TR~79-005

A PASCAL CROSS-COMPILFF FOR A MICRCCOMPUTER

by

Ganlin Jin

A thesis submitted to the faculty of
the University of North Carclina at
Chapel Hill in partial fulfillment of
the regquirements for the degree of
Master of Science 1n the Department
of Computer Science.

Chapel Hill

May 1979

Approved hy:

dAdviser




GANLIN JIN¥. 3 cross-compiler for a microcomputer.
(Under the direction of Dr. Peter Calingaert.)

ABSTRACT

This +thesis describes an implementation, on a
microcomputer, of a cross-compiler for a subset of the
Pascal language. The microconputer chosen here is the
MC6800 Dbecause of its availability. Two parsing
techniqgues, recursive descent and LR(1), are used in
this compiler, which is written in PL/I.



ACEKNCHLEDGEMENTS

The author is indebted to Dr. Peter Calingaert for
his valuable assistance in the preparation of this
thesis, te Dr. K. C. Tai of N.C. State University for
his assistance on LE parsing, to Dr. F. P. Brooks,
Jr. and Dr. S. F. Pizer for their reading and
commenting on my thesis, to Mr. J. E. Leonarz for his
administrative help, %o many fellow students in this
department who assisted me in various aspects, to my
wife, Tingmei, for her company.

2wk /;
Xk 13 B ko

~True knowledge can only be acguired

through practice.



Crapter

Apperndix

TABLE CF CCHNTENTS

INTFOD?)CTIOH L1 a = L3 o L] 4 - - @ o - L3 L] L o

SYNTAX QNALYSIS L] - = - - - «* - ® Ll L - a o

tanguage specification .+ o o & & & & «
Parsing algori*hms < = 4 ¢ s o & & & =
Cne-pass cempPiler « o ¢ o 2 o o & a o + =
Internrediate c08€ « o s 4 ¢ o ¢ s o w 0w
Choosing an architecture « . « + o + «
Chcosing the set of I-code . o + & = &
I-code optimization « o o o « & o & o o o

CODE G?NEP-&TICN Ll & L) - - - .0 L - - - o - -

Architecture of 8-bit rmicroprocessors . .
The target wachine -~ MCHROO0 . o & & o .
The atrchitecture of HC680D . . . . . .
Ccnstraints irposed bty the ¥C6800 . .
Representation of data .+ + o o ¢ « = o =
TLYEE INtEJEr « o o « o o s o s 2 = s o
“YFe BY®€ o & o s 4 = s & 2 o v o &
LYFE TEEL o o o o o o o o & s s = ° =
“yre char and ¢ype Boolean . . « - « o
Code genera*icn for arithmetic opera+tions
Chject program loading . - + & s = o o =

CGNCLUSICN © o o Ll [ L < - o ® - L] - L L a L]

EXtensibility o o o « o o o o 2 o « o o w
Progranm $eS%ing . s o « o o o o« s s « »

PASCAL =M USFR MANURL & v w =« o o « 5 « o o =
INTROCDUCTTICH o v o o o 2 % o = o a s« o s o =

LANGUAGY PASCAL=¥ . . . © & & o 4 o o o

LexiCal rules L] - ° L) - £l * - - L -+ & - -
Syntax rules . . o & 4 s 4 @ 4 =2 8 & a a

[

page
L 4 1
< 3
- 3
.« B
. 7
@ 7
a7
-] ;3
- i(}
11
« 1
. 12
- 12
« 13
L] 15
. 15
. 16
. 16
- 17
< 17
a 1
. 20
. 20
. 20
page
. 23
- 24
. 26
. 25
- 27



Lanquage differences be%veen standard Pascal and
Pascal=H o o o o « o = 2 2 2 a « » s « « o« 32
Festrictions « « ¢ o o ¢ o o o = s o < & o 5 o 32
extensions « « s o o 4 5 8 s o 5 e s e s o & o 32
Data tYPES <« ¢ o + = = ¢ o s o & ¢ '« 2 » & o = o 33
TYFe integer o o « o = 2 » w o a = a @ = s = o 33
Tyge DYtE€ <« o o 2 2 s 2 s = & o o s s o s & « 33
TYEe feal o o ¢ o « ¢« o 2 s o 2 = o « a « s « 33
Type Booledn o & a o 5 o o ¢ s s s = s « o o « 34
TYFEe CRABL o o 2 o o 2 s @ « s s o« o o o » o « 34
Scalar and Sulratige TYPES 4 = o e a v = o = & 35
ATLaY *VLE€E o o o ¢ o a 15
Standard procedures: inpu* and output . . & o . . 15
Progranming exanfles ¢ « « < ¢ o« o = + & = =« = o 386

e @ - & £ L o L} &

THY IMPLEMENTATION o o o o o o o o o o o o o o « o o 40

Dimrensicnal limits in Pascal-F . ¢« & o o « 2 o o U0
Corstraints of tarqget mwachin€e ¢« o o o« o 2 » 2 » o #1
Job control for running a Pascal~¥ program . . . 42
Structure Oof @ TUN & « <« = @ @« o @ =« a » o o o #2
Program fOIMa? = o o« o o = s w 2 o o o = 5 o« o 43
Tsing an object wodule « o + « =« = & o & = = « 43
Input and CUEPUY 4w & 4 4 = o o o v s o o « = w B4
Corpilation output format « o .+ « o ¢ o =« = « =« = U5
Source 1listing = v « « « s = e s e s & s & & 45
Crcess teference and a**ribyte table . . .« o - 45
Trace of compilation « + o & o« &« « o o o o« o« - U6
Intermediate €0de .« o « « 4 = s = & o s s » o 48
ETTOr MESSAYESE & o s s s o 2 e = o a = = = o« o« UG
Machine Ccode€E o o 2 2 o & 2 o o o« s « s » s« o U9

PROGRAM LOGIC HMANUAL 2o o 2 o 2 o o 2 o o2 « o o o « « 50
PROCEDURYE STRUCTUORE o =« o 2 « « o s a s s « o o = o 51
LEXTCAY ANALYSIS ¢ = & o o o © o 5 a o o o « o s o « 58

Reserved Words .« o o = ¢ « = s s 5 » ¢ e a a » » 56
CPEXA*OTE « =« @ o 2 & 2 » % = o & & = o o a a « o« DO

4

Other encodings e« v ¢ « s ¢« 2 s = s a = s s = » 2 27

A

SYVTAK ANRLYSIS - - - L] - - “ - L. a - - - - L3 - - L] %

Encoding of ncnterminals o o 4 o = o w « o « « « 98
Syrbol table . o o o « s 4 2 s 2 = a s s« « & » « =58
Declaration FAart o« o o o « =« » « =« s o« » & +« « = 62
Grarmar = o o ®» v = s w s « & » s o« o s = « « b2
ECLOY TECOVETY © » v « o o 2 = s w 2 o o = o « P&
Statement PAT* 4 < o s+ 5 e = 3 s v s e 85 8 = = » B7

INTEBHEDIATE CODE L] - - - & - w - w» -* - L] < - L] - - —?Q

ArchitectuUre . . - 2 2 s a = « o = o = o a o o o 70



Specification . .« .

12. CCDE

Kemory organization
Run ¢ire library

BTIBLICGRAPHY

GENERATICHN

Y

-

i1l

T2
28
88
S0

93



Chapter 1

INTPODUCTION

The advent of microprocessors marks the beginning of a
new computer revolution in this ‘decade. The widespread
applicazion of microprocessors, from process control to
small accounting systems, from intelligent terminals %o home
entertainment sets, indicates the revolution is well under
way. And this revolution is far from having run its course.

Since the introduction of the first microprocessors in
the early 1970's, microprocessor systems have steadily
replaced more and more logic circuits in dedicated control
applications, Iin fact, by far the largest application of
microprocessors has been random logic replacement. This
trend should continue with the introduction of reasonably
powerful one-chip microprocessors.

The programs involved in such applications are ruch swmal-
ler than those for general purpose computers and they are
ROM, rather than EAM, based; and more than often, a single
copy of a program is replicated +housands of times for cer-

tain applications., In the above sense, space efficiency
dominates all. Hand-coded machine-language programwing is a
sure way to achieve that goal; an assembler or a macro

assemhler should suffice for this purpose. A compiler for a
higher level language is not so urgently needed.

On the other hand, mnothing in the microprocessor itself
irplies that it should be used only as logic replacement.
With ever increasing complexity and sreed and drastic reduc-
tion in cost, microprocessor-based systems have already
replaced dedicated minicomputers in some cases. Together
with memory and peripheral circuitry, processor chips form
complete microcomputer systems which are threatening o
become truly general-purpose. A4S a matter of fact, even the
dumbest of the microcomputers of today have better perfor-

rance {speed, reliability, power consumption -- not to men-
tion price) than the fgiant' general-purpose computers of
the early 1950's. Microprocessors (or nricrocomputers) will

inevitably retrace the evolution undergone by the ‘*biggies’
in many aspects. For example, people will finally get tired
of assembler language programming; will finally feel the
importance of software portability; will finally recognize
that software costs outweigh hardware costs, The users of
the early biggies experienced these same problems before,



and the soluticn to these problems was machine~independent
higher-level programming languages, so we mwight expect that
this should be the solution to those problems faced today by
the users of microcomputers.

In recognizing these problems and the possible solution
to them, people have begun to design and imrplement higher-
level languages for the microcomputers. Now, several lan-
guages have been developed for microcemputers, notably PL/H
{143, wmicro-C [ 11], several dialects of BASIC, and some sSub-
sets of Pascal.

This thesis project is to inplement a higher-level lan-
quage on a microcomputer, Motorcla MC6800 is chosen as the
target machine sinply because we have available a micro-
computer system, the SwiPC 6800, based on the HMC6800 proces-—
SOT.

4 subset of Pascal, Pascal-M ({described in Appendix i) is
chosen as the higher-level language. The advantages of Pas-~
cal over other languages are that:

1. Pascal is well known;
2. Pascal is structurally strong [3]:
3. Pascal is comparatively easy to ixplement.

_ Because of the lack of software support and sufficient
memory space in the microcomputer system, it is almost
impossible to implement a compiler which runs on the nmicro-
cowputer. Therefore, +the compiler for this thesis project:

is a cross-corpiler -- it compiles Pascal-M source programs
on the I8M 370 {ander 0S5/360 MVT FRel.21.8 -~ HASP II Ver.
3.1y and generates code for the MCEE0D, The comwpiler is

written in PL/I (0S5 PL/I Checkout Compiler Ver. I Rel 3.0y.

There are logically two phases for implemen*ting any high-
er-ievel languages. The first phase 1is lanquage dependent,
extending from lexical analysis through syntax analysis and
semantic analysis until intermediate code generation, and
probably includes some intermediate code optimizaticn, The
second phase is target-machine dependent, including memory
management and object code generation, and prokably some
linking and loading. The next two chapters discuss some
problens encountered and describe the thinking behind some
of the design and implementation decisions in each of these
respective phases.



Chapter 2

SYNTAX ANALYSIS

2.1 LANGUAGE SPECIFICATION

A cormplete specification of a prograrming langtage must

perform three functions. FPirst, it mwust specify the con-
text-free syntax of the language:; *hat is, which strings of
symbols are deemed to be well-formed programs. Second, it

must specify the semantics of the language; +that is, what
meaning should be attributed to ecach syntactically correct
Frogram. Third, it mwust specify the context-sensitive
requirements of the language; that is, what are scme of the
interconnections amoung different segments of a progran.

The most commonly used method of syntax specification is
by Backus Naur Form (BNF), which has the advantage of being

T A . e e b M S . s

able to specify any context-free grammar, including any

ambiguous construct, Another important advantage of BNF is
that it can be used as input for automatic parser genera-
tors. The disadvantage of BNF is that no semantics is

included at all. The use of BNF tends to lead to the inten-
tional or inadvertent introduction of ambiquity where none
is present in the language being specified. For example,
the famous ambiquity of

IF A THEN IF B THERNR C ELSE D

is caused by specifying the grammar of *if statement® in
BRF¥ as

<if stmt> 3:= IF <condition> THER <statewent> _
] IF <condition> THEN <statement> ELSE <stataement>
<gstatement> ::= <if statement> | <other statement>

This is easily resclved by letting shift action dominate
reduce action whenever a such conflict occurs.  Another
exarple is about parameter passing in Pascal. In passing
parameters to subroutines, either call by value or call by
reference could be used, dJdepending on how fcrmal parameters
are declared. At the caliing point, the reduction from
expression or variable %o actual parameter is specified in
the Pascal -~ User Manual and Report [15] ({(subsequently
referred to as the Report) as

<actual parameter> ::= <expression>
{ <variable>

- 3 =



Together with the commonly used reduction
<expression> ::= <variable>

this formws an ambiguous construct. The ambiguity is caused
by specifying a context-sensitive construct by a context-
free gramwmar.

Another commonly used method of syntax specification is
by syntax diagram, which has the advantage of being able to
let people grasp an intuitive feeling about the grammar
easily, Jjust as with statistical diagrams, i.e., graphs {(as
opposed to statistical tables). It is very helpfui in
directing people +o write rvecursive descent parsers. The
major disadvantage of syntax diagrams, besides their saying
nothing about semantics, 4is that it is not possible tc¢ pro-
cess them mechanically; thus they cannot be used as input
for automatic parser generators. Another important disad-
vantage of syntax diagrams is that it is not always possible
0o represent a given programming language by means cof syntax
diagrams. For example, the syntax diagram specification of
the previous example on actual parameter in the Report is:

Actual parameter
———>expressionl—

which has only the firs* half of the BNF equivalent.

Specification of the semantics and context-sensitive
requirements of a language is usually done by words, though
there are some formal definitions available [16 7. The syn-
tax specification of Pascal-M (appendix A} is done both in
BNF and in syntax diagrams in a corplementary way, as is
done in the Report. The semantics and context-sensitive
requirements of Pascal-M are the scame as specified (in
words) in the Report.

2.2  PARSING ALGORITHHS

The parsing algorithms used in *this compiler were chosen
from the many standard parsing algorithms commonly available
[ 1,2,8;10,137. In general, the standard parsing algorithms
can be classified into two categories: iop-do¥n and bottom-
u4p. The terms refer to the way the syntax free is built. 2
representative top-down parsing algorithm 1is recursive des-
cent [13, pp. 97-1001, which has the following advantages.
It is straightforward to understand, the parser 1is easy to
write, all parsing actions are well under human comntrol, and
no backtracking is necessary. But it requires a language

that allcws recursive calls to implement the parser.



Bottom-up parsing culminates in LAIR({1) {(one symbol look-
ahead left-to-right scan rightmost derivation} ([2] which is
the most efficient of all parsing algorithms, and the parser
can be generated automatically. Theoretically the lanquages
accepted by LALR{1} {or loosely LR (1)) are a subset of unanp-
biguous context-free languages. Actually, LR patrsers can be
generated for ambiguous grammars too.  And the intentional
rewriting of an unambiguous construct into an ambiguous one
can even he exploited to reduce the number of nonterminals
and thus the number of productions {1, pp. 116-71197. The
secret lies in an important feature of the parser generation
algerithm; +hat is, +the automatic detection of ambiguities
and difficult-to-parse constructs in the language specifica-
£ion. The pitfalls detected can be used to guide human com=~
piler writers to modify the output parser according to their
knowledge, ¥or example, din this Pascal-M thesis proiect,
<expression> is written for the parser generator input as

<expression> ::=
<expression> <relational operator> <expression>
| <expression> <adding operator> <expression>
| <expression> <wultiplying operater> <expression>
| <sign> <expression>
t { <expression> )
{ <variable>
i <unsigned constant>
i not <expression>

instead of the Report specification

{expresgsion> ::= <simple expression>

i <simple expression> <relational operator>

<simple expression>

<simple expression> ::= <term>

| <sign> <term>

{ <simple expression> <addlng gperator> <term>
{term> 3:= <factor>

| <term> <multiplying operator> <factor>
<factor> ::= <variable>

i { <expression> )

| <unsigned constant>

! ngt <factor>

Because the former has fewer nonterminals, it is more
efficient.

Though 1F parsers have so many advantages, LR parsing is
not a panacea., First, a parser generator must be available.
Second, parsing actions are difficult for human to compre-
hend; should anything go wrong, it is hard to debuq. Third,
the grammar of the language must be rewritten here and there
to match the nature of L¥ parsing. puring 1R parsing there
are two parsing actions: shift and reduce [1]. Shift



actions do nothing more than stacking a new state and
shifting to a new token. Cnly during reduce actions are
semantic routines called into play. pifficulties arise if
some semantic routines should be called at the point where
only shift action is taken. For example, if the <if state-
wment> is specified in RBNF as

<if statement> ::=
IF <condition> THFN <statement> FLSE <statement>

the code generated from <if statement> could be character-
ized by the following diagram.

;

jcode for <condition>*

[§§§§%€§}i} R muhm_hwz

#

code for true part | |
<statement> |

J— Y !

| SN H

code for false part |
<statement> et

| —

L__ﬁmmmm~wa>$

When the LR parser encounters THEN or ELSE, it will take
shift actiony +thus the JFALSE, JUMF and patching of their
destinations will not be generated. If +the grammar is
rewritten as

<if statement> ::= IF <condition> <then> <{statement>
<else> <statement>
<+then>

::= THE¥X
<glse> z:= F

LSE

then we can generate code for the two jurmps and patches dur-
ing the reduction to <then> and <elsed. A small negligence
will cause the whole parser generation program t¢ be rerun,
wvhich is often costly. Therefore, the grammar must be care-
fully examined and modified before processing by the parser
generator.

