TR-79-024
Department of Computer Science
University of North Carolina

Syntax Lirected Sjmbolic_Execution

Carlo Ghezzi* and M¥ehdil Jazayeri
Cepartment of Computer Science
University cf North Carolina

Chapel Hill, Worth Carolina 27%14,,

Jsk

—— N Sy 08w e W e -

*0On ”sabbétical leave from Istituto di Elettrotecnica ed
- Elettronica, Politecnico di Milano, Milan, ITALY

Syrtax Directed Sywbolic Execution
Abstract

A _syntax directed formulation of synbolic execution is:
presented. The purpose of the presentation is to clarify
the issues involved 1in the inplementation of a syrbelic

execution systern.

Key words and phrases: Syrbolic execution; progranm testing;
programming =systens; syntax directed translation;

software reliability

1. IXTECDUCTIOXN
Program testing is an important area cf softvare engineering
which hés received a great deal cf deserved attention
recently (1). It appeapsAthat some combinatiOh of techni-
ques from the. program verification'and the ©progran testing
areas will e#entuglly emé:ge as the method of <choice for
software validatioﬁ. Cne promising program testing method

is based on symkolic executior {2).

The approach is founded on the asSumption that it is impos-
sible to test a program exhaustively on all possible data.
One can; hovever, rtun the program with symbblic values go:
the input data and.produce sjmbolic_valués for output data.
In executing a ;xogrém syrbolically, cne also derives sym-
bciic expressions for conditioms that ensure the execution
of different paths in the §rogram. The results of sy&boiic
execution may be used in maﬁy apélications including
sonrcé-levei débugginq,'test'aata generatioh, prograk dcbu-
mehtation, procfé of correctness and detection of serartic

errors that cannot be found statically.

Many approaches to symbolic execution'havé been proposed and
. Several sfstems exist that are capable of executing programs
symbolically (3-%5). 'The purpose of this paﬁer is to piovide
a formal description of symbolic executicn. He.present the

top-down development of a symbolic execution syster and

point out the important desigrn decisicrs that disiinguish
the existing approaches from one another. The fpurgoese of
this paper is thus not to present a new testing methcdology
but rather to provide a unified framework for understanding
évmbblic executipr and for comparing the differént techni—

ques. -

The.major cha:acteristic of the formﬁlation of syrkclic exe~
cution presented herxe is that it is syptax directed (6).
Thefe are many reasons for chbosinq this agpgroach. Cne is
that tocls developed this way can be easily modified to work
for different programming languages. This is precisely the
attraction of sfﬁtax.dizécted compilation. Another ard nore
irportant reason is that we believe it is importart to have
a*representationfcf programws which is suitable for different
proqram_.prdcessing tools such as editors, trarslators,
debuggers, q?timizers, verifiers, ete. ‘Syntax trées can
serve as this- unifying representatior if all the tééls are

syntax directed (7-8).

The remainder of thié yapei is organized as follows. 1In the
next sectién we discuss the major components of a symbolic
éxecution syster. In section 3 we give our syntax directed
formulation of symkolic execution. Section 4 contains three
exanfples to shérgen-the ideas presentéd and section 5 cffers

some conclusions based on this work.

2. COMECRENTS CF A SYMBCLIC EXECUTICN SYSTEM

quute 1 111ustrates the major components of a symktolic exe-
cutlon system. We have included the nser as$ a conponent 1n
' order to emphasize the interactive nature of this system.-It
is the user vho will ﬂiréét the courses ofraction to be
taken. In_fabt the forrmulation we present would often not

terrinate if the user were not Présent.

Svmholié evaluator is the component uhiéh scans the progrém
and executes each staﬁement. Ihe size and comple;ity of
expressicﬁs (boclear and otherwise) tgat'the evaluatof ié
reqnire& to evaiuate grov guite rapidly; It is for this
reason that a simplifier rodule would te helpfui. ‘This in
itself could be_as powerful a system as MACSYMA. In the
atsence of such a sophisticated simplifiéz; this is another .
place where the uSer éan te relied ugen to perform the siﬁ-
plificétions. Veur emphasis in this'paper is on the syrbolic

evaluator component. We assume the existence of a simpli-

Pig. 1. Componente of a Syrbolic Execution Systenm

- o o g . i R R R R R

| USER | I SIBPLIFIEFI

i | |
| R 1
| |

NISYMBOLIC o
>;Evaznarca|<

A T W I A -

. . s

P - - AT e e it
b o e S e A e e oy ca e o

fier.

