
TR-79-024
Department of Computer Science
University of North Carolina

Syntax Directed Symbolic Execution

Carlo Ghezzi* and ~ehdi Jazayeri
repartment of Computer science
Uni ver~;i ty of North Carolina

Chapel Hill, North Carolina 27514,,

USA·

*On sabbatical leave froro lstituto di Elettrotecnica ed
Elettronica, Politecnico di !!ilano, ~ilan, ITA.L!'

Sy~tax Directed symbolic Execution

Abstract

A syntax directed formulation of symbolic
presented. 1he purpose of the presentation
the issues involved in the inpleme11tation
execution systen.

execution is·
is to clarify
of a symbolic

Key words and phrases: Symbolic execution; progran testing;
programming systems: syntax directed translation;
software reliability

1. IN~BODUCTION

Proqraro testing is an important area cf software engineering

which has received a great deal cf deserved attention

recently (1). It appears that some corr.bination of techni­

ques from the frogram verification and the proqran testing

areas will eventually emerge as the method of choice for

software validation. One promising program testing rrethod

is based on syml:olic e:recution (2).

The approach is founded on the assum{:tion that it is iiq:os­

sible to test a program exhaustively on all possible data.

One can, however, run the program with symbolic values for

the input data and produce symbolic values for out{:ut data.

In executing a Irogram symbolically, one also derives syro­

bolic expressions for conditions that ensure the execution

of different paths in the program. '!he results of syrrbolic

execution may be used in rrany applications including

source-level debugging, test data generation, prograrr docu­

mentation, proofs of correctness and detection of serra:ntic

errors that cannot be found statically.

Many approaches to symbolic execution have been proposed and

several systeros exist that are capable of executing prograros

symbolically 13-S). The purpose of this paper is to provide

a formal description of symbolic execution. we present the

top-down development of a symbolic execution systerr and

- 3 -

point out the important design decisions that distinguish

the existing approaches from one another. The puq:cse of

this paper is thus not to present a new testing rrethcdology

but rather to provide a unified framework for understanding

symbolic execution and for comparing the different techni-

ques.

The major characteristic of the forll'ulation of syrrbclic exe­

cution presented· here is that it is §ID!g! Ql[!~!sg (6).

There are many reasons for choosing this approach. Cne is

that tools developed this way can be easily modified to work

for different programming languages. This is precisely the

attraction of syntax directed compilation. Another and more

ireportant reason is that we believe it is ireportar:t to have

a representation of programs which is suitable for different

program processing tools such as editors, translators,

debuggers, optimizers, verifiers, etc. Syntax trees can

serve as this unifying representation if all the tools are

syntax directed (7-8) •

The remainder of this paper is organized as follows. In the

next section we discuss the reajor components of a syrrbolic

execution system. ~n section 3 we give our syntax directed

formulation of symbolic execution. Section 4 contains three

exarrples to sharpen the ideas presented and section 5 offers

some conclusions based on this work.

- II -

2. CO!ECRENTS CF A SY!BCiiC EXECUTICH SYSTE"

Figure 1 illustrates the major coroponents of a symbolic exe-

cution system • lie have included the user as a cotrponent in

. order to emphasize the interactive nature of this systerr. It

is the user who will direct the courses of action to be

taken. In fact the forroulation we present would often not

terminate if the user were not present.

Symbolic evaluator is the component which scans the prograrr

and executes each statement. 'I he size and complexity of

expressions (boolean and otherwise) that the evaluator is

required to evaluate grow quite rapidly. It is for this

reason that a simplifier rrodule would te helpful.

itself could be as powerful a systen as MACSYMA.

This in

In the

absence of such a sophisticated simplifier, this is another

place vbere the user can be relied upon to perforn the sim­

plifications. cur errphasis in this paper is on the synbolic

evaluator component. lie assume the existence of a simrli-

,.----· ------------------------------,
I
I
I
I

Fig. 1. components of a Syltbolic Execution system

I usn I SHI'UPI!!EI
I
I

---~--------- _______ i ____ _

I
I
I
I
I
I
I
1
1
I
I

I
I
I
I
I
l------
fier.

I ------------ I
'-----)ISYl'IBOLIC 1(-----'

IEVUUATCIII

----------- I
----------------------~

- ~ -

3. SYNTAX DIRECTED POB!UIATICN OF SY!BOtiC EXECUTION

In this section we present in detail the workings of the

Symbolic Evaluator. Since the systett is syntax directed ve

have' to assume a syntax for tbe langua9e. Pi9ure 2 9ives

the grammar that is assumed by the algorithms vhicb follow.

