UNC Repert No.
T1R-79-0602

Dept. of Computer Sci.
23 Jdanuary 1979

AN EXPANDABLE MULTIPROCESSOR ARCHITECTURE

FGR VIDEQ GRAPHICS

(Preliminary Report)

Héﬂry Fuchs
University of North Carolina at Chapel Hill

Brian W. Johnson
University of Texas at Dallas

19 January 1979

AN EXPANDABLE MULTIPROCESSOR ARCHITECTURE FOR VIDEO GRAPHICS
(Preliminary Report)

Henry Fuchs
The University of North Carolina at Chapel Hill

Brian W.

Johnson

The University of Texas at Dallas

Abstract

Presented is the design of a flexible expandable multi-
processor system for video graphics and image processing.

The design involves a central
data to a variable number

controller which broadcasts
of independently executing

processing units, each of which in turn controls a variable
number of memory units among which the video (frame buffer)

image is distributed.

interleaved addressing

organization of the video memories guarantees both an even

workload distribution as

as maintenance of image

coherence for each processing element. Execution speed and
image resolution can be independently altered (at any time)
by varying the number of processing and memory units.
Sample applications of the system -- for rapid line drawing

and "electronic scene

algorithms) -- are described.
low cost and for powerful,

outlined.

Introduction

A long-standing goal of researchers
in computer graphics systems has been the
development of real-time three-dimensional
modeling systems. These systems, which
produce a realistic image of a simulated
three-dimensional environment, have a wide
variety of potential uses - from
simulators for pilot training to
interactive design of houses and
automobiles. The most sophisticated of
these systems produce, in real-time,
images on color video displays (TV's) of
startling reality. The only limitation to
widespread use of these systems has been
their prohibitive costs ($500,000 and
up) . Thus wvirtually the only uses today
are those for which there is no real
alternative =-- e.g., simulating maneuvers
in gravity-free space or training
simulators for pilots of large (and
expensive) airplanes. 1f such modeling
systems coulad be provided at
significiantly lower costs, it is safe to
presume that their use would become
dramatically more widespread.

A short examination of the
computational expense of the problem
suffices to justify the complexity and
expense of current systems which solve it.
A video image to a digital system normally
consists of a matrix of picture elements
("pixels") of between 480 and 512 rows
(scan lines) with from 512 to 640 pixels
in each scan line. (Until recently this
size was limited by the resolution of
video monitors. Within the past two
years, monitors with 900 to 1000 scan line
capacity have become available; the factor
of four increase in number of pixels per
image only exacerbates the computational
problem.) The image is then simply a set

generation”
Variations of the design for
real-time configurations are

(visible surface

of some 300,000 pixels, each of which (for
a color image) contains three independent
components -- Red, Green, Blue -- each
usually to 8-bits of resolution. The
entire problem at hand is simply
calculating these 900,000 wvalues each time
the image is scanned out onto the wvideo
screen, usually 30 times per second.

The proper value at each pixel 1is a
function of the data base (the simulated
environment), the wviewing position and
orientation of the simulated viewer, and
the location(s) of the light source(s) in
the simulated environment. The
environment is most often described as a
set of objects in the environment
(Euclidian three-space) coordinate system.
Each object is usually described by a set

of planar tiles ("polygons") which form
its wvarious surfaces . (Fig. 1, from
Sutherland, Sproull, and Schumacker

(1974), shows the boundaries of a set of
polygons defining the surface of a 3-D
object.)

e

atliuEl Bals

Om L

el HTONASH

(Other methods of object description are
sometimes used -- e.g., as collections of
geometric solids (MAGI (1968)) or curved
surfaces (Catmull(1975), Blinn and Newell
(1976)). Since the particular object
definition method does not significantly
affect the system architecture, we shall
assume hereon that the common planar-
polygon descriptions are used.) 1In order
to compute the Red, Green, and Blue values
for a particular pixel, the system has to
determine:

a) which, if any, polygons map onto
this pixel's area,

b) which one from this set is closest
to the viewer (and thus is the one
visible obscuring all the other
polygons), and

¢) the details about the precise part
of this closest polygon which maps
onto the pixel =-- its assigned
color, its angle and distance from
the light source(s), and its angle
and distance to the viewer.

