UNC Report No.
TR 77-012

December 1977

USING TRACES TO WR!TE.ABSTRACT SPEC]FiCATIONS
FOR SOFTWARE MOBULES

Wolfram Bartussek and David L. Parnas

Department of Computer Science
University of North Carolina at Chapel Hill
Chapel Hill, North Carolina 27514 U.S.A.

USING_TRACES_TQ_WRITE_ ABSTRACT SPECIFICATIONS
FOR_SOFTHARE MODULES

Wolfram Bartussek
- and
David L. Parnas
Department of Computer Science
University of North Carolina at Chapel Hill
Chapel Hill, North Carolina = 27514 J.5. 4.

ABSTRACT

A specification for a software module is a statement
of the requirements that the final programs nmust meet. In
this paper vwe concentrate on that portion of the
specification that Jdescribes the interface betveen the
module being specified and other programs {or persomns}) that
will dinteract with that module. Because of the complexity
of software products, it 1is advantageous to bhe able to
evaluate the design of this interface without reference to
any possible inplementations. The first sections of this
paper present a new approach to the writing of black box
specifications, illustrate it on a number of small examples,
and discuss checking the cormpleteness of a specification.
Section VIII is a case history of a module design. Although
the module 1is a simple one, the early specifications
(written using an earlier notation) contained design flawus
that were not detected in spite of +the involvement of -
several persons in a series of discussions about the module.
These errors are easily recognized using the method
introduced in this paper. '

e e S e i s i e et . . S gt

I. THE_ROLE_OF_SPECIFICATIONS IN_ SOFTHARE DESIGH

We are concerned with the Dbuilding of softvare
products that are so large that we cannot manage the task
unless vwe reduce it to a series of srall tasks. We further
assume that each of the subtasks (which we call modules)
will focus on one portion of the design and hide the details
of that aspect of the design from the rest of the system.
This has become known as the "information hiding principle,®
encapsulation, data abstraction, etc. ([1,2,3}. The design
process will only go sroothly if the inter—module interfaces
are precisely defined. Ideally, the interface description
- states only the requirements that the component must satisfy
and ‘does not suggest any other restrictions on the
irplementation. We term such a - description of the
requirements a specification ([19]. We also note that any
softvare product is but a module in a still larger system;.
its requirements should be specified as precisely as each of
its components.

2

For a trouble-free development process it 1is also
necessary that one be able to verify the reasonableness of
decisions before proceeding to make further decisions. If
we reverse one of our decisions later (or find that it vas
inadequately described), we may have to discard all work
done subsequent to that decision . If we have written a
formal specification for a module, ve should be able ¢to
verify that the specification has such basic properties as
consistency and comgleteness, Techniques for doing that
will be discussed later in this paper.

II. WHAT ARE SPECIFICATICNS?

A fair amount ¢f corfusion has been caused by the fact
that the word “specification™ 1is wused with two distinct
meanings in the corputer 1literature. The dictionary
definitions of the word "specification" cover any
communication which gprovides additional information about
the object being described - any cormunication that makes
the description of the object more specific. 1In engineering
usaqge, the word has a narrower meaning. A specification is
a precise statement of the reguirements that a product must
satisfy. A description of the number of ones in the binary
representation of a computer program is a specification in
the general sense but it is rarely a specification in the
engineering sense. '

In the rermainder of this paper we will wuse the
engineering sense of "specification.®

TT1Y. BRIEF HISTORY OF HWCRK_CN SCFTWARE SPECIFICATIONS

We distinguish two classes of specifications for
software, which we shall denote as P/P (Precondition-
Postcondition) and DA ({Data Abstract). P/P specification
techniques are hased on the pioneering work of Floyd (4] and
subsequent work by Hoare {57, Dijkstra [6], and others. P/P
techniques descrihe the effect of a program in terms of
predicates that describe acceptable states of data

structures, The Precondition is a predicate that describes
the states 1in which the programr may be stated. The
Postcondition describes the states after program

e - e i A e S e Rl

termination., Dijkstra's predicate transformers replace both
of these predicates by a tule for transforming a
postcondition into a precondition [6,7]. P/P specifications
describe the <change of state that the program must effect,
but not how to effect it. Usually, the effect of each
individual program is described separately and in terms of
the data structure accessed by the program.

In DA specifications the specification of a wodule
does not refer to the data structure used within a module.

3

That data structure is not part of the reguirement; it is
part of the solution. It does not belong in a statement of
requirements because it is an inplermentation decision.
Rarly work on specifications that "hide" irplementation data
structures was done by Parnas [8); mrore recent work by
Guttag [9,10]1 put a scunder mathematical basis behind the
work and sugqgested some notational improvements.,

The DA specification work is motivated by a desire to
give a "black-box" description of a software module. The
user is told only of a set of access Gprograms. Some of
these (here termed V-functions) return values that give
information about the data stored within the module. Others
{here termed O0-functions) change the internal data. 1In most
cases, the execution of an O-furction will eventually cause
a change in the value of a V-function. The effects of the
call of the o-function may not he visible in terms of V-
function values until some other C¢-functions have been

exccuted.

Parnas?'s early work was done on an ad hoc basis. The
notation was developed to rwreet the needs of specific
examples [8). The early examples had the property that the
effects of O-functions vere immediately visible and could be
described in terms of the new values of the V-functions,
only in later exarples did Parnas and Handzel [20} seek to
extend these techniques to cases where there were delayed

effects.

The problem of delayed effects led Price and Parnas
rio, 11,123} +to include "hidden" functions in' their
specifications. The ®“hidden" functions are not available
outside the black box. They need not be implemented; their
purpose is purely descriptive. The effects of O-~functions
are descrikted 1in terms of the values of the hidden
functions. These hidden functions are still in use at SRI
[13) and elsevhere.