3. SYNTAX DIRECTED FOREULATICN OF SYEEOLIC EXECUTION

In this sectior we present in detéil the workings of the
Symbolic Evaluator. Since the syster is syntax directed we
have:£o~ass§me- a syntax for the language. Figure 2 gives
‘the ﬁrammar that is assumed Ly the_algoriﬁhms which follow.
Sore rules are left unspecifieﬂ for sirplicity. It is
reaily immaterial what these rules are; they do not affect
‘our results. Figure 3 giyes the synték trees corresgonding
"to the first four rroductions of the gragmar.' The ambiguity
of the érammar' does not affect the ‘results preserted hefe;
ve can use any of possibly ﬁany synfax trées-generated for a

program. Figure 4 'gives_an_example progran and its syrtax

Pig. 2. Fragment of a sémsle gramrmar
1 prog -> stgtement,
2 statement -5 statement ; gtatemert
3 state#ent -> if expression ;hgglstatemént

else statement

4 statement -).3g;;§'expression.

do statement od
5 statement -> &séignment~statement
6 statement ~-> read-statement

¥
i
i
{
i
H
§
i
!
§
i
i
}
i
}
§
i
§
i
i
|
i _ .)
t 7 statement ~> write-statement
}

{

1S

i
[
h——'—-"-n—qu-m——.--—n-——.m—-nn-—-—-—_—-—-md

tree.

319. 3. Syntax t:eés_far the exanp1e lanquaqe
‘proql
stat
_compound—statemént
stét;' stat
if~étatement
PN
gxpressign . stat stat
.‘whileés?atemgnt

expression stat

fr o e U S) T A S S o - — " M T ool ot My, sy SO s o ke S a in —
e s s rane s e o —— b W sae S S GO M S M Gl NN e i e s e s e e e . ann e o ol

¥e rext discuss the structure of the evaluator.

3.1 SYNTAX DIEFCTED SYMPOLIC EVALUAIOS

‘The description here emphasizes the corceptual organization
of the evaluator rather than a precise and detailed ingle-
rentation. ¥e make extensive use of data énd grocedural

abstraction.

Fig. 4. sample prograr and .syntax tree
read (A,B) ; '

if B
,then MAX:= A

M o ik ke maln M L el e W WD WA KDMs S NS i S ime e o e EML g WD e v ioves

¥

{

¢

I

{

I

i

i -

N & § 1

) gcite (MAY)

‘ |

i !

i TLproqran

i

i -

1 2 coxpound-staterent

| : _

{ 3 read{A,B) o conpound-statenent 4
i _ :) o _
i £ if-statement write (MAX) 8
{ ' _
f L :

i A>B ' MAY:=A MA&X:=B

1 -6 7

|

1

The symbolic evaluater is é rultipass algorithr, each pass
being a recursive traversal of the éfntathree. When a rode
is visited at each 'pass; the evalnatcr performs actions
which depend oﬁ tﬁe staterents descriked bj that ncde.

Each node K of the syntax't:eé has a rumber of attributes:

¢ type, vhich indicates the synfactic construct repre-
~sented by the node {cbkpouna-statenﬁht, while-state-

rent, etc.);

« ipherited enviropment, which represents the symbolic
environments inherited fromw the statements +that ir
some computations are executed before the construct

represented by N

» synthegized envirgonmwent, wvhich represents the sym-
bolic environments which hold after the execution of

the construct represented ty ¥.

To specify thesé'aﬁt:ibutes, " the record 1ﬁotatich N.type;

N.inh and N.syn will be used in the pape:.: In an ispleren-
‘tation, each node N might.be_accessihlé.thtqugh a peinter P.
' Simiiarly; é{inh (P.syn) can te a pcintér to the inherited
(syhthesizéd) envircnment and*aséighmeht'cf envircnments can

be inplemented as pointer assignments.

nn_environment‘is' represented by a set cf vpairs; the ele-
ments of ‘a pair are a boolean exﬁressicn (called a'ggggg-
raint) and a table of program variabléS'ang their syrbelic
values., The chstraint-sgecifieé the cendition urder which
a partictlar'ccntrolipath is executed ard the table contains
symbolic exprsssinns' for all the-vériables assigred along
that path. The environwent cortains this information about
ail control paths'thns fafl exarined. 2 constréint that is
identiéaliy false'indicatés that +the associated path cannot
be traversed ih ény;cqmputationg_ a ttﬁé c6hstréint, ~on the
other hand, indicates that the path is,always‘traverséd (for
examwple, the firét statemeﬁt of a pr0g:$n usuéily has a true
ccnstraint)..Finally, an enviﬁonment that_isrempty indicates

that rotking has'béen computeé. After each pass is exe~-
cuted, the synthesized envirenrent for iherroot ¢f the tree
represents the result of sjmbalic execution of a rumrber of

program control rpaths.

The ~following préceﬂuré,- rultipass, performs' syrbolic

execution by a multiple scan cf the tree.:

B,gg,ﬁg;g multlpass'
fof all nodes ¥ do
: ‘N.inh <- empty

od; -
let R be the root of the syntax tree;
R.inh <~ {(T,empty)};

e S e

Procedure pass which performs the actual scannirg of the

tree, produces the result of each pass for the user.

