
BBDBACH PROGRAM LOGIC MANUAL

by

Frances T. Kerr

University of North Carolina
Chapel Hill

May, 1979

Appendix c to
SII'IULATZON OF A REDUCTION MACHINE

TR 79-009

TABLE CF CONTENTS

Chapter page

1.

2.

3.

"·
5.

INTRODUCTION ~ e e e • • • • • e • a e e e e o • e o 1

MODULE DIVISION • Ill • • • " • • • • . . • • 4

Module Descriptions • • • • • • • • • • • • • • • 6

EXTERNAL DATA STRUCTURES • a • • • e ~ e o e • e e • 9

structures and Arrays • • • • • • •
FIXED BINARY EXTERNAL • • • • • • •
FLOAT BINARY EXTERNAL • • • • • • •
POINTER EXTERNAL • • • • • • • • •
FILE EXTERNAL •••••••••••

PROCEDURES • • • • • • • • • • • • •

ALGORITHMS • • • • • • • • • • • • • •

GETPRII'l • • . • • • . • • • • • • •
PRII'l • • • • . • • • • • • • • . • •
STORAGE • • . . • • • • • • • • • •

L.IS'r OF TABLES

• Ill 0 •••• 10
••••••• 17
• ... 0 • • • • 21
• • • • 21
~ • .. • • • • 22

• • • • • • 23

• • • • • • 56

• . • • • • • 56
• • • • • . • 60
• . • • • • • 65

Table page

1. The Modules of REDl'lACH and Their Members 5

ii -

LIST oF FIGURES

Fiqure paqe

1. The Modules of REDMACH • • • • • • • .. • • • <& • • • 6

- iii -

Chapter 1

INTRODUCTION

This manual describes the module division, external data

structures, subroutines, and some of the algorithms used in

R!DMACH, a system which simulates a reduction machine. We

assume knowledge of the reduction machine and reduction lan­

guages. For more information about them, we refer the

reader to the master•s thesis, "Simulation of a Reduction

Machine".

The program documented in this manual is not a completed

system. It runs in batch mode and reads a set of user

options that cannot be changed during execution. It gathers

no statistics.

In Chapter 2 we describe the module division of REDMACH.

In Chapter

RED MACH.

3 we list the external data structures used in

In Chapter 4 ue list all the internal and exter-

nal procedures and entry points. There are some difficult

sections of code in R!DHACH. In the Chapter 5, we explain

uhat these sections do.

Throughout this manual, uhen an internal procedure is

listed, it is enclosed in parentheses. In the module sec­

tion, members are listed in order of their static nesting.

That is, if a list includes

- 1 -

A,(B,(C))

it means that A is an external procedure, B is internal to

A, and c is internal to B.

REDMACH was written in Pt/l and was compiled using the

Pt/I Opti~izing compiler, Version 1, Release 3.0, PTF 64, at

TUCC, the Triangle Universities Computation Center, under

IBM OS/360, with MVT, Eelease 21.8. The catalogued proce-

dure that executes BEDMACH is stored in

UNC.CS.F233S.KERR.REDS.CNTt(RED8ACB).

The contents of this procedure are

//RED8li.CH
//STEP1
//STEPtiB
//CRT
//SYSPRINT
//TABLES
//INPUT
II

PROC
EXEC
DD
DD
DD
DD
DD
DD

OPTIONS=
PG8=RED8ACB,REGION=500K,PARM='/&OPTIONS'
DSN=UNC.CS.F233S.KERR.REDS.LOAD,DISP=SHR
DUIIIIY
SYSCUT=A
DS!i=UNC.CS.F233S.KERR.TABtES.DATA,DISP=SHR
DSN=&lNPUT,DISP=SBR
DSN=UNC.CS.F233S.KERR.MASTER.DATA,DISP=SHR.

The symbolic parameter &OPTIONS in the operand of the key-

vord parameter PARM can be specified by the user as a key­

word parameter and operand (OPTIONS='option string') on his

EXEC card. If he does not specify this parameter, the

default value is null. The PAR8 operand is passed to the

main procedure of REDMACH. The OPTIONS field on the user•s

EXEC card is a symbolic parameter in the parameter PABM,

which is passed to the main procedure. Dataset

UNC.CS.F233S.KERB.REDS.LOAD(REDMACH) contains the REDMACH

load module. Dataset UNC.CS.F233S.KERR.TABLES.DATA contains

the systell\ tables (rnicro-opcodes and formats, registers, and

- 2 -

constants). This dataset must be unnumbered. INPUT is the

DD name of the input dataset. The user supplies the dataset

name of his input dataset as a symbolic parameter on his

EXEC card. Dataset UNC.CS.F233S.KEBB.MASTER.DATA is the

master library of definitions and microprograms. It is

catenated to the user•s input dataset.

- 3 -

Chapter 2

MODULE DIVISION

We use the term "module" to denote one or more subrout­

ines that together perform a clearly defined function. RED­

"ACH is composed of eight modules. They are listed in Table

1 with the external subroutines that belong to each module.

Figure 1 shows the connections among the modules. Only the

"ain Control module can invoke the modules on the level

beneath it. The two utility modules shown on the lowest

level can be accessed by any other module.

- II -

r--,
I I
I TABLE 1 I
I I
1 The nodules of REDHACH and Their !embers 1
I I
I I
I ~!!~ i~jdUI~s I
I I
I Rain Control Module REDMACH I
I I
I Input Module SETUP, SETOPTS I
I I
I Update List of Rl's FINDBAS I
I I
I Output Module PRINTL, PRTNSTS, TALK I
I I
I Interpreter Module RAS, PRIM, ASSIGN, ARITH, I
I SEND, COMPARE, POP, I
I SETREG, INSERT I
I I
1 storage Hanagement STORAGE 1
1 Module I
I I
I Symbol Table Manager HASBSYM I
I I
1 Error Message Routine ABEND 1
I I
~--A

- 5 -

r-- --,
I l
I !lain I
I control I
I I
1---,.---'

r---------~-----------1-----------r------
I
I

• .&. --,
I I
I Input I
I I
I I
L-----..1

I
t

r----L----,
I I
I Update I
I llA tist I
I I
~., _______ ...

.. -----..
I I
I Error I
1 Routine 1
I I
L A

I
I

r----L---,
I I
I output I
I I
I I
1---

_ ..

I
I

r----L-----.
I I
I Inter- I
I preter I
I I
L---

r-------,
I I
I Symbol I
I Table I
I I .. _____ ..

Figure 1: The Modules of RED!IACH

!lain Control Module

,
I
I

r----L---,
I f
I Storage I
I llanager I
i I
L---

PUB POSE: Call procedures to execute the inter­
preter system.

!!EMBERS: REDMACH.

- 6 -

Input Module

PURPOSE:

ME!!BEIIS:

Bead initial user options; read programs
to be executed; initialize L array; read
and translate to internal representation
the defined operators and m~croprograms
for primitives needed for execution.

SETUP, (INIT), (GETOPS, (Gl!TDE!', GETPRI!!,
(EXOBDEII, INSEIIT))), (GETPBOG), (SCANTOK,
(GETCHAR, NEWTOK)), (GE'l'OP'l'S), SETOPTS.

Update List of RA's

PURPOSE:

ME!!BERS:

output l!odule

PUB POSE:

!!E!IBEPS:

Interpreter Module

PURPOSE:

l!El'lBERS:

Find new Reducible Applications (RA's);
build syntax trees; determine class and
status of new Ill's; determine top and
height of areas of new and old llA's.

FINDRAS,. (PARS!!), (1'INDTOP).

Print the L array.

PRINTL, PRNTS'l'S, TALK.

Reduce or requESt storage for all RA's in
L; compute time available for data move­
ment.

llAS, (INITRAS), (RAFINI), (Dl'JS'UT), PRIM,
(EXSEG, (EXSTMT)), ASSIGN, ABITB, INSERT,
SEND, (ABITBOP), (BOO LOP), (IHN!IAX} 1 POP,
CO!IPARE, (EXCO!!P), SETBEG.

Storage Management !!odule

PURPOSE:

l'IEI!IBEFS:

Cancel storage requests when necessary;
perform storage management on L.

STORAGE, (HALF1, (CANCEL)),
(l'ICVEIT), (BAFINI).

