
AN EXPANDABLE t1UL TIPROCESSOR ARCHITECTURE

FOR VIDEO GRAPHICS

(Preliminary Report)

Henry Fuchs
University of North Carolina at Chapel Hill

Brian vi. Johnson
University of Texas at Dallas

IJNC Heport No.
TR-79-002
Dept. of Computer Sci.
23 January 1979

•

•

19 January 1979
1

AN EXPANDABLE MULTIPROCESSOR ARCHITECTURE FOR VIDEO GRAPHICS
(Preliminary Repor t)

Hen ry Fuchs
The University o f Nor th Carolina at Chapel Hi ll

Brian w. Johnson
The University of Texas at Dallas

Abstract

Presented is the design of a flexible expandable multi­
processor system for video graphics and image processing.
The design involves a central controller wh ich broadcasts
data to a variable number of independently executing
processing units, each of which in turn controls a vari able
number of memo ry units among whi ch the video (frame buffer)
image is distributed. An interl eaved addressing
organiza tion o f the v ideo memories guarantees both an even
workload distribution as we ll as maintenance of image
coherence for each p r ocessing element. Execution speed and
image resolution c an be independently a ltered (at any time)
by varying th e number of processing and memory units.
Sample applications of t he sys tem -- for rapid line drawing
and "electronic scene generation" (vis i ble surface
algor i thms) -- are descr ibed . Va riations o f the design for
low cost and fo r powerful , real-t ime configurations are
outlined .

Introduction

A long - standing goal of researchers
in computer graphics systems has been the
development of real - time three- d imens i ona l
modeling systems. These systems , which
produce a realistic image of a simul ated
three- dimensiona l environment, have a wide
var iety of potential uses from
simu lators for pilot training t o
interactive des i gn of houses and
automobi les . The most sophisticated of
these sys tems produce , 1n real - time ,
images on color video displays (TV' s) of
startling reality. The only l imitation to
widespread use of these sys t ems has been
the ir prohibitive costs ($500 ,000 and
up). Th us virtually the only uses today
ar e those for which the re is no real
alternative --e.g., simulating maneuvers
in gravity-fr ee space or training
simulators fo r pilots of large (and
expensive) airplanes. If such model ing
systems could be provided at
significiantly lower costs, it is safe to
pr esume that thei r use would become
dramatically more widespread .

A short examination of the
computational expense of the problem
suffices to jus tify the complexity and
expe nse of curren t systems which solve it.
A video i mage to a digital system normally
consists of a matrix of picture eleme nts
("p i xels") of be twee n 4~0 and 512 rows
(scan lines) with from 512 to 6 40 pixels
in each scan line . (Un ti l recently this
size wa s lim i ted by the resolution of
video monitors . Within the past two
years, monitors with 900 to 1000 scan line
capacity have become available; the factor
of four increase in numbe r of pixels per
imag e only exacerbates the computational
problem.) The image is the n simply a set

of some 300,000 pixels, each of which (for
a color imag e) contains three indepe ndent
components -- Red, Gr een , Blue e ach
usual l y t o 8-bits of r esolution. The
entire problem at hand is simply
calculati ng t hese 900,000 values each time
the image is scanned ou t onto the video
screen , usual ly 30 times per second .

The proper value at each p ixel is a
function of t he data base (the simulated
environment), the viewing position and
orientation of the simulated viewer , and
the location(s) of the light sour ce(s) in
the simulated envi ronment . The
environment is most ofte n described as a
se t of objects in the envi ronment
(Euclidian three-space) coordinate system.
Each object is usually described by a set
of plana r tiles ("polygons") whi ch form
its various surfaces (Fig. 1, fr om
Sutherland, Sproull, and Schumacker
(1974), shows the bounda ries of a se t of
polygons defining the surface of a 3-D
object.)

Fig. 1

•

' .

(Othe r methods of object desc ript i on are
somet i mes used-- e.g . , a s collections of
geometric solids (MAG I (196 Bll or c ur ved
surfaces (Catmull(l975), Bl inn and Newell
(1976)) . Since the par ticula r object
defin i tion method does not signif i cantly
affec t t he system architecture , we shall
assume he r eon that the common planar­
polygon descriptions are used .) In order
to compute the Red, Green , and Bl ue values
for a particular pi xel , the system has to
de t ermine :

a) wh ich, if any , polygons map onto
this pixel ' s ar ea,

b) which one from this set 1s closest
t o the viewer (and thus is the one
visible obscu r ing all t he other
polygons), and

c) the deta ils about the precise part
of this closest polygon which maps
onto the pixel its ass i gned
color, i ts angle and distance from
the l i ght source(s) , and i ts angle
and distance t o the viewe r .