Eroggdure pass{F:node) ;
~let S be R's son; :
S.inh <- R.inhUsS.inh;
call process {S); {symtollcally execute the statements

which derive from 5 using S.irh as the inherited enV1tonment},

‘R.8YD <~ S.syn: _
display R.svyn to the USEer;
F.inh <- empty; S.syn <- expty '
{These assignments are in preparatxcn for the next pass}
4 pass

en

Procedure E;,cess calls on a spec1a11zed procedure depending

. s

on the statement type.

procedure process{N:node);
cagse N.type of '
compound- statement' call compuund—statement(ﬂ)
if-statement: call if-statement (N); :
vhile-statement: call while-statemert (¥);
assignmwent: call assignment-statermert(¥);
reaaustatement~ call read-staterent (K) ;
vrite-statement: call urite-statemert (N)
gesag
end process

The actaai processing of statements is perfprmed_hy the spe-
cialiied procedures of.ihich there is ore for eachrétatenent
{node) type. ‘1The 'follosiﬁg ptoéedﬁzes give the flafor of
these grdcédures. If_islthis_setrof prncedﬁtes fhat differs

when a different languége is to be treated.

EZocedure cormpound-statement (CSz:node);
let 51,52 be the left ard right sens of CS resgpectively;
$1.inh <~ CS.inh Us1.inh;
call process (S1); '
S2.inh <~ S1. syn\)sz.znh'
ca; process (S82):
CS.syn <~ S2.syn;
CS.inh <~ empty; Sl.syn <~ empty. S2.8yn <~ empty
end cormpound-statement :
Erocedure 1f-stateuent (Is'node).
let E be the expression which aprears in the condltlon _
let 51, S2 be the nodes correspondlng to the true and the
false tranch, respectxvely,- .
St.inh <- comkine (If.inh,E) U St Jnh'
S2.inh <- cembine (IS '« inh,not ¥) U $2.inh;
{functicn conbine is described btelow}
call process (S1); - :
call process (52);
IS.syn <= S1.5ynU S2.sYn;
: IS.inh <~ empty: 81 syn <= empty;:’ Sz.syn <=~ enpty
end if-staterent
All inherited attrihutés are initialized-to empty to-indiﬁ
cate that nothing has been evaluated yet. puring each fpass
all the alternative tranches of condition statements are
symbelically executed. Therefore, one single pass performs
a symbolic execution of all paths if the program is loop

free.

- 11 -

—.-—-—-—p

let B be the express1on ﬂhlch appears in the condition;
let S be the son of %S corresponding to the loop body:
S.inh <~ combine (¥S. inh, E)L)S inh'

call process {(S); = -

#S.8yn <~ camhlne(ﬁs.lrh,not E)

- HS.inh <~ S.s8Yn; S.syn <- enmpty

end while-statement o ‘

In a vyile*statement.nodgé'HS, Ué store thefeffect of going
throqqh ihe lecop one mwere time'in ﬂs;inh- Hs.syn is for the
case-ghén the - cendxt1on is false and the 1ocp is not iter-
atéd; Thus after the first pass, Rs.syn carries the envi-

ronmrent indicating no loop executions at all, ¥S.inh holds

the environment for exactly one loop iteration.

procedure aséignment-étatement (As:node);
AS.syn <~ AS.ink; : y

for each pa1r in AS. syn go
if there is arn entry in- palr.table fer the
variatle teing assigned :
then update its symbtolic value
glse create an entry for the variable and
‘initialize 1ts syrbkolic value
fi

“E.
hs.lnh <~ enpty
end asslgnment-ctatenent

The above probeduxes are for typ:cal statenent types. One
cther statement deserves ment10n~ the read-statenent.' The
readlnq of a var1able can ke treated just'like an assignment
to the variable except that the value io be aSsiqned-has to
be manufaétursd-ﬁy the syster. For each ®read X® statement,
the value assigned will be xi where i-1 is the rumber of
times a value has £een read intc i priocr fo the execution of

this read statement. Thus x1, x2,... will be the successive

values assiqned to ¥ bty successive read statements.

- 12 =

And finally, the function comtine which has been used in the
above precedﬁres for mranipulating cornstraints is givén

belcw.

fungt;gg combine . (Env'envxrcnment, EXE: expressicr) :ervironment;

for each pair in ERV do
T <= symbolic evaluation of EXP using syrkolic.
values of variables stored in pair.takle;.
pair.constraint <~ pair.constraint apd X
ed; :

_ return {ENV)
end combine :

3.2 ANALYSIS AND BEFINEEENIS

The aprroach to syrkolic execution Vpréseﬁted qhove is meant

to be straightforvard and e&sily-uneerstbod. It is -not

meant to be efficient and it is not. In this sectior uefdis—r
cuss some imporiant,aspegts of the above forwulatibn ‘and

sone refinemeﬁts bf‘it thét can _afféct thé efficiehéy of an’
impleméniation.' .ie_also'conérést and_ccwpate the different

-agproaches to symbolic éxecution.