- 7 -

(HALF2) ,

Error Message Boutine

PURPOSE:

IIE!IBEBS:

When any error is encountered, print an
error message and terminate abnor~ally.

ABEND.

Symbol Table Manager

!!EI!Bl!RS:

Enter symbols and numbers
table; determine symbol table
a symbol.

BASHSYII, HASHVAL, SEARCH,
(l: !'ISERT) •

- 8 -

in symbol
address of

(SCANTAB) ,

Chapter 3

EXTERNAL DATA STRUCTURES

This chapter descibes the external data stuctures used by

REDMACH. It includes PL/I structures and arrays, fixed and

float binary variables, pointers, and files.

- 9 -

L Array

1 L (*l C'U. EXT • I* L ARRAY *I
2 s FIXED Bill I* SYMBOL TABLE ADDRESS OF S *I
2 ALII FIXED Bill, I* ABSOLUTE LEVEL NUMBER *I
2RLN FIXED BIN, I* RELATIVE LEVEL NUMBER *I
2 NEWPOS FIXED BIN, I* CELL'S INDEX IN L AFTER *I

I* STOEAGE MANAGEMENT *I
2 52 FIXED BIN, I* SYMBOL TABLE ADDRESS OF 5 1 *I

I* (SYMBOL AlTER REDUCTION) *I
2 BLII2 FIXED Bill, I* RLII AFTER REDUCTION *I
2 STATUS FIXED BIN, I* CELl'S STATUS *I
2 IRSR FIU:D BIN, I* INSERTION REQUESTS TO *I

I* CELL'S RIGHT *I
2 I!!SL FIX ED Bill, I* INSERTION REQUESTS TO *I

I* CELl'S LEFT *I
2 SNAP IT FU!D !liN, I* FLAG IF SYMBOL CAUSES A *I

I* 1 SNAP' *I

Structure simulates the cells of 1. It is indexed from SIZE
to 2*SIZE. Values of S and 52 are symbol table addresses.
S2 is the address of the symbol printed by the output
module; it is the cell's contents after reduction is com­
plete, that is, after data movement is over. ALII is abso­
lute level number; RLN is relative level number; RLN2 is
relative level number after reduction is complete; IRSL and
IRSR are the number of insertion requests to the left and
right of a cell; NEWPOS is a cell's index in L after storage
management (BLand BR are not necessary); STATUS shows what
situation a cell is in. Size of L is determined by SIZE
option.

Used by: ABEND, FINDRAS, INSERT, PRIM, PRINT!, BAS, SEND,
SETREG SETUP, STORAGE.

- 10 -

Reducible Applications

COUNT
1 RA

2 OPIND
2 TOP
2 H'r
2 IRSTOT
2 DML
2 CLASS
2 MARK (5, 2)

FIXED BIN,
BASED(P1),
FIXED BIN,
FIXED BIN,
FIXED BIN,
FIXED BIN,
FIXED BIN,
FIXED BIN,
FIX!D BIN,

I*
I*
1*
I*
I*
I*
I*
I*
I*
I*

NUMBER OF SYMBOLS IN RA *I
LIST OF RA'S *I
INDEX OF OPERATOR IN L *I
RA'S TOP IN T */
HEIGHT OF AREA *I
TOTAL INSERTION REQUESTS *I
LENGTH OF DATA MOVEMENT *I
CUSS OF Rl *I
TREE INDICES OF MARKED */
EXPRESSIONS */

2 #SYKS FilCI!D BIN, I*
2 TREE(CODNT BEfER(#SYMS)),

NUMBER OF SYMBOLS IN RA *I

3 IND
3 BBO

3 SON

FIXED BIN,
l,'IXED BIN,

FIXI!D BIN,

I* SYNTU TREE *I
I* INDEX OF SYMBOL IN L *I
I* INDEX OF SYHBOL'S BROTHER *I
I* IN TREE *I
I* INDEX OF SYMBOL'S SON IN *I
I* 'rB!E *I

2 INS_FLAGS(15,COUNT REFI!R(#SYMS))
BIT(1) UNALIGNED,

1* FLAGS WHERE INSERTIONS *1
I* li!LL OCCUR *I

2 NEXTBA POINTER, I* NEXT RA IN LIST */

Structure holds information about each active Reducible
Application (RA} in L. When a new RA is allocated, its
fields are initialized and its syntax tree is built. Each
node of the tree contains 3 items: the index in L of the
non-empty cell of L it represents, the tree index of its son
(next non-empty cell in L if it has a larger level number
than the node; value is zero if no son exists) , and the tree
index of the node•s brother or father (next non-empty cell
of L with level number less than or equal to the node's
leve 1 number) •

Used by: ASSIGN• FINDRAS, INSERT, PRI5, BAS, SEND,
SETREG, STORAGE.

- 11 -

l!icroproqrams for Primitives

(N1, I* NUMBER OF DESTINATIONS *I
N2, I* NUI!BER OF FRAGI!ENTS *I
N3) FIXED BIN, I* NDI'IBER OF INSTRUCTION *I

I* BYTES *I
1 PRII!ITIVE llliS 1!D (P6) , I* PRII!.IT.IVE I!.ICROPROGRAI'I *I

2 #DESTS FIXED BI!I, I* NUI!BER OF DESTINATIONS *I
2 DEST(N1 REFER (#D!STS) , 2) I* DESTINATION LIST *I

Fl:Xl!D BIN,
2 liFRllGS FIXED BIN, I* NUMBER O.F FRAGMENTS *I
2 FRAG (N2 Rl!FER(#FRAGS),2) I* FRllGl!ENT LIST *I

FIXED BIN,
2 LEll'rOT FIXED BIN, I* NUMBER OF INSTUCTION *I

I* BYTES *I
2 STI'IT (N3 BEFER (LENTCT)) I* INSTRUCTION ARRAY *I

FIXl!D BIN,
2 STARTIRS FIXED BIN, 1* FRAGMENT # OF FIRST *I

I* INSERT INSTRUCTION */

Each allocation contains a microprogram for a primitive
operator. Destination expression list (DEST) contains one
entry for each destination expression. Each destination
contains 2 items: a 0 (for S) or 1 (for E) and RLN. Frag­
ment list (FBAG) contains one entry for each fragment. Each
fragment contains 2 items: a destination number {index in
destination list) and a starting instruction counter value.
The instruction array (STilT) consists of all the micropro­
gram bytes, and is sorted in execution order. The next
instruction is located by incrementing an instruction coun­
ter the length of the last instruction executed. Each copy
is allocated and initialized when primitives are read from
the input file. The address of a copy is stored as a PLII
pointer in the primitive's copy of OPTAB.

USED BY: ARITH, ASSIGN, COMPARE, INSERT, PRIM,
SEND, SETUP.

- 12 -

Symbol Table

1 SYIITAB (*) CTL EXT, I* SYI!BOL TABLE */
2 SYI! CHAB (8), /* SYI!BOL *I
2 USES FIXED BIN, I* NUl'lBER OF OCCURRENCES OF *I

/* SYI!BOL *I
2 NUIIEIIIC BIT (1), I* FLAG IF SYl'lBOL IS A NUI!BER *I
2 VAL FLOAT BIN, /* NUI!ERIC VALUE OF ATOll *I
2 OPPTB POINTER, I* POINTER TO OPERATOR TABLE *I

All program symbols are stored in
indexed (O:TABSIZE+1). Constants
(TABLES), so they can be changed
programs. Addresses of symbols are

this table. Table is
are read from a file

without recompiling any
determined by hashing.

Used by: AR!TH, ASSIGN, COI!PARE, FINDRAS, HASHSYB, INSERT,
PRill, PRINTL, RAS, SEND, SETUP, STORAGE.

Defined Operator Table

N FIXED BIN, /* LENGTH OF DEFINITION *I
1 DEFT.AB BAS ED (PS) , I* DEFINITION TABLE *I

2 DEFLEN FIXED BIN, I* LENGTH OF DEFINITION *I
2 DEFIBITION(N REFER(DEFLEN)},

3 s FIX!D BIN, /* SYIIBOL */
3 RLN FlXllD BIN, /* RELATIVE LEVEL NUI!BER *I
3 SIUPIT FIXED BIN, I* FLAG FOR SNAPSHOTS *I

Table contains definitions of all user-defined operators.
The length of the definition is followed by the definition
in internal representation.

