TR 79-009

REDHACH PROGRAM LOGIC MANUAL

by

Frances T. Kerr

University of North Carolina
Chapel Hill
May, 1979

Appendix € to
STHULATIOE OF A REDUCTICN HMACHINWE

TABLE CF CCHTENTS

Chapter ' page
o INTRODOUCTION . c o o o ¢ o « s © » a =« o 2 o s s a o 1
2, MODULE DIVISIOR o &« 2 o o a ©« = «a o« o « » 8 o = = , o U

Module DesScriptions < « = « o © = s s« s 2 = «a o « &

3. EETERNAL DETA STRUCTURES <« o o o o # ¢ o o o o o o o« 9

Structures and AITAYE .« ¢« = o « o o s o s = = « « 10
FIXED BINARY EXTEBRHAL .+ 2 o = © © 5 o v« v o o o o 17
PLOAT BINARY PXTERNAL . o 2 5 o 2 = & s © » o &« « 21
POINTER EXTERHAL o o o © » ¢ 2 s a0 » » © o« @« o« o o 21
FILE EETEBH BL o - - -3 L L] L] - - L4 o L] k-] L] L L] L & 22

u. . PEGCED Ua ES L] L] -] ® - L @ » L] - - L] L3 - L k- L L - - L] 23
50 ALGORITHHS o - - L] L4 - - - L] - o5 k.3 a - - a8 L] L a L] - 56
GETPRIN 586

PRIH » o« o« > - L - - - L o - - L - -') o = L L = & 60
STOBAGE - L - L] L L a5 & L - - L] - L] L) a L] = L - 65

LIST OF TABLES

Table page

1. The Hodules of REDHACH and Their Members . =« o = = « 5

- ii -

LIST OF FIGURES

Figure

1a

The ¥odules of BRLBACH . ¢ o o o

Chapter 1

INTRODUCTION

This manual describes the module division, external data
structures, subroutines, and some of the algorithms used in
REDHACH, a system which simulates a reduction machine. He
assune knowledge of the reduction machine and reduction lan-
guages. Por more information about them, ye refer the

reader to the master’'s thesis, *Simulation of a Reduction

Bachine®,

The program documented in this manual is not a completed
system. It zruns in batch mode and reads a set of user
options that cannot be changed during execution. It gathers

no statistics.

In Chapter 2 ve describe the module division of REDHACH.
In Chapter 3 we list the external data structures used in
REDHACH. Iin Chapter 4 ue list all the internal and exter-
nal procedures and entry points. There are some difficult
sections of c¢ode in REDMACH. In the Chapter 5, we explain

what these sections do.

Throughout this manual, when an internal procedure is
listed, it is enclosed in parentheses. In the module sec-
tion, members are listed in order of their static nesting.

That is, if a list includes

Ry (B, (C))

it means that A is an external procedure, B is internal to

A, and € is internal to B.

REDMACH was written in PL/I and was compiled using the
PL/1 Optimizing Compiler, versidn 1, Release 3.0, PTF 64, at
TUCC, the Triangle Universities Computation Center, under
IBHE 05/360, with HVT, Felease 21.8. The catalogued proce-
dure that executes HEDHACH is stored in

UNC.CS5. F2335.KERRR.REDS.CNTL {REDHACE) .
The contents of this procedure are

//REDHACH PROC OPTICHS=

//STEPY EXEC PGH=REDNACH,REGION=500K,PARN=?/6CPTICONS®
//STEPLIB DD DSH=UNC.CS.F233S.KERR.REDS.LOAD,DISP=SHR
//CRT DD DUHHY

//SYSPRINT DD SISCUT=A
//TRBLES bDp DSH=UNC.CS5.,F233S.KERR.TABLES. DATA,DISP=5HR

//18POT DD DSE=EIHPUT,DISP=SHR

V{4 oD DSN=UNC.CS,.F233S.KERR.MASTER. DATA,DISP=5HR.
The symbolic parameter &CPTICHS in the operand of the key-
- word parameter PARM can be specified by the user as a key-
word parameter and operand (OPTIONS=‘option string®) on his
EXEC card. If he does not specify this parameter, the
default value is null. The PARM operand is passed to the
rain procedure of REDMACH. The OPTIONS field on the user's
BYXBEC card is a symbolic parameter in the parameter PARH,
vhich is passed to the main procedure. Dataset -
UNC.CS.F2335.KERR. REDS.LOAD {REDMACH) contains the REDMACH
load module. Dataset UNC.CS.F233S.KERR.TABLES.DATA contains

the system tables (micro-opcodes and formats, registers, and

constants). This dataset must be unnumbered. IWPUT is the
DD name of the input dataset. The user supplies the dataset
name of his input dataset as a symbolic parameter on his
EXBEC card, Dataset UNC.CS.F233S5.KERR.MASTER.DATA is the
master library of defimitions and microprograms. It is

catenated to the usert®s input dataset.

Chapter 2

HODULE DIVISION

#e use the térm "module® to denote one or more subrout-
ines that together perform a clearly defined function. RED-
MACH is composed of eight modules. They are listed in Table
1 with the external subroutines that belong to each module.
Figure 1 shows the comnections among the modules. Only the
Main Control module can invoke the modules on the level
beneath it. The two utility modules shown on the lovest

level can be accessed by any other module.

[U o e D Jlh R NS SUAR KN AL SWER AN et UGN A b MR QDN MG U s D wa oW N e

TABLE 1

The Hodules of REDEBACH and Their Hembers

Bedule

Hain Control Hodule
Input Hodule

Update List of Ri's
Qutput Hodule

Interpreter Hodule

Storage Hanagenent
Hodule

Symbol Table HNanager

Errtor Message Routine

Brocedures

REDHACH

SETUP, SETOQOPTS

FINDRAS

PRIRTL, PRTNSTS, TALK
BAS, PBRIM, ASSIGN, ARITH,
SERE, COMPARE, POP,
SETREG, INSERT

STOEAGE

HASHSYH

ABEND

T oo womm on e A e G BB g M WD el TN RAKE SRS A e Geh aUS ORI GEEL T G B SR e e 1

Main

hla MM e gpgen e oy
ot A g ahinik

Control
i
i
¥ -7 i T T
| | i ! !
{ ! i] f
et T 4. s I 1 4 T T i 8 r 4]
i i i LI i : |
i Input { | Update |} | Output | | Inter- | | Storage |
i i |} BRA List | | { | preter 1{ | Hanager |
i I i I 1 b i
i 4 & J— 3 L Y 3 A]
g ———— ¥ °
i f] {
! Errox { | Symbol |
{ Routine | | Table i
| { | {
[U 1 2
Pigure 1: The Modules of REDMACH

2.1 MODYLE DESCRIRTIONS

Hain Ccﬁtral Kodule

PUORPOSE: Call vprocedures to execute ¢the inter-

preter system.

MEHMBERS: REDMACH.

Input Hodule

PURPOSE:z

Read initial user options; read programs
to be executed; initialize L array; read
and translate to internal representation
the defined operators and microprograns

- for primitives needed for execution.

HEMBERS:

SETUP, (INIT), (GETOPS, (GETDEF, GETPRIN,
{EXORDER, INSEBT})})., (GETPRCG), {SCANTOK,
(GETCHAR, NEWTOK})}, {GETOPTS), SETOPTS.

Update List of Ba's

PURPCSE:

HENBERS:

Output Hodule
PURPOSE:

HEMBERS:
Interpreter Hodule

PURPCSE:

HEMBERS:

Storage Hanagement

PURPOSE:

MEMBERS:

Find newv Reducible Applications (RA's);
build syntax trees; determine class and
status of new RA's: deterwine top and
height of areas of new and old RA®s.

FIBDRAS, {(PARSE}, (FINDTOP}.

Print the L array.

PRINTL, PRNTSTS, TALK.

Reduce or request storage for all RA's in
1.; compute time available for data move~-

rent.

BAS, (INITRAS), {(RAFINI), ({DHSTAT), PRIM,
{EXSEG, (EXSTHT)), ASSIGH, ERITH, INSERT,
SEND, (ARITHOP), {(BOOLOP), (MINMAX), POP,
COMPARE, (EXCOEP), SETREG.

Hodule

Cancel storage requests when necessary;
perform storage management om 1.