In spite of all disclaimers, the hidden functions do
suggest data structures ard possible irplementations of the
program. Liskov {14] and others have suggested writing
specifications sinply by giving possible iwplementations -
i.e., by giving a program whose behavior would be acceptable
and asking that the programs produced be "equivalent.”

The equivalent program approach and the hidden
functions disturb us. They violate the basic motivation for
DA specifications by providing information that 1is not a
requirement. Some of the properties of this hypothetical
implementation may not be required of the actual program.
"One must be very careful not to read too much into such
~specifications" [147. - o

4

‘Guttag's method does not rely on hidden functions to
describe delayed effects. His papers [9,10) describe a
systematic way of writing the specification. However, there
vere cases that he could not handie without the introduction
of hidden functions. One of those exarples, the stack with
overflow, will be used later in this paper [15].

In this paper, we propose yet arother approach. It
allows the specification of modules with delayed or hidden
effects without any reference to interral data structures.
The only statements made are about the effects of calls on
user accessible O-functions on user accessible V-functions.

Iv. WHEN IS A _D/A_SPECIFICATICN COMPIETE?

For sirplicity, we assume that our modules are alvays
created in the same initial state and could be returned to
that state (reinitialized). We further assume that for each
access program (0O-function or V-function) there 1is an
applicability condition. If this condition holds, the
program may be called. 1In states where the condition does
not hold, the module will "trap" or refuse to return through
the normal exit {16]. Values of V-functions after a trap
occurs will not be discussed in this paper.

A trace of a module is a description of a sequence of
calls on ¢the functions starting with the module in the
initial state. A trace is termed a legal_ trace 1f calling
the functions in the sequence specified in the trace with
the arquments given in the trace vwhen the module is in its
initial state will not result in a trap. A specification
completely determines the externally visible behavior of _a
module - if for every legal trace endirg with a call of a V-
function, the value returned by that V-function can be
derived from the specification. He term such a
specification comrplete. A specificaticn is consistent if
only one value can be derived.

There are situations in vwhich one may vant a
specification that 1is pot corplete ir the above sense. 1In
this paper, hovwever, we W#ill concern ourselves with the

problem of recognizing corplete and consistent
- specifications.
V. A_FORMAL _NCTATION_ FOE SPECIFICATION BASED CHN_TRACES

A specification will consist of two main parts. The
first part, which we call syntax, gives the names of all of
‘the access programs, and the type of each of the parameters.
For O-functions we will indicate that it changes an object
of the type being specified. For V-furctions we will give

the type of value that it delivers. This information is

5

necessary for rTecognizing whether a program using the
functions could be corpiled by a typical compiler. The
notation used is that used by Guttag. [9,10]

The second part of the specification will be called
the semantics. It consists of three types of assertions.

(1 Assertions about trace _ legality. These
assertions identify a subset of the set of legal traces,
that is a set of traces such that calling the functions as
described in the trace (starting with a module in its
initial state) will not result in traps . Additional legal
traces may be inmplied by the equivalence assertions (see
below). Any traces that cannot be shown to be legal using
these assertions will be considered illegal traces.

{2} Assertions__about _the equivalence of _traces.
"These assertions srpecify an equivalence relation on traces,
such that (1} eguivalent traces have the same legality
(either both are legal or both are net legal) and (2) that
they have the same externally visible effect on the module
or data item. These assertions of equivalence will often
enable us to extend the class of traces known to be legal.
Equivalence is usually weaker than equality. Two traces are
egqual if they are identical in every respect (the same
sequence of function calls with the same parameters).

{3) Assertions__about the values returned by _¥-
functions__at _the end of traces. These statements describe
the values delivered by V-functions for a subset of the set
of 1legal traces. - The traces discussed directly in this
section of a specification are called norral _form traces.
Ising the equivalence statements, one can derive the values
of Vv-functions at the end ¢f other traces by finding an

equivalent normal form trace.+

The three classes of assertions form a specification
or statement of requiremrents. An implementation will be
considered correct if and only if the assertions are true of
it. Any property that one can deduce from the assertions
must be a property of any correct inplementation.

A program that uses the module in such a way that the
program's correctness depends opnly on properties of the
module that c¢an be deduced from the specification's
assertions will be able to use any correct implementation of
the module. _

+ In our examples, we have assumed that equality is defined
for values of the types returned by the V-functions. 1In the
unlikely event that we have no equality operator, V-function
values would have to be described in terms of the operators
that are available.

NOTATION

{1) Notation for describing the syntax {taken from
Gnttag).

<Function Nare>: - <type of - parameter>X,...X<type
of parameter> -> <tyre of result>

If the module maintains only one data item, that
parameter need not e explicitly ramed in eachk function

call.
{2) Notation for describing traces.

A trace will be represented as a string from the
language described by the following syntax. The parsing of
-4 trace into component subtraces is deliberately ambigquous.
The trace denotes execution of the functions named in a left
to right sequence.

<{subtrace> :3;= 4 |<syntactically.correct.function.call>|
<subtrace>.<syntatically.correct.function.
call>

<trace> ::= L |<subtrace>[.<subtrace>]*

{<T>7* denotes any number of occurrences of <T>.

"Li% denotes an empty trace. Note _that _the _symbol "tan
never_occurs_in_a_trace. .

- We will freduently use the following shorthand
notation.

Let p; , w<i<n, be a 1ist bf actual parameters,h and
X(p;) .-a syntactically correct function call. Then X, (p;)
denotes the same as

X(B,) =X (B, Ve === «X(By,)-X(By)

5 : L .
If the list of parameters is empty, then Xy is slmplyl
XeXs oo X with n-m¢1 repetitions of X. If mdn, then X
denotes the empty trace. For N > 1 vwe vwrite xf(p;) as

x¥(p;) -
It is always assumed that a function call correctly
adheres to the tules of the syntax section.

