
STRUCTURED PROGRAI'IIIING EXAMPLES
FOR USE IN

UNC Report No.
TR-76-007
May 1976

AN INTRODUCTORY BOSINESS PROGRAI'IIIING COORSE

by

ALAN D. BERNARD

A thesis submitted to the faculty of the
Oniversity of North Carolina at Chapel Hill
in partial fulfillment of the requirements
for the deqree of !laster of Science in the
Department of computer science.

Chapel Hill

1976

c Alan David Bernard 1976

ACKNOWLEDGEMENTS

I would like to thank

advice and help d11ring

Dr. Donald F. Stanat for his

the development of this thesis.

Dr. s. M. Pizer and Dr. M. Jazayeri also contributed

comments and suggestions which qreatly improved the final

version. I am very qrateful to all for their prompt review

of early drafts. In addition I would like to thank my wife,

Aarv Jo, who acted as secretary and editor throughout the

months of writinq and revisinq this thesis.

ALAN D. BERNARD

Structured Programming Examples for Use in an Introductory

Business Programming Course

(Under the direction of DONALD F. STANAT)

ABSTRACT

This thesis is designed for use by instructors of

introductory programming courses. It contains examples

demonstrating the use of stepwise refinement in problem

solving. Although the examples are business oriented, they

are written so that they can be understood by instructors

and students without business backgrounds.

additional problems for refinement is included.

A list of

TABLE OF CONTFNTS

1. INTRODUCTION 1

2. ELEMENTARY BUSINESS APPLICATIONS

2. 1 Depreciation 8

2.2 Financial Ratios 28

3. SIMULATION

3. 1 A Craps Game 40

3.2 llai tinq Line Problem 50

4. FILE PROCESSING

4. 1 Inventory 63

4.2 Payroll 74

BIBLTOGRAPHY 87

APPENDIX

A. Further Problems for Refinement 89

1

fh~te~1-= Introgu~!iQn

This thesis is intended for use by instructors of an

introductory computer programming course. It contains

several examples demonstrating the use of stepwise

refinement in problem solving. Where language dependent,

the languaqe used is PL/1; however, the examples could

readily be adapted to any general purpose language.

The examples are oriented toward students vith a

business background. Because of the diversity of students•

backgrounds, however, I have written the examples in such a

way that a business background is not necessary for

understanding the problems. For example, in a problem

dealing with depreciation of fixed assets, I have given the

formulas for computing depreciation by the methods required,

rather than assume that the students or instructors would be

familiar with the techniques used.

An introductory business programming course poses many

problems for teachers and students alike. The instructor in

such a course is very often a graduate teaching assistant

from the Department of Computer Science or the School of

Business. Teaching the course may be the first classroom

experience the instructor has had from the teacher's side of

the desk. To further complicate matters, the instructor may

have a very limited business background; he may be

unfamiliar with the types of problems in which the students

are likely to be interested.

2

Another problem faced by teaching assistants is lack of

expertise in the programming language used in the course.

First year graduate students recruited to teach may very

well know less about the language used than their more

knowledgeable students.

The students in an introductory course are faced with a

variety of problems as well. The clatter of keypunch

machines and the atmosphere of the computation center can be

overwhelming for the novice programmer. As well as

familiarize himself with a new routine, the student must

learn new techniques of communicating. Although they have

been solving problems all their lives, many students find a

formal approach to problem solving difficult to implement.

Learning a computer programming language presents

difficulties, many more, perhaps, for students in a business

curriculum than for those in science and math.

The best way to eliminate problems facing the students

is to eliminate problems facing the instructors. G. Polya,

in now I2 ~olve I!, says that there are two things every

teacher should know: the material he is to teach, and a

little bit more than that. The material contained in this

thesis has been chosen to meet both of these demands.

Of the many problems the instructors face, most can be

solved by the use of existing literature. There is ample

material available concerning language syntax; there are

many introductory texts on programming languages. These may

-·

3

be used to supplement lanquaqe details qiven in the course

textbook.

But when we come to problem solving techniques, the

existing literature is not adequate. To be sure, structured

proqramming has become a popular topic in computer science

in recent years. There have been many articles on topics

ranging from how to comment programs to how to write GOTO­

less programs. But these materials give an instructor of an

introductory course very little help.

Most introductory programming textbooks cover language

syntax. The better texts, however, also include discussions

of program format, program documentation, program design,

and program testing. The general approach to problem

solving is very good, but there are simply not enough

examples given to show a beqinning student how to write good

programs. It is the lack of good examples towards which

this thesis is directed.

The problems in this thesis are presented in terms of a

problem specification, problem

refinement. These correspond

clarification, and problem

to a problem statement,

explanation, and solution, respectively.

The problem specification is a statement of the problem

we wish to solve. I have attempted to specify problems in a

manner that is similar to what one can expect outside the

clas10room. Thus, there· are many ambiguities which the

proqrammer must resolve.

4

The section on problem clarification deals with these

ambiguities. Examples are qiven to indicate what processing

is required; the input and output are discussed in detail,

with remarks on output which will be useful when testing and

debuqqinq the program.

The heart of each example is the stepwise refinement of

the problem. Each refinement is presented in the form of a

PL/1 comment outline. The comments in the .outline are

indented to show the refinement level of the subproblems

they represent.

In most examples the problem is refined to the level

above the introduction of PL/1 statements. In this way, I

have tried to show that the approach to understanding and

solving a problem is not entirely dependent upon the

programming language to be used. The final refinements

given could be used to write programs in any general purpose

language.

The refinements are intended for use as models of

program development, but there are other solutions which may

be quite satisfactory. Instructors may choose to

demonstrate this fact by presenting alternate methods of

solution for one or more problems.

In the first example the problem is refined into a

complete PL/1 program. The program uses some of the more

complex PL/1 concepts, but instructors could easily modify

it for use prior to the introduction of sophisticated PL/1

5

techniques (e. g., LIST I/0 could be used in place of EDIT

I/O) • The format of the program will be as follows:

Comment describing function of program

Program-name: PROCEDURE OPTIONS(MAIN);

Declaration of all variables

Program statements

END: /* Program-name */

The examples selected for refinement fall into three

categories: simple business applications, simulation, and

file processing. There are two, examples in each category.

The first example in simple business applications

involves calculating depreciation on fixed assets. The

problem is rela ti vel y easy to solve, and it serves mainly as

a vehicle for introducing the method of stepwise refinement.

The second example involves calculating various

financial ratios. This problem is much more complex than

that developed in the first example because the user has

many options available. The problem becomes one of writing

an interpreter for a special-purpose language.

The third and fourth problems involve simulation. The

game of craps is simulated in the third example. It has

been chosen to demonstrate the use of a random number

generator. Because students show great interest in playing

qames on the computer, they can be expected to follow the

class discussion of the problem very carefully, learning

about problem refinement and simulation at the same time.

6

The fourth example is much more complex, but not too

difficult if the previous example is understood. It

involves simulating activity in a store to determine the

optimum number of checkout counters. A great deal of

clarification is needed before the problem specification can

be understood. This problem is excellent for demonstrating

the necessity of working a few examples before plunqinq into

the refinement.

The problems selected for file processing are common

business problems. The first of these is an inventory

problem. The problem clarification and discussions of input

and output are emphasized.

The sixth example is a payroll problem. Most students

find payroll concepts very easy to understand, but the

example demonstrates that there may be a qreat deal more to

a problem than is first realized. The level of complexity

must be controlled by the problem solver, and is virtually

unlimited by the problem specification.

A list of additional problems is provided in the

appendix. These problems are suitable for class assignments

or term pro;ects. It is my hope that more daring

instructors will use these problems for class examples, in

the same spirit as Phaedrus, in ~g~ ~nd thg !Ii Qf

He felt that by exposing classes to his own
sentences as he made them, with all the misgivings
and hang-ups and erasures, he would give a more

--- honest picture of what writinq was like than by
spendinq class time pickinq nits in completed
student work or holdinq up the completed works of
masters for emulation.

7

8

~...J._ll~m;:eciatiQn

In the course of providinq qoods and services, most

businesses acquire relatively lonq-lived resources, such as

buildinqs, machinery, etc. These resources are called ~!~~~

With some exceptions, fixed assets have a limited

useful life. For example, a car cannot be expected to run

forever, nor can a small warehouse be expected to satisfy a

qrowinq company's needs for a lonq period of time. Durinq

the time a fixed asset is used, the cost of the asset may be

charqed as an expense for tax pur poses. The accounting

process for reducing the value of a fixed asset by the

estimated value "used up" is called depreciation.

In order to determine the depreciation on a fixed asset

durinq a year, a company must determine four things:

1. cost of the asset. This is the purchase price of

the asset or the cost incurred in buildinq the asset in­

house.

2. Service life of the asset. This is the period of

time durinq which the asset will be useful to the company.

3. Salvage value of the asset. This is the resale

value of the asset at the en'd of its useful life.

4. Method of depreciation. There are several

techniques for computinq depreciation. In practice, we want

to select the method which most accurately reflects the

9

usaqe of the asset. In this problem, we will compare three

commonly used methods of depreciation.

£tQ~1~-~~£i!i£atiQn

Compute the depreciation cost in each year of a fixed

asset's service life. Use the following methods of

depreciation for each asset:

1. Straighi_Li~ : This method treats an asset as if

it provides the same amount of service in each year of

its useful life. We charqe an equal amount of the

cost each year.

Dep/yr = (cost - salvage value)/(service life).

An asset is often more useful in its early years than

at the end of its service life. When this is the case, we

want to use a depreciation method which reflects the greater

usefulness in early life. The two methods below are

examples of such methods:

2. Qou~le_necl!n!nB-~~1~n£~ : This method qives the

fastest depreciation allowed under present tax laws.

The depreciation each year is computed by taking a

percentage of the book value of the asset at the

beginning of the year. The book value is defined as

the cost of the asset less accumulated depreciation.

The percentage used (rate of depreciation) is double

the rate used in the straight line method. Thus if an

asset has a useful life of ten years, the depreciation

10

ratg 110der the straiqht line method would be 10"/vear;

under the double declininq balance method, the rate

would be 20"/vear. Depreciation in the last year is

the difference between the book value and the salvage

value.

Dep in vr 1 = (2/life) * cost

Dep in vr 2 = (2/life) * (cost - accum dep)
•
•
•

Dep in last vr = cost - accum dep - salvage value

assets that do not lose their usefulness as quickly as

the double declininq balance method would indicate.

sum = 1 + 2 + ••• t (life-1) + life.

Dep in yr 1 = (life/sum J*(cost- salvage value)

Dep in yr 2 = ((life-1)/sum)*(cost- salvaqe value)
•

•
Dep in last yr = (1/sum)*(cost- salvaqe value)

f££Ql~~-cl~£ifi£atiQn

Eg.!!!.E.l~§

It is important to impress upon students the need for

workinq examples before startinq the problem refinement.

The details of the problem become clear once we calculate

depreciation usinq the methods specified. Instructors may

find it useful to work this example for all ten years of the

asset's life.

-.,_,_ -,

11

Assume an asset costs $1100, has an expected useful

life of 10 years, and has a salvage value of $100. The

accumulated depreciation at the end of ten years will be

cost salvage value, which is $1000. This is the same for

each of the three methods.

Using the equation given in the problem specification,

depreciation/year= (1100-100)/10 = $100/year.

QQyQle Qeclining_ns!~£~_Heth2£

The rate of depreciation is 2/10 = .20.

The undepreciated value in the first year is $1100.

Depreciation in the first vear = .20 * $1100 = $220.

The undepreciated value in the second year is $1100-220

= $880. Depreciation in the second year = .20 * 880 = $176.