Some rules are left unspecified for simplicity. It is

really immaterial what these rules are; they do not affect

our results. Figure 3 gives the syntax trees corresponding

to the first four productions of the grarrmar. The ambiguity

of the grammar does not affect the results presented here;

we can use any of possibly many syntax trees 9enerated for a

program. Figure 4 gives an example prograrr and its syntax

r ---,
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Fig. 2. Fragment of a sample grarrrrar

1 prog -> stateuent

2 statement -> statement ; stateuent

3 statement -> ,\! eipression !.!!!!! .statement

~l!.!l statement

4 statement -> ~hili expression

~ statell~nt g.9

5 statement -> assi911ment-statement

6 statement -> read-state«ent

7 statement -> vrite-staterrent

L-----------
tree.

- 6 -

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I ____ ..

-------,
Pig. 3. Syntax trees .for the e:uJq:le language

I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I

stat

,,.,~~ .. ,,
stat. stat

if-statewent

/I~
expression stat stat

while-statement

/~·
expression stat

We next discuss the structure of th~ evaluator.

I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
.I

The description here emphasizes the conceptual organization

of the evaluator rather than a precise and detailed irrfle-

rrenta tion. we make extensive use of data and frocedural

abstraction.

- 7 -

----------------------------------,
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Fig. 4. Samfle proqrall' and. syntax tree

read (A,B);
!! A>B

.!l!i.D MAX:= A
!i.l.U M AX : = B
.,i· ... _ ...
write (l'!AX)

1 proqrarr

I
2 corrpound-statenent

~------3 read (A, E) corrpound-statenent 4

/.~
5 if-statell'ent vrite(MAX) 8 ______ , ______

A>E MAX:=A MAX:=B
6 1

L-- -----------------

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The symbolic evaluator is a li'Ultipass alqorithrr, each fass

beinq a recursive traversal of the syntax-tree. When a node

is visited at each pass, the evaluator performs actions

which depend on the statements described by that node.

Each node N of the syntax tree has a number of attributes:

• U~, which indicates the syntactic construct repre­

sented by the node (coupound-staterre·nt, while-state-

rrent, etc.) ;

• l!ll!erite~ !lD.!iiQ.!)!Ile!Jj;, which represents the syrrbolic

environments inherited from the statenents that in

some computations are executed before the construct

represented by N;

- 8 -

• §I!l!llllil§!l ~!l!A~S!!lll!!!!!• which represents the sym­

bolic environments which hold after the execution of

the construct represented ty H.

To specify these attributes, the record notation N.type,

N.inh and N.syn will be used in the paper. In an irrplernen­

tation, each node N might be accessible through a pointer P.

Similarly, P.inh (P.syn) can te a pointer to the inherited

(synthesized) environment and assignment ·of envircnrrents can

be implemented as pointer assignments.

An environment is represented by a set of pairs; the ele-

ments of a pair are a

I~D!) and a table of

boolean expression (called a £QD§1-

program varia-bles and their symbolic

values. The constraint specifies the condition ULder which

a particular control_path is executed and the table contains

symbolic expressions for all the variables assigned along

that path. The environment contains this information about

all control paths thus far examined. A constrair.t that is

identically false indicates that the associated path cannot

be traversed in any computation; a true constraint, on the

other hand, indicates that the path is always traversed (for

exan·ple, the first statement of a progran usually has a true

constraint). Finally, an environment that is empty indicates

that nothing has been computed. After each pass is exe­

cuted, the synthesized environment for the root of the tree

represents the result of symbolic execution of a r.unber of

program control paths.

- 9 -

The following procedure,

execution by a rrultiple scan of the tree.

ll~S<!S.l!U multipass;
.!!!i: .ill nodes N ~

N. inh <- empty
!!.9.&
1!! B be the root of the syntax tree;

B.inh <- {(T,empty)};

performs syrrbolic

!hi!! the user requests a new pass gg £~1! pass(B) gg
!!lS rrul tipass

Procedure E~§§ which performs the actual scanning of the

tree, produces the result of each pass for the user.

ll~!!£!2.l!I! pass(E:node);
!!!! s be R's son;
s.inh <- R.inhUS.inh;
S<!ll process. (S) ; {symbolically execute the staterr<S.r.ts

which derive frore s using s.inh as the inherited environn:ent};
Jl.syn <- s~syn;

display R.syn to the user;
R.inh <- empty; s.syn <- eit·pty

{These assignments are in preparation for the next pass}

Procedure .EIQ£!§! calls on a specialized procedure depending

on the statement type.