Used by: RAS, SETUP.

- 13 -

Operator Table

1 OP'lliB BASl!D (Pij) • I* TABLE OF OPERATORS *I
2 cuss FIXED BIN, I* CLASS OF OPERATOR *I
2 IIPBITS FIXED BIN • 1* NUIIBEB OF IIICROPROGBAII BITS *I

I* FOB PlUIIITIVES, DEFINITION *I
I* LENGTH FOR DEFINED OPERATORS *I

2 ltPCALLED BIT (1) , I* FLAG IF fUCROPROGRUl HAS. *I
I* ALREADY BEEN CALLED *I

2 DEFPTB POINTER, I* POINTER TO DEFINITION TABLE *I
I* OR PRIMITIVE MICROPROGRAII */

2 NEXTOP POINTER, I* NEXT OPERATOR IN LIST *I

Each operator (prireitive and defined) owns one copy. Con­
tains information about the operator and a pointer to its
definition or microprogram.

Used by: FINDRAS, US, SETUP.

- 14 -

Messaqes

1 MESSAGE CYL I!XT,

2 IISTUT(2) PliED BIN,

2 MEND (2) FIXED BIN,
2 l!ESS#(2) FIXED BIN,
2 l!ESS(2,4,#Sil!S)

FLOAT BIN,

2 l!# FUED BIN,
2 PUll# FIXED BIN,

2 I!IND FUllll BIN,

2 .I!ESSPLAG (2, fiSY!!S)

I* MESSAGES AND MESSAGE *I
I* COII'IIIOLS *I
I* STARTING TREE INDEX OF *I
I* IIESSAGE *I
I* LAST TREE INDEX OF MESSAGE *I
I* INDEX OF MESSAGE *I
I* IIESSAGES *I

I* INDICES FOR INSTRUCTIONS *I
I* REFERENCING MESSAGES: *I
I* INDEX OP MESSAGE REFEBENCED *I
I* OPERAND NUMBER OF MESSAGE *I
I* COMPONENT REFERENCED *I
I* INDEX OF HESSAGE IN MESSAGE *I
I* CONTROL (1 OR 2) *I
I* FLAG IF MESSAGE WAS SENT *I

BI'l(1) UNALIGNED,
2 SFUG (3) BI'f (1), I* FLAG IF COMPARISON USED *I

1* MESSAGES *I
2 !!FLAG (3) BIT (1) • I* FlAG IF COMPARISON WAS *I

I* SIIIPLE *I
2 SIIESS(2,0:4) I* MESSAGE COMPONENTS THAT ARE *I

BIT (1) , I* SYMBOL TABLE ADDRESSES *I

Allocated before reducinq an RA to keep track of two rounds
of messaqes (necessary because a new messaqe may be started
before the last can be erased). Messages are stored in the
array MESS; its first dimension is to keep two rounds of
messages; its second corresponds to the component number of
the four possible messa9e components; its third corresponds
to the indices of the messages themselves - the third dimen­
sion indices of messages sent by an Sl instruction are the
same as the tree indices of the target expression which sent
them; .. these indices are stored in MSTli.RT and !lEND. The sin­
gle result of a component of an SC is stored in the entire
cross section corresponding to the component num.ber; l!STABT
and MEND for an sc are 1. MESSt contains the indices of up
to.tvo rounds of messages; e.g., the messages from sendi
have !IESSI:i. lll!SSFLli.G indicates whether a cell sent a mes­
sage or not. Ml, MIND and PARR# refer to a current instruc­
tion referencing a message that has already been sent.

Used by: ABITB, ASSIGN, COMPARE, POP, PBIM, SEND

- 15 -

Reqister Table

REG'UB(*) CHAR(6) CTL EXT, I* TABLE OF REGISTERS *I

Table of registers. Each element is
register and is initialized from
(TABLES). Indexed (NOREG:1).

the mr.eroonic name of a
system tables file

Used by: ABITH, ASSIGN, COMPARE, INSERT, PRIM, SEND,
SETREG, SETUP

Micro Opcode Table

1 MICRTAB (*)
2 I'!NEM
2LEN
2 R

CTL EXT,
CHAR(4),
FIXED BIN,
FIXED BIN,

I* TABLE OF MICBO-OPCCDES *I
I* MNEMONIC OPCODE *I
/* INSTRUCTION LENGTH *I
I* REGISTER POSITIONS IN *I
I* INSTRUCTION *I

Table of micro opcodes. Initialized from system tables file
(TABLES). R indicates what fields in an instruction with
this opcode contain register values.

Used by: ARITH, ASSIGN, COMPARE, INSERT, PRIM, SEND, SETUP

Program List

PROG(10) FIXED BIN EXT, I* LIST OF USER PROGRAMS *I

List of indices in t of first symbol of each user prograff
being executed. Not used in current version; will be used
to gather statistics.

Used by: SETUP, STORAGE

- 16 -

Status variables:

EKl'TY

NOTRA

REQUEST

REDUCE

CANCLED

Cell is empty; also is symbol table address of
blank.

Used by: ARITH, FINDBAS, INSERT, PRIM, BAS, SEND,
SETREG, SETUP, STORAGE.

Cell is not in an RA.

Used by: FINDRAS, PBINTL, BAS, SETUP, STORAGE.

Cell is in RA ready to request storage.

Used by: FINDBAS, PFINTL, BAS, SETUP.

cell is in FA that is ready to be reduced.

Used by: FINDRAS, PBINTL, BAS, SETUP.

Cell is in RA whose insertion requests vere can­
celed.

Used by: FINDBAS, PRINTL, BAS, SETUP, STORAGE.

- 17 -

Data Movement Status Variables:

EBBA

l'BEA

FBl'A

Cell was empty before data movement,
data ~rovement.

Used by: PBINTL, RAS, SETUP.

Cell vas full before data movement,
data n,ovement.

Used by: PRINTL, RAS, S!TUP.

Cell was full before data movement,
data movement.

Used by: PRINTL, RAS, S!TUP.

- 18 -

full after

empty after

full after

RA Class variables:

ACLASS

BCLASS

CCLASS

DEl"CUS

IIE'l'CUS

Class A: FA requires no storage management and no
data Irovement.

Used by: PINDRAS, RAS, SETUP.

Class B: RA requires data movement but no storage
management.

Used by: FINDRAS, BAS, SETUP.

Class C: RA requires both storage management and
data reovement.

Used by:PINDBAS, BAS, SETUP.

BA's operator is a user-defined operator.

Used by: PINDRAS, BAS, SETUP.

BA has composite operator and requires meta compo­
sition.

Used by: FINDRAS, RAs, SETUP.

Program Constants:

APPL Symbol table address of application symbol; symbol
and address are initialized from system tables
file (TU!I.ES).

DD'l'OT

FALSE

Used by: FINDRAS, SETUP.

Number of output files.

Used by: REDIIACH, SETUP.

Symbol table address of 'F'; initialized from sys­
tem tables file (tABLES).

Used by: SEND, SETUP.

- 19 -

LENL

!lESS BEG

NO !lEG

PAllEN

Index of rightmost cell of L array; initialized
from value of SIZE.

Used by: FINDRAS, RAS, SETUP, STORAGE.

Index of first message register;
NOilEG-1.

Used by: COIIPARE, PRill, SETUP.

initialized as

Index that indicates no register for microprogram
instruction register fields; initialized from num­
ber of registers when l!FGTAB is initialized.

Used by: COIIPA!I!, HASBSYII, Pl!III, SEND, SETREG,
SETUP.

Symbol table address of sequence symbol; initial­
ized from system tables file (TABLES); note that
name does not correctly match current syntax -­
this is for historical reasons.

Used by: PINDBAS, liAS, SETUP.

POSJ Index of POS# in l!EGTAB.

Used by: INSERT, SETUP.

ROOT Index of root cell of T.

SIZE

TABSIZE

Used by: FINDRAS, liAS, SETUP, STORAGE.

Number of cells of L; ! is indexed (l!OOT:SIZE-1);
L is indexed (SIZE:2*SIZE); initialized from user
options.

Used by: FINDRAS, PRIN!L, RAS, SETOPTS, SETUP,
STCRAGE.