When programmed on a conventtonal
gene ra l purpose computer , computing such a
simulated image may wel l t a ke seve:al
minu tes, and easily longe r : so develop1ng
a system to do 1t in 1/30 second is a non­
trivial task. (The append 1x gives a short
synopsis of the var i ous algori thms a nd
approaches conside r ed which lead to the
de e lopme nt of the design presented 1n
this paper .)

To understa nd our solution, l e t us
first examine the overall sequence of
steps which need to be performed . in o r der
to produce a visibl e surface 1mage on a
v1deo display.

a) The orig1nal polygons (ln ob)ec t
coordinate s pace) are t r ansformed
into the posi t i on as seen from th e
simulated viewi ng position . (Thlr.
is a sequence of rotations and
t r ans l ations .)

b) The parts of t he environment data
oase wh i ch are not in the f 1eld of
v i ew a re d i scarded from f urther
conside ra tion by clipping all
polygons against the boundar1es of
the fiel d of vi ew.

c) Perspective
appl1ed
appropriate
f unction o f

transformation is
t o fore snorten
environmental parts
d istance .

the
as a

l•ft lit ' 0t!t10 .. •
•"'' -''l Oah

··~- , .
•• • ' 'Ot • c.t

Pig . 2

2

It 1s a t this po1 nt that a vis1ble
surface algor1thm 1s invoked.

S1nce steps a), b), c) can be
achieved in r na l-tlme by current
affordable line drawing systems (e.g.,
Evans and Su therland (1976), Ve c tor
General (19~d)) , we will concentrate our
a ttent1on on the actual v1sible surface
computations . (Of course , these line­
drawing systems are affordable precisely
because they do not have to perform tne
labori ous vis ib ility computat ions !or some
JOv , OOO pixels !) Most cur r ent r ea l-time
video systems (Evans and Suthe r land (1977)
Shohat and Flo r ence (1~7~) use a pipel1nc
architec ture to ach1eve the necessary h1qh
th r oughput r ates . (See f 1g. 2 from
Shohat and Florence (1~7~)) .

Each module in the plpeline 1s typ1cal ly a
highly spec i alizeo process1ng unit. Tnus ,
these des1gns do not easily lend
themselves to substantial upgrad i ng (to
achieve h1gher capaclty) or down~rad1ng
(to ach1ev e lower cost) .

Ou r own design cap1talizes on the
newly plentiful resource of 1nexpens1ve
LSI circui try . Thus each al l ow1ng a
significant but bounded increase in both
memor y and processin~ requ1rements in
r eturn for arch1tectural f lex1bil1ty.
Speclflca lly, our solution 1s tai lored
althoug h not res tricted -- to what may be
the simples t visibl e surface algorlth~ .
the s o - ca lleo •z buf(er• algorith~ , one s o
simple th3t it seems never t o have
appeared in print in 1ts own right .
Sutherland, Sproull, and Sch umac ke r (1~74)
mention 1t 1n pass 1ng (p.!>l) , say1nq "that
1f a large memory is ava1lable
Th1s method results 1n a c omput1ng cost
wh1 ch depends only on tne depth numoe r
(De) a nd not otherw1se on the e nv1ronment
complexity . • (De is th e numb~r of rront­
facing polygons "pi e rced, on the averag~ ,
by an a rb1trary ray f r om tne viewpolnt .")
Catmull(l~75) used the method as part o(a
more sophist1cated algorithm for vi sibl e
display o f curved surfaces. The bas i c
algor1th~ ut1lizes two large buffe r s e ach
conta1n1nq an entry for each p1xel on the
screen , an "1mage• buffer which conta1ns
the (RGB) intensities at each pixel , and a
•z• buffe r which contatns a t each pi xe l
the d1stance of the closest ObJ eC t
encounte red the r e so far (flg. 3). The
polygons a r e processed sequent1ally, in
any order . Ea ch polygon's process1n~
starts w1th determ1n1ng the p1xels upon
wh1ch the polygon •fall s • 1n the i mage.
Por each such pixel t he distance of the
polygon from the s1mula t ed vi ewer lS
computed. (Tn1s is the •z• value .)

•

..

•

, ,

L:' ' '\
:1 .,...,n,

...

' ' • • • a
••••

I I I I

' J ., ,
f r r r

~-..

-,
L8

t ... , .