E~2£iS~! process(N:node);
£~.§! N.type .9!

corepound-statement: s.;~ll compound-statereent(N);
if-statement: cal! if-statement (N) ;
while-statement: fill while-statement {N) ;
assignment: ~!! assignment-:-statemer.t{N) ;
read-statement: £§!! read-statement(N);
vrite-stateitent: ~!! vrite-statemert(N)

!US<
!!)g process

- 10 -

The actual processing of statements is performed by the spe­

cialized procedures of which there is one for each statenent

(node) type. 7he following procedures give the flavor of

these procedures. It is this set of procedures th·at differs

when a different language is to be treated.

J<I.Q!<§Al!S! conpound-stateroent fCS:node);
ln S1, s2 be the left and right sons of cs respectively;
S1.inh <- CS.inh Us1.inh;
£All process (51);
s2. inh <- S1.synU S2.inh;
S!ll process (52);
cs.syn <- S2.syn;
C5.inh <- empty; 51.syn <- empty; 52.syn <- ero.pty

~!H1 compound-stateroent

J<I.QS~.l!I~ if-statement (IS:node) ;
~1 B be the expression which appears in the condition
let 51, 52 be the_ nodes corresponding to the true and the

false branch·, respectively;
S1.inh <- combine· (IS.inh,E) US1.inh;
S2.inh <- corobine (IS.inh,ng1 !) U S2.inh;

(function combine is described telov}
SAll process (51);
£All process (52);
I5.syn <- S1.synUS2.syn;
I5.inh <- empty; 51.syn <- empty; S2.syn <- enpty

~IH1 if-statement

All inherited attributes are initialized to empty to indi-

cate that nothing has been evaluated yet. During each pass

all the alternative branches of condition statenents are

symbolically executed. Therefore, one single pass performs

a symbolic execution of all paths if the prograro is loop

free.

- 11 -

.J2!.Q£~!!!!U while-statement (IIS:.node) ;
!it E be the e~pression which appears in the condition;
!!! s be the son of liS corresponding to the loop body;
s.inh <- combine(liS.inh,E)US.inh;
s;illl process (S); ·
ws.syn <- combine(WS.inh,~.Q! E)
liS.inh <- s.syn; s.syn <- empty

i!l.!! while-statenent

In a while-statement node, liS, ve store the effect of going

through the loop one more time in liS.inh; IIS.syn is for the

case when the· condition is false and the loop is not iter-

a ted. Thus after the first pass, IIS.syn carries the envi-

ronroent indicating no loop e~ecutions at all.

the environment for exactly one loop iteration •

.El:.QS<i!!YJ;~ assignment-statement (AS:node) ;
AS.syn <- AS.inh;
I.Q~ ~s;h pair in is.syn ~.Q

IIS.inh holds

i! there is an entr.y in pair.table for the
variable .beinq· assigned

!~!l update its symbolic value
JlS! create ar. entry for the variable and

initialize its .symbolic value
fi
.9.9.&
AS.inh <- errpty

!ill.!! assignment-statement

The above procedures are for typical staterrent types. one

other statement deserves mention: the read-staterrent. The

reading of a variable can be treated just like an assignrrent

to the variable except that the value to be assigned has to

be rranufactured by the systezr. l'or each "read X" statement,

the value assigned will be ~i where i-1 is the rurrber of

tiro,es a value bas been read into X prior to the execution of

this read statement. Thus x1, x2, ••• will be the successive

values assigned to X by successive read statements.

- 12 -

.,

And finally, the function ~g~!in! which has been used in the

above procedures for manipulating constraints is given

below.

!Y!l£!ign combine (l!NV:environment, BXP:expression):environment;
!~ each pair in l!IIY gg

X <- symbolic evaluation of BXP using syntolic .
values of· variables stored in pair.table;

pair.constraint <- pair.constraint s!lS X
.QQl
.uturn (EN V)

!UlS combine

The approach to symbolic EXEcution presented above is meant

to be straightforward and easily-understood. It is not

meant to be efficient and it is not. In this section we.dis-

cuss some important aspects of the above formulation and

some refinements of it that can affect the efficiency of an

iirplen~entation. le alsc:) contrast and COII'pare the different

approaches to symbolic execution.