STORAGE, (HALF1, {CANCEL}}), {HALF2),
{(HCVEIT) , (BAFINI).

Error Message Routine

PURPCSE:

MEHBERS:

When any error is encountered, print an

error message and terminate abnormally.

ABEED.

Syrbol Table Hanager

PORPOSE:

MEBEBERS:

Enter symbols and - pumbers in symbol
table; determine symbel table address of

a symbol.

HRASHSYAE, HASHYAL, SEARCH, {SCANTAB),
{IRSERT) .

Chapter 3

EXTERNAL DATA STRUCTURES

This chapter descibes the external data stuctures used by
REDHACH. It includes PL/I structures and arrays, fixed and

flcat binary variables, pointers, and files.

L Array
1 L{%) CTL EXT, /* L ARBAY %/
25 FIXED BIN % SYMBOL TABLE ADDRESS OF S %/
2 ALNW FPIXEL BIN, ,* ABSCLUTE LEVEL HUEBER %/
2 RLE FIXED BIN, ,*% RELATIVE LEVEL WUMBER #*/
2 NEWBOS FIXED BIN, /% CELL'S INDEX IN L AFTER %/
/% STOFAGE MANAGEHENT #/
2 S2 FIXED BIN, /% SYMPOL TABLE ADDRESS OF S' %/
/% (SYHBOL AFTER REDUCTION) %/
2 RLH2 PIXED BIN, ,* RLN APTER REDUCTICH %/
2 STATUS FIXED BIN, /% CELL'S STATUS #/
2 IRSR PIXED BIN, % INSERTION REQUESTS TO #/
/% CELL'S RIGHT %/
2 IRSL FIXED BIN, % INSERTION REQUESTS TO %/
. /% CELL?S LEPT %/
2 SHAPIT FIXED BIN, ,* FLAG IF SYMBOL CAUSES A %/

/% YSNAP® #/

Structure simulates the cells of L. It is indexed from SIZE
to 2*SIZE. Values of S and 52 are symbol table addresses.
$2 is the address of the symbol printed by the output
module: it is the cell®s contents after reduction is com-
plete, that is, after data movement is over. LLY is abso-
lute level number; FLN is relative level number; RLE2 is
relative level number after reduction is complete; IRSL and
IRSR are the number of insertion reguests to the left and
right of a cell; NEWPOS is a cell's index in L after storage
management (BL and BR are not necessary); STATUS shows what
situation a cell is in. Size of L is determined by SIZE

cption.

Used by: ABEND, FINDRAS, INSERT, PRIH, PRINTL, RAS, SEND,
SEYREG SETUP, STORAGE.

Reducible Applications

COUNT FIXED BIN, ,* NUNBER OF SYHBOLS IN RA %/
1 RA BASED(P1), ,* LIST OF RA'S %/
2 OPINED FIXED BIN, ,* INDEX OF OPERATOR IN L %/
2 TOP PIXED BIN, /% BAS TOP IN T #/
2 HT FIXED BIN, ,* HEIGHT OF AREA #/
2 IRSTOT FIXED BIN, /% TOTAL INSERTION REQUESTS %/
2 DAL FIXED BIN, ,* LENGTH OF DATA ECVEHENT %/
2 CLASS FIXED BIN, ,* CLASS OF RE %/
2 MARK(5,2) FIXED BIN, ,* TREE INDICES OF HARKED %/
_ /* EXPRESSICRS %/
2 #SYHS FIXED BIN, ,* NUMBER OF SYMBOLS IN BA %/
2 TREE(COUNT REFER (8SYNS)),

/% SYNTAX TREE %/
3 IND FIXED BIN, /% INDEX OP SYMBOL IN L $%/
3 BRO FPIXED BIN, /% INDEX OF SYEBOL'S BROTHER %/
/% IN TREE %/
3 SON FILFD BIN, ,* INDEX OF SYHBOL'S SON IN %/
/% TREE %/
2 INS_FLAGS {15,COUNT REFER (#SYHS))
BIT (1) UNALIGNED,
/* PLAGS WHERE INSERTICNS %/
, /% WILL OCCUR %/
2 NEXTRA POINTER, /% NEXT RA IN LIST */

Structure holds information about each active Reducible
Application (BA} in 1. When a nev BRA is allocated, its
fields are initialized and its syntax tree is built. Each
node of the tree contains 3 items: the index in L of the
non~empty cell of L it represents, the tree index of its son
{next non-empty cell in L if it has a larger level number
than the node: value is zero if no son exists), and the tree
index of the node®'s brother or father (next non-empty cell
of L with level number less than or egual to the node's
ievel number). '

Used by: ASSIGN, FINDRAS, INSERT, PRIN, RAS, SERD,
SETREG, S5TORAGE.

Microprograms for Primitives

(N1, /% NUNBER OF DESTINATIONS #/
N2, /* NUMBER OF FRAGNENTS %/
N3) FIYED BIN, /* NUMBER OF INSTRUCTION */
/% BYTES %/
1 PRINITIVE BASEL (P6) , /% PRIMITIVE NICROPROGEAN */
2 #DESTS FIXED BIN, /% NUMBER OF DESTINATIONS %/
2 DEST (N1 REPER (#DESTS),2) /% DESTINATION LIST %/
FIXED BIN,
2 #FRAGS FIXED BIN, /% NUMBER OF FRAGHENTS %/
2 PRAG(N2 REFER{#FRAGS),2) /* FRAGMENT LIST %/
FIXED BIN,
2 LENTOT FIXED BIN, /% NOMBER OF INSTUCTION */
/% BYTES #/
2 STHT (N3 REFER (LENTCT)) /% INSTRUCTION ARRAY %/
PIXED BIN,
2 STARTIRS FIXED BIN, /% FRAGMEKT # OF PIRST */

/% INSERT INSTRUCTION %/

Each allocation contains a microprogram for a primitive
operator. Destination expression list (DEST) contains one
entry for each destination expression. Each destination
contains 2 items: a 0 {(for S) or 1 (for E) and RLE. Frag~
ment list (FRAG) contains one entry for each fragment. Each
fragrment contains 2 items: a destination number (index in
destination list) and a starting instruction counter value.
The instruction arvay (STHT) consists of all the micropro-
gram bytes, and is sorted in execution order. The next
instruction is located by incrementing an instruction coun-
“ter the length of the last instruction executed. Each copy
is allocated and initialized when primitives are read from
the input file. The address of a copy is stored as a PL/I
pointer in the primitive's copy of OPTAB. '

USED BY: ARITH, ASSIGN, COMPARE, INSERT, PRIH,
SEND, SETUP.

- 12 -

Symbol Takle

1 SYHTAB(*) CTL ERXT, /% SYHBBOL TABLE %/
2 5YH CHAR(8) , /% SYEBOL */
2 USES FIXED BIN, /% BU¥BER OF OCCURRERCES QOF %/
/% SYMBCL %/
2 NUMERIC BEIT {1} , /¥ FLAG IP SYHMBOL XIS A NUMBER ¥/
2 VAL FLOAT BIN, /% NUBERIC VALUE OF ATOH #*/
2 OPPTR POINTER, /% PCINTER TQ OPERATOR TABLE */
All program symbols are stored in this table. Table is

indexed {0:TABSIZE+TY. Constants are read from a file
{TABLES}, soc they can be changed without recompiling any
programs. BAddresses of symbols are determined by hashing.

OUsed by: ARITH, ASSIGHN, COMPARE, FINDRAS, HASHSYH, INSERT,
PRINW, PRINTL, RAS, SENWD, SETUP, STORAGE.

Defined Operator Table

N FIXED BIN, /* LENGTH OF DEFIFITION %/
1 DEFTAB BASED{P5) , /% DEFINITION TABLE #/
2 DEFLEN FIXED BIN, /% LENGTH OF DEFINITICH %/
2 DEFINITION (N REFER(DEFLEN)),
3s FIXFD BIN, /% SYMBOL %/
3 RLN FIXED BIN, /% RELATIVE LEVEL NUMBER */
3 SNAPIT PIXED BIN, /% FLAG FOR SNAPSHOTS %/

Table contains definitions of all user-defined operators.
The length of the definition is followed by the definition
in internal representation.