''
''' '
' ' J '

1 J J I I I t

I I I I

l I I I

J 'I I I

1 k.fhr l uae !11.l!l•r
(l•(P) • 7 I• !Q) • 2)

Fig . 3

This value i s compared ~ ith the ent r y in
the z buffer f o r th1s pixel . If t h is new
value i s smal l er than th e c urrent ent ry
t hen this new po lygon is closer to the
viewe r at t his pixel t han the closest
previously e ncountered polygo n and so t h1s
ne~ polygon would now be visib l e at thts
pixe l . Thus In th i S case the new Z value
is put into the Z buffer and this new
polygon's (RGB) I ntensit y value IS
computed and inserted 1n t o the image
buf fer . If, on the other hand , the new Z
v a lue is gr eate r than the value cu r rently
1n t he Z buffer at t h 1s pixel , then th1s
polygon is fa r ther than t he closest
po lygon , and p rocessing is terminated for
this p1xel fo r this polygo n without any
chang es to the buf(e rs. Pr ocessing
con tinues with the ne xt pixel into wh 1ch
the c urrent polygon "fa lls . "

This simple algor ithm i s seldom used,
princ ipa l ly for two r easons : 1) few
current systems have sufficient memor y for
two such large buffers , and 2) every pixe l
of eve ry po lygon needs to be computed. To
understand the potential seve r ity of this
second r eason, let us recall t hat
traditi o nally designers o(visible su r face
algorithms (e.g . , Watk ins (l970)) have
attempted to gain ef(iciency by a voidi ng,
wheneve r poss ible , consideration of all
bu t the (slngle) neares t polygon. For
e xample , if al l t he polygons potent ial ly
VI Sibl e on a particular scan line can be
cons i dered tog e ther as a se t, t hen
dcterm1ning t he z ordering on this se t at
JUSt ~ f e~ key points along the scan line
1s su f f icien t to dete rmine the sequence o f
v isibl e polygon seg~ents along the entire
line (flg . 4).

y

X

z

vit>\dny
dfrecti(n _........_

- ./

3

At Intermediate points al l t he obst r uct ed
polygons are simply Ignored . A " Z ouC Ce r"
algor tt hm , s1nce it handles eac h polygon
separately, computes every affected pixel
for each polygo n a proc edure wn 1ch
certa1 n!y s eems to be wasteful ano
inefficient, however, a c loser ex aminatton
of the situa t ion, reveals th3t for
multiprocessor systems the procedure may
in fact be very att r active. Suthe rl and ,
Spr oull , a nd Schumacker (1Y7 4) estimate
that th e average numbe r of polgyons
"falling on" a pi xel is on ly 3 ; tnat 1s ,
many (most?) 1m~ges contain l a rge areas
o (s ~y . water, ceilings, floors areas
1n wh1ch there a r c not too many polygons
stacked one behind the other . Th1s
1mpl1es that the (1n)eff1ency of th~ Z
buffer algorithm 1s cons tan t; at wo r st it
is some constant multlple (e . g ., 3) of the
most effic i ent possible algor1th~ one
wh i ch can determ 1ne with negl1g 1ble cost
the v1S1ble polygon at each pixel. Since
LSI t echnology is r ap idly d1minis h1ng the
cos t o f simple arithmetlc processing
units , a facto r of J I S no l onger
burdensome.

System Descr 1ption

The fundamenta l system organizatiOn
1s as illustrated in f1g ure 5 .

list o f
polygons

Fig . 5

VIDI:O
SCAN

GENERATOR

VID!
DlSPI.AY

"'- - ---

Figure 6 shows in somewhat greater
the organization of the image

detail
buffer,

which is accessed by both the processor
and the video scan generator.

ADDRESS

l

PROCESSOR

read/write
I
I

/
I

-------~x IMJ\GE
BUFFER

I
I

' ' ~»-------~-
'

I 1 mode control

I
' ADDRESS seleci:/enable

I
VIDEO SC&~ GENERATOR

Fig. 6

DATA

Figure 7 illustrates the simple time
division multiplexing between the
processor and the video scan generator.
We note here that the current pixel's data
remains on the video scan generator bus
even during the period which is assigned
to the processor.

VIDEO SCAN
GENERATOR

PROCESSOR

Fig. 7

lf we consider using only commonly
available inexpensive LSI RAM's then the
requirement of the scan generator (needing
to cycle through the entire image in
approximately 30 milliseconds) will limit
the usefulness of this simple design to
very coarse images~ To increase the
bandwidth we simply insert additional
memory units onto the system bus.