The first factor which contributes to the efficier:cy of the ·

above approach is the degree of interaction with the sinpli-

fier. In principle, the simplifier can be invoked only

after each pass, in order to discard any pairs in the syn­

thesized environment of the root that have false cor.st-

raints. However, a-considerable reduction of processing time

and storage space in the management of environments can be

- 13 -

gained if the simplifier is called after each titre that

function combine is invoked. We call a fair whose corst-

raint has the value false an l!J!!i.lU!.i!ll!i J<.Ql[l!Ytati.QI• since

the condition that would enable the traversal of the control

path cannot be satisfied. symbolically executing the pro-

gram with such enlironments is wasteful and can l:e avoided

if a simplifier i~ used. The user can also provide this

service interactively if.a powerful sitrflifier is not avail-

able.

A second way to increase the efficiency of the evaluator is

to avoid visiting every node at every pass, as the present

evaluator would do even if processing certain nodes car. be

known not to yield any new informatio:r:. In some cases, the

sytrbolic execution of a pass may assure that synbolically

executing certain nodes in the next pass will not synthesize

any new enviromrents (i.e. the synthesized envircr.nent will

be empty). In particular, if the program does not cor:tain

any loops, every pass aft.er the first will fail to produce

any new information since the synthesized environment of the

root will be empty. This, of course, is the direct result

of the fact that in tbe first pass all the control paths

will have been exarrined.

As given here, the multipass algorithtr can only halt as a

consequence of a user command. This reflects the intrir:si-

- 111 -

cally non-terrrinating process of symbolically executing pro­

qrans in qeneral. It is reasonable, however, to try to

automatically stop the process if it can be guranteed that

more passes will not produce any new inforrration. This

would ha.ppen after all program paths have been examined.

Althouqh in general this condition cannot be expected to

occur, it will occur for programs without loops (after one

pass) and for proqrams with only indexed loops. In other

words, the process is indeed terminating for programs wbich

have only a finite nurrber of.control ~atbs.

This can, in fact, be considered to be a special case of the

qeneral problem which we · call I~DjJD! £2ni]1s!iS~§· One

could imagine cases where one more pass would produce new

·inforrration, but not for all control .t=aths. That is, in

qeneral, one would like to avoid processing those control

paths for which ·no new information .will result. As a spe­

cial case, this would avoid an entire pass once all paths

have been eihausted.

To accomplish this, we could use a qlobal variable ACTIVE,

as well as a boolean-valued attribute active at each node.

The purpose of a node's ·active attribute is to indicate

whether further processinq of the node should be attempted

(true value) or not (false value). 'Ihe purpose of the glo­

bal ACTIVE is to mark the nodes• active attributes cor-

- 15 -

rectly. Procedure ~!Q£!§§ is modified to test a node's

active attribute and "process" the node only if it is

active. Before the first pass, multipass would initialize

all active attributes to true and the global ACTIVE to

.false. During each pass, after the synthesized .enviromrent

of a node is computed, the current value of ACTIVE is

assiqned to the node's active attribute. Just after the

call to procedure process in procedure while-statereent,

ACTIVE is set to true if s.syn is not empty. The descen­

dants of a while node are also marked a~ active if the node

is so marked~

set to fals~.

'[o start any pass after the first, ACTIVE is

A further optimization can he effected in the way the des­

cendants of a while node are marked active. The straight­

forward way is to sin:ply rescan all such nodes and 1rark

them. A less inefficient way is to have a global variable

GO. The decision whether to process a node N is now (GC 2!:

active).. During a pass, whenever an active while node is

encountered, GC is set to true. This will ensure that the

node's children will be processed even if they are ~rarked

inactive. ie therefore do not need to rescan the node's

children sireply to mark them. GC is initialized to false at

the beginning of every pass.

- 16 -

Further refinements of the approach are possible at:d in some

cases desirable. IE have treated the table corr,ponent of

environments as an abstract object into which objects can be

inserted and from which objects can be retrieved. The par­

ticular representation chosen can ,affect the perforrrance of

the system. DISSICT (3) uses a linear list of variables

ordered on the instruction counter. ll better approach is to

use lexicographic ordering ,of variables to speed up the

search,. The reason (3) uses the instruction counter order-

inq is because of arrays. le propose to use the instruction

counter ordering only for the array elements within each

array entry. 'fh,at is, the array name is used to find a

location in a lexicographically oredered table; this loca­

tion holds a pointer to a list of array elements ordered on

the instruction counter.

Another important aspect of any symbolic execution systen is

how it treats loops. lie have decided to exan.ir.e loops

through multiple passes. Cheatham et al (5) have the very

interesting approach of deriving a recursive equation which

describes the effect of the loop. No iteration is necessary

in their scheme. The approach is not applicable in general

but they claim that practical programs are handled ade­

guately.