(3 Describing legality of sequences.

We introduce the predicate #(T) where T is a trace.
f(T) is +true if T is a legal trace. The appearance of the
assertion &£(T) in a specification is a requirement that

7

calling the functions as described in T will not result in a
trap. '

‘Assuming that the mrodule will not "trap" if it is not
used, we always assume BE{%J) = true. (The empty trace is
alvays legal.) It fcllows from our discussion of traces
that if T is a trace and S is a subtrace '

E(T-S5}y => &{T).

In other words, the prefix of any legal trace is a
leqal trace.

(%) Describing the values of v-functions at the end of
traces.

~ If T is a legal trace, X is a syntactically correct
call on a V-function, and &{T.X) is TRUE, then V{T.X}
describes the value delivered by X when called after an
execution of T.

() Describing equivalence of two traces.

If T, and T, are traces then asserting that T, T, is
an assertion that: -

for any subtrace S (including the empty subtrace),
5(T,.5) = B{T, .S}

for any subtrace S5 (including the empty subtrace)

and V-function X,
G(TI.S.X) => V(T, «S.X) = V(Tz.S.X)

Then = is an equivalence relation,. Note that the
equivalence of two traces does not iwply that they are the
same in every respect, only in those respects specified
above. For exangple, one may not conclude that two
equivalent traces have the same length or that the prefixes
of equivalent traces are equivalent. Note too that the
above does not define a gparticular equivalence relation;

that is done in each specification.

" In the following specifications we have omitted
universal guantifiers for variables representing traces (1)
and integers a.

Syntax:
PUSH: <integer> x <stack> -> <stack>
POP: <{stack> -> <stack>
T™OP: {stack> -> <integer>
DEPTH: <stack> =-> <integer>
Semantics:

A. Tegality:

(1) &(T) => &(T.PUSH{a))
(2) &(T.TOP) = E(T.PQF)

B. Fquivalences:

(3 T.DEPTH = T

(4y T.POSH{a).POP = T
{*) E{(T.TOP) => T.TOP = T
C. Values:

(6) £(T) => V(T.PUSH(a).TOP) = a
(7) §(T) => V(T.PUSH({a).DEPTH) =
(8) V(DEBTH) = 0

1T 4+ V{T.DEPTH)

8

Example 2. _An_Integer Queue

Syntax:
ADD: <integer> x <queue> =-> <{gqueued
REMOVE: {queue> -> <gueuve
FRONT: <queye> -> <integer>
Legality:

(1) &(T) => E{T.ADD({a))
(2) &(T) => E(T.ADD(a).REMNOVE)
(3) &(T.REHOVE) = &(T.FRONT)

Equivalences:

{4) & (T-FRONT) => T.FRONT = T
{5 &(T.REMOVE) => T.ADD(a).REMOVE = T. RENMOVE.ADD({a)

{6) ADD(a).REMOVE = t2

-

{7) V(ADD(a).FRONT) = a
(8) E(T.PRONT) => V(T.ALD(a).FRONT) = V(T.FRONT)

The above specification assumes that only one queue exists
and omits the queue rparameter in the calls on the access

programs.

10

{squeue> -> <{squeue
<squeye> -> <integer>

Example 3. _Sorting Queue_ =_(SQUEUE)
Syntax:
INSERT: <integer> x <squeled -> <{sgueue>
REMOVE:
FRONT:
Legality:
(1 &(TYy => &(T.INSERT(a))
(2) &(TY => &(T.INSFRT(a).RENCVE)

(3)

&E(T.FRONTY =

£ (T. RENOVE)

Bgquivalences:

(%)
{5)
(&)
tn

VYalues:

Al e ol e

(8)
(9

£ (T-FRONT)
T.INSERT{a).INSERT (b)
INSERT (a) . PEMOVE = 1J
£ (T.FRONT) cand

T.INSERT (b} . PEMOVE = T

T
T.INSERT (b) .INSERT (a)

=> T.FRONT

(V(T.FRONT) < b) =>

V(INSERT (a) .FRONT) = a
5 (T-FRONT)
V{T.INSERT(b).FRONT) = b

cand V(T.FRCNT) < Lt =>

NOTE the value of X cand Y is false if X is false, and

the value

of X cand Y is the value of Y if ¥ is true. Y

need not have a defined value if X is false.

Example 4., _Stack that Overflouws (Stac)

Syntax
PUSH: <stac> x <integer> -> <{stac>

POP: <stac> -> <stac>
YAL: <stac> -> <integer>

For all T, &{(T)

Fquivalences

0 < N < 124 => pUsH”(a;).POP = posE” '(a;)
PUSH(a,).PUSH/*% . (a;) = PuSH/T¥ (a;)

T.VAL = T

N > 0 => pop”.pPUSH(a)

i

PUSH (a)

i

Yalues

V{T-PUSH (a) - VAL) = a mod 235

11

12

Exanpple 5. _Alternative_Formal Specifications_{(Guttag Type)
for_STAC

This alternative includes two "hidden functions,"™ which are
marked in the syntactic specifications with asterisk,

TYPE:

SYNTACTIC SPECIFICATION:

NEWSTAC: ->» <stac>

PUSH(s,I): <stac> X <integer> -> <stac>
POP (s} : <stac> -> <stac

VAL(s) : <stac> -> <inteder
SPSLFT(s) : <stac> -> <integer>
*ADD (s, 1) : <stac> X <integer> -> <stac>
*NEQ(s) : <stac> =-> <stac>

SEMANTIC SPECIFICATION:

SPSLFT(NEWSTAC) = 124
SPSLFT (ADD(s,1)) = SPSLFT{s) - 1
POP {NEWSTAC) = NEWSTAC
POP (ADD(s,I)) = s
NEQ (NEWSTAC) = NERSTAC
DEQ (ADD(s,I)) = if SPSLFT(s) = 124
then s
else ADD(DEQ(s) ,I)
PUSH(s,I) = if SPSLFT({s} > 0
the
else
VAL{NEWSTAC) = undefined
VAL{ADD({s,I}) = I mod 255

ADD (s, 1)

n
e ADD (DEC{s) ,I)

*denotes a hidden function

13

VII. DISCUSSION_OF THE SIMPLE_EXAMPLES

Example 1 is the <c¢lassic exanple for abstruct
specifications. Tt is a stack with unlirited capacity. The
legality section shows that any sequence of PUSH operations
is a legal trace. The first statement in the value section
shows the value of TOP after any trace that ends with a
PUSH. (7Y shows that PUSH always increments the value of
DEPTH. ({8) specifies the initial value of DEPTH to bhe zero.
The egqguivalence section allows us to reduce any legal trace
with PUSH, ToP, and POP to one that is equivalent but
contains only PUSH operations. We will be able to determine
the value of the V-functions for any legal trace by making
such reductions. '

In Examrple 2 (an integer queue) the "legality" section
allows traces that c¢onsist of any number of ADDS but each
occurrence of "EMNVF or FRONT must be preceded directly by
an ADD. However, the eguivalence statements allow other
traces because the sequence ADD.REFMOVE may either be
replaced by REMOVE.ADD or {at the start of a trace) deleted
and the resulting trace v¥ill be equivalent to the original
trace. The value section shows the value of FRONT after (a)
an item is added to an empty queuwe and (b) an item is added
to the gqueue that already has a value of PRONT (same as
before}. To find the value of FRONT after a trace that has
REMOVES in it, one must apply (5) and (6) repeatedly until
one has an equivalent trace that does not contain a REMOVE.
Pach application of (5 can move a REMOVE to the left one
place. W%When REMOVE follows the first ACD directly, both can

he deleted using (6).

In Exarple 3 we have a queue that alvways shows the
largest item at the front. The largest object is also the
one removed by REMOVE. The legal traces are the same as
those in Example IY (except for an obvious change of
function names). The most irportant difference 1is (5) in
which it is asserted that the order of tvo consecutive
inserts is irrelevant. Assertion (7) shovs the effect of a
REMOVE after an INSERT that had a parameter larqger than the
value at the front of the SQOUEUF. In that case it simply
cancels the effect of the INSFRT. However, because of (5),
ve can always rearrange the order of TINSERTs so that the
last one is the one that inserts the largest value. This
allows us to use (7) for ary REMOVF at the end of a trace
with at least two inserts in it., (6) describes the effect
of REMOVFE in the case that it is preceded by only one
INSFRT. The value section shows us the value of FRONT after
an INSFRT in an empty queue and after inserting a value that
is greater than the value of FRONT.

The discussion of the first three examples is intended
 to show that the formal specifications do correspond to our
intuitive notions of the way that these modules perform.

14

The correspondence with intuition rust, of necessity, remain
inforral. The deronstration of ccrgleteness can be
performed systematically. An exanple of a more systematic
proof of completeness will be given later.

The fourth example is the problem that John Guttag
could not specify without the use of hidden functionsf{15].
His specification is included as Fxample 5. We believe that
the brevity of our specification shows the advantages of the
trace method. This is a sitvation in which the values of v--
functions for some legal traces are deliberately not
defined. Any syntactically correct trace is leqgal. The
module will never T"trap." However the wvalue of VAL
initially {or after a POP on an Menrpty stack") is not
defined. The inplementation can deliver any value in these
situations without violating the sgpecifications. If a
value, I, greater than 255, is inserted only I mod 255 will
be stored.

The above exarples show a numrber of advantages over
previous methods of DA specifications. There appears to be
no need for hidden functions; ‘the specifications are quite
compact and the individual statements are sirple. The
derivations needed to demonstrate cormpleteness are sometimes
quite involved but they need not be performed during the
irplementation or during the verification that an
implementation is correct. ’ '

The ideas are rather new and we are aware of a number
of important unansvered questions. HNonetheless, we believe
that this report demonstrates that the method is as good as
any of the peviously published ones and can help to discover
design errors early in the desiqgn process.

VITI. A__COMPRESSED _HISTORY OF THE__DEVELOPMENT OF AN
ABSTRACT SPECIFICATION

In this section ve present the history of the
development of an ahstract specification for a "table/list®-
(T/1) module. The programs offered by this module support
the processing of linearly ordered data structures,
regardless of whether they are irplemrented as tables or
lists. This module 1is currently inplemented to help in
generating address translation tables as ve need them for a
virtual memory mechanism within a family of operating
systems (BSFy*[17]. It is also expected that this
specification <c¢an be wused for various other table or list
handling purposes.

A. An_Informal Picture_of the T/L Module

Because it is the purpose of this report to introduce
a method of describing such modules, we rust begin with an

15

intuitive description of our examgle. One physical
implementation of this module would be Ly means of a set of
children's blocks where it is possible to write one MWentry®
on the upper surface. The blocks are arranged in a single
rov and covered with an opague 1lid with a single window.
Through this window one mway read the entry on a single
block, insert and remrove blocks, or change the entry wvwritten
on the block that shows through the window. The entry on
the block that shows through the window is referred to as
the current _entry. BRecause the cover is opaque it 1is not
possible to tell how many blecks are currently under it, but
the cover 1is fitted with signals that tell whether or not
there is a block to the right of the current entry, whether
or not there is a block to the left of the current entry,
and whether there are any blocks under the cover at all.