Continuing in the same manner, the undepreciated value

after 9 vears is $1~7. The depreciation in the tenth vear

will be $1~7-100 = $~7.

SuJ!!_ofJears• Digits l!§thod

The life of the asset is 10 vears. The sum of the

year's digits is 1t2t3t ••• t9t10=55. A better method for

calculating the sum of the years• digits is to use the

formula

1t2t ••• tN=N(Nt1)/2,

where N is the number of vears.

' Depreciation in vear 1 = ((10-1+1)/55) * 1000 = $182.

12

Depreciation in year 2 = ((10-2+1)/55) * 1000 = $164.

And so forth.

In working with the example, we saw that the input

information must include the purchase cost, expected useful

life, and salvage value of the asset. All other information

needed can be computed from this information. In addition,

we will include the name of the asset.

Althouqh the problem specification indicates that we

need only compute depreciation schedules for one asset, the

program will be much more useful if we modify it to work for

more than one asset.

QUtEY!

For each asset, we must print the amount of

depreciation each year of its expected useful life, using

each of the three methods. In addition, we will print the

accumulated depreciation for each year using each method.

RIQQ!§~_Re1in~m~n!

Havinq investigated the problem requirements, we will

now develop a solution to the problem. We will do this by

refininq the problem into a sequence of subproblems. The

sequence of subproblems must have the property that solving

the sequence is equivalent to solving the oriqinal problem.

13

The value of stepwise refinement is that we can

consider each subproblem as a problem in itself and refine

it further. By doinq this we can break the oriqinal problem

into a sequence of subproblems, each of which can be readily

solved. Let's begin with a statement of the basic problem.

/* COMPUTE DEPRECIATION ON FIXED ASSFTS */

Since we expect more than one asset, this will be a

repetitive process. We can refine each repetition into two

subproblems:

/* COMPUTE DEPRECIATION ON FIXED ASSETS */

I* REPEAT UNTIL ALL ASSETS. PROCESSED */

/* READ NAME,COST,LIFE,SALVAGE VALUE OF ASSET *I

I* COMPUTE DEPRECIATION ON THIS ASSET */

We will not refine the read subproblem further before

we write proqram statements. We can now concentrate on

I* COMPUTE DEPRECIATION ON THIS ASSET */. We will want to

compute the depreciation for each year, comparing the three

methods. This is a repetitive process, and for each year we

will want to compute the depreciation and accumulated

depreciation, and print the results.

/* COMPUTE DEPRECIATION ON THIS ASSET */

I* REPEAT FOR EACH YEAR OF USEFUL LIFE */

I* COMPUTE DEPRECIATION FOR CURRENT YEAR */
/* AND ACCUMULATED DEPRECIATION */

/* PRINT RESULTS */

14

To refine /* COMPUTE DEPRECIATION FOB CUBRENT YEAR AND

ACCUMULATED DEPRECIATION */, we can simply indicate that we

must compute depreciation by three methods.

I* REPEAT FOR EACH YEAR OF USEFUL LIFE *I

I* COMPUTE DEPRECIATION FOR CURRENT YEAR *I
I* AND ACCUMULATED DEPRECIATION *I

I* STRAIGHT LINE METHOD *I

I* DOUBLE DECLINING BALANCE METHOD *I

I* SUM OF YEARS' DIGITS METHOD *I

I* PRINT RESULTS *I

We will not refine the subproblems for each of the

methods of depreciation at this point. we can do so when we

are ready to write proqram statements.

The last refinement needed before we can write the
'

proqram is to indicate what we want to print.

I* PRINT RESULTS *I

I* PRINT DEPRECIATION AND ACCUMULATED *I
I* DEPRECIATION FOR EACH METHOD *I

The refinement up to this point is listed below:

I* COMPUTE DEPRECIATION ON FIXED ASSETS *I

I* REPEAT UNTIL ALL ASSETS PROCESSED *I

I* READ NAME,COST,LIFE,SALVAGE VALUE OF ASSET *I

I* COMPUTE DEPRECIATION ON THIS ASSET *I

I* REPEAT FOR EACH YEAR OF USEFUL LIFE *I

I* COMPUTE DEPRECIATION FOR CURRENT YEAR *I
I* AND ACCUMULATED DEPRECIATION *I

I* STRAIGHT LINE METHOD *I

I* DOUBLE DECLINING BALANCE METHOD *I

I* SUM OF YEARS' DIGITS METHOD *I

I* PRINT RESULTS *I

I* PRINT DEPRECIATION AND ACCUMULATED *I
I* DEPRECIATION FOR EACH METHOD *I

f~!l.m_ De v~J,QEmen t

15

Now that we have a detailed outline of the problem

solution, we can develop a complete PL11 proqram. We will

use the comment outline as the skeleton for the PL11

proqram.

As mentioned in the introduction, our proqram will have

the followinq structure:

comment describinq function of proqram

Proqram-name:PROCEDURE OPTIONS(MAIN);

Declaration of all variables

Proqram statements

END; I* Proqram-name *I

We will take the first comment in the outline as the

description of the proqram. Selectinq a reasonable name for

our proqram, we can continue the proqram development, as

follows:

I* COMPUTE DEPRECIATION ON FIXED ASSETS *I

DEPREC:PROCEDURE OPTIONS(MAINl;

I* REPEAT UNTIL ALL ASSETS PROCESSED *I

I* R~AD NAME,COST,LIFE,SALVAGE VALUE OF ASSET *I

I* COMPUTE DEPRECIATION ON THIS ASSET *I

I* REPEAT FOR EAC3 YEAR OF USEFUL LIFE *I

I* COMPUTE DEPRECIATION FOR CURRENT YEAR *I
I* AND ACCUMULATED DEPRECIATION *I

I* STRAIGHT LINE METHOD *I

I* DOUBLE DECLINING BALANCE METHOD *I

I* SUM OF YEARS' DIGITS METHOD *I

I* PRINT RESULTS *I

I* PRINT DEPRECIATION AND ACCUMULATED *I
I* DEPRECIATION FOF EACH METHOD *I

END; I* DEPREC *I

The first design decision comes when we look at

I* REPEAT UNTIL ALL ASSETS PROCESSED *I

I* READ NAME,COST,LIFE,SALVAGE VALUF OF ASSET *I

I* COMPUTE DEPRECIATION ON THIS ASSET */

16

Because this is a repetitive process, we will want to use a

DO loop. There are three wavs we can determine when to exit

from the loop.

1. count the number of assets to be processed, and

include the count as the first item in the input: use

the count to control the number of items read and

processed.

We would like to avoid this method because counting is a

tedious chore, and miscounting would cause errors in the

processing.

2. Add a dummv item as the last item in the input.

17

When this item is read, we know that all assets have

been processed.

This method is preferable to the first, but it can only be

used if we can find a dummy value which would never appear

as valid input to the program. While this method is

suitable for this problem, instructors will find the third

method useful in introducing the ENDFILE condition. In

addition, the instructor can discuss the concept of

maintaininq the integrity of the file should we allow

invalid data in our asset file if it can be avoided?

3. Stop processing when there are no more assets to

be processed.

This is the most natural way to stop the program. The PL/1

ENDFILE condition will signal that there is no more data in

the input stream. We will use the RNDFILE condition to

terminate the loop.

Usinq the ENDFI LE condition to terminate the loop, we

have two possibilities:

1. ON ENDFILE go out of loop

DO WHILE (forever) ;

2.

read asset data

process this asset

END-:

read asset data

DO WHILE (ENDFILE condition not raised);

process this asset

18

read next asset data

END;

We will select the second method because it reflects the

basic iterative process:

1. Set the condition (read asset data)

2. Test the condition (DO WHILE •••)

3. Perform the body of the loop (process this asset)

4. Modify the value of the condition (read next asset

data)

5. Go back to step 2. (END)

Havinq selected the approach we will use, we can now

refine our proqram to the followinq level:

I* COMPUTE DEPRECIATION ON FIXED ASSETS *I

DEPREC:PROCEDURE OPTIONS(MAIN);

DECLARE ANOTHER_ASSET FIXED DECIMAL; I* STOP FLAG *I

ANOTHER_ASSET = 1;
ON ENDFILE (S YSIN) ANOT BER_ASSET = 0;

I* FEAD NAME,COST,LIFE,SALVAGE VALUE OF ASSET *I

I* REPEAT UNTIL ALL ASSETS PROC~SSED *I

DO WHILE (ANOTHER_ASSET=1);

I* COMPUTE DEPRECIATION ON THIS ASSET *I

I* REPEAT FOR EACH YEAR OF USEFUL LIFE *I

I* COMPUTE DEPRECIATION FOF CURRENT YEAR *I
I* AND ACCUMULATED DEPRECIATION *I

I* STRAIGHT LINE METHOD *I

I* DOUBLE DECLINING BALANCE METHOD *I

I* SUI! OF YEARS' DIGITS METHOD *I

I* PRINT RESULTS *I

I* PRINT DEPRECIATION AND ACCUMULATED *I
I* DEPRECIATION FOR EACH METHOD *I

I* READ NAME,COST,LIFE,SALVAGE VALUE OF ASSET */

END;

END; I* DEPREC *I

19

In the refinements that follow, we will list only the

parts of the proqram that are beinq refined and the

d<\lclarations of the variables introduced in the refinements.

These declarations and refinements will then be combined and

collated fo form the final proqram.

We can now refi~e I* RFAD NAME,COST,LIFE,SALVAGE VALUE

OF ASSET. *I· lie will select variable names of NAME, COST,

LIFE, and SALVAGE for the values to be read. NAME will hold

character strinqs of lenqth up to 15 characters; LIFE will

hold inteqer values. We are not sure what the largest cost

can be, so we will declare COST and SALVAGE as FLOAT

DECIMAL.

We can use LIST or EDIT input. To eliminate the use of

quotes around asset names, we will use EDIT input. The

format used must be reasonable for the values to be read.

DECLARE NAME CHARACTER(15); I* ASSET NAME *I
DECLARE COST FLOAT DECIMAL; I* INITIAL COST OF ASSET */
DECLARE LIFE FIXED DECIMAL; /* YEARS ASSET CAN BE USED*/
DECLARE SALVAGE FLOAT DECIMAL; /* SALVAGE VALUE *I

I* READ NAME,COsT,LIFE,SALVAGE VALUE OF ASSET */
GET EDIT (NAME,COST,LIFE,SALVAGE)

(COL(1),A(15) ,X(1) ,F(8) ,X(l) ,F(2) ,X(1),F(6));

20

This refinement will be used in both places in the program

where the read comment occurs. The variables will be

declared only once, however.

We can nov refine I* REPEAT FOR EACH YEAR OF USEFUL

LIFE *I· This is a repetitive process and will be replaced

by a DO loop. Although we can use a DO WHILE loop, the

self,·incrementing loop will better reflect the activity.

DECLARE YEAR FIXED DECIMAL;

I* REPEAT FOR EACH YEAR OF USEFUL LIFE *I

DO YEAR : 1 TO LIFE;

/* COMPUTE DEPRECIATION FOR CURRENT YEAR *I
/* AND ACCUMULATED D,EPRECIATION *I

I* STRAIGHT LINE METHOD *I

I* DOUBLE DECLINING BALANCF METHOD */

I* SUM OF YEARS' DIGITS METHOD */

I* PRINT RESULTS */

I* PRINT DEPRECIATION AND ACCUMULATED *I
I* DEPRECIATION FOR EACH METHOD *I

END;

We can now insert the code for computing depreciation

and accumulated depreciation. The code follows from the

formulas given for each method of depreciation.

(Instructors may want to expand the comments used in declare

statements since they will have 72 card columns available

rather than the 60 column limitation of this paper.)

