
UNC Report No.
TR 77-012

December 1977

USING TRACES TO WRITE ABSTRACT SPECIFICATIONS

FOR SOFTWARE MODULES

Wolfram Bartussek and David L. Parnas

Department of Computer Science
University of North Carol ina at Chapel Hi I I
Chapel Hi I I, North Carol ina 27514 U.S.A.

DSING TRACES TO WRITE ABSTRACT SPECIFICATIONS ---IQB_~QII!!BE ~QQ]k!~

wolfr&~ bar~ussek
and

David t. Parnas
Department of computer Science

University of North carolina at Chapel Hill
Chapel Hill, North Carolina 2751q ry.s.A.

ABSTRACT

1

A specification for a software module is a statement
of the requirements that the final programs must meet. In
this paper we concentrate on that portion of the
specification that describes the interface between the
module being specified and other programs (or persons) that
will interact with that module. Because of the complexity
of software products, it is advantageous to be able to
evaluate the design of this interface without reference to
any possible irrplementations. The first sections of this
paper present a new approach to the writing of black box
specifications, illustrate it on a number of small examples,
and discuss checking the comfleteness of a specification.
section VIII is a case history of a module design. Although
the module is a simple one, the early specifications
(writ ten using an earlier notation) contained design flaws
that were not detected in spite of the involvement of
several persons in a series of discussions about the module.
These errors are easily recognized using the method
introduced in this paper.

We are concerned with the building of software
products that are so large that we cannot manage the task
unless_we reduce it to a series of small tasks. We further
assume that each of the subtasks (which we call modules)
will focus on one portion of the design and hide the details
of that aspect of the design from t.he rest of the system.
This has become known as the "information hiding principle,"
encapsulation, data abstraction, etc. [1,2,3]. The design
process will only go smoothly if the inter-module interfaces
are precisely defined. Ideally, the interface description
states only the reguirements that the component must satis.fy
and does not suggest any other restrictions on the
implementation. We term such a description of the
requirements a ~~cif!£!1ion [19]. we also note that any
software product is but a module in a still larger system;
its requirements should be specified as precisely as each of
its components.

2

For a trouble-free development process it is also
necessary that one be able to verify the reasonableness of
decisions before proceeding to ~ake further decisions. If
we reverse one of our decisions later (or find that it vas
inadequately described) , we ~ay have to discard all work
done subsequent to that decision • If we have written a
formal specification for a module, we should be able to
verify that the specification has such basic properties as
consistency and completeness. Techniques for doing that
will be discussed later in this paper.

A fair amount of coPfusion has been caused by the fact
that the word "specification" is used with two distinct
meanings in the corrputer literature. The dictionary
definitions of the word "specification" cover any
communication which provides additional information about
the object being described - any corrmunication that makes
the description of the object more specific. In engineering
usage, the word has a narrower meaning. A specifica·tion is
a precise statement of the requirements that a product must
satisfy. A description of the nurrber of ones in the binary
representation of a computer program is a specification in
the general sense but it is rarely a specification in the
engineering sense.

In the rerrainder at this paper we will use the
engineering sense of "specification."

we dist.inguish two classes of specifications for
software, which we shall denote as P/P (Precondition­
Postcondition) and DA (nata Abs.tract). P/P specification
techniques are based on the pioneering work of Floyd [4] and
subsequent work by Hoare [51, Dijkstra [6], and others. P/P
techniques describe the effect of a program in terms of
predicates that describe acceptable states of data
structures. The £!~£~nui1ion is a predicate that describes
the states in which the prograrr rray be stated. The
Po~l£2n4lli2D describe~ the states after program
termination. Dijkstra•~ predicate transformers replace both
of these predicates by a rule for transforming a
po~tcondition into a precondition [6,7). P/P specifications
describe the change of state that the program must effect,
but not how to effect it. Osually, the effect of each
individual program is described separately and in terms of
the data structure accessed by the program.

In DA specifications the specification of a module
does n2! refer to the data struct11re used within a module.

3

That data structure is not part of the requirement; it is
part of the solution. !t does not belong in a statement of
requirements because it is an irrplerrentation decision.
~arly work on specifications that "hide" irrplementation data
struct. ures was done by Parnas [8); rrore recent work by
Guttag [9,10) put a sounder rrat.herratical basis behind the
work and suggested some notational irrprovements.

The DA specification work is rrotivated by a desire to
give a "black-box" description of a software module. The
user is told only of a set of access programs. Some of
these (here termed Y;:fJ!!J£!iomn return values that give
information about the data stored within the module. Others
(here termed Q=1ynction~) change the internal data. In most
cases, the execution of an a-function will ~~nt~ll.I cause
a change in the value of a V-function. The effects of the
call of the a-function may not he visible in terms of v­
function values until some other C-functions have been
executed.

Parnas•s early work was done on an ad hoc basis. The
notation was developed to meet the needs of specific
examples [8). The early exarr.ples had the property that the
effects of a-functions were irnrrediately visible and could be
described in terrrs of the new values of the V-functions.
nnlv in later exarrples did Parnas and Handzel [20) seek to
extend these techniques to cases where there were delayed
effects.

The problerr of delayed effects led Price and Parnas
[10,11,12] to include "hidden" functions in' their
specifications. The "hidden" functions are not available
outside the black box. They need not be implemented; their
purpose is purely descriptive. The effects of 0-functions
are described in terms of the values of the hidden
functions. These hidden functions are still in use at SRI
[131 and elsewhere.