Beside checking the validity of program syntax, two other
functions are incoporated into the parser, building the sym-~
bol table, and driving semantic routines. Therefore, it is



more convenient to divide a prograr into +twe parts, a
declaration part and a statement par:, which correspond to
the two functions.

In this +thesis project, recursive descent is used to
parse the declaration part and LR{1} 1is used to parse the
statement part. {The parser generator used in this thesis
project is actually SLFR{1) [9], which is almost the same as
LALRP{1}: the only difference, if any, is that the LALR{"}
might have smaller look~ahead sets.}

The advantages of LR{1) parsing and the current trend
toward using +this parsing method encouraged me ¢o use it,
but initial iack of confidence with the LR{1} parser genera-
tor and technique made me decide to perform only part of the
syntax analysis with it. Since recursive descent is a top-
down method, any portion of the language can be parsed by a
different method, and the two methods mesh naturalily-

2.3 ONE-PASS COMPILER

The Pascal language is designed %o be implementable by
one-pass compilers. This means that each input string in
the source program is read in only once, and the parser ¥ill
never have to go back from the beginrning in order to decide
vhat actions to take. One~pass compilation implies effici-
ency, but not all languages are implementable in one pass.
To make a language one-pass implementable, certain restric-
tiong must be imposed. In Pascal, for example, the most
striking and unpleasant feature is that all ggto labels must
be explicitly declared. Another feature is that 35 key
words are reserved, so that their attributes are fized

before parsing. A third Pascal feature, though advertised
as 'discipline of programming¥, is alsoc a consequence of
permitting one-pass compilations all variables must be

explicitly declared.

Since Pascal-¥ is a subset of Pascal, all the restric-
tions of Pascal caused by the one-pass assumption also hold
for Pascal-M. It is natural to take advantage of this and
construct a one-pass compiler. '

Many different representations of intermediate code
exist. The most common are; postfix, guadruples, triples,
and indirect triples.



Postfix notation or Polish motatiop {13, pp. 247-2321 is
particularly attractive for the computer representation of
arithmetic expressions. Explicit rpaming of intermediate
results is not necessary because an cperand stack is used.
The major disadvantage of postfix notation is that it is not
instruction-like, being a continuous flow of a mixture of
operators and operands. The representation of each entry in
this flow must be able to accommodate the largest of all
possible operators and operands. Besides, +this continuous
flow without pause is hard for humans to follow.

Quadruples {operation code, first operand, second oper-
and, result) 713, bpp. 252-2547 representation is instruc-
tion-like, with distinct fields for operators and for oper-
ands; it remedied the disadvantage of postfix notation. But
a lot of temporary variables are introduced into guadruples,
constituting a major disadwvantage.

The spell of temporary variables that haunted quadruples
is broken by the itriples [13, pp. 254-256]) representation,
which saves about a guarter of the space by having one less
field (the result field) than the guadruples. But a level
of indirection is introduced instead. JIndirect triples {13,
ppP-. 256-2571 offers further savings in space, but introduce
yet another level of indirection.

Another representation, which has been chosen for this
which is instruction-iike and assumes a hypothetical stack
wachine, similar to the Burroughs B5000 [18], as its target
machine, Because individual entries are instructions,
P-code has the adventages of both postfix notation and guad-
ruples. The hypothetical stack machine of this thesis pro-
ject is based on the PL/0 processor {22, pp. 331-3337, withk
the stack modified to being only one byte wide and with some
instructions added. The details of the intermediate code
used are described in Appendix B.

2.4.2  chogsing the set of I-

After deciding the form of I-~code (intermediate code),
the next +thing is to choose the specific representation.
criterizﬂ_gsnasgzding what kind of operations should be
included.

1. Convenience criterion. This seeks convenience for
the semantic routine to use. For example, in Pas-
cal-¥ there are six relational operators (>, >=,
<, €= ,=, ==}, If we have all six corresponding
I~-code operations {e¢.g. GI, GE, LT, LE, EQU, HEQ).



it will be most convenient for semantic routines.
Because the operands for the relaticnal operators
could be of different data types, it might be con-
venient to have corresponding mixed ogperations,
too (e.g. for the '>! operator, we might have GTB,
GTBYI, GTIB, G6TI, GTR... <€tcCc., where B, I, R indi~-
cate byte, integer, and real operands, Trespec-
tively). The convenience criterion tends to lead
to proliferation of cperations.

2. Parsimony criterion. fThe bigger the I-code opera-
tion set, the more code generation routines are
needed. The parsimony criterion tends to lead to
a smaller I-code operation set, and a minimur suf-
ficient set is desirable under this criterion.
The minimum se* is similar to the basis vectors
for an n-dimensional space in linear algebra, in
that any operations in this set are linearly inde-
pendent of each other. For examwple, +*he minimum
set of the above six relational operators could be
four: GT, GE, EQU, and a CCH {complement}. The
other three could be formed by combining two oper-~
ations in the basis set. Besides possessing inde-
pendence, the operations in the basis set should
be in some sense orthogonal, so that all other
operations could bLe formed by a shorter combina-
tion of the basis set. Parsimony often leads to
inconvenience, and the I-code prograr tends to be
longer than had this criterion not been honored.

3. Efficiency criterion. Under the efficiency crite-
rion, the object code generated from the I-code
prograr must be short in size and fast to execuie.
Object code efficiency can be achieved by provid-
ing many specialized I~code operations; it again,
like the convenience criterion, will lead to prol-
iferation of operations.

Besides the three foregoing criteria, the expected extent
of code optimization will influence <choosing the set. For
exanple, 1if we decide to include only four operations for
the six relational operators according to the parsimony
criterion, will that lead <0 longer code because <! will be
translated into GE and CON rather than only 17? The answer
iz no, because the relational operations in  Pascal-¥ will
appear only as tests for conditions, any relational opera-
tion will always be followed by a conditional Jung, and a
simple optimization program later can change the pair COH
and JPF {jump if false) into JPT (jump if true), or from COM
and JPT into JPF, so there will be no significant loss in
not providing the three operations LE, 1T, and NEQ.



2.5 I-CCDE CPTIMIZATION

o O S X0 5ol s ) TR M R B drin.

Cede optimization is usually a non-trivial task. Since
code optimization 1is not <the primary goal of this thesis
project {The primary goal is a compiler that works.}, only
+he following simple I-code optimization are included in
thig compiler.

1. Type byte constant folding.

2. Load-store pair cancellation.

3. Indirect jump elimination.

4., COM¥-JPF, and COM-JPT pair transformation.



Chapter 3

CCDE GENERATION

3.1 ARCHITECTURE OF 8-BIT MICROPROCESSCRS

The target machine of the compiler which was constructed
could be any 8-bit microprocessor, simply because there are
sO0 many similarities among them. Though this compiler cur-
rently generates code only for the MC6800, it wiill be more
instructive to understand first the architecture of 8«bit
microprocessocrs in general in order to visualize the prob-
lems associated with code generation for this particular

class of target machines.

The following i=s a summary of 8-bit microprocessor archi-
tecture characteristics [7].

1. Short word size: 8 bits'onlya
2. Short operation c¢ode, usually 8 bits.

3. Variable instruction length -- which saves Temory
space.

4. Many address abbreviation techniques:

a) implicit operand.

b} immediate operand.

¢} relative tranch.

d) indexed or based addressing.

e) register-to-register operations. gcften the
registers are implicitly specified in the oper-
atigon code rather than explicitly in the oper-
and address field.

f) many addressing modes.

5. Few accumulators, few index registers,

6. Stack for subroutine linkage and interrupt han-
diing.



7. HNo mutiplication, no division, mnor anything that
requires subsequencing.

4211 the above characteristics reflect the fact that space
efficiency dorinates all in the realm of MiCroOprocessors.

3.2 THE TARGET MACHINE --

r—

=3
I}
b

o
o
o

lp}

=
o
<
]

3.2.1 The architecture of i

The following is a summary of MC6800 architecture:

1. Proqraﬂmahle reglsters*
Accumulator A -=--~- 8 bits
iccurulator B --~--- B bits.
Index register -~- 16 bits
Stack pointer ~-=-- 16 bits
Program Counter --- 8 bits
Status BRegister --~ 8 bits

2. Two's conplement numbker representation.

3. Memory addressing modes:

a) Immediate addressing. Instructions of this
group are 2 bytes long; the second byte is the
operand.

b)Y Direct addressing. Instructions of this group

are 2 bytes long; the second byte specifies the
address of an operand located 1in the first 2%6
bytes of memory address space.

C¢) Extended addressing. Instructions of this.
group consist of 3 Lytes; +the second and third
bytes form a 16~bit operand address. This

addressing mode has the ability to access the
full range of the memory space (65,536 bytes).

d} Indexed addressing. Instructions of this groap
consist of 2 bytes; the second byte is an off-
set which will be added to the <content aof the
index register and the 16-bit sum will be the
operand address.

e} Inherent addressing. Instructions of this
group have only one bhyte; +the operand{s) are
implicitly specified by the operation code.

4. Branch instructions. There are four addressing
modes ip branch instructions: relative, indexed,

- 12 -



extended, and inherent. In the relative mode of
branching the second byte is the offset from the
current program cotnter value. The offset has a
range of [-128, 4127 ).

5. Status flags. The status register stores six
flags: carry, overflow, sign, zero, half carry,
and interrupt mask respectively. Only half carry

is unusual. This flag will be set whenever a
carry from bit 3 to bit 4 occurs on the last oper-
ation. It is included in corder to facilitate

decimal operations. The leftmost two bits of the
status register are not used.

6. TI,/0 and memory are within a single address space.
Thus all I/0 devices are addressed as mermory loca-
tions.

3.2.2 Constraints imposed by the HCE800

All user prograrmable operations are performed on 8-bit
da*a in the MC6800. Any operation that requires rmore than
eight bits must resort to software nmultiple-precision rou-
tines. Though the architecture of the MC6800 has provisions
for implementing multi-precision operations {e.g. the carry
condition and all operations that involve it), any such
attempt will be painfully slow. To wake matters worse, the
MC6800 has only one 1index register and no other indirect
addressing facilities, This demands that all indirect
addressing be implemented through the lone index register.
This is a heavy blow on t'block structured?! languages, since
block structure requires activation record memory manage-
ment, and all accesses to variables are through the activa-
tion record indirectly. Besides activation record mwanage-
ment, array indexing and arithmetic operations on the
operand stack all reguire indirect addressing. The lone
index register must be loaded and stored frequently to shut-
tle among different uses, which wastes a 1lot of time.
Another disadvantage of having only one index register is
that it is imrpossible to access efficiently two data struc-
tures that are more than 256 bytes apart. The reasop is
that though the index register is 2 kytes long, the offset
has only one byte.

As an example of the last point, the following is a real
problem tha+t I encountered in a head motion parallax pro-
ject. The main idea of that project is to use photo-sensi-
tive devices to find the position of the head of a human
observer [1217. Finding the head position in one dimension
can be reduced to an edge . finding problem. For a
1728-element sensor, the program looks like the following:

- 13 -



FOR I:=1 TO 1728 DO

BEGIN
{¥* SUBTRACT DARK LEVFL %)
A(I):=A(1)-B{I);
(* FILTER NCISES ANL USE %)
{* LAPLACIAN TO PIND THE EDGE *)

a -» - o o - a

END;

The line A(I):=A(I)~-B{I} seems quite simple, but we know
that the arrays are stored at Jleast 1728 bytes apart. The
of fset of indexing is not able to distinguish <the two data
structures if a single index value is maintained; we must
resort to loading and storing the index register twice per
iteration. To simplify the illustration of thkis point, we
ignore the problems of activation record management {which
needs additional indirection), and assume element types of
both A and B are type Dbyte. The translated code for
A{T) :=2{I)~-B{I) would look like:

LDX BIX Index reg := BIX

LDAB 0({X) AccB 1= B {I)

INX Index reg := Index reg 4 1

5TX BIX BIX¥ := Index reg

LDX AIX Index reg := AIX

LDAA 0(X) Acclh := A(T}

SBA Acch = AccA -~ AccB {A{I} - B({I})
STAA 0(X) A{I) := AccA

INX Index reg := Index reqg + 1

STY AIX AIX := Index reg

In constrast, if the first line of the above program were
FCR I:z= 1 TC 100

and both A and B were declared as arrays of dimension 100,
then the translated code for A{Ij:=A{I}-B{I) would be:

LDAA O (X) AccA 1= A({(I)

SUBA 100({X) Acch := Acch ~ B({I}

STAA 0({X) A{I} := AccA

INY Index reg := Index req + 1

What a dAifference?

The Metorola company has finally realized these prohlenms,
too. Their recent announcement [ 19] on their next genera-
tion 8-bit microprocessor, the MC680%, showed the following
improvements, all of which will contribute to easing the
constraints of the MC6800 and facilitate higher-level lan-
guage programmrring.

1. another index register.

2. another user data stack, beside the linkage stack.

3. 16-bit offset indexing, beside %¢he old B8-bit offset.

- il -



4., a direct page base register.

3.3 REPRESENTIATION OF DATA

v s sl sl A S * s K

3.3.1  Iype integer

For most languages, type integer is the basic and most
important data type. It is used in representing integer
numbers used as arithmetic operands, as indices for loop
control, as subscripts for array accessing, or as codes in
encoding some information which does not necessarily have
any direct relation with integers at all. In some tiny lan-
quages or some inexpensive irmplementation of certain bigger
languwages, only type integer is provided to the user, and
~the ugers are forced to encode other data types by means of
integers. On the other hand, in some big languages, like
"PL/T or ALGOL-68, in addition to type integer and other data
types, half, guarter and various multiple-precision integers
and integer representations on different basis are provided.
In such cases, often even the name !integer® is subdivided
{e.g. in PL/I, ¥IXED BIWARY, FIXED DECIHAL etcC.).

What is an integer then? If we use a forwal mathematical
definition, it would be impossible t¢ use a fixed number of
bits to represent all possible integers. Therefore, a prac-
tical approach is used in the Report {p- 13}: a value of
type inteqger is an element of +the implementation defined
subset of whole nunrbers.

For bigger machines, the choice of how to represent an
integer is simple: a fword? is a natural candidate, and the
compiler designer can simply use whatever rTepresentation
for a word is specified by the machine architecture, be it
1*s or 2's conmplement, signed magnitude, or whatever.  This
will simplify the inplemeniation of operations on integers.

For 8-bi¢ microprocessors the word size is eight bits,
which 1s often not sufficient to represent the needed subset
of integers. {Actually eight-bit word size is rmore than
sufficient for a lot of control applications.} The concepts
of word and integer must be sSeparated, for we cannot use a
word or byte to represent all of the integers we need. TWO
bytes concatenated together could mcre often satisfy our
needs, but it would make coperations on integers cormplicated.
Therefore I decided on using two representations: two bytes
for type integer, and one byte for type Dbyte {short
integer), which 1is an extension to standard Pascal data
+ypes. The standard type integer will be sufficient to
represent the most commenly used whole numbers. Type byte
possesses, however, the property of having the most effi-
cient implementation. Both types are represented in 2's

- 15 =



complement form. Type integer has the range [-32768,
$327671; type byte has the range [-128, $127 1.

3.3.2  Iype byie

As described in section 3.3.1, +type byte is intended for
efficiernt implementation of short integers. In order to
make full utilization of this efficiency, not only variables
but literals should be represented in one byte whenever pos-
sible. For example, in the following declaration:

CONST A=10;

B=100;

€=10003
constants A and B could and should be translated intc type
byte, copstant C into type integer.. It would be very inef-
ficient to treat small liiteral numbers as type integer, as
for the ¥1* in N:=N41, Sometimes mixed type operation or
automatic type conversion is reqguired. If we have this

facility, then the literal 1! would be translated into one
byte, independently of the type of N.

3.3.3  Iype real

The choice for representing real nurbers {or floating~
point numbers) on microprocessors is not an easy task. The
most common practice for big machines - is o use distinct
representations for exponent and mantissa: biased represen-
tation for exponent and signed magnitude representation for
mantissa.

. For the microprocessors, the architecture specifications
have no floating point at all. The choice of representation
should be based on the overall efficiency of inplementing
all arithmetic operations, including normalization and con-
version. The evaluation of efficiency for *hese operations,
vhich are actually software subroutines, should be based on
t+he machine language level, not on the microprogramming or
hardware level (see section 4.4).

After some study, I decided on 3-byte precision: one
byte for the exponent and two bytes for the mantissa. The
harder decision, i.e., how to represent them, vas narroved
to the following two choices.

1. Use a uniform representation, i.e., represent both
exponent and mantissa by 2's complement,



2. Use distinct representations, e.q. those of IBH
360.

Fither choice has some advantages over the other. For
example, undey the first choice, multiplication is straight-
forward to implement; just add the two exponents and wulti-
pliy the two mantissae. ‘The second choice 1is selectesd for
this thesis project, however, for the fgllowing reasons.