DECLARE STRT_DEP FLOAT DECIMAL; /* STRAIGHT-LINE */

'

21

DECLARE TOTAL_STPT FLOAT DECIMAL; /* ACCUMULATED STRT */
DECLARE BOOK_VALUE FLOAT DECIMAL; I* COST-DEPRECIATION*/
DECLARE DBL_DEP FLOAT DECIMAL; /* DOUBLE DECLINING */
DECLARE TOTAL_DBL FLOAT DECI~AL; /* ACCUMULATED DBL */
DECLARE SU!!_OF_DGTS FIXED DECIMAL; /* 1t2+. •• tLIFE */
DECLARE DGTS_DEP FLOAT DECIMAL; I* SUM OF YEARS' */
DECLARE TOTAL_DGTS FLOAT DECIMAL; I* ACCUMULATED YEARS*/

/* COMPUTE DEPRECIATION FOR CURRENT YEAR */
I* AND ACCUMULATED DEPRECIATION */

/* STRAIGHT LINE METHOD */

STRT_DEP=(COST-SALVAGE)/LIFE;
TOTAL_STRT = TOTAL_STRT + STRT_DEP;

/* DOUBLE DECLINING BALANCE METHOD */

BOOK_VALUE = COST - TOTAL_DBL;
IF YEAR ..,: LIFE

THEN DBL_DEP=2*BOOK_VALUEILIFE;
ELSE DBL_DEP=BOOK_VALUE-SALVAGE;

TOT AL_DBL=TOT AL_D BL t DBL_DEP;

I* SUM OF YEARS' DIGITS METHOD */
SU!I_OF_DGTS=LIFE* (LIFEt1)12;
DGTS_DEP= (LIFE-YEARt1) *(COST-SALVAGE)

/SUM_OF_DGTS;
TOTAL_DGTS=TOTAL_DGTS t DGTS_DEP;

We are not vet finished with this part of the proqram.

The problem is that we must initialize the values for

accumulated depreciation. We will want them to be set to 0

each time we process a new asset. The initialization will

have to come before I* REPEAT FOR EACH YEAR OF USEFUL LIFE

*/, but after DO WHILE (ANOTHER_ASSFT=1).

DO WHILE (ANOTHER_ASSET=1);

/* COMPUTE DEPRECIATION ON THIS ASSET */

TOTAL_STRT=O; TOTAL_DBL=O; TOTAL_DGTS=O;

I* FEPEAT FOR EACH YEAR OF USEFUL LIFE *I

DO YEAR = 1 TO LIFE;

I* COMPUTE DEPRECIATION FOR CURRENT YEAR *I
I* AND ACCUMULATED DEPRECIATION *I

I* STRAIGHT LINE METHOD *I

STRT_DEP={COST-SALVAGE)ILIFE;
TOTAL_STRT = TOTAL_STRT + STRT_DEP;

I* DOUBLE DECLINING BALANCE METHOD *I

BOOK_VALUE = COST - TOTAL_DBL;
IF YEAR ,= LIFE

THEN DBL_DEP=2*BOOK_VALUEILIFE;
ELSE DBL_DEP=BOOK_VALUE-SALVAGE;

TOTAL_DBL=TOTAL_DBL + DBL_DEP;

I* SUM OF YEARS' DIGITS METHOD *I
SUM_OF_DGTS=LIFE* (LIFE+1l 12;
DGTS_ DEP= (LIFE-YEAR+1l *(COST-SALVAGE)

ISUM_OF_DGTS;
TOTAL_DGTS=TOTAL_DGTS + DGTS_DEP;

I* PRINT RESULTS *I

I* PRINT DEPRECIATION AND ACCUMULATED *I
I* DEPRECIATION FOR EACH METHOD *I

END;

22

We can now add the PLI1 statements to print our

results. Instructors should stress the fact that the output

must be carefully laid out rather than haphazardly printed.

we want the output to be in a readable format, with

variables printed in the most useful order.

I* PRINT DEPRECIATION AND ACCUMULATED *I
I* DEPRECIATION FOR EACH METHOD *I

PUT SKIP EDIT {YEAR,STRT_DEP,DBL_DEP,
DGTS_DEP,TOTAL_STRT,
TOTAL_DBL,TOTAL_DGTS)

(F(5) ,X(2) ,F(11,2) ,X{4),
F (11 , 2) , X (7) , F (11, 2) ,
COL(56),F(11,2),COL(71),

23

F (11, 2) , COL (9 0 I , F (11, 2)) ;

The output will not be very useful unless ve indicate

which asset we are processing and print headings over each

column. This will have to be done before the printing of

the values. We can print headings before ve compute the

depreciation for an asset.

I* PRINT HEADING *I
PUT SKIP(]) EDIT (NAME, 1 COST= 1 ,COST,

1 SERVICB LIFE= 1 ,LIFE, 1 YEARS 1 ,

'SALVAGE VALUE= 1 ,SALVAGE)
(A,X(3) ,A,F(8),X(3) ,A,F(2),
X (1) ,A,X (3), A,F (6));

PUT SKIP EDIT ('CURRENT DEPRECIATION',
'ACCUMULATED DEPRECIATION')

(COL (19) ,A,COL (67) ,A);

PUT SKIP EDIT (1 STRAIGHT 1 , 1 DOUBLE DECLINING',
'SUM OF YEARS 111 , 1 STRAIGHT 1 ,

'DOUBLE DECLINING 1 , 1 SUM OF YEARS''')
(COL (10) ,A, COL (21) ,A,COL (40) ,A,
COL(58),A,COL(69),A,COL(89),A);

PUT SKIP EDIT. ('YEAR 1 , 1 LINE',' BALANCE',' DIGITS t,
1 LINE 1 ,'BALANCE 1 , 1 DIGITS')

(COL(]) ,A,COL(12) ,A,COL(24),A,COL(43),
A,COL(60),A,COL(72),A,COL(92),A);

I* COMPUTE DEPRECIATION ON THIS ASSET *I

We nov have a complete PLI1 program for this problem.

However, there are several changes we may want to make. In

order to make the program more efficient, we could reduce

output by printing headings only once per page. This would

involve the use of the ENDPAGE condition and would not be

advisable in an introd~ctory co~rse.

24

We will, however, want to remove calculations from

loops where possible. In this way, we can perform

calculations once instead of manv times. The place to look

is in the innermost loop, DO YRAR=1 TO LIFE.

Under /* STRAIGHT LINE METHOD */, we are computing
'

STFT DEP = (COST- SALVAGE)/LIFE. Since COST, SALVAGE, and

LIFE do not change values during the computation, we can

move this statement outside the loop.

In computing double declining balance depreciation, we

compute DBL_D~P = 2*BOOK_VALUE/LIF~. We can ~t

DBL_FATE=2E0/LIFE outside the loop, and change the

calculation to DBL_DEP = DBL_RATE*BOOK_VALUE. Note that we

must use 2EO/LIFE rather than 2/LIFE because we want a

floatinq point result.

The final chanqes occur in computinq sum of years•

diqits depreciation. We can move the calculation of

SUM_OF_DGTS outside the loop. Furthermore, we can compute

USEFUL_VALUE = COST - SALVAGE outside the loop and change

the calculations for STFT_DEP and DGTS_DEP to use

USEFUL_VALUE rather than COST - SALVAGE.

After addinq DBL_FATE and USEFUL_VALUE to the declare

statements, we can group the declare statements so that thev

are more readable.

The final program appears below.

I* COMPUTE DEPRECIATION ON FIXED ASSETS */

DEPPEC:PROCEDURR OPTIONS(MAIN);

DECLARE NAME CHARACTER(15), I* ASSET NAME *I
(COST, I* INITIAL COST OF ASSET *I
SALVAGE) I* SALVAGE VALUE OF ASSET *I

FLOAT DECIMAL,
LIFE FIXED DECIMAL, I* YEARS ASSET USEFUL *I

(STRT_DEP, /* STRAIGHT LINE DEPRECIATION *I
TOTAL_STRT, I* AND ACCUMULATED DEPRECIATION *I

DBL_DEP, I* DOUBLE DECLINING BALANCE *I
TOTAL_DBL, I* AND ACCUMULATED DEPRECIATION *I

DGTS_DEP, I* SUM OF YEAFS' DIGITS DEP *I
TOTAL_DGTS, I* AND ACCUMULATED DEPRECIATION *I

25

BOOK_VALUE, I* COST-ACCUMULATED DEPRECIATION *I
DBL_RATE, I* HIGHEST ALLOWABLE RATE *I

I* OF DEPRECIATION *I
SUM_OF_DGTS, I* 1t2t ••• tLIFE *I
USEFUL_VALUE) I* COST-SALVAGE VALUE *I

FLOAT DECIMAL,

ANOTHER_ASSET FIXED DECIMAL, I* END OF DATA *I
YEAR FIXED D~CIMAL; I* LOOP INDEX VARIABLE *I

ANOTHER_ASSET = 1;
ON ENDFILE(SYSIN) ANOTHER_ASSET = 0;

I* READ NAME,COST,LIFE,SALVAGE VALUE OF ASSET *I
GET EDIT (NAME,COST,LIFF.,SALVAGE)

(COL (1) , A (15) , X (1) , F (8) , X (1) 1 F {2) , X (1) , F (6)) ;

I* REPEAT UNTIL ALL ASSETS PROCESSED *I

DO WHILE (ANOTHER_ASSET=1);

I* PRINT HPADING *I
PUT SKIP(3) .EDIT (NAME, 1 COST= 1 ,COST,

'SERVICE LIFE=',L!FE, 1 YEARS 1 ,

'SALVAGE VALUE= 1 ,SALVAGE)
(A, X (3) , A, F (8) , X (3) , A, F (2) ,
X (1), A, X (3), A, F (6));

PUT SKIP EDIT ('CURRENT DEPRECIATION',
'ACCUMULATED DEPRECIATION')

(COL (19), A, COL (67), A);

PUT SKIP EDIT ('STRAIGHT','DOUBLE DECLINING',
1 SUM OF YEARS''','STRAIGHT 1 ,

'DOUBLE DECLINING 1 , 1 SUM OF YEARS''')
(COL (10) ,A, COL (21) ,A,COL (40) ,A,
COL(58),A,COL(69),A,COL(89),A);

26

PUT SKIP EDIT ('YEAR',' LINE',' BALANCE',' DIGITS',
'LINE',' BALANCE',' DIGITS')

(COL(3) ,A,COL(12),A,COL(24),A,COL(43),
A,COL(60) ,A,COL(72) ,A,COL (92) ,A);

I* COMPUTE DEPRECIATION ON THIS ASSET *I

TOTAL_STRT=O; TOTAL_DBL=O; TOTAL_DGTS=O;

USEFUL_ VALUE=COST-SALVAGE;
DBL_RATE=2EOILIFE;
SUM_OF_DGTS=LIFE*(LIFE+1)12;

I* STRAIGHT LINE DEPRECIATION PEP YEAR *I
STRT_DEP=US EFUL_ VA LUEILIFE;

I* REPEAT FOR IACR YEAR OF USEFUL LIFE *I

DO YEAR = 1 TO LIFE;

I* COMPUTE DEPRECIATION FOR CURRENT YEAR *I
I* AND ACCUMULATED DEPRECIATION *I

I* STRAIGHT LINE METHOD *I
TOTAL_STRT = TOTAL_STRT + STRT_DEP;

I* DOUBLE DECLINING BALANCE METHOD *I

BOOK_ VALUE = COST - TOTAL_DBL;
IF YEAR ,= LIFE

THEN DBL_DEP=DBL_FATE*BOOK_VALUE;
ELSE DBL_DEP=BOOK_VALUE-SALVAGE;

TOTAL_DBL=TOTAL_DBL + DBL_DEP;

I* SUM OF YEARS' DIGITS METHOD *I
DGTS_DEP=(LIFE-YEAR+1)*USEFUL_VALUE

ISU!'J_OF_DGTS;
TOTAL_DGTS=TOTAL_DGTS + DGTS_DEP;

I* PRINT DEPRECIATION AND ACCUMULATED *I
I* DEPRECIATION FOR EACH METHOD *I

PUT SKIP EDIT (YEAR,STRT_DEP,DBL_DEP,
DGTS_DEP,TOTAL_STFT,
TOTAL_DBL,TOTAL_DGTS)

(F(5),X(2) ,F(11,2),X(4),

END;

F (11, 2) , X (7) , F (11 , 2) I

C01(56) ,F(11,2) ,COL(71),
F (11, 2) , COL (9 0) , F (11 , 2)) ;

I* BRAD NA!'!E,COST ,LIFE, SALVAGE VALUE OF ASSET */
GET EDIT (NAME,COST,LIFE,SALVAGE)

21

(COL (1) , A (15) , X (1) , F (8) , X (1) , F (2) , X (1) , F (6)) ;

END;

END; /* DEPREC */

28

Financial analysis revolves around two major accountinq

reports- the firm's balance sheet and its income statement.

