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Abstract
The principal calculation performed by all visible surface algorithms
is the determination of the visible polygon at eacﬁ pixel in the image.
Of the mény poésible'speedups and efficiencies found for this problem, only
one published algorithm (developed almost a decade égo by a group at Gen- .
eral Electric) took advantage of an observation that many visibility calcu-

lations could bé_performed without knowledge of the eventual Qiewing po-

sition and orientation -- once for all possible images.  The method is

based on a "potential obscuration" relation betﬁeen polygons in the simu-
lated environmént. _UnFortunately, the.method worked only for certain ob-
Jjects; unmanagablé objects had to be manually (and expertly!) éubdi#ided
into managable pieces.

We describe in this paper a solution to this problem which will alldw
substantial a priori visibility determination for all possible objects
without any manual intervention; but some minimal, isplatgd'visibility cal-
culations for certéin unusual objects may still femain to.be performed.
after the Viewing.posifion is specified. In addition, we discuss ﬁhe de-
velopment of still stronger solutions which ‘could Furthef reduce the number

- of these visibility calculations remaining at image generation time.



The reduction in overall processing and memory requirements enabled by
this approach may be quite significant, especially for those applications
(e.qg., 3-D simulation, animation, interactive design) in which numerous

visible surface images-are'generated from a relatively stable data base;



Introduction

The principalrcomputation performed by ali visible surface algorithms'
is the determination of the visible polygon af each pixel of the image.
The. designers of the various visible surface algorithmé take advantage of
different properties about the structure of the_prdblem in order to perform
.this computation as efficiently as possible. Schumacker g& al (1969) were

the oniy designers, to our knowledge, who observed that for certain objects

the basic visibility calculation can be performed independently of the

viewing position. For objects for which such assignment can be found the
number.of-computatiohs needed to obtain a visible surface image can be
dramaticaliy reduced. For applications for which a large nuhber of images
needs to be created, this decrease can mean the difference between a the-
oretically and & practically solvable problem.

We quote'here_from Sutherland, Sproull, and Schumacker (l974),_who
succinctly described the basic ideas of this approach. (Note that polygons

are referred to as "faces", and objects or parts of obhjects are referred to

as "clusters".

The notion that face priority within a cluster can be computed
independent of the viewpoint is extremely important. Consider

the top view of an object, as shown in figure 1. If, for any
viewpoint, we eliminate the back faces (relative to that viewpoint),
the numbers assigned to each face in the figure are the priority
numbers. A cluster is a collection of faces that can be assigned a
fixed set.of priority numbers which after back edyes are removed,

provide correct priority from any viewpoint.

The computation of face priority requires computing whether face A
can, from any viewpoint, hide face B. If.so, face A has prierity
over face B. These computations are performed for all faces of a

cluster, and a priority graph is constructed. If there are any



circuits in the graph (e.g., face A has priority over face B, and
face B has priority over face A}, the faces cannot be assigned pri-
orities that will produce a correct image.. In this case, the clus-

ter will have to be split manually into smaller clusters.

l-n—p-—---—1

A
3 i !
i _
}
!
1
|

a) _ b) _
\ 4

Figure 1: Face priority. a) Top view nf an object with face priority

numbers assigned (the lowest number corresponds to the highest priority).

b} The same object with a specific viewpoint located. The dashed lines

show back faces. Face 1 takes priority over face 2. [From Sutherland,

Sproull, and Schumacker (1974).]

Although it is at first encouraging that viewpoint-independent visi-
bility priority can be determined for many objects, it is rather discouraging
that objects for which this cannot be done are so.easy to find (e.qg., figure
2). This lack of "dependability" of the approach, we believe, has kept it
from widespread use. We present in this paper a solution to this problem

which allows, without manual intervention, the generation of priority

structures which exhibit minimum variance under viewpoint modification.



Figure 2: Simple object with no viewpoint-independent priority.

Problem Description

let then R = {rl,r .;rn} be the set of (convex) polygons to be

gy
considered. This set may be first considered as describing a single object,
or possibly latér the entire scene of objects. Schumacker.ég_gl attempted
construction of a Funcfion fiR > Z+, Z+={i,2;..},-having the property that
if both ri and T, gre'visible ﬁfromroutside the object"” and if rs and rj

are both "facing" toward-the.viewer, then f(ri) s F(rj) if and oniy if I,
cannot obstruct'ri. Further, for any point P outside the object (see figure

3) if there is a ray from P which intersects both Ty and rj and if T, and L

"face" P, then r, obscures £ (along-this ray) if and only if F(ri} < F(rj}.