High .bound of symbol table minus 1: initialized
from user options; value should be a prime number
because hashing algorithm uses it to divide to get
symbol table addresses.

Used by: HASHSYII, SETOPTS, SETUP.

- 20 -

THT Height of T; initialized from value of SIZE.

TRUE

zs

p

TBIT

TLEV

Used by: FINDRAS, RAS, SETUP.

Symbol table address of 'T'; initialized from sys­
tem tables file (TABLES),

Used by: SEND, SETUP.

symbol table address of •zzzzzzzz•; initialized
from system tables file (TABLES); used to initial­
ize a message to 'infinity•.

Used by: SEND, SETUP.

Percent of L that must always remain empty; ini­
tialized from user options.

Used by: ~AS, SETOPTS, SETUP, STORAGE.

Time it takes to move a bit through the root of T;
initialized from user options.

Used by: RAS, SETOPTS, SETUP.

Time it takes to move an atom one level in T; ini­
tialized from user options.

Used by: RAS, SETOPTS, SETUP.

OPBEAD Head of operator list (see OPTAB).

Used by: RAS, SETUP.

RAT AIL Tail of RA list (see RA).

Used by: FINDRAS, BAS, STORAGE.

- 21 -

3.5 f!1J BX!EBNAL

CBT

INPUT

DD name of terminal display;
system.

Used by: SETUP.

DD name of input libraries.

Used by: SE'TUP.

not used in current

SYSPBINT DD name of output print file.

TABLES

Used by: SETUP, PRINTL.

DD name of system tables file; contains registers
for BEGTAB, constants for SYMTAB, and micro
instruction opcodes and formats for MICRTAB.

Used by: SETUP.

- 22 -

ABEND (MESSAGE)

l'lODUtE:

SCOPE:

P.IU!AIIETERS:

PURPOSE:

!lET HOD:

CALLl!D BY:

CALLS:

Chapter 4

I?RCCEDURl!S

Error Message Module.

External.

!!ESSAGl! CHAR (*l;

Print an error message and abend.

This subroutine is not fully inplemented;
it receives a character string as a par­
ameter, prints it, and stops execution.

Almost every subroutine.

None.

- 23 -

ARITH (YC, TREEYND, RT, TOP, P6, OPERAND, COND, ftATCH,
GRO)

MODULE:

SCOPE:

PI\RJUIETERS:

PURPOSE:

METHOD:

CALLED BY:

CALLS:

Interpreter Module.

External.

IC FIXED BIN;
Instruction counter.

TREEIND FIXED BIN;
Leftmost syntax tree index of target
expression.

RT FIXED BIN;
Rightmost syntax tree index of target
expression.

FIXED BIN; TOP
Index of
stacks.

top entries in COND and MATCH

P6
Base
ture.

POINTER;
pointer for PRIMITIVE data

OPERAND{*,*) FLOAT BIN;
Instruction's operands.

COND(*,*) BIT(*) UNALIGNED;

struc-

Results of previous comparisons for each
syntax tree node in target expression.

MATCH(*•*•*) BIT(*) UNALIGNED;
Results of previous comparisons involving
messages for each syntax tree node in
target expression and each syntax tree
node of message (see ALGORITHMS).

GRO(*) FLOAT BIN;
Register of temporary results.

Execute an arithmetic microinstruction.

Loop through cells of target e.xpression;
for each cell, perform operation speci­
fied by instruction's opcode and store
result in temporary register.

(T!XSTMT).

!lone.

- 24 -

ABITBOP

110DULE:

SCOPE:

PUAPJI!TEBS:

PUIH?OSE:

METHOD:

CALLED BY:

CALLS:

Interpreter Module.

Internal to SEBD.

None.

Execute a send-and-combine instruction
with arithmetic combining operator.

Loop through each cell of target expres­
sion; combine operands of each cell with
messages according to combining operator.

SI!:ND.

None.

- 25 -

ASSIGN ('l'REEIND, BT, IC, P1, P6, OPERAND, COND, MATCH,
'l'OP, GRO)

MODULE:

SCOPE:

PABA II E'l'ERS:

PURPOSE:

I'JETROD:

CALLED BY:

Interpreter Module.

External.

TREEIND FIXED BIN;
leftmost syntax tree index of target
expression.

RT FIXED BIN;
Rightmost syntax tree index of target
expression.

IC FIXED BIN;
Instruction counter.

P1 PCINTER;
Base pointer for RA data structure.

P6 POINTER;
Base pointer for PRIMITIVE data struc­
ture.

OPERAND(*•*) FLOAT BIN;
Instruction's operands.

COND(*,*) BIT(*) UNALIGNED;
Results of previous comparisons for each
syntax tree node in target expression.

IIATCH(*,*•*l BIT(*) UNALIGNED;
Results of previous comparisons involving
messages for each syntax tree node in
target expression and each syntax tree
node of roessage (see ALGORITHMS).

FIXED BIN; TOP
Index of
stacks.

top entries in COND and IIATCH

GRO (*) FLOAT BIN;
Register of teroporary results.

Execute an assign microprogram instruc­
tion.

Loop through target expression in syntax
tree; make assignments to s or RLN.

(EXSTI'JT) •

- 26 -

CALLS:

BOO LOP

liODlltE:

SCOPE:

PAllAIIETERS:

PllRPOSE:

l'lETHOD:

CALLED BY:

CALLS:

CANCEL

l!ODULE:

SCOPE:

PARAMETERS:

PURPOSE:

KETIICD:

CALLED BY:

CALLS:

BASHVAl, ABEND.

Interpreter Module.

Internal to SEND.

None.

Execute a send-and-combine instruction
with Boolean combining operator.

Loop through each cell of target expres­
sion; combine operands of each cell with
messages according to combining operator.

SEll D.

None.

Storage Management Module.

Internal to (HALF1).

lion e.

Cancel storage requests.

Hove down through T cancelling areas'
requests until all remaining requests can
be satisfied.

(HALF1).

None.

- 27 -

COMPARE (IC, TREEIND, RT, TOP, P6, OPERAND, COND, MATCH)

!!ODULE:

SCOPE:

PARA!IETERS:

PURPOSE:

METHOD:

CALLED BY:

CALLS:

Interpreter Module.

External.

IC FIXED BIN;
Instruction counter.

~REBIND FIXED BIN;
Leftmost syntax tree index of target
expression.

RT FIXED BIN;
Rightmost syntax tree index of target
expression.

TOP
Index of
stacks.

FIXED BIN;
top entries in CCND and MATCH

P6 POINTER;
Base pointer for PRI!!I~IVE data struc­
ture.

OPERAND(*,*) FLOAT BIN;
Instruction's operands.

CCND(*,*) BIT(*) UNALIGNED;
Results of previous comparisons for each
syntax tree node in target expression.

MATCH(*,*,*) BIT(*) UNALIGNED;
Results of previous comparisons involving
messages for each syntax tree node in
target expression and each syntax tree
node of message (see ALGORITHMS).

Execute a compare microprogra~ instruc­
tion.

Determine whether comparing immediate
operands or symbol table addresses; store
results of comparison of each node of
target expression in syntax tree in COND.
See ALGORITHMS.

(EXSTIIT).

ABEND 1 (EXCOIIP).

- 28 -

D!ISTAT

!IODULE:

SCOPE:

PARAMETERS:

PURPOSE:

METHOD:

CALLED BY:

CALLS:

EXCO!IP

MODULE:

SCOPE:

PARA!!ETERS:

PUBPOSE:

METHOD:

CALLED BY:

CALLS:

Interpreter Module.

Internal to BAS.

None.

set status of cells in an BA undergoing
data movement.

Examine each cell in RA and set its sta­
tus according to its contents before and
after data movement.

RAS.

None.

Interpreter Module.

Internal to cOnPARE.

None.

Execute a comparison on elements of a
target expression.

For each node of in syntax tree of target
expression, determine whether comparison
is true or false and store result in COND
and MATCH. See ALGORITHMS.

COI!PARE.

None.

- 29 -

EXFRAG

MODULE:

SCOPE:

PAllA METERS:

PURPOSE:

METHOD:

CALLED BY:

CALLS:

EXORDEB

MODULE:

SCOPE:

PARAMETERS:

P!JBPCSE:

METHCD:

CALLED BY:

CALLS:

Interpreter Module.