Used by: RAS, SETOP,

Operator Table

1 OPTAB BASED{PY) ,
2 CLASS FIXED BIN,
2 MPBITS FIX®D BIN,
2 HPCALLED BIT(1),
2 DEFPTR POINTER,

2 NEXTOP POINTER,

TABLE OF OPEBRATORS ¥/

CLASS QF OPERATOR #*/

BUMBER OF HICROPROGRAM BITS */
FOR PRIMITIVES, DEFINRITION */
LENGTH FOR DEFINED OPERATORS %/
FLAG IF MICROPROGRAM HAS */
ALREADY BEEN CALLED %/

POINTER TO DEFPINITION TABLE */
OB PRIMITIVE HICROPROGHREHM %=/
NEXT OPERATOR IN LIST =/

Each operator (primitive and defined) owns one copy. Ccon~
tains information about the operator and a pointer to its

definition or microprogram.

Used by: FINDRAS, ¥AS, SETUP.

- 94 -

Hessages

1 MESSAGE CTL BXT, /% MESSAGES AND HESSAGE %/
/% CONTROLS */
2 HSTART({2) PIXED BIN, /% STARTING TREE IBDEX OF %/
/% MESSAGE #/

2 NEWND({2) PIXED BIK, ,* LAST TREE INDEX OF KESSAGE %/
2 MESS#(2) FPIXED BIN, ,* INDEX OF MESSAGE %/
2 MESS (2,4, §5YKS) /* MESSAGES #/
FLOAT BIN,
/% INDICES FOR INSTRUCTIONS */
/* REFERENCING MESSAGES: %/
2 ué FIXED BIN, % IHDEX OF HESSAGE REFEREHCED %/
2 PARHE PIXED BIN, ,/* OPEBAND EUMBER OF MESSAGE #/
/% COMBONENT REFERENCED */
2 HIWD FINED BIN, ,* INDEX OF MESSAGE IN MESSAGE %/
= /% CONTROL (1 OR 2) */
2 BESSFLAG(2,8SYHS) %% FLAG IF MESSAGE WAS SENT #/
BIT{1) UNALIGNED,
2 SFLAG(3) BIT(1 ., /% FLAG IF CCHPARISCN USED %/
/% MESSAGES %/
2 HFLAG(3) BIT(1), /% FPLAG IF CCMPARISOH HAS 2/
_ /% SINPLE &/
2 SHESS(2,0:4) /% MESSAGE COMPONENTS THAT ARE #*/
BIT (1), /% SYMBOL TABLE ADDRESSES &/

Allocated before reducing an RA tc keep track of two rounds
of messages {necessary because a nev message may be started
before the last can be erased). Kessages are stored in the
array MESS; its first dimension is to keep two rounds of
messages; its second corresponds to the component number of
the four possible message components; its third corresponds
to the indices of the messages themselves ~ the third dimen-
sion indices of messages sent by an SI instruction are the
same as the tree indices of the target expression which sent
themn:. these indices are stored in MSTART and AEND. The sin-
gle result of a component of an SC is stored in the entire
cross section corresponding to the component number; MSTART
and MENWND for anm SC are 1. EESS# contains the indices of up
to two rounds of messages; e.¢9., the messages from sendi
have HESS#=i., HESSFLAG indicates whether a cell sent a mes-
sage or not. HN#, HIND and PARN# refer to a current instruc-
tion referencing a message that has already besen sent.

‘Used by: ABITH, ASSIGH, COMPARE, POP, PRIN, SEND

- 15 =

Register Table

REGTAB {¥) CHAR (6) CTL EXT, /% TABLE OF REGISTERS */

Table of registers. Each element is the mremonic name of a
register amd is initialized from system tables file
{TABLES}. Indexed {WOREG:z1).

Used bys ARITH, ASSIGN, COMPARE, INSERT, PRIN, SEND,
SETREG, SETUP

Hicro Opcode Table

1 MICRTAB(*) CTL EXT, /* TABLE OF MICRO-OPCCDES %/
2 HMNEM CHAR(4), /% MNEMONIC OPCODE #/
2 LEN FIZED BIN, /* INSTRUCTION LENGTH */
2 R FIXED BIN, /* REGISTER POSITIONS IN %/

/% INSTRUCTION ¥*/

Table of micro opcodes, Initialized from system tables file
(TABLES) - R indicates what fields in an instruction with
this opcode contain register values.

Used by: ARITH, ASSIGN, COMPARE, INSERT, PRIN, SEND, SETUP

Program List

PROG {10} FIXED BIN EXT, /% LIST OF USER PROGRAHNS ¥/

List of indices in L of first symbol of each user progran
being executed. ¥ot used in current version; will be used
to gather statistics.

Used by: SETUP, STORAGE

- 16 -

3.2 EZXED BINARY EXTERNAL

Status variables:

EMPTY

NOTRA

REQUEST

REDUCE

CANCLED

Ceil is empty; also is symbol table address of
blank.

Used dby: ARITH, FIREBQS, INSERT, PRIH, BAS, SEND,
SETREG, SETUP, STORAGE.
Cell is not in an RA.

Used by: FINDEAS, PRINTL, RAS, SETUP, STORAGE.

Cell is in RA ready to reganest storage.

Used by: FINDRAS, PRINTL, RAS, SETUP.

Cell is in RR that is ready to be reduced.

Used by: FIEDEAS, PRINTL, FRAS, SETUP.

Cell is in FA whose insertion requesis vwere can-
celed.

Used by: FINDRAS, PRINTL, RAS, SETUP, STORAGE.

bata Movement Status Variables:

EBER

FBER

FBFA

Cell
data

Osed

Cell
data

Used

Cell
data

Used

was
rovement.

by: PRINTL, RAS,
was full before
rovement.
by: PRINTL, RaAS,
was full before
novement.

by: PRINTL, RAS,

empty before data movement,

SETUP.

data movement,

SETUP.

data movement,

SETUP.

full after

empty after

full after

RR Class variables:

ACLASS

BCLASS

CCLASS

DEFCLAS

HETCLAS

Class A: Ph requires no storage management and no
data movement.

gsed by: FINDRAS, RAs, SETUP.

Class B: RA requires data movement but no storage
management.

Used by: FIVNDRAS, RAS, SETUP.

Class C: RA requires both storage management and
data mrovement.

Used by:FINDRAS, FAS, SETUP.

RA's operator is a user-defined operator.

gsed by: FINDEAS, RAS, SETUP.

RA has composite operator and requires meta compo-
sition.

Used by: FINDRAS, RAS, SETUP.

Program Constants:

APPL

DDTOT

PALSE

Symbol table address of application symbol; symbol
and address are initialized from system tables
file {TRBLES).

Used by: FINDRAS, SETUP.

Kumber of ocutput files.

Used by: RECHMACH, SETUP.

Symbol table address of 'F'; initialized from sys-
tem tables file (TABLES).

Used by: SEND, SETUP.

LERL

NESSREG

NOREG

PAREN

POS#

ROOT

SIZE

TABSIZE

,Indeﬁ of

Index of rightmost cell of L array; initialized
from value of SIZE.

Used by: FINDRAS, RAS, SETUP, STORAGE.

first message register; initialized as

NOBEG-1.

Used by: COEPARE, PRIHM, SETUP.

Index that indicates no register for microprogram
instruction register fields; initialized from num-
ber of registers when REGTAB is initialized.

HASHSYH, SETREG,

PRIN, SEWND,

Used by: COMPARE,
SETUP.

initial~-
note that
syntax --

Symbol table address of seguence symbol:
ized from system tables file (TABLES):
name does not correctly match current
this is for historical reasons.

Used by: FIKDEAS, RAS, SETUP.

Index of POS# in REGTAB.

Used by: INSERT, SETUP,

Index of root cell of T.

Used by: FINDRAS, RAS, SETUP, STORAGE.

Humber of cells of L; T is indexed {(ROOT:SIZE~1}:
1 is indexed {SIZE:2%SIZE); initialized from user

options.

Used by: FINDEAS, PRINTL, RAS, SETOPTS, SETUP,
STCRAGE.

High bound of symbol table minus 1; initialized

from user options; value should be a prime number
because hashing algorithm uses it to divide to get
symbol table addresses.

Used by: HASHSYN, SETOPTS, SETUP.

