X:x2])} 

19 I 8 I inh errpt y 
20 I 9 syn I errpt y 
21 I 10 SYI1 I err.pty 
22 I 7 syn ' ((x1=0,[ I:O,x:x1]) 
23 I 7 inh I ((x1~=0,[I:1,X:x2])} 

24 I 8 syn I enpt y 
25 I 11 inh I [(t1=0,[I:O,X:x1))l. 
26 I 12 inh I {(O>O,[I:O,X:x1 ])} = eropty 
27 I 13 inh I ei!!.J:ty 
28 I , 13 syn l enrty 
29 I . 13 inh I EI!!J?ty 
30 I 1!1 inh I empty 
31 I 14 syn I empty 
32 I 14 inh I ereJ?ty 
33 I 12 syn I errpt y 
3!1 I 12 inh I eroJ?tY 
35 I 13 syn I eropty 
36 I 14 syn I empty 
37 I 11 I syn I {(x1=0,{ I:O, X: X 1 )) } 
38 I 11 I inh I empty 
39 I 12 I syn I empty 
40 I 6 I syn I {(x1=0,[I:O,X:x1))} 
!11 I 6 I inh I empty 
!12 I 7 I syn I eropty 
113 I 11 I syn I empty 
44 I 4 I syn I {(x1=0,[I:O,X:x1))} 
45 I 4 I inh I empty 
46 I 5 I syn I eroJ?ty 
47 I 6 I syn I empty 
48 I q I syn I { (x1=0,[ I:O, X:x1 )) } 
49 I 4 I inh I empty 
50 I 5 I syn I ereJ?tY 
51 I 6 I syn I eropt y 
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52 I 2 ' syn ' { ( x 1=0 ,[ I: 0, X: x 1 )) } 
53 I 4 I inh I eropty 
54 I 5 I syn I eropty 
55 I 6 I syn I empty 
56 I 1 I syn I { (ll 1"=0, [ I: 0, X: X 1 )) } 
57 I 1 I inh I eropty 
58 I 2 I syn I eropt y 

At the end of pass 1, the only nonempty attributes are the 

synthesized envircnment of node 1 and the inherited environ-

rrent of node 7. 'Ihe latter attribute will cause the next 

pass to exercise the next iteration of the loop. 'Ihe reason 

that the inherited environment of node 13 is empty is that 

in this program it is impossible to have·an execution of the 

second loop without an iteration of the first. 

In general, all computations that are recorded in the syn­

thesized envirc!Cment of the root node at the end of pass i, 

COI'respond to a total of i-1 loop iterations. In this exam­

ple, at the end of pass 1, no iterations of loops are 

recorded. However, the inhErited environents of while nodes 

retain the inf·ormation necessary for the next pass to exer­

cise the next loop iterations. 'rhus at the end of t:ass 2, we 

could have the results of 

• zero iteration of the first loop and one iteratioJC 

of the second, 

• one iteration of the. first loop and zero i teratior 

of the seco11d. 

- 23 -



But the trace of pass 2 which is sbcvn below, shows that 

both of these com~utations are infeasible. 'Ihis is indicated 

by the empty evircnment synthEsized for the root node. 
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step I node t attribute value --------------------------------------------------------------
1 I 
2 I 
3 I 
4 I 
5 I 
6 I 
7 I 
8 I 
9 I 
10 ' 
11 
12 
13 
111 
15 
16 
17 
18 
19 
20 
21 
22 
23 I 
24 I 
25 I 
26 I 
27 I 
28 I 
29 I 
30 I 
31 I 
32 I 
33 I 
3111 
35 I 
36 I 
37 I 
38 I 
39 I 
40 I 
111 I 
42 I 
113 I 
44 I 
45 I 
116 I 
47 I 
118 I 
119 I 
50 I 

2 
3 
II 
5 
6 
7 
8 
9 
9 
9 
10 
10 
10 
8 
8 
9 
10 
7 
7 
8 
11 
12 
13 
13 

.13 
14 
14 
14 
12 
12 
13 
14 
11 
11 
12 
6 
6 
7 
11 
II 
4 

. 5. 
6 
2 
2 
3 
4 
1 
1 
2 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