_Thé_first facto£ §hi§h contributes +to thé efficiercy of thei
atove apptoach is the degree of interaction with the sinpii-
fier. ; In principle, the simglifie:- can be invcked-cnlj
after each pass, in order to 61scard any palrs in the syn-
thééized envlrcnment of the root that have false corst-—
raints. However, a considerable reductzun of processing time

and storaqe space in the management of environmwerts car be

- 13 -

qaiﬁéd. if the simplifier is called after each timé that
function combine is invoked. = We call a péir whose corst-
rainrt has the value false an infeasibls ggggggg;igg, since
the condition that ﬁoula.enable the traversal of thé ccntrol
path cannot be satisfied. sthoIitally executing the pro-
gram. with such engiion@ents is wasteful and can hé'avoided
if a simplifier-ié-ﬁsed. The user can alsé §rciide this
service interactively ifwé,pouerfﬁi simplifiér is not avail-

able.

A second way to'ind:easé the. efficiency of the eva}uator is
to avoid visiting every node at every pass; as the present
evaluator would do e#eg if prpcessin§ certain nodes cgn.be
known not go yield any new informatior. In sowme cases, the
syrbolic execution of a ?ass ray assure ?that-sykbolically
executing certain noées_iﬁ the next éass.will not synthesize
any:new environments (i.é.. the synthesized-envirCnRént will
be em;tf), In ;articular,. if the prOg;am does not contaih
anf’lgops, éﬁery pasé:affer thg first will fail tc groduce
any new‘informatinn since the éynthesized envircﬁméht:qf the
root will bélemgty, Ihis,'of'course, is the direct result
of the fact that in the first pass all the contzol paths

Wwill have been examined.

As given here, the multipass algorithn can only halt as a

consequence of a user comirand. This reflects the intrirsi-

- 14 -

cally‘notherﬁinating prdéess of symhblically executing pro-
grans in geheral. VIt is reasonablé, honéver; to try to
.automatically stop the process if it car - ﬁe gdranteed that
more passes will not produce any nev inforrmatior. This
would happen after all 'progtam paths have been éxamined.
Rlthough in 'géneral'this condition canndtr be expectéd to
occur, it will cccur for programs without loops iafter one
~pass) and for programs with ornly inaexed ;oops. ‘in other
- words, the process is indeedrferminating foﬁ-ptograms which

have only a finite number of control paths.

This can, in fabt, be considered_toibe a special case of the
general problem which we - qall-;gggggggg.gggfgggzigggg One
'éOuld‘imaqine' cases where oﬁe mOre paés would prﬁdnce new
'infornétion; ‘but not for all control ;atﬁsa' That is, in
qene;él,_ one ubulﬂ like to avecid proceséinq: those control
paths forfwhich;no.néu_information ﬁill result. s a épe—_'
cial caSé; .thiS"HOBl§ avoid an entire pass once all paths

have been exhausted.

© To accomplish thi$, :Hé coculd use a'glohal-variahle ACTIVE,
as well as a booleah-va;ued_éttribufe_dctife' at.éaéh'node.f
The purpose of 5 node's active attribute is to indicate
.ghether further processin§ éf thé ndde should " be attempted
(trﬁe'value) or ﬁot {f;lsé'value). The purpose of the glo-

bal ACTIVE is <o mark the nodes'! active attributes cor-

- 15 -

rectly. Procedure Pprocess is modified to test a node's
active attribute and "process" the node ‘only if it 1is
active. Before the first pass, wmultipass would irnitialize
all active attributes to true and the global ACTIVE to
false. ' During each pass, after the Synthésizeﬂ environment
of a node is computed, - the currert value of ACTIVE is
assigned to the nodéﬁs active attriﬁute.'. Just after the
call tao procedure process in procedure uhiie-siatement,
ACTIVE is set *to trué-ifrs.syn is'not 'empty. The descen-~
dants of a while node are alsoc mérkéd-aS'active if the rode
is SO;maﬁked; To start any pass aftef‘fhe first, ACTIVE.is

set tc false.

A furthet optizization can be effected in the way the des-
cendarts of a while node are marked active. ~The straight-
forvard way 1is to simply rescan all such nodes and wark
ther. A 1ess ineff;cieni vay'is to have a giobal variablq
GO. The decisioﬁ-whether to piocesé'a-node N is row {GC or
active). . During a pass, whenever an activeruhile node is
encountered, GC is set to irne, This will ensure that the
‘node's children will be processed even if they are marked
inactive. We therefore dc not need to rescan the node's
childfén siwply to matt.them. G0 is initialized tc false at

the beginning of every pass.