- 20 -

THT

TRUE

Zs

3.3

P

TBIT

TLEV

Height of T; initialized from value of SIZE.

Used by: FINDRAS, RAS, SETUP.

Symbol table address of *T'; injitialized from sys-
tenm tables file {TABLES).

Used by: SEND, SBTUP.
Symbcl table address of *2222%2%22%2°%; initialized
from system tables file (TABLES); used to initial-

ize a message to *infinity?,

Used by: SFEHD, SETUP.

ELOAT BINARY FXIERNAL

Percent of L that must alvays remain empty; dini-
tialized from user options.

Used by: BAS, SETOPTS, SETUP, STORAGE.

Time it takes to move a bit through the root of T3
1n1t1allzed from user options.

Used by: RAS, SETOPTS, SETUP.

Time it takes to move an atom one level in T; ini-
tialized from user options.

Used by: Ras, SETOPTS, SETUP.

3.4 . POINTER EXZERNAL

CPHEAD

RATAIL

Head of operator list (see OPTAB).

Used by:s RAS, SETUP.

Tail of BA list (see RA}.

Used by: FINDRAS, RAS, STOBAGE.

3.5 EILE EXTERBAL

CRT

IRPOT

SYSPRINT

TABLES

DD name of terminal display: not used in current
system.

Used by: SETUP.

PD name of input libraries.

Used by: SETOP.

DD name cf output print file.

Used by: SETUP, PRINTIL.

DD name of system tables file; contains registers
for HREGTAB, constants for SYHTAB, and micro
instruction opcodes and formats for HKICRTAB.

Used by: SETUP.

....22_

ABEND {HESSAGE)

BODULE:
SCOPE:
PARABETERS:
PORPOSE:

NETHOD:

CALLED BY:

CALLS:

Chapter U

PRCCEDURES

Error Hessage Hodule.

External.

MESSAGE CHAR {#) 3

Print an error message and abend.

This subroutine is not fully implemented;
it receives a character string as a par-
ameter, prints it, and stops execution.

Almost every subroutine.

None.

- 23 -

ARITH {(Ic, TREEI¥D, RT, TOP, P&, OPERAND, COND, HMATCH,

GRO)

BODULE:
SCOPE:

PARANETERS:

PURPOSE:

METHOD:

CALLED BY:

CALLS:

Interpreter Hodule.
External.

Iic FIYED BIN:
Instruction counter.

TREEIHD FIYED BIN:
Leftmost syntax tree index of target
expressicn.

RY PIXED BIN:
Rightmost syntax tree index of target
expression.

20E FIXED BIN:
Index of top entries in COND and HATCH

stacks.

P6 POINTER;
Base pointer for PRIMITIVE data struc-

ture.

QPERAND {®,%) FLOAT BIN:
Instruction's cperands.

COND (*,%) BIT (*) UNALIGNED;
Results of previocus comparisons for each
syntax tree node in target expression.

HATCH (% ,%,%) BIT (*) UNALIGNED:
Results of previous comparisons involving
messages for each syntax tree nede in
target expression and each syntax tree
node of mwessage {see ALGORITHHS}.

GRO (%) FLOAT BIN;:
Register of temporary results.

Execute an arithmetic microinstruction.
Loop through cells of target expressiaon;
for each cell, perform operation speci-
fied by instruction®s opcecde and store
result in temporary register. :
{RXSTHT) .

Hone.

- 24 -

ARITHOP

HODULE:
 SCOPE:
PARAMETERS:

PURPOSE:

HETHOD:

CRALLED BY:

CALLS:

Interpreter HNodule.
Internal to SERD.

Hone.

¥rgecute a send-and-combine instruction
with arithmetic combining operator.

Loop through each cell of target expres-
sion; combine operands of each cell with
messages according to combining operator.
SEND.

Hone,

- 25 .

ASSIGR {TREEIND, RT, IC, P1, P&, OPERAND, COND, HATCH,
TOP, GRO)

MODULE:
S5COPE:

PARAMETERS:

PURPOSE:
HETHCD:

CALLED BY:

Interpreter Module.
External.

TREEIND FIXED BIHN;
leftmost syntax tree index of target

expression.

RT FIXED BIN; ‘
Rightmost syntax tree index of target
expression.

Ic FIXED BIN:
Instruction counter.

P1 PCINTER;
Base pointer for RA data structure.

P6 POINTER:
Base pointer for PRIEITIVE data struc-
ture.

OPERAND (%, %) FLOAT BIN;
Instruction's operands.

COND (*,%) BIT (*) UKALIGHED;
Results of previous comparisocns for each
syntax tree node in target expression.

MATCH (%, %, %) BIT (%) UNALIGNED;
Results of previous comparisons involving
messages for each syntax tree node in
target expression and each syntax tree
node of wessage {see ALGORITHHS).

TOP FIXED BIN;
Index of top entries in COND and MATCH
stacks.

GRO (*) FLOAT BIN;
Register of temporary results.

Execute an assigm microprogram instruc-~
tion.

Loop through target expression in syntax
tree; make assignments to 5 or RLN.

{EXSTHT) .

- 26 -

CALLS:

BOOLOP

HODULE:
"SCOPE:
PARAHETERS:

PURPOSE:

HMETHOD:

CALLED RB¥:

CALLS:

CARCEL

HODULE:
SCOPE:
PARAHETERS:
PURPOSE:

HETHOD:

CALLED BY:

CALLS:

HESHYAL, ABEND.

Interpreter Hoduls.
Internal to SERD.

¥one.

Execute a sepnd-and-combine instruction
with Boolean combining operator.

Loop through each cell of target expres-
sion; combine operands of each cell with
rmessages according to combining operator.
SERD.

Rone.

Storage Management Module.
Internal to (HALF1).

Rone.

Cancel storage requests.
Hove down through T cancelling areas'®. .
requests until all remaining requests can
be satisfied.

{HALF1) .

None,

- 27 -

COMPARE {IC, TREEIND, RT, TOP, P6, OPERAND, CCND, MATCH)

BODULE:
SCOPE:

PARRHMETERS:

PURPOSE:

METHCD:

CALLED BY:

CALLS:

Interpreter HModulie.
External.

Ic FIXED BIN:
Instruction counter.

TREEIND FIXED BIN;:
Leftmost syntax tree index of target
e¥pression. :

RT FIXED BIN:
Rightmost syntax tree index of target
expression. .

TOP FIXED BIN:
Index of top entries in CCHD and MATCH
stacks.

B6 POINTER;
Base pointer for PRIMITIVE data struc-

ture.

OPERAND {*,%) FLOAT BIN:
Instruction's operands.

COND (¥, %) BIT(®*) UNALIGNED;
Results of previous comparisons for each
syntax tree node in target expression.

BATCH{®*,%*,%*) BIT (*) UNALIGNED;
Results of previous comparisons involving
messages for each syntax tree node in
target expression and each syntax tree
node of message {(see ALGORITHMS).

Execute a compare microprograx instruc-~
tion. '

Determine whether comparing immediate
operands or symbol table addresses; store
results of comparison of each node of
target expression in syntax tree in COND..
See ALGCRITHMS. '
(EXSTHT) .

ABEND, (EXCOHNP).

-~ 28 =

DHSTAT

BODDLE:
SCOPE:
PARAMETERS:

PURPOSE:

¥ETEOQOD:

CALLED BY:

CALLS:

EXCOHP

HODULE:
SCOPR:
PARAHBETERS:

PURPQSE:

HETHOD:

CALLED BY:

CALLS:

In{erpreter Hodule.
Internal to RAS.
None.

Set status of cells in an BRA undergoing

data movement.

Examine each cell in RR and set its sta-
tus according to its contents before and
after data movenent.

RAS.

Kone.

Interpreter Hodule.
Internal to CUOBFPARE.
Hone.

Execute a comparison on elements of a

target expression,
For each node of in syntax tree of target
expression, determine whether comparison

is true or false and store result in CORD
and MATCH. See ALGORITHES.

COMPARE.

Hone,

- 29 -

EXFRAG

MODULE:
SCOPE:
PARAKETERS:

PURPOSE:

HETHOD:

CALLED BY:

CALLS:

EXORDEER

HMODOLE:
SCCPE:
PARAHETERS:

- PURPCSE:
HETHCD:

CALLED BY:

"ChRLLS:

Interpreter Module.
Internal to PRIH.