Internal to PRIM.

None.

Execute each microprogram instruction in
a fragment.

Initialize each instruction's operands;
if before storage requests have been
filled, execute all instructions; if
after storage has been received, execute
insert instructions only; increment
instruction counter.

PRIM.

(EXSTI'IT), SETBEG, ABEND.

Input Module.

Internal to (GETPBIM).

None.

Control when fragments are to be inserted
in fragment list.

Insert last fragment if not yet inserted.
Insert current fragment.

(GETPIIIM).

(INSERT).

- 30 -

EXSTRT

I!ODULE:

SCOPE:

PA !lA !!ETERS:

PURPOSE:

I!ETBoD:

CALLED BY:

CALLS:

Interpreter Module.

Internal to (EXFBAG).

None.

Execute a microprogram instruction.

GO TO a label that either executes the
instruction or calls a subroutine to exe­
cute the instruction.

(EXFBAG).

COIIPARE, INSERT,
ABITH, ABEND.

POP 1 ASSIGN, SEND,

!'INDUS (APPLTOT, SNAP)

NODULE:

SCOPE:

PABll.l!ETERS:

PUBPOSE:

I!ETROD:

CALLED BY:

CALLS:

Update List of B&•s.

External.

APPLTOT FIXED BIN;
Total number of applications in L.

SNAP BIT(*);
Flag indicating whether any operator in
operator position has •snap• flag ena­
bled.

Locate new innermost applications (Rl's);
build their syntax trees; determine their
class and status; insert them in list of
R&•s. l'or each B&, find height and top
of RA's area in T.

A single scan of L in which l!ag& test for
finding RA's is applied.

Bl!DI!ACH.

(l"INDTOP) , (PARSE).

- 31 -

FIHDTOP (PTB)

RODULE:

SCOPE:

PARAI!IETEllS:

PUllPCSE:

IIETBOD:

CALLED BY:

CALLS:

Update List of RA•s.

Internal to FINDRAS.

PTll POINTER;
Pointer to a member of the RA list.

Compute top in T and height of area
belonging to RA.

Find indices in T of ancestor nodes of
RA•s application symbol, of the cell to
its left, and of its right neighbor,
until the lowest common ancestor is
found.

FIN DR AS.

None.

GI!TCHAR (NEll CHAR • CLASS)

RODULE:

SCOPE:

PARA!IETERS:

PURPOSE:

METHOD:

CALLED BY:

CALLS:

Input llodule.

Internal to (SCANTOK).

NEWCHAR CHAR(*);
Character scanned.

CLASS FIXED BIN;
Lexical class of NEWCHAR.

Find next character of token; determine
its lexical class.

scan input card for next non-blank char­
acter; look up class in table of legal
characters and corresponding lexical
classes.

(SCANTOK).

None.

- 32 -

GETDEF

liODULE:

SCOPE:

PAlU.!!ETEBS:

PURPOSE:

!!ETHOD:

CALLED BY:

CALLS:

GETOPS

!IODULE:

SCOPE:

PABA llETERS:

PUBPOSE:

!IETHOD:

CALLED BY:

CALLS:

Input !lodule.

Internal to (G!TOPSt.

None.

Read and translate to internal represen­
tation the definition of a user defined
operator.

Scan each symbol in the definition; enter
them in symbol table; calculate BLN's:
enter symbol table addresses, RLN•s, and
•snap• indicators in definition.

(GI!TOPS) •

HASHSY!l, (SCANTCK)·

Input !lodule.

Internal to SE~UP.

None.

Read and translate to internal represen­
tation all operators needed for execu­
tion.

Read each operator in input file; if the
operator is in the symbol table and is
not yet defined, translate the definition
or microproqrarr .•

SETUP.

SEABCH, (GETDEF) • (GETPBI!!).

- 33 -

GETOPTS

MODULE:

SCOPE:

PARAMETERS:

PURPOSE:

METHOD:

CALLED BY:

CALLS:

GET PRIM

MODULE:

SCOPE:

PARAMETERS:

PUB POSE:

METHOD:

CALLED BY:

CALLS:

Input Module.

Internal to SETUP.

None.

Initialize user options.

Read in each option card. starting with
options on EXEC card and then options in
user's library; assign operand values to
corresponding option variables if not yet
specified.

SETUP.

SETOPTS.

Input !lodule.

Internal to (GETO!'S).

None.

Read and translate to internal r~presen­
tation a primitive operator's m~cropro­
gram; sort the micro-instructions into
execution order.

Scan each input card for target expres­
sion and micro-instruction; translate
components; insert instruction's fragment
control information in execution order in
fragment list; copy instructions in exe­
cution order to PRIMITIVE data structure.
See ALGORITHMS.

(GETOPS).

SEARCH, (EXORDEB).

- 34 -

GETPI!OG

!IODULE:

SCOPE:

PAI!AI'lETERS:

PUI!POSE:

!!ETHOD:

CALLED BY:

CALLS:

BALF1

MODULE:

SCOPE:

PAFAMETERS:

PURPOSE:

l'IETHOD:

CALLED BY:

CALLS:

Input l!odule.

Internal to SETUP.

None.

Read programs to be executed; translate
to internal representation; initialize L
array.

Bead each program selected by PI!OG option
from user file; translate each symbol to
sy~bol table address; initialize L cells;
use scale control and blank count symbols
for spacing control in L.

SETUP.

HASHSY!I, (SCANTOK), ABEND.

Storage Manage~ent.

Internal to STORAGE.

None.

compute PT and NT values in T; cancel
insertion requests as needed.

one full cycle (up and down) in T. See
ALGORITHMS.

STORAGE.

(CANCEL) •

- 35 -

HALF2

MODULE:

SCOPE:

PARAMETERS:

PURPOSE:

METHOD:

CALLED BY:

CALLS:

Storage l!anageroent.

Internal to STORAGE.

None.

Compute new position of each cell of L.

l!ove up in T computing new PT values;
move down through T computing BL and BR
values in cells of T, and then new posi­
tions of cells of L.

STORAGE.

None.

HASHSYI'I (TOKEN, ADDI<I!SS)

MODULE:

SCOPE:

PABAI!ETERS:

PUBPOSE:

METHOD:

CAlLED BY:

CALLS:

symbol Table Manager.

External.

TOKEN CHAR(*);
Token to be entered in symbol table.

ADDRESS FIXED BIN; symbol
table address of TOKEN.

Enter a symbol in symbol table.

Determine symbol's table address; insert
symbol in table.

(GETDEF), (GETPROG).

(SCANTAB), (INSERT).

- 36 -

HASH VAL (VALUE, l\DDBESS)

l!ODULE:

SCOPE:

PABAIIETEBS:

PURPOSE:

l!E'rHOD:

CALLED BY:

CALLS:

INIT

l!ODULE:

SCOPE:

PAlllU!ETEHS:

PURPOSE:

l!ETHOD:

CALLED BY:

CALLS:

Symbol Table Manager.

External entry point in HASHSYII.

VAlUE FLOAT BIN;
Value to be entered in table.

ADDRESS FIXED BIN;
symbol table address of VALUE.

Convert numeric value to character
string; enter in symbol table.

Assign VALUE to picture variable; remove
nonsignificant zeros to get unique char­
acter representation; determine symbol's
address in table; insert symbol in table.

ASSIGN.

(SCANTAB) I (INSERT)·

Input !lodule.

Internal to SETUP.

None.

Initialize Micro-operation table, Regis­
ter table, and symbol table.

Head bounds of tables; allocate tables;
read table values.

SETUP.

None.

- 37 -

INITRAS

!IODULE:

SCOPE:

PARAI'IETEBS:

PUEPOSE:

METHOD:

CALLED BY:

CALLS:

Interpreter Module.

External entry point in RAS.

None.

Initialize branch mechanism for RAS; ini­
tialize list of EA•s.

Allocate and assignment.

RED!IACII.

None.

- 38 -

INSERT (TREEIND, RT, IC, P1, P6, OPERAND, TOP, COliD,
TillER, INS#)

I!ODULE:

SCOPE:

PARA!IETERS:

PURPOSE:

I!ETHOD:

CALL I!D BY:

Interpreter l!odule.

