
TR-79-004

Predetermining Visibility Priority in 3-D Scenes

Henry Fuchs and Zvi M. Kedem

PREDETERMINING VISIBILITY PRIORITY IN 3-D SCENES

Henry Fuchs
Computer Science Department

University of North Carolina
Chapel Hill, NC 27514

Zvi M. Kedem
Bruce Naylor

Mathematical Sciences
University of Texas at Dallas

Richardson, TX 75080

Abstract

1/79

The principal calculation performed by all visible surface algorithms

is the determination of the visible polygon at each pixel in the image.

Of the many possible speedups and efficiencies found for this problem, only

one published algorithm (developed almost a decade ago by a group at Gen-

eral Electric) took advantage of an observation that many visibility calcu-

lations could be performed without knowledge of the eventual viewing po-'

sition and orientation --~ for all possible images; The method is

based on a "potential obscuration" relation between polygons in the simu-

lated environment. Unfortunately, the method worked only for certain ob-

jects; unmanagable objects had to be manually (and expertly!) subdivided

into managable pieces.

We describe in this paper a solution to this problem which will allow

substantial a priori visibility determination for all possible objects

without any manual intervention; but some minimal, isolated visibility cal-

culations for certain unusual objects may still remain to be performed

after the viewing position is specified. In addition, we discuss the de-

velopment of still stronger solutions which could further reduce the number

of these visibility calculations remaining at image generation time.

The reduction in overall processing and memory requirements enabled by

this approach may be quite significant, especially for those applications

(e.g., 3-D simulation, animation, interactive design) in which numerous

visible surface images are generated from a relatively stable data base.

3

Introduction

The principal computation performed by all visible surface algorithms

is the determination of the visible polygon at each pixel of the image.

The. designers of the various visible surface algorithms take advantage of

different properties about the structure of the problem in order to perform

this computation as efficiently as possible. Schumacker et al (1969) were

the only designers, to our knowledge, who observed that for certain objects

the basic visibility calculation can be performed independently of the

viewing position. For objects for which such assignment can be found the

number of computations needed to obtain a visible surface image can be

dramatically reduced. For applications for which a large number of images

needs to be created, this decrease can mean the difference between a the-

oretically and a practically solvable problem.

We quote here from Sutherland, Sproull, and Schumacker (1974), who

succinctly described the basic ideas of this approach. (Note that polygons

are referred to as "faces", and objects or parts of objects are referred to

as 11 clusters".)

The notion that face priority within a cluster can be computed

independent of the viewpoint is extremely important. Consider

the top view of an object, as shown in figure 1. If, for any

viewpoint, we eliminate the back faces (relative to that viewpoint),

the numbers assigned to each face in the figure are the priority

numbers. A cluster is a collection of faces that can be assigned a

fixed set of priority numbers which after back edges are removed,

provide correct priority from any viewpoint.

The computation of face priority requires computing whether face A

can, from any viewpoint, hide face B. If so, face A has priority

over face B. These computations are performed for all faces of a

cluster, and a priority ·graph is constructed. If there are any

circuits in the graph (e.g., face A has priority over face B, and

face B has priority over face A), the faces cannot be assigned pri

ori ties that will produce a correct image. In this case, the clus

ter will have to be split manually into smaller clusters.

r ------- -,
1

3 I I

2
1...-,

I

l 1
I

' I

,.L

1
3

a)

Figure 1: Face priority. a) Top view pf an object with face priority
numbers assigned (the lowest number corresponds to the highest priority).
b) The same object with a specific viewpoint located. The dashed lines
show back faces. Face 1 takes priority over face 2. [From Sutherland,
Sproull, and Schumacker (1974).]

Although it is at first encouraging that viewpoint-independent visi-

bility priority can be determined for many objects, it is rather discouraging

that objects for which this cannot be done are so easy to find (e.g., figure

2). This lack of "dependability" of the approach, we believe, has kept it

from widespread use. We present in this paper a solution to this problem

which allows, without manual intervention, the generation of priority

structures which exhibit minimum variance under viewpoint modification.

5

Figure 2: Simple object with no viewpoint-independent priority.