The balance sheet is a statement of the firm's financial

condition at a specified point in time (e.q. the end of the

year). The income statement is a record of the firm's

activity durinq a period of time (e.q. one year). Financial

analysts relate the two reports by means of financial

ratios.

A financial analyst may be interested in one particular

ratio. For instance, he may want to know the return on

investment for a firm, in which case, he would look at the

return on net worth ratio (net profit after taxes/net

worth) •

In some situations the analyst may be interested in a

qroup of ratios. For instance, before a banker qives a

short term loan, he may want to know how quickly the firm's

assets can be turned into cash and whether this cash can be

used to repay the loan. For this purpose, he will look at

the ratio of current assets (assets which are expected to be

converted into cash in a short period of time) to current

liabilities (debts which must be paid in a short period of

time). He also may want to look at the ratio of (current

assets - inventory) 1 current liabilities.

29

The finance executive in a company will want to see how

his company compares to others in the same industry. To do

this, he can compare his company's ratios with the averages

of the financial ratios of companies in his industry.

We will deal with a problem to compute the more

commonly used ratios.

frobl~B-~~ci!i£Ation

Compute financial ratios requested by the user. The

ratios are divided into the following categories:

1. Liquidi!LR!1iQ2

Current: {current assets) 1 (current liabilities)

Quick: (current assets

liabilities)

2. ~~I~9~-R~!i22

inventory) 1 (current

Debt: {total liability) 1 (total assets)

Interest: (profit before taxes + interest charges) 1

(interest charqes)

3. Agtivij;y_RA!i22

Inventory Turnover: sales 1 inventory

Collection Period: receivables / (sales per day)

Fixed Asset Turnover: sales 1 {fixed assets)

Total Asset Turnover: sales 1 (total assets)

4. f.J;ofi!A1!ili!Lli.S!i22:

Profit Marqin on Sales: (net profit after taxes) I

sales

30

Feturn on Total Assets: (net profit after taxes) I

(total assets)

Return on Net worth: (net profit after taxes) I

(net worth)

The ratios to be calculated are standard ratios used in

mana qerial finance. The fiqures used in the ratios come

from balance sheets and income statements. The breakdown is

as follows:

Balance Sheet
(at a specified

.I!.Q!nt in_.Um~J

receivables
inventory
current assets
fixed assets
total assets
current liabilities
total liabili tv
net worth

Income Statement
(durinq the
§.l!~cifj,ad_.!!~£i.Qg)

sales
interest charges
profit before taxes
net profit after taxes

Based on our discussion of the uses of the ratios, we

can anticipate the requests we will receive from users. We

should hav,e the capability of printinq one ratio, a qroup of

ratios, or all the ratios. In addition, the user should be

able to specify the industry average for any ratio

requested, and our proqram should be able to print the

companv ratio alongside the industry average.

31

We can expect the user to make more than one request,

so we should write the program in such a way that many

requests can be processed. It is also possible that the

user will want to compute ratios for more than one company,

so we should allow him to read values from more than one set

of financial statements.

ll!El!1

The input will consist of commands to calculate various

ratios. The previous discussion indicates that we should

supply command names for each group of ratios (e.g. a

command named LIQUIDITY would require that we print the

current ratio and the quick ratio). commands should specify

whet her the industry average is to be printed.

In addition, we must supply a command to read balance

sheet and income statement figures. We will also need to

read the industry averages.

QUti?.!!i

we should print the name and value of every ratio we

compute. ilhen a group of ratios is requested, we should

print the name of the group, and the names and values of the

ratios in the group. ile should also print the industry

average when it is requested.

f~QR!~!-B~inem~n.t

A straightforward statement of the problem is

/* COMPUTE FINANCIAL BATIOS *I·

32

This is a repetiti•e proble• which can be broken into two

parts.

I* CO~PUTE FINANCIAL RATIOS */

/* R~PEAT UNTIL NO ~ORE COMMANDS */

I* FRAD A COMMAND */

I* EXECUTE THE COM~AND */

The problem /* EXECUTE TRE COMMAND */ can be broken

into parts accordinq to the three basic types of co•aands.

I* EXECUTE THE COMMAND */

I* COMMANDS TO READ DATA */

/* SINGLE RATIO COMMANDS */

I* GROUP COMMANDS */

There are three commands to read data. The commands

and the information re a d for each of them are qiven in the
\

next refine ment.

I* COMMANDS TO READ DATA * /

I* BALANCE SHEET COMMAND */
'

/* Rf~D VALUES FOR RECEIVABLES,INVENTORY, */
I* CURRENT ASSETS, FIXED ASSETS, *I
I* TOTAL ASSETS, CUFRENT LIABILITIES, */
I* TOTAL LIABILITY, NET WORTH */

I* PRINT NAMES AND VALUES OF ITEMS READ */

I* INCOME STATEMENT COM MAND */

I* FEAD VALUES FOR SALES,INTFREST CHARGES,*/
I* PROFIT BEFORE TAXES, */
I* PROFIT AFTER TAXES */

33

I* PRINT NAMES AND VALUES OF ITEMS READ *I

I* INDUSTRY AVERAGES COMMAND *I

I* READ INDUSTRY AVERAGES FQF ALL RATIOS *I

The second type of comaand asks for a sinqle ratio to

be computed. There will be a routine for each ratio, but

the refinement of each is the same.

I* SINGLE RATIO COMMANDS *I

I* PRINT NAME OF RATIO *I

/* COMPUTE AND PRINT VALUE OF RATIO *I

I* IF REQUESTED, PRINT INDUSTRY AVERAGE *I
I* FOR RATIO *I

The last qroup contains commands to execute more than

one ratio. The qroups confora to the types of ratios as

indicated in the problem specification.

I* GROUP COMM~NDS */

I* LIQUIDITY RATIOS *I

I* LEVERAGE RATIOS *I

I* ACTIVITY RATIOS *I

I* PROFITABILITY RATIOS */

/* ALL RATIOS *I

We aust now refine each of the qroup headinqs. There

are two essential activities in each qroup: print the name

of the qroup, and compute the ratios included in each qroup.

When we co•pute each ratio, we will perform the saae

34

activities as we do when the command for that ratio is

qi ve n. It is certainly worth pointinq out to the students

that if we use subroutines for the sinqle ratios, this

seqment of the proqram can be written almost exclusively

with subroutine calls.

I* LIQUIDITY RATIOS *I

I* PRINT NAIIE OF GROUP *I

I* COMPUTE CUFRENT AND QUICK RATIOS *I

I* LEVERAGE RATIOS *I

I* PRINT NAME OF GROUP *I

I* COMPUTE DEBT AND INTEREST RATIOS *I

I* ACTIVITY RATIOS *I

I* PRINT NAME OF GROUP *I

I* COMPUTE INVENTORY TURNOVER, COLLECTION *I
I* PERIOD, FIXED ASSET TURNOVER, *I
I* TOTAL ASSETS TURNOVER *I

I* PROFITABILITY RATIOS *I

I* PRINT NAME OF GP.OUP *I

I* COMPUTE PROFIT MARGIN ON
I* RETURN ON TOTAL ASSETS,
I* RETURN ON NET WORTH

I* ALL RATIOS *I

SALES, *I
*I
*I

I* COMPUTE LIQUIDITY, LEVERAGE, ACTIVITY, *I
I* AND PROFITABILITY RATIOS *I

The complete refinement is listed below.

I* COMPUTE FINANCIAL RATIOS *I

I* REPEAT UNTIL NO MORE COMMANDS *I

I* READ A COMMAND *I

~·

35

/* EXECUTE THE COMMAND */

I* COMMANDS TO READ DATA *I

/* BALANCE SHFRT COMMAND */

/*READ VALUES FOR FECEIVABLES,INVENTORY, */
I* CURRENT ASSETS, FIXED ASSETS, */
/* TOTAL ASSETS, CURRENT LIABILITIES, */
I* TOTAL LIABILITY, NET WORTH */

/* PRINT NAMES AND V ALOES OF ITEMS READ */

/* INCOME STATEMENT COMMAND */

I* READ VALUES FOB SALES,INTEREST
I* PROFIT BEFORE TAXES,
I* PROFIT AFTER TAXES

CHARGES,*/
*I
*I

I* PRINT NAMES AND VALUES OF ITEMS READ */

I* INDUSTRY AVERAGES COMMAND */

I* READ INDUSTRY AVERAGES FOR ALL RATIOS */

/* SINGLE RATIO COMMANDS */

/* PRINT NAME OF RATIO *I

I* COMPUTE AND PRINT VALUE OF RATIO */

/* IF REQUESTED, PRINT INDUSTRY AVERAGE */
/* FOR RATIO */

I* GROUP COMMANDS *I

I* LIQUIDITY RATIOS */

I* PRINT NAME OF GROUP */

I* COMPUTE CURRENT AND QUICK RATIOS */

/* LEVERAGE RATIOS */

/* PRINT NAME OF GROUP *I

I* COMPUTE DEBT AND INTEREST RATIOS */

I* ACTIVITY PATIOS *I

/* PRINT NAME OF GROUP */

36

I* CO~PUTE INVENTORY TURNOVER, COLLECTION *I
I* PERIOD, FIXED ASSET TURNOVER, *I
I* TOTAL ASSETS TURNOVER *I

I* PROFITABILITY RATIOS *I

/* PRINT NAME OF GROUP *I

/* CO~PUTE PROFIT MARGIN ON SALES, *I
/* RETURN ON TOTAL ASSETS, */
/* RETURN ON NET WORTH *I

/* ALL RATIOS *I

I* COMPUTE LIQUIDITY, LEVERAGE, ACTIVITY, */
I* AND PROFITABILITY RATIOS *I

£rQg~~-~elop!~

The refinement of I* EXECUTE THE COMMAND *I shows what

must be done when we execute a particular command, but it

does not show hov to determine which command must be

executed. There are several possibilities, some of which

are very simple, and some of which are very sophisticated.

The most obvious way to determine which command to

execute involves the use of IF statements. The command read

can be compared to each of the possible command names. When

a match is found, the appropriate subroutine can be called.

If no match is found, an error messaqe should be printed

indicatinq the use of an invalid command name.