Wwhen programmed on a conventional
general purpose computer, computing such a
simulated image may well take several
minutes, and easily longer; so developing
a system to do it in 1/30 second is a non-
trivial task. (The appendix gives a short
synopsis of the wvarious algorithms and
approaches considered which lead to the
development of the design presented in
this paper.)

solution, let us
first examine the overall seguence of
steps which need to be performed in order
to produce a visible surface image on a
video display.

To understand our

a) The criginal polygons (in object
coordinate space) are transformed
into the position as seen from the
simulated viewing position. (This
is a sequence of rotations and
translations.)

b) The parts of the environment data
base which are not in the field of
view are discarded from further
consideration by clipping all
polygons against the boundaries of
the field of view.

c) Perspective transformation is
applied to foreshorten the
appropriate environmental parts as a
function of distance.

PRGN &

LR
Castmaron’ L -

Ta et

2

It is at this point that a visible

surface algorithm is invoked.

Since steps
achieved in real-time by
affordable line drawing systems (e.g.,
Evans and Sutherland (1976), Vector
General (1974)), we will concentrate our
attention on the actual visible surface
computations. (Of course, these line-
drawing systems are affordable precisely

because they do not have to perform tne
laborious visibility computations for some
300,000 pixels!) Most current real-time
video systems (Evans and Sutherland (1977)
Shohat and Florence (1977) use a pipeline
architecture to achieve the necessary high
throughput rates. (See fig. 2 from
Shohat and Florence (1977)).

a), b), c) can be

current

Each module in the pipeline 1s typically a
highly specialized processing unit., Tnus,
these designs do not easily lend
themselves to substantial wupgrading (to
achieve higher capacity) or downgrading
(to achieve lower cost).

Our own design capitalizes on the
newly plentiful resource of inexpensive
LSI circuitry. Thus each allowing a
significant but bounded increase in both
memory and processing requirements in
return for architectural flexibility.
Specifically, our solution is tailored --
although not restricted -- to what may De
the simplest visible surface algorithm,
the so-called "2 buffer®” algorithm, one so
simple that it seems never to nhave
appeared in print in 1its own right.
Sutherland, Sproull, and Schumacker (1974)
mention it in passing (p.5l), saying "that

if a large memory is available . . .
This method results in a computing coOSt
which depends only on the depth numper
(Dc) and not otherwise on the environment

complexity."” (Dc is the number of front-
facing polygons "pierced, on the average,
by an arbitrary ray from the viewpoint.")
Catmull (1¥75) used the method as part of a
more sophisticated algorithm for visible
display of curved surfaces. The basic
algorithm utilizes two large buffers each
containing an entry for each pixel on the
screen, an "image" buffer which contains
the (RGB) intensities at each pixel, and a
"2" puffer which contains at each pixel
the distance of the closest object
encountered there so far (fig. 3). The
polygons are processed sequentially, in
any order. Each polygon's processing
starts with determining the pixels upon
which the polygon "falls"™ in the image.
For each such pixel the distance of the
polygon from the simulated viewer is
computed. (Tnis is the "Z" value.)

|

P : . g
Ty -
RN .-
TEE] L
IR RN g
RN TrTr 2002
rTrery LI B I]
rt11 1 R
2132 |
I Buffer Image Buffer

[im{r)=7 Imigi=2]

Fig. 3

This value is compared with the entry in
the 2 buffer for this pixel. If this new
value is smaller than the current entry
then this new polygon is closer to the
viewer at this pixel than the closest
previously encountered polygon and so this
new polygon would now be visible at this
pixel. Thus in this case the new Z value
is put into the 2 buffer and this new
polygon's (RGB) intensity value is
computed and inserted into the image
buffer. 1f, on the other hand, the new 2
value is greater than the value currently
in the 2 buffer at this pixel, then this
polygon is farther than the closest
polygon, and processing is terminated for
this pixel for this polygon without any
changes to the buffers. Processing
continues with the next pixel into which
the current polygon "falls,"

This simple algorithm is seldom used,
principally for two reasons: 1) few
current systems have sufficient memory for
two such large buffers, and 2) every pixel
of every polygon needs to be computed. To
understand the potential severity of this
second reason, let us recall that
traditionally designers of visible surface
algorithms (e.g., Watkins(1970)) have
attempted to gain efficiency by avoiding,
whenever possible, consideration of all
but the (single) nearest polygon. For
example, if all the polygons potentially
visible on a particular scan line can be
considered together as a set, then
determining the Z ordering on this set at
jJust a few key points along the scan line
is sufficient to determine the sequence of
visible polygon segments along the entire
line (fig. 4).