Figure 3: Visibility along a viewing ray (with an associated f(ri)
beside each polygon r..)

We now formally describe ocur interpretation of Schumacker's method as
partially based on Sutherland, Sproull and Schumacker (1974) and on personal
communication with him. = As above, we define a relation < on the set
R: r, < rj if and-only if there exists a ray from some viewing position P
which pierces the "front sides" of‘both T, and rj and whose point of inter—-
section with Iy ié'closer to P than its point of'interse;tioﬁ with rj. {See
the Appendix for é more formal discussion.) This relation is modeled by a
(directed) graph G which we will refer to as a "priority graph'". If this
graph is acyclic then one can define a function f:R » 77 satisfying the
"yigibility" conditiohs described above. We differ slightly from Schumacker's
approach in that we shall require f to be one—to-one. This_variation does
not restrict the generaiity of the method, but will be useful in the sub-

sequent development. We borrow a term used in the context of a partial order

and will refer to such a function as a consistent enumeration of (R,<) (see,

e.g., Preparata and Yeh (1973)).
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An object which admits consistent enumeration.

Figure 4:



Figure 5: An object which does not admit consistent enumeration.



We give two-examples of objects {for simplicity in 2-space), one
ob ject whose associated graph is acyclic and has a consistent enumeration
(figurg 4) and one whosé graph contains a cycle and thus ddes not have a’
consistent enumeration (figure 5).

If the graph was not acyclic Schumacker manualiy attempted to split
the object into several pieces, with each of which an acyeclic graph could
be associated. The difficulty with this approach was.that no_generai
method was found to split up complicated ob jects, and thus many of fhe

more interesting cases could not be handled without manual intervention.

Proposed Solution

We propose a two-stage apbroach for solving this problem:

1. Extraction of as much viewpoint independent visibility information
as poséiblé from an object's visibility priority graph. (This.
involves analysis of the graph and isolatioﬁ of "difficult" sub-
graphs.)

2. Further analysis of these remaining difficult subgraphs with the
intent of either |
a) assigﬁing a more complex visibility code thén a partial

ordering, or
b) automatically splitting saﬁe of the obhject polygons to simpli-
fy these difficult subgraphs.

The_first stage involves isolating the "difficult™, cyclic subgraphs

in our priority graph. To do thié we.partition the priority graph into

strongly connected combonents. (A subset of vertices of a graph spans a

strongly connected component if and only if it 'is a maximal subset of
vertices such that any vertex in the subset is reachable from any other

vertex in this subset.)



Let Ul’ 2""Um be the (pairwise disjoint) subsets of vertices span-
ning the strongly connected components of the priority graph G. (Each

Ui is a set of polygons.) We define a new "partial priority" graph G!

whose vertices are Ul,...,Um, and there is an arc from Ui to Uj if and only

if there are two Qertices in G, r € Ui and T € Uj’ such ﬁhat there is an

arc in G from I to'rb. There are well-knowﬁ efficient methods for cal-
culating the graph G' from the original graph G [Aho, Hopcroft & Ullmgn (1974)1.

As G' is acyclic there exists a consistent enumeration f: {Ul,Uz,...,Um} > 7",

This consistgnt emumefation of Ui's can be extended to a partial enumeration
of R by defiﬁiﬁé{a.futhiéh H:R*+ 7+ where h(r) = F(Ui) for r e Ui. We
present G', for the-preQious unworkable case (figure 5) in figure 6a.

This graph G', as any "partial priority" graph, is always acyclic and. thus
admits consistent enumeration (figure 6b). |

Thus we have assigned some enumeration h:R =+ 7" whose meaning is as

follows: For any view, if Ty and r, are both "front facing" and are
pierced by a ray from the viewing position, then if h(ra} < h(rb)'then T
is visible and obscures r, along with thié ray. (Note that the meaning of
h(ra) = h(rb) for r, * T, is different here from the.one in Sphumacker's
approach. In our case £his means that it.is not possible tb decide re-

- lative visibility of r and Ty using h only{ and some addition calculatiqns
fwill be neceséary.)

This completés the first stage of our solﬁtion. We note that even if
fhe analysié process is stopped here that substantial reduction in the
number of visibility ecalculations is likely.