Figure 8 illustrates the organization of
this enchancement and figure 9 shows the
timing cycles.

VIDEO SCAN
GENERATOR

PROCESSOR

VIDEO SCAN
GENERATO};

PROCESSOR

.. ,,
0000(' ~

·ooooC>J

o•n =======~==

G~
F i.g. ti

: 00001 '
,Jo(;Oll

Fig. 9

. Ot~ ll 0
;oco1' 1

4

It is important to note that the actual
bus to the scan generator does not
increase in size or speed. All memory
units are read in parallel during the scan
generator access times. During the
following complete timing cycle, the
various results are put onto the video bus
by enabling, in sequence, the bus drivers
of the various memory units. This
enabling is directly controlled by the
least significant bits of the video scan
generator's X address. In this fashion
the number of memory units need not be
known to the scan generator: if there are
fewer units, some of the least significant
address bits are ignored and thus
consecutive locations on the video screen
will be accessed from the same image
memory unit's output register~ The result
will be a coarser image (128 x 12ti, say,
instead of 512 x 512) than the scan
generator is capable of producing. {It
will be seen later that a somewhat
different resolution-independence scheme
for the processor side of the memories
will free the entire system both
hardware and software -- from reliance on
a fixed resolution.) The proper ID
selection in each memory unit (as seen in
Fig. 7) is a function of both the unit's
ID number and the total number of memory
units currently in the system. Although
such selection settings are normally set
manually through jumpers or DIP switches,
we prefer for them to be set
automatically~ This is done through the

following mechanism~ In addition to the
processor bus and video scan generator
bus, the system includes a set of lines
for ID numbers and the ~total-units"
number.

As illustrated in fig. 10, the ID
lines consist of a set of lines sufficient
to represent the largest possible number
of memory units in a system. (For
example, for a 1024 maximum memory unit
system this number would be 10.}

PROCESSOR BUS

! __ -] __]:_ ----~
I
~e as in basic image ~

(,~~ memory unit) ~

I~~ I
I i

M:x :~_c:~:-·:J~Lri~~~~~~::::r:_ ~M::l
i J ~T~=1 I
i t . J- REGIST~~ ~ !
I I ID -{TRI-State i i

I. SELECT BUS DRIVER ! .J . 1:;:::;:- ! 4=--- ·----·--t-----·
___ :[______ L ____ _

VIDEO SCAN GENERATOR BUS

Fig. 10

In this fashion the set of lines are
started at 0 on one side, each board has
an increment circuit on it~ and thus the
number on the backplane ID lines is
incremented by one each time it passes
through a memory unit board (fig~ 11).

PROCESSOR BUS

-J--~-~--~----- ~1--- F-~.'l ---~-~~
em. 1 ~M~:. ;M<>' IMem. M jMem.;

0- I nit f.. ~Unit\ ::J· jUnitr-~IUnit!
Ma,.-- [._ · ..j 1.,_ 1- -· I

-- LT_j ' L] jMax y Hax L.J
I VIDEO"' SCAN GENERATOR BUS

VIDEO
SCAN
GENER<\TOR 1

.___ _ _j
Fig. 11

=-===)!
VIDEO I
DISPLAY

A similar set of lines is used to return
the ID signal value from the end of the
system. (This number is simply the total
number of memory units in the system at
the present time.) With this technique

5

boards can be inserted into or extracted
from any position at any time without the
necessity of any hardware (or software!)
modification.

We also note at this point that
neither the video scan generator nor the
image memories rely on any mechanism for
altering the contents of the image
memories. Thus we can distribute
responsiblity for computing the image
memories contents to a number of different
processors.

Fig. 12 illustrates
organization which achieves
capability.

a modified
this increased

fa _Processinr._Memory
~-Elements ;-Units
b __;

r-----·---·--··--

1
1 C~T~ I
I
' BROADCAST ,

L.- CONTROLLE~--~-~.~~~ __ _j

Fig. 12

Virtually the only addition has been the
introduction of a central broadcast
controller {CBC) which "announces" the
description of each new polygon to all the
processing elements (PE's). The system is
designed to operate as follows:

a) Immediately upon power-on, the CBC
broadcasts the {possibly new)
software to all the processing
elements. (All PE's execute the
same program, but each has a
separate copy of it and each may be
executing different parts of it at
any instant.)

b) The CBC instructs the PE 1 s to survey
the memory units under their
control. This consists simply
ofeach PE attempting to read and
write a single word into each
possible memory unit under its
control4 (Each knows {from the ID
lines), 1) the total number of units
in the system at this time, and 2)
the first memory unit that is under
its control; it simply needs to find
the upper limit of its domain.)