/* EXECUTE THE COMMAND *I

I* COMMANDS TO REAO DATA *I

IF command-name = 'BALANCE' THEN
CALL subroutine to read BALANCE SHEET data;

ELSE IF command-name = 'INCOME' THEN
CALL subroutine to read INCOME STATEMENT data;

37

/* SINGLE RATIO COMMANDS */

ELSE IF command-name = 'QUICK' THEN
CALL subroutine to compute QUICK RATIO;

•

/* GROUP RATIOS */

ELSE IF command-name = 'LIQUIDITY' THEN
CALL subroutine to compute LIQUIDITY RATIOS;

•

ELSE print invalid command name message;

Instructors may choose to use the above control

structure with or without using subroutines. It may be

useful to use this example before subroutines are introduced

to the class and modify it to use subroutines later. In

this way the instructor could give practice in writing

subroutines while demonstrating their value.

If students are already proficient in the use of nested

IF statements, instructors may choose to introduce the use

of label variables or entry variables. While these

techniques could be discussed in class, it may not be

appropriate to use them in assignments in an introductory

class.

Due to incorrect assumptions or changes in the problem

specification, programs used in a business environment often

38

need to be modified many times during their useful life.

one of the advantages of usinq stepwise refinement is that

it simplifies proqram modification.

The most likely change in this program would be the

addition of new ratios. Suppose, for example, that we wish

to add a ratio to determine whether a business has enough

cash on hand to meet its current liabilities. We will call

this ratio CASH, and we will compute it as

CASH= (cash on hand) 1 (current liabilities).

The first modifications to the refinement are under

I* COMMANDS TO READ DATA *I· We will have to read a value

for cash on hand. Because this is an item on the balance

sheet we will modify the Balance Sheet Command to read CASH

ON HAND in addition to tb,e values presently read. Althouqh

we do not have to change the problem refinement of I*

INDUSTRY AVERAGES COMMAND *1, we will have to modify the

actual subroutine so that we read an averaqe for the CASH

ratio.

Since CASH is a new ratio, we will have to add a

subroutine to compute it. It will have the same basic

structure as the other SINGLE RATIO COMMANDS.

It is likely that we will also want to include CASH in

one of the qroups of ratios. It naturally falls into the

category of LIQUIDITY RATIOS.

These are the only changes necessary in the problem

refinement. We will, however, have to modify the control

39

structure to allow execution of the new command. Usinq the

nested IF statements this will simply involve the addition

of a statement to test for the command name CASH.

40

!lost businesses are influenc'3d by events which are not

directly under their control. For example, the rental of

hotel rooms in a resort area is closely related to the

weather durinq the peak season, a factor over which the

hotel industry has very little control. When a business

cannot control events, it is often of qreat importance to be

able to predict their effect.

Simulation is one method used to estimate what will

happen under uncertain conditions. We will demonstrate

simulation techniques in a problem concerned with a popular

qame of chanc-a.

g~ob!§m_~~cifi~~iQn

simulate the plav at a craps game. craps is a game

played with two dice, each of which has faces numbered one

through six. Rolling both dice qives a number ranqinq from

2 to 12. The rules of the qame are as follows: Foll the

dice. If the roll is a 7 or 11, you win the qame. If the

roll is a 2, 3, or 12, you lose the qame. Otherwise the

number rolled is called the £Qln1· Continue rolling the

dice until you win by rollinq the point aqain, or you lose

by rollinq a 7.

41

There are several possible side bets in the game, but

we will restrict ourselves to the basic game as described

above.

The problem specification omits much useful

information, includinq such points as the input, output, or

number of games to play. We will have to make many

assumptions in order to write a satisfactory program. These

assumptions can best be made after looking at several

examples of craps games.

Investigation of the rules indicates that there are

four possible results: win on the first roll, lose on the

first roll, win on some roll after the first roll, or lose

on some roll after the first roll. Following is a set of

examples illustrating the four possible outcomes.

first roll: 11 You win on the first roll.

first roll: 3 You lose on the first roll.

first roll: 6 6 becomes the point,
continue rollinq.

additional rolls: 5,3,11,8,6 You win because the
point vas rolled aqain
before a 7 vas rolled.

first roll: 9 9 becomes the point,
continue rolling.

additional rolls: 6,8,6,7 You lose because 7 vas
rolled before the point
vas rolled again.

42

No input is specified in the problem. It is possible

that we will want to read values for the rolls of the dice,

but this would be recordinq the play at a craps qame rather

than simulatinq it. To simulate play, we should have the

computer "throw the dice" itself. This can be done by usinq

a random number qener~tor. The random number qenerator

should produce two numbers between one and six, one for each

die.

We will use no input to this proqram but will construct

the proqram in such a way that this does not compromise its

versatility. Instructors should emphasize the fact that

input could be used durinq the development and testinq of

the proqram. We could write the proqram and use numbers

from input rather than from a random number qenerator for

th€ rolls of the dice. This would allow us to control the

roll of the dice in such a way that we could test the

proqram to st?e if it behaves as it should when qiven various

sequences of numbers. Once we were sure of the reliability

of the proqram, we could substitute a random number

qenerator in the final proqram. Proper problem refinement

should make the interchanqinq of methods of rollinq the dice

trivial.

43

Qli!!!!J:

As with input, the problem specification says nothing

about the output of the program. What to print and how to

print it are left to our discretion. There are, however,

certain obvious choices for output.

We will certainly want to print how many games were

played, and of these games, how many were won and how many

were lost. In addition, we may want to print the number of

games won as a percentage of the total number of games

played.

Most of the excitement of craps comes from watching the

dice, not ;ust finding out the result of the game. For this

reason, we should also print the value of each roll of the

dice. We should indicate the beginning and end of a game

and whether the game vas von or lost. This information will

also be useful when testing the program.

I~Uinltl<i2.!l

We have not vet decided how long we should play the

qame. There are t~o reasonable stopping criteria. The

first is to play until the number of games won exceeds the

number of qames lost by some amount x, or vice versa. This

would correspond to a plaver starting with x dollars and

playing for one dollar per game until he had lost his

bankroll or doubled it.

44

The second criterion is to set a limit of y games to be

played. This would correspond to a player setting a limit

on the number of games he will play or the amount of time he

will play. There is, however, a more important reason for

setting a maximum number of games, and that is to insure

that the computer program will halt in a reasonable length

of time. Probability theory tells us that eventually the

player must go broke or double his money (stopping .criterion

1); however, the length of time for this to occur may be

arbitrarily long. Due to computer costs, we must be able to

control the amount of time our program runs.

This reason is sufficient in itself, but there is a

much more subtle reason for using the second stopping

criterion. Random number generators do not generate an

arbitrarily lonq sequence of random numbers, but rather, a

series of random numbers that is repeated. Although it is

unlikely, it is certainly possible that the random number

generator used may generate a sequence of numbers such that

the required difference between the number of games won and

the number of games lost is never reached. That is, the

program would never halt.

This discussion indicates that it is imperative that we

use the second stopping criterion (limit the number of games

played); however, due to the nature of the problem, we will

use the first criterion as well. Thus we will play until we

have doubled our money, lost our money, or played the
i

45

maximum number of games allowed.

Having decided upon our stoppinq criteria, we must

decide how to specify this in the proqram. We can assiqn

values to the bankroll and maximum number of qames using

constants within the proqram, but this means that ve must

change the proqram whenever ve want to chanqe the values

used. To avoid this, ve will read the values for bankroll

and maximum number of qames to be played from input. Thus

ve have determined hov to stop the program without having

decided how many qames to play.

R!QQl~!_Refinement

The basic problem can be stated as follows:

I* SIMULAT~ PLAY AT A CRAPS GAME *I

This can be divided into two subproblems.

I* SIMULATE PLAY AT A CRAPS GAME *I

I* PLAY THE REQUIRED NUMBER OF GAMES *I

I* PRINT THE FINAL RESULTS *I

We will nov refine the subproblem I* PLAY THE REQUIRED

NUMBER OF GAMES *I·

Since we may be required to play many qames, this will

be a repetitive step. We will use the stopping criteria

discussed above. The action that ve repeat is the playinq

of the qames and the recording of the outcome of each game.

I* PLAY THE REQUIRED NUMBER OF GAMES *I

I* SET THE VALUE FOR BANKROLL AND *I
I* MAXIMUM NUMBER OF GAMES TO BE PLAYED *I

I* REPEAT UNTIL BANKROLL DOUBLED OR LOST *I
I* OR MAXIMUM NUMBER OF GAMES PLAYED *I

I* PLAY ONE GAME *I

I* RECORD !oliN OR LOSS *I

46

we have now refined the subproblem in such a way that

we can concentrate on the play of one game. Examining the

rules of the qame, we can refine I* PLAY ONE GAME *I·

I* PLAY THE REQUIRED NUMBER OF GAMES *I

I* SET THE VALUE FOR BANKROLL AND *I
I* MAXIMUM NUMBER OF GAMES TO BE PLAYED *I

I* REPEAT UNTIL BANKROLL DOUBLED OR LOST *I
I* OR MAXIMUM NUMBER OF GAMES PLAYRD *I

I* PLAY ONE GAME *I

I* ROLL THE DICE *I

I* PRINT VALUE OF ROLL *I

I* CHECK FOR WIN OR LOSS ON FIRST ROLL *I

I* IF GAME NOT OVER, CONTINUE PLAYING *I

Let's look at the subproblems in the above refinement.

I* FOLL THE DICE *I has been discussed under the section on

input. We will eventually solve this problem with a random

number qenerator, but the refinement up to this point does

not restrict us to this method. Thus we can use numbers

from input to test the other steps in the refinement. For

instance, we will certainly want to test I* PRINT VALUE OF

ROLL *I with values that we know rather than with values

47

that have been randomly generated. The advantage to this

approach is that if, at a later point, we find numbers such

as 1, 13, or 6.5 being printed, we can be reasonably certain

that the problem is in the random number generation process,

not in the print section.

The problem I* CHECK FOR WIN OR LOSS ON FIRST ROLL *I

can be programmed by looking at the rules of the game. We

will not refine it further until we are ready to write

proqram statements.

We are now ready to refine I* IF GAllE NOT OVER,

CONTINUE PLAYING *I· Looking at the rules for craps, we see

that this involves rolling until a 7 has been rolled or the

point has been rolled again.

I* PLAY ONE GAllE *I

I* ROLL THE DICE *I

I* PFINT VALUE OF BOLL *I

I* CHECK FOR WIN OR LOSS ON FIRST ROLL *I

I* IF GAME NOT OVER, CONTINUE PLAYING *I

I* SET POINT : FIRST ROLL *I

I* KEEP ROLLING UNTIL NEW ROLL=7 (LOSE) *I
I* OR NEW ROLL=POINT (WIN) *I

I* SET POINT = FIRST ROLL *I can be refined by program

statements. I* KEEP ROLLING UNTIL NEW ROLL = 7 (LOSE) OR

NEW FOLL : POINT (WIN) *I needs further refinement.

I* KEEP ROLLING UNTIL NEW ROLL
I* OF NEW ROLL = POI NT (WIN)

= 7 (LOSE) *I
*I

48

I* ROLL THE DICE *I

I* PRINT VALUE OF ROLL *I

The statements in the above refinement need no further

refining until we are ready to write the program statements.

We have now completed the refinement of I* PLAY THE

REQUIRED NUMBER OF GAMES *I· We must now refine the problem

I* PRINT THE FINAL RESULTS *I· This involves specifying the

information to be printed.

I* PRINT THE FINAL RESULTS *I

I* PRINT NUMBER OF GAMES PLAYED, *I
I* NUMBER OF GAMES WON, *I
I* NUMBER OF GAMES LOST, *I
I* PERCENTAGE OF GAMES WON *I

This completes the refinement of the problem. The

complete refinement is listed below. Note that we have not

written any of the PLI1 statements necessary to refine the

solution into a computer program. Using this refinement we

could easily write a computer program in any general purpose

language with which we are familiar.