To illustrate this, let us consider the ”innefmoét" level of a visible
supface algorithm -~ that of visibiiity caleulation for one pixel. Thefe
may be several polygons potentially visible. Let then 5 z {sl,.}.,sq} <R

be the set of polygons potentially visible at this pixel. (A polygon 85 is
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Figure 6: Partial pribrity'graph and its consistent enumeration
(compare with figure 5).
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"potentially visible" if and only if it covers the pixel but is not
necessarily the nearest one to the viewing position.} Let
h = mih{h(si)|i=l,...,q} and let S = {si[h(si) = h}. To find the polygon

visible at this pixel it is sufficient to consider only the elements of é.
If |S| << |S| = g then the visible polygon cen be determined eFficiehtlyﬁ

(in particular, if‘|S[ = 1 then there is a single polygon with highest

priority and no further visibility processing is needed.)

Discussion and Extensions

- We . are currently implementing the above-desecrived solution and are
studying the feasibility of still more powerful teEhniqugs._ Clearly the
actual implementation will answer some-significant questions -- most im-
portantly the percentage of pixels in images for which 1§|:= 1, the per- .
éentage for which !gl << |S|, and the distribution of these pixels through-
out the image and the distribution among many "similar" images.

Several additional enhancements may reduce still further the numbers of
calculations needed'to generate each image. Let us consider, for instance,
the situation in which one polygon A obscures only a part of another
.polygon-B (Figure 7a5. B could be split along the plane of A into two
. polygens (say, Bl-énd BZ),such that A can not obscure B, (figure 7b). Con-
versely if the plane of B splits A (figure 7c) then A can be split into
two pieces such that only one piece patentially obscures B (figure 7d).
Thus in some cases strongly connécted components can be entirely broken up
by this method {figure 8a and 8b). Still more efficiencies may be attained
by generalizing the original goal of a briofi vigsibility calculations.

E]
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Figure 7: Splitting polygons.
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Figure 8: a) Original polygons and.strongly'connected component

graph. b) Split polygons and resulting (acyclic) priority graph.
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Until now we've diséussed only techniques whose results are vaiid for
all possible viewing positions P and all possible viewing rays a. A more
generous view of visibility priority requirements may be useful as some
derived information may only be valid within some limited scope.

Some possible scopes of visibility priority infdrmation:

1. All P's and all a's: This is the most useful informétion, to the.

distillation of which the above discussion has been limited.

2. Some P's and all a's: This may be information whose validity is
limited to certain regions in the B;Spaée environment; we may
wish to utilize such information by suﬁdividing.the environ-
ment space and making modifications in the priority ordering
whenever P crosses from one subspace to another.

3. One particulaf.P and all a's: This may corréspond to coﬁputations
made after the viewing position is known but the results (of,
say, prierity graph modifications) may be appropriate for all
pixels in the upcoming image.

4. bne particular P and particulér @: The utility in this situation
oF‘nur'general "a priori" approach Wiil depend on the Specific
number of calculations remainihg to this stage, as compared
with the number of calculations needed by Ehe staﬁdard diéténée
computations used in most viéible surface algofithms.

(Other scopes, of course, may aléo prove useful.)

One épproach we are currently developing for this last situation is to
~ assign more sophisticated enumerations to the elements of strongly connected
components. Llet us consider, for inétance, the simple strbngly connected
components of figure Qa, cdnsisting of a ring of'foUr vertices. The lack
of arcs between nodés A and C and between hodés B and D ihplies that one

node in each pair can never obscure the other in the peir, from any point




in space. (That is, there is no relation between A and C and between B and
D.) This implies that at any given pixel in the image, at most one (but
not both) of a pair may be potentially visible. In all cases the appropriate

priority is clear. The various possibilities are summarized in figure 9 b.

a)

Highest
Potentially Visible JPriority

A B C D

= O e
8 = O
o O = ~
- 0O O =
Qo r @ O

b)

Figure 9: a) Strongly connected component. b) The only
possible conflicting cases.
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Left yet to be resolved are strongly connected components with more
complex structure than a simple cycle -- i.e., ones which contain complete
subgraphs. For these situations it may be possible to show that for certain
(most? ) geometric configurations there is no point P with viewing
ray a which can pierce all polygons of any complete subgraph. Should this
prove to be the case, then a calculation determining which polygon(s) is
not potentially visible at a pixel (by backfacing or not falling onto the
pixel) will be sufficient to determine the priority of the remaining po-
tentiallt visible ones.