In spite of all disclaimers, the hidden functions do
suggest data structures and possible inplerrentations of the
program. Liskov [14] and others have suggested writing
specifications simply by giving possible i~plementations -
i.e., by giving a program whose behavior would be acceptable
and asking that the programs produced be "equivalent."

The equivalent program approach and the hidden
functions disturb us. They violate the basic motivation for
DA specifications by providing information that is not a
requirement. Some of the properties of this hypothetical
implementation ll'ay not be required of the actual program.
"One must be very careful not to read too rouch into such
specifications" [14].

4

Guttag•s me~hod does not rely on hidden functions to
describe delayed effects. His papers [9,10] describe a
systematic way of writing the specification. However, there
were cases that he coul1 not handle without the introduction
of hidden functions. nne of those exarrples, the stack with
overflow, will be used later in this paper r 15].

In this paper, we propose yet another approach. It
allows the specification of modules with delayed or hidden
effects without any reference to internal data structures.
The only statements made are about the effects of calls on
user accessible a-functions on user accessible V-functions.

For sirrplicity, we assume that our modules are always
created in the sarre initial state and could be returned to
that state (reinitialized). we further assume that for each
access program (a-function or V-function) there is an
~Qplic~biliil __ £Q~g1tign. If this condition holds, the
program may be called. In states where the condition does
not hold, the module will "trap" or refuse to return through
the normal exit f 16]. Values of V-functions after a trap
occurs will not be discussed in this paper.

A tr!~g of a rrodule is a description of a sequence of
calls on the functions starting with the module in the
initial state. A trace is terrred a le,g~!_tr~~ if calling
the fun~tions in the sequence specified in the trace with
the arguments given in the trace when the module is in its
initial state will not result in a trap. A specification
£2mE!£!ely_g~ig~i!l£§_!h£-£!!£f~!!Y_yjsi£!£_Qeh~yior of a
ill2QUl£ if for every legal trace endirg with a call of a V­
function, the value returned by that V-function can be
derived froro the specification. We term such a
specification £.2.!ll!l£!£· A specification is £2!!2lll£!l! if
only one value can te derived.

There are situations in which one may
specification that is !!2! corrplete in the above
this paper, ho~ever, we will concern ourselves
problem of recognizing corrplete and
specifications.

want a
sense. In

with the
consistent

A specification will consist of two main parts. The
first part, which we call §Y!l!~l• gives the names of all of
the access proqrams, and the type of each of the parameters.
Por a-functions we will indicate that it changes an object
of the type being specified. For V-functions we will give
the type of value that it delivers. This information is

necessary for recogn~z1ng whether
functions could be corrpiled by a
notation used is that used by Guttag.

a program using
typical compiler.

[q, 10]

5

the
The

The second part of the specification will be called
the !!£!!]ant.!£.§· It consists of three types of assertions.

(1) i.§§gftiQn.§ ___ ~Q~~i_ __ 1I~~t__-1£~1ity. These
assertions identify a subset of the set of legal traces,
that is a set of traces such that calling the functions as
described in the trace (starting with a module in its
initial state) will not result in traps • Additional legal
traces may he implied by the equivalence assertions (see
below). Any traces that cannot be shown to be legal using
these assertions will be considered illegal traces.

(2) !.§§£ItiQD§ __ ~~~Y! __ !he __ ggE.!valen~ _ _gf__tr~§·
These assertions specify an equivalence relation on traces,
such that (1}. equivalent ·traces have the same legality
(either both are legal or both arc not legal) and (2) that
they have the same externally visible effect on the module
or data item. These assertions of equivalence will often
enable us to extend the class of traces known to be legal.
Equivalence is usually weaker than equality. Two traces are
gg~~l if they are identical in every respect (the same
sequence of function calls with the same parameters).

(3) !§§£I!i~D£ _ _gbout __ !h~--!Alues returned ~V­
functions at the end of traces. These statements describe
the-vaiues-deiivered by-v=!unctions for a subset of the set
of legal traces. The traces discussed directly in this
section of a specification are called !l~!~L..!~!!l traces.
nsing the equivalence statements, one can derive the values
of V-functions at the end cf other traces by finding an
equivalent normal form trace.+

The three classes of assm:tions form a specification
or statement of requirements. An implementation will be
considered correct if and only if the assertions are true of
it. Any property that one can deduce from the assertions
must be a property of any correct implementation.

A program that uses the module in such a way that the
program's correctness depends Q]li on properties of the
module that can be deduced from the specification's
assertions will be able to use any correct implementation of
the module.

~!n-QUr-eiarrples, we have assumed that equality is defined
for values of the types returned by the V-functions. In the
unlikely event that we have no equality operator, V-function
values would have to be described in terms of the operators
that are available.

6

(1) Notation for describing the syntax (taken from
Guttag) •

<Function Narre>: <type of parameter>X, ••• X<type
of parameter> -> <tyfe of result>

If the module
parameter need not
call.

rraintains only
be explicitly

one data item, that
named in each function

(2) Notation for describing traces.

A trace will be represented as a string from the
language described by the following syntax. The parsing of
a trace into comfonent subtraces is deliberately ambiguous.
The trace denotes execution of the functions named in a left
to right sequence.

<subtrace> : := u 1 <syntactically.correct.function. call> I
<subtrace>.<syntatically.correct.function.
call>

<trace> ::= u l<subtrace>[.<subtrace>]*

[<T>]* denotes any number of occurrences of <T>.