c) The Z and image buffers are
initialized by each PE.

d) The actual processing proceeds now
with the CBC broadcasting
description of one or more polygons
to be processed. Since each PE
knows which MU's are under its
responsibility and how many MU's are
in the system, it can easily compute
the location of each of its pixels
on the screen. For each polygon it
does the appropriate z buffer
algorithm computations (as outlined
before} for all its pixels affected
by this current polygon. When done,
each PE signals to the CBC. When
all the FE's are done, the CBC
broadcasts the next polygon (or set
of polygons). The procedure
continues until the complete set of
polygons in the scene is exhausted.

By having the MU's and the PE's
lemented on the same size PC cards and

'lizing the same connectors , all the PE
lines can be implemented on a single
of backplane lines. A PE simply

lOres any such signals coming in from
~ts left, and generates its own signals on
~ne lines to its right. (ME's simply pass

.0se signals through.) Thus a PE simply
1trols all the MU's between it and the
~t PEon its right. Configurations can

altered by simply reshuffling the
_ rds.

Fig. 13 illustrates that regular
erlacing is possible for both the MO's

the PE's. This is particularly

:;TRAL

30ADCAST
:O~TROLLER

I
OA 2B I]A

-sEil"OF 9E

4C 6D SC

3B

llF

7D

' J2G l4H 13G lSH

OA 2B lA 3B

8E lOF 9E lJF
·---+---1--t--+-

4C 6D 5C 7D

l2G 14H 13G lSH

Fig, 13

VIDEO
SCAN
GENERATOR

A,B, ••. ,H=Processing
Elements

O,l, .•. ~15=Memory
Units

important for efficient processing, for
t~o reasons: l) it guarantees that for any
noly·gon {of size greater than a single
pixel and for systems with greater than
~wo processors) the pixels on which it

6

lies will be located in the domains of a
number of different PE's, so that the
workload will always be distribuledt and
2) the regular pattern of affected pixels
in any one MU allows rapid incremental
computations for z, and eventually for
RGB~ (Recall that all these polygons are
planar; so the amount of change per each
pixel step will be constant.) Also, the
same regular pattern occurs in each
affected MU; for example, if adjacent
pixels in a particular MU are 2 units
apart in X and 4 units in Y, then they
will be that way for every affected memory
unit. This allows the esc to compute the
appropriate incremental change values
during the time the PE's are processing
the previous polygon. The CBC can then
broadcast these values directly, thereby
avoiding a computation step in each PE.

Fig. 14 shows how particular
configuration can be modified to increase
or decrease image resolution or processing
speed. (The variations in processor­
memory assignments from those of fig. 13
reflect the computations performed by the
memory ID select modules illustrated in
fig. 10.)

fncrense
sp~ed

1 _

" " " " '
-+OAhs: BA~-

4£ sr. 12E lJF

" 3D " '" -
~ 3D JOC lln

i 6C 71i JM: 15ii --+ 0~ lB 8A 91\

" " " " 4E SF , 12E l F

-c-
:·~ ~~ I ~~~ ~T-r'.:. JD , 6C " -- I

a 111<10\0ries
4 process<>L'J

-t~, '

" " "

I

" "
,,, n

" 1' " "
" " " n

' 8 mem.<>ries 16 wemories
2 pt'ccessors 4 processors

---- lncr,~se r~soluticn ~

H=ories: 0,1, .. 15
Processor": A,Jl, •. ~

Fig. l4

--{T
-

" " " " " "

i-
" 8A " -,

'" 13i!
38 WA ll?·

" 14A !5S

" " " " '" "'
" '" m

" '" 15'!+

16 M!ll:>:ries
2 ;>rocesso,-s

Fig. 15 illustrates the physical
organization corresponding to the various
resolution/speed configurations of
fig. 14.