viewing
direitiun

SR L

-

Fig. 4

At intermediate points all the obstructed
polygons are simply ignored. A "2 puffer”
algorithm, since it handles each polygon
separately, computes every affected pixel
for each polygon =- a procedure wnich
certainly seems to be wasteful and
inefficient, however, a closer examination
of the situation, reveals that for
multiprocessor systems the procedure may
in fact be very attractive. Sutherland,
Sproull, and Schumacker (1974) estimate
that the average number of polgyons
"falling on" a pixel is only 3; tnat is,
many (most?) images contain large areas

of sky, water, ceilings, floors =-- areas
in which there are not too many polygons
stacked one behind the other. This

implies that the (in)effiency of the 2
buffer algorithm is constant; at worst it
is some constant multiple (e.g., 3) of the
most efficient possible algorithm =-- one
which can determine with negligible cost
the visible polygon at each pixel. Since

technology is rapidly diminishing the
cost of simple arithmetic processing
units, a factor of 3 is no longer
burdensome.

System Description

The fundamental system organization
is as illustrated in figure 5,

list of
polygons
L . VIDED
- G
PROCESSOR IMAGE SCAN
GENERATOR
VIDEL)
. DISPLAY

Figure 6 shows in somewhat greater detaijl
the organization o©f the image buffer, TSV RLEL ety unie @l meary el 10 emoryune 1L
which is accessed by both the processor

.and the video scan generatot, I““””H

PROCESSOR

I LR

| ADDRESS read/write DATA §
'
i

' |
———— T
NP D
wx > puce

¥
CORTROLLEFD
’ BUFFER !

!
| A i. Fig. &
i
¢ ACCESS MODE
i""'"""""""""" T S AR A e o REGISTER S e
t
i VIDEO SCAN gégggg ffggg} e ogj0 0§ ooy o
| & CENERATOR 31 2000l : [T iogpli 1 Y
} BUS DRIVER L
1 3 PROCESSOR] i i i : i
! i diapiey rpavoe 8 footas o socor 0§ esomy 1 eowis e foaseizn i
1
imode’centrol ADDRESS select/enable DATA J THEHE T T moMoRy s
| VIDEG SCAN oo il goio &1
VIDEG SCAN GENERATOR GENERATOR foooee 1i | wals 8
Fig. 6 PROCESSOR ,
ﬂﬂ.’:_ilﬂ agena oﬁ_ﬂﬂ! l anan) onale Poaarlr
diaplsy pe b 100 Jix i jo1 f30 531 foe der fap in b

TIMTNG == 4 MZHORY (NITE

Figure 7 illustrates the simple time
division multiplexing between the
processor and the video scan generator. Fig., 38
We note here that the current pixel's data
remains on the videc scan generator bus

even during the periocd which is assigned It is important to note that the actual
to the processor. bus to the scan generator does not
increase in size or speed. All memory

uhits are read in parailel during the scan

generater access times, Puring the

ACCESS MODE following complete timing <c¢ycle, the
| oRead Creat Cent e various results are put onte the video bus

VIDEO SCAN L esom | : oogol i PRI L by enabling, in seguence, the bus drivers
GENERATOR ' ! i [I of the wvarious memory units. This
. { : ! enabling 1is directly <controlled by the

PROCESSOR diepiay 00000 | aispiay cosot | cissiey oo least significant bits of the videc scan
generator's X address. In this fashion

the number of memory units need not be
known to the scen generator: if there are
fewer units, some of the least significant
address bits are ignored and thus
Fig. 7 consecudtive locations on the video screen
will be accessed from the same image
memory unit's output register. The result

If we consider using only commonly will be a goarser image {128 x 124, say,
avallable inexpensive LSI RaM's then the instead of 512 ¥ 512) than the scan
requirement ¢f the scan generator (needing generator is capable of producing. (It
te o¢ycle through the entire image " in will be seen later that a somewhat
approximately 30 milliseconds) will limit different resolution-independence scheme
the wusefulness of this simple design to for the processor side of the memcries
very coarse images. To increase the will free the entire system -~ both
bandwidth wa simply insert additional hardware and software ~- f{rom reliance on
memery units onto the system bus, a fizxed resclution.} The proper ID

selection in each memory unit {(as seen in
Figure 8 illustrates the organization of Fig. 7) is a function of both the unit's
this enchancement and figure 9 shows the 1D number and the teotal number of memory
timing cycles. units currently in the system. Although

such selegtion settings are normally set
manually through jumpers or DIP switches,
we prefer for them to be set
automatically. This 1s done through the

following mechanism. In addition ¢o the
processor bus and video scan generator
bus, the system includes a set of lines
for ID numbers and the "total-units®
number,