"LJ" denotes an empty trace.
n~!~I_Q££~£§_!n_~trg£~·

We will frequently use the
notation.

following shorthand

Let p;, rrSi<;n, be a list of actual parameters.., and
X(p;) a syntactically correct function call. Then x,.,(p;)
denotes the same as

If the list
X.X •••• X with
denotes the empty

II

of parameters is empty,
n-mt1 repetitions of
trace. For N ~ 1 we

X IP;l·

It is always assumed that a function call correctly
adheres to the rules of the syntax section.

(3) Describing legality of sequences.

We introduce the predicate F.(T)
r. ('!') is true if T is a legal trace.
assertion K(T) in a specification is

where T is a trace.
The appearance of the

a requirement that

7

calling the functions as described in 'I will not result in a
trap.

Assuming that the rrodule will not "trap" if it is not
used, we ~~~Y§ assume &(l~) = 1!Y~· (The empty trace is
always legal.) It follows frorr our discussion of traces
that if T is a trace and s i~ a subtrace

&(T.S) => &(T).

In other words, the prefix of any legal trace is a
leg a 1 trace.

(q) Describing the values of V-functions at the end of
traces.

If T is a legal trace, X is a syntactically correct
call on a V-function, and f:(T.X) is TR!JE, then V(T.X)
describes the value delivered by X when called after an
execution of T.

(5) Describing equivalence of two traces.

If T 1 and T 2 are traces then asserting that T1 : T2 is
an assertion that:

for any subtrace s (including the empty subtrace) ,
&(T 1 .S) = &(T2 .S)

for any subtrace s (including the empty subtrace)
and V-function X,

&(T1 .S.X) => V(T1 .S.X) = V(T/I..S.X)

Then : is an equivalence relation. Note that the
equivalence of two traces does not irrply that they are the
same in every respect, only in those respects specified
above. For exarrple, one may n21 conclude that two
equivalent traces have the same length or that the prefixes
of equivalent traces are equivalent. Note too that the
above does not define a particular equivalence relation;
that is done in each specification.

In the following speci.fications we have omitted
universal quantifiers for variables representing traces (T)
and integers a.

8

VI. 2QME_~!~g1E_EX!]PLE2 (To be explained and discussed in
Section VII.)

PUSH:
POP:
TOP:

DEPTH:

~. Legality:

<integer> x <stack> -> <stack>
<stack> -> <stack>
<stack> -> <integer>
<stack> -> <integer>

(1) f.(T) => &(T.PUSH(a))
(2) &(T. ~OP) = f,(T. POP)

B. Equivalences:

{3) T.DEPTII ;: T
(4) T. POSH (a). POP ;: '!'
(5) &('!'.TOP) => T.TOP- '!'

c. Values:

(6) &(T) => V{T.PUSH(a).TOP) =a
(7) & (T) => V {T. PUSH {a). DEPTH) = 1 t V (T. DEPTH)
(8) V (DEPTH) = 0

ADD:
REMOVE:

FRONT:

<integer> x <queue> -> <queue>
<queue> -> <queue>
<queuA> -> <integer>

(1) &(T) => &(T.ADD(a))
(2) &(T) => &(T.ADD(a) .REMOVE)
(3) &(T.REMO'(E) = &(T.FRON'l')

(II) & (T.FFONT) => T.FRONT ::; T
(5) &(T.REMOVE) => T.ADD(a).REMOVE- T. RE!'IOVE.ADD(a)
(6) ADD(a).RE!'IOVE ~ L~

(7) V(l\DD(a).FRONT) =a
(ll) &(T.FRONT) :) V(T.ADD(a).FRONT): V(T.FRONT)

The above specification as~umes that only one queue exists
and omits the queue farareeter in the calls on the access
proqrams.

0

INSERT:
REMOVE:

FRONT:

<integer> x <squeue> -> <squeue>
<squeue> -> <squeue>
<squeue> -> <integer>

(1) &(T) => &(T.INSERT(a))
(2) &(T) => &(T.INSFRT(a).RFMOVE)
(3) & (T. FRONT) = & (T. REMOVE)

(4) & (T.FRONT) => T.FRONT = T
(5) T.INSERT(a) .INSERT(b) = T.INSERT(b) .INSERT(a)
(li) INSERT (a) .I'Er-tOV!' .:: U

(7) & (T. FRONT) £3!12<1 (V (T. FRONT) .<;; b) =>
T.INSERT(b).PE~OVE.:: T

(8) V (INSERT (a). FRONT) = a
(9) & (T. FRONT) fi!!l<l V (T. FRONT) <;; t =>

V(T.INSERT(b).FRONT) = b

10

NOTE the value of X f~DQ Y is false if X is !als~. and
the value of X cand Y is the value-of Y if X is trug. Y
need not have a defined value if x is !~lsg.

PUSH:
POP:
V AI.:

1!!.!Ia li.ty

<stac> x <integer> -> <stac>
<~tac> -> <stac>
<stac> -> <integer>

For a 11 T, & { T)

II H·l 0 < N ~ 124 => PUSH (a;) .POP = PUSH (a;)
PUSH (a.). PUSH:"''~-. (a ;J .:; PUSH:~¥ (a;)
T. VAL .:; T If
N ~ 0 => POP .PUSB(a) - PUSI!(a)

V(T.PUSH(a).VAL) =a mgg 255

11

12

This alternative includes two "hidden fu~ctions," which are
marked in the syntactic specifications with asterisk.