Hone.

Execute each microprogram instruction in
a fragment. _

Initialize each instruction®s operands;
if before storage regquests have been
filled, execute all instructions; if
after storage has been received, execute
insert instructions only: increment
instruction counter.

PRIH.

{EXSTHT) , SETREG, ABEND.

Input Hodule.
Internal to {GETPRINM).
Hone.

Control vhen fragments are to be 1nserted
in fragment list.

Insert last fragment if not yet inserted.
Insert current fragment.

(GETPRIN).

{INSERT) .

- 30 -

EXSTHT

NCDULE:
SCOPE:
PRRAMETERS:
PURPCSE:

HETHQD:

CALLED BY:

CALLS:

Interpreter MHodule.

Internal to (EXFRAG).

Hone.

BExecute a microprogram instruction.

GO TO a label that either executes the
instruction or calls z subroutine to exe-

cute the instruction.

{EXFRAG} .

COHPARE, INSERT, POP, ASSIGH, SENE,
ARITH, ABEND.

FINDRAS (APPLTOT, SHAP)

BODULE:
SCOPE:

PARABETERS:

PURPOSE:

METHOD:

CALLED BY:

CALLS:

Update List of RAt's.
External,

APPLTOT FIXED BIN;
Total number of applicatiomns in L.

SNAP BIT (%) :
Flag indicating whether any operator in:
coperator position has ‘snap® flag ena-
bled.

Locate new innermost applications (RA's) ;
build their syntax trees; determine their
class and status; insert them in list of
Ra®s. For each RR, find height and top
of RA%s area in T.

A single scan of L in which Hagd test for
finding RA's is applied.

REDMACH.

(FINDTGP) , {(PARSE).

- 3% =

FINDTOP {PTR)

QODULE: Update List of RAts.
SCOPR: Internal to FINDRAS,
PARAHMETERS: PTR POINTER;

Pointer to a member of the RA list.

PURPCSE: Compute top in T and height of area
belonging to RA.

HEETHCD: Pind indices in T of ancestor nodes of
RAR's application symbol, of the cell to
its left, and of its right neighbor,
until the lowest common ancestor is

found.
CALLED BY: FINDERAS.
CALLS: None,

GETCHAR (NEWCHAR, CLASS)

BCDULE: Input HModule.
SCOPE: Internal to (SCANTOX).

PARAMETERS: HEYWCEAR CHRR {#*} 3
Character scanned. :

CLASS FIXED BIing
Lexical class of NEWCHAR.

PURPOSE: ¥ind next character of token: determine
its lexical class.

METHOD: Scan input card for next non-blank char-
acter; 1look wup class in table of legal
characters and corresponding lexical

classes.
CRLLED BY: {SCANTCK) .
CALLS: None.

GETDEF

MODULE:
SCOPE:
PARAMETERS:

PURPOSE:

HETHOD:

CRALLED BY:

CALLS:

GETOPS

BODULE:
SCOPE:
PARAHKETERS:

PURPOSE:

HETHOD:

CALLED BY:

CALLS:

Input Hodule.

Internal to (GETOPS).

Hone.

Read and translate to internal represen-
tation the definition of a user defined
operator. :

Scan each symbol in the definition: enter
them in symbol table; calculate RLN's;
enter symbol table addresses, BRLR's, and
*snap® indicators in definition.

{GETOPS) .

HASHSYH, (SCANTCK).

Input Hodule.
Internal to SETUP.

Hone,

Read and translate to internal represen-

tation all operators needed for execu-
tion.
Read each operator in input file; if the

operator is in the symbol table and is
not yet defined, translate the definition
Or microprogran.

SETUP.

SEARRCH, (GETDEF), (GETPRIN).

- 33 -

GETOPTS

MODULE:
SCOPE:
PARANETERS:
PURPCSE:

HETHOD:

CALLED BY:

CALLS:

GETPRIM

HODULE:
SCOPE:
PARAMETERS:

PUFRPOSE:

METHOD:

CALLED BY:

CALLS:

Input Hodule.

Internal to SETUP.

Nene.

Initialize usex options.

R=ad in each option <card, starting with
options on EXEC card and then options in
user?s library; assign operand values to
corresponding coption variables if not yet
specified.

SETUP.

SETOPTS.

Input Module.

Internal to {GETOPS).

None.

to internal represen¥

micropro-
into

Read and translate
tation a primitive operator’s
gram; sort the micro-~instructions
execution order.’

Scan each input card for target expres-
gsion and micre-instruction; translate
components; insert instruction's fragment
control information in execution order in
fragment list; copy instructions in exe-
cution order to PRINITIVE data structure.
Se¢ ALGORITHHMS.

{GETOPS) .

SEARCH, (EXORDER).

- 34 -

GETPROG

HODULE:
SCOPE:
PARAMETERS:

PURPOSE:

HETHOD:

CALLED BY:

CALLS:

HMODULE:
SCOPE:
PARAMETERS:

PURPOSE:

METHOD:

CALLED BY:

CALLS:

from user file;

Input Hodule.
Internal to SETOP,

Hone.

be executed; translate

Read programs to
initislize L

to internal representation;
array.

Read each program selected by PROG option
translate each symbol to
syrmbol table address; initialize I cells;

use scale control and blank count symbols
for spacing control in L.

SETUP.

HASHSYH, (SCANTCEK), ABEND.

Storage Managerment.
Internal to STORAGE.
None.

Compute PT and NT values in T; cancel

insertion requests as needed.

one full cycle {up and down) in T. See
ALGORITHHS. :

STCBAGE.

{CABCEL) -

HASHSYHN

HALF2

HODULE:
SCOPE:
PARAHETERS:
PURPCSE:

METHOD:

CALLED BY:

CALLS:

{TOKEN,

MODULE:
SCOPE:

PARANETERS:

PURPOSE:

EETHCD:

CALLED BY:

CALLS:

Storage Managemwent.
Internal to STORAGE.

None.

Compute new position of each cell of 1.
Hove up in T computing new PT values:
move down through T computing BL and BR
values in cells of T, and then new posi-
tions of cells of L.

STORAGE.

Hone.

ADDRESS)

Symbol Table Hanager.

External.

TOKEN CHAR (#) 3

Token to he entered in symbol table.
RDLRESS FIXED BIN; Symbol
table address of TOKEN.

Enter a symbol in symbol table.

Determine symbol's table address; insert

symbol in table.
{GETDEP} , (GETPROG).

{SCANTAB) , (INSERT).

- 3§ -~

HASHVYAL

INIT

{VALUE,

BODULE:
SCOPE:

PARABETERS:

PURPOSE:

HETHOD:

CRLLED BY:

CALLS:

HODULE:
SCOPE:
PARRMETERS:

PURPOSE:
HETHOD:

CALLED BY:

CALLS:

ADDRESS)

Symbol Table Manager.
External entry point in HASHSYH.

VEALUE FLOAT BIY;
Value to be entered in table.

ADDRESS - FIXED BIN;
Symhol table address of VALUE.

convert numeric value to character

string; enter in symktol table.
Assign VALUE te¢ picture variable; remove
nonsignificant zeros to get unique char-

acter representation; determine symbol's
address in table; insert symbol in table.

ASSIGN.

{SCANTAB), (INSERT).

Input Bodule.
Internal to SETUP.
None.,

Initialize Hicro-operation table, Regis-.

ter table, and symbol table.

Read bounds of tables: allocate tables;

read table values,
SETUP.

None.

- 37 -

INITRAS

MODULE: Interpreter Module.
SCOPE: External entry point in RAS,

PARAMETERS: Rone.

PURPOSE: Initialize branch mechanism for RAS: ini-
tialize list of FA's.

HETHOCD: ' Allocaté and assignment.

CALLED BY: REDHACH.

CALLS: Hone.

- 38 -

INSERT (TREEIED, RT, IC, P1, P6, OPERAND, TOP, CO¥WD,
: TIMER, INS#) _

MODULE:
SCOPE:

PARAMETERS:

PURPOSE:

METHOD:

CALLED BY:

Interpreter Module.

External.