As illustrated in £ig, 10, the 1D
lines consist of a set of lines sufficient
to represent the largest possible number
of memory units in & system. (For
example, for a 1024 maximum memory unit
system this number would be 10.}

PROCESSOR BUS

e i

memory unit)

l (same as in basic image
I

i .

| .
i TFSesseegt Tt U] INCREMENTER,

PR |

sy

]
REGISTER |

l ey
1D TRI-State | i
4 | SBLECT ¥ BUS DRIVER |
- i
¥ I

VIDEC SCAN GENEFRATOR BUS
Fig., 10

In this fashion the set of lines are
started at O on one side, each board has
an increment circuit on it, and thus the
number on the backplane ID lines is
incremented by one each time it passes
through & memeory unit board {fig. 11},

PROCESS0OR BUS

g S, .i,,,._“, ey - - .-,\.c._ ...-..s... .
[— 4 ""L"‘\ f'"'L |
Im l Im. Im. | I}
em. Mers. Max Mem. Max Mem. |
Unlt}h_ jUnit Unit} Uniti
| b=l i
f
JCPS it L— re—ed fa - ;
ax } | IMax I Max ||
e i
VIDEO SCAN GENERATOR BUS
y
VIDEG —
SCAN o VIDEO
GENERATOR DISPLAY

Fig. 11

A similar set of lines is used to return
the ID signal wvalue from the end of the
system, (This number is simply the total
number of memory units in the system at
the present time.) With this technigus

[t i T |

5

boards c¢an be inserted into or extracted
from any position at any time without the
necessity of any hardware {or softwarel!l)
modification,

We &also note at this point that
neither the videoc scan generator nor the
image memories rely on any mechanism for
altering the contents of the image
memories. Thus we can distribute
responsiblity for computing the image
memor ies contents to a number of different
Processors.

Fig. 12 illustrates a modifijed
organization which achieves this increased
capability.

E%g?rocessin Memory

¢ Elements | Units
!

o -

CENTRAL l
BROADCAST !

i

i

i CONTROLLERE (CBC)
| S——

i1

-
— VIDEO |
DISPLAY SCAN |
: GENERATOR |
Fig. 12

Virtually the only addition has been ths
introduction of a central breoadcast
controller (CBC) which “announces® the
description of each new polygon to all the
processing elements {PE's}. The system is
designed to operate as follows:

a) Immediately upon power-on, the ¢BC

broadcasts the {possibly new)
software to all ~ the processing
elements, (All PE's execute the

same program, bHut each has a
separate copy of it and each may be
executing different parts of it at
any instant,}

3} The CBC instructs the PE's to survey
the memory units under their

control. This consists simply
ofeach PE attempting to read and
write a single word into each
possible menory unit under its

control. {Each knows {from the ID
lines}, 1} the total number of units
in the system at this time, and 2}
the first memory unit that is under
its control; it simply needs to find
the upper limit of its domain.)

¢y The 2 and image buffers are
initialized by each PE,

d) The actual processing procesds now
with the CBC broadcasting
description of one or more polygons
to be processed. Since each PE
knows which MU's are under its
responsibility and how many MU's are
in the system, it can easily compute
the location of each of its pixels
on the screen, For each polygon it
does the appropriate 2 buffer
algorithm computations {as outlined
before} for all its pixels affected
by this current polygon., When done,
each PE signals to the CBC. When
all the PE*s are done, the CBC
broadcasts the next polygon {or set
of polygons). The procedure
continues until the complete set of
polygons in the scene is exhausted.