- 16 =

Further refinements of the approach are possible”aré in some
cases desirable, Re héve treated. the table component 6f
environments as an abstract objectrinto.which objects car be
inserted and from which ohjeéts_can he'retrieved. The par=-
ticular :epzeseniétion chosen can affect the pe;fcrménce'of
the sjstem.; DISSECT (3) ﬁses a linear _iist of variables
ordered on the instructidn-counteﬁ. .A hette:‘apprdach is to
use laxicoéraéhic otﬁeriﬁg of vafiahlés to speed up the
search. The reason (3) uses the.inStruction counter order~
inq is because of arrays. ¥We propoéé to use thefipst:uction
counter ofdering cnly for the atfay eleménts withir each
array entry. 'Tﬁat is, the array namg is used to find a
location in a lexiccgraphically oredered'table: this lecca~
tion holds a pointer £d_a 1ist of array elements ordered om

the instruction ccunter.

Another impbrtant aspectiof any syﬁholic'execution syété# is’
how it_tfééts lobps, fe have decideﬁr_té-éxanine 'lcops
thrpuqh muitiple ﬁaééeé;' 'Cheatﬁam et ‘al (5) have the very
intéresting.apfroaCh'qf;deriving; a reécursive equation which
describes the effect:offthe 1oop. uo'iteraiian is ﬂécessafy
in théir scheme. ‘The apptoa;h is nct_applicablé ir general
but tﬁéy claim rthat practical .ptograms areﬂhandied Ade-

quately.

Another refinement possible with respect to loops has to do
with the application of symbolic execticn to error detec-
“tion. In particular, . assumre an inheritéd;envircnnent cf a
loop node which has the conétraint C1 is used to execufe the
‘node aﬁd_an environment is synthesized with constraint c2.
If €2 implies ¢4, it is guafanteeﬂ that the 1loop will not
terﬁihate, ~ This informaticn would be valuable to the'pr§-

granmer and he should be -informed of it.

Another error that is eaSily detected is use .of a variable
befere it lhas heen assigned. This «car be checked. wher an
attergpt is made to searéh tke table qu the;value ¢t a vari~-
able and it does not exist. Processing.of this environment
should be terminateﬁ ét this' point with an appropriate mes~

sage to the user.

Cur scheme can éiso be modified sli@ﬁtly tc indicate at the
end of e&ch pass.not dﬁlf' the information about the control
paths examined but also ﬂﬁét fraction cf_éontrol raths vere
traversed. This -iﬁformétion would be useful ir d§ciaing

whether to perferm another pass.

A final feature that would be useful for a ptOgramwer and
can be incorporated into our system is the ability to force
the symbolic execution of cértain'paths. This covld be

_agtomplished by'calling pass, not with the root node,. but

- 18 -

the node that marks the beginning of the path to be exa-
rined. The inhérited environment of the - node nust, of
course;. be initialized first and some cther minor nodifica-~

tions to pass are alsc necessary.

n;'_zxanpxns_
Infthis_lsection ue-gi#e; ihree exampiés_'of the'use of the
_symhoiic'évaluato:,__ The first is a prégrA& uith'no locEs;
the sécond is a program with tté laops but Apo,arrajs; the
final gxaﬁple illﬁsfr&te# - how atrays'ﬁay be treated. Tﬁe

exarples should help'élarifj the workings of the evaluator.

Example 1: straightline program.
The table below chous the values of the attributes for the
nodes of the'ﬁroqram tree_in figure 4,

.

- 19 =-

step | node | attribut
1 2 | inh
2 1t 3 i inh
3 1 3 | syn
4 | iy { inh
5 | 5 { inhk
6 | 6 i ink
7 4+ 6. 1 syn
8 § 7 1 ink
9 3 7 | syn
MM 5 I syn
} i
1Tt 5 i inh
12 | & } syn
134 7 i syn
14 § 8 i inh
i { '
15y 8 1 syn
! |
16 § 4 H syn
o | i -
17§ 4 I | - inh
18 § 5 ! syn
19 § 8 { syn
20 { 2 i syn
'! |
21y 2 i inh -
22 1 3 1 syn
23 3§ u § syn
28 | 1 | syn
L i ‘
26 | -2 . H syn

At the end of the pass the

except the root are emgpty.

The cutgput pfodtced coVers'all control - paths.

that the proéram

. values read for & and BE.

Exapple 2: Prograrm

e

¥ith loops.

!
i
|
i
1
i
|
i
f
]
i
|
i
|
1
!
i
]
i
|
!
i
]
i
i
i
]
i
t
|
1
i

result depends on the

f(T,expty)}
n
f{1.[A:a1,B:b1])}
#

n
{{ai>b1,[Aza1,Bzb11}}
f{a1>t1,[Az21,B:b1,MAX:al1)}}

-~ f{at1-~>b1,[A:a1,Ezb1])}

“{(a1->b1,[A:a1,B:sb1,MAX:D1])}
f(at>bt,{Azal,Bzb1,MaXza1]),
{a1->b1,[A: a1 B: b1,Hax b1})}
enpty
enpty.
enpty
{{at>k1,[A:a1,B:b?,HAXz2a1]),
(al=>b1,[A:za1,B:b1,8AX:b1]}}
{(at>b1,[2:a1,B:b1,H8X:a1]),
(a1->b1,[A: a1 Ezb1 JHAX:BI]}
{(a1>b1,[Azal, B h1,HAX atly,
{al->b1,[Az a! Ezbh1,HAX:b1 1)}
engpty

exmpty

expty

f{at>b1,[A: a1 Bz b1,HAX a1}),
{at1->b1,[A: a? B:b1,43X:01))}
enpty

erpty

- enmpty

[{a1>h1,{a at1,85b1,HAx:21),
(a1=>b1,[Azal,EzbT,MAX:b1]))
erpty |

values of attributes at all nodes

Tt indicates

relationship of the

The follewing program and jits syntax tree show the behavior

of the system on programs with loops.