The operations that we want to perform include reading
the value of the current entry, moving the lid one place to
the right, moving the 1id one place to the left, moving the
1i1 and all blocks to the right of the current block to the
right so that a new current block may be inserted through
the window, and renoving the current block (mwoving the 1lid
and all blocks to the right of the deleted block one place
to the left).

It was our goal that all operations that could be
easily performed with the physical model described above be
allowed by our specification.

In our specification we will have five operations (0O-
functions): INSERT,DELETE, ALTER, CGOLEFT, and GORIGHT.
ALTER will just be a shorthand for a sequence of DELETE and
INSERT. The first two indicators mentioned above will be
named EXLEFT(EXist entries to the LFPT), EXRIGHT, and the
third is represented by EMPTY. The current entry will be
available through the V-function CURRENT. The precise
relationship among the V-functions and the way that their
values are changed by the module's operations will be
described in the specifications.’

B. The First Version_ (Example 6)

i . A S i S L T i S S Pl i s

We do not display the original specification but
instead present a translation using traces. We were not
using traces for specification purposes at the time that the
original vas written, The use of traces makes many
deficiencies 1in the first version obvious. They were
originally discovered after much hard labor. We show an
abbreviated history of the development to provide evidence
controverting the <clair that abstract specifications state
"only the cbvious."

Example 6. _ {Incorrect) Version of _a__Specification__for

Tables/List_ Nodule

Syntax_of Functions

0-Functions: INSERT({e): <entry> x <IL> =-> <TL>

DELETE: <TL> =->» <TL>

ALTER {e) ¢ <entry> x <TL> => <TL>
GOLEFT: <TL> =-> <TL>

GOERIGHT: <TL>» -3 LTLD>

V-Functions: CURRENT: {TL> -> <entry>

EMETY: <TL> -> <bogclean>
EXLEFT: ~ <TL> -> <boocleand>
FXRIGHT: <TL>» -> <boglean>

{n
{2}
(3)
(4)
{5)

(6}

("M

e e S e

§(T) => &(T.INSERT(e))
£(T) => &(T.INSERT(e}.CURRENT)

& (T.CUBRENT) => & {T.EXLEPT)

& (T.CURRENT) => £ (T.EXRIGHT)

£ (T.CURRENT) => £(T.ALTER(e))

& (T.CURRENT) => & (T.INSERT({e).GCLEFT)
& (T.GOLEPT) => & (T.GOLEFT.GORIGHT)

Eguivalences

(8)

(9
(10)
(1)
{12)
{13
(14)

Value

(15)
(16)
(17)

(18)

(19)

(20)
(21}
(22)
(23)
(24)
(25)
(26)
(27)
(27)

T.EMPTY = T

T.INSERT () .DELETE = T
T.GOLEFT.GORIGHT = T

T.ALTER (e) = T.DELETE.INSERT {e)
& (T.CURRENT) => (T.CORRENT = T)
£ {T.EXLEFT) => (T.EXLEFT = T)
&(T-EXRIGHT) => {T.EXRIGHT = T)

s

V{EMPTY) = true

E{T) => {(V(T.INSERT{e).CURRENT) = e)

E{T} => {V(T.INSERT{e}.EMPTY) = false)

E(T) A {(V{(T.EMPTY) = true) =>
(V{(T.INSERT(e).FXLEFT). = false)

&§(T) A (V(T.EMPTY) = false) A (V(T.EXLEFT) = false) =
(V{T.INSERT {e) .EXLEFT) = true)

£(TYy => {V(T.INSERT(e).EXRIGHT) = V(T.EXRIGHT)

E(T.GOLEFT) => (V(T.GCLEFT.EXRIGHT) = true)

& (To GORIGHT) => (V{(T.GORIGHT.EXLEFT) = true)

£ (T.ALTER(e)) => (V(T.ALTER (e} .CUERENT) = e)

E(T.ALTER{e})Y => (V{T.ALTER(e) .EMPTY) = V(T.EMPTY))

E{T.ALTER({e)) => (V{T.ALTER(e).EXLEFT) = V{T.EXLEPT}))

£ (T.ALTER (e))} => {V(T.ALTER{e).EXRIGHT) = V(T.EXRIGHT))

V{(T-INSERT {e}.GCLEFT.CURRENT) = V(T.CURRENT)
V{T.INSFRT (e).GOLRFT. EXLEFT) = V{T.EXLEFT)

17

The "syntax" section is as in the earlier exawmples.
We use elements of a type "entry" only to store them into
the data Structure of the T/L module, or to fetch them. Ve
assume that the relation of equality over entries is defined
elsewhere.

Statements (3) through (5) tell us that V-functions
BXLFFP and EXRIGHT and O0O-function ALTER{e) have the same
applicability condition as CURRENT.

The "equivalences" section should allow the reader to
transforwr any legal trace to one shawn to be legal by (1)
through (7). The alert reader will notice that this section
does not satisfy this requirement. This #ill be
investigated in some detail later.

Statement (%) is urconditional because a call on EMPTY
can alvays be added to or removed from any trace without
making the module trap.

Statements {9 and - (10) say that subtraces
INSFEPT (e) . DFLETE and GOLFFT., GORIGHT have no effect.
Statement (11) is supposed to tell us that a call on ALTER
has the same effect as two consecutive calls on DELETE and
INSFRT, provided that TNSERT has the samwe actual parameter
as ALTER. Statements (12) through (14) tell us that v-
functions CORRFNT, FXLFPT, and EXRIGHT can be removed from a
legal trace to get an equivalent trace.

Statement (15) gives the initialization of the module.
Statements (16) through (20). describe the effects of INSERT
at the end of a legal trace on the values of EMPTY, CURRENT,
EYLEPT, and FXWIGHT. .