By having the MU*s and the PE's
lemented on the same size PC cards and
*lizing the same connectors , ail the FE
lines can be implemented on a single
= of backplane lines, A PE simply
1ores any Such signals coming in from
st left, and generates its own signals on
rne lines to its right. (ME's simply pass
.zge signals through,} Thus a PE simply
itrols all the MU's between it and the
it PE on its right. Configurations can
altered by simply reshuffling the
.rds,

Fig. 13 illustrates that regular
erlacing 1is possible for both the MU's
the PE's. This is particularly

TITRAL
JAOADCAST
V ONTROLLER

|

awer (5 am o

et
- oo
i | exe
[—
L e
Ty -
o [mua
ancme /1 axmocwens
.y
arsa O SR
Ly LS
e Opy o
mrew) weor
i]

VIDEQ
SCAN
GENERATOR
Al 2B 1A 3B
i BE| 10F | SE; 11F
4C 6D | 5C D
c126 | 144 | 136 | 158 A,B,...,H=Processing
4 Elements
0A| 2B} 1A 3B
Csel10v | 9 aar 0,1, ,15=Memory
Units
af [5C 7D
12G | 14H |13G s§15H
i

Fig., 13

important for efficient processing, for
two reasons: 1) it guarantees that for any
nolygon {of size greater than a single
pixel and for systems with greater than
two processors) the pixels on which it

6

lies will be located in the domains of a
number of @&ifferent PE's, s0 that the
workload will always be distributed, and
2} the regular pattern of affected pixels
in any one MU allows rapid incremental
computations for 2, and eventually for
RGB. {Recall that all these polygons are
planar; so the amount of change per each
pixel step will be constant.} Alsc, the
same regular pattern occurs in each
affected MU; for example, if adiacent
pixels in a particular MU are 2 units
apart in X and 4 units in ¥, then they
will be that way for every affected memory
unit. This aliows the CBC to compute the
appropriate incremental change values
during the time the PE's are processing
the previous polygon. The CBC <c¢an then
broadcast these wvalues directly. thereby
avoiding a computation step in each PE.

Fig. 14 shows how particular
configuration c¢an be modified to increase
or decrease image resclution or processing
speed. (The wvariations in processor-
mamory assignments from those of fig. 13
reflect the computations performed by the
memory 1D select modules illustrated in
fig. 10.}

[1B BA[9B

04 | 1B | &4} 53 4 | 5F 1 12E} L3F
A 7¢ | 3p|ioc| 1in
2| D AC TR 0| 7R L1401 156
oA | 1B]| BA| 9B
04 | 1B} 4a 5B TTEETSF | 12E] 13T
7 |] 10¢] 118
26 (I} BC D 13 TR 14C] 1hi
8 memories mamor les

@ >

4 procassors PTOCEELOTE

{ncrense
speed

g4t 1B 8al 9B

04 18 } 4A | 58 [500 120 | 150
28 337104 11B
24 138 lea] 7 BRI
04 IR BAj &3
QA 1B | 4A 58 1o Sh 11201 13D
- 24 381 10A [11%
ZA § 3B 1 6AY TR $c 1 7p|14c] 15D
B memories 16 wemories
1 processers 4 processois
i {neTzage Tesolution ""‘"“"""'—'-""""'—;
I
04 IB | Ba] 9B L
4h | 5B [12& | 133
EA JETIOAT 112
Hemories: Opl,-- ':5 6A | 7B (14A] 158
2 1 a: P T
Processors: A,B, ' iE B EE]
bh 5b (12A] 138
&A 78 {104 [11B
24 3B $144 158
!
16 memories
2 processors
Fig. 14
Fig. 15 illustrates the physical

organization corresponding to the various
resolution/speed configurations of
fig. l4.

.@

Processing
Elements

Memory
Units ——.

i n]lu!nhi!nha njh\

VSsG V56

CEC CBC

|
il

CBC CEBC

OO T T T

increase 1
3
speed ;

|

- - |

CBC

-

i

i

‘ Vs vsg
L. |
i~
increase reselution w
i-
Fig. 15
Let us consider s0me of the

capabilities of this kind of organization.
It allows virtually limitless flexibility
in tradeoff between peower and economy. On
the one extreme there can be systems with
only one PE and one MU. Of course such a
system would exhibit a very coarse 1image,

but it 'may Dbe suitable for simple video
games, for instance. On the other extreme
one can gonfigure a system with high

resolution and very high throughput. The
number of pixels per PE can be reduced zall
the way down to one (although this seens
impractical}, thereby allowing a polygon
to be processed within microseconds. Such
high-resoliution and high powered systems
would be appropriate, feor instance, for
real-time pilot-training simulators. The
only difference, however, between these
two extreme configurations would be the
number of PE boards and the number of HU
buards, The software in the PE's of both
systems would be identical. The CBC's
would be identical. {The polygons are
broadcast in highest resolution units;
low-resclution configurations simply
ignore some of the least significant
bits.} The video scan generators could
also be identical., (They also run high-

resolution counters; small systems again
simply ignore some least significant
bits.} It is reascnabhle to speculate that