Problem Description

let then R = {r
1
,r

2
, .•• ,rn} be the set of (convex) polygons to be

considered. This set may be first considered as describing a single object,

or possibly later the entire scene of objects. Schumacker et ~attempted

construction of a function f:R ~ z+, z+={l,2 ... }, having the property that

if both r. and r. are visible "from outside the object" and if r. and r.
l J l J

are both "facing" toward the viewer, then f(r.) ~ f(r.) if and only if r.
l J J

cannot obstruct r.. Further, for any point P outside the object (see figure
l

3) if there is a ray from P which intersects both r. and r. and if r. and r.
l J l J

''face'' P, then r. obscures r. (along this ray) if and only if f(r.) < f(r.).
l J l J

3

2

1

Figure 3: Visibility along
beside each polygon r .•)

l

8

"

/
7 , 5

J ,

~

, ,
4

I ,

a viewing ray (with an associated f(r.)
l

We now formally describe our interpretation of Schumacker's method as

partially based on Sutherland, Sproull and Schumacker (1974) and on personal

communication with him. As above, we define a relation < on the set

R: r. < r. if and only if there exists a ray from some viewing position P
l J

which pierces the "front sides" of both r. and r. and whose point of inter-
l J

section with ri is closer toP than its point of intersection with rj. (See

the Appendix for a more formal discussion.) This relation is modeled by a

(directed) graph G which we will refer to as a "priority graph". If this

graph is acyclic then one can define a function f:R + z+ satisfying the

"visibility" conditions described above. We differ slightly from Schumacker's

approach in that we shall require f to be one-to-one. This variation does

not restrict the generality of the method, but will be useful in the sub-

sequent development. We borrow a term used in the context of a partial order

and will refer to such a function as a consistent enumeration of (R,<) (see,

e.g., Preparata and Yeh (1973)).

7

!" f r

ll 1

r2 2

r3 6

r4 7

r5 8

r6 3

r7 5

r8 9

r9 4

Figure 4: An object which admits consistent enumeration.

Figure 5: An object which does~ admit consistent enumeration.

9

We give two examples of objects (for simplicity in 2-space), one

object whose associated graph is acyclic and has a consistent enumeration

(figure 4) and one whose graph contains a cycle and thus does not have a

consistent enumeration (figure 5).

If the graph w.as not acyclic Schumacker manually attempted to split

the object into several pieces, with each of which an acyclic graph could

be associated. The difficulty with this approach was that no general

method was found to split up complicated objects, and thus many of the

more interesting cases could not be handled without manual intervention.

Proposed Solution

We propose a two-stage approach for solving this problem:

1. Extraction of as much viewpoint independent visibility information

as possible from an object's visibility priority graph. (This

involves analysis of the graph and isolation of "difficult" sub

graphs.)

2. Further analysis of these remaining difficult subgraphs with the

intent of either

a) assigning a more complex visibility code than a partial

ordering, or

b) automatically splitting some of the object polygons to simpli

fy these difficult subgraphs.

The first stage involves isolating the "difficult", cyclic subgraphs

in our priority graph. To do this we partition the priority graph into

strongly connected components. (A subset of vertices of a graph spans a

strongly connected component if and only if it is a maximal subset of

vertices such that any vertex in the subset is reachable from any other

vertex in this subset.)

Let u1 ,u2, ... um be the (pairwise disjoint) subsets of vertices span

ning the strongly connected components of the priority graph G. (Each

U. is a set of polygons.) We define a new "partial priority" graph G•
l

whose vertices are ul, ... ,um, and there is an arc from ui to uj if and only

if there are two vertices in G, ra E Ui and rb E Uj, such that there is an

arc in G from ra to rb. There are well-known efficient methods for cal

culating the graph G' from the original graph G [Aho, Hopcroft & Ullman (1974)].

As G' is acyclic there exists a consistent enumeration f: {U
1

,u
2

, ... ,Urn}+ z+.

This consistent enumeration

of R by defining.a function

of l.l. ' s can be
1

+ h:R·+ Z where

extended to a partial enumeration

h(r) = f(U.) for r E U.. We
1 1

present G', for the previous unworkable case (figure 5) in figure 6a.

This graph G', as any "partial priority" graph, is always acyclic and thus

admits consistent enumeration (figure 6b).

Thus we have assigned some enumeration h:R + z+ whose meaning is as

follows: For any view, if r a and rb are both "front facing" and are

pierced by a ray from the viewing position, then if h(ra) < h(rb) then ra

is visible and obscures rb along with this ray. (Note that the meaning of

h(ra) = h(rb) for ra ~ rb is different here from the one in Schumacker's

approach. In our case this means that it is not possible to decide re-

lative visibility of ra and rb using h only, and some addition calculations

will be necessary.)

This completes the first stage of our solution. We note that even if

the analysis process is stopped here that substantial reduction in the

number of visibility calculations is likely.

To illustrate this, let us consider the "innermost" level of a visible

surface algorithm -- that of visibility calculation for one pixel. There

may be several polygons potentially visible. Let then 5 ;

be the set of polygons potentially visible at this pixel.

{s
1

, ... ,s)cR
q -

(A polygon s 1 is

(a)

r h r

rl 1

r2 5

r} 6
(b)

4 r4

rs 6

r6 J

r7 6

ra 7

r9 2

Figure 6: Partial priority graph and its consistent enumeration
(compare with figure 5).