I* SIMULATJ PLAY AT A CRAPS GAME *I

I* PLAY THE REQUIRED NUMBER OF GAMES *I

I* SET THE VALUE FOR BANKROLL AND *I
I* MAXIMUM NUMBER OF GAMES TO BE PL~YED *I

I* REPEAT UNTIL BANKROLL DOUBLED OR LOST *I
I* OR MAXIMUM lUMBER OF GAMES PLAYED *I

I* PLAY ONE GAME *I

I* ROLL THE DICE *I

I* PRINT VALUE OF ROLL *I

I* CHECK FOR IIIN OR ;LOSS ON FIRST RO.LL *I

I* IF GAME NOT OVER, CONTINUE PLAYING *I

I* SET POINT = FIRST ROLL *I

I* KEEP ROLLING UNTIL NEW ROLL=? (LOSE) *I
I* OF NEll ROLL=POINT (WIN) *I

I* ROLL THE DICE *I

I* PRINT VALUE OF ROLL *I

I* RECORD WIN OR LOSS *I

I* PRINT THE FINAL RESULTS *I

I* PRINT NUMBER OF GAMES PLAYED, *I
I* NUMBER OF GAMES WON, *I
I* NUMBER OF GAMES LOST, *I
I* PERCENTAGE OF GAMES WON *I

49

50

In manv situations, the length of time a customer must

wait to be served has considerable impact on a business's

success. Most of us have had the experience of waiting in

line for a table at a restaurant, or worse, sitting at a

table for an intolerablq length of time waiting to be

served. Unless the business has a monopoly on the product

it provides, future sales will suffer due to poor service.

To prevent loss of revenue, a business must determine

the balance between lost sales and added costs of

facilities. This is not as easy as it may seem. The cost

of the added facilities (waiters• salaries, tables, linens,

etc.) may be easy to calculate, but the amount of sales

lost due to customers waiting to be served is difficult to

determine.

In this problem, we will assume that the cost of

customer dissatisfaction and the cost of added facilities is

known. We will be concerned with determining the number of

added facilities which minimizes costs.

Determine the optimum number of checkout counters to

install in a store.t Assume the following:

-----~Michael Kennedy and
§igi~2n1 RlL£ JRlL~~£21
p. 37 5.

Martin B. Solomon, 2iShi
£1~§ £1LQng (New Jersey, 1972),

1. There may be customers waiting in line before
the simulation begins.

2. No customer, one customer, or two customers
can arrive in any minute.

3. A customer will ioin the shortest line.

4. When a customer arrives in line, he remains in
line until he is served.

5. A customer must be checked out before the next
person in line can advance to the counter.

6. The store loses a certain amount in future
purchases for each minute that a customer waits in
line.

7. A salary must be paid to one clerk for each
counter.

8. The initial cost of installing the counters
will be ignored.

51

The problem given could be solved by an analytical

approach (using results from stochastic analysis, queueing

theory, etc.). Such a solution procedure would, in most

cases, be both cheaper and more accurate than a computer

simulation. Many problems exist, however, for which no

analytical approaches are known, and for some of these a

computer simulation is the only feasible way of estimating

the answer. To illustrate the principles of simulation, we

will determine the optimum number of counters by simulation

of the activity in the store. The simulation should closely

model the activities of customers entering a line, waiting

in line, and being checked out.

52

Some of the assuaptions in the problem specification

are questionable. It is very possible that more than two

customers would arrive in line in a qiven minute,

particularly during the store's peak activity period. For

simplicity, however, we will limit the number of customers

arriving in any minute to two.

We will allow the user of the program to specify the

probability of a person or persons arriving in line. We

will also allow the user to specify the number of people

waiting in line at the beginning of the simulation, the time

required to check out one customer, the cost incurred by

making customers wait in line, and the hourly wages of the

clerks.

By specifying the above variables as program parameters

rather than constants, we make the program much more

versatile. Using program parameters, the user could use the

program to simulate average store activity; or, if desired,

he could simulate activity during the peak hours or slack

hours; or he could even use the program to estimate how long

it would take the lines to empty immediately after peak

hours.

If our simulation is reasonable, then the longer the

period of activity in the store simulated, the better our

approximation of costs; however, the longer the period

simulated, the longer the execution time of our program and

the greater the cost of the simulation. Rather than

53

arbitrarily selectinq a time limit, we will let the user

specify the period of time to be simulated.

Havinq resolved the question of how much store activity

to simulate, we must decide how many simulations to run,

usinq a different number of counters each time. If the

parameters used in the proqram resemble costs and activities

in the real world, we can use personal observations to guess

at the number of counters to simulate.

consider the local grocery store. There will be at

least one counter, and probably not more than five or six.

Even if the number of counters is not optimum, we should

certainly expect the ideal number of counters to be ten or

less. Thus we should be able to restrict our simulations to

a store with one to ten counters. We will, however, let the

user specify the maximum nu~ber of counters to be simulated,

thus assuring that the program will halt.

We must now determine how we will select the optimum

number of counters. one method is to simulate a store with

one counter, then with two counters, etc., until we have

simulated a store with ten counters. In each simulation we

will determine the costs of operating with the given number

of counters. we can then compare the costs calculated. The

simulation qiving the lowest costs will indicate the optimum

number of counters.

A little analysis on our part, however, will show us a

better method. Assume that the optimum number of counters

54

is 5. The cost with 4 counters will be greater since 5 is

the number of counters which minimizes cost. But since 4

counters is closer to optimum than 3 counters, the cost of

operating with 4 counters should be less than the cost of

operating with 3 counters. The same relationship holds with

3 counters vs. 2, and with 2 counters vs. 1. Thus we can

expect the costs to follow the pattern:

cost of 1 counter > cost of 2 counters

cost of optimum number of counters

optimum number t 1 counters.

> ... >

< cost of

This shovs that as we increase the number of counters, the

operating expenses will drop until ve qo beyond the optimum

number of counters. Because of this, we can stop our

simulation when the cost of operating increases; the optimum

number of counters will be one less than the number of

counters in the final simulation.

The validity of our assumption that costs will decrease

as ve approach the optimum number of counters depends upon

the values of the proqram parameters and the method used to

simulate customer arrivals. We will use a random number

generator to determine the number of customers arriving in a

qiven minute. We would like to compare runs (one counter,

two counters, etc.) using the same sequence of random

numbers. With a deterministic random number generator, such

as that discussed in problem 3.1, this is relatively simple.

We need only restart the random number generator each time

55

we add another store counter in the simulation. Thus we see

that the cvclic nature of the random numbers was a hazard in

the craps game simulation, but it will be a virtue in this

problem.

We would like to be able to .use a random number

generator to simulate customer checkout as w~ll as customer

arrival. We cannot, however, use the same random number

generator for both purposes. To do so would interfere with

the sequence of numbers generated to determine customer

arrival, and we would not be able to compare runs using the

same sequences. Father than use another random number

generator, ~ will allow the user to specifV the amount of

time necessarv to process one customer at the checkout

counter.

Exa.m!!l!!!.§

This is a complex problem, more difficult than most

problems that an introductory student will face. Working an

example should help pinpoint problem areas and decisions

that need to be made. We will simulate 10 minutes of

activity in a store with 2 counters.

Before we can work the example, ve have to make

decisions about the order in which events occur. Our first

assumption is that a customer enters a line at the beginning

of a minute. This eliminates the problem of charging for

part of a minute in line. Second, we assume that if two

lines are equally short, the customer will enter the first

56

of the equally short lines he reaches= Third, we assume

that loss of future revenue will be incurred only while a

person is waiting in line, not once he reaches the checkout

counter. Fourth, we assume that the customers in line at

minute 0 have just arrived in line •

•

1 customer at counter 1
1 customer at counter 2

1 no customer arrives
cost of clerks = $.08
both customers beinq served; no waiting expense
total cost = $.08

2 1 customer arrives, enters line 1
cost of clerks = $.08
1 customer waiting to be served; cost $.80
total cost = $.88
accumulated cost = $. 96

3 no customer arrives
cost of clerks = $.08
1 customer waiting; cost = $.80
total cost = $.88
accumulated cost = $1.84

4 no customer arrives
cost of clerks = $.08
1 customer waiting; cost = $.80
total cost = $.88
accumulated cost= $2.72

5 cu·stomer at counter 1 checked out
customer in line 1 moves to counter
customer at counter 2 checked out
1 customer arrives, moves to counter 2
1 customer arrives, enters line 1
cost of clerks = $.08
1 customer waiting; cost = $.80
total cost = $.88
accumulated cost= $3.60

6 1 customer arrives, enters line 2
cost of clerks = $. 08
2 cust.omers waiting; cost = $1.60

total cost = $1.68
accumulated cost = $5.28

7 no customer arrives
cost of clerks = $.08
2 customers waiting; cost = $1.60
total cost = $1.68
accumulated cost = $6.96

8 1 customer arrives, enters line 1
cost of clerks = $.08
3 customers waiting; cost = $2.40
total cost = $2.48
accumulated cost = $9.44

9 customer at counter 1 checked out
customer in line 1 moves to counter
customer in line 2 checked out
customer in line 2 moves to counter
no customer arrives
cost of clerks = $.08
1 customer waiting; cost = $.80
total cost = $.88
accumulated cost = $10.32

10 no customer arrives
cost of clerks = $.08
1 customer waiting; cost = $.80
total cost = $.88
accumulated cost= $11.20

Cost of 2 counters for 10 minutes = $11.20.

57

The program parameters are the only input required.

These will include the length of simulation, maximum number

of counters to simulate, number of customers initially in

line, probabilities of customer arrivals, time needed to

check out a customer, cost ,incurred because of customers

waiting in line, and clerk's salary.

58

we are required to print out the optimum number of

counters. In addition, we will print the cost of operating

with this number of counters.

There is other output which will be useful during the

testing and debugging of the program. In order to know if

our program is behaving as expected, we can print the

details of each minute, as we did in the example. This can

show us whether costs are being calculated and accumulated

correctly and whether customer~ are entering at a reasonable

rate. Due to the large amount of output this would

generate, however, ve would like to be able to prevent this

output during the actual simulation. This is an excellent

opportunity to introduce the use of executable comments in a

language such as PLIC.

The initial problem can be stated as

I* DETERMINE OPTIMUM NUMBER OF CHECKOUT COUNTERS *I·

This problem involves simulating activity until we have

found the optimum number of counters. We will also want to

print our results when the simulation is finished.

I* DETERMINE OPTIMUM NUMBER OF CHECKOUT COUNTERS *I

I* VARY NUMBER OF COUNTERS IN SIMULATION OF *I
I* STORE ACTIVITY UNTIL OPTIMUM COST FOUND *I

I* PRINT OPTIMUM NUMBER OF COUNTERS AND COST *I

59

We nov need to determine what must be done in the

simulation. First, ve must read parameters to be used

during this simulation. Next, ve must simulate the cost of

operating with one counter, then two counters, then three

counters, etc., until the cost of operating increases. We

will know that the optimum number of counters vas used

during the simulation preceding the increase in cost.

I* VARY NUMBER OF COUNTERS IN SIMULATION OF *I
I* STORE ACTIVITY UNTIL OPTIMUM COST FOUND */

I* READ IN LENGTH OF SIMULATION, *I
I* MAX NUMBER OF COUNTERS TO SIMULATE, *I
I* NUMBER OF CUSTOMERS INITIALLY IN LINE, *I
I* PROBABILITIES OF CUSTOMER ARRIVALS, *I
I* TIME NEEDED TO CHECK OUT CUSTOMER, *I
I* COST INCURRED BECAUSE OF CUSTOMERS *I
I* WAITING IN LINE, CLERK'S SALARY *I

/* REPEAT UNTIL COST OF X COUNTERS IS GREATER *I
I* THAN THE COST OF X-1 COUNTERS, OR MAX *I
/* NUMBER OF COUNTERS SIMULATED */

I* ADD ONE COUNTER *I

I* DETERMINE COST OF OPERATING FOR THE */
I* SPECIFIED LENGTH OF TIME *I

I* PRINT COST OF OPERATING *I

To determine the steps involved in simulation, ve can

look at the example given earlier. We need to put the

initial customers in the checkout lines and simulate the

activity for the time specified by the user. Unlike the

example, we will compute the total cost for clerks only

once, at the beginning of the simulation, rather than

compute their cost each minute.