7

a large computing facility may have a
number of machines, each with a different
number of MU and PE boards -~ many small
configurations for program development, a
few large cones for real-time simulation,
and some high resolution but slow ones for
non~time~critical applications. For

special occasions, lavrger configurations
could easily be constructed by simply
consolidating several smali

configqurations. Also, faulty boards c¢culd
simply be removed from a system.

should also

current real-t¢ime
difficulty due to
computations being done "on the fly* as
the video bszam scans the image. These
systems thus avoid using an image buffer
between the processing and scanning-out
mrodules. If a certain spot in the imags
is particularly complex, howsever, the scan
either has te wait, or it Tpaintsg"
incorrect data. The design presented here
would not exhibit such behavior. The
system would simply take slightly lenger
to compute the new image. If the memories
were double buffered, the switch between
the o©old image and the new one would be
made gslightly after the start of the
second scan of the old image -~ or if the
situation were really complex, the switch
would be made after two or more complete
scans of the {old) image.

These systems degrade
gracefully. Some

systems encounter

Other Applications

It is easy to see at this point that
system 1s not restricted to simply
Z-buffer visible surface
algorighm. Software could be loaded into
the PE's, for instance, to perform digital
vector generation and rapidly create line
drawings on the videc screen. In this
case, the CBC would simply biocadcast
endpoint informatien, each of the PE's
would determine the pixels under its
control which are affected by the new line
segment; it would then set each of these
plxels appropriately.

the
executing a

Implementation

We are currently in the process of
implementing various aspects of thne above
design. We have prototyped simple
versions ¢f each module and plan to have a
small, but complete pratotype system in
the near future,.

Future Developments

currently generalizing the
For example,
for

We are
scope of the present design.
the simple selection and multiplexing
both memoriegs and processors 1is most
easily achieved when the number of units
is an even power of 2. Although some sort
of processor—-memory-image assignment ¢an
easily be achieved for an arbitrary nuomber
of units of each, an optimal generalized
mapping algerithm still remains to be

developed.

Fault-tolerant and "highly reliable®
versions of the current design may also be
guite useful, Although some of this is
presently available with the capability to
remove faulty modules, other capabilities
can perhaps be added. For example,
configuring the system to generate a
higher resolution image {say. 1024 x 1024)
than the one being displayed (512 x 512}
would allow the scan generator to consider
{in this case 4) separate sources from
which to determine each single pixel.
Such redundancy should easily allow
significant nomber of faulty memory and
processer modules without noticeable image
or performance degradation.

References

Appel A. {1967) The notion of quanitative
invisibility in the machine rendering
of solids. Proc. ACM Annuval
Conference 387-3%3.

Blinn, J. F. and M. E. Hewell {1976}
Texture and reflection 1in computer
generated images. Comm. ACM 19(10}):
542-547,

Bouknight, W. J. (1%969) An impreved
progedure for generation of half-tone
computer graphics representations.
University of 1Illinois, Coordinated
Science Laboratory, R-432.

Catmull, EB. A. (1875} Computer display
of curved surfaces. Proc. Conference
on Computer Graphics: Pattern
Recognition and Data Structures (IEEE
Cat, No. 75CH0981-1C): 1i-17.

Despain, &. M. and D. A, Patterson (1978)
X~tree: a tree-structured multi~
processor computer architecture. Proc.
Fifth Annual Symposium on Cemputer
Architecture 144=150.

Evans and Sutherland Computer Corporation
{1576) ©Picture System 2. Salt Lake
City, Utah.

Evans and Sutherland Computer Corporation
(1977 Improved scene generation
capability. Final report, NASA
contract HNeo. NAS 9%-14010.

Hirschberg,, B. S. (1978) ¥Fast parallel
sorting algorithms. Comm. ACH 21(8):
657-661.

MAGI (1978) Mathematical Applications
Group, Inc. Elmsford, NY. Promoticnal
literature.

Newell M. A., R. G. Wewell, and
T. L. Saucha (1%72) A new approach to
the shaded picture problem. Proc. ACM
Annual Conference -

Roberts, L. G. (1963} Machine perception
of three-dimensional solids. MIiT

8

Lincoln Laboratory, TR 315, Alse in
Optical and Electro-Optical Information
Processing , Tipper, et al., eds. MIT
Press, 15%9.