. I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

. I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

inh 
inb 
inh 
inh 
inb 
inh 
inh 
inb 
syn 
inh 
inh 
syn 
inh 
syn 
inh 
syn 
syn 
syn 
inh 
syn 
inh 
inh 
inh 

· syn 
inh 
inh 
syn 
inh 
syn 
inh 
syn 
syn 
.syn 
inh 
syn 
syn 
inh 
syn 
syn 
syn 
inh 
syn 
syn · 
syn 
inh 
syn 
syn 
syn 
inh 
syn 
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enpty 
enpty 
enpty 
enpty 
enpty 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

{ (x1-.=0 ,[I: 1, X:x2 ])} 
{ cx1-.=0 and x2,=0,[I :1, X:x2 ]) } 

{(x1-.=0 
enpty 
{(X 1-.=0 
{(x1-.=0 
e~rpty 
{ cxh=O 
enpty 
e~rpty 

e~rpty 

r ex 1-.=0 
{ (Xh=O 
enpty 
{(X 1-."'0 
{(X 1-.=0 

I enpty 

n 

and x2-.=0,[I:2,X:x2])} 

and x2-.=0,[I:2,X:x2])} 
and x2-.=0,[I:2,X:x3))} 

and x2-.=0,[I:2,X:x3])} 

and x2=0,[I:1,X:x2])} 
and x2-.=0,[I:2,X:x3])J 

and x2=0 ,[I: 1 ,x:x2 ])} 
and x2=0,[I:1,X:x2))} 

n 

" 
1 { (xh=O and x2=0,[I:1,X:x2])} 
I· { (xi-.=0 and x2=0,[I:O,X:x2))} 
I E!npty 
1 {(xh=O and x2=0,[I:O,X:x2l)} 
I enpty 
1 eu.p.ty 
1 enpty 
If (x1-.=0 and x2=0 and 1-.>0, ••• )1 =empty 
1 {(x1-.=0 and x2=0,[I:O,X:x2])} 
1 enpty 
I enpty 
1 enpty 
I enpty 
1 enpty 
I·. e~rpty 
1 enpty 
1 · enpty 
1 e~rpty 
1 enpty 
1 · enpty 
1 enpty 
I en.pty 
I enpty 
1 upty 
I enpty 



We will not show the trace of pass 3 but by now it should be 

clear what will be accomplished. As can be seen, what is 

left in the inhErited attributes of while statements will be 

carried through the next iteration of the loops. !he final 

result of pass 3 is that 

root node displayed will 

the synthesized environm~nt of the 

be { (x1-.=0 and x2=0,[I:O,X:x2])} 

which corresponds to one iteration through each locr. 

l!,!i!U1!~ ,}: Program with arrays. 

This exan:ple is intended to show how arrays may be handled 

within our scheme. The basic idea is to have one entry for 

the entire array in each tal:le. 'Ibis entry records the 

values for all array elements assigned so far. Insertions 

and retrievals int.o this entry are har,dled in a last in 

first out order to ensure that the most recer,t value 

assigned to an array element is retrieved. If array indices 

were all constants or known quantities, handling arrays 

would require little additional effort. The situation is, 

however, more conplicated when, as is usually the case, 

array indices are expressions that depend on input values. 

In such cases, a reference to, say, A[x1J, is ambiguous in 

the sense that any one of the array elenents may be being 

referenced (as lonq as the constraint is satisfied.) The 

example below shows how these problems are solved in our 

scherr,e. 
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1 1[1]:=0; Xf2]:=0; 1(3):=0; 
2 read(I,J): 
3 X( I ]:=3; I[ J ]:=5; 
4 read(!!); 
5 Xf 1 ]:=X[ 1'1 ]; 
6 Xf II):=X[J); 
7 A:=X[II]; 
8 .H A=O 

ll!Ul A:=1 
el.§~ A:=-1 
H 

for this example, we will not show the syntax tree, nor the 

entire trace. By nov the reader should be faniliar with 

much of the detail. We have numbered the program state~ents 

and in the following will show the in:t:ortant step: in the 

symbolic execution of the program by referring to these r:uro-

hers. 