- 17 -

Another refinement possible with respec.t to loops has to do

with the application of symbolic exection to error detec-

tion. In particular, assume an inherited env ircrment of a

loop node which has the constraint C1 is used to execute the

node and an environment is synthesized with

If C2 implies C1, it is guaranteed that the

constraint c2.

loop will not

terminate. Yhis information would be valuable to the pro-

grammer and he should he informed of it.

Another error that is easily detected is use of a variable

before it has been assigned. This car. be checked wher. an

attempt is made to search the table fer the value cf a vari­

able and it does not exist. Processing of this environment

should be terminated at this point with an appropriate mes­

sage to the user.

our scheme can also be modified slightly to indicate at the

end of each pass not only the information about the control

paths examined but also what fraction of control paths were

traversed. This information would be useful in deciding

whether to perfcrm another pass.

A final feature that would be useful for a programmer and

can be incorporated into our system is the ability to force

the symbolic execution of certain paths. This could be

accomplished by calling pass, not with the root node, but

- 18 -

the node that marks the beginning of the path to be exa­

mined. The inherited environment of the node nust, of

course, be initialized first and some other minor nodifica­

tions to pass are also necessarJ.

4. FXA!!PLES

In this . section we give three examples of the use of the

symbolic evaluator. 'Ihe first is a program with r.o loops;

the second is a program with tvo loops but no.arrays; the

final example il.lustrates hov arrays may be treated. The

exarrples should help clarify the workings of the evaluator.

Exa!!J!le 1: straightline program.

The table below shows the values.of the attributes for the

nodes of the program tree in Figure 4.

- 19 -

step I node attribute value --
1 I 2
2 I 3
3 I 3
4 I 4
5 I 5
6 I 6
7 I 6
8 I 1
9 I 7
10 I 5

I
11 I 5
12 I 6
13 I 7
1 4 I 8

I
15 I 8

I
16 I 4

I
17 I 4
18 I 5
19 I a
20 I 2

. I
21 I 2
22 I 3
23 I 4
24 I 1

I
26 I . 2

I
I
I
I
I
f
I
I
I
I
I
I
I
I
I
I
1
I
I
I
I
I
I
I
I
I
I
I
I
I
1

inh
inh
syn
inh
inh
inh
syn
in.h
syn
syn

inh
syr.
syn
inh

syn

syn

inh
syn
syn
syn

inh
syn
syn
syn

syn

I
I
I
I
I

{ {'1', errpty)l
n

{('I,[A: a 1,B: b 1)) }
" ..

I { (a1>b1,[A:a 1,B:b1])}
1 {(a1>t1,[A:a1,B:b1,1!AX:a1])}
I { (a1,>b1,[A:a1, E:b1)) }
I {(a1-.>b1,[A:a1,B:b1,!!AX:I:l1))}
I {(a1>b1,[A:a1,B:t1,11AX:a1]),

·I (a1-.>t1,[A:a1,E:b1 ,I!AX:b1]) }
1 enpty
1 enpt y

·I enpty
I {(a1>t1,[A:a1,B:b1,!!AX:a1]),
I (a1-.>b1,[A:a1,B:b1,MAX:b1])}
1 {(a1>b1,[&:a 1,B:b1,1'1AX:a1]),
I (ah>b1;[A:a1,E:b1,!1AX:b1))}
I ((a1>b1,[A:a1,B:b1,1!AX:a1J),
I (ah>b1,[A:a1,E:b1,!!AX:b1])}
I e1q:ty
I empty
1 errpty
I ((a1>b1,[A:a1,B:t1,!!AX:a1)),
I (a1-.>b1,[A:a1,E:b1,!!.AX:b1)I}
I empty
I emt:t·y
1 erepty
I ((a 1>b 1, [A: a 1 , B: b 1 ,I! AX: a 1]) ,
I (a1-.>b1,[A:a1,E:b1,1!AX:b1])}
I enpty

At the end of the pass the values of attr.ibutes at all nodes

except the root are errpty.

The output produced covers all control· faths. It indicates

that the program result depends on the relationship of the

values read for A and B.

- 20 -

The following prograro and its syntax tree show the behavior

of the system on programs· with loops.