1. It offers a greater degree of compatibility with
big machines.

2. It allows the use of fixed-point instructions for
comparing the magnitude of floating-point numbers.,

The base for the exponent 1is 2 in this thesis project,
instead of 16 {(as in the IBM 360), because that will cause
less precision loss during normalization; however, the range
is shortened to {10—-t6, 10+t6|, instead of about j10—-78,
10+76¢,

3. 3.4 Type char and type Boolean

A variable of +type char is naturally represented as one
byte. A variable of type Boolean is also represented as one
byte in this project. This is not a sacrifice of space for
time. Por +the MC6800, the address resolution is %o the
byte. Should we represent a Boolean variable by one bit,
thenr any manipulation on it would require more bytes of pro-
gramming effort, which would waste wuch more space thanp it
saved,

3.4 CODE GENERATION FOR ARITHMETIC CPERATIONS

Because microprocessors have no multiplicaticen or divi-
sion operations, and no multiple-precisiorn nor floating-
poin%ting operations, all these operations rmust be program-~
med. Since it requires dozens of bytes of coding for each
of these routines, it is most convenient to store then in a
library and call them whenever such an operation is encoun-
tered rather <+han generate the whole segment of code for
each occurrence. It wastes time *o perform subrottine link-~
age for each occurrence of those secemingly simple opera-
tions, but there is no alternative under such target machine
architecture. . I considered the use cf *threaded code® {41,
but it *turned out to be of no use for this one index Tegis-
ter machine,



The bhest we can do is to program these routines as effi-
ciently as possible. There are a lot of algorithms for per-
forming multiplication and division {6]j, but <those algor-
ithms are for coding on the microprogram level, not on the
machine-language level.  ¥We must re-evaluate the efficiency
of each algorithm from the 1level of machine languags. For
example, +he 'one muitiply? should be %wice as fast as the
*simple shift mwultiply', according to [6 1. In [17, D.
2.15], which uses one multiply to do double-precision mwulti-
plication (16 by 16 bits, with 32-bit result), 78 bytes of
coding are used, with an average time of about 1180 cycles.
I used simple shift multiply +*o implewment the same opera-
tion, which cost me 45 bytes and an average time of about
971 cycles.  Does this contradict +he theory in {67]? o,
because logical operations at the wmicroprograr level are
much faster than addition, whose  speed is limited by carry
propagation time. Thus those algorithms {(one multiply, two
multiply, etc.} din [6] are trying their best to minirize
additions by using more logical operations. That condition
is not true at the machine-lanquage level —-- logical opera-
tions are of the same speed as addition or subtraction.
Thus in order to reduce one addition by using several more
iocgical operations is not justified at the machine language
level, contrary to the examples in [17]. The rule of thumb
for a good algorithm for a machine-language routine is: <the
fewer bytes of coding the tetter.

3.5 OBJECT PROGRAN LOADING

The object code generated by this cross-compiler must be
loaded into +he RAM {random access rwemory} of +the wicro-
compu*er. This section presents a means for doing this.

There are two ways to enter data into our micrccomputer
system: '

1. Through ACIA's {asynchronous communications inter-
face adapter). We have two of them: one is con-
nected to a HP 2645 CEBET terminal {the consocole for
the system), the other is connected to a floppy
disk system. - ' '

2. Through PIA®*s (parallel interface adapter). e
have only one PIX which is configured as output
only and is currently connected to the PDP-11/45
for the head motion parailax project.

There is no direc* connection between the source machine
{IBM 370) and the target machine (MC6800). Upon first
glance at such a system confiquration, the only way to load
the object code 1into the microcomputer appears to be by

.-.7‘58_



manually typing in +the object «code through the console
terminal. Alternatively we are forced to change the system
configuration. (For example, Ly replacing the CRT terminal
with a clumsy teletype, we could load through paper tape.)

Fortunately, the HP 2645 is an intelligent terminal with
a screen buffer of 2249 bytes. This suggests the following
solution. .

step 1: Connect the HP 2645 to the IBY¥ 370.

step 2: Display the object code on the screen of the
HP 2645,

step 3: Switch the connection of the HP 2645 from
iBM 370 to the microcomputer,

step 43 Load the object code from the screen buffer
into the RAM of the microcomputer.



~ Chapter 4

CONCLUSION

5.1  EXTENSIBILITY

This compiler is built with future extension in mind:
therefore, the following decisions were made:

1. The syntax analysis is for the whole standard Pas-
cal.

2. 211 unimplemented language features will be caught
and error messagdes printed for them, but the par-
ser will keep on going normally. The appearance
of an unimplemented feature will not cause the
parser to collapse nor to generate a lot of spuri-
OUS error messages.

3. The unimpieﬁented features of the declaration part
will not bhe entered into the symbol table.

4, The unirplemented features of “he statement part
will have null reduction (semantic) routines.

5. TFor some I-code instructions, code generation is
not irplemen*ed.

Future inclusion of a certain uninplenmented feature will
only have to: 1} enter some additional information into the
sympol table, or 2) f£ill up an empty semantic routine, or I
add a subroutine into the operations library for the target
machine. The skeleton of the whole compiler will not be
touched at all.

It is hard to prove the correctness of even a moderate
program, not to mention such a compiler {which has about
6000 lines of PL/I source program). To test +the compiler, I
chose some representative Pascal-M programs as test data,
compiled them on an IBM 370 and loaded and ran the obiject
programs on the MC6800 microcomputer. The following three
programs were compiled and run correctly, as well as all the
example programs in Appendix A. Therefore, at least the

-....20_



features involved in those programs could be considered
dependable.

1« B greatest common divisor program using Fuclid's
method, a complete simple prograw. '

2. A factorial program, a simple example of recursive
programs. Its correct running proved the success
of activation record storage management and param-
eter passing mechanisms (both <call by value and
call by reference).

3. A guicksort program {QSORT) shcwn following., This
is a wmore complex program, which includes a lot of
features: if statement, for statement, repeat

statement, while statement, goto statement, recur-
sive program, local and glcbal variables, array
variable, user defined type, and input and output

procedures.

Lt this writing, the following <features of Pascal~M are
either not fully implemented or not tested completely: mul-
ti-dimensional arrays, real number operations, and character
operations.

Some statistics about the compilation of the {SORT pro-
graw might be interesting. The intermediate code generated
by the semantic routines has 197 instructions. After opti-
mization, only 134 instructions are left. The generated
chject code for the 134 imstructions takes 802 bytes {not
including the run-time library).

- 21 -



PRCGRAM QSCRT;

TYPE LIST=AREAY[ 1..30] OF BYTE;

VAR N:BYTE; {(* # CF ELEMENTS TC BE SGRTED *)
A:LIST; :
I:BYTE;

PROCEDURE QUICKSORT{L:RYTE;R:BYTE}:

LABEL 100;
VAR I,J,K,T=BYTE:;
BEGIN
IF L<F THEN
BEGIN
I:=L; J:=R4+1; K:=A{17;
WHILE TRUE DO
BEGIN
REPEAT I:=TI417 UNTIL A[I D>=K;
REPEAT J:=J-1 ONTIL A{J]<=K:
IF I<J THEN BEGIY
T:=A{I7:
A{T Jz=A[J0];
a{J J2=T
END
ELSE GOTo 100;
END;
100: T:=AlL];
A[L]==A{J];
A JJ:=T;
QUICKSORT(L,d-1):
QUICKSORT (J41,F)
END
FND:

BEGIN (* MAIN PROGRAM *)
READB(N) ;
FOR I:=1 TO N DO READE(A[I));
AL NE1T:=127;
QUICKSGRT (1,N) ;
FOR I:=1 TO N DO WRITEB(A[I])
END.

- 22 -~



Appendix R

PASCAL-¥ USER MANUAL

- 23 -



Chapter 5

INTRODUCTION

Pascal 1is a language designed by Niklaus Wirth tc be

A VR A e s

easily and efficiently implementable on big computers, while
at The same time being a2 suitable vehicle for teaching pro-

gramring in a systematic and well-structured fashion. Pas-
cal~¥ 1is a dialect of Pascal designed for 8-bit micro-
Processors. This manual describes a cross-compiler for

Pascal-¥ written in PL/I. Chapter 2 of this manual defines
the language Pascal-¥ relative to standard Pascal. Chapter
7 describes current implermentation of Pascal-H. Fe will use
frascal, user manual and report?', 2nd edition by Jensen and
Wirth [ 15} (we will simply call it the Report throughout
this wanual) as the definition for standard Pascal.

This manual however, assuming the user has a reasonable
acquaintance with standard Pascal, will not attempt to teach
the user how to program in Pascal. I+ will only describe
the implementation-dependent features and deviations from
standard Pascal. For users who are not famwiliar with Pas-
cal, we recommend {9,15,22].

For programmers acquainted with ALGOL, PL/I, or FORTRAN,
it way prove helpful to glance at Pascal in terms of these
other languages. For this purpose, we list the following
characteristics of Pascal (which also hold for Pascal-#) :

1. Declaration of variables is mandatory.

2. 35 key words {e.g. begin, end, while, etc.) are
reserved and cannot be used as identifiers, In
this manual they are underscored. {Depending on
context, underscoring is also used to emphasize

certain key phrases in this manual.)

3. The semicolon ({;} is considered as a statement
Separator, not as a statement terminator {as it is
in PL/TI).

4. Besides standard data types, t+here is a facility
to declare new, basic data types with sywbolic
constants.

5. Arrays may be of arbitrary dimension with arbi-
trary bounds: the array bounds are constant. {i.e.
there are no dynamic arrayse.)

- 24 -



10.

11.

12.

13,

4.

15.

As in FORTRAN, ALGOL, and PL/I, there is a goto
statement. Labels are unsigned integers and must
be declared.

The corpound statement is that of ALGOL, and cor-
responds to the DO group in PL/I.

The facilities of the ALGQL switch and " the com-
puted goto of FORTPRAN are represented by the case
statement. ‘

The for statement, corresponding to the DC loop of
FORTRAN, may only have steps of 1 (to) or =1
{downto) and is executed only as long as the value
of the control variable 1ies within the limits.
Consequently, the controlled statement may not be

executed at all.

There are no conditional expressions and no multi-
ple assignments.

Procedures may be called recursively.

There is no  ‘own! attribute for variables {as in
ALGOL) .

Parameters are called either by value or by refer~
ence: there is no call by name.

The *hlock structuret' differs from that of ALGOL
and PL/I insofar as there are no anonymous blocks,
i.e. each block is given a name, and thereby is
made into a procedure.

ALl objects -~ constants, variables, etc. ~-- must
be declared before they are referenced.



Chapter 6

THE LANGUAGE PASCAI-HN

6.1  LEXICAL RULES

The lexical rules are essentially <hose specified in the
Report. In deference to the EBCDIC character set, however,
a few lexical substitutions must be made:

arrow @ _
{though the pointer is not implemented in
Pascal-¥, it is included for future extension)

Addit ionally, some symbols may be entered as shown in the
Report, or they may be abbreviated.

Eepor:t Pascal-¥
<> -
and &
or i
not -

The underscore character 1is accepted as a letter, too.
To accommodate EBCILIC as well as ASCTI terminals, Pascal-¥®
accep*s 3 and ! in place of { and }, respectively.



The 35 reserved words are the same as in the Report.
They are listed here for easy reference.

and do¥nio if 39 then
array else in backed o

begin end label progcedur  iype
case file mogd pregrar  uptil
const for nil Lecord yar

diy fanction pot Ispeat while
do gotgo of set ¥ith

The reserved words file, in, pil, pagked, record. gset,
and with are not included in current Pascal-¥, but they are
reserved nevertheless for +the sake of compatibility with
standard Pascal and provision for-future extension.

In addition to the 35 reserved words, there are 13 words
have predefined meaning in Pascal-H. But unlike reserved
words, these words can he redefined by the user. The fol-
lowing are the 13 words and the class esach of them belongs

to.

predefined words glass
2 #8238

Boglean. type 1id
byte type ‘id
integer type id
char ' type id
false . Boolean constant
readb standard rprocedure
readi standard precedure
readr “.standard grocedure
real type id
true Boolean constant
writeb standard procedure
writei gtandard procedure
vriter standard procedure

21l identifiers are recognized by their first 8 charac-
ters. If they are longer than 8, the nest will be ignored,
as suggested by the Report. ‘

In a Pascal-d program, lower c§séwietters are not allowed
as sywhols. o o

i e i W i

6.2  SINTAX RULES .

For the sake of compatibility with standard Fascal and
provision for future extension, the syntax rules of Pascal-N
re made almost +he same as those specified in the Report.
The only exception is that of prograrg heading. The syntax
graph of a program as specified in the Report is:

+

- 27 &



{ VProqram ré»‘ jjfi:}W%%i::}~%-bIOCR —ugﬁjié
- 7

where the ,idl between the parentheses denotes
file identifier(s}.

since external files are not fully explecited in Pascal-¥,
those file identifiers could be omitted. Thus, the syntax
graph of this part is modified to:

(:%;Egram ra-id}—~><::>jf§ i

N

 block ....,.(\, ;
. vy

If any file identifier exists, it will be ignored.

&lthough some features of standard Pascal are not
included in Pascal-¥ {e.qg. record type), the syntax analy-
sis part of the compiler will process the whole language, if
it is within the dirmensional 1imits of section 7.1. 211
attempts to wuse unisplemented features will be caught in
syntax analysis and error messages will be printed, and gen-
eration of code will be suppressed; they will not cause the
compiler to c¢ellapse, however. The actual semantically
meaningful syntax of Pascal-M is printed on the following
pages in syntax graph form for easy reference. Those graphs
are copied from the Report (pp. 116-118), with all unimple-
mented features deleted.

- D8 =



o)

R e

- _WQAN‘11

i —— M

—
|
_

_ De [ @”U.Cw_

_29_



JE—

1:@, :@dil—

LAt pend s



Ji_-il,tf
E6D é& -

e

=

R R COTT e O EEER _Q.ﬁ 4
Lot | [ o5

W g e _

o S T Bt s R vt O
CEEAGEGS o

F 1. 7. 1.3 : e

_ o
| Hmw,..:_.:

umnegidae siduna



6.3 LANGUAGE DIFFERENCES BETHEEN STANDARD PAS

. o Y it s P AT

6.3.1 Restrictions

Since this compiler is a relatively small-scale project,
only a subset of standard Pascal language is included in
Pascal~-l. The following are the major restricticns of Pas~-
cal-HNM. {Some points can be seen from the syntax graphs of
section 6.2.)

1. There are no recoxrd, set, f£ile, and pointer types.

e s smeh s e

2. There is no fungtion facility, and hence no stan-

dard fonctions.,
3. Procedure names cannot be passed as parameters.

4., The scope of the goto statement is limited to its
own defining block. Thus, goto's cannot be used
for exit from procedures. '

5. Standard procedares are limited to I/0 only.
6. ¥o empty statement is allowed.

7. The control variable of a for statement wmust be
locally defined.

For - the sake of efficient execution on byte-oriented
wmachines, an extension to standard type -~ 'hyte? =-- is
added. All operations legal for type integer are legal for
type byte, too.

Apnother extension to standard Pascal is automatic type
conversion. Some people might think this feature violates
certain philosophical aspect of the language Pascal, but I
feel obliged to include this feature in Pascal-¥ for the
following reasons.

1. The extension of type byte {shor+ integer)
requires automatic conversion fetween type integer
and type byte.

2. There is no function facility in Pascal-¥, and
hence no standard functions to convert between
type real and type integer {e.g. TRUNC, ROUND,
etc). 'Scme other way must be grovided.



3. Mixed operations between type 1integer and type
real are allowed in standard Pascal anyway.

6.4  DATA TYPES
T

ipteger

bt
b
I

A value of type integer is an element of the implemen-
tation-defined subset of whole numbers. In Pascal-ld, integ-
ers are 2 bytes (16 bits) long, and irn 2's complement repre-
sentation internally. The following arithmetic operators
vield an integer value when applied tc integer operands.

* multiply
div divide and truncaie
mod residne

+ add

- subtract

Integer operations are guaranteed to be correct only if
both operands and result are within [-32768, #327671.

A byte, or short integer, is 1 kyte {8 bits}) long and
represented in 2's complement form internally.  Any number
within the range [-128, #1271 could te declared as byte for
efficiency. 311 operations legal for type integer are legal
for type byte, and legal for mixed operation between this
two types. The result type of mixed operations between type
integer and type byte will be of type integer with the fol-
lowing exception: 1if the dividend is of type byte and divi-
sor is of type integer in div or mod operation, then the
result type will be bvte,

6.4.3 Iype real

B value of type real is an element of the implementation-
defined subset of real numbers. In Pascal-M, a Teal nurber
is 3 bytes long, with 1 byte as characteristic (exponent and
sign), and 2 bytes as precision (fraction). The quantity
expressed by a real number is the product of the fraction
and 2 {(not 16 as IBM 360} raised to the power specified by
the expohent. The machine form of & real number resembles
that of IBM 360 floating point numbers. The lefimost bit of
the characteristic is the sign for +the real nurber, the
remaining 7 bits are in excess~64 notation, and the 16-biz

- 33 =



fraction 1is an unsigned binary number. Therefore the
precision of real number in Pascal-¥% is about 5 decimal
digits, and its range is (-26%4, +28%3, which is about
{-1019, +1019),

As long as at least one of the operands is of type real
(the other operand may be of type byte or type integer), the
following operators yield a real value.

rultiply

divide {even if neither operand is real, the result
iz always real)

add

subtract

14+ N ¥

Caution: After each real operation, t+he result {or the
intermediate result) will probably be only partially normal-
ized; repetitive operation of some kind might lead to signi-~
ficant lecss of precision.

6.4.4  Type Hoolean

A Boolean wvalue is one of the logical truth values
denoted by *he predefined identifiers FALSE and TRUE.