External.

TREEIND FIXED BIN;
Leftmost syntax tree index of target
expression.

RT FIXED BIN;
Rightmost syntax tree index of target
expression.

IC FIXED BIN;
Instruction counter.

P1 POINTER;
Base pointer for BA data structure.

P6 POINTER;
Base pointer for PRIMITIVE data struc­
ture.

OPEBAliD(*,*) FLOAT Bill;
Instruction's operands.

FIXED BIN; TOP
Index of
stacks.

top entries in COND and !lATCH

C0ND(* 1 *) BIT(*) UNALIGNED;
Results of previous comparisons for each
syntax tree node in target expression.

TII!ER FIXED BIN;
Tells whether RA is before or after sto­
rage management.

INSi FIXED BIN;
Number of insert instruction
microprogram.

within

Execute an insert microprogram instruc­
tion.

If before storage management, determine
number of cells to be inserted; if after
storage management, locate cells to be
inserted and insert them.

(EXSTI!T).

- 39 -

CALLS:

INSERT

MODULE:

SCOPE:

PARAI!ETERS:

PURPOSE:

METHOD:

CALLED BY:

CALLS:

INSERT

IIODULE:

SCOPE:

PARAMETERS:

PURPOSE:

IIETHOD:

CALLED BY:

CALLS:

SETliEG, ABEND.

Input llodule.

Internal to (GETPRIM).

None.

Insert a fragment in fragment list.

Find fragment's slot in list (sorted by
DEST# within PGM#) ; insert fragment. See
ALGORITHMS.

(EXORDER).

None.

Symbol Table Manager.

Internal to H!SHSYM.

None.

Insert a symbol in symbol table.

If counter of address's uses is zero,
insert in table; increment uses counter.

HASHSYI'l, HASHVAL.

None•

- 40 -

IIXNIIAX

l!ODU tE:

SCOPE:

PARAI!ETEBS:

PURPOSE:

liETHOD:

CALLED BY:

CAt·LS:

I!OVEIT

f!ODULE:

SCOPE:

PAllA IIETERS:

PURPOSE:

f!ETHOD:

CALLED BY:

CALLS:

Interpreter Module.

Internal to SEND.

!lone.

Execute a send-and-combine microinstruc­
tion with !!.IN or !lAX combining operator.

L~op through each cell of target expres­
s~on; if value larger than message is
encountered and combining operator is
!lAX, save value in message; if value
smaller than ~~ssage is encountered and
combining operator is MIN, save value in
message.

SEll D.

None.

Storage Management Module.

Internal to STORAGE.

None.

Move each cell of L to its new postion;
update program list and RA's syntax tree.

Use list
tion to
previous
ITHI!S.

STORAGE.

None.

of cells
move each
contents

- 41 -

moving in same direc­
cell without erasing

of cell. See ALGOR-

IIEilTOK (IIEIICHAR, CLASS)

IIODUU:

SCOPE:

PABA IIETEIIS:

PURPOSE:

!IETHOD:

CALLED BY:

CALLS:

Input Module.

Internal to (SCAIITOK).

NEilCHAB CHAR(*);
Character scanned.

CLASS FIXED Bill;
Lexical class of IIEWCHAR.

Scan first character of new token and
determine its lexical class.

Find next non-blank character,
new input if necessary; check if
ter is in special lexical class;
look up lexical class in tables
characters and correspondinq
classes.

(SCAIITOK).

None.

- 42 -

reading
charac­
if not,

of legal
lexical

PABSE

!lODlJLE:

scoPE:

PARA l!E'l'ERS:

PlJRPOSE:

l!E'l'HOD:

CALLED BY:

CALLS:

Update List of RA's.

~nternal to FINDRAS.

None.

Build syntax tree for an FA, vith each
node containin9 the index of a non-empty
cell of the RA in L, and the indices in
the tree of its son and brother.

Stack next non-empty cell if it's a son;
pop the stack if it•s a father or
brother.

FINDRAS.

None.

- 43 -

POP (TREEIND, RT, TOP, MATCH, COND, TEST)

l'ICD!JLE:

SCOPE:

PABA!IETERS:

PUBPOSE:

ftETHCD:

CALLED BY:

CALLS:

Interpreter Module.

External.

TBEEIND FIXED BIN;
Leftmost syntax tree index of target
expression.

RT FIXED BIN;
Rightmost syntax tree index of target
expression.

FIXED BIN; TOP
Index of
stacks.

top entries in CORD and MATCH

MATCH(*,*•*) BIT(*) UNALIGNED;
Results of previous comparisons involving
messages for each syntax tree node in
target expression and each syntax tree
node of message (see ALGORITHMS).

CCND(*•*) BIT(*) UNALIGNED;
Besults of previous comparisons for each
syntax tree node in target expression.

TOP FIXED BIN;
Boolean value with which 2 top
entries are to be combined (O=OR,
-1=pop top entry off stack).

Combine comparison stack entries.

stack
1=AND,

Assign results to COND depending on
values of l'IATCH and operands involved in
previous comparisons. See ALGORITHMS.

(EXSTRT).

ABI!ND.

- 44 -

PBIM (P 1, P6, TY!H!R)

MODULE:

SCOPE:

PARAMETERS:

PUFPOSE:

METHOD:

CALLED BY:

CALLS:

Interpreter Module.

External.

P1 POINTER;
Base pointer for RA data structure.

P6 POINTER;
Base pointer for PRIMITIVE data struc­
ture.

TillER
Tells whether
management for

FliED BIN;
before or

this RA.
after storage

Feduce an RA with a primitive in the
operator position.

For each microprogram fragment locate
corresponding target expression; execute
fragment's instructions.

BAS.

(EXFRAG) , ABEND.

- 45 -

PRINTL (LOPT, OUTPUT)

I'IODULE:

SCOPE:

PARAI'IETERS:

PURPOSE:

I'IETHOD:

CALLED BY:

CALLS:

PRNTSTS (OUPTUT)

MODULE:

SCOPE:

PARAMETERS:

PURPOSE:

IIETHOD:

CALLED BY:

CALLS:

REMARKS:

output Module.

External.

LOP'!'(*) CHAR(*) ;
Options specifying what type of snapshot
to print.

OUTPUT FILE VARIABLE;
DD name of output file.

Print a snapshot of the L array.

Examine options for output file; print
snapshot according to options.

REDI'IACH.

None.

output Module.

External.

OUTPUT FILE VARIABLE;
DD name of output file.

Print statistics.

BETUliN.

REDIIACH.

None.

Not implemented.

- 46 -

RAFINI

MODULE:

SCOl'll:

PARAUTERS:

PURPOSE:

METHOD:

CALLED BY:

CALLS:

RAFINI

MODULE:

SCOPE:

PAlU!!IlTEi!S:

PURPOSE:

METHOD:

CALLED BY:

CALLS:

Interpreter Module.

Internal to BAS.

None.

Show RA is reduced.

Reinitialize status of each cell in RA to
NOTRA; delete RA from list of RA's.

RAS.

None.

Storage Managen,ent Module.

Internal to STORAGE.

None.

Show BA is reduced.

Beinitialize status of each cell in RA to
NOTRA; delete FA from 1 ist of RA 1 s.

STORAGE.

None.

- 47 -

RAS (DMLEVELS)

MODULE:

SCOPE:

PARAMETERS:

PURPOSE:

METHOD:

CALLED BY:

CALLS:

REDMACH (PUMSI

MODULE:

SCOPE:

PA RliMETEilS:

PURPOSE:

!!ETHOD:

CALLED BY:

CALLS:

Interpreter Module.

External.

DI!LEVELS FIXED BIN;
Time available for data movement in cur­
rent machine cycle.

Process each RA in list; compute time
available for data movement.

GO TO label array for each possible
CLASS-STATUS combination. Add operator's
I/0 time to data movement time if appro­
priate; reduce or request storage for
each RA.

RED MACH.

PRIM, {DMSTAT), (RAFINI).

Main Control Module.

External !'lain.

PARI'IS
Input
card.

CHAR (1 00) VARYING;
options string from user's

Execute the simulator.

EXEC

Call subroutines; keep track of how many
cycles have executed and call output
routines when options specify that it is
time.

JCL.