I:=O;
read (X);
~i.l!i x,=o
.!}.Q I:=I+1;

read (X)
od· --.a
vhi.!!! I>O
do write (I) ;

I:=I-1

1 prog

I
2 cs

~~
3 I:=O CS 4

5 rea~~s 6

~~
7 iS WS 11

/""- /~
X,=O e"cs I>O CS 12

·/~ /~
I:=lf1 read(X) vrite(I) I:=I-1

9 10 13 14

- 21 -

step I node attribute value ---
0 I 1 I inh ((T,elfpty)}
1 I 2 I inh R

2 I 3 I inh H

3 I 3 I syn { (T ,[I: 0])}
4 I 3 I inh erorty
5 I 4. I inh f (T,[I:O])}
6 I 5 I inh ..
7 I 5 I syn { (T,[I:O ,X:x1]) l
8 I 5 I inh elfJ?ty
9 I 6 I inh (('f, [I: 0, X: x 1]) }
10 I 7 I inh ..
11 I 8 I in h. ((x1 ~=O, [I: 0, X: x1]) }
12 I 9 I inh II

13 I 9 I syn ((xh=O,[I:1,X:x1])}
14 I 9 I inh · eiTJ:tY
15 I 10 I inh ((xh=O,[I:1,X:x1]ll
16 I 10 I syn ((x1~=0,[I:1,X:x2])}

17 I 10 I inh enrty
18 I 8 I syr. ((x1~=0,[I:1,X:x2])}

19 I 8 I inh errpt y
20 I 9 syn I errpt y
21 I 10 SYI1 I err.pty
22 I 7 syn ' ((x1=0,[I:O,x:x1])
23 I 7 inh I ((x1~=0,[I:1,X:x2])}

24 I 8 syn I enpt y
25 I 11 inh I [(t1=0,[I:O,X:x1))l.
26 I 12 inh I {(O>O,[I:O,X:x1])} = eropty
27 I 13 inh I ei!!.J:ty
28 I , 13 syn l enrty
29 I . 13 inh I EI!!J?ty
30 I 1!1 inh I empty
31 I 14 syn I empty
32 I 14 inh I ereJ?ty
33 I 12 syn I errpt y
3!1 I 12 inh I eroJ?tY
35 I 13 syn I eropty
36 I 14 syn I empty
37 I 11 I syn I {(x1=0,{ I:O, X: X 1)) }
38 I 11 I inh I empty
39 I 12 I syn I empty
40 I 6 I syn I {(x1=0,[I:O,X:x1))}
!11 I 6 I inh I empty
!12 I 7 I syn I eropty
113 I 11 I syn I empty
44 I 4 I syn I {(x1=0,[I:O,X:x1))}
45 I 4 I inh I empty
46 I 5 I syn I eroJ?ty
47 I 6 I syn I empty
48 I q I syn I { (x1=0,[I:O, X:x1)) }
49 I 4 I inh I empty
50 I 5 I syn I ereJ?tY
51 I 6 I syn I eropt y

- 22 -

52 I 2 ' syn ' { (x 1=0 ,[I: 0, X: x 1)) }
53 I 4 I inh I eropty
54 I 5 I syn I eropty
55 I 6 I syn I empty
56 I 1 I syn I { (ll 1"=0, [I: 0, X: X 1)) }
57 I 1 I inh I eropty
58 I 2 I syn I eropt y

At the end of pass 1, the only nonempty attributes are the

synthesized envircnment of node 1 and the inherited environ-

rrent of node 7. 'Ihe latter attribute will cause the next

pass to exercise the next iteration of the loop. 'Ihe reason

that the inherited environment of node 13 is empty is that

in this program it is impossible to have·an execution of the

second loop without an iteration of the first.

In general, all computations that are recorded in the syn­

thesized envirc!Cment of the root node at the end of pass i,

COI'respond to a total of i-1 loop iterations. In this exam­

ple, at the end of pass 1, no iterations of loops are

recorded. However, the inhErited environents of while nodes

retain the inf·ormation necessary for the next pass to exer­

cise the next loop iterations. 'rhus at the end of t:ass 2, we

could have the results of

• zero iteration of the first loop and one iteratioJC

of the second,

• one iteration of the. first loop and zero i teratior

of the seco11d.

- 23 -

But the trace of pass 2 which is sbcvn below, shows that

both of these com~utations are infeasible. 'Ihis is indicated

by the empty evircnment synthEsized for the root node.