60

I* DETERMINE COST OF OPEFATING FOR THE *I
I* SPECIFIED LENGTH OF TIME *I

I* COMPUTE COST OF CLERKS *I

I* PLACE INITIAL CUSTOMERS IN LINE *I

I* SIMULATE ACTIVITY FOR EACH *I
I* MINUTE OF SIMULATION *I

At last we have reached the subproblem which is at the

heart of the problem: simulate activity for each minute.

The example given earlier is most helpful here. Looking at

the example, we see that we must allow customers that have

completed the checkout process to leave, bring in new

customers, and compute the cost of future business lost

because of long lines.

I* SIMULATE ACTIVITY FOR EACH *I
I* MINUTE OF SIMULATION */

I* CHECK CUSTOMERS OUT *I

I* PROCESS ARRIVING CUSTOMERS *I

I* COMPUTE COST OF BUSINESS LOST DUE TO *I
I* CUSTOMERS WhiTING IN LINE *I

Checki;,q a customer out involves two steps. We must

move the old customer out of the line, and move the next

customer in line to the counter.

I* CHECK CUSTOMERS OUT *I

I* REPEAT FOR EACH COUNTER */

I* IF CUSTOMER AT COUNTER FINISHED, *I
I* MOVE HIM OUT,MOVE NEXT CUSTOMER IN *I

61

Finally, we must determine how to add a new customer to

the line. We must first determine if there are any new

arrivals, and if so, how many. Second, we must decide where

to place the new customers.

I* PROCESS ARRIVING CUSTOMERS *I

I* DETERMINE WHETHEP NEil ARRIVALS *I

I* IF SO,ADD THEM TO SHORTEST LINES *I

The entire refinement is listed below. Further

refinement would involve the actual PL11 statements.

I* DETERMINE OPTIMUM NUMBER OF CHECKOUT COUNTERS *I

I* VARY NUMBER OF COUNTERS IN SIMULATION OF *I
I* STORE ACTIVITY UNTIL OPTIMUM COST FOUND *I

I* READ IN LENGTH OF SIMULATION, *I
I* MAX NUMBER OF COUNTERS TO SIMULATE, *I
I* NUMBER OF CUSTOMERS INITIALLY IN LINE, *I
I* PROBABILITIES OF CUSTOMER ARRIVALS, *I
I* TIME NEEDED TO CHECK OUT CUSTOMER, */
/* COST INCURRED BECAUSE OF CUSTOMERS *I
I* WAI.TING IN LINE, CLERK'S SALARY */

I* REPEAT UNTIL COST OF X COUNTERS IS GREATER *I
I* THAN THE COST OF X-1 COUNTERS, OR MAX *I
I* NUMBER OF COUNTERS SIMULATED */

I* ADD ONE COUNTER *I

/* DETERMINE COST OF OPERATING FOR THE *I
I* SPECIFIED LENGTH OF TIME *I

I* COMPUTE COST OF CLERKS *I

I* PLACE INITIAL CUSTOMERS IN LINE *I

I* SIMULATE ACTIVITY FOR EACH */
I* MINUTE OF SIMULATION *I

I* CHECK CUSTOMERS OUT *I

I* REPEAT FOR EACH COUNTER *I

62

I* IF CUSTOMER AT COUNTER FINISHED, *I
I* MOVE HIM OUT,MOVE NEXT CUSTOMER IN *I

/* PROCESS ARRIVING CUSTOMERS *I

I* DETERMINE WHETHER NEll ARRIVALS *I

I* IF SO,ADD THEM TO SHORTEST LINES *I

I* COMPUTE COST OF BUSINESS LOST DUE TO *I
I* CUSTOMERS WAITING IN LINE *I

/* PRINT COST OF OPERATING *I

I* PRINT OPTIMUM NUMBER OF COUNTERS AND COST *I

6.3

! J_Inventor_y

In order to minimize the time needed to deliver qoods

ordered, businesses maintain inventories of qoods to be

sold. Inventory levels for an item are determined by the

number of units produced and the number of units sold. Note

that the term "item" distinquishes products rather than

units of a product.

It is necessary to keep track of the flow of qoods into

and out of inventory. In this problem, we will be concerned

with keepinq track of inventory activity as it relates to

the shipment of qoods to customers.

Problgm_Specifi~~!ion

Write a proqram to process customer orders for a

furniture manufacturer. Print the status of inventory items

after the orders have been processed.

Problem Clarifi~s!!Qn

Processinq customer orders involves several activities.

If there is enouqh in inventory to cover the order, then a

shippinq invoice is written. If the order cannot be filled,

an invoice is written for the quantity which can be shipped

and a backorder is written for the remainder of the order.

64

we will try to fill backorders before new orders the next

time we run the program.

Because we must look at inventory to see whether we can

fill an order, we will have to update the inventory file

during processing. If an invoice is filled out for an item,

we must subtract the quantity shipped from the quantity on

hand. otherwise we mighy plan to send the same goods to

more than one customer.

Since inventory maintenance is necessary with order

processing, we will imbed order processing in an inventory

system. There are three other phases involved in inventory

processing.

The first phase must come before order processing.

This is the addition o,f finished goods to the inventory. If
'

goods were not added to the inventory before order

processing, manv items which could be shipped would be

backordered rather than invoiced. This would increase

inventory costs and decrease customer satisfaction.

After customer orders (those not filled on the previous

run and new orders) are processed, we will want to print a

reorder list for items that have been backordered. To

reduce the number of backorders, we will also list items to

be reordered which have not been backordered, but which have

low inventory levels. The level below which an item will be

reordered is called the ~!;der-2Qi!li· The quantity to be

ordered is called the ~ger_gY2!lii~Y· These values will

65

vary for the different items in inventory.

The last phase of inventory processinq will be printinq

the status of each item in inventory.

!l!.I!Y.i

There are two types of input. The first is a

l!~~~ent~~okd• This includes the item number and the

quantity received for an item which was reordered. There

will be one procurement record for each item received.

The second type of input record is the custQ!§£__Q~~~~·

Each customer order will contain the customer name and

address, item number, and quantity ordered. ~here will be

one input record for each item ordered by a customer.

QUt!!.Y!

When processinq customer orders, we will have to print

invoices and backorders. In!21~~ will contain the customer

name and address, and the following information for each

item shipped: item number, quantity shipped, unit price, and

amount due. The total amount due will be printed after all

items ordered by one customer have been processed.

~ckorg§~ will contain information on items which were

ordered but not available for shipment. Fot each item the

backorder will contain the customer name and address, item

number, number of units backordered, and unit price.

After processing customer orders, ve will print the

reorder list and status list. The ~~Qrd~~-lia! vill contain

the item number and,quantity to order for each item which

66

must be reordered.

The status-li§! will include the following information

for each item in the inventory: item number, quantity on

hand, number backordered, number shipped, and dollar value

of item sales.

l.!ll§.!l!Q.rY-1: ile

In early references to the inventory file, we did not

discuss the information contained in the file. Now that we

know the output required, we can determine what information

will be needed before and durinq each run.

There will be one record in the inventory file for each

item in inventory. We will know which item is being

referred to in the record by keeping the item number in the

record.

number.

obviously, no two items may have the same item

The status list requires that we print the item number,

quantity on hand, number backordered, number shipped and

dollars in sales for each item. To simplify the program we

will store this information in the inventory file rather

than in a separate file. so that we may calculate the price

of qoods shipped, we must also include the unit price of

each item in the inventory file.

To determine the information necessary for the reorder

list, we need to know the reorder point and reorder

quantity. These should also be kept in the inventory file.

67

If an item has already been ordered but not received,

we must know this to prevent reordering items more than

once. Therefore, the inventory file record will also

contain the quantity on order for the item.

To summarize, the following information for each item

will be kept in the master file:

Permanent:

item number
quantity on hand
unit price
reorder point
reorder quantity
quantity on order

Determined for each run:

number backordered
number shipped
dollar value of saleu

We have made several assumptions in the problem

clarification. First, we have assumed that the inventory

file already exists. We have provided no means of creating

this file; ve have no mechanism for adding items to the

file, deleting items from the file, or changing the price,

reorder point, or reorder quantity for an item. These are

events which will almost certainly take place during the

life of the file, but we will not deal with them in this

problem.

We will also assume that the inventory file is sorted

by item number, that the transactions concerning shipments

68

from the factory to the warehouse are sorted by item number,

and that the customer orders are sorted by item number

within customer number (or name), and that backorders from

the previous run precede new orders •

.f£oble!LRefj,J!2,g.n1

The problem we are deal inq with is

I* INVENTOR(MAINTENANCE AND ORDER PROCESSING *I·

This problem can be refined into four parts, reflectinq

the four phases discussed in the problem clarification.

I* INVENTORY MAINTENANCE AND ORDER PROCESSING *I

I* PROCESS ITEMS RECEIVED *I

I* PROCESS BACKORDERS, THEN NEW ORDERS *I

I* LIST DEPLETED INVENTORY ITEMS *I

I* PRINT STATUS REPORT *I

If possible, we should combine the third and fourth

phases so that we do not have to make two passes throuqh the

master file. Since these phases are loqically separate,

however, we will treat them separately here.

The first subproblem is a repetitive problem. We must

look at the inventory record for each item received. In

addition to updatinq the ;inventory file, we will want to

print an exception report for an item if the quantity

received is not the same as the quantity on order.

I* PROCESS ITEMS REC~IVED *I

I* REPEAT FOR EACH ITEM RFCEIVRD *I

I* ADD QUANTITY RECEIVED TO QUANTITY ON HAND *I

I* SUBTRACT FROM QUANTITY ON ORDER *I

I* IF QUANTITY RECEIVED DIFFERS FROM QUANTITY *I
I* ON ORbER PRINT ~ESSAGE ON EXCEPTION REPORT *I

69

The second phase involves printing invoices and

back orders. We will also have to update the inventory file

to reflect the number of items shipped and backordered.

I* PROCESS BACKORDERS, THEN NEW ORDERS *I

I* REPEAT FOR EACH CUSTOMER *I

I* FILL OUT INVOICE AND BACKORDER IF NECESSARY *I

I* PRINT NAME AND ADDRESS ON INVOICE *I

I* REPEAT FOR EACH ITEM CUSTOMER ORDERED *I

I* PRINT MESSAGE IF ORDER UNUSUALLY LARGE *I

I* ADD ITEM TO INVOICE *I

I* ADD ITEM TO BACKORDER, IF NECESSARY *I

I* UPDATE INVENTORY RECORD *I

I* PRINT TOTAL COST ON INVOICE *I

Adding an item to the invoice involves determining the

quantity and price of each item to be shipped.

I* ADD ITEM TO INVOICE *I

I* DETERMINE QUANTITY TO BE SHIPPED *I

I* CALCULATE COST FOF THIS ITEM *I

70

Backorders will not be filled out for each item. The

quantity to be backordered is the difference between the

quantity ordered and the quantity available for shipment.