Rougelot, R. S. and R. Schumacker {1968}
G.E. real time display. NASA Report
NAS 9-3916. General Electric Co.,
Syracuse, NY,

Shohat, M. and J. Florence 1877y
Application of digital image generation
to the shuttle mission simulation.
Proc, 1877 Summer Computer Simulation
Conference.

Schumacker, R.A., B. Brand,
. Guilliland, and W. Sharp (1869)
Study for applying computer~generated
images to visual simulation. U.S5. Air

Force Human Resources Laboratory.
AFHRL-TR=~69-14.

Sutherland, I. E., R. F, 3proull, and
R. A. Schumacker (1974} "a

Characterization of Ten Hidden-Surface
Algorithms.,"” ACM Computing Surveys,
6(1)y: 1=-55.

Vector General, Ina, {1978) System 3300,
Woodland Hills, CA.

Warnock, J. E. (1%69) A hidden surface
algorithm for computer—-gensrated
halftone pictures. Computey Scilence
Department, University of Utah, TR 4-
15.

Watkins, G. S. (1970} "A real-time visible
surface algorithm®. Computer Science
Department, The iUniversity of Utah:
UTECH-CSC-70-1061.

Wieler, K. and P. Atherton (1877 Hidden
surface remgval using polygon area
sorting., Proc. Fourth Annual ACH-
SIGGRAPE Conference on Computer
Graphics and Interactive Technigues :

€14-222,

Acknowledgements

Thizs work was partially supported by
NSF Grant MC8-77-03%05, and by Naval
Electronics Systems Command Contract
NOQQ39-78-0-0431, {through Regsearch
Triangle Institute Grant 43U31667).

Appendix

A short survey of the applicabiliiy
of warious visible surface algorithms for
distributed processing will aid in
understanding the approach we've developed
for our own design.

Sutherland, Sprouli, and Schumachker
(1974) classify the various visible
surface algorithms into object space,
image space, and list priority algerithms.
Object space algcrithms (=2.g9., Roberts
(i863), Appel (1567)) process the
environment's obiject parts seguentially

.nd determine, for each such part, whether
» not it is visible, Image space
‘gorithms, {(e.g9., Bouknight {1969),
tkins (1%70}), on the other hand, take
‘ch part of the image sequentially and
ctermine for each such image area --
rentually a single pixel ~- which object
vt 1s wvisible there. List wpriority

2lgorithms {(e.g., Schumacker, et al.
1969), Newell, et al. (1872)}) determine

zome ordering on the list of polygons in
the environment -- either from farthest to

Tosest to the wviewer or some other

arrangement based on geometric relations

netwaen the polygons. with such an
wreach the visible polygon at each pixel
gimply the highest pricority polygon

ich maps onto it.

Let us consider the suitability of
-se various approaches for distributed
rcution. An obvious approach for
ztributing workload of an object space
jorithms would be to divide the various
ject parts between the available
Jcessors in the system. This approach
.ald encounter difficulty in at least two
nlaces: in order to determine the
+isibility of any object part, possibly
"1 the other objects would have to be
amined =-- thus each processor would need
have constantly available the entire
of possibly visible polygons. In
‘dition to this, the resulis of all the
sibility calculations need to be put
-0 the screen. The two alternatives for
is part are, &) to have a real~time scan
-nerator which calculates the intensity
-lues as the video beam is scanning the
.splay screen, or b} to have an image
Lomory huffer {"frame Dbuffer™) in which
the image pixels are put as they are
“termined and have the image scanned out
.vom this buffer {see fig. l6}.

PROCESSING
ELEMENTS
‘x\\q\ _________ .
) i
e I MaGE | |
1 & b-BuFFER | | scaw
: : | z GNRATOR.

(optional}

Fig. 16

The first alternative would certainly
be difficult in this case, since the

ki

values for the scan would be randomly
distributed among the various processors,
and, in general, even in a single
processor, the scan order of the various
object parts would need to be scan order,
not in object-space order, The alternate
approach, that of putting the results from
the various processors into a frame
buffer, from which the scan generators
"read out"™ the image, would most likely
suffer from excessive contention for the
frame buffer, as the various processors
all attempt to write all their information
inte the frame buffer; the bandwidth of a
large random access buffer {assuming
700nsec cycle time and 50% time division
multiplexing betwesn the scan generator
and the image~determining processors)
leaves less than 12,000 total accesses for
all the processors during each frame time,
Cne may wish to partition the frame buffer
into a number of smaller units in order %o
overcome this bandwidth limitation, but
since zach processor's wvisible object
parts can be expected to be randomly
distributed in the image, there will then
need t¢c be data paths between each
processor and each memery (see fig. 17).