- 24 -

step I node t attribute value --
1 I
2 I
3 I
4 I
5 I
6 I
7 I
8 I
9 I
10 '
11
12
13
111
15
16
17
18
19
20
21
22
23 I
24 I
25 I
26 I
27 I
28 I
29 I
30 I
31 I
32 I
33 I
3111
35 I
36 I
37 I
38 I
39 I
40 I
111 I
42 I
113 I
44 I
45 I
116 I
47 I
118 I
119 I
50 I

2
3
II
5
6
7
8
9
9
9
10
10
10
8
8
9
10
7
7
8
11
12
13
13

.13
14
14
14
12
12
13
14
11
11
12
6
6
7
11
II
4

. 5.
6
2
2
3
4
1
1
2

I
I
I
I
I
I
I
I
I
I
I
I
I
I

. I
I
I
I
I
I
I
I
I
I
I
I

. I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

inh
inb
inh
inh
inb
inh
inh
inb
syn
inh
inh
syn
inh
syn
inh
syn
syn
syn
inh
syn
inh
inh
inh

· syn
inh
inh
syn
inh
syn
inh
syn
syn
.syn
inh
syn
syn
inh
syn
syn
syn
inh
syn
syn ·
syn
inh
syn
syn
syn
inh
syn

- 25 -

enpty
enpty
enpty
enpty
enpty

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

{ (x1-.=0 ,[I: 1, X:x2])}
{ cx1-.=0 and x2,=0,[I :1, X:x2]) }

{(x1-.=0
enpty
{(X 1-.=0
{(x1-.=0
e~rpty
{ cxh=O
enpty
e~rpty

e~rpty

r ex 1-.=0
{ (Xh=O
enpty
{(X 1-."'0
{(X 1-.=0

I enpty

n

and x2-.=0,[I:2,X:x2])}

and x2-.=0,[I:2,X:x2])}
and x2-.=0,[I:2,X:x3))}

and x2-.=0,[I:2,X:x3])}

and x2=0,[I:1,X:x2])}
and x2-.=0,[I:2,X:x3])J

and x2=0 ,[I: 1 ,x:x2])}
and x2=0,[I:1,X:x2))}

n

"
1 { (xh=O and x2=0,[I:1,X:x2])}
I· { (xi-.=0 and x2=0,[I:O,X:x2))}
I E!npty
1 {(xh=O and x2=0,[I:O,X:x2l)}
I enpty
1 eu.p.ty
1 enpty
If (x1-.=0 and x2=0 and 1-.>0, •••)1 =empty
1 {(x1-.=0 and x2=0,[I:O,X:x2])}
1 enpty
I enpty
1 enpty
I enpty
1 enpty
I·. e~rpty
1 enpty
1 · enpty
1 e~rpty
1 enpty
1 · enpty
1 enpty
I en.pty
I enpty
1 upty
I enpty

We will not show the trace of pass 3 but by now it should be

clear what will be accomplished. As can be seen, what is

left in the inhErited attributes of while statements will be

carried through the next iteration of the loops. !he final

result of pass 3 is that

root node displayed will

the synthesized environm~nt of the

be { (x1-.=0 and x2=0,[I:O,X:x2])}

which corresponds to one iteration through each locr.

l!,!i!U1!~ ,}: Program with arrays.

This exan:ple is intended to show how arrays may be handled

within our scheme. The basic idea is to have one entry for

the entire array in each tal:le. 'Ibis entry records the

values for all array elements assigned so far. Insertions

and retrievals int.o this entry are har,dled in a last in

first out order to ensure that the most recer,t value

assigned to an array element is retrieved. If array indices

were all constants or known quantities, handling arrays

would require little additional effort. The situation is,

however, more conplicated when, as is usually the case,

array indices are expressions that depend on input values.

In such cases, a reference to, say, A[x1J, is ambiguous in

the sense that any one of the array elenents may be being

referenced (as lonq as the constraint is satisfied.) The

example below shows how these problems are solved in our

scherr,e.

- 26 -

1 1[1]:=0; Xf2]:=0; 1(3):=0;
2 read(I,J):
3 X(I]:=3; I[J]:=5;
4 read(!!);
5 Xf 1]:=X[1'1];
6 Xf II):=X[J);
7 A:=X[II];
8 .H A=O

ll!Ul A:=1
el.§~ A:=-1
H

for this example, we will not show the syntax tree, nor the

entire trace. By nov the reader should be faniliar with

much of the detail. We have numbered the program state~ents

and in the following will show the in:t:ortant step: in the

symbolic execution of the program by referring to these r:uro-

hers.

·After line 2 of the program, the environnent is

I (T ,[I: i 1 ,J: j1, (X[1): 0, X[2]: 0, 1(3 }: 0)])} • The value of the

environment after line 3 bEcomes

I (T ,[I: i 1 ,J: 1 1, (X[1]: 0, :X[2]: 0 ,I[3): 0 I J[i 1] : 3. X[j 1 J: 5)))} •

The next step ehovs that assignments to array elements are

kept in instruction counter order. After line 5 the er.viron-

ment is

((T ,[I: i 1,J: j1,11 :m1, (I[1]: O,:X[2]: O, I[3]:0, X[i 1) :3 ,:X[j1]: 5,X-

[11: X[m1])]) l. Note that the new value for X[1) does not

merely replace the old one but is ·appended to the end of the

array entry. The reason is that the new value of X[1] is not

only invalidating the previously explicitly assigned value

to xr 1 J but is also invalidating the implicitly assigned

- 27 -

values which in this case may be I{i1] andjor I[j1). After

appending the new I[1 J, we may of course delete the old

explicit X[1] from the table.