Statements (23) through (26) define the effects of
ALTRR at the end of a trace on the four V-functions. HNote
that only CURRENT is changed.

~Statements (27) and (28) _Say that two consecutive
calls on INSFRT and GNLEFT have no effect on the valuves of

CUPRFNT and FXLEFT.

C. Discussion_of Flggg_;g__he Pirst Version _of _the _T/1L
Module Specification .

The use of traces and the way in which the present
specifications are divided into sections allows us to
discuss flaws in version 1 of the T/L module in a
straightforward way and to omit two or three intermediate
stages of the original developwrent. However, all errors
below were actually included in the original design of the
T/L mwodule and allowed to rerain in the design after formal
discussions among the members of our group.

18

n. Incompleteness

In examining the first specification we first attempt
to make certain that the specification is cormplete. We will
(by definition) consider the specification to be incomplete
if there are some +traces ending in calls on V-functions
vhich can be shown to be legal but for which no value can he

derived. _

One example cf inccmileteness concerns the value of
the function EXRIGHT. Only (20) and {(26) make any statement
about the value of EXRIGHT and these make no statement about
the initial value of FEXRIGHT or V{INSERT{e).EXRIGHTY which
can he shovwn to be legal.

The specification is similarly incomplete with respect
to FYLEFT.

Another form of incompleteness can be found by
atterpting to derive the . value of
V{INSFRT (a}. INSFRT(b).GOLEFT.ENPTY). There is no statement
about the value of FEMPTY when immediately preceded by GOLEFT
and no equivalence assertion that would allow us to remove
GOLEFT,

E. Specification Versus Intuitive_ Understanding

In addition to the instances of inconrrleteness that
have been demonstrated, we <¢an shew that a npumber of
statements in the *legal trace" sectior and ‘%Yeguivalences”
section do not reet our intuitive expectations. There is a
problem with the legality of traces beginning with a call on
GOLFFT. For example, we would expect that a call on GOLEFT
before the first entry has been inserted into the data
structure should not be permitted. However, the value of
S{GOLEFT.GORIGHT) can by staterent (10) always be calculated
to be F&(vy), which 1is '(by definition) "true". Since by
defipition E{t.X) => %({*t) we can conclude that {for ¢t =
GOLFFT and ¥ = GORIGHT) we have E(GOLEFT) = true. A similar
problem exists concerning the legality of traces ending with
a call on GOLFFT.

Statements (2) and (6) elirwinate -the possibility of
insertion to the left of the leftrost entry. e can move
the slot in our cover over the leftmost enry but not
further. An insert would then make EXLEFT +true again
(statement (19)) but we would have inserted to the right of
the leftrost entry.

The mremonic "EFMPTY" was an obstacle to a
straightforward solution. 1Imagine that one moves left from
the left end. PRy statement (18), EMPTY would become true
although there are entries in the data structure.

19

He will eliminate these problems by renaming ™EMPTY"
to "OUTY and alloving one rove to the left beyond the left
end. The value of CUPRFNT is then undefined, while O0OUT is
true, FXLEFT is false, and EXRIGHT is true. This is in
contrast to the new initial state {(no entrxes in the data
structure) where EXRIGHT is false.

A problem that initiated "the development of the
specification technique presented 1in this paper is best
formulated by posing the following question.

7 How can the designer be sure that he specified the
effects of all traces that he wants to be executable
programs?

Or, put in other way and arplied to our example, how
do we determine the subset of

fINSERT (e) ,DELETE, ALTER {e) ,GOLEFT, GORIGHT,
CURRENT,OU0T,EXLEFT,EXRIGHT) *,

{wvhere "*" jis the Kleene star) that comprises the set of
executable, i.e. legal traces?4

We novw note some quantitative properties of such
traces: Let |Xt denote the number of calls on X in a given
trace. Then for all legal traces:

$#Rules for including V-furctions are easy to find and are
therefore not considered now.

20
{GOLEFT| > |GORIGHT|

JINSERT| > }GOLEFT| - }GCRIGHT{
JTNSERT| > {DELETE{ 4 |GOLEFT{ - |GORIGHT]

These relations alone, however, help little, The
obviously unreascnable trace

GORIGHT.GOLEFT.GOLEFT.INSERT (a) . INSERT({D)
satisfies the above inequalities.

We therefore have to make some additional assertions
to characterize the set of legal traces.

The specification of Example 6 did not capture the
lanquage of the wmodule, as we intuitively understand it.

For example:
& (INSERT (a) « INSERT (b) .GCLEFT.GCLEFT) = false

Other exarples can easily be found.

i o i 8

F. The_Current Specification for_ the T/L HModule

After discovering the above errors (over a pericd of
several months} we made an obsgervation that alloved us to
write the specification given in Exanple 7.

Any legal trace for the T/L module must be equivalent
to a trace in which there is a (possitly empty) sequence of
INSFRTs followed by ary number of repetitions of the
sequence INSERT.GOLEFT, This observation is based on our
intuitive wmodel of the object that we are trying to specify.
{(#e have no other fpossible basis). We could create the
table contents a,, a,--.. &jes« ax, Where a; is the current
entry by successiviy inserting a,, A ;<.. a; and then
executing INSFEPT (2;); GOLEFT for j = n, n-toc... it Fach
INSEPT(a;)-.GOLEFT sequence leaves CURRENT unchanged but
inserts a block to the right of current,

We will refer to the traces in this form as normal
form traces.

The assertions labeled "legal traces" in Example 7
({1 =~ {(3)) state that all traces in normal form (and some
additional traces) are legal. We also indicate that CURRENT
may be called whenever a GOLEFT would ke allowed.