SYM!!f!IC SPEC]fiC!11Qfl:

NEliSTAC:
PUSH (s,I):
POP (s) :
VAL(s):
SPS LFT (s) :

*ADD(s,I):
*llEQ (s) :

SPSLFT (NEIISTAC) = 124
SPSLFT (~.Dn (s,I)) = SPSLFT (s) - 1
POP(NEWSTAC) = NEIISTAC
POP(ADD(s,I)) = s
llEQ(NEIISTAC) = NFIISTAC
DEQ (ADD(s,I)) = j,f SPSLFT(s) = 124

then s
el§i ADD(DEQ(s) ,I)

PUSH (s,I) = j,f SPSLFT (s) > 0
th_!HJ ADD (s, 1)
~!~ ADD(DEC(s) ,I)

VAL(NEWSTAC) = undefined
VAL(ADD(s,I)) =I rrod 255

*denotes a hidden function

13

Example 1 is the classic exarrple for abstruct
specifications. It is a stack with unlimited capacity. The
legality section shows that any sequence of PUSH operations
is a legal trace. The first statement in the value section
shows the value of TOP after any trace that ends with a
PUSH. (7) shows that PUSH always increments the value of
DEPTH. (A) specifies the initial value of DEPTH to be zero.
The equivalence section allows us to reduce any legal trace
with PUSH, TOP, and POP to one that is equivalent but
contains only PUSH OFerations. We will be able to determine
the value of the V-functions for any legal trace by making
such reductions.

In Example 2 (an integer queue) the "legality" section
allows traces that consist of any number of ADDS but each
occurrence of ~EMnvp or FRONT rrust be Freceded directly by
an ADD. However, the equivalence statements allow other
traces because the sequence ADD.RE~OVF may either be
replaced by REMOVE.ADD or {at the start of a trace) deleted
and the resulting trace vill be equivalent to the original
trace. The value section ~hows the value of FRONT after (a)
an item is added to an errpty queue and (b) an item is added
to the queue that already has a value of FRONT (same as
before). To find the value of FRONT after a trace that has
RE~OVES in it, one must apply (5) and (6) repeatedly until
one has an equivalent trace that does not contain a REMOVE.
Each application of (5) can move a REMOVE to the left one
place. When REMOVE follows the first ADD directly, both can
be deleted using (6).

In Exarrple 3 we have a queue that always shows the
largest item at the front. The largest object is also the
one removed by REMOVE. The legal traces are the same as
those in Example II (except for an obvious change of
function names). The most irrportant difference is (5) J.n
which it is asserted that the order of tvo consecutive
inserts is irrelevant. Assertion (7) shows the effect. of a
RE~OVE after an INSERT that had a parameter larger than the
value at the front of the SQUEUF. In that case it simply
cancels the effect of the INSERT. However, because of (5) ,
we can always rearrange the order of INSERTs so that the
last one is the one that inserts the largest value. This
allows us to use (?) for any REMOVE at the end of a trace
vith at least two inserts in it. (6) describes the effect
of RE~OVE in the case that it is preceded by only one
INSERT. The value section shows us the value of FRONT after
an INSF.RT in an empty queue and after inserting a value that
is greater than the value of FPONT.

The discussion of the first three examples is intended
to show that the formal specifications do correspond to our
intuitive notions of the way that these modules perform.

14

The correspondence with intuition rrust, of necessity, remain
inforrral. The derronst ration of cern pleteness can be
performed systeiTatically. An exaiTple of a more systematic
proof of completeness will be given later.

The fourth exarrple is the problem that John Guttag
could not specify without the use of hidden functions(15).
His specification is included as ~xarrple 5. We believe that
the brevity of our specification shows the advantages of the
trace method. This is a situation in which the values of V­
functions for sorre legal traces are deliberately not
defined. Any synt.actically correct trace is legal. The
module will never "trap." However the value of VAL
initially (or after a POP on an "errpty stack") is not
defined. The irrplerrentation can deliver any value in these
situations without violating the specifications. If a
value, I, greater than 255, is inserted only I mod 255 will
be stored.

The above exarrples show a nurrber of advantages over
previous methods of DA specifications. There appears to be
no need for hidden functions; the specifications are quite
compact and the individual statements are sirrple. The
derivations needed to derronstrate corrpleteness are sometimes
quite involved but they need not be performed during the
irrplerrentation or during the verification that an
implementation is correct.

The ideas are rather new and we are aware of a number
of important unanswered questions. Nonetheless, we believe
that this report derronstrates that the method is as good as
any of the peviously published ones and can help to discover
design errors early in the design process.

In this section we present the history of the
development of an abstract specification for a "table/list"­
(T/L) module. The programs offered by this module support
the processing of linearly ordered data structures,
regardless of whether they are irrpleiTented as tables or
lists. · This module is currently inplement.ed to help in
generating address translation tables as we need them for a
virtual memory mechanisrr within a fareily of operating
systems (BSI') *(171. It is also expected that this
specification can be used for various other table or list
handling purposes.

Because it is the purpose of this report to introduce
a method of describing such modules, we reust begin with an

15

intuitive description of our example. One physical
implementation of this module ~ould be by means of a set of
children's blocks where it is possible to write one "entry"
on the upper surface. The blocks are arranged in a single
row and covered with an opaque lid with a single window.
Through this window one may read the entry on a single
block, insert. and rerrove blocks, or change the entry written
on the block that shows through the window. The entry on
the block that shows through the window is referred to as
the £~r~nt __ ~lli~l· Because the cover is opaque it is not
possible to tell how rrany blocks are currently under it, but
the cover is fitted with signals that tell whether or not
there is a block to the right of the current entry, whether
or not there is a block to the left of the current entry,
and whether there are any blocks under the cover at all.

The operations that we want to perform include reading
the value of the current entry, moving the lid one place to
t.he right, moving the lid one place to the left, moving the
lid and all blocks to the right of the current block to the
riqht so that a new current block may be inserted through
the window, and removing the current block (moving the lid
and all blocks to the right of the deleted block one place
to the left).