I:=0;

read (X):.
%hile X~=0
‘4o Y:=141;
read {X)

- |~

?;g I>0
write (I):
Is=I-1

B

0.
=¥

1 prég

/\

CS 4

5 reagj::\\\\\h

”’,,»f”

1 \\\\\E

1-—1+1
9

\

: ns 11
1>o ¢s 12

read(X) write (1)
10

/ >

13

step | node { . attribute | value

W . A o e SR A AN o AT T S A A Ty i S A A VR A . D e A A P A R e D AR GRS L R T S W ke L W A

0 1 i ~inh | {tT expty)}

t 4 2 i inh i _

2 1 3 | inh 1 "

3 ¢ 3 i sYn 1 (I, [I:01}

g § 3 i inh I enxgty

5 1 4. 1 inh i (T,[1:00)}

6 ¢ 5 1 inh i . . "

7 45 | sm | ((1,[130,X:x1])}

a. 3 5 i ink { enpty .

9 t & 1 inh | f{T,[31: 0 X: x13)}
101 7 H inh’ |

1] 8 } "~ inh { {{x1-= 0 [I 0,Xsx1hH}
12 1 9 i inh 1

131 9 1 syn- { {(x1~~0 [I=21,X:x11)1}
14 3y 9 i - ink | engpty

151 10} ~ inhk | ({x1-=0,[1:1, X2 x1]n
i6§ 10 - sSYNn 1 {(x1-=0,{X:1,X:x2])}
17 ¢ 10 { inh i enpty

i8¢t 8- { syn I {{(x1-=0,TI:1, x 2N}
19 | 8 4 inh i enpty

20t 9 { syn { enxpty

211 10 11 syn - i Eenpty

22 7 i syn { {11130,[1:0,X:x1])7
23t 7 i inh iof(x1-~=0,71:1,X:x2])}
24 | 8 | syn I enpty

25 | 1% i ink | {(x1=0,[I:0,X%: x1]n :
26°) 12 inh i {40>0,[T:0, X:x1 N} = empty
227 7 13 b inh i empty

28 t, 13 i syn] enpty

29 4 13 1 - inh i enpty

0.4 15 b . ink | empty

31 | 14 | syn | empty

32 ¢ 14 inh { emEpty

33+ 12 i syn’ { empty

34§ 12 i ink | erpty:

5 ¢ 13 } syn | empty

e | 14 I syn | empty

37 ¢ W1 b syn P f{xt= 0,{1 0, x x111}
3¢ 11 H “inh | empty

39 ¢ 12 i syn { empty

40 } 6 E) ‘SyD | {{x1=0,{1:0, X: x1Dh¥
41 ¢ 6 ! inh | empty: -

42 § 7 i sSYyn | empty

43 1 11 { syn . | empty

g | 4 i syn | {¢{x1=0,{1I:0, X°x1])}
45 ¢ i ink | expty

46 | 5 i syn | expty

471 6 - syn’ | enxpty -

4g § 4 P syn 1 {{x1=0,[T1:0,X: x?])}
49 §{ 4 i inh | empty

50°f 5 i syn] ewpty

514 6 } sSyn] enpty

- 2D -

52 ¢ 2 i syn b {(x1=0,[1:0,X:x1))}
53§ 4 i inh { emrpty

54 t 5 | syn | empty

55 1 6 ! syn | enpty _

56 | 1 | syn I {((x1=0,[T1:0,X:x1}}}
57§ 1 | inh | empty

58 | 2 I syn | enpty

At the end éf pasé'1, the only nonerpty attributES'are the
svnthesizéd envircnment of néde 1 and the inherited erviron-
went of node 7. Ehé'iatter-attributegnill cause the next
pass to exercise the néxt'iteration'bf the looé;' 1hé reason
‘that the inherited environment of node 13 is empty is that
in this prograc it is impossikle to_havé'an.execufion of the

second loop without an iteration of the first.