SETUP, INITRAS, FINDRAS, BAS, STORAGE,
PRINTL, PRNTSTS, TALK, ABEND.

- 48 -

SClKTAB

I!ODULE:

SCOPE:

PARAIIE'Il!BS:

PUBPOSE:

l!l!THOD:

CALL l!D BY:

CALLS:

Symbol Table l!anager.

Internal to HASHSYM.

!lone.

Determine
address.

a symbol's symbol table

Hash symbol to find address using mid­
squares algorithm; if collision occurs,
probe table linearly until empty address
is located.

HASHSYII, HASHVAL, SEARCH.

None.

SCANTOK (TOKEN, STA'Il!)

MODULE:

SCOPE:

PAllA IIE'URS:

PURPOSE:

METHOD:

CALLED BY:

CALLS:

Input !!odule.

Internal to SEtUP.

TOKEN CHAR(*) VARYING;
'Ioken scanned.

STATE FIXED BIN;
TOKEN's recognize state.

Read next token from input and determine
its lexical class.

Table driven scanner.

(Gl!'rDEF), (GETPROG).

(GETCHAR). (NEWTCK).

- 119 -

SEABCH (TOKEN, ADDRESS)

MODULE:

SCOPE:

PARA!!ETEI!S:

PURPOSE:

IIETHOD:

CALL ED BY:

CALLS:

Symbol Table Manager.

External entry point in HASHSYII.

TOKEN CHAR(*) VARYING;
Token being sought in symbol table.

ADDRESS FIXED BIN;
Symbol table acdress of TOKEN.

Determine whether
table; if it is,
address; if not,
ing •not found •.

a symbol is in symbol
return its symbol table
return address indicat-

Determine symbol table address; if that
address is empty, return NOREG, indicat­
ing that symbol is not in table.

(GETOPS), (GETPRIII).

(SCANTAB) •

- .'50 -

SEND (TBEEIND, RT, IC, TOP, P1, P6, OPERAND, COND)

MODULE:

SCOPE:

PABA !'liTERS:

llE'fBOD:

CALLED BY:

CALLS:

Interpreter Module.

External.

TBEEIND FIXED BIN;
Leftmost syntax tree index of target
expression.

RT FIXED BIN;
Rightmost syntax tree index of target
expression.

IC FIXED BIN;
Instruction counter.

TOP
Index of
stacks.

FIXED BIN;
top entries in COND

P 1 POINTER;

and I!ATCH

Base pointer for RA data structure.

P6 POINTER;
Base pointer for PRII!ITIVE data struc­
ture.

OPERAND(*,*) FLOAT BIN;
Instruction's operands.

COND(*,*) BIT(*) UNALIGNED;
Results of previous comparisons for each
syntax tree node in target expression.

Execute a send microprogram instruction.

If instruction is SI, send the messages
and add the number of messages sent to
the data movement counter of the RA; if
sc, combine the operands according to
first send operand (combining operator).

(EISTI!T) •

(BOOLOP) , (ARI'IHOP) , (l'IINI'IAX) • ABEND.

- 51 -

SETOPTS (CARD, FREQOPT, LOPT, STATOPT, PGM, OPTFLAG)

MODULE:

SCOPE:

PARA!!ETERS;

PURPOSE:

METHOD:

CALLED BY:

CALLS:

Interpreter Module.

External.

CARD CHAR(*);
Input card containing user options.

FBEQOPT(*,*) CRAB(*);
cutput frequency controls.

LOPT(*o*) CHAR(*);
output format controls.

STATOPT(*) CHAR(*);
Cption controlling printing of statis­
tics.

PGM (*) CHAR(*) ;
Program selector list.

OPTFLAG (*) BIT(*);
Flag telling whether or not to set an
option.

Assign values to option variables.

Parse option card for each option keyword
and operand values; check if option is to
be specified; if so, set value of option
variable and assign value '1'B to corres­
ponding option flag.

(GETOPTS).

ABEND.

- 52 -

SET REG (P1, LEFT, RIGHT, REGt, OP, Gl!O)

!IODULE:

SCOPE:

PARAIIETERS:

PURPOSE:

BETHOD:

CALLED BY:

CALLS:

Interpreter !lodule.

External.

P1 POINTER;
Base pointer for BA data structure.

LEFT FIXED BIN;
Leftmost syntax tree index of target
expression.

RIGHT FIXED BIN;
Rightmost syntax tree index of target
expression.

REG# FIXED BIN;
Nu~ber of register to be initialized.

OP(*) FIXED BIN;
Operand to which register values are to
be assigned.

GRO (*)
Contents
results.

FLOAT BIN;
of register of temporary

Assign to an operand values of a register
of L.

calculate register values indicated by
register number for each syntax tree node
in target expression.

PRill, INSERT.

None.

- 53 -

SETUP (PREOOPT, LOPT, STATOPT, DDNAME, PARMS)

!IODULE:

SCOPE:

PARA IIETERS:

PURPOSE:

METHOD:

CALLED BY:

CALLS:

Input Module.

External.

PREOOPT(*,*) CHAR(*);
Options specifying when to print the L
array.

LOPT(*,*l CHAR(*);
Options specifying format in which L is
to be printed.

STATOPT (*) CHAR(*);
Options specifying when statistics are to
be printed.

DDNAl!E(*) FILE VARIABLE;
DD names of output files.

PARMS CHAR(*) VARYING;
User option string passed to main proce­
dure from EXEC card.

Initialize user options, L array, symbol
table, micro-opcode table, and register
table; read defined and primitive opera­
tors and translate them to internal
representation.

Call internal subroutines.

REDI!ACH.

HASHSYII, SEARCH, ABEND, (INIT) ,
(GETCPTS), (GETPROG), (GETOPS).

- 54 -

STORAGE (DI!UVEl.S)

TALK

I!ODULE:

SCOPE:

PAIIAlll!Tl!liS:

PUliPOSE:

!!l!THOD:

CALLED BY:

CALLS:

storage llanagenent Module.

External.

DIILEVELS FIXED BIN;

Fill as many storage requests as possi­
ble.

calculate total storage requests, neces­
sary cancellations, and cells• new posi­
tions by moving up and down in a binary
tree (T).

liEDliACH.

(HALF1) , (HALF21 • (MOVEIT) , (RAF.Illl) •

(FPEQOPT, LOPT, STATOPT)

l'IODULI!:

SCOPE:

PUAI!ETEIIS:

PURPOSE:

I'JETBOD:

CALLED BY:

CALLS:

liEIIARKS:

Output Module.

External.

FREQOPT (* ,*) CHAR(*) ;
Options specifying when to print the t
array.

LOPT(*,*l CHAR($);
Options specifying format in which L is
to be printed.

STATOPT(*) CHAR(*);
Options specifying when statistics are to
be printed.

Initiate an interactive conversion with
user.

BET URN.

Rl!DIIACH.

None.

Not implemented.

- 55 -

s.·1 §Jillll

!licroprog ranuuing is

Chapter 5

ALGORITHMS

documented in

format used

the RED!IACH User's

by the Interpreter Guide.

!lodule

The microprogram

differs from what

instructions are stored in a

the user codes in

fiied binary array

two ways:

(one byte

per field) , and they are sorted into the order in which they

are to be executed.

The translation of the fields of a microinstruction is

straightforward. The first field of an instruction is the

opcode, which is translated by table lookup in !IICRTAB. The

opcode determines what type of operand each subsequent field

in the instruction contains. The register bytes, the number

of which depends on the opcode and is determined by the

value in !IICRTAB.R, are also translated by table lookup in

REGTAB, except if the register is a message or a program

symbol. Messages are translated as follows. !!ESSREG is the

low bound of REGTAB minus one. So, the four components of

message #1 are numbered !!ESSREG, !!ESSREG-1, !IESSBEG-2, and

!IESSREG-3. The components of message 12 start at !IESSREG-4.

In this way, each message component can be uniquely identi­

fied. A program symbol is translated to the symbol's

- 56 -

address in the symbol table. If a register field is not

used (e.g. in send statements), it is translated to NOREG.

Immediate data are translated by converting from character

string to binary. The conditional operator is translated as

follows:

1) AND -> 1

2) OR -> 0

3) STACK -> -2

4) THEN -> 1

5) ELSE -> 0

6) if omitted -> -1

Instruction sequencing is crucial; if the interpreter

tried to assign a message to a cell before the message bad

been sent, incorrect results would occur.

requirements of the ordering process.