CBC Processing CBC Nemory
Elements- Units -

I :.-J '"
llllilllllil llllllllllllll!llilllll(
1~~ B
~ t;J -

1

l111111111 l111dllnln1111111
increase r:r-1, rrl
T~e~d ---,.1 vsG I . _1 I vsc_j

CBC F_;
[_j ~--..!..----" ___ _

111111111 llllllllilllllllll
:=:t-1 r=c l VSG j L."~~ l

,......_,_

-------:cin=-. cc:-rcce:ca:-::st:> --re.SOTUti(llo "...
---------·

\-

Let us consider some of the
capabilities of this kind of organization~
It allows virtually limitless flexibility
in tradeoff between power and economy~ On
the one extreme there can be systems with
only one PE and one MU. Of course such a
system would exhibit a very coarse image,
but it may be suitable for simple video
games, for instance. On the other extreme
one can configure a system with high
resolution and very high throughput. The
number of pixels per PE can be reduced all
the way down to one (although this seems
impractical}, thereby allowing a polygon
to be processed within microseconds. Such
high-resolution and high powered systems
would be appropriate, for instance, for
real-time pilot-training simulators~ The
only difference, however~ between these
two extreme configurations would be the
number of PE boards and the number of MU
boards. The software in the PE's of both
systems would be identical. The CBC's
would be identical. (The polygons are
broadcast in highest resolution units;
low-resolution configurations simply
ignore some of the least significant
bits.) The video scan generators could
also be identical. {They also run high­
resolution counters; small systems again
simply ignore some least significant
bits.) It is reasonable to speculate that

7

a large computing facility may have a
number of machines, each with a different
number of MU and PE boards -- many small
configurations for program development, a
few large ones for real-time simulation&
and some high resolution but slow ones for
non-time-critical applicationse For
special occasions, larger configurations
could easily be constructed by simply
consolidating several small
configurations. Also, faulty boards could
simply be removed from a system.

These systems should also degrade
gracefully. Some current real-time
systems encounter difficulty due to
computations being done ~on the fly'' as
the video beam scans the image. These
systems thus avoid using an image buffer
between the processing and scanning-out
modules. If a certain spot in the image
is particularly complex, however, the scan
either has t:c wait, or it "paints"
incorrect data. The design presented here
would not exhibit such behavior. The
system would simply take slightly longer
to compute the new image. If the memories
were double buffered, the switch between
the old image and the new one would be
made slightly after the start of the
second scan of the old image -- or if the
situation were really complex, the switch
would be made after two or more complete
scans of the {old) irna9e.

Other Applications

It is easy to see at this point that
the system is not restricted to simply
executing a Z-buffer visible surface
algorittJm. Software could be loaded into
the PE's, for instance, to perform digital
vector generation and rapidly create line
drawings on the video screen. In this
case, the CBC would simply broadcast
endpoint information, each of the PE's
would determine the pixels under its
control which are affected by the new line
segment; it would then set each of these
pixels appropriately.

Implementation

We are currently in the process of
implementing various aspects of the above
design. We have pro~otyped simple
versions of each module and plan to have a
small, but complete pre' to type sys tern in
the near future.

Future Developments

We are currently generalizing the
scope of the present design~ For example,
the simple selection and multiplexing for
both memories and processors is most
easily achieved when the number of units
is an even power of 26 Although some sort
of processor-memory-image assignment can
easily be achieved for an arbitrary number
of units of each, an optimal generalized
mapping algorjthm still remains to be

developed&

Fault-tolerant and "highly reliable"
versions of the current design may also be
quite useful~ Although some of this is
presently available with the capability to
remove faulty modules, other capabilities
can perhaps be addeda For examplep
configuring the system to generate a
higher resolution image (say, 1024 x 1024)
than the one being displayed (512 x 512}
would allow the scan generator to consider
(in this case 4) separate sources from
which to determine each single pixel.
Such redundancy should easily allow
significant number of faulty memory and
processor modules without noticeable image
or performance degradation.

References

Appel A. (1967) The notion of quanitative
invisibility in the machine rendering
of sol ids. Proc. ACM f'-nnu~
Conference 387-393.

Blinn, J. F. and M. E. Newell (1976)
computer

19 (10) :
Texture
generated
542-547.

and reflection in
images. Comm. ACM

Bouknight, w. J. (1969) An impro~Jed
procedure for generation of half-tone
computer graphics representations.
University of Illinois, Coordinated
Science Laboratory, R-432.

Catmull, E. A. (1975) Computer display
of curved surfaces. Proc. Conference
on Computer Grapl-iTCS: Pattern
Recognition and Data _Structures (IEEE
Cat. No. 75CH0981-1C): 11-17.

Despain, A. M. and D. A. Patterson {1978)
X-tree: a tree-structured multi­
processor computer architecture. Proc.
Fifth Annual Symposium on Compu:t"er
Architecture 144-150~

Evans and Sutherland Computer
(1976) Picture System 2.
City, Utah.

Corporation
Salt I.ake

Evans and Sutherland Computer Corporation
(1977) Improved scene generation
capability. Final reportl NASA
contract No. NAS 9-14010.