In general, all_ccmputatidhs that .are recorded in the syn-
thesized envirorment bf'the root node at the end cf pass i,
correspond to a total of i-1'loop iterations. 1In this exam;
ple, at the end of ﬁass, f, po'.iterationé'of‘ loops are
recorded. Houevér, the inhefited environents of while nodes
- retain the iﬁfotmation ﬁeceésary for thé'nexf'pass to exér—
cise the next 1oopritezations; Thus at'the'end of paéé'z,-we

could have the results of

» zero iteration of the first loob and one iteratior

of tﬁé second,

s one iteration of the first loop arnd zero iteratior

of the second.

- 23 -

But the +trace of pass 2 which is shewn below, shows that
both of these computations are infeasiblé. This is indicated

]

by the empty evitcnment.synthesized for the root ncde.

- 2 -

syn

sSYn

_ind
syn

a syn

syn

inh’

syrn
inh
inh

inh
Lo8syn

‘Anh
inh
‘sYn
inh
‘Syn
inh
syn
sYyn
BYn

- inh

syn

syn

syn
sYyn
syn

syr

" inh
syn
syn
syn
- inh
syn

- 25 =

enpty

'{(x1q—0,[1 1 ¥:x2PYL

{{x1==0" and X220 LI21,%2x2]))
. . "

f (x1-=0
enpty

- {{x1~=0

{(x1-=0
enpty

C{(x1==0

enpty
énpty
enpty
f(x1~=0
{(x1~=0
enpty

{{x1~=0

{{(x1-=0

.. enpty
{ (x1~=0

{{x1~=0

enpty
{ (x1-=0_

enpty
enpty
enxpty

and

and
and

and

‘and

and

and

and

12a=0,{x:2,x:12])}

| x2-=0,(TI:2,%:x2])}

xzqﬁﬂ,[I:Z,X:xS])}
x2~=0,[T:2,X:x3])}

'x2=o,[1:1.x:12]i}

xX2~=0,[1:2,X:x3]}

x2=0,{ 1:1,%X:x2]}
x2=0,[I:1,X:x2])}
144

L

and
and

and

x2=0,{I:1,X:x27}
x2=0,[1:0,X:x27)}

x2=0,[1:0,x:32})}

f(x1~=0 and x2= 0 and 1«)0,...)} =enpty

{(x1-=0 and x2= 0,[1 0,X:x2M}

enpty

- enpty
expty

erpty

- expty
. empty

enpty

“enpty

enpty
enpty

- enpty
enpty

expty .
enpty
enpty
expty

#e will not show the trace of pass 3 but by now it should be
clear vhat will be accomplished. As car te seen, what is
left in the inherited attrihutes of while statements will be
carried throuththe'next iteratioﬁ, of the 10095.- The fimnal
result of pass 3 is that the synthesized envircenmwert of the
root node displaygd‘uili Ee {{(x1-=0 ard 12=d.[1:0,1:12]}}

whic& corvresponds to one itefation through each locr.

Exanple 3: Program with-arrayso' 7

This exazxple is intendédlfo show how arrays _may ke handled
within our schere. Yheﬁbasic.idea is to have one entry for
the entire array in each taltle. ihis entry records the
values for all -array €elewents assigned so far. Insertions
and retrievals inta?this‘ entry are hardled in a last in
first out order to ensure that the mést recent value
assigned to'an'atray elemenf is retrieved. If array indices
were all constants or known guantities, hahd;ing-.arrafs
would require little additiénal effort. The situation is,
however, more -complibateé when, as is usuvally the case,
array indices are expressions thét deperd con inpﬁt'valués.
In such cases, a reference to, say, 2 x1], is ambiquous in
the sense that any‘one pf the array elerments may be_being
referenced {as long as the consttaiht is =satisfied.) The
exarple below shows how these problems are solved in our

schere,

- 7H =

Xf13z=0; X[2]:=0; Xx{3):=D,
read(1,d); _ :
X{I):=3; X{J):=5

read(¥);

Xf11z=X{H8);

Xf¥]:=X{Jd);

A'=XTH}.

Dl NN W N

For this example; ﬁé.ﬁill not show the sjntax tree, nor the
éntite trace;. By now tﬁe rgadef éhould be faniliér_uith
much of the-détﬁii. ﬁé ha§e ﬁumbe:gd thg ﬁrdgram staterents
and in the following iill §how' thé'impértaht steps in the
rsyﬁbblic éxécutibn of the ﬁrogfam by refsrring_io-these :uq-

bters.

"After 1line 2 of. thé .proqram, the environment is
T 11 J=j1, (x[n-a X[2):0,X[3]: a) Di. The value of the
nv1ronment after line 3 tecones -

0 1241,3241, (301].n,x{zj.u.xtajzo,i{n 1:3,X 31125 D}
The next step shoﬁs:thaf aséignments toc array elements are
kept in instruction céunter'oraer. After 1iné 5 the.enﬁiron-

‘nrent is | o o

| u-r,.[nn,a:j*t,a:m,(x{z]':'b'-;x[z}:a,x[a}:ro,_x['n]:3.x[311:5,x=

{1]:X[m1})3}},- 'xoté'tﬁﬁf the new value for (1) ﬂbe# not

merely replace the old dne‘but.iS'EPpeﬁéed to the end of the

array entry. The reason-is £hat:the nev value pf X[1] is not
only inialidatinq the prévionsly'explicitly assigred value

to X[1] but is also invalidating the implicitly assigned

- 27 -

values which in this case may be X{i1)] andsor X[j1)}. After
apperding the new X[1), wve way of course delete the old

explicit X[1] ftcm the table.