It was our goal that all operations that could be
easily performed with the physical rrodel described above be
allowed by our specification.

In our specification we will have five operations (0-
functions): INSEgT,DELETE, ALTER, GOLEFT, and GORIGHT.
'LTER will just be a shorthand for a sequence of DELETE and
INSEPT. The first two indicators mentioned above will be
named EXLEFT(EXist entries to the LEFT), EXRIGHT, and the
third is representeJ by EMPTY. The current entry will be
available through the V-function CURRENT. The precise
relationship among the V-functions and the way that their
values are changed by the module's operations will be
described in the specifications.

we do not display the original specification but
instead present a translation using traces. We were not
using traces for specification FUrposes at the time that the
original was written. The use of traces makes many
deficiencies in the first version obvious. They were
originally discovered after much hard labor. We show an
abbreviated history of the development to provide evidence
controverting the clairr that abstract specifications state
"only the obvious."

a-Functions: INSERT (e): <entry> X <'IL> ->
DELETE: <TL> -> <TL>
ALTF.R(e): <entry> X <TL> ->
GOlEFT: <TL> -> <TL>
GO FIGHT: <TL> -> <TL>

V-l'unctions: CURRENT: <TL> -> <entry>
EMFTY: <TL> -> <boolean>
E XLEI'"I: <TL> ->
RXRIGHT: <TL> ->

(1) & (T) => & (T. INSERT (e))
(2) &(T) => &(T.INSEPT(e).CURRENT)
(3) &(T.CURRENT) => &(T.EXLEFT)
(4) & (T.CURRENT) => & (T. EXRIGHT)
(5) & (T.CUPRENT) => & (T. ALTER (e))

<boolean>
<boolean>

(6) & (T.CURRENT) => & (T. INSERT (e). GCLEFT)
{7) & (T. GO LEFT) => & (T. GO LEFT. GORIGBT)

(8) T. EMPTY = T
(9) T.INSERT(e).DELETE = T

(10) T.GOLEFT.GOFIGH'I : T
(11) T.ALTER(e) : T.DELETE.INSERT(e)
(12) & (T.CURRENT) => (T.CURRENT : T)
(13) &(T.EXLEFT) => (T.EXLEFT: T)
(14) & (T.EXRIGHT) => (T. EXRIG!IT : T)

(1~ V(EMPTY) = true
(16) &(T) => (V(T.INSl':RT(e).CURRENT) =e)
(17) &(T) => (V(T.INSERT(e).EMPTY) =false)
(1A) & (T) 1\ (V (T.EMP'IY) = true) =>

(V(T.INSERT(e).EXLEFT) = false)

16

<TL>

<TL>

(19) f, (T) 11 (V (T.EMP'IY) = false) II (V (T. EXLEFT) = false) =>
(V (T. INSERT (e). EX LEFT) = true)

(20) f, (T) => (V (T. INSERT (e). EX RIGHT) = V (T. EX RIGHT)
(21) &(T.GOLEFT) => (V(T.GCLEFT.EXIHGH'I) =true)
(22) &(T.GORIGHT) => (V(T.GORIGHT.EXLEFT) = true)
(23) & (T. ALTER (e)) => (V (T. ALTER (e) .CURRENT) = e)
(211) &(T.UTER(e)) => (V(T.AL'I'ER(e).EI'IPTY) = V(T.EMPTY))
(25) &(T.ALTER(e)) => (V(T.ALTER(e).EXlEFT) = V(T.EXLEFT))
(26) &(T.ALTER(e)) => (V(T.ALTER(e).EXFIGHT) = V(T.EXRIGHT))
(27) V(T.INSERT(e).GCLEFT.CURRENT) = V(T.CURRENT)
(2~) V (T. INSFRT (e). GOLFFT. EXLEFT) = V (T. EXLEPT)

17

The "syntax" section is as in the earlier examples.
we use elements of a type "entry" only to store them into
the data structure of the T/L module, or to fetch them. We
assume t.hat the relation of equality over entries is defined
elsE'where.

Statements (3) through (5) tell
EXL~FT and EXRIGRT and a-function
applicability condition as CURRENT.

us that V-functions
ALTER(e) have the same

The "equivalences" section should allow the reader to
transform any legal trace to one shown to be legal by (1)
through (7). The alert reader will notice that this section
does not satisfy this requirement. This will be
investigated in some detail later.

Statement (q) is unconditional because a call on E"PTY
can always be added to or removed from any trace without
making the module trap.

Statements ('l) and · (10) say that suhtraces
INSRPT(e).DFLFTE and GOLEFT.GORIGHT have no effect.
Statement (11) is supposed to tell us that a call on ALTER
has the same effect as two consecutive calls on DELETE and
INS~PT, provided that INSERT has the same actual parameter
as ALTER. statements (12) through (14) t.ell us that v­
functions CURRENT, EXLEFT, and EXRIGHT can be removed from a
legal trace to get an equivalent trace.

statement (15) gives the initialization of the module.
Statements (16) through (20) describe the effects of INSERT
at the end of a legal trace on the values of EMPTY, CURRENT,
E~L~~T, and EXR!GRT.

statements (23) through (26) define the effects of
AL~F.R at the end of a trace on the four v-functions. Note
that only CURRENT is changed.

Statements (27) and (28) say that two consecutive
calls on INSERT and G0LEFT have no effect on the values of
CURRFNT and EXLEFT.