·After line 2 of the program, the environnent is 

I (T ,[I: i 1 ,J: j1, (X[ 1 ): 0, X[ 2 ]: 0, 1(3 }: 0) ])} • The value of the 

environment after line 3 bEcomes 

I (T ,[ I: i 1 ,J: 1 1, (X[ 1 ]: 0, :X[ 2 ]: 0 ,I[ 3): 0 I J[ i 1 ] : 3. X[ j 1 J: 5) ))} • 

The next step ehovs that assignments to array elements are 

kept in instruction counter order. After line 5 the er.viron-

ment is 

( (T ,[I: i 1,J: j1,11 :m1, (I[ 1]: O,:X[2 ]: O, I[ 3 ]:0, X[ i 1) :3 ,:X[ j1 ]: 5,X-

[ 11: X[m1]) ]) l. Note that the new value for X[ 1 ) does not 

merely replace the old one but is ·appended to the end of the 

array entry. The reason is that the new value of X[1] is not 

only invalidating the previously explicitly assigned value 

to xr 1 J but is also invalidating the implicitly assigned 

- 27 -



values which in this case may be I{i1] andjor I[j1). After 

appending the new I[ 1 J, we may of course delete the old 

explicit X[ 1] from the table. 

After line 7, the enviromtent is 

f(T,[ A:x[m1 ],I:i1,J:j1, (1[2 ]:0,1[ 3 ]:0,1[ i1 ]:J,X[ j1 ]:5,X( 1 ]:-
i 

Ifm1), I[m1]:X[j1]) J) }• !he environment inherited by each 

component of the if-statement is the sarre as that inherited 

by the entire if-statement except for the constraint. Eval­

uating the constraint shows the tedium of dealing with 

arrays. The source of tbe complication is that the const-

raint must be in terms of input variables only. 'Ihus it is 

at this time that we need to access the array values (in 

last in first out order, of course). The constrairt for the 

first component of the if statement is simply A=O which we 

now rrost simplify. After much simplification, the cor.st-

raint will be (j1=1 and m1~=1 and m1~=i1). For the else 

branch, it will be (j1~=1 or j1=m1 i1=m1). 

5. CONCLUSIONS 

The syntax directed symbolic evaluation scberoe described in 

this paper is not intended to give a comFlete description of 

the features a symbolic evaluator should posess, ncr does it 

cover all the constructs which can be found in "real" fro-

gramming languages. Rather, its purpose was to give a fla-
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vor of what a syntax directed symbolic eva luatcr leaks like 

and how evaluation l!trategies can· be· embedded in the scherre. 

Additional language constructs could be handled by new 

procedures. 

in ( 8) • 

For ex.amrle, goto•s can be treated as proposed 

The scheme can also l:e enriched and specialized fer differ­

ent applications. source level debugging for sorre classes 

of non-statically chec.kable errors can be easily accom­

plished. For example, using uninitialized variables or out 

of range array references can be tra~;ped for some computa­

tions. 

The symbolic evaluator itself can be seen as a con~;onent of 

the set of tools provided for program validation. Its out-

put can either he used to ·syntheSize test data (in such a 

case only the constraint .Part is used) or to prove asser­

tions on th.e result of some computations. 

One important feature that characterizes the symbolic evalu­

ator proposed here is that it is syntax directed. Syr:tax 

directed schemes provide a conceptual framework for design­

ing and understanding a number of tools which can be built 

around a programming language in a coherent progran develop­

ment system. Yraditionally, syntax directed scherres have 
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been proposed for describing translators. 

syntax directed forll'ulations of editors {7) 

l'lore recently, 

and ortirrizers 

(8) have also tEen investigated. It is our orinion that a 

syntax directed formulation of all the programming tools has 

a great advantage over ad-hoc techniques in terms of struc­

ture, reliability, modifiability, and portability. 
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