There are four

1) Instructions that are grouped into a fragment by

the assembler instructions BEG and END must remain

contiguous and in their original order relative to

each other.

2) ll message with index i IT-ust not be referenced

before all send instructions with index i have

been executed. No send instruction with index i+1

- 57 -

can be executed before all send instructions with

index i have been executed. However, one or more

conditionals may compare a message with index i

and

i+1.

then execute a send instruction with index

That is, the following instruction group is

legal:

(CEF,S,I11 (1))

(SI,T,,,,2,THEN}

(CER,N1,1!2(1))

(Sl,F,,,, 2 ,THEN) •

3) Insert statements must be executed last.

4) If all other considerations are equal, instruc­

tions must be sorted by destination number; that

is, they must go from left to right within the RA.

- 58 -

The solution to these requirements is as follows.

1) Index microprogram's destination expressions in

destination list from left to right.

2) Assign to each instruction a program number (I.'GIU)

as follows:

a) no messages referenced, not an insert:

PG!III=1,

b) send instruction with index i:

I.'G!HI=2*i-1,

c) message referenced, index i (e.g. !12(i)l.

PG!I#=2*i,

d) insert instruction:

PG!1#=100.

3) If the instruction is part of an explicit fragment

(part of a EEG-END group) save the largest PG!I# of

all instructions in the fragment so that the frag­

ment will be grouped together correctly. no not

go to q until END is encountered.

4) Insert destination number (DESTt), PG!I#, and

instruction counter starting and ending values in

a list sorted by DEST# within PGK#. There is one

entry in the list for each fragment, explicit or

implicit. All instructions that are contiguous in

- 59 -

which either have

grouped together

the original microprogram and

the same D!STi and PGBi or are

with BEG and FND form a fragment.

5) Copy instructions into PBIMITIVE.STKT in fragment

order.

The result of this algorithm is a series of fragments that

can be executed in order.

5.2 U.!.!l

This procedure controls the interpretive loop that exe-

cutes microprograms. see GETPRIM for an explanation of the

internal representation of microprograms. This is the basic

loop.

1) Determine starting fragment number (depends on

whether before or after storage management).

· 2) Find target expression of fragment.

3) Execute fragment's instructions (CALL EXSEG).

4) EXSEG calls EXSTI'IT for each instruct ion in a frag­

ment.

EXSTKT uses a GO TO label array to branch to a section

that executes the correct microinstruction or calls a proce-

dure to execute it. There are two interrelated mechanisms

involved that are complicated: conditionals and messages.

- 60 -

Two rounds of messages are saved so that one can be

referenced while the next is being sent. Other information

must be saved also: the index of the message, whether it vas

sent by an SI or sc instruction, whether each component is a

symbol table address or immediate data, and the syntax tree

bounds of the target expression that sent the message (this

is not needed for SC messages since a single result is com­

puted). If sending the message is the arm of a conditional,

it is necessa~y to remember which cells sent a message and

which did not; this is stored in !ESSFLAG.

Nov we will consider conditionals. If no messages are

involved, the comparison part of a conditional can be evalu­

ated using a stack of results, in which each element is an

array containing one result for each cell of the target

expression.

If messages are involved, comparisons are harder.

are the complicating factors?

What

1) The cells in which registers other than messages

are to be referenced are the cells of the current

target expression.

2) The syntax tree bounds of messages referenced were

set when the message vas sent and thus are the

bounds of another target expression in the RA.

- 61 -

3) Hot every cell of the message's target expression

may have se~t a message.

Two loop controls are needed to resolve points 1 and 2.

Furthermore, a single stack of results no longer suffices.

Suppose these instructions are executed:

(CER,S,I!1 (1))

(CER,H1,1!2(1),AND)

(ADR,S,!I1 (1) ,THEN).

Suppose furthermore that the messages with index 1 were the

result of an SI instruction, so that there are n messages,

where n is the number of non-empty cells in the target

expression from which the messages originated. Then for

each cell of the current target expression, ve need to know

not only whether s equals one of the messages, but also

which message it equals. What the instructions really say

is: "initialize register 0 to S; whenever .s equals !11 (1)

and RLN equals 1!2(1), add 1!1 (1) to the total in register 0".

REDHACH uses a pair of bit arrays to resolve this prob­

lem. COND is a two-dimensional bit array that is the result

stack mentioned earlier. For comparisons not involving mes­

sages, this array holds the result of the comparison for

each cell of the target expression. I!ATCH is a three-dimen­

sional bit array that shows for each cell of a target

expression where the comparison vas true, if it vas true at

all. TOP is the index of the top elements of both COND and

- 62 -

MATCH. For comparisons not involving messages, the result

for a cell with syntax tree index I is stored in the entire

corresponding cross section of the array, i.e.

MATCH(TOP,I,*). For comparisons involving messages, the

result of comparing an operand of a cell with syntax tree

index I to a message sent by a cell with syntax tree index J

is stored in MATCH(TOP,I,J). so, if in tbe previous example

the values of S and RLN of syntax tree node I equal the mes­

sage values sent by syntax tree node J, then !ATCH(TOP,I,J)

will be true.

REDMACH must also combine the results of multiple compar­

isons, e.g.

(CEI,N1,1)

(CER,S,I!1(1) ,AND).

The following algorithm is used to evaluate comparisons.

1) set TEST to instruction's comparison operator. See

GETPRIM for values.

2) For each symbol in target expression,

a) assign symbol's syntax tree index to I,

b) initialize temporary bit array, TEMP, to false,

i) if comparison does not involve a message,

evaluate comparison and store result in

TEMP(*),

- 63 -

ii) if comparison involves messages, evaluate

comparison for each message and store

result in Tl!!'IP (J) , where J is the index

in the syntax tree of the cell that sent

the message,

c) if TES'f:-1 or Tl!ST=-2, assign results in TEIIP

to !'lATCH ('l'OP,I,*); if any TEIIP (J) is true,

assign true to COND(TOP,I),

d) if TEST=1, execute bitwise AND of TEMP(*) and

e)

HATCH (TOP,!,*),

!!ATCH(TOP,I,*);

storing

if any

results

element

in

in

!'IATCH(TOP,I,*) is set to true, assign true to

COND(TOP,I),

if TEST=O, execute bitwise OR of TE!!P(*) and

!'IATCH(TOP,I,*), storing results in

HATCH(TOP,I,*); if any element in

!lATCH (TOP, I,*) is set to true, assign true to

COND(TOP,I).

Branches of conditionals are chosen for each cell of a

target expression using the results stored in COND and

!lATCH. The algorithm for branches follows.

1) Set TEST to instruction's branch operator value.

see GETPRI!'l for values.

- 611 -

2) For each cell in the current target expression,

a) if TES'f=-1, evaluate instruction,

b) if T!ST=1, execute instruction only if compari­

son vas true,

c) if T!ST=O, execute instruction only if compari­

son vas false.

If an instruction uith a branch operator references a

message, it must get the one that matches correctly. That

is, if TBST=1 and MATCH(TOP,I,J)='1'B, then use KESS(J), and

if TEST=O and ,MATCH(TOP,I,J)='O'B then use MESS(J).

5.3 S!9Ji.!J.i]

Preparation for storage management is performed as Mago$•

describes in [3]. The implementation used in RBDMACH is as

follows.

1) Cells of T are indexed 1:SlZE-1, where SIZE is the

number of cells of L.

2) Cells of L are indexed SIZE:2*SIZE-1.

3) To move up in T from a son to a father node,

divide the son•s index by 2.

4) To move down in T from a father node to his son

nodes, if the father node's index is i, his left

son•s is i*2 and his right son•s is 2*it1.

- 65 -

Storage management is performed in one pass through L.

Instead of calculating BL and BR values, the program calcu­

lates each cell's new index in L (NEWPOS). A linked list

(STOFftAN) keeps track of each contiguous group of cells that

will move in the same direction. Using this list, groups of

cells can move without overwriting the contents of a cell

that has not yet moved. If a group is moving to the left,

the leftmost cell in the group moves first, if to the right,

the rightmost cell moves first.

- 66 -