C. lli§£Y§§lQ~_of_Fls!§_!n_1h~-fl!§!_!~!§lQD __ gf __ !h~--!L1
~21Y1~-2E~£!fi£sii2D

The use of traces and the way in which the present
specifications are divided into sections allows us to
discuss flaws in version 1 of the T/L module in a
straightforward way and to omit two or three intermediate
stages of the original developroent. However, all errors
below were actually included in the original design of the
T/L module and allowed to remain in the design after formal
discussions among the roerrbers of our group.

18

In exaroining the first specification we first attempt
to make certain that the specificatidn is corrplete. We will
(by definition) consider the specification to be incomplete
if there are some traces ending ir calls on V-functio.ns
which can be shown to be legal but for which no value can be
derived.

One example cf inccmfleteness corcerns the value of
the function EXRIGHT. only (20) a.nd {26) make any statement
about the value of EXRIGHT and these make no statement about
the initial value of !XRIGHT or V(INSERT(e).EXRIGHT) which
can be shown to be legal.

The specification is similarly incomplete with respect
to F:Y:LEFT.

~nether form of incomfleteness can be found by
attempting to derive the value of
V (INSERT (a). INSERT (b). GOLEFT. EMPTY). There is no statement
about the value of EMPTY when immediately preceded by GOLEFT
and no equivalence assertion that would allow us to remove
GO I.! F'l'.

In addition to the instances of incomfleteness that
have been demonstrated, we can shew that a number of
statements in the "legal trace" sectior and "equivalences"
section do not meet our intuitive expectations. There is a
problem with the legality of traces beginning with a call on
GOLEFT. For example, we would expect that a call on GOLEFT
before the first entry has been inserted into the data
structure should not be permitted. However, the value of
~(GOI.EFT.GORIGHT) can by statement (10) always be calculated
to be f.(u), which is (by definition) "true". Since by
definition f:(t.X) => r.(t) we can conclude that. (for t =
GOLFFT and 1{ = GORIGHT) we have & (GOLEFT) = true. A sill'ilar
problero exists concerning the legality of traces ending with
a call on GOLFFT.

statements (2) and (6) eliminate the possibility of
insertion to the left of the leftmost entry. We can move
the slot in our cover over the leftmost enry but not
further. An insert would then make EXLEFT true again
(statement (1'l)) but we would have inserted to the rig!!! of
the left!l'ost entry.

The rrreroonic "l'MPTY" was an obstacle to
straightforward solution. Imagine that one moves left
the left end. By statement (1A), EMPTY would become
although there are entries in the data structure.

a
from
true

19

we will eliminate these problerrs by renaming "EKPTY"
to "OUT" and allowing one ll'OVe to the left beyond the left
end. The value of cnPRFNT is then undefined, while OUT is
true, F.XLEFT is false, and FXRIGHT is true. This is in
contrast to the new initial state (no entries in the data
structure) where EXRIGHT is false.

A problem that initiated the development of the
specification technique presented in this paper is best
formulated by posing the following question.

How can the designer be sure
effects of all traces that he
programs?

that he specified the
wants to be executable

Or, put in other way and arplied to our example, bow
do we determine the subset of

{INSERT (e) , DELETE, ALTER {e) ,GO lEFT, GORIGHT,
CURRENT,OOT,EXLEFT,EXRIGHT}*,

(where "*" is the Kleene star) that comprises the set of
executable, i.e. legal traces?+

We now
traces: Let
trace. Then

note sorre quantitative
lXI denote the nurrber of

for all legal traces:

properties of such
calls on X in a given

+-iiiiiE!;;l-TOi:-Including v-furctions are easy to find and are
therefore not considered now.

IGOLEPTJ > IGORIGHTJ
!INSERT! > IGOLEFTI - JGCRIGHTI

JTNSF.RTI > IDELF.TEI + IGOLEFTJ - JGORIGHT!

20

These ~elations alone, howeve~, help little. The
obviously un~eascnable t~ace

GORIGHT.GOLEFT.GOLEPT.INSERT(a) .INSEBT(b)

satisfies the above inequalities.

we the~efo~e have to make some additional assertions
to characterize the set of legal traces.

The specification of Example 6 did not capture the
language of the module, as we intuitively understand it.
Po~ example:

f.(INSERT(a).INSERT(b).GOLEFT.GCLEFT) = fal§~

Other examples can easily be found.

hfter discovering the above errors (over a period of
several months) we made an observation that allowed us to
write the specification given in Example 7.

Any legal trace for the T/L module must be equivalent
to a trace in which there is a (possitly empty) sequence of
INSERTs followed by ary number of repetitions of the
sequence INSEPT.GOLEFT. This observation is based on our
intuitive model of the object that we are trying to specify.
(We have no other fOSsible basis). We could create the
table contents a 0 , a 1 • • • a; • • • a,, where a; is the current
entry by successivly inserting a., a,... a; and then
executing INSF.PT (aj); GOLEFT for j = n, n-1 •••••• i+1. Each
!NSEPT(aj).GOLEFT sequence leaves CURRENT unchanged but
inserts a block to the right of current.

We will refer to the traces in this form as !1.2!!!!1!!
.f.Q.£!!! traces.

The assertions labeled "legal traces" in Examfle 7
((1) (3)) state that all traces in normal form (and some
additional traces) are legal. We also indicate that CURRENT
may be called whenever a GOL!FT would be allowed.

The assertions (4) - (7) state that the V-functions do
not effect any changes on the module. (8) and (9) give the
ohvious facts that GOL~FT can be cancelled by a GORIGHT that
follows it and that an IRS!RT can be cancelled by a DELETE

]!~m£1~_]~_Ta~1~/List Modul~_!jth Q~iroj!~g_faEacj!I

~Yll.H!