These and other techniques are currently being investigated.
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Determining the Priority Graph

We assume for the following discussion that each polygon in our set

a) 1is oriented, ih that it has two faces: a ffont face and a back face,

b) does not interpenetrate another polygon;

c) is convex.

Consider now that the plane in which a polygon lies naturally divides
the rest of the three-dimensional space into twb.half-spaces assoclated with
the two sides of the polygon: the front half-space, and the back half-space.
For a polygon r fhey-ﬁill Be.dennted by FHS(r) and BHS(r),'respectively}

Welnow wish to analyze the following situation: Let there be two non-
intersecting oriented polygons Ty and T, in the space. Under which cir-
cumstances can we say that from some viewing position ry {partially) obstructs
r,? We shall denocte éuch "potential" obstruection of T, by writing Iy < Ty

2

It is easy to see that Iy obstructs T, from a viewing position P along

the ray o if and only if the following conditioné are satisfied:
1. P lies in FHS(rl) n FHS(rZ), and
2. A point travelling from P along o
a. travels for some distance in a region of theISpace which is in
both FHS(rl) and FHS(rz) until it “pierces" r, then

b. travels in a region which is in BHS(rl) and in FHS(rz) until it

plierces r,, then

2’ o
c¢. travels in a region which is in both BHS(rl) and BHS(rZ).

This informal discussion leads to the following characterization:



1%

-Lemma; rl < T,

1. ryr FHS(rz) z @, and

2. T, N BHS(rl) R

{Here rl and r, are treated as planar régions in the three-dimensional

space. )

if and only if

Proof: Is not presented here. It is a straightforward formalization of the

previous discussion. : 0

It is warthwhile to examine the situation deeper. The two planes on

1 2
"cones". (We are excluding here, for simplicity, the case where the two

which the polygons r, and r, lie divide the rest of the space into four

planes are pafallel.) These four cones are simply:
FHS{rl} n FHS(rZ), FHS(rl) n BHS(rZ),
| BHS(rl) n FHS(rz), BHS (1) n_BHS(rZ).
We can now staté:

T, < I, <z> both £y and r, have non-empty intersections with the boundary

of BHS(rl) n FHS(rz). _
From the above it also follows that ry < ré => T, £ - Indeed, other-

wise both ry and T, would have non-empty intersections with the boundaries

of both BHS(rl) n FHS(rz) and BHS(rZ) n FHS(rl). This can ohly happen if

I, and r, intersect, which is excluded by our assumptions.

For a polygon r we shall denote by CONVEX(r) the smallest subset of the
vertices of r that spans the (convex) hull of r. We can now state a compu-
tationally attractive condition for (potential) obstruction:

if and only if there exist P, « CONVEX(rl) and P, « CDNVEX(FZ}

Theorem;rl < T, 1

such that Pl € FHS(rZ) and F’2 e.BHS(rl).

Proof: From the above it follows that r) < r, if and only if there exist

El inside or on the boundary of rl; and ﬁz inside or on the boundary

of r, such that P. « FHS(rz) and 32 € BHS(rl).

1



Let now P, « FHS(rz).Intersect El with a line in the plane of 1,;

1
this line must cross the boundary of the enclesing convex hull

defined by CONVEX(rl) in exactly two places; call these points Ql

and QZ'

Since 51 lies between Ql and Qz, one easily sees that either

Ql € FHS(rz) or QZ € FHS(IZ). Without loss of generality, assume

Ql € FHS(rZ}. Gl lies between two points in CDNVEX(rl); call these

Pi gnd Pj' Similarly since Qle FHS(rz) either Pi € FHS(rz) or

Pj € FHS(rZ). Thus there exists some Pk € CDNVEX(rl) such that
Pk € FHS(rz). - The treatment of ry
We can thus easily check whether T < r, using D(CONVEX(rl) + CUNVEX(rZ))

is analogous. g

ﬁperations. In.the case where the polygons are defined in terms of a list
of vertices one haé an 0(#(rl) + #(rz)) algorithm, wherF #{r) denotes the
number of points in the vertex-list defining r. (Simply examine all the
vertices of a polygon r without limiting consideration to CONVEX(r) only.)
With the additional observation that the distance between the.yertices

of Iy (respectively r,) and the plane defined by r2'(respectively rl) ig bi-

modal, an D(log(#(rl) + #(rz)) algorithm can be designed; it is probably
not' worthwhile to do so as #(rl) + #(rz) is rather small. (Simply examine
all the vertices of a polygon r without limiting consideration to CONVEX(r)

only.)
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