The assertions (4) - (7) state that the V-functions do
not effect any changes on the rodule. {8) and (9) give the
ohvious facts that GOLEFT can be cancelled by a GORIGHT that
follows it and that an INSFRT can be cancelled by a DELETE

Example 7. _Tables/List Module with Unlimited Capacity

Syntax

—Fanctions: INSERT: = <ehtry> x <TL> -> <Tl>
ALTFR: <entry> x <TL> -> <TL>

DELETE: <TL> ~->» <TL>

'~ GOLEFT: <TL> -> <TL>

GORIGHT: <TL> ~> <TL>

V-Functions: CURRENT: <TL> -> <entry>
OUT: <TL> =->» <boolean>
EXLEFT: <TL> -> <boolean>
EXRIGHT: <TL> -> <boolean>

Leqal Traces

{1 (™) => &{T.INSERT(a))
(2) &(T) => &(T.INSERT({a).GOLEFT)
{3) E(T.GOLEFT) => &(T.CURRENT)

Fquivalences

(4 T.OUT = T
{5) T.EXLEFT = T

{6) TLEXRIGHT = T _

{(7) &(T.CURRENT) => (T.CURRENT = T)

{8) £ (T.GOLEFT) => (T.GCLEFT.GCRIGHT = T)
-{9) T.INSERT(a).DFLETE = T

(10) T.INSERT{a).GOLFFT.DELETE = T.DELETE.INSERT (a).GOLEFT
(11) E(T) => (T.INSERT(a).INSERT(b).GOLEFT =
T.INSERT (b} .GOLEFT.INSERT (a))
{12) T.ALTER{a) = T.DELETE.INSERT({(a)

Values

(13) ¥(OUT) = true - |
(14) V(EXLEFT) = V(EXRIGHT) = false

(15) £(T) => ({V{(T.INSERT{a).CURRENT) = a)
(16) £{T) => (V(T.INSERT(a).OUT) = false)

(17) &{(T) => (V(T.INSERT(a).FXLEFT) = not V(T.OUT))
(18) &(T) => (V(T.INSERT(a).EXRIGHT) = V(T.EXRIGHT))

(19) E&(T-CURRENT) => (V(T.INSERT(a)-GOLEFT.CURRENT) =
V(T.CURRENT})

{20) &(T) => (V(T.INSERT(a).GOLEFT.OUT) = V({T.0UT))

(21) &(T) => (V(T.INSERT{a).GOLFFT.EXLEFT) = V(T.EXLEPT))

{22) 5(T.GOLEFT) => (V(T.GCLEFT.EXRIGHT) = true). '

22

that follows it. VNote that (8) only applies when GOLEFT is
legal. _

If our specification is a good ore, we should be able
to show that every legal trate is equivalent to a trace in
normal form. The V-functions can be trivially deleted. e
are able to delete a NDELYTE if it immediately follows an
INSERT and a GORIGHT if it follows immediately after a
GOLEFT. Using statemrent {11) we can rove a GOLEFT right or
left through a sequence of INSFERTs tc get an equivalent
trace. That will allow us to remove instances of DELETE by
bringing an INSERT up to them if only GOLEFTs Iintervene.
Using assertion (10) one may transform sequences containing
GOLFFT.DELETE and DELETE.GOLEFT into egquivalent sequences
where either the DFELETF has been moved to the left {bringing
it closer to the INSERT that it cancels) or the GOLEFT has
been moved to the right (bringing it close to any GORIGHT
that would cancel it). Assertion {(12) allows the removal of
all occurrences of ALTFR. Repeated application of these
rules allows the removal of all functions except INSERT and
GOLFFT. -

Ge Completeness_of the Current Specification

To demonstrate corpleteness vwe examine primarily the
value section (13)-{22). {13) and (14) specify the initial
values of all V-functions except CURRENT. The failure to
specify an initial value for CURRENT is not an instance of
incorpleteness because CURRENT is not a legal trace. Using
{15)~(18) we have specified the values of all four V-
~functions for traces containing only INSERT.

Using (19}~ (22) we can determine the values of the V-
functions for any trace of the formwr T.INSERT().GOLEFT
provided that ve know the values of thcse functions after T.
I+ follows that we know +the values for any trace in the
normal form. Since the equivalence statements allow any
legal trace to be reduced to an equivalent trace in that
form, the specification is complete.

H. Consistency

Demonstraction of consistency is more complex. It is
quite <clear that the value section ((13)-(22)) is in itself
consistent, but it is necessary to show that the
transformations allowed by the equivalence section that
produce a trace ending in a given V-function result in
traces With the same value. Such a proof is beyond the
scope of this paper.

23

I¥. CONCLUSION

e N P i s . . B

It is clear that vwhenr we entered into the design of
the T/L module interface we did not expect the difficulties
that we encountered. Bach proposal seemed intuitively
obvious and. the forral specifications that ve vrote appeared
to correspond to our intuition. Several people examined the
specifications (which vere written using veakest
preconditions) ; all thought that they were acceptable. The
types of difficulties described in connection with the first
version of the T/1 module specification came as a complete
surprise. We had expected that writing the formal
specifications was ‘'"only a forrality" for so simple a
modnle. ' '

ogur first conclusion then is simply that writing the
formal specifications is useful even for simple modules.
Had we been forc¢ed to make the change from the first version
to the second version after coding was underway, it would
have been expensive in terms of the amount of code (both in
the module and in programs that use the module) that wonld
have needed revision.