The following logical operators yield a Boolean value ¥when
applied ¢¢ Boolean operands.

and logical conjunction
or logical disjunction
not logical negation

Fach of the relatiocnal operators (=, <, <=, <, >=, >}
yields a Boolean value. Furthermore, the type Boolean is
defined such that FALSE < TRUE. In Pascal~-¥, a whole byte
iz used to represent one Boolean value,

6.4.5  Iype char

: A value of type char is an element of a finite and ord-
ered set of chararacters. In Pascal-~M, EBCDIC code is used

to represent each character by one byte, Therefore, the

collating sequence of chararacters is that of EBCDIC,

- 34 -



6-4.6 Scalar apnd Subrange Iypes

Scalar and subrange types are defined as in the Report.
In Pascal-M, a value of any scalar or subrange type will be
represented by one byte, which 1implies that the range of
snbrange types must be no more than 256, and no more than
256 elements are allowed in a scalar type. In section 7.1,
the number of elements in scalar +*ypes 1is further res-
tricted.

6.4.7 Array Iypes

The only data structuring facility included in Pascal-#
is array. The elewents of arrays in Fascal-¥ are restricted
to having the elementary data types: byte, integer, real,
Boolean or char.

Although the number of dimensions ¢f arrays is unlimited,
as in standard Pascal, the size of arrays is subject to the
constraint of section 3.2.

6.5  SIANDARD PROCEDURES: INPUT AND CUIRUI

In Pascal-¥, only six input and output procedures are
included as standard procedures; only one parameter 1is
passed to each of them. The parameter of each of the three
input procedures is called by reference. TFor the three out~
put procedures, it is called by value. The six I/0 proce-
dures are: :

READE Read in a byte; the parameter must of type
byte.
READI Read in an integer; the parameter must of

type integer.

READF Fead in a real number; the parameter nust
cf type real.

WRITEB Print out a byte; the parameter must of type
byte, and could be an expression.

WRITET Print out an integer; the parameter must of
type integer, and could be an expression.

WRITER Print out a real number; the parameter must
of type real, and could be an expression.



o e . T Y N IR Y A e e st LS R

This section gives some examples of what Pascal-H pro-
grams look like. The first example is a simple program that
will calculate the GCD {greatest common divisor} of twoc num-
bers. This example will be used again in the next chapter
to illustrate output format.

PFOGRAM GCD;
{* THIS PROGRAM WILL FIND THE GCD CF ¥ AND ¥ *)
CONST M=24: ¥=60:
VAR X,¥: BYTE:
BFGIN
X:=08; Y:=N;: .
WHILE X-=Y DO
IF X>Y THEN X:=X-Y
ELSE Y:=Y-X;
WRITEB (X))
END.



The next exarmple illustrates the use of arrays, a user
defined data type, and somwe other features.

(* REF CONWAY & GRIES:*R PREIMER ON PASCAL? PAGE 268 %)
PRCGRAYM SORT{INPOUT): '
CONST N=10;
TYPE LIST=ARRAY [ 7..¥] OF INTEGER;
VAR L:LIST: I,M,T:INTEGEE; SORTED:FOCLEAN:
{* SORT L[ 1..N¥] USIKG BUBBLE SCRT %)
BEGIN o
SORTED:=FALSE;
Hy=W:
WHILE NQT SORTED AND (M>=2) DO
BEGIN (% BUBBLE LCCP #*)
{¥* SWAP L[ 1..M],PUT LARGEST IN L{M],SET "SOERTED? ¥}
"SCRTED:=TRUE; {* ASSUKE L 1I5 SCRTED =} '
FOR I:=2 TO ¥ DD
BEGIN {* SWAP LCCP %)
I¥ L{I-1] > L{I] THEN
BEGIN
Ti=L{I-1];
L{I-T]:=1[1];
LEIlz=T:
SCRTED:z=FALSE
END
END; {* SWAP LOOP *)
Hi=pM-1 '
XD (¥ BUBBLE LOOP *)
END.



The following program illustrates the use of a user
defined data type (in this example, it is scalar type) and
the case statement, which are unknown to most other lan~
guages.

{* THIS PROGRAY COMPUTES THE HWEEXLY HFILEAGE *)
{#* CF MY CAR; T DRIVE TO UNC CAMPUS EVERY *)
{* MONDAY, WEDNESLCAY A¥D FRIDAY, EACE IRIP ¥}
{¥ (RCUND TRIP) TAKES ¥E 2 MILES. *)
{¥ O EVERY TUESDAY AND THURSDBAY, I DRIVE *)
{* TC DUKE TC ATTEND CLASS THERE, EACH TRIP *)
(* TAKES ME 28 MILES. *})
{* SATURDAY MORNING,I GC TO UNIVERSITY MALL *)
{* FOR SHOPPING, WHICH TAKES ME 10 MILES. *3}

{(* SUNDAY WIGHT, I USDALLY VISIT A PAL, *)
{# THAT TAKES ME 5 MORE MILES TO DRIVE. *)
PROGRAM:MILECOUNT;

TYPE WEEKDAY={KONDAY,TUESDAY,WELCVNESDAY,
, THURSDAY,FRIDAY,SATURDAY, SUNDAY);
VAR I: WEEKDAY;
MILEAGE: BYTE:
BEGIN .
MILERGE:z=03
FOR I:=MONDAY TO SUNDAY DO

CASE I OF
MONDAY,¥EDNESDAY,FRIDAY: KILEAGE:=MILEAGE+2;
TOESDAY, THURSDAY: MILEAGE:=KILEAGE426:
SATURDAY: _ MILEAGE:=MILEAGE410:
SUNDAY: : MILEAGE:=MILEAGE4S

END; (* CASE %)

WRITEB(MILEAGE)

END.



The following program illustrates recursive calls and
passing of parameters. In this example, ¥ in procedure FAC-
TOR is a call by value parameter; F is a call by reference
parameter (the difference is in the presence or absence of
VAR on the lipe of their declaration). There are some sSub-
tle points in this example besides the above mentioned ones,
e.g. the scope rule of block structured languages, the use
of +he local variable LOCRL_F to avoid the function facility
{which does not exist in Pascal-M), etc.

{* THIS PROGRAM COMPUTES THE FACTORIAL OF A RUMBER.*)
PROGRAM MAIN: :
VAR N:BYTE;
F:INTEGER;
PROCEFDURE FAGCTOR{N:EYTF: VAR F:INTEGER};
VAR LOCAL_F:INTEGER;
BEGIN
IF ¥=1 THEN P:=1
ELSE
BEGIN _
FACTCR(¥=-1,L0CAI_F};
Fe=N*10CAL_F
END
END; (¥ FACTOR #*)

BEGIN (* MAIN PROGRAM %)
READB{ W} ;
FACTOR (N, F) ;
WRITEI (F)

END.



Chapter 7

THE IMAPLEMENTATION

7.1  DIMENSIONAL LINITS IN PASCAL

Dimensional limits are those liwits caused by fixed array
bounds declared in the compiler itself, and which «can be
changed easily by simply re-declaring the array bounds in
the compiler. The bigger those bounds are, the less con-
straint the user will feel, but the more main storage will
be. taken by the compiler during the compilation process.

The dimensional limits in Pascal-M are the following.

1. The maximum number of symbol table entries is #1.
This includes 13 predefined synrbols {e.g. INTEGER,
TRUE, WRITFI, etc¢.), vVariable names, procedure
names, pamed and anonymous types defined by the
user, labels, constant names. But it does not
include the identifiers for defining the compo-
nents of scalar types.

2. At wost 20 different namesg are aljowed in ail sca-
lar types in one procedure and all its enclosing
procedures {blocks).

3. The maximum length of & single string constant is
20; the maximum length of the sum of all string
constants is 25,

4. *The number of call by value parameters of a single
procedure cannot exceed 8, The number of call by
reference parameters of a single procedure cannot
exceed 3. The total numpber of formal parameters
of all procedures cannot exceed 10.

5. The sum of all array dimensions that are more than
1 {multidimensional, mnot vectors}) in a procedure
and all its enclosing procedures {blocks) cannot
exceed 10. :



6. An array subscript may be an array element, with
maximpur nesting 3.

bent, or while gtatement, or repeal staiement, or
case statement is 3. The nesting of a certain
kind of statement {e.g. if statement) does not
affect the nesting of any other kind of statement
{€.g. while statement). For exanmple,

iF¥
WHILE
I¥ is permitted,
WHILE
iF
WHILE
but
IF
Ir
IF is not.
IF

B. The maximum number of case labtels in a gasg label
list (not the number of case labels of a
statement, which is unlimited) is 4.

9. The maximum number of forward ggte's for a given
goto label is 3.

10. No more than 10 recursive calls can appear in the
text of all procedures.

7.2  CONSTRAINTS OF TARGET MACHINE

The target wmachine could be any 8-bit wide micro-
processor, but current implementation of Pascal-¥ will gen-
erate code only for SWwTPC 6800, a Motorola MCS6800 based
ricrocomputer system designed by Southwest Technical Prods.

corp.

A1l operat*ions except one in eight-bit microprocessors
are performed in eight-bit units. The only exception is
that of memory addressing and probably some cperations that
involve it. gith such rnarrzow memory width, any operation
involving a data type more <¢han 8 bLkits wide will have to
resort +*o software solutions. ¥ith the limited indexing
facility, and no other provision for indirect addresing,
this makes the object code very inefficient if no restric-
tion is imposed on the Pascal~H¥ program. Some rules are the
inevitable consequences:



1. The stack of activation records will be only 256
bytes long. This implies that no more than 256
bytes are allowed for all variables, and of course
that number must be appropriately divided by the
maximum number of recursive calls in the prograrm.

2. &s a consequence of the above, array size must not
exceed 256 bytes.  {The size of variables <an be
calculated from elementary data type sizes as des-
cribed in section 6.4.)

7.3 JOB CONTROL FOR RUNNING A PASCAL-M PRCGRAK

ek i i RS

tm
9
g
i
I

A Pascal-M program is cross-compiled at TUOCC. The wmini-~
mum JCL reguired to compile a Pascal-¥ program at TUCC is as
follous:

// (JDB CARTD)
//%PASSWORD
/7 EYIEC PASCALH

//C.SYSIN DD (data set with your source program)
//G.HRXCODE DD {data se* that will hold the machine code)

The above JCL will give you:

1. A source 1list of your Pascal program with line
numbers added.

2. Error messages if any.
3. A combined attributes and cross reference table.

4., Target machine code in hex, if your prograr has no
error.

If you specify a dataset instead of the printer (S¥YS-
oUT=14) for the file G.HEXCODE, you will get a machine reada-
ble form of object code,

If you want a trace of shifts and reductions of the com-
pilation process, specify after the //C.SYSIN card:

//C.TRACE DD SYSOUT=A

If you do not want the attributes and cross reference
table, then specify after SYSIN card, or if you have TRACE
card, specify after the TRACE card:

- 42 -



//C.XREF DD DUHMY

If you want a printout of the intermediate code generated
by compiling your program, specify after SYSIN card, and
after TRACE card and XREF card if any, the followings

//C.ICCDE DD SYSOUT=2

7.3.2  Prograw Format

7. The standard field for source statements is
columns 2 through 80.

2. The standard position for carriage ceontrol for the
listing of the source program is position 1. Only
five of <the USASTI codes are recognized for this
purpose:

blank space 1 line before printing
{normal printing} .
space 2 lines before printing
skip %0 channel 1 (page eject}
space 3 lines before printing
do not space befere printing
{(overprinting)

- e O

Carriage contrel characters dc not appear on the
source listing. If any character other than these
five appears in position 1, Pascal~-M assumes that
the user neglected to skip position 1 and the scan
will begin in position 1. A warning message will
he issued.

7.3.3  UOsing an object module

The code generated by the Pascal~F compiler is an obiject
module that can be run under the S¥TBUG operating system
[211. :

To load an object program of Pascal-¥, first the user
must load the 1library routines fromwm a floppy disk labelied
'Pascal-M* into the RAM of the SwTPC 6800:

Step 1: Hook up the HP26#5 terminal to the SwTPC, turn
the duplex switch to the *full' position.

Step 2: Power on the HP terminal, the microcomputer, and

the floppy disk system (The floppy disk systew
is issued by Smoke Signal Broadcasting [200).

- 43 -



Step 3: Put the floppy disk labelled "D0OS-68' into disk
drive unit 0; put the floppy disk labelled
"Pascal-¥' into unit 1.

Step 4: Wait until SWIBUG prompts you with a dollar
sign, then enter the command: J 8020.

Step 5: Wait until the message: DCS-68 appears; enter
the gommand: GET,13;PASCAL
After this step the library routines will be
loaded into RAHM.

Step b: Wait until the DOS prompts you with greater than
sign, then enter commwand: GET,1:LCADER.
after this step, the absolute loader will be in.

Step 7: Turn the dupliex s%itch to the *half' position.
Sign on to TS0 {don't power off the SwTPC 6800),
QFD and list the dataset that contains the hex
code. Leave the code on the HP screen.

Step 8: Logoff from TS0 and switch back to the SwTPC
6800.

Step 9: Hit reset of the wicrocomputér and get a dollar
sign from SWTBUG, then enter the command:

J 0000
This step transfers control to the loader.

Step 102 Turn the HP terminal *o tblock mode’, and enter
each line of code on the screen by hitting the
‘entert' key.

Step 11: After all lines have been entered, hit the
reset again.

Step 12: After a dollar sign appears, the program should
g prog
be in PAM. 1Wow enter the command: J 0100
and your program will start running.

7.3.4  Input and Qutput

Input and output are performed interactively on the pri-
mary I/0 device of the microcomputer system by calling the
standard procedures of section 6.5. The primary I/0 device
of the Southwest Tech microcomputer system is the console
terwinal. In particular, the microcomputer installed in
Phillips 273 uses an HP2645 as the console terminal.



7.4.1  Source listing

After compiling the Pascal-M program, the compiler will
list the Pascal-¥ progran with line numbers added. The fol-
lowing is the  source listing of the GCD program of section
6’ 6-

1 PROGRAR GCD;

2 {* THIS PROGRAM WILL FIND THE GCD OF ¥ AND N ¥*)
3 CONST M=24; ¥=60:

4 VAR ¥X,¥: BYTE;

5 BEGIN

6 Le=H; ¥z=¥:

7 HHILE X-=Y DO

8 IP X>Y THEN f:=X~Y
9 ELISE Y:=¥-X;
10 WRITEE {X)

11 2HD.

7.4.2  Cross reference and attribute table

The combined cross reference and attribute table is actu-
ally a dump of the symbol table with cross references of
symbols added.

The cross reference portion lists each identifier, the
number of the line and name of the progedure where the iden-
+ifier is defined, and the line number associated with each
occurrence of the identifier. The attribute portion lists
the value of each field in the symbol table entry.

The following is an example of the cross reference and
attribute table for the GCD program of section 6.6. The
first three columns list the number of line on which a sym-
bol is defined (ref. section 7.4%.1}, the symbol itself, and
the name of the procedure where the symbol is defined, res-
pectively. The next column, labelled SYMTYPE, describes the
type of the symbol; the codes are:

91 constant identifier
92 function identifier (not implemented}
93 variable identifier
94 field identifier (not implemerted)
95 +type identifier

The next column, VALUE1, roughly corresponds to the

values of symbols; a minus one in that field usually denotes
that value is undefined at compilation time. The 1last

- 45 -



columrn, OFFSIZE, gives the _dffset within +the activation
record. The offset of each symbol is indispensible in
understanding the intermediate code (see section 3.8.4).

The second line of each symbol entry lists the line number
associated with each occurrence of that symbol.

SYMID PROC ID  SYXTYPE  VAIUE] OFFSIZE
3 0m GCD 91 24 0
€,
3 W GCD 91 60 1
€,
4 X GCD 93 -1 2
6, 7, 8, 8, 8, 9, 10,
TR GCD 93 -1 3
6, 7, 8, 8, 9, 9,

The above explanation is incomplete; besides, some other
fields in the symbol takle will be printed out too; but
their major use is for the wmaintenance of the compiler
rather than for aiding the user to debug. The interested

user is referred to Pascal-¥ Program logic Hanual {Appendix

E). T

7.4.3  Irace of compilation

parsing was used for processing the state-
ment part of a program in this compiler (recursive descent
was used for parsing the declaration part of a program), it
is very easy +to construct the parse tree for statements by
tracing the parsing actions {shift and reduce). This can be
done by specifying the TRACE DD card as described in section
72 3. The following is part of the trace produced during
compilation of program GCD of the previous chapter. Cn the
next page, a partial tree is constructed according to the
first 11 lines of the feollowing trace and shows that it is a

useful debugging aid.