Hirschberg,, D. S~ (1978) Fast parallel
sorting algorithms. Comm. ACM 21(8):
657-661.

MAGI (1978)
Group, Inc.
literature.

Mathematical
Elmsford, NY.

Applications
Promotional

Newell M. A., R. G~ Newell, and
T. L. Saucha (1972) A new approach to
the shaded picture problem. Proc. ~CM
Annual Conference

Roberts, L. G. {1963} Machine perception
of three-dimensional solidsa MIT

8

Lincoln Laboratory, TR 315. Also in
Optical and Electro-Optical Information
Processing , Tipper, et ala 1 eds. MIT
Press, 159.

Rougelot, Ra S.
G.E. real
NAS 9-3916.
Syracuse, NY.

and R. Schumacker
time display. NASA

General Electric

(1969)
Report

Co.,

Shohat, M. and J. Florence (1977)
Application of digital image generation
to the shuttle mission simulation.
Proc. 1977 Summer Computer Simulation
Conference. ------

Schumacker, R.A., B. Brand,
t1. Guill:i.land, and W. Sharp (1969)
Study for applying computer-generated
images to visual simulation. U.S. Air
Force Human Resources Laboratory.
AFHRL-TR-69-14.

Sutherland, I. Ea, R. F. Sproull, and
R6 A. Scht..:macker
Characterization of
Algorithms." ACH

(19'74) 11 A

6(1): 1-55. --·

Ten Hidden-Surface
Computing ~urveys,

Vector General, Inc. (1978) System
Woodland Hills, CA.

3300,

Warnock, J. E. (1969) A hidden surface
algorithm for computer-generated
halftone pictures. Computer Science
Department, University of Utah, TR 4-
15.

Watkinsr G. S. (1970) "A real-time visible
surface algorithm". Computer Science
Department, The University of Utah:
UTECH-CSC-70-101.

Wieler, K.
surface
sorting.
SIGGRAPH
GraphicS
214-22.2.

and P. Ather ton
removal using
Proc. Fourth
Corlference-­

an2_ InteTaC"tfve

(1977) Hidden
polygon area

P.,nnual ACM­
on Compu_!er_
Technig.ues

Acknowledgements

This work was partially supported by
NSF Grant MCS-77-03905, and by Naval
Electronics Systems Command Contract
N00039-78-C-0431, (through Research
Triangle Institute Grant 4301667).

A short survey of the applicability
of various visible surface algorithms for
distributed processing will aid in
understanding the approach we've developed
for our own design.

Sutherland, Sproull, and Schumacker
{1974) classify the various visible
surface algorithms into object space,
image space, and list priority algorithms.
Object space algorithms {e.g., Roberts
(1963), Appel (1967)) process the
environment's object parts sequentially

d determine, for each such part, whether
not it is visible. Image space

gorithms, (e.g., Bouknight(1969) p

tkins {1970}), on the other hand, take
ch part of the image sequentially and
termine for each such image area

:entually a single pixel -- which object
rt is visible there. List priority

'~gorithms {e.g., Schumacker, et al.
!969), Newell, et al. (1972)) determine

~orne ordering on the list of polygons in
rhe environment either from farthest to

:osest to the viewer or some other
~rrangement based on geometric relations
i·;<:>tween the polygonsa With such an

?roach the visible polygon at each pixel
simply the highest priority polygon

Lch maps onto it.

Let us consider the suitability of
~se various approaches for distributed
~cution. An obvious approach for
~tributing workload of an object space
jorithms would be to divide the various
ject parts between the available
vcessors in the system. This approach
~Jld encounter difficulty in at least two

:,:laces: in order to determine the
.isibility of any object part, possibly
'1 the other objects would have to be

amined -- thus each processor would need
have constantly available the entire

of possibly visible polygons. In
~dition to this, the results of all the
3ibility calculations need to be put
_o the screen. The two alternatives for
is part are, a) to have a real-time scan

-nerator which calculates the intensity
.-lues as the video beam is scanning the
_3play screen, or b) to have an image
,~mory buffer ("frame buffer") in which

the image pixels are put as they are
·termined and have the image scanned out

.com this buffer (see fig. 161.