Once we became aware of the difficulties, we found
attempts to convince ourselves of the correctness of new
versions to be extrerely frustrating. The specifications
that were written (using predicate transformers for programs
consisting of calls on the functions) did not lend
themselves vell to examination for completeness and
consistency. The wmathematical rmodel underlying those
specifications is corplex and there were difficulties
intrinsic in the decision to talk about programs rather than
traces. Although we have not yet produced a complete formal
proof that this specification is complete and consistent,
the intuitive justifications are far wmore convincing than
our more formal arguments about the o0ld specifications. Our
second conclusion therefore is that the concept seems to be
superior to other forms of data abstract specification known

to us.

It is becoring popular amonq software specialists to
speak of "front end" investment. The proposal is that by
investing time and intellectual enerqgy in the early design
phase one can reduce the overall systems costs because of
time saved at the later stages. A weakness of the majority
of such proposals is that they provide little in the way of
specific suggestions about what to do at those early stages.
There 1is lit+le evidence that the effort invested in the
early stages will actually pay off. There 1is lots of
evidence that just writing vaque statements of good
intentions ("The system will have a user-oriented
interface") will not pay off. In this paper we have made a
specific proposal for the use of that "front end" energy.
We have shown how to write such specifications, and

24

described how one may evaluate themr for corpleteness and
consistency.

Further work on verifying properties of these
specifications is clearly necessary. As Price has shown
101, there are clear advantages to doing as much
verification as possible before inplementation begins.
Similar views are found in [18], but Price included some
{machine assisted) proofs.

Acknorledgement

The authors are grateful to Professor D. Stanat for
his advice while the research vas being performed and on the
writing of this paper. Dave Weiss, Lou Chmura, John Shore,
and Janusz Zamrmorski also made helgful comments. This
reseatch was supported by the U.S5. Army under contract
#DAAG 29~-T6-G-0240. W. Bartussek was also supported by the
German Academic Exchange Service (DAAD}) under stipend #4-
USA-CDN~-AUS~NZ~3~EB.

25
REFERENCES

(1] Parnas, D.L. "information Dtsfribuf!on Aspects of De5|gn Methodology."
Proc. IFIP Congress, 197I. _

[2] Parnas, D.L. "On the Criterla to be Used in Decomposing Systems into
Modules." Communications of the ACM (Programming Techniques Department),

December 1972.

[3] Parnas, D.L., Shore, J.E., and D. Weiss. "Abstract Types Defined as
Classes of Variables." Proc. Conference on Data: Abstraction, Defini-
tion, and Structure, pp. 22-24, Salt Lake City, Utah, March 1976,

[4] Floyd, R.W. "Assigning Meanings fo Programs.”" In "Mathematical Aspects
of Computer Science" (J.T. Schwartz, ed.}. Proc. Symp. of App!ied
Mathematics, Vol. |9, American Math, Soclety, Providence, 1967, 19-32.

[5] Hoare, C.A.R. "An Axiomatic Basis for Compufer Programming." Comm. ACM
12, 10 IO Octobar 1969, 576-583, R

6] 'DijksTra, E.W. "Guarded Commands, Nondeterminancy, and the Formal
Derivation of Programs." CACM 18, 8, August 1975,

L7] Dijkstra, E.W. A Discipline of Programming. Prentice Hall, 1976.

[8] Parnas, D.L. "A Technique fbr'SofTware Module Specification with
Examples."” Comm, ACM, May 1972,

[9] Guttag, J. "The Speciflcation and_Applicafion to Programming of Abstract
Data Types." Ph.D. Thesis, CSRG TR 59, University of Toronto, September

1975,

[io] Guttag, J. "Abstract Data Types and the Development of Data Structures."
SIGPLAN/SIGMOD Conference on DATA: Abstraction, Definition and Structure
(to be published in CACM). '

100 Price, W.R. "Implications of'é Virtual Memory Mechanism for implementing
Protection In a Famlly of Operating Systems." Technical Report (Ph.D.
Thesis), Carnegie-Mellon University, June 1973, AD766292Z.

CIt] Parpas, D.L. and W.R. Price. "The Design of the Virtual Memory Aspects
of a Virtual Machine." Proceedings of the ACM SI1GARCH-SIGOPS Workshop

on Virtual Computer Systems, March 1973,

[i2] Parnes, D.L. and W.R. Price. "Using Memory Access Control as the Only
Protection Mechanism." Proc. of internationa! Workshop on Protection

in Operating System, 13-i4 August 1974, [RIA.

[13] Roubine, O. and L. Robinson. "Special Reference Manual™ (Second Edition),
Technical Report CSG-45, Stanford Research Institute, Menlo Park, Calif.

[14] Liskov, B. and V. Berzins. "An Appraisal of Program Specifications."
Research Direction in Software Technology (P. Wegner, ed.). To be
published by MIT Press.,

Ct5]
£16]

L17]

C18]

197

L20]

26

J. Guttag. Private communication, 1976,

Parnas, D.L. and H. Wuerges. "Response to Undesired Events in Software
Systems." Proc. of the 2nd Internationa! Conference on Software
Engineering, |3~15 Qctober 1976, San Franclisco, California.

Parnas, D.L., Handzel, G. and H. Wuerges. "Design and Specification
of the Minimal Subset of an Operating System Family." Presented at
2nd Infernational Conference on Software Engineering, !3-15 October
1976; published in speclal issue of |EEE Transactions on Software

Engineering, December 1976.

Neumann, P.G., et.al. A Provably Secure Operating System: The Systenm,
Its Appllications, and Proofs. Final Report, Stanford Research Insti-

tute, |1 February 1977, Menlo Park, California

Parnas, D.L. "The Use of Precise Specifications in the Development of
Software." Proc. |IFIP Congress 1977, North Holland Publishing Company.

Parnas, D.L. and G. Handzel. "More on Specification Techniques for
Software Modules." Technical Report, Technische Hochschule Darmstadt,

Darmstadt, West Germany, February 1975,