PROCESSING

ELFMENTS CROSSBAR
PLEAL RS B

SWITCH

Bl

HENMORY e [vizzg
LRITS Ly

CIDES SCAN GNRATOR [

Fig. 17

List priority algoritnms may be more
applicable to distributed processing; in
fact, one of the sarliesy real-time
systems (GE} is based on a list-priority
algerithm. This particular type of
priority is based on a gecometric
relationship between object polygons, and
as such needs only to be calculated once
for a rigid environment and is largely
independent of the simulated viewing
position., To calculate this relationship,
however, the system often needs expert
manual intervention to moedify the
environment's definition. This
requirement significantly detracts from
the appeal of this approach. The other
well-known list priority algorithm
{Hewell, et al. ({1972)) orders the list
of polygens from back to frent -- from the
polygon farthest from the viewer to the
one closest to the viewer -- then "paints”
the polygons into the frame buffer in this
crder. A polygon which obscures ancther

one behind it would be encountered after
the obscured one in the ordered 1list; it
would thus ‘“paint over™ the more distant
polygon.

The applicability of this approach to
distributed processing is certainly not
obvious. Since the major step is a rather
elaborate sort involving the entire set of
potentially wvisible polygons. Although
parallel sorting methods may be useful
here (Hirschberg {1978)), the situtation
is complicated by the lack of a single
sorting key. The sort, rather, involves
the "visiblity priority" or the "obscuring
level"™ ©f the various polygons. The
regquired condition is that if polygon A
obscures polygon B then A must not be
placed before B in the "painting" list.
It is simple to demonstrate that this kind
of an ordering may not even exist for scme
sets of polygons (see fig. 18).

Fig. 18

In such cases, pelygons have to be sgplit
into pieces until a strict erdering can be
established, Even 1if such an involved
sorting could be distributed over multiple
processors, the basic method of
determining wvisibility by "painting over®
nearer poelygons Seems to imply a
sequential process moving from back to
front. #%he list could of course be split
inte a number of pieces, each piece
separately computed by a single processor
with a separate image buffer, The final
image would then consist of the various
image buffers merged in the appropriate
priority order by the scan generator ({see
fig. 19).

FULL
THAGE
pol}rgon BU F!FERS
st PROCESSING |

(sorted bY 20 gy pyeNTs

s o
ey
tﬁ E/*izﬁ“*fﬁﬁ

PRIORITY }

o N

VIDEG
SCAN
GENERATOR

LN

f vipke \
ISP

Fig., 19

The expense of a full image buifer with
each processor makes this approach rather
impractical.

Object space algorithmsg are rather
more appealing for possible distributed
processing. An obvicus approach would be
to distribute the workload among the
various processcors by partitioning the
image between them. Scan—-line order
algorithms, such as Watkins (1970), could
be implemented in this fashion by
assigning various scan lines to different
Processors. The complicated nature of
these algorithms and their reliance on
incremental progessing -~ calculating one
scan line is basically a modification of
the data on the previocus scan line --~
makes this approach difficult.

The algorithm by Warnock {1969,
pasically considers the set of polygons
involved in a particular area of the
screen. If there are ioo many then it
partitions the arez into ({usually) four
regions, creating a larger number of
problems to solve, but each of them
simpler to solve than their common
predecezsor (or at the very least no more
compl icated). Infinite recursive
subdivision is avoided by the realization
that onc¢e the area is that of a single
pixel, the system can simply find the
closest polygon. The algorithm
capitalizes on the characteristic that
almost all images contain many empty and
many very simple regions.

This approach seems 4difficult to
adopt for distributed processing since the
workload is a function of @area, but the

areas are not evenly distributed across
the fuil image. Ailthough some
appropriately interconnected network of
processors could possibly be used to solve
the visibility problem 1in this fashion

(Despain and Patterson (1977)) ~-- with cne
processor activating several others
whenever an area ig gubdivided -- it seems

that the contenticn for the image buffer
by the various processors would still
remain as intractable as before,

A recent visible surface algorithm by
Weiler and Atherton (1977) ig in some ways
an appealing c¢ombination of that by
Warnock (1969} and that by Newell, et al.,
{1972), but seems equally difficult +to
adapt to a distributed organization -- for
some of the same reasons as those of its
mentioned predecessors. &