TREEIND PIXED BIN;
Leftmost syntax tree index of target
expression.

RT FIXED BIN;
Rightmost syntax tree index of target

expression.

IC FIXED BIN:
Instruction counter.

P1 FCIRTER:
Base pointer for RA data structure.

Pé POINTER;
Base vpointer for PRIMITIVE data struc-

LU e

OPERAND (%, %) FLOAT BIN;
Instruction's operands.

TOP FIXED BIN:
Index of top entries in COND and HATCH

stacks.

COND (*, %) BIT {*) UNALIGNED;
Results of previous comparisons for each
syntax tree node in target expression.

TIMER FIXED BIR;
Tells whether RA is before or after sto-
rage management.

IHuSH FPIXED BIN: .
Number of insert imstruction uithin

microprogram.

Execute an insert microprogram instruc-
tion.

If before storage management, determine
number of cells to be inserted; if after

storage managenment, locate cells to be
inserted and insert them.

(EXSTMT) .
- 39 -

CALLS:

INSERT

MODULE:
SCOPE3
PARABMETERS:
PURPCSE:

HETHOD:

CALLED BY:

CALLS:

INSERT

MGDULE:
SCOPE:
PARAMETERS:
PU?POSE:

METHOD:

CALLED BY:

CALLS:

SETREG, ABEND.

Input Hodule.

Internal to (GETPRIH}.

None.

insert a fragment in fragment list.

Find fragment®s slot in list ({sorted by
DEST# within PGH#); insert fragment. See
ALGORITHES,

{EXORDER) .

Hone.

Symbol Table Hanager.
Internal to HASHSYH.

None.
Insert a symbol in symbol table.

If counter of addressf®s uses is 2zero,
insert in table: increment uses counter.

HASHSYM, BASHVYAL.

Rone-

- 40 -

BINEAX

MODULE:
SCOPE:
PARAKETERS:

PURPOSE:

HETHOD:

CALLED BY:

CALLS:

HOYEIT

HODULE:
SCOPRE:
PARAMETERS:

PURPOSE:

HETHOD:

CALLED BY:

CALLS:

Interpreter Module.
Internal to SEND.
lone.

Execute a send-and-combine microinstruc-
tion with HIN or KAY combining operator.

Loop through each cell of target expres-~
sion; if value larger than message is
encountered and combining operator is
HAX, save value in message; if value
smaller than wmessage is encountered and
combining operator is HIN, save value in
nessage.

SEND.

None.

Storage Hanagement Hodule.
Internal to STORAGE.
Hone.

Bove each cell of L to its nev postion;
update program list and EA*s syntax tree.

Use list of cells moving in same direc-
tion to move each «c¢ell without erasing
previous contents of cell. See ALGOR-
ITHHS. -

STORAGE.

Rone.

- 41 -

NEWTOK (NERCHAR,

MODULE:z
SCOPE:

PARANETERS:

PURPOSE:

HETHOD:

CALLED BY:

CALLS:

CLASS)

Input Hodule.
Internal to (SCANTOK).

KERCHAR CHAR {#) ;
Character scanned.

CLASS : FIXED BIN:
Lexical class of NEECHAR.

Scan first character of nev token and
determine its lexical class.

Find next non-blank' character, reading
new input if necessary; check if charac-
ter is in special lexical class; if not,
look up lexical class in tables of legal
characters and corresponding lexical
classes.

{SCANTOK) .

None,

- %2 =

PARSE

BODULE:
SCOPE:=
PARANETERS:

PURPCSE:

HETHOD:

CALLED BY:

CALLS:

Update 1ist of RA®s.

Internal to FINDRAS,

Bone.

Build syntax tree for an BAa, with each
node containing the index of a non-empty
cell of the RA in L, and the indices in
the tree of its son and brother.

Stack next non-empty cell if it's a son;
pop the stack if it*s a father or
brother.

FINDRAS.

Hone.

- 43 -

POP (TREEIND, RT, T0P, MATCH, CORD, TEST)

NCDULE: Interpreter Kodule.

SCOPE: External.

PLRAHETERS: TREEIND FIXED BINg;
Leftmost syntax +tree index of target
expression.
RT PIYED BIN;
Rightmost syntax tree index of target
expression.
TCP FIXED BIHN:
Index of top entries in COND and MATCH
stacks.

MATCH (*,%,%) BIT(*} UNALIGNED:
Results of previous comparisons invelving
messages for each syntax tree node in
target expression and each syntax tree
node of message (see ALGORITHMS).

COND %, %) BIT(*} UNERLIGNED:;
Results of previous comparisoms for each
syntax tree node in target expression.
TOP FIXED BIN; _
Boolean value with which 2 +top stack
entries are to be combined ({0=0OR, 1=AND,
~1=pop top entry off stack).

 PURPOSE: Combine comparison stack entries.

HETHOD: Assign results to COND depending on

values of MATCH and operands invelved in
previous comparisons. See ALGORITHES.

CALLED BY: {EXZSTHT) .

CALLS: ABEND.

- 44 -

PRIH

{P1, P&, TIHER)

HODULE:
SCOPE:

PARABETERS:

PURPOSE:

HETHCD:

CALLED BY:

CALLS:

Interpreter Hodule.
External.

1 POINTER;
Base pointer for RA data structure.

Pé POINTER;
Base pointer for PRINITIVE data struc-
ture. '
TINER FIXED BI¥;

Tells whether before or after storage
management for this RA.

Reduce an RA with a primitive in the
operator position.

For each microprogram fragment locate
corresponding target expression; execute
fragment?'s instructions. '
RAS.

(EXFRAG) , ABEND.

- 45 -

PRINTL

PRNTSTS

MODULE:
SCOPE:

PARANETERS:

PURPOSE:

METHOD:

CALLED BY:

CALLS:

{OUPTUT)

HODULE:
SCOPE:

PARAMETERS:

| PURPOSE:

- HETHCD:
CALLED BY:
CALLS:

REHARKS:

(LCPT, CUTPUT)

output Hodule.

External.

LOPT (%) CHAR (*) ;

Ccptions specifying what type of snapshot
to print. :

QUTPUT FILE VARIABLE:

DD name of output file.
Print a spapshot of the L array.

Examine options for output file; print

snapshot according to options.
REDMACH.

Hone.

OQutput Module.
External.

QUTPUT FILE VARIABLE;
DD name of output file.

Print statistics.
RETUEN.

REDHACH.

Hone-

¥ot implemented.

RAFINI

MODULE: Interpreter Hodule.
SCOPE: Internal to RAS.
PARAMETERS: None.

PURPOSE: Show RA is reduced.

¥ETHCD: © Reinitialize status of each cell in RA to
' NOTBA; delete RA from list of RR's,

CALLED BY: RAS.

CALLS: Hone.

BAPINI
MODULE: Storage Management Module.
SCOPE: Internal to STCRAGE.

PARABETERS: Hone.

PURPOSE: Show RAR is reduced.

METHOD: Reinitialize status of each cell in RA tb
HOTRA; delete RA from list of BA's,

CALLED BY: STORAGE.

CALLS: None.

- 37 -

RAS {DMLEVELS)

MCDULE:

SCCPE:

PARANETERS:

PURPOSE:

METHOD:

CALLED BY:

CALLS:

REDHACH {PARMS}

MODULE:
 SCOPE:

PBRAMETERS:

PURPOSE:

METHOD =

CALLED BY:

CALLS:

Interpreter Module.

External.

DELEYELS FIXED BIN:
Time available for data movement in cur-
tent machine cycle.

Process each RA in list; <compute time
available for data movement.

G0 TO label array for each possible
CLASS~STATUS combination. Add operator's
I/0 time to data movement time if appro-
priate; reduce or request storage for
each RA. : _

"REDMACH.

PRIN, {(DESTAT), (RAFINI}.

Bain Control Hodule.

External Main.

PARMS CHAR {100) VARYING;
Input options string from user®s EXEC
card.

Execute the simulator.

Call subroutines; Xeep track of how many
cycles have executed and call output
routines when options specify that it is
tire.

JCL.

SETUP, INITRAS, FINDRAS, ®AS, STORAGE,
PRINTL, PRNTSTS, TALK, ABENED.