0-.Functions: INSERT: <entry> X <TL> ->
ALTFR: <entry> X <TL> ->
DELETE: <TL> -> <TL>
GO LEFT: <TL> -> <TL>
GO RIGHT: <TL> -> <TL>

V-Functions: CURRENT: <TL> -> <entry>
OUT: <TL> -> <boolean>
EX LEFT: <TL> -> <boolean>
f:XRIGHT: <TL> -> <boolean>

(1) & ('I') ~> & (T.INSERT(a))
(2) &(T) => &(T.INSERT(a).GOLEFT)
{3) &(T.GOLEFT) => & ('!'.CURRENT)

(4) T. 0 UT .= T
(5) T.EXLEFT:;:T
(6) T.EXRIGHT :;: T
(7) & (T.C!IRRENT) => ('!'.CURRENT :;: T)

<TL>
<TL>

(R) &(T.GOLEFT) => (T.GCLEFT.GORIGHT .= T)
(9) T.INSERT(a).DELETE = T

(10) T.INSERT(a).GOLEFT.~ELETE:;: T.DELETE.!NSERT(a).GOLEFT
(11) &(T) => (T.INSERT(a).INSERT(b).GO!EFT s

T.INSERT{b).GOLEPT.INSERT(a))
(12) T. AI.TER (a) :;: T. DELETE.INSERT(a)

(13) V(OUT) = t.rue
(14) V(EXLEFT) = V(EXRIGHT) = false

(15) & (T) => (V ('!'.INSERT (a). CURRENT) = a)
(16) & (T) => (V(T.INSERT (a) .OUT) = false)
(17) &('!') => (V(T.INSERT(a).FXLEl'T) = !J.Q! V(T.OUT))
(18) &(T) => (V(T.INSERT(a).EXRIGHT) = V(T.EXRIGHT))

(19) & (T.C!IRRENT) => (V (T. INSERT (a) .GOLEFT.CUIIRENT) =
V ('!'.CURRENT))

(20) &(T) => (V(T.INSERT(a).GOLF.FT.OUT) = V(T.OUT))
(2 1) 6 (T) => (V (T. INSERT (a). GOLFPT. EXL!PT) = V (T. EXLEFT))
(22) & (T.GOLEFT) => (V (T. GCLEFT. EX RIGHT) = true).

21

that follows it. Note that (R) only applies when GOLEPT is
legal.

If our specification is a good o~e, we should be able
to show that every legal trace is equivalent to a trace in
normal for~. The V-functions can he trivially deleted. We
are able to delete a DEL~'TE if it immediately follows an
INS~RT and a r.oRIGHT if it follows ilrmediately after a
G!'l!.RFT. Using staterrent (11) we can rrove a GOLEPT right or
left through a sequence of I~SFRTs tc get an equivalent
trace. That will allow us to remove instances of DELETE by
bringing an INSF.RT up to them if only GOLEFTs intervene.
!Ising assertion (10) one rray trans.forrr sequences containing
GOLFFT.DELETE and DELETF.GOLEFT into equivalent sequences
where either the DELETE has been moved to the left (bringing
it closer to the INSERT that it cancels) or the GOLEFT has
been moved to the riqht (bringing it close to any GORIGHT
that would cancel it). Assertion (12) allows the removal of
all occurrences of ALTFR. Repeated application of these
rules allows the rerroval of all functions except INSERT and
GOLF PT.

To demonstrate corrpleteness we exarrine primarily the
value section (13)-(22). (13) and (14) specify the initial
values of all V-functions except CURRENT. The failure to
specify an initial value for CURRENT is not an instance of
incorrpleteness because CURRENT is not a legal trace. Using
(1~)-(1A) we have specified the values of all four v­
functions for traces containing only INSERT.

Using (1q)-(22) we can deterrrine the values of the V­
functions for any trace of the fcrrr T.INSEBT().GOLEPT
provideu that we know the values of these functions after T.
I~ follows that we know the values for any trace in the
no~mal form. Since the equivalence statements allow any
legal trace to be reduced to an equivalent trace in that
form, the specification is cowplete.

Demonstraction of consistency is more co~plex. It is
quite clear that the value section ((13)-(22)) is in itself
consistent, hut it is necessary to show that the
transformations allowed by the equivalence section that
produce a trace ending in a given V-function result in
traces with the same value. Such a proof is beyond the
scope of this paper.

23

IX· f.Ql!f1.!!1l1.Q.!i

It is clear that when we ente~ed into the design of
the T/L module inte~face we did not expect the difficulties
that we encounte~ed. Each proposal seemed intuitively
obvious and. the fo~rral specifications that we wrote appeared
to correspond to our intuition. Several people examined the
specifications (which were w~itten using weakest
preconditions) : all thought that they were acceptable. The
types of difficulties described in connection with the first
ve~sion of the T/t module specification came as a complete
surprise. we had expected that writing the formal
specifications was "only a fo~mality" for so simple a
module.

our first conclusion then is simply that writing the
formal specifications is useful ~gn for simple modules.
Had we been forced to make the change from the first version
to the second version ~ft~ coding was underway, it would
have been expensive in tents of the amount of code (both in
the module and in programs that use the module) that would
have needed revision.