After line 7, the enviromtent is

f(T,[A:x[m1],I:i1,J:j1, (1[2]:0,1[3]:0,1[i1]:J,X[j1]:5,X(1]:-
i

Ifm1), I[m1]:X[j1]) J) }• !he environment inherited by each

component of the if-statement is the sarre as that inherited

by the entire if-statement except for the constraint. Eval­

uating the constraint shows the tedium of dealing with

arrays. The source of tbe complication is that the const-

raint must be in terms of input variables only. 'Ihus it is

at this time that we need to access the array values (in

last in first out order, of course). The constrairt for the

first component of the if statement is simply A=O which we

now rrost simplify. After much simplification, the cor.st-

raint will be (j1=1 and m1~=1 and m1~=i1). For the else

branch, it will be (j1~=1 or j1=m1 i1=m1).

5. CONCLUSIONS

The syntax directed symbolic evaluation scberoe described in

this paper is not intended to give a comFlete description of

the features a symbolic evaluator should posess, ncr does it

cover all the constructs which can be found in "real" fro-

gramming languages. Rather, its purpose was to give a fla-

- 28 -

vor of what a syntax directed symbolic eva luatcr leaks like

and how evaluation l!trategies can· be· embedded in the scherre.

Additional language constructs could be handled by new

procedures.

in (8) •

For ex.amrle, goto•s can be treated as proposed

The scheme can also l:e enriched and specialized fer differ­

ent applications. source level debugging for sorre classes

of non-statically chec.kable errors can be easily accom­

plished. For example, using uninitialized variables or out

of range array references can be tra~;ped for some computa­

tions.

The symbolic evaluator itself can be seen as a con~;onent of

the set of tools provided for program validation. Its out-

put can either he used to ·syntheSize test data (in such a

case only the constraint .Part is used) or to prove asser­

tions on th.e result of some computations.

One important feature that characterizes the symbolic evalu­

ator proposed here is that it is syntax directed. Syr:tax

directed schemes provide a conceptual framework for design­

ing and understanding a number of tools which can be built

around a programming language in a coherent progran develop­

ment system. Yraditionally, syntax directed scherres have

- 29 -

been proposed for describing translators.

syntax directed forll'ulations of editors {7)

l'lore recently,

and ortirrizers

(8) have also tEen investigated. It is our orinion that a

syntax directed formulation of all the programming tools has

a great advantage over ad-hoc techniques in terms of struc­

ture, reliability, modifiability, and portability.

ACKfiOWtEDGEI'IENTS

The work of l'lehdi Jazayeri vas supported by National Science

Foundation Grant No. - I!CS77-03729. Carlo Ghezzi vas sup­

ported in part by CNR.

- 30 -

lll!l'l!BENCES

(1) R. 1. Yeh, Current trends in programming nethodology,
vol II: Program validation,
Prentice Hall, Englewood-Cliffs,
1977,1-322.

(2) J. c. King, symbolic execution and program testing,
£9!m• !£~, vol.19,no.7,
July 1976,385-394.

(3) w. l!. Howden, Symbolic testing and the DISSECT syrrbolic
evaluationn system,
1]!~ II!D!• ~9!~!!k! !ng., vol.SE-3,r.c.4,
July 1977,266-278.

(4) L. A. Clarke, A system to generate test data and
symbolically execute programs, .
. HU lii!!l!• ~.Qftl!U!]!!.9•• vol.SE-2,r:c.3,
Septerrber 1976, 215-222.

(5) Cheatham, Holloway, and Townley, Symbolic evaluation and
the analysis of programs,
1!!! Trans. ~2f!¥!k!]!!.9•• !91·~!=2.!2•!•
July 1979,402-417.

(6) Abo and Ulln.an, Principles cf comt=iler design,
Addison-wesley ,Readinq,
1977,1-604.

(7) Ghezzi and l'!andrioli, Increreental parsing,
A£~ !QR!!a• vol.1,no.1,
July 1979,58-70.

(8) Babich and Jazayeri, The method of attr ihutes .for data
flow analysi,
!£!! 1D~Im!.!i!<J ,vol.10,no.3,
December 1978,245-264.

- 31 -