Because LR (1)

SHIFT TO STATE 4, NEW SYH= 93

REDUCE 18 VAR--VAR ID, VTYPE=0
SHIFT TO STATE B8, NEH SY¥=121

SHIFT TO STARTE 22, NEW S¥Y®= 91

REDUCE 42 UGNSIGNED CONST--CONST ID
REDUCE 38 EYP-~-UKSIGNED CCNST
SHIFT TO STATE 43, NEW SY¥=109

L_RD 16 ASSGN 5T--VAR := EXP
REDUCE 5 UNLABELLED STY-~~BASSGN ST
- RELUCE 2 ST -~ UNLABELLED ST
REDUCE 61 5T LIsT~-38T

-~

4o -



SHIFT TO STATE
REBUCE 62
SHIFT TO STATE
REDUCE 18
SHIFT TC STATE
SHIFT TO STATE

REDUCE 42
REDUCE 38
SHIFT TO STATE
L_RD 16
REDUCE 5
REDUCE 2
REDUCE 60

SHIPT TO STATE
REDUCE 62
SHIFT TC STATE
REDUCE 83
SHIFT TC STATE
FEDUCE 18
SHIFT TO STATE
L_PD 34
SHIFT TO STATE

3,

5,
20,
15,
30,

37,

NEW
NER

NTW

NEW

NEW

NEW

NER

NEH

NEW

SYE=109

{3>2=-3

SYi= 93

VAR~~-VAR ID, VYTYPE=D
SY¥=121

SYH= 9%

UNSIGNED CONST-~CONST ID
EXP-~UNSIGNEL CCNST
SYM=109

ASSGH ST--VAR := EXP
UNLABELLED S$T--ASSGN ST
$T -~ UNLABELLED ST

857 LIST~-ST LIST <:> ST
SYH=109

L3>==3

SY®= 34

{HHILED>--WHILE

SYH= 93
VAR--VAR ID,
SYM=111
<BXP>-- <VAR>
SY¥=111

VIYPE=0

. b 4 7 -



T. 4

The following
GCD of

<st list>

<st>

<unlabelled s>

<asgsignment st>

<var>

<yar id>

.4 Intermediate code

i i T S T — e Y A A P

<exp>

\

<unsigned const>

'<coqst ig>»

ot

o
]

i
¥

“a

Intermediate code of Pascal-¥ programs can be obtained by
specifying the

ICODE DD card as described in section 7.3.

exarple is the intermediate code of prograw

section 2.6.

to +he intermediate code.

mediate code,

the user is

Logic Manual (Appendix B).

B RS I S R

PO QO G Y
W N E WA 2O 0D )

HARK
X
LITH
STB

LITB
STB
LODB
10DB
EQUB
X
JPF
LODB
LODB
GTB
JPF
LODB
1LCDB
_ SUBB

=l w Bon

OOV CODDOTOOOD

i

it
NI W

[y}

n o '
QW - QWO O WM WD

mark act

The last column is commentary appended

for the definition of the inter-
referred to Pascal-N., Progranm

ot e vt Ml vl e s o

ivation record with 4 bytes

do nothing
load iiteral 24

store 24

. to X (refer to the cross

reference table of section 7.4.2)
load literal 60 -

store 60
load X
load Y
if X=Y 2
do nothi

to ¥

ng

jump false to 26

load X
load ¥
if X>Y ?

jump false to 21

load X
load Y
i-Y

ug -



19 STB 0 2 X2=X~Y

20 Jump 0 25

21 LopB O 3 load ¥

22 LODB O 2 load X

23 SUBB 0 ¢ VD ¢

24 STB 0 3 Ye=¥-X

25 Jusp O 7

26 LODB O 2 load X

27 MARX O 3 mark activation record with 3 bytes
28 STR 0 2 store ¥ to print tuffer
29 CALL O -10 call ¥WRITEB, ¥write out X
30 RTS 0 0 return

7.%.5  ELror messages

211 syntactic errors, all attempts to use unixplemented
features, and all semantic errors that it is ©possible to
detect at compilation time will be reported. No run-time
checking is provided, however.

Since a description of the error is printed instead of an
error code for each error encountered, a list of all error
ressages iIs not included in this manual.

Examples of error messages:

LIRBE ERBROR MESSAGE
*[ ¢ EXPECTED
4 *END® EXPECTED
11 2ND OPERAND CF 'AND® OPERATION SHOULD

BE OF TYPE BOOLEAN.

T.4.56 Machine codes

The cobject module {6800 machine code) will be in the
dataset specified by the DD card G.HEXCODE. Pach line of
code is 1in absolute formwmat, and 1is composed of 40 bytes;
each byte is in 2 hex digits and therefore the 40 bytes will
occupy the whole 80 columns, except possibly for the last

line.



ippendix B

PROGRAM LOGIC MANUAL



Chapter 8

ERCCEDURE STRUCTURE

The whole compiler is divided into 6 external procéedures,

each of which might have some internal procedures.
static nesting of all the procedures is diagrammed on
page. The dynamic structure of +the procedures and
interconnections amoung them and some important data
files are shown on *the next page. The function of each
cedure is discussed on the following pages.

PASCAL
PRCGRAN
BLOCK
ENTER_SYX
TYPE
SIHPLE_TYPE
CCNST
FIELD_LIST
PARM_LIST
ERROR
GETSYH
GETCH
STHTP
TRANS
SH
RD
LRD
TRANSERR
REDUCE
GEN
PATCH
SMYERR
GENCCDE
GENY
HEX
LCADA
LEYOFF

Static structure of procedures

The
this
the
and
pPro=



PASCAL

token and its
f‘PRGGBAHI - attributes

-
a—

—
e

- Bzcaca’,;';ff

Sy,
fo,

- ENTER_SYM - ">( file xBEF

= FECUR's |~ —

;

I 5 e e,
P ERROB|—— — — — ' . (file ERRFILE)

N N

Y &
L
AV

e ,“-\

T T ™~
0 ‘Q(E}mboi ta%ii
S e i
--“-“‘-”‘mg§§<;;le TRACE !
. g T

F
£
4 o
/ o

v
- -J'f ‘1\‘ e ity
. CODE & —---{ PASCAL E
7 ’ C i:"

e /f“"““‘“‘““ﬁ

o e e e ile ICODE i
SHNERR;_.- — P T
o b . T

GENCODE |._ . _3{ file OBJCODE )
; y

i+ e

- -

Dynamic structure of procedures and data

The so0lid arrows in the above grarh mean procedure call,
the dotted arrovws mean fproductiont or fuse'! of data depend-
ing on the direction of the arrow. The boxes represent pro-
cedures, the circles represent data or files. The RECUR's
on the above graph abbreviates the set of recursive pro-
cedures inside procedure BLOCK. RD's abbreviates for pro-
cedures BRD and LPI. Some procedures shown on the static
structure but not on the dynamic one are small procedures
ghich are called only by their own mother procedure and have
no outside comnection.



The procedure PASCAL is the main program for the first
five external procedures; it initializes the sywbol table
and most variables and calls procedure PROGRAM to start
parsing. Af+er the return from PEOGRAM, the source program
should all be processed and intermediate code should be
ready to be written onto file PCODE for further processing
by procdeure GENCODE. Should any error occur during pars-
ing, a2 return code RETCT will be set *o 99, which will inhi-
bit invoking GENCODE,

The procedure PROGRAM is the +top {or outer-most) pro-
cedure of a series of recursive procedures. 4 Pascal pro-
gram is composed of a <program heading> and a <block>; a
<block> is divided into 2 parts, <declaration part> and
{statement part>, where within a <declaration part> there
might be some more <block>'s and the cycle goes on. In this
compiler recursive descent parsing is used to parse the
<declaration part>, procedure PROGRAM corresponds to the
nonterminal <program> in the grammar and it calls procedure
BLOCK, which corresponds to nonterminal <block>. The pro-
cedure BLOCK maintains the symbol tatle and calls internal
procedures TYPE, CONST, FIELD_LIST, and PARM_LIST, each of
which corresponds to a nonterminal in the grammar and all of
which help BLCCK maintain the symbol table. Internal pro-
cedure ENTER_SYM is called whenever a symbol and its attri-
butes are to be entered intc the symbol table. Rhenever an
error is encountered during parsing the declaration part,
internal procedure ERROR is <called and a set of possible
follow up tokens {in array FSYM) are passed to it so that
some types of error rtecovery are possible. Besides trying
to recover from the error, procedure ERRCR reports the error
by writing a message onto the file ERRFILE and setting a
flag ERRFLAG, which will later inhibit invoking object code
generation routine GENCODE.

The procedure GETSYM is the lexical scanner, which per~
forms the following tasks.

1. PReads in a token and determines its meaning. The
meaning of the token is returned through an exter-
nal wvariable SYN. {The encoding of tokens is
listed in following sections.)

2. Returns the value of the token, if it is a
literal, through external variables VALY, VAl2, or
STRING.

3. HReturns the name of the token, 1if the token is an
identifier, through external variable ID.

4, Prints out +the source program as it is read in,
and maintains the cross reference table.



It has an internal procedure GETCH, which is called to read
next character from the source progran into variable CH.

The procedure STMTP is +the main routine of <statement
part>. It is called once for each <block> of the source
program by procedure BLCCE, and then it takes over the pars-
ing of <statement part> until its end. The parsing algor-
ithm used in this part is SLR{1), and a parser generator was
used +o build the decision table for parsing actiomns.
Details will be discussed in section 10.4. It has 5 inter-
nal rrocedures: TRANS, SH, ED, LRD, and TRANSEER. Procedure
TRANS is actually the decision table for parsing actioms for
<{statement part>. I+ examines the top element of a state
stack S3TSTK and current token SY¥ and performs ope of the
following 4 actions.

1. Calls procedure SH, which shifts to a new state by
stacking a new state on the state stack and gets a

new *oken.

2. Calls procedure BD, which <calls procedure EREDUCE
to perform the necessary semantic action.

3. Calls procedure LRD, which is almost the same as
RD, the only difference being that procedure TRANS
looked ahead one token before it calls LRD.

4, Calls procedure TRANSERF whenever an illegal com-
bination of top of STSTK and current token SYH is
enpcountered {i.e. no takle entry for this combina~
tion). Procedure TFANSERR rerorts at which state
a transition error is encountered and calls SH to
qo on.

The procedure REDUCE is a collection of semantic routines
of <statement part’>. It is called whenever a reduction
action is to be performed during parsing <statement part>.
The production number of which reduction is to be performed
is passed to this procedure through variable PROD: the pro-
cedure selects the corresponding semantic routine and gener-
ates intermediate c¢ode accordingly. This procedure also
pops out some tokens from the syntax stack STSTK of pro-
cedure STHTP by decreasing the variatle TOP, which is the
pointer *to the top of the syntax stack. Two internal pro-
cedures GEN and PATCH are used by REDUCE. Procedure GEN
generates and maintains the array of intermediate code CODE,
which is a structured array variable with 3 fields: OPCCDE,
CODELEV, and CODEDOFF; procedure PATCH patches forward refer-
ences whenever these destinations become known.

The procedure SHNERR is the routine to Teport some common

syntax errors encountered during parsing <statement part>
{e.g. confusing *[* with ¥{'}, and all semantic errors dur-~

- i1 -



ing any part of compilation {e.¢g. wrong cperand type for a
certain operation). it does not attempt to correct the
error; it simply sets the flag ERRFIAG as procedure ERROR
does, and continues parsing.

The procedure GENCODE is a phase separate from the fore-
going five external procedures because it is source-program-
independent. It +takes the intermediate code generated by
procedure PASCAL and optimizes it somewhat, then generates
object code from the optimized intermediate code. Details
of procedure GENCODE will be discussed in chapter 1Z.

211 the above procedures are written in PL/I, and were
compiled by 05 PL/I Checkout Compiler, version 1, release’
3.0, PTF 26. {The PL/I Qptirizing Compiler, version 1,
release 3.0, PTF 65 has some bugs in translation of certain
SELECT statements. These bugs kept me from using the COptim-
izing Compiler.)



Chapter 9

LEXICAL ANALYSIS

Lexical analysis is done by procedure GETSYM as described
in chapter 13 a token is read in and analyzed and encoded
into a number, then it is returned tc the calling procedure
through the external variable SYH. The encodings of %tokens
used in lexical analysis are 1listed in the following sec-

tions.

9.1  RESERVED HORDS

O (R D e S IR TR M o S A

The 35 reserved words are encoded as 1, 2, 3, .., 35,
respectively, according to their alphabetic order.

sy s5yn LS¥ SiH Is¥ Sin
AN¥D kb FUNCTION 13 PROGRAN 25
ARRAY 2 GQoTC 14 RECORD 26
BEGIN 3 iF 15 REPEAT 27
CASE 4 IR 16 SET 28
CORST 5 LABEL 17 THEH 29
DIV 6 HCD 18 TC 30
DO 7 ¥IL 19 TYPE 31
DCYWHNTO 8 NOT 20 ONTIL 32
E1SE 9 OF 27 VAR 33
END 10 OR 22 HHILE 34
FILE 11 : PACKED 23 WiTH 35
POR 12 PROCEDUR 24
9.2  QBERAIQORS

token  SY¥M token 3SY¥

+ 115 - 114

* 113 7 112

= 111 ‘ 110

: 109 ? 108

( 104 ) 105

{ 107 ] 106

> 118 < 122

<= 123 >= 119

<> 124 = 124



120 s 126
= 121 ae 127

&5 dé

3.3 QOTHER ENCODINGS

unsigned integer 100
unsigned real 101
string 103
type identifier 80
const identifier 91
function identifier 92
. variable identifier 93
field identifier 94
procedure identifier 95

- 57 -



Chapter 10

SYNTAX ANALYSIS

Because the whole compiler is a syptax driven translation
process, sSyntax analysis, besides its apparent major func-
tion: s¥yntax checking ({or loosely, parsing}, has 2 other

b e e ks R PNl IS PR WD DT Wi A

important functions:

1. building the symbol table; and
2. driving semantic routines.

The main component of a PASCAL program is a <block>,
which is subdivided into 2 parts corresponds to the division
of labor of processing the 2 important functions of syntax
analysis:

i. <declaration part>, parsed by recursive descent; and
2. <statement partd, parsed by SIR{1}.

10.1  ENCODING OF HO}

Recursive descent is a top-down parsing method, in which
each nonterminal symbol corresponds to a procedure instead
of being merely a token. Since the <declaration part> is
parsed by recursive descent, all the nonterminals in +his
part are not encoded into numbers. However, for a decision-
table-driven bottom-up parsing method like the farily of LR
parsing methods, each nonterminal does not act too differ-
ently from a terminal token. In  order to enable the deci-~
sion table to have uniform input, the nonterminals must be
encoded into simple numbers as terminal tokens are. The
following page shows the list of nonterminals of <statement
part> and their codes.




neptermipal SyH nonterrinal S¥m

S e . o e D i 3 i S

<SYSTEH GS> 201 <ST P> 202
<CCMPOUND ST> 203 <ST> 204
<UNLABELLED ST> 205 <LABEL> 2086
<ASSGN ST> 207 <PFOC ST> 208
<GOTO ST> 209 <EMPTY ST> 210
<IF ST> 211 <CASE ST> 212
<REPEAT ST> 213 <QYHILE ST> 214
<FOR ST> 215 <HITH ST> 216
<VAR> 217 <EXP> 218
<INDEXED VAR> 219 <ELIST> 220
<ARRAY VAR> 221 <PUN DESIGNATOR> 222
<SET> 223 <UNSIGREL CONST> 224
<ACTL PARM LIST> 225 <ACTL EARN> 226
<ELEMENT LIST> 227 <ELEMENT> 228
<ST LIST> 229 <3> 230
<THEN> 231 <ELSE> 232
<OF> ' 233 <CRSE IIST E LIST> 234
<CASE LIST ELEMENT> 235 <CASE LABEL LIST> 235
<3i> 237 <CASE IABEL> 238
<CCNST> 239 <HHILE> 240
<Do> 241 <REPEAT> 242
<UNTIL> 243 <CONTROL VARD> 244
<INITIAL VALUE> 245 <FINAL VALDE> 246

<RECORD VAR LIST> 247

10.2  SYMBOL TABLE

The data structure of <the symbol table is declared as
follows,

1T SYMTBL(1:40) EXT,
SYMID CHAR({8),
SYMLEV FIXED BIN,
SYMTYPE FIXED BIR,
SUBYTYPE FIXED BIN,
VALUEY FIXED BIW,
VALUE2 FIXED BIN,
CFFSIZE FIXED BIN;

Mo N

The interpretation of each field in SYMTBL is dependent
upon the value of SYMTYPE:

Case SYMTYPE of

30 type id
" SYMID is the name of this identifier.
SYMLEV is the static block 1level on which this iden-
tifier is declared,
case SUBTYPE of
0: scalar byte, OFFSIZE is 1% {byte}.

- 54 -



91z

G2z

1z
23
33
42
5:

scalar integer, OFFSIZE is 2{bytes).

scalar real, OFFSIZF is 3 {bytes).

scalar boolean, OFFSIZE is 1{byte).

scalar character, OFFSIZE is 1 ({byte).

subrange type, the range {iwplemented as one
byte) is {VALUE1..VALUE2), CFFSIZF is 1({byte).

6,7.8,3,10: arrays: byte, integer, real, boolean,

character respectively. VALUE1 is the pointer to
dope vector {DOPE), for 1 ~dirensional arrays, it
iss

{base location of vector}) -~ (lower bound) * {(el-
erent size)

VALOE2 is the number of dimensions.

constant id
SYMID and SYMLEV have the same interpretation as for

type
case
0z
1s
23

3:
4=

112

id.

SURTYPE of

byte, value is in 2nd bvyte of VALUE1.

integer, value is in VALUDE1.

real, fraction is in VALUET, charac?erlstlc is
in the 2nd byte of VALUFZ.