- 48 -

SCARTAB

NODULE:
SCOPE:
PARAHMETERS:

PURPOSE:

HETHOD:

CRLLED BY:

CALLS:

Symkol Table Manager.
Internal tb HASHSYHN.

Hone,

Determine a symbol's symbol table
address.

Hash symbol to find address using mid-
squares algorithm; if collision occurs,

probe table linearly until empty address
is located.

HASHSYH, HASHVAL, SEARCH.

Honee.

SCANTOK (TOKEN, STATE)

BODOULE:
SCOPE:

PARAMETIERS:

PURPOSE:

METHQOD:
CALLED BY:

CALLS:

Input Hodule.
Internal to SETUP.

TOKEN CHAR (*} VARYING:
Token scanned.

STATE FIXED BIN;
TCRE¥*s recognize state.

Read next token from input and determine
its lexical class,

Table driven scanner.
{GETDEF) , {GETPROG).

(GETCHAR) , (NEWTCK).

- 49 -

SEARCH (TOKEN, ALDRESS)

MODULE:
SCOPE:

PARAMETERS:

PURPOSE:

HETHCD:

CRLLED BY:

CALLS:

Symbol Table Manager.
External entry point in HASHSYHM.

TOKEN CHAR (*) VARYING;
Token being sought in symbol table.

ADDRESS FIXED BIN:
Symbol table address of TOKEN.

Determine whether a symbol is in symbol
table; if it is, return its symbel table
address: if not, return address indicat-

ing 'not found'.

Determine symbol table address; if that
address is empty, return NOREG, indicat-
ing that symbol is not in table. _
(GETOPS), (GETPRIM).

{SCANTAB) .

SEND {(TREEIND, RT, IC, TOP, P11, P6, OPERAHB, COuD}

HODBLE:
SCOPE:

PARAMETERS

PURPCSE:

HETHOD:

CALLED BY:

CALLS:

o
L]

Interpreter Hodule.
Bxternal.

TREEIND FIXED BIN;
Leftmost syntax +¢ree index of target
expression.

BT FIXED BIN;
Rightmost syntax tree index of target
expression.

IcC PIXED BIN:
Instruction counter.

T0P FIXED BIN; :
Index of top entries in COND and HATCH
stacks. :

Pi POINTER:
Base pointer for RA data structure.

Pé6 . POINTER;
Base pointer for PRIMITIVE data struc-
ture.

OPERAND {%,%) FLOAT BIN:
Instruction's operands.

COND (*, %) BIT{*) UNALIGHNED;
Results of previous c¢omparisoms for each
syntax tree node in target expression.

Execute a send rmicroprogram instruction.

If instruction is si, send the messages
and add the number of messages sent to
the data movement counter of the RA: if

SC, cornbine the operands according to
first send operand {combining operator).

(EXSTHT) .

{BOOLOP) , {ARITHOP), (MINMAX), ABERD.

SETOPTS {(CARD, PREQOPT, LCPT, STATOPT, PGH, OPTFLAG)

MODULE:
SCOPE:

PARABETERS:

PURPCSE:

METHOD:

CALLED BY:

CALLS:

Interpreter Module.
External.

CARD CHAR (*) 3
Input card containing user options.

FREQOPT (* ,*) CHAR (*) ;
Cutput frequency controls.

LOPT (*,%*) CHAR({®) ;
Output format controls.

STATCOPTI (¥ CHAR{¥*);
Cption controlling printing of statis-
tics.

PGH {*) CHAR (*) ;
Program selecter list.

OPTFLAG (%) BIT(¥);
Flag telling swhether or not to set an
option.

Assign values to option variables.
Parse option card for each option keyword

and operand values; check if option is to -
be specified; if so, set value ¢f option

- variable and assign value ?*1°B to corres-

ponding option flag.
{GETOPTS).

ABEND.

SETREG (P11, LEPT, RIGHT, REG#, OP, GRO)

MODULE:
SCOPE:

PARABETERS:

PURPCSE:

- HETHCD:

CALLED BY:

CRLLS:

Iinterpreter Module.
External.

P1 POINTER;
Base pointer for RA data structure.

LEFT FIXED BIN;:
ieftmost syntax tree index of target
expression.

RIGHT FIXED BIN:
Rightmost syntax tree index of target
expressiona

REGE PIXED BIK:
Humber of register to be initialized.

0P {*) FIXED BIW;
Operand to which register values are to
be assigned.

GRO {¥) FLOAT BIN;
Contents of register of temporary
Tesults.

Assign t¢ an operand values of a register
of L. -

Calculate register values indicated by
register number for each syntax tree node
in target expression.

PRIH, INSERT.

Hone.

- 53 -

SETUP

{FREQOPT, LOPT, STATCOPT, DDNAME, PARHS)

MODULE:
SCOPE:

PARAMETERS:

PURPOSE:

HETHCD:
CRLLED BY:

CALLS:

Input Module.
External.

FREQOPT (*,%) CHAR(%);
Options specifying when to print the L
array.

LOBT (%, %) CHAR(%);
Options specifying format in which L is
to be printed. :

STATCPT (¥) CHAR({*}:
Cptions specifying when statistics are to
be printed.

DDRANE {*) FILE VARIABLE;
DD names of output files.

PAENS CHAR (*) VARYING:
User option string passed to wain proce-
dure from EXEC card.

Initialize user options, 1 array, symbol
table, micro-opcode table, and register
table: read defined and primitive opera-
tors and translate them ¢to internal
representation.

‘Call internal subroutines.

REDMACH.

HASHSYH, SEARCH, RBEND, (INIT),
{GETOPTS), (GETPROG), {GETCPS).

- 54 =

STORAGE

TALK

HODULE:
SCOPE:
PARAHMETERS:

PURPOSE:

METHOD:

-CALLED BY:

CRLLS:

{DHLEVELS)

Storage HManagement Hodule.

External.

DHMLEYELS FIXED BI¥;

Fill as many storage requests as possi-
ble.

Calculate total storage regquests, neces-
sary cancellations, and cells' new posi-
tions by moving up and down in a binary
tree {(TI).

REDHACH.

{HALF1), {(HALF2), (HOVEIT}, {(RAFIHNI).

(FEEQOPT, LOPT, STATOPT)

HODULE:
SCOPE:

PARRBETERS:

PURPOSE:

HETHOD:
CALLED BY:
CALLS:

REBARKS:

Cutput Hodule.

Extetnal;

FREQOPT (#,%) CHAR(%);

gptions specifying when to print the L
array.

LOPT (%, %) CHAR(#) :

Options specifying format in which L is
to be printed.

STATOPT {*) CHAR (%) ;
Cptions specifying when statistics are to
be printed.

initiate an interactive conversion with

user.
RETURKE.
REDHBACH.
None.

Hot implemented.

- 55 =

Chapter 5

ALGORITHNS

5.1 GETPRIN
Microprogramming is documented in the REDMACH User's
Guide. The microprogram format used by the Interpreter

Module differs from what the user codes in two vayss:

instructions are stored in a fixed binary array (Jne byte

per field), and they are sorted into the order in which they

are to be executed.

The translation of the fields of a microinstruction is
straightforvard. The first field of an instruction is the-
opcode, which is translated by table lookup in MICETAB. The
opcedé determines what type of operand each subsequent field
in the instruction contains., The register bytes, the number
of wvhich depends on +the opcode and is determined by the
value in MICRTAB.R, are also translated by table lookup in
REGTAB, except if the register is a message or a program
symbol. Hessages are translated as follows. HESSHEG is the
low bound of §EGTAB minus one. So, the four components of
message #1 are nuwbered MESSREG, MESSREG-1, MESSREG-2, and_
MESSREG-3. The components of message #2 start at MESSREG-4.
In this way, each message component can be uniquely identi-

fied. B program symbol is translated to the symbol's

- 5§56 -

‘address in the symbol table. If a register field is not
used {(e.g. in send statements), it is translated to NOREG.
Immediate data are translated by converting from character
string to binary. The conditional operator is translated as

follous:
1) AND => 1
2y OR => 0
3) STACK => =2
4) THEN -> 1
5} ELSE -> @
6) if omitﬁed => =1

Instruction sequencing is crucial; if the interpreter
tried to assign a message to a cell before the message had
been sent, incorrect results would occur. There are four

requirements of the ordering process.