PROCESSING
ELEHE!>.'TS

(optional}

0

Fig. 16

The first alternative would certainly
be difficult in this case, since the

9

values for the scan would be randomly
distributed among the various processors,
and, in generali even in a single
processor, the scan order of the various
object parts would need to be scan order,
not in object-space order. The alternate
approach, that of putting the results from
the various processors into a frame
buffer, from which the scan generators
"read out" the image, would most likely
suffer from excessive contention for the
frame buffer, as the various processors
all attempt to write all their information
into the frame buffer; the bandwidth of a
large random access buffer (assuming
700nsec cycle time and 50% time division
multiplexing between the scan generator
and the image-determining processors)
leaves less than 12,000 total accesses for
all the processors during each frame time.
One may wish to partition the frame buffer
into a number of smaller units in order to
overcome this bandwidth limitation, but
since each processor's visible object
parts can be expected to be randomly
distributed in the image; there will then
need to be data paths between each
processor and each memory (see fig. 17).

PROCESSl:\G
ELFJ1E!\1~

,J
v

CROSSBAR
Sh'lTC!l

Fig. 17

List priority algorithms may be more
applicable to distributed processing; in
fact, one of the earliest real-time
systems {GE} is based on a list-priority
algorithm. This particular type of
priority is based on a geometric
relationship between object polygons, and
as such needs only to be calculated once
for a rigid environment and is largely
independent of the simulated viewing
position. To calculate this relationship,
however, the system often needs expert
manual intervention to modify the
environment's definition. This
requirement significantly detracts from
the appeal of this approach. The other
well-known list priority algorithm
(Newell, et al. (1972)) orders the list
of polygons from back to front -- from the
polygon farthest from the viewer to the
one closest to the viewer -- then "paints"
the polygons into the frame buffer in this
order. A polygon which obscures another

one behind
the obscured
would thus
polygon.

it would be encountered after
one in the ordered list; it
npaint over" the more distant

The applicability of this approach to
distributed processing is certainly not
obvious. Since the major step is a rather
elaborate sort involving the entire set of
potentially visible polygons. Although
parallel sorting methods may be useful
here (Hirschberg (1978)), the situtation
is complicated by the lack of a single
sorting key. The sort, rather, involves
the "visiblity priority" or the "obscuring
level" of the various polygons. The
required condition is that if polygon A
obscures polygon B then A must not be
placed before B in the "paintingn-rist.
It is simple to demonstrate that this kind
of an ordering may not even exist for some
sets of polygons (see fig. 18).

Fig. 18

In such cases, polygons have to be split
into pieces until a strict ordering can be
established. Even if such an involved
sorting could be distributed over multiple
processors, the basic method of
determining visibility by "painting over"
nearer polygons seems to imply a
sequential process moving from back to
front. The list could of course be split
into a number of pieces, each piece
separately computed by a single processor
with a separate image buffer. The final
image would then consist of the various
image buffers merged in the appropriate
priority order by the scan generator (see
fig. 19) •

FULL
HtAGE
BUFFERS polygon

list
(sorted by Z)

PROCESSING /
ELEMENTS 1

I I
p. ~ t f

v ;---

~ }--

•

}-~

Fig. 19

VIDEO
SCAN

GENERATOR

10

The expense of a full
each processor makes
impractical.

image buffer with
this approach rather

Object space algorithms are rather
more appealing for possible distributed
processing. An obvious approach would be
to distribute the workload among the
various processors by partitioning the
image between them. Scan-line order
algorithms, such as Watkins (1970), could
be implemented in this fashion by
assigning various scan lines to different
processors. The complicated nature of
these algorithms and their reliance on
increm~ntal processing -- calculating one
scan line is basically a modification of
the data on the previous scan line -­
makes this approach difficult.

The algorithm by Warnock (1969)
basically considers the set of polygons
involved in a particular area of the
screen. If there are too many then it
partitions the area into (usually) four
regions, creating a larger number of
problems to solve, but each of them
simpler to solve than their common
predecessor (or at the very least no more
complicated). Infinite recursive
subdivision is avoided by the re~lization
that once the area is that of a single
pixel# the system can simply find the
closest polygon. The algorithm
capitalizes on the characteristic that
almost all images contain many empty and
many very simple regions.

This approach seems difficult to
adopt for distributed processing since the
workload is a function of area, but the

areas are not evenly distributed across
the full image. Although some
appropriately interconnected network of
processors could possibly be used to solve
the visibility problem in this fashion
(Despain and Patterson (1977)) --with one
processor activating several others
whenever an area is subdivided -- it seems
that the contention for the image buffer
by the various processors would still
remain as intractable as before.

A recent visible surface algorithm by
Weiler and Atherton (1977) is in some ways
an appealing combination of that by
Warnock (1969) and that by Newell, et al.,
{1972), but seems equally difficult to
adapt to a distributed organization -~ for
some of the same reasons as those of its
mentioned predecessors. 11m

ll