After line 7, thé environmént is |

((T,[Azx[m1},1281,3:31,(X(2]:0,3{37:0,%X[i17:3,%X[§1125,X(1)z~
1], X{m1}:X{j1i)})}, Thbe envirorment inherited by'each
component_df the it;Statement is the sare as th&t inherited
bylthe‘entire if-stéteﬁentrexceﬁt for thé.constraint.__Eval-
'uatinq the.conStraint'-éhous 'thé tediu&-of. dealing vwith
arrays. The source of the complication is that the ébnst-
raint wust be in terms of inpot ﬁariahlés only. Thhs it is
at this time that we need to access the'array values {in
last in first ouvt order, of course). The ccenstrairt for fhe
first component of the ii-state&ént_is sirmply A=0 which we
now must simplify; After rmuch simplificatioﬁ, the corst-
raint uill be 1j1;1 and wi+=1 and m1~=i1). For the else

branch, it will be {j1-=1 or j1=m1 it=m1).

5« CORCLUSICHKS .

The—syntﬁx directed symholié evaluatior schere described in
this paper is not intended to give a complete description of
the featares a syrbolic evaluator should posess, ncr does it
cover all the conétructs which can be feund din *real"™ gro-

‘gramring languages. Rather, its purpose was to give a fla-

- 28 =

vor of what a syntax directed syrbolic evaluatcr lcoks like

and how evaluation strategies can be embedded in the schere.

Additional lanquage constructs could be' handled by new
procedures. For examgle, goto's ¢an be treated as propoesed

in (9.

The schewe can alsc‘be- eh;iched-and:specialized fcr differ-
ent aﬁplications.l Sonrce'level debugging for some classes
of non—stétically checkable errors can be eaéily 'accom-_
plishéd. For e:ample,'uéing uninitialized variables or out
of range.array' references can be trapped for some cowputa-

tiors.

The symbolic-evaluéto; itselﬁ can be .seen as & cbm;ohent'of
the set of tools provided for program validaiion._ Its cut-
put can either be useﬁ to ‘synthesize test data (ir 'such a
éase only the cchstfaint part is dsedy 6r to prove asser-

tions on the result of some computations.

One importaﬁt feature that characterizes the symhdlig evalu-
ator proposed here is that it is syrptax directed. Syrtax
directed schemés'provide a conceptual framewofk for design-
ing_and‘understanﬁinq. a number of toclé‘ahich can be built
around a prﬁgramming ianguage in a coherent programr develop-

rent system. iradifibnally, syntax directed schemes have

- 29 -

been proposed for descriting translatoré. More recently,
syntax directed formulations of editors M énd cptirizers
(8) have also'héen'investigated. ;It is our opinicn that a
syntax directed formulation of all the prograﬁming_tools has
‘4 great advantage cvér-ad-hoc- techniques in terms of struc-

ture, reliability, modifiability, and portability.
ACKROWLEDGEMENTS
The work of HMehdi Jazayeti was sﬁpported'hy_uational Science

Foundation Grant No. HMCS77-03729. Carlo Ghezzi was sup-

ported in part bty CHR.

_. g -

RFFERENCES

{1) R. T. Yeh, Current trends in programning methcdolegy,
vol II: Program validatiorn,
Prentice Hall, Enqleuood Cliffs,
1977,1-322.

" {2) J. C. King, Symbolic executlon and program test1ng,
Corm. ACN, vol,19,n0.7,
July 1976, 385~-394,

{3 W. R. Howden, Symbollc testing and the DISSECT syrbholic
evaluvationn systen,

IEEER Trans. Software Png., vol. SE ~3, re. 4,
July 1977,266-278.

{8) L. k., Clarke, & system to generate test data and.
symbolically execute prograns,
- IEEE Irans. Software Eng., vol.SE-2,rc.3,
Septemher 1976, 215-222.

{9} Cheatham, Hcllomay, and chrley, Symhollc evaluation and
the analysis of prograns,

IEEE Irans. Softwage Emg., veol.SEz3S,re.4,
July 1979,4802-417.

{€¢) Aho and Ullmwan, Principles ¢f congller design,
aﬁdlson-ﬂesley,nead1nq,
1977,1-604,

{7} Gh9221 and ®andrioli, Increnental pat31ng,.
ACH TOPLAS, vol. 1,no.1, ,
July 19749,58=-70.

{8) PRabich and Jazayeri, The rethod of - attrlbutes for data
flou analysi,

Decemhe: 1978 2ﬂ5-26u°

- 31 =