TRUE(VALUET=1) or FALSE(VALUE1=0).

character, value is in 2nd byte of VALUE1.
string, VALUE1 is the pointer to STRAREA, VALUEZ

is the length of string.

function ié (not implemented)



93: variable id
SYMID and SYMLEV have the same interpretation as for
type id.
case SUBTYPE of
0: scalar byte
1: scalar integer
2: scalar real
3: scalar boolean
4: scalar character
other: index of type id in symbol table.
If this variable is a formal parameter called by
reference then VALUE1=0; ctherwise VALUEI=-1,

VALUE2 is not nsed.
94: field id {(not implemented)

95: procedure id
SYMID is the procedure nare.
SYMLEV is the address in P-code of this procedure; if

negative then it is a builtin procedure.
VALUET is the pointer to parameter infor-
mation (PARAMNTFOD).
VALUEZ is the number of formal parameters of this
procedure,
OFFSIZF is the size of the activation record {in

bytes).

96 label
SYMID is unused.
SYMLEV is the numeric value of the label.

case subtype of _
0: undefined: YALUE1, VALUE2 and OFFSIZF are the

list of undefined goto's (therefore at most 3

forward references are allowed).
f: defined: OVFSIZE is the P-code address of label

deflnltlon.

The symbol table is ini+ialized by +he following 13 pre-
defined words.



SYMTYPE SUBTYPE QFFSIZE VALUE1 YALUE?

" ——v— i Sy,

0 BYTE 90 0
1 INTEGER 30 1
2 REAL 30 2
3 BOOLEAN 90 3
4 CHAR 990 i
5 TRUE 91 3
6 FALSE 91 3
7 READR 95 -7
8 READI 95 -8
9 READR 35 -9
10 WRITEB 95 -10
11 WRITEI 95 -11
12  WRITEX 95 -12

Besides S5¥YMTRL,

1 -1 -1
2 -1 -1
3 -1 -1
i =1 =1
1 -1 -1
1 i -1
1 0 -1
L 1 1
4 1 1
4 1 1
3 2 3
4 3 1
5 4 1

there are some auxiliary data structures

to the symbol table, declared as follcws.
INDEFD{13: 40y FIXED BIN, /* Cn which lines the symbol #/
/% 1s defined. */
LNSAPPR(13:480) CHAR{80) /% On which lines the symbol */
VAR EXT, /¥ appears (only the 1st 20 */
/% appearances are inciuded).®/
BOPE{1:10) FIXED BIV EXT,/*Dope vector, for each array*/
/¥information in it iss x/
/% CONSTP, D2, D3, ... Dn %/
_ /% where Di is the itth dim*n*/
DPX FIXED BIN INIT{0), /% Index c¢f DOPE. %/
STRAREA CHAR(25) VAP EXT,/* String area. %/
PN FIXED BIW, /% Index of PARMNFO. */
1 PARMNFO{1:10} EXT, /% Parameter information. */
2 POFF FIXED BIN, /* 0ffset of each formal parm*/
2 PREF BIT(T). /% Is it a call by ref parnm? %/
2 PTYPE FIXED BIN, /* Type of the parameter *y
TX PIXED BIN EXT, /¥ Index of SYMTBL of last */
. /% entered identifier. ®/
SYBY FPIXED BIW EXT, /% Index of SYMTBL of last x/
/% encountered identifier. #®/
10.3  DECLARATION PARI
10.3.1  Grammar
Because recursive descent is used in parsing this part,

is more

convenient to express this
syntax diagrams than by BRF.

it

part of the grammar by



?mgmm

"PFOGFAH

. -L r”wn—h“—é f“- -7\‘\
j(m.;@u CARLOCK s

UNSIGRED INRTEGER .

>[1] @ . G

Y
w
\_

l'-—b@ > TYPE
o
A
N _,f/'.’\ﬂ
N
- @——_————-BLCCK et i 2 M N
i N
ID [[ >IPARAY LIST :"*\\
3| PARAN LIST b-{ -—‘»{éﬁ—édﬁ? /)
O R e
N
P

~43-



- 3> SIMPLE TYPE

D _-—_AATYPE ID de
f#<::>- p ] o

b= e— -

Oy

ST APLE T!PE_—J—><jr) f::>ﬂ4}vp£ >

TYPE >

m(?fj 3l STHELE TYPE

M FIELD LIST |

>(FECOPD )

PARARNY LIST

~.

T

T

—— . l
> FBNCTI%Ei)__*§
@

) |

\
rTYgEfEE}HEfMML;(§:>ﬁW‘".Vﬁ




| TYPD ID = o
;ﬁ—e- ID L——————;-@
CONSTANT |——o’
CONST ID sy
. S SN
| y | UNSIGNED INTEGER R S
| | | .
e > UNSIGNED REALf——’
\__ N N /
& CHAFACTER srfemcf—_ﬁ—— S
PITLD LIST
)J,' [ ,,\
f
i
| — !
- > TYPE | " -
i — ~
\ L L I
CASFE 4 ID S ,LTYPE ID }—> OF
T ] “ Hren 20 -
N,
7 T‘ ol
‘ Y :\\\_____.,):\’
. ¢
~ miﬁ - i | FIFLD LIST—‘! //--\ /
T« sl () ofrmm v (-

44

O



10.3.2  ELLOor IZecovery

The procedure EBROR will report syntax errors e€ncountered
during parsing the declaration part, and i* ¥ill recover
from 3 common types of error.

If the correct seguence of symbols is
« « A BCo. .

and the parser is expecting to proce€ss symbol *B* while an
error is encountered, the procedure EFRCER recovers from the
following 3 types of error:

1. missing current symbol, while the next is right,
eﬁg‘ - - A C = L]

2. vwrong symbol is encountered, but the next symbol
is right, ‘
€.q. . « ADC . .

3. an illegal symbol is inserted before the correct

symbol,

The algorithm used here is sirple. It is centered around
the array PSYM, follow-up symbols, which is the set ¢f pos-
sible next synbols. If symbol A has been read and the par-
ser is expecting to read symbol B bhut reads sormething else
as the current symbol, then the following actions will be

taken.
step 1. report error

step 2. check if the current symbol is in the follow-up
: symbols. If so, then assume a symbol is wissing,
return; otherwise continue to step 3.

step 3. read in the next symbol and see if it is the
sywbol which had been expected as the current
sywbol. If true, +then assume an illegal synbol
is inserted before the correct one, return; oth-
ervise continue to step 4.

step 4. check to see if the new syrmbol is in the follow-
up symbols. If so, then assume the current sym-
bol is wrong {error type 1}, flag DCGSYH¥ to scan~
ner. {Because next SYM is already being read in,
the next call to GETISYM will be a return only.)

- 66 =



10.4  STATEMENT PART

SLR {1} was used in parsing <statement parid. A parser
generator (written by R, Wetfer at Cornell University) vas
used to produce the decision table for parsing actions. The
input to +the parser gernerator {(the BNF grarmar forx
{statement part>) is listed on the following 2 pages. The
output of the parser generator (the decision table) is coded
into procedure TRANS. The actions have been briefly dis~
cussed in chapter 8; the principle of this parsing technique
can be found in (1], 27, [10]7.

Whenever a reduction action is called, be it BD or LED,
one of the semantic routines in procedure REDUCE will come
into play and some pieces of intermediate code are gener-
ated. The set of intermediate code used in the compiler is
defined in chapter 11.



<ST P> <COMPOUND ST>
<ST> <UNLABELLED 57>
<LABEL> : <UNLABELLED ST>
‘<LABEL> <UNSIGNED INTEGER>
<UNLABELLED ST> <ASSGN ST>
<PRCC ST>
<GOTO ST>
<EMPTY 3T>
<COMPGUN¥D ST
<IF ST>
<CASE ST>
<REPEAT ST>
<YHILE ST>
<FCR ST>
_ <HITH ST>
<ASSGN ST> <VAR> := <EFXP>
<FUN ID> := <RIP>
CYAR> <VAR ID>
<INDEXED VAR>
<VAR> , <FIELD ID>
<VAR> &
<INDEXED VAR> <ELIST> ]
<BELIST> <ELIST> , <EXP>
<ARRAY VAR> [ <EXP>
<ARRAY VAR> <VAR>
<EXP> <FXP> <RELATICNALI B> <EXP>
<EXP> 4+ <EXP>
<BEXP> - <EXP>
<FXP> OR <EXP>
4+ <E¥p>
- <EXP>
<EXP> <MULTIPLYING CP> <FYP>
{ <EXP> )
<VAR>
<FUN DESIGNATOR>
<SET>
NOT <EXDP>
<UNSIGNED CONST>
CUNSIGNED CONST> <ONSIGNED INTEGER>
<UNSIGNED REAL>
<STRING> -
<CCNST ID>
NIL
<FUN DESIGNATOR> <FUN ID>
<FUN ID> { <ACTUAL FARAK LIST> )}
<ACTUAL PARAM LIST> <ACTUAL PARAM LIST> , <ACTUAL PARAND>
<ACTUAL PARAM>
<SET> [ <ELEMENT 1IST> ]
: {3
CELEMENT LIST> <ELEMENT>
<FLEMENT LIST> , <ELEMENT>
<ELEMENT> <EXP>
<EYP> .. <EXP>



<PROC ST> <PROC TID>
<PROC ID> { <ACTUAL PARAM I1ISI> }
<ACTUAL PARAMD> <EXP>
<PRCC ID>
<GOTO 5T> GOTO <UNSIGHED INTEGER>
<ENMPTY S5T>
<CO¥PCUND ST> BEGIN <57 LIST> END
ST LIST> 8T LISTY> 3> KSTI>
<8T>
<3>3
<IF ST> IF <CEXP> <THE®R> <5T>
IF <EXP> <THEN> <5T> <ELSE> <351>
<THEN> THEN
<ELSE> ELSE
<CASE S5T> CASE <EXP> <OF> <CASE LIST § LIST> END
<OF> OF
CCASFE LIST E LIST> <CASE LIST E LIST> :<CASE LIST ELEHMENT>
<CASE LIST FLEMENT>
<CASE LIST ELEMENT> <CASE LABEL LIST> <:i> <ST>
{FHMPTY STI>
<:> oz '
<CASE LABEL LIIST> <CASE LABEL LTIST> , <CASE LABEL>
<CASE 1ABEL>
<CASE LABEL> <CCHNST>
<HHILE ST> <HBILE> <EXP> <DO> <57T>
<REPEAT S5T> <REPEAT> <57 LILIST> <UNTIL> <EYP>
<FOR ST> FOR <CONTROL VAR> ;= <INITIAL VALUE> TO

{continue) {FINAL VALUE> <DO> <ST>
<FOR ST> FOR <CONTROL VAR> := <INITIAL VALUE> DOWNTO
{cont inue} {FINAL VALUE> <DC> <S5T>

<CONTROL VAR> <VAR ID>
CINITIAL VALUE> <EXDP>
<WHILE> WHILE
<DO> DO '
<REPEAT> REPEAT
<UNTIL> UNTII
<FINAL VALUE> <EXP>
<WITH ST> WITH <RECORD VAR LIST> DO <ST>
<RECORD VAR LIST> <RECORD VAR IIST> , <VAR>
<VAR>
<CONST> <UNSIGNED INTEGERD
<UNSIGNED REALD
+ <UNSIGNED INTEGER>
- <UNSIGNED INTEGER>
4+ <UNSIGNED REALD
- <UNSIGNED REAL>
<CONST ID>
4 <CONST ID>
-~ <CONST ID>
<STRINGD>



Chapter 11

INTERKEDIATE CODE

11.1  ARCHITECTURE

The intermediate code is based on a hypothetical stack
machine. Fach instruction of this stack machine is composed
of 2 parts with the following format.

OPCODE, L, A

The OPCODE is a mnemonic which specifies not only the
operation but also the type{s} of the operand(s). L is the
level difference between the current procedure and the pro-
cedure where the variable is defined. 4 is either a number
{e.g. in LIT's, MARK), or a program address {(e.9. in JUHMP,
CALL, etc.}, or an offset of dats address {e.g. in various
ioad and store operations). & cowplete data address is com-
posed of {L,A). Since an operand stack is used, there is no
named register other than the prograr counter ({(PC}, and it
is not necessary to name explicitly the operand{s) of any
arithmetic operation. Therefore, {L,3) is pot used in
arithme®ic instructions {e.g. ADD, DIV, GTR, etc.}), and it
is set to {0,0). Following are some examples of transiation
from source program statements into intermediate code.

Fxample 1: The first statement of GCD program in the
Pascal~-M User Manual ({3Appendix A, p. 12)
: X:=M;
where ¥ has been declared as a cornstant 24, is
translated into

LI1TB 0 24
STB 0 2

The first instruction means load constant 24 of type
pyte onto the operand stack. The second instruction
means to store the top byte to location (0,2}, which
is the address of X.



Example 2: The statement X:=X-Y of the same program is
tranglated into

1¢pe 0 2
LCDB 0 3
SgBB 0 O
STB o0 2

The first instruction means lcad a byte onto the
operand stack from location {0,2), which is X. The sec-
ond instruction loads a byte from location {0,3}, which

is Y. The +third instruction is a subtract operation;
the 2 operands will be popped from the operand stack and
the result will be pushed onto the stack. The last

instruction stores the top byte of +he operand stack
into location {0,2).

Example 3: The following is a fragment of a Pascal-¥
programe.

PROCEDURE: A;
VAR X:BYTE;
PROCEDURE: B;
VAR Y:BYTE; |
BEGIN {* PROCEDURE B *)
1=X4Y;
END {*PROCEDORE B *)
BEGIN (* PRCCEDURE A ¥)

* » @

Suppose X is translated to be at offset 2 of procedure
2, and Y is *translated to be at offset 3 of procedure 3B,
+hen the statement X:=%4Y will be translated into

LopB 1 2
LeDpB 0O 3
ATDB 0 -0
STB T2

The major difference from exarwple 2 is *hat ¥ is
translated intoc (1,2). This is because ¥ is not a local
variable, and ¥ is declared in a procedure (A) which is
one level farther out than the procedure (B) where the
statement X:=X4Y appears.



11.2 SPECIFICATICH

The following rpages of this <chapter attempt to Specify
the intermediate code in a more precise way -- by describing
each intermediate-code instruction in Pascal. First we have
to conceive the operand stack as having 8-bit width and
unlimited depth. Two operations PUSH and POP are associated
with accessing the operand stack: PUSH pushes one variable
(of type byte) onto the stack, while PCP pops the top ele-
men*t of the stack and stores it intoc the named variable.

In addition to POSH and PCP we need to define some
meta~operations in order to specify fully what the inter-
mediate code will do.

P_TO_ I change a type byte variable into type integer.

B_TO_R change a type byte variable into type real.

I_TO_B change a type integer variable into type byte.

R_TO_B change a type real variable into type byte.

R_TO_I change a type real variable into type integer.

MOD _ residue; both operands and result are integers.

HBI extract the higher byte of an integer.

LBI extract the lower byte of an integer. .

HBFR extract the higher byte of the fraction part
of a real. _

L.BR extract the lower byte of the fraction part
of a real.

CHR extract the characteristic part of a real.

FORHKY - form an integer from 2 bytes.

FORMR form a real from 3 tytes.

e e ¥ S Pe 27, K K=, =
these operations are self-evident.

Some variables and constants are used in describing the
meaning of the intermediate code. They are declared as fol-
lous,

VAR LB, (* lower byte of an integer or real *)
HB, {(* higher byte of an integer or real )
182, (* temporary LB *)
HB2, {¥ temporary HB %)
CH, {* characteristic part of a real *3
OP1iB, {(* 11st operand of a byte operation #)
DP2R (* 2nd operand of a byte operation #)

: BYTE;
TOP, (* top addr+? for last activin record ¥)
B, {* base address of last activ'n record %)
OLDB, {* temp store for B kb
pC, (* program counter *)

OP1I,{* 1st operand of an integer operation *)

0P2I (* 2nd operand of an integer operation %)
: INTEGER;

OP1R, {* 1st operand of a real operation *y

- 73 -



OP2R: {(* 2nd operand of a real operation
REAL;
S:ARRAY[ 0..255] OF BYTE; (* main store for
{(*#* activation record.
TEMP: ARRRY[ 1..87 OF BYTE; {(* temporary store

FUNCTIOE BASE{L:BYTF} :INTEGER;
{* This function computes the base address of
{* an activation record of level 1.
VAR ADDR: INTEGER: {* address of activin rec.
BEGIN ADDR:=B: (¥ get current activ'm record
{* address to ADDE.
WHILE L>0 DO
BEGIN L:=L-1: .
ADDR:=FORMI {STADDR ], S[ADDR+1 J)

END;

BASE:=ADDF
END.

PROCEDURE REFBASE(VAR T.:DYTE, VAR A:BYTE};

*)

*)
*)

*}

*)
*)

(¥ This procedire computes the relative address¥)

{*¥ {(L,A) of a call by reference variable from
{* the given indirect ({L,A).

*)
*}

BEGIN PUSH (S{ BASE{L)+A2 M4L+1); {* store new L %)

A:=STBASE(Ly+A411; {* get new A
L:=PCP {* get nevw L
END;

*)
*)



The following are the meanings of the 91 intermediate-code
instructions.