Once we became aware of the difficulties, we found
attempts to convince ourselves of the correctness of new
versions to be extrerrely frustrating. The specifications
that were written (using predicate transformers for programs
consisting of calls on the functions) did not lend
themselves well to examination for completeness and
consistency. The rrathernatical model underlying those
specifications is corrplex and there were difficulties
intrinsic in the decision to talk about programs rather than
traces. Although we have not yet produced a complete formal
proof that this specification is corrplete and consistent,
the intuitive justifications are far more convincing than
our more formal arguments about the old specifications. Our
second conclusion therefore is that the concept seems to be
superior to other forms of data abstract specification known
to us.

It is becoming popular arrong software specialists to
speak of "front end" investment. The proposal is that by
investing time and intellectual energy in the early design
phase one can reduce the overall systems costs because of
time saved at the later stages. A weakness of the majority
of such proposals is that they frovide little in the way of
specific suggestions ahout what to do at those early stages.
There is lit~le evidence that the effort invested in the
early stages will actually pay off. There is lots of
evidence that just writing vague statements of good
intentions ("The syste~ will have a user-oriented
interface") will !!.Q.!: pay off. In this paper we have made a
specific proposal for the use of that "front end" energy.
We have shown how to write such specifications, and

24

described how one may evaluate them for corrpleteness and
consistency.

Further work on verifying properties of these
specifications is clearly necessary. As Price has shown
f101, there are clear advantages to doing as much
verification as possible before inplementation begins.
Similar views are found in [18], but Price included some
(machine assisted) proofs.

The authors are grateful to Professor D. stanat for
his advice while the research vas being performed and on the
writing of this paper. Dave Weiss, Lou Chmura, John Shore,
and Janusz zamorski also made helffUl comments. This
research was supported by the u.s. Army under contract
#DA~G 29-76-G-0240. w. Bartussek was also supported by the
German Academic Exchange service (DAAD) under stipend 14-
USA-CDN-AUS-NZ-3-EB.

25

REFERENCES

[I] Parnas, D.L. "Information Distribution Aspects of Design Methodology."
Proc. IFIP Congress, 1971.

[2] Parnas, D.L. "On the Criteria to be Used in Decomposing Systems into
Modules." Communications of the ACM (Programming Techniques Department},
December 1972.

[3] Parnas, D.L., Shore, J.E., and D. Weiss. "Abstract Types Defined as
Classes of Variables." Proc. Conference on Data: Abstraction, Defini­
tion, and Structure, pp. 22-24, Salt Lake City, Utah, March 1976.

[4] Floyd, R.W. "Assigning Meanings to Programs." In "Mathematical Aspects
of Computer Science" (J. T. Schwartz, ed.}. Proc. Symp. of App I i ed
11athemat i cs, Vo I . 19, American Math. SocIety, Providence, 1967, 19-32.

[5] Hoare, C.A.R. "An Axiomatic Basis for Computer Programming." Comm. ACM
12, 10. October 1969, 576-583.

[6] D I j kstra, E. W. "Guarded Commands, Nondeterm I nancy, and the Forma I
Derivation of Programs." CACM 18, B, August 1975.

[7] Dijkstra, E.W. A Disci pi ine of Programming. Prentice Hal I, 1976.

[B] Parnas, D.L. "A Technique for Software Module Specification with
Examples." Comm. ACM, May 1972.

[9] Guttag, J. "The Specification and ApplIcation to Programming of Abstract
Data Types." Ph.D. Thesis, CSRG TR 59, University of Toronto, September
1975.

[10] Guttag, J. "Abstract Data Types and the Development of Data Structures."
SIGPLAN/SIGMOD Conference on DATA: Abstraction, Definition and Structure
(to be publ lshed In CACM}.

[IO] Price, W.R. "lmpl !cations of a Virtual Memory Mechanism for Implementing
Protection In a Family of Operating Systems." Technical Report (Ph.D.
Thesis}, Carnegie-Mel ion University, June 1973, AD766292.

[II] Parnas, D.L. and W.R. Price. "The Design of the VIrtual Memory Aspects
of a VI rtua I Mach I ne." ProceedIngs of the ACM S I GARCH-S IGOPS Workshop
on Virtual Computer Systems, March 1973.

[12] Parnas, D.L. and W.R. Price. "Using Memory Access Control as the Only
Protection Mechanism." Proc. of International Workshop on Protection
in Operating System, 13-14 August 1974, IRIA.

[13] Roubine, 0. and L. Robinson. "Special Reference Manual" (Second Edition),
Technical Report CSG-45, Stanford Research Institute, Menlo Park, Calif.

[14] Llskov, B. and V. Berzins. "An Appraisal of Program Specifications."
Research Direction in Software Technology (P. Wegner, ed.l. To be
pub I I shed by MIT Press.

26

[15] J. Guttag. Private communication, 1976.

[16] Parnas, D.L. and H. Wuerges. "Response to Undesl'red Events In Software
Systems." Proc. of the 2nd International Conference on Software
Engineering, 13-15 October 1976, San Francisco, California.

[17] Parnas, D.L., Handzel, G. and H. Wuerges. "Design and Specification
of the Minimal Subset of an Operating System Family." Presented at
2nd International Conference on Software Engineering, 13-15 October
1976; published in special issue of IEEE Transactions on Software
Engineering, December 1976.

[18] Neumann, P.G., et.al. A Provably Secure Operating System: The System,
Its Appl lcatlons, and Proofs. Final Report, Stanford Research Insti­
tute, I I February 1977, Menlo Park, California

[19] Parnas, D.L. "The Use of Precise Specifications in the Development of
Software." Proc. IFIP Congress 1977, North Hoi land Pub I ishing Company.

[20] Parnas, D.L. and G. Handzel. "More on Specification Techniques for
Software Modules." Technical Report, Technische Hochschule Darmstadt,
Darmstadt, West Germany, February 1975.