I* ADD ITFM TO BACKORDER, IF NECESSARY */

/* QUANTITY BACKORDERED=NUMBER ORDERED */
/* LESS NUMBER SHIPPED */

/* IF QUANTITY BACKORDERED > 0 THEN */
/* ADD ITEM TO BACKORDER */

The third phase of processing involves determining

which items must be reordered. We will not reorder an item

if it is already on order. Otherwise, we will reorder if

the quanti tv on nand is below the reorder point. This

algorithm should be satisfactory if management has chosen an

apropriate reorder point and reorder quantity.

Under ideal conditions there would be no backorders.

The reorder point would be high enough to fill all customer

orders arriving between the time an item is reordered and

the time the quantity reordered is received. Because this

condition cannot always be met, our program must have the

capability of handling backorders.

If the reorder point or reorder quantity is too low,

backorders can accumulate in such a way that the inventory

for a particular item is seldom, if ever, sufficient to fill

customer orders. It is therefore imperative that management

carefully select the reorder point and reorder quantity for

each item. In order to help them do this, when we list an

71

item in the status repoct, we will indicate whether the

quantity backordered is qreater than the quantity on order.

This will point out items which may need ad;ustment in the

reorder point or reorder quantity.

I* PRINT REORDER LIST *I

I* REPEAT .FOR EACH ITEM Ill INVENTORY *I

I* DETERMINE WHETHER ITEM SHOULD BE REORDERED *I

I* IF QUANTITY ON ORDER IS ZEFO AND *I
I* QUANTITY ON HAND IS BELOW REORDER POINT *I

I* UPDATE INVENTORY FILE *I

I* QUANTITY ON ORDER=REORDER QUANTITY *I

I* PRINT ITEM ON REORDER LIST *I

The last phase of processing involves printinq the

status of each item in the inventory file. We will have to

look at every item in the file.

I* PRINT STATUS REPORT *I

I* REPEAT FOR BACH ITEM IN INVENTORY *I

I* PRINT ITEM NUMBER, QUANTITY ON HAND, *I
I* NUMBER BACKORDERED, NUMBER SHIPPED, *I
I* DOLLAR SALES OF SHIPMENTS *I

I* IF QUANTITY ON ORDER IS LESS THAN *I
I* QUANTITY BACKORDEFED, MARK THIS *I
I* ITEM FOR EASY IDENTIFICATION *I

The complete refinement is listed below.

/* INVENTORY MAINTENANCE AND ORDER PROCESSING *I

I* PROCESS ITEMS RECEIVED *I

I* REPEAT FOR EACH ITEM RECEIVED *I

I* ADD QUANTITY RECEIVED TO QUANTITY ON HAND *I

I* SUBTRACT FROM QUANTITY ON ORDER *I

I* IF QUANTITY RECEIVED DIFFERS FROM QUANTITY *I
I* ON ORDER PRINT MESSAGE ON EXCEPTION REPORT *I

I* PROCESS BACKORDER$, THEN NEW ORDERS *I

I* REPEAT FOR EACH CUSTOMER *I

72

I* FILL OUT INVOICE AND BACKORDER IF NECESSARY *I

I* PRINT NAME AND ADDRESS ON INVOICE "I

I* REPEAT FOR EACH ITEM CUSTOMER ORDERED *I

I* PRINT MESSAGE IF ORDER UNUSUALLY LARGE *I

I* ADD ITEM TO INVOICE *I

I* DETERMINE QUANTITY TO BE SHIPPED *I

I* CALCULATE COST FOR THIS ITEM *I

I* ADD ITEM TO BACKORDER, IF NECESSARY *I

I* QUANTITY BACKORDF.RED=NUIIBF.R ORDERf.D *I
I* LESS NUMBER SHIPPED *I

I* IF QUANTITY BACKOPDERED > 0 THEN *I
I* ADD ITEII TO BACKORDER *I

I* UPDATE INVENTORY RECORD *I

I* PRINT TOTAL COST ON INVOICE *I

I* PRINT REORDER LIST *I

I* REPEAT FOR EACH ITEM IN INVENTORY *I

I* DETERIIINE WHETHER ITEM SHOULD BE REORDERED *I

I* IF QUANTITY ON ORDER IS ZERO AND *I
I* QUANTITY ON HAND IS BELOW BEORDER POINT *I

I* UPDATE INVENTORY FILE *I

I* QUANTITY ON ORDER=REORDER QUANTITY *I

I* PRINT ITEM ON REORDER LIST *I

I* PFINT STATUS FEPORT */

I* REPEAT FOR ~ACH ITEM IN INVENTORY *I

I* PRINT ITEM NUMBER, QUANTITY ON HAND, *I
I* NUl'IBER BACKORDERED, NUMBER SHIPPED, *I
I* DOLLAR SALES OF SHIPMENTS *I

I* IF QUANTITY ON ORDER IS LESS THAN *I
I* QUANTITY BACKORDERED, MARK THIS *I
I* ITEM FOR EASY IDENTIFICATION *I

73

All businesses require employees,

require compensation for the work

74

and most employees

they perform. The

procedure for computinq ~nd recordinq employee compensation

is called payroll. In many businesses, payroll is a complex

and time-consuminq activity.

The first activity required is the collection of basic

employee information. This includes items such as employee

name, address, social security number, authorized

deductions, and rate of pay. This information must be kept

in a master file. Provisions must be made for adding

information for new employees, chanqinq information for

current employees, and deletinq information for employees

leavinq the organization.

Another activity is computinq the payroll. Information

identifyinq the employee and the num her of hours worked must

be obtained. Gross pay must be calculated, based on the

hours worked and rate of pay. Overtime must be paid when

required. Employee deductions must be calculated, including

insurance, bonds, stock options, etc., as well as social

security, withholdinq taxes, and city and state taxes.

Finally, we must write the payroll. This includes

employee compensation (paycheck, transfer of funds to his

account, recordinq of cash disbursements, etc.), record of

earninqs (pay stub), tax records for government aqencies,

75

and management reports.

The problem we will deal with concerns computing and

recording payroll information.

f~2~1~~-~~~ifi~at!QR

Write a payroll program. The program should maintain

the following information for each employee: social security

number, name, address, year-to-date gross earnings, year-to­

date federal taxes, year-to-date state taxes, year-to-date

social security taxes, number of dependents, hourly rate,

vacation time accrued, sick leave accrued, and a code

indicating whether or not the employee makes a voluntary

deduction of $1.25 per week for group health insurance.

All employees should be paid each week. A time card

containing the social security number and hours worked will

be provided for each employee. Time and a half will be paid

for overtime (hours over ijQ) • The payroll program should

print a paycheck and stub for each employee.

f~oblem_claiificat!QR

The problem is concerned with computing and writing the

payroll. We will assume that the master file has already

been created and contains all the information we will need

except for the number of hours worked. It is assumed to be

sorted in ascending order on social security number and to

contain a single record for each employee.

76

The only input will be time cards. Each time card will

contain identifying i~formation (social security number) and

the number of hours the employee workad during the week.

Since we have to allow vacation and sick leave, the amount

of time to be charged to each must be included on the time

card. We will assume that there is one time card for each

employee and that the time cards are sorted in ascending

order on social security number.

QUtj2Ut

The two things our program must print are paychecks and

pay stubs. We must print one of each for every employee.

we will not print tax records for the government or reports

for management, although these are a part of the output of

most payroll programs.

Prob lftl!! Refine !!!ft.!!!

The problem can be stated as

I* COMPUTE WEEKLY PAYROLL *I·

This will be a repetitive process. We will have to compute

payroll for each employee. The activities involved will be

readinq the information needed, computing pay, writing a

paycheck, and writinq a pay stub.

I* COMPUTE WEEKLY PAYROLL *I

I* REPEAT FOR EACH.EKPLOYEE *I

I* FEAD INFOR~ATION NEEDED TO CO~PUTE PAY *I
I* FOR THE NEXT E~PLOYEE *I

I* CO~PUTE PAY *I

I* UPDATE ~ASTER FILE *I

I* PRINT PAYCHECK *I

I* PRINT PAY STUB *I

77

The information needed to process one employee's weekly

pay comes from two sources: the payroll master file and the

employee's time card. we have assumed that the master file

and time cards are sorted, and that there is one master file

record and one time card for each employee. If this is

true, we will only need to read the next master file record

and the next time card in order to compute the next

employee's pay. A close look at the problem, however,

indicates that we should not accept the assumption that

there will be one master file record and one time card for

each employee.

If a new employee submits a time card before his

payroll record is added to the master file, all of the time

cards after his will be matched with the wrong master file

record. This means that all the employees with social

security numbers qreater than his will receive incorrect

paychecks. Their master file records will also be updated

with the wronq information, destroyinq the inteqrity of the

master file.

78

Even if we assume that this could never happen, we

would have a similar problem if an employee's time card were

not submitted. In this case we would have a master file

record for an employee without a time card, and the master

file and time cards would again be processed out of

synchronization.

There are manual checks which can and should be

implemented to prevent the above situations from occurring.

But there is still one problem that is likely to arise.

That is error in data entry. It is virtually certain that

at some time an employee's social security number will be

incorrectly entered on his time card. This would produce a

master file record without a time card and a time card

without a master file record.

In order to prevent incorrectly matching time cards

with master file records, we will not compute pay for an

employee unless the social security numbers on the master

file record and the time card are the same. If we read a

master file record and time card which do not match, we will

print the one with the lover social security number on an

exception report, and read a new time card or master file

record. we will repeat this process until we find a

matching time card and master file record.

I* READ INFORMATION NEEDED TO COMPOTE PAY *I
I* FOR THE NEXT EMPLOYEE *I

I* READ NEXT MASTER FILE RECORD *I

79

I* READ NEXT TIME CARD *I

I* IF THE SOCIAL SECURITY NUMBERS DO NOT MATCH, *I
I* PRINT INVALID OR MISSING TIME CARD ON THE *I
I* EXCEPTION REPORT AND FIND THE NEXT MATCHING *I
I* TIME CARD AND !lASTER FILE RECORD *I

The matchinq process is not inherent in the nature of

the payroll program, so ae will use a subroutine to match

time cards and master file records.

I* SUBROUTINE TO MATCH TIME CARD WITH *I
I* MASTER FILE RECORD *I

I* REPEAT UNTIL SOCIAL SECURITY NUMBERS MATCH *I

I* REPEAT WHILE TIME CARD IS INVALID *I

I* PRINT TIME CARD ON EXCEPTION REPORT *I

I* READ NEXT TIME CAED *I

I* REPEAT WHILE TIME CARDS ARE MISSING *I

I* PRINT MASTER FILE RECORD ON EXCEPTION REPORT *I

I* READ NEXT MASTER FILE RECORD *I

We can nov refine I* COMPOTE PAY *I· We must compute

gross pay, deductions, and net pay.

I* COMPUTE PAY *I

I* COMPUTE GROSS PAY *I

I* CO~PUTE D3DUCTIONS *I

I* COMPUTE NET PAY *I

In computing gross pay we use the number of hours

worked. We should test to make sure that the number of

hours worked seems reasonable. If the employee works over

80

ten ~ours of overtime, we will print a message on the

exception report.

we must compute regular pay, overtime pay, vacation

pay, and sick leave. Note that the method of computing

gross pay is different for employees who are paid salaries

and those who are paid hourly wages. If we use a subroutine

to compute gross pay, changes to the method of calculating

pay will be internal to the subroutine and will not affect

the structure of the main program.

I* SUBROUTINE TO COMPUTE GROSS PAY *I

I* COMPUTE PAY FOR SALARIED EMPLOYEES *I

I* COMPUTE PAY FOR HOURLY EMPLOYEES *I

I* REGULAR HOURS *I

I* OVERTIME HOURS *I

I* IF OVERTIME > 10 HOURS, *I
I* PRINT MESSAGE dN EXCEPTION REPOBT *I

I* COMPUTE OVERTIME