{#= 1 *} "ADBI? {(* add byte to integer ¥*)
' LB:=PCP;
HB:=POP;
0P1I:=FORMI(HB,LE) ;
OP2I:=B_TO_I (POP);
PUSH (HBI (CP1I4+CP2I) 3
PUSH(LBI{(OP1I+4+0P2I}

{(* 2 *) *ADDBY - {# add 2 bytes ¥%)
OP1B:=PQP; -
OP2R:=P0P;
PUSH {GP1B40P2B) ;

{(* 3 *) f"ADDI® {* add 2 integer numbers *)

LB:=P0P;

HB:=¥0P:
OP{I:=FOFMI{HB,LB} ;
1LB:=PCP;

HB:=POP;
OP2I:=FCRMI{HB,LE);

PUSH {HBI (OP1I40P2I);
POSH{LBI {CP1I4+CP2I);

(* 4 *) YALDR? (* add 2 real nunbers %)

CH:=POP;
LB:=PCP;
HB:=POP;
CPiR:=FCRMR{CH, HE, 1B} ;
CH:=P0OP;
LB:=DPCP;
HR:=POP;

CP2R:=FORWMR(CH,HE, LB} ;
PUSH {(HBR {OP2R40OP 1R} ;
PUSH {LBR(CP2R4CPIR) ;
PUSH {CHR {OP2R40P 1R)

(* 5 *} 'ADIB® {* add an integer with a byte *%)
OP1I:=B_TO_TI (POP};
I1B:=PCP;
HB:=POP;

OP2I:=FORMI(HB,LE} ;
PUSH (HBI {(OP 1I40P2I) ;
PUSH(LBI (CB1I40P2I) 3

{* & %) TAND ? (* *and' 2 bytes *)
0P iB==P0OP;
CP2B:=P0P;
IF OoPiB=TRUE THEHW PUSH{CP2ZB)};
EILSE PUSH{FALSE} ;

- T4 -



(* 7 %) YCALL! {* call subtroutine %)
For a procedure call, the semantic routine #*)

{%
{*
{*
{#
{*
(*
(*
{*
(#
{*
{*
{#
{*
()i

{*

will *ake the following actions:

1. Push the actual parameters onto the
operand stack.

*)
*)
*}
*)

2. Mark a new activation record and store ¥

the dynamic l1ink (DL) on 1it.

3. Pop the actual parameters from the
cperand stack, and store them on the
new activation record.

*3
*}
*3
*}

4. Prepar< the static link ({S1} and tran- *}

fer control %o the new procedure.

The I-code 'CALLY corresponds to the last
step of the semantic actions.

IF A>) THEN
BEGIN OLDE:=B:
=FORWMI(S{B427,5[B43 N ;
IF L=0 THEN {* copy 5L *)
BEGIN HEBz=S[B};
LB:=5{8B411
FRD
BLSE {(* L=1, copy B to 5L ¥}
BEGIN HBu:=HBI {B};
LB:=1BI{E)
END;
B:=CLDB;

S[B]:=HE; {* high byte of SL

S{B4+11:=LE; {(* lov byte of 5L
PUSH (LBI{(EC}):
PUOSH{HBI{FPC)}}:

PC2=A END _
EILSE {* I/C procedures ¥
CASE A CF

-72 REARDB:
-8: READI;
-9: READR;
-10: WRITEE;
=112 WRITEI;
-12: RRITER
FND (* case ¥*)

- 75 -~

*}
*}
*}
*}

*}
*}



[ 8 %) "CPBRN? (* change next_to_top from byte to ¥)
{* real. %
LB:=POP;

HB:=P{P;

CH:=P0OP;
CP2R:=B_TC_R(PCP} ;
PUSH {CHR {0P2F) 3
PUSH {HBR{GP2R) ;
PUSH{LBR(OP2F) 3
PUSH (CH) 3
PUSH{HB) ;

PUSH {LB) 3

{(*# 9 *} $CBRT® (* change top from byte to real *)
CP1R:==B_TC_R{POP);
PUSH {HBR{OP1R)} ;
PUSH{(LBR{CE1R) 3
PUSH (CHR {(CEF1R} ;

{* 10 %) 'CIB ? (* change top from integer to byte *)
LB:=PCP;
HB:=P0P;
PUSH{LB) ;

(* 11 *) fCIRN? {(* change next_to_top from integer #)
' CHz2=P0P: (¥ Lo real. *)
LB1=P0OP;
HB:=DPCP;
LB2:=P0P;
HB2:=PCP;
OP2fs=I_TO_F(FORMI(HB2,LB2)};
PUSH {HER(CP2R) ;
PUSH {LBR {QP2F) 3
PUSH {(CHR{CP2R} ;
PUSH (HB) ;3
PUSH (LB) 3
PUSH{CH) ;

(* 12 *}  *CIRT? (* change top from integer to real ¥}
LB:=POP;
HB:=PCP;
OP1R:=1_TO_PR (FORMI(HB,LB}):
PUSH {HBR({CPF1IR) ; :
PUSH (LEBR (OP1R) 3
PUSH (CHR{CE1R) 3

(= 13 * COM 7 {(* 1S complement a byte *)
. OP1B:=POP;
OP1B:=~1-CE1B;
PUSH{OP1R) ¢

- 76 =



{* 14 %) *CRBT? {(* change top from real to byte %)
CH:=ECP: :
1B:=PCP;

HB:=P0CP;
OP1B:=E_TO_B{FORME (CH,HB,LB)) ;
PUSH(CPIE) ;

{* 15 *) CFRIT? {(* change top from real to integer ¥*)
CHz=POP:
1B:=PCP;
HB:=P0OP;

CP1I:=R_TO_I {(FORMR {CH, HB,LB}) 3
PUSH{HBI (0OP1I);
PUSH {LBI {CP1I};

{* 16 %)} *DIVB!Y {* divide 2 hytes ¥}
OP1B:=P0P;
QP2B:=P0OP;
PUSH {OP2B/CP18) ;

{* 17 *) 'DIVI? {* divide 2 integers #)
' LRBR:=PDOP;
HBz=PCP;
OP 11:2=FOFMNI {HB,LB) 3
1B:=P0P;
HB2=P0P; _
CP2T:=FORMI (HE,LE);
PUSH (HBI (OP2I/0P11)
POSH {IBI {CP2I/0P11} ;

(% 18 *) *DIVR? {(* divide 2 reals %)
CH2=P0P;
1B:=PCP;
HB:=POP;
CP1R:=FORMR{(CH,HE,LE} ;
CH:=P0OP;
LB:=PCP;
HB:=P0OP;

CP2R:=FORMR{CH,HE, LE) ;
PUSH (HBR (OP2R/0P1F) ;
PUSH (LBR (CP2R/0P1R) 3
PUSH {CHR {(OP2R/0P 1R} ;

{* 19 *) DVYBI® {* divide byte by integer %)
1L.B:=P0OP;
HB:=PCPs
OP1I:=FORMI{HB,LB}
CP21:=B_TC_TI (POP) ;
PUSH(I_TO_B(OP2I,0P1I));

- 77 -



w

{Jéf

S

{*

(*

20

21

22

23

24

«)

*)

*)

*)

*)

(* 25 )

"DVIB?

- YEQBI?

*EQIB®

‘EQUB'

YEQUI?

PEQUR?

(* divide integer by byte *¥)

OP1T+<=B_TO_I{POP});

LB:=PCP;

HB:=POP;

CP2I:=FCRMI (HB,LE) ;

PUSH{LBI (OP2I,/0P11);

PUSH {HBI (OP2I/0P 11} ;

{(* if a byte equals an integer?

LB:=POP;

HB:=PCP;

OP1I:=FORMI (HB,LRB):

CP2T:=B_TC_I(POP);

IF OP1I=0P2T THEN PUSH{TRUE);TE
FELSE PUSH (FALSE) ;

{* if an integer equals a byte?

CP1T:=B_TC_I {PCP);

LB:=POP;

HBz=FCP; = .

DP2T:=FORMI {HB,LE) ;

I¥ CP1I=CP2I THEN PUSH (TRUE):
RLSE PUSH{FALSE):

{(* if 2 bytes are egual? *)

CP1B:=POP;

0P2B:=P0OP;

IF CP1B=CP2B THER PUSH(TRHUE);
ELSE PUSH (FALS3E} ;

{(* if 2 integers are egual? ¥*)

LB:=P0OP;

HB:=BCP;

OP1I:=FORMI (HB,LB) ;

I1B:=PCP;

LB:z=P0OP;

CP2T:=FOBRMI{HB,LE) ;

IF¥ OP1I=0P2I THEN PUSH (TIRUE) ;
FLSE PUSH{FALSE);

{(* if 2 reals are egual? =)
CHs=PCP3

LB:=BCP;

HB:=PQP;

OP1R:=FORMER (CH,HB,LB);
CH:z:=PB0F;

LB:z=P0OP;

HB:=PCP;

OP2PR:=FORME (CH,HR,LB) ;

iF CP1R=OP2R THEN PUSH{TRUE) ;-
FLSE PUSH (FALSE) ;

*}

*)

*)



{* 26 *) *GEB ¢ (* if next_to_top byte >= top byte? ¥)
CP1B:=P0OP;
OP2B:=pPOP;
I¥ OP2B>=0P1R THEN PUSH({TRUE);
ELSF PUSH(FALSE);

(¥ 27 *) *GEBI® {(* if next_to_top byte >= top ¥}
(* integer? %)
LB:;=PCP;
HB:z=P0P;

CP1I:=FCRHEI{HB,LE};
OP2I:=B_TO_I (POP);
IF CP2I>=CP1I THEN PUSH(TRUE);

(¥ 28 *) GEI * {(* if next_to_top integer >= wap ¥)
{* integer? %)
LB:z=P0P;
HE:=PCP;
OP $1T:=FORMI(HB,LEB) ;
LBz=PCP;
LB:=P0P
" CP21:=FCRMI{HB,LE} ;
IF QP21I>=0P1T THENW PUSH (TFPUE)};
ELSE PUSH({FALSE}:

{* 29 *y YGEIB? {¥ if next_to_top integer >= top ¥}
: {¥ byte? ¥}
OP1I:=B_TO_IX (POP);
1B:=PCP;
HBz=POP;

CP2I:=FORMI{HB,LE);
IF OPZI>=0P1I THEN PUSH(TRUE};
' ELSE PUSH{FALSE};

{* 30 ¥) 'GER ¢ {* if next_to_top real >= top real? ¥
. CHz=P0P;
LB:z=PCP;
HB:=P0OP;
CPiR:=FORMR (CH,HE, LB}
CHz=POP;
1B:=FCP;
HB:=POP;
CP2R:=FORMR(CH,HE, LB} ;
IF OP2F>=0P1F THEN PUSH(TRUOE};
ELSE PUSH{FALSE};

(¥ 31 %y GIB ¢ {(* if next_*to_top byte > top byte? ¥}
0P18:=POP;
CP2B:=POP;
IF OP2B> OP1B THEN PUSH (TFUE)
®LSE PUSH({FALSE};



(* 32 %) 'GTBI? {* if next_%o_top byte > top *)
{* inteqger? : *y
LB:=POP;
HB:=PCP;
OP1I:=FORMI(HEB,LE) ;
CP2TI:=B_TC_3I {PCP);
I¥ OP21>0P41I THEN PUSH (TRUE} 3

{* 33 %y 'GTI * {* if next_to_top integer > top ¥*)
: {* integer? ¥*)
LR:=POP;
HB:=PCP; :
OP1I:=FORMI(HB,LE} ;
LBs=PCP;
LB:=POP;
QP2TI:=FORMI{HEBE,LE) 3
IF 0P2I> OP1I THEN PUSH (TRUE) ;
ELSE PUSH({FALSE}:

{(* 34 *) ¢GTIRY (¥ if next_to_top integer > top ¥)
{* byte? *)
OP1I:=B_TO_I(POP);
1B:=PCP;
HB:=2=P0P:

CP2T:=FCORMI(HB,LE)};
IF OP2I>DP11 THEY PUSH {IRUE} S
FLSE PUSH(FALSE)

@y %o

(* 35 %y YGIR °! (¥ if next_%+o_top real > top real? ¥}
CH:=P0OP: :
LB:=PCP;
HBs=POP; -
CP1R:=FORMR(CH,HE,LB) 3
CHz=POP;
LB:=8CP;
HB:=POP;
CP2R:=FORMR(CH,HE,LE) ;
IF OP2FE>0P1R THEX PUSH({TRUE)};

BLSE PUSH (FALSE) ;

{(* 36 %y 3 JPF * (* jump false ¥%)
OP1B:=POP;
IF CP1BE=FALSE THEN PC:r=A;

(* 37 %y} *JpT ¢ (* jump true *)
OP1B:=POP;
IF¥ OP1BE=TRUE THEN PC:=1;

{* 38 %) SJUMEY? {* jump *)
PC:=A;



(#

(ﬁ:

{¥

(x

{*

{*

(#

{*

39

40

41

42

b3

44

45

us

*)

*)

*)

*3

*)

*)

*}

*}

(* For loading array variakles, the semantic
(* actions are:

(*
* 1.
(* 2.
(*
(* 3.
(*
(* 4,
(#
{*
(*

Evaluate the subscripts.

Convert the subscripts into an offset

of an activation recorgd.

Leave the offset on the operand stack

as it is being calculated.

Get the offset from the operand stack
and load the variable accordingly onto

the operand stack.

{* The following 3 IDX's correspond to the
(* las* step of the above actions.

TLEYB?

PLDXI®

YLDXR?

FLITBY

TLITIe

*LITR?

*LCDB?

YLODI?

“{* load byte indirect #*)
LB:=POP;

{* load integer indirect ¥)

LB:z=PCP: '
POSH{S{ BASE{L)+1LB 1) ;

PUSH(S{ BASE({L)+LB+1]): (%

(* load real indirect *)

LB:=POP;
PUSH (S[ BASE(L)4LE]) 3

PUSH (S[ BASE(L) 4LE+17) ;
PUSH(S[ BASE (L) +LE427) ;

{* load literal Lyte *)
PUSH{4) ;

{* load literal integer %)

PUSH (HBI (3)) 3
PUSH (LBI {A)) ;

{(* load literal real *)
PUSH(HBI {A));
PUSH {LBI {&)) 3
PUSH{L) ; {* exponent ¥)

{* load bhyte %)
BUSH (S[ BASE{L)+2 1) :

- {* load integer ¥)

PUSH(SI BASE(L)+2 1) ; ({(* high byte %)
PUSH(S[ BASE(L)+241 1) ;: (% lovw byte ¥)

o
{*
{*

(* high byte

low byte

high byte
low byte
exponent

*)
*)

*)
*)
*y



(#

(‘-@f

{*

(*

{*

(*

('\k

{*

(*

47

Lg

49

50

51

52

53

54

55

*)

*)

*).

*}

*)

*}

*)

*)

*)

*LODE?

* LRFB!

. "LRFI?

YLRFR!

'LTPRY

'LTPI®

"MARK?®

{# lcad real *)

PUSH{S[ BASE(L}+A 1) : (* high byte
PUSH {S[ BASE(L) 42417} 3; {* low byte
PUSH{S] BASE{L)+24217); {*# exponent

(* load call by reference byte %)}
REFBASE(L,A);
PUSH(S[BASE(LY4A D) ;

{(* load call by reference integer
REPBASE({L,3);

PUSH(S[BASE(L}4A )} ; (* high byte
PUSH (S{ BASE(L)+A41 ) ; (* low byte

{* load call by reference real ¥}
EEFBASE (L, A);

PUSH(S[BASE({L)+A41); {* high byte
PUSH{S[ BASE(L)4+241)}: (¥ low byte
PUSH({S{ BASE(L)4442]); {* exponent

{* 1oad byte from temp area ¥}
PUSH(TEMP[ 1 7]) :

{* load integer from temp area %)
PUSH(TEMP{AT]) 3 {*¥ HB %)
PUSE{TEMP[A+1 s (¥ LB *)

{(* mark new activation record

*)
*}
*)

)

)

*}

*)

{* Thisz instruction corresgonds to the second ¥*j
{(* step of semantic action for procedure
{* invocation. See 'CALL® for details,

"MDBI?®

*MCIB?