11

"potentially visible" if and only if it covers the pixel but is not

necessarily the nearest one to the viewing position.) Let
A A

h = min{h(s.)Ji=l, ..• ,q} and letS= {s. Jh(s.) = h}. To find the polygon
l l 1

visible at this pixel it is sufficient to consider only the elements of S.

If JSJ << JsJ = q then the visible polygon can be determined efficiently.

(in particular, if JsJ = 1 then there is a single polygon with highest

priority and no further visibility processing is needed.)

Discussion and Extensions

We are currently implementing the above-descrived solution and are

studying the feasibility of still more powerful te6hniques. Clearly the

actual implementation will answer some significant questions most im-

portantly the percentage of pixels in images for which JsJ = 1, the per

centage for which JsJ << JsJ, and the distribution of these pixels through-

out the image and the distribution among many "similar" images.

Several additional enhancements may reduce still further the numbers of

calculations needed to generate each image. Let us consider, for instance,

the situation in which one polygon A obscures only a part of another

polygon .B (figure 7 a). B could be split along the plane of A into two

polygons (say, s1 and s
2

) such that A can not obscure B2 (figure 7b). Con

versely if the plane of B splits A (figure 7c) then A can be split into

two pieces such that only one piece potentially obscures B (figure 7d).

Thus in some cases strongly connected components can be entirely broken up

by this method (figure Sa and Sb). Stil.l more efficiencies may be attained

by generalizing the original goal of a priori visibility calculations.

13

A A

t t

A\-----·B

a) b)

A

t

c) d)

Figure 7: Splitting polygons.

,
A

a)

A
~1

b)

Figure 8: a) Original polygons and strongly connected component
graph. b) Split polygons and resulting (acyclic) priority graph.

15

Until now we've discussed only techniques whose results are valid for

all possible viewing positions P and all possible viewing rays a. A more

generous view of visibility priority requirements may be useful as some

derived information may only be valid within some limited scope.

Some possible scopes of visibility priority information:

1. All P's and all a's: This is the most useful information, to the

distillation of which the above discussion has been limited.

2. Some P's and all a's: This may be information whose validity is

limited to certain regions in the 3-space environment; we may

wish to utilize such information by subdividing the environ

ment space and making modifications in the priority ordering

whenever P crosses from one subspace to another.

3. One particular P and all a's: This may correspond to computations

made after the viewing position is known but the results (of,

say, priority graph modifications) may be appropriate for all

pixels in the upcoming image.

4. One particular P and particular a: The utility in this situation

of. our general "a priori" approach will depend on the specific

number of calculations remaining to this stage, as compared

with the number of calculations needed by the standard distance

computations used in most visible surface algorithms.

(Other scopes, of course, may also prove useful.)

One approach we are currently developing for this last situation is to

assign more sophisticated enumerations to the elements of strongly connected

components. Let us consider, for instance, the simple strongly connected

components of figure 9a, consisting of a ring of four vertices. The lack

of arcs between nodes A and C and between nodes B and 0 implies that one

node in each pair can never obscure the other in the pair, from any point

in space. (That is, there is no relation between A and C and between B and

D.) This implies that at any given pixel in the image, at most one (but

not both) of a pair may be potentially visible. In all cases the approp r iate

priority is clear . The various possibilities are s ummarized in figure9 b .

a)

Highest
Potentiall Visible Priorit

A B c D
0 0 1 1 c
0 1 1 0 B

1 1 0 0 A

1 0 0 1 D

b)

Figure 9: a) Strongly connected component. b) The only
possible conflicting cases .

!

~

••

' !

' 17

Left yet to be resolved are strongly connected components with more

complex structure than a simple cycle-- i.e ., ones which contain complete

s ubgraphs. For these situations it may be possible to show that for certain

(most?) geometric configurations there is no point P with viewing

ray a which can pierce all polygons of any complete subgraph. Should this

prove to be the case, then a calculation determining which polygon(s) is

not potentially visible at a pixel (by backfaci ng or not falling onto the

pixel) will be sufficient to determine the priority of the remaining po

tentiallt visible ones.

These and other techniques are currently being investigated •

Appendix

Determining the Priority Graph

We assume for the following discussion that each polygon in our set

a) is oriented, in that it has two faces: a front face and a back face,

b) does not interpenetrate another polygon,

c) is convex.

Consider now that the plane in which a polygon lies naturally divides

the rest of the three-dimensional space into two half-spaces associated with

the two sides of the polygon: the front half-space, and the back half-space.

For a polygon r they will be denoted by FHS(r) and BHS(r), respectively.

We now wish to analyze the following situation: Let there be two non

intersecting oriented polygons r
1

and r 2 in the space. Under which cir

cumstances can we say that from some viewing position r 1 (partially) obstructs

r 2? We shall denote such "potential" obstruction of r2 by writing r1 < r 2.