1) Imstructions that are grouped into a fragment by
the assembler instructions BEG and EFD must remain
contiguous and in their original order relative to

each other.

2) B message with index 1 rust not be referenced
before all send instructions with index 1 have

been executed. HNo send instruction with index i+1

- 57 -

3)

&)

can be exécuted before all send instructions with
index i have been executed. However, oOne or more
conditionals may compare a message with index i
and then execute a send instruction with index
i+1. That is, the following instruction group is
legal:

(CER,3,M1{1))

(SI,%,,002,THEN)

{CER,N1,E2(1})

(SI,Fss00s2.THEF) .
Insert statements must be executed last.

If all other considerations are egual, instruc-
tions must be sorted by destination number; that

is, they must go from left to right within the RA,

- 58 -

The solution to these reguirements is as followus.

)

2)

3)

4)

Index microprogram's destination expressions in

destination list from left to rigﬁt.

Assign to each instruction a program number {PGH#)

as follows:

a) no messages referenced, not an insert:

PGﬁ#-"-‘q '}

b} send instruction with index i:

PGHE=2%i-1,

c} message referenced, index i (e.g. M2{i)},

PGHE=22i,

d} insert imstruction:

PGM&=100.

If the instruction is part of an explicit fragment
{part of a EREG-END group) save the largest PGH#& of
all instructions in the fragment so that the frag-
ment will be grouped together correctly. po not

go to & until PED is encountered.

Insert destination number (DEST#), PGHE, and
instruction counter starting and ending values in

a list sorted by DEST# within PGH#. There is one

entry in the list for each fragment, explicit or

implicit. All instructions that are contiguous in

- 59 =

the original microprogram and which either have
the same DEST# and PGH# or are grouped together

vith BBG and FND form a fragment.

5) Copy instructions into PRIMITIVE.STHT in fragment

order.

The result of this algorithm is a series of fragments that

can be executed in order.

5.2 PBRIH
This procedure controls the interpretive loop that exe-
cutes microprograms. See GETPRIN for an explanation of the.

internal representation of microprograms. This is the basic

loop.

1) Determine starting fragment number (depends on

vhether before or after storage management).
'2) Pind target expression of fragment.
3} Execute fragment's instructions {CALL EXSEG).

4) EBXSEG calls EXSTMT for each instruction in a frag-

ment.

EXSTHT uses a GO TC label array to branch to a section
that executes the correct microinstruction or calls a proce-~
dure to execute it. There are tvo interrelated mechanisms

involved that are complicated: conditionals and messages.

- B0 -

T¥o rounds of messages are saved so that one can be
referenced while the next is being sent. Other information
mist be saved also: the index of the message, wvhether it was
sent by an SI or SC instruction, whether each component is a
symbol table address or immediate data, and the syntax tree
bounds of the target expression that sent the message (this
is not needed for SC messages since a single result is com-
puted). If sending the message is the arm of a conditiomal,
it is necessavy to0 remember which cells sent a message and

which did not: this is stored in BESSFLAG.

Now we will consider conditionals. If no messages are
involved, the comparison part of a conditional can be evalu-
ated using a stack of results, in which eack element is an
array c¢ontaining one result for each cell of the target

expression.

If messages are involved, comparisons are harder. What

are the complicating factors?

1 The cells in which registers other than messages
are to be referenced are the cells of the current

target expression.

2) The syntax tree bounds of messages referenced were
set vhen the message was sent and thus are the

bounds of another target expression in the BA,

3) VNot every cell of the message's target expression

may have sert a message.

Two loop controls are needed to resolve points 1 and 2.
'Furthermore, 2 single stack of results no lohger suffices.
Suppose these instructions are executed:

(CER,S,E1({1))

{CER,N1,82(1) ,AND)

(ADR,S,M1(1) ,THEN).
Suppose furthermore that the messages with index 1 were the
result of an SI instruction, so that there are n messages,
vhere n is the number of non-empty cells in the target
expression fror which the messages originated. = Then for
each cell of the current target expression, ve need to know
.not only whether S equals one of the messages, but also
vhich message it equals. %hat the instructions really say
iss “"initialize register 0 to S; whenever:s eguals'u1(1)

and RLF equals K2(1), add M1{1) to the total in register 0w,

REDMACH uses a pair of bit arrays to resolve this prob-
lem. COND is a two-dimensional bit array that is the result
stack mentioned earlier., Por comparisoms not involving mes-
sages, this array holds the result of the comparison for
each cell of the targe£ expression. MATCH is a three-dimen-
sional bit array that shows for each cell of a target
expression vhere the comparison vaé true, if it was true at

all, TOP is the index of the top elements of both COND and

- §2 =~

BATCH. For comparisons not involving messades, the Tesult
for a cell with syntax tree index 1 is stored in the entire
corresponding CLOSS section of the array, i.e.
MATCH(TOP,I,%}, For comparisons involving messages, the
result of comparing an operand of a cell with sSyntax tree
index I to a message sent by a céll ¥ith syntax tree index J
is stored in BATCH(TOP,I,J). S0, if in the previous examplé
- the values of S and RLN of syntax tree node I equal the mes-

sage values sent by syntax ¢ree node J, then BATCH{TOP,I,J)

¥ill be true.

REDHACH must also combine the results of multiple compér«
isons, e.4.
{CBI,N1,1)
{CER,S,H1{1) ,AHND).

The following algorithm is used toc evaluate comparisons.

1) Set TBEST to instruction's comparison cperator. See

GETPRIH for values.
2) For each symbol in target expression,
a) assign symho;'s syntax tree index %to I,
5} initialize temporary bit array, TEEP, to false,

i) if comparison does not involve a message,
evaluate comparison and store result in

TEND (%),

- §3 =

iiy if comparison involves messages, evaluate
comwparison for each message and store
result in TEHP(J}, where J is the index
in the syntax tree of the cell that sent

the message,

c) if TEST=-1 or TEST=-2, assign results in TEXP
to MATCH (TOP,I,*): if any TENP(J) is true,

assign true to COND(TOP,I),

d) if TEST=1, execute bitwise AND of TEMP(* and
HATCH(TOP,I.¥), storing . results in
MATCH({TOP,1,%): if any element in
HRTCB(TOP,I,*) is set *o true, assign true to

COND (TOP,I),

e) if TEST=0, execute bitwise OR of éxnp{*) and
HhTCE{Tﬂ?,I,i), stering results in
MATCH{TOP,I,*): if any element in
HATCH({TOP,X,*) 1is set to true, assign true to

COND {TOP,I).

Branches of conditionals are chosen for each cell of a
target expressionm using the results stored in COND and

MATCH. The algorithm for branches follows.

1) Set TEST to instruction's branch operator value.

See GETPRIE for values.

- Bl -

2)

For each cell in the current target expression,

~'a) if TEST=-1, evaluate instruction,

by if TEST=1, execute instruction only if compari-

sSon #as true,

c} if TEST=0, execute instruction only if compari-

son ¥as false.

If an imnstruction with a branch operator references

a

message, it must get the one that matches correctly. That

is, Aif TEST=1 and BATCH(TOP,I,J)='17B, then use EESS{J), and

if TEST=0 and -MATCH({TOP,I,J}=°0'8B then use HKESS({J}.

5'-3

describes in [31.

SIORAGE

Preparation for storage management is performed as Mago$*

follows.

1)

2)

3)

4)

Cells of T are indexed 9:SIZ2E~1, where SIZE is the

nunber of cells of L.
Cells of L are indexed SIZE:2%SIZE-1.

Tec move up in T from a son to a father node,

divide the son's index by 2.

To move down in T from a father node td his son
nodes, if the father node?’s index is i, his left

son's is i#*2 and his right son®s is 2#*i41.

- §5 -

The implementation used in REDHMACH is as

| Storage management is performed in one pass through L.
Instead of calculating BL and BR values, the program calcu-
lates each cellfs new index in L (NEWPOS). - & linked 1list
(STORMAN) keeps track of each contiguous group of cells that
will move in the same direction. Using this iist, groups of
éells can ﬁove without overwriting the contents of a cell
that has not yet moved, If a group is mwoving to the left,
the leftmost cell in the group moves first, if to the right,

the rightmrost cell moves first.

- 66 =