S{TOP4+2 Js=HBI(B); (* DL ¥}
S{TCP4+3 J:=LBI{B): (¥ DL *)
B:=TCP;

TOP:=TOP4A;

{* mod byte by integer *)
IB:z=PCP;

HB:=POP;

OP11:=FORMI(HB,LE) ;
OP2I:=B_TO_I(POP);
PUSH(I_TC_B(MOD{CP2I,0P1I})};

{* mod integer by byte ¥}
0P1I:=B_TO_TI (POP};
LB:=PFCP;

HB:=P0OP;
CP2I:=FORMI{HB,LE) 3

PUSH {HBT (MOD {OP21,0P1I}));
PUSH (LBI (MCD{CP2I,0P1I)) 1}

- 82 =

#3,
*)



{(* 56 %y *MLBI? {* multiply byte and integer *)
LB:=POP;
HB:=FCP;
OP1I:=FORMI{HB,LE);
CP2I:=B_TC_I(POP);
PUSH{HBI {(OP2I*0OP11)}} ;
PUSH{LBI (CP2I%*0P1I}) ;

{* 57 *) ‘'MLIB® {(* multiply byte and integer %)
OP1I:=B_TO_I (POP);
LB:=PCP;
HB:=POP;

CP21:=FORMI(HE,LE) ;
PUSH{HBI (CP2I*0P1I));
PUSH (LBI {(CP2I*CP1I)) ;

{* 58 %} *M(DB? {#* mod 2 bytes ¥)
: CP1B:=P0P;
OPZ2B:=POP;
PUSH (MCDB{CP2B,CFIB)};

{* 59 %y 'MQODI? {* mod 2 integers ¥)
LB:=POD;
HB:=PBCP;
OP11:=FOERMI(HB,LE} ;
LB:=PCP;
HB:=POPg
CP2I:=FORMI{HB,LE}
PUSH {HBI (MOD {OP21,0P11}});
PUSH{LRI (MCD{OP2I,0P1L}}};
{* 60 *) SMULBY (* multiply 2 bYtes %)
: QP1B:=POP;
CP2B:=P0P;
PUSH{OP1B*0OP2B) ;

{* 61 %) +MULI" (*¥* multiply 2 integers ¥}
LB:=POP;
HB:=PCP;
CP1Y:=FORMI (HB,LE} ;
1Bz2=ECP;
HB:=POP;
OP2I:=FORMI(HB,LE} ;
PUSH (HBI (OP2I*0P1I) ;
PUSH{LBI (CP2I%*CP 11} ;



{* 62 ¥} *MULR! {(* multiply 2 reals ¥*)
CH:=P0P;
IL.B:=PCP:
HB:=POP; -
OP1R:=FOR¥R(CH, HE,LB) 3
CH:=POP;
IB:=PCP;
BEB:=POP;
CP2R:=FORMR (CH, HE, LB} ;
PUSH (HBR (OP2R*0P1R) 3
PUSH (LBR {OP2R*CP1R} ;
PUSH {CHR {OP2R*0P 1R} 3

(* 63 *) NEGB?® {* negate a byte *¥)
NDPIB1=POP;
PUSH({-CP1B);

{* 64 %) YNEFGI® ' {* negate an integer ¥)
LB:=POP;
HB:=PCP;
OP1I:=FORMI (HB, LB} ;
PUSH (HBI (=CE1I) :
PUSH (LBI (-0P1I)

{* 65 *) *NEGR® {* negate a real %)
CH:=PCP;
LB:=POP;
HB:=PCP;

NDP1R2=FORME (CH,HE,1LB};
PUSH{HBR{-CP1R) ;
PUSH{LBR (-OP1R} ;
PUSH {CHR({-CP1R} ;

{* 66 *} ‘'OR ¢ {* ‘ort 2 bkytes %)
0oPri18:=POP;
CP2B:=pP0P;

IF OPIB=FALSE THEN PUSH {(OP2ZB}
ELSE PUSH{TRUE)

{(* 67 ¥} 'POP ° (* pop a byte #*)
DC WHILE(A>0);
POP;
A:=A-1;
EMD;

{* €8 *} T'RIS °? {(* return from subroutine ¥*)
' TOP:=B8;
gB:=S[B42 ];
LBz=S[B4+31;
2=FCREI{HEB,LB) ;.
PC:=FORENI {FPOP,POP} ;

s @



{*

{*

{*

(%

{*

{ﬂt

(*

(*

(*

69

70

71

72

73

74

75

76

77

*)

*)

*)

*)

*}

*)

*}

*)

TSBRIY

FSBIB?

YSERI®

- " SFIB?Y

! SRFB!

" SRPI®

*SEFR?

578 °

‘STBI!

(* subtract integer from byte ¥)
LB:=P0OP;

HB:=BCP;

OP1I:=FORMI (HB,LE);
CP2I:=B_TC_I{(POP);

PUSH(HBI {OP2I-0P 11} ;
PUSH{LBI(CP2I-0OP1I);

{* subtract byte from integer %)
OP1Iz=B_TO_I{POP);

LB:=PCP;

HB:=POP;

CP21:=FORHI(HE, LE),

PUSH(HBI {OPZI-0OP1I1)

PUSH{LBI {CP2I-0P1I) ;

{* store byte to call by ref integer #)

REPBASE(L,A);

LB:=PCP;

IF 1LB<O THEW S{BASE({L) $3]:=? 11111?1*5;
"ELSE S[BASE(L)4A]}:=0

S[BASE(L)+A41):=1IB;

(* store integer to call by ref byte *)
REFBASE (L, A) ;

S[ BASE (L) $A ]:=PCE;

PCP; (¥ discard EB %)

{#* store call by ref byte *)
REFBASE (L, A} ;
S{ BASE {L)+4A ]:=POCE;

{* store call by ref integer #)
REFBASE({L,A}:

S[BASE (L) +A471]:=E0P; (* low byte %)
S[BASE(L}+A ]:=POP; {* high byte %

{¥ store call by ref real ¥}

REFBASE(L,A);
ST BASE{L) +2442)
ST BASE (L)Y +3+41)

= {¥ exponent #*)
S{BASE{L)+A4]: §0

BCP;
FOP; (* low byie ¥
|23+ (*¥* high byte %)

{# store byte to activation record %)
ST BASE (L) +4A J:=POP;

{*#* store byte to integer *)

LB:=PCP;

IF LBKO THEX S[BASE(L)+A]}
ELSE S[ BASE(L)+4]

ST BASE{L)+A41 ]:=1LB;

1=t ?1111111‘5;



{(* 78 %) !5 ¢ {* store integer %)
S[ BASE (L) 4A413:=POP; (* low byte #*)
ST RASE (L)4A ]:=P0OP; (¥ high byte ¥)

{x 79 *) ISTIB! {* store integer to byte ¥}
S[ BASE{L) 44 ]:=POP;
POP

{* 80 %) 'STPB" {* store byte to temp area ¥)

TEMP[ A ]:=POP;

{* 81 *} 'STPI°? {(* store integer to temp area %)
TEMP{ A4+ 1]:=PCP; {* LB *)
TEMP{ A ]:=POP; {(* HB *)

{* 82 #*) *STR * {* store real *)
: S[ BASE{L) $A+2J:=FOP; (¥ exponent *¥]
S[ BASE{L}+A8413:=FOP; (* low byte *)
SI BASE{L)+4A4):=POF; (* high byte ¥}

{* 83 *) ¥SQyBRY {* subtract 2 bytes ¥}
0P1B:=PCP;
O0P2B:=POP;
PUSH{CPZB-CP1IB);

{* 84 *) *SUBTY {*# subtract 2 integers ¥*)

LB:2=P0P;

HE:=PF0P;
OP1I:=FORMI(HB,LE) ;
LB:=PCP;

HB:=P0P;
Op2Y:=FORMI{HB,LE) ;
PUSH{UBI{OP21-0P11};
PUSH(LBI (OP2I-0OP1I)

(* 85 *y ISUBF!? {* subtract 2 reals #)
CHz=POP;
I1B:=PCOP;
HB:z=POP:
OPIR::=FORMR(CH,HE, LB} ;
CH:=P0QY;
LB:=PCP;
HB:=P0P;
CP2R:=FORME (CH,HE, LB} ;
PUSH (HBF (OP2R~OP1R) 3
PUSH (LBR {OP2B-0P 1R) ;
PUSH (CHR (OP2R~0P 18) ;



{*

{*

(*

(%

(*

(#

Ré

87

88

89

90

91

*}

*)

*)

*)

*}

%)

*5¥B ¢

'5¥BI*

TSXI 7

*SXIB?

tSXR 7

QX ¥

(* store indirect byte *)
LB:z=P0OP: :
S[ BASE(L) 4BCP ):=1B;

{*¥ store indirect byte to integer ¥
LB:=POY;
IF LBLO THEN HB8:=¢11111111%B:
ELSE H#B:=0:
A:=PCP;
ST BASE (L) 42 1:=HB;
ST BASE{L)+24712=1LB;

{* store indirect integer ¥*)
LBz=POP; '
HB:=PCP;

A:=F0P;

ST BASE{L) +A J:=HB

ST BASE (L) +A+41 ]:=18B:

(* store indirect integer to bhyte %)

ILB:=PGP:

HB:=P0P;

:=PCDh;
STBASH{L) 43 ]J:=1LB;

{(* store indirect real %)
CH:=FCP;
LB:=P0P;
HB:=BCP;
Az=POP;
STBASE{L) +4A
Sf BASE (L) +A
ST BASE(L) A

Bl SR
[\ Q= Y
[ETRR

(* do nothing; this code is a result
{(* of optimization.

*)
*)



Chapter 12

CCDE GENERATION

The procedure GENCODE performs the following tasks:
1. Optimize the intermediate code by
a. eliminating load-store pairs.
" b. partially unfolding some cecde sequences

that involve constants.
¢. elimirating indirect Jjumps.

2. Generate object code for the MC6800,

I% is invoked only when the return code of the first
phase of compilation is zero. It has 4§ short internal pro-

cedures:
1. GENM: appends new code to the array HCODE.

2. HEX: converts a decimal nunmber into 2 hexadecimal
digits.

1,  LOADA: generates optimized code for machine
instruction 'LLCAA #IMMEDY (locad an immediate ope-
rand into accumulator A} by testing if IMKED is

zefo or not: if so, then generates CLRA (clear
accumulate A} instead of a load ingstruction.

4. LEVOFF, generates optimized code for

LDAR #LEV(I)
LDAB  #OFF (I)

by using the same method as for LCADA.

12.1  HENORY QRGANIZATION

The memory of +he object machine is divided into 5 parts:

1. Addresses 0000--0014: temporary storage area,
reserved for temporary variables and some static

variables.



Addresses 0015~~-00FF: activation record area. The
organization of an activation record is discussed

later.

Addresses 0100--27?22: prograf area. This area
extends toward +the operand stack, but does not
overlap it.

Addresses ?7?2??7--13FF: the operand stack, with its
bottom at address 13FF.

Addresses 1400-~1BFF: the run time library. a1l
“he routines like multiplication, division, and
all the routines for household chores are stored
in this area. They are listed in section 12.2.

Address
8000
temp area
0014 :
0015 _ T
activin records
OOFF
0100 _ T
program area
operand stack |
137F 3
1400 ¢
| library
coz2

Memory organization



The activation record is organized as follows: wemory
locations 000C and 000D are for the variable B, which is %he
pointer to the base address of +the current activation
record; memory locatioms O00E and 00CF are for the variable
TOP, which poin*s to the top of current activation record.
In each activation record (except the first), the first byte
is the lower byte of the address of static 1ink {(since the
activation records are located at page zero, the higher byte
for the address of any activation record is 00), +the second
byte is the lower byte of the address of dymamic link, and
the rest of the bytes are for parameters passed to this pro-
cedure or local variabdbles. Note that the return address is
not on the activation record; it is on the hardware linkage
stack of tke machine, The following graph is a snap shot
for activation records of the factorial program (see Sect.
5.6, Pascal-M User Manual) when K is 3 and the procedure
FACTOF is just being invoked for the second time.

Rddress -
000D o .
000F 501 Top .

D00F 26 |
0015 T .
0018 /,/f 5 p:;TSL
0017 / 100 ] ; \
’ Ay

0018 / STTIETT s | \ }
3019 ! 72 SL< \ |
0012 | L ; -
0018 | 007 addr.of B4\ |/
001cC 00 o
001D \ 1 ICCAL_F< . }[; \
001\ .90 \ ,j/

™ [ 15 A
001F ] 15 ] si<TT |
0020 ] Dl ; |
0021 i D - |
0022 00 | addr. of ¥/ )
0023 20 /
0032 00 1ccai_® y
0025 o | B

< i

12.2  BON TIME LIERARY

Except for the wost trivial ones, every intermediate code
instruction hag a corresponding run time routine stored in
the library, which shortens the program itself considerably.
The following is the 1list of run +time routines and their
. address and function.



routine address fupctior

R v v o aday, ek

GBASE 1400 get the address of (L,A)
'~ into index register. .
LODB 141F . routine for I-code LODB
LODI 142C . toutine for I-code LODI
LODR J43F routine for I-code LODR
STR 1459 . routine for I-code STH
ST 1460 routine for I-code STI
STR 1488 routine for I-code STR
STRBI 1hAA routine for I-code STBI
STIB T4CS routine for I-code STIB
MAFK 1404 routine for I-code HARK
CALLD T4ER routine for I-code CRIL if

level difference betwveen
caller and called is 0.
CALL1 1503 routine for I-code CALL if
level difference betveen
caller and called is 1.

REF 1510 get the base address for call
by reference variables.
LRFB 1528 routine for I-code LEFB
LRFI 1535 routine for I-code LETI
LRFR 153¥% routine for I~code LEFR
SFBI 1549 routine for I-code SFBI
SFIBR 1553 routine for I-code SFIB
SRFB 155D routine for I-code SRFB
SRFI 1567 routine for I-code SRFI
SFEFR 16871 routine for I-code SEFE
EOUB 1578 routine for I-code EQUB
HRITEL 1588 routine for standard
procedure WRITEI
GTR 15AA routine for I-code GTB
GEB 1586 routine for I-code GER
DIVIR 1838 routine for I-code DVIB
DIVI 1847 routine for I-code DIVI
MODIB 1852 routine for I-code HDIB
MODT 185% routine for I-code MODT
DIVR 1843 routine for I-code DIVE
MULR 192F routine for I-code HMULPR
MOLI 196F routine for I-code MNULI
ADDRI 1990 routine for I-code ADBI
SUBRI 189C routine for I-code SBBI
ADDIB 1918 routine for I-code ADIRB
SUBRIB 1984 routine for I-code SBIB
ADDY i9c6 routine for I-code ADDY
SUBY - 19D0 routine for I-code SUBI
CFB - 19DF routine for I-code CRB
C®Y 19E7 routine for I-code CRI
CIEN 121D routine faor YI-code CIRH
CBRY¥ 1A2F routine for I-code CBEN
CIRT TABY routine for I-code CIRT
CRET 145 routine for I-code CBRT

SUBR 126% routine for I-code SUBR

- 91 =



" ADDR
bIvVB
¥0ODB
DIVEBY
MODBI
MULB
MULBI
MULIB
WBRITER

READR

Ta74
TAED
1AF0
TAF9
1AFC
1E62
TB7S
1BBY
TBCY

18D%

routine
routine
routine
routine
routine
routine
routine
routine
routine

for
for
for
for
for
for
for
for
for

I-code ADDR
I-~code DIVH
I-code MODB
I-code DVBI
I-code MDBI
T-code MULR
I-code HILBI
I-code MLIB
standard

procedure ¥RITEBR
routine for standard
procedure FEADB

- 92 -



1]

{31

[41

[51

[61

BIBLIOGRAPHY

Aho, A.V., and Johnson, S.C., LR Farsing
Computing Surveys, Vol.6, No.2, June 1974, pp. 99-124,

Alpert, S.B., Pascal: A Structurally Strong Language
Peterborough, NH: Byte Publications Inc., Byte
Magazine, Vol.3, ¥o.8, Aagust 1978, pp. 78-88,

Ammann, U., et al., The Pascal (P) Compiler : Inmplemen-
tation Notes

revised edition. Zurich: Eidgenossische Technische
Hochschule, July 1976.

Bell, J.R., Threaded Code
Communications of the ACM, Vol.16 ¥o.6, June 1973,
pp. 370-372.

Blaauw., G.A. Digital System Igplementation

_ Englewood Cliffs, NJ: Prentice-Hall, 1976.

(71

{81

{°]

£70]

[+l

Brooks, F.P., Jr., An Cverview of Microcomputer Archi-
tecture and Software

Second Symposium on Micro Architecture, EURCRICRC,
1976,

Calingaert, P., Asgemblers, Compilers, and Program
Tranglation :

i e it A S M S WS L S

Potomac, MD: Computer Science Press, Inc. 1978,

Conway, R., Gries, D., and Zimmerman, E.C.
3 Primer op PASCAL -
Cambridge, MA: Winthrop, 1976.

DeBemer, F.Ll., Simple LR ({K) Grammars
Communications of the ACM, Vol.14, No.7, July 1971,
pp. 453-460.

Dreizen, #.M., Micro-C User’s Marual
Chicago: Dept. of Information Engineering, 0University
of Illinois at Chicago Circle, 1576.




[121

(131
[1473

[15]

{16]

{173
1181
[19]
{20}
[21]

[22]

Fuchs, H., et al., A System for Automatic Aéquisition
of Three Dimensional Data
Proc. of National Computer Conference, 1977, pp. 39-53

Gries, D., Compiler Coustruction for Dpigital Computers
New York: John Wiley & Sons, 1971.

Intel Corp, 8008 and B08O EL/M programming manual
Santa Clara, CA: Intel Corp, 1975,

Jensen, K., and Wirth, ¥., Pascal -~ User Manual and

Reperx U omm T TR T
2nd edition, New York, Berlin: Springer-verlaqg, 1975.

Marcotty, M., Ledgard, H.F., Bochmann, G.V., A sampler
of Formal Definitions

Computing Surveys, Vol. 8, Wo. 2, June 1976,

pp. 191-27¢.

Hotorela Sewmiconductor Products Inc.
New York: McGraw-Hili,1975.

Microprocessor Application Manual

e — e T

B5700,6700 Series

i s it

New York: Academic Press, Inc., 1973,

Ritter, T., and Boney, J., A Hicroprocessor For the
Eevolution: the 68039

Peterborough, NH: Byte Publications Inc., Byte
Magazine, Vol.4, No.1, Jan. 1979, pp. 14-42.

Smoke Signal Broadcasting, BED:-68 Syster MNanual
Hollywood, CA: Swmoke Signal Broadcasting, 1977.
SWIBUS, 6800 EOM Monitor, versiop 1.0, Users Guide
San Antonio, TX: Southwest Technical Prods. Corp,

1977,

Wirth, N., Algorithms 4 Data Structures = Programs
Fnglewood Ccliffs, NJ: Prentice-~Hall, 1976.

- g4 -