It is easy to see that r
1

obstructs r
2

from a viewing position P along

the ray " if and only if the following conditions are satisfied:

1. P lies in FHS(r
1

) n FHS(r
2
), and

2. A point travelling from P along 0<

a. travels for some distance in a region of the space which is in

both FHS(r
1

) and FHS(r
2

) until it "pierces" r 1 then

b. travels in a region which is in BHS(r
1

) and in FHS(r2) until it

pierces r
2

, then

c. travels in a region which is in both BHS(r1) and BHS(r2).

This informal discussion leads to the following characterization:

Lemma: r
1

< r
2

if and only if

l. r
1

n FHS(r
2

) ~ 0, and

2. r 2 n BHS(r1) • 0.

19

(Here r
1

and r
2

are treated as planar regions in the three-dimensional

space.)

Proof: Is not presented here. It is a straightforward formalization of the

previous discussion. 0

It is worthwhile to examine the situation deeper. The two planes on

which the polygons r
1

and r
2

lie divide the rest of the space into four

"cones". (We are excluding here, for simplicity, the case where the two

planes are parallel.) These four cones are simply:

FHS(r
1

) n FHS(r2), FHS(r
1

) n BHS(r2),

BHS(r
1

) n FHS(r
2
), BHS(r1) n BHS(r

2
).

We can now state:

rl < rz <=> both rl and rz have non-empty intersections with the boundary

of BHS(r
1

) n FHS(r
2

).

From the above it also follows that rl < rz => rz I rl. Indeed, other

wise both r
1

and r
2

would have non-empty intersections with the boundaries

of both BHS(r
1

) n FHS(r
2

) and BHS(r
2

) n FHS(r
1
). This can only happen if

r
1

and r
2

intersect, which is excluded by our assumptions.

For a polygon r we shall denote by CONVEX(r) the smallest subset of the

vertices of r that spans the (convex) hull of r. We can now state a compu

tationally attractive condition for (potential) obstruction:

Theorem,r
1

< r
2

if and only if there exist P
1

< CONVEX(r
1

) and P
2

< CONVEX(r2)

such that P1 < FHS(r
2

) and P2 < BHS(r
1
).

Proof: From the above it follows that r1 < r 2 if
and only if there exist

pl inside or on the boundary of r1 , and P 2 inside or on the boundary

of r 2 such that P1 < FHS(r2) and r2 < BHS(r1).

Let now P
1

E FHS(r
2
).Intersect P1 with a line in the plane of r 1 ;

this line must cross the boundary of the enclosing convex hull

defined by CONVEX(r
1

) in exactly two places; call these points 0
1

and Q
2

.

Since P1 lies between 01 and 02 , one easily sees that either

0
1

E FHS(r
2

) or Q
2

E FHS(r
2

). Without loss of generality, assume

0
1

E FHS(r
2

). 01 lies between two points in CONVEX(r
1

); call these

Pi and Pj. Similarly since Q
1

E FHS(r2) either Pi E FHS(r2) or

Pj E FHS(r
2

). Thus there exists some Pk E CONVEX(r1) such that

Pk E FHS(r
2
). The treatment of r 1 is analogous. 0

We can thus easily check whether r
1

< r
2

using O(CONVEX(r1) + CONVEX(r
2

))

operations. In the case where the polygons are defined in terms of a list

of vertices one has an 0(1/(r
1

) + ll(r
2

)) algorithm, where ll(r) denotes the

number of points in the vertex-list defining r. (Simply examine all the

vertices of a polygon r without limiting consideration to CONVEX(r) only.)

With the additional observation that the distance between the vertices

of rl (respectively rz) and the plane defined by rz (respectively rl) is bi

modal, an O(log(ll(r
1

) + ll(r
2

)) algorithm can be designed; it is probably

not worthwhile to do so as ll(r
1

) + ll(r2) is rather small. (Simply examine

all the vertices of a polygon r without limiting consideration to CONVEX(r)

only.)

References

Aha, A.V., Hopcroft, J.E. & Ullman, J.D. (1974) The Design and Analysis of
Computer Algorithms, Addison-Wesley

Preparata, F.P. & Yeh, R.T. (1973) Introduction to Discreet Structures,
Addison-Wesley

Schumacker, R.A., Brand, F., Gilliland, M. & Sharp, W. (1969) "Study for
Applying Computer-Generated Images to Visual Simulation", AFHRL-TR-
69-14, U.S. Air Force Human Resources Laboratory

Sutherland, I.E., Sproull, R.F. & Schumacker, R.A. (1974) ''A Character
ization of Ten Hidden-Surface Algorithms", _ACM Computing Surve~, §_,
(1): l-55

--- (end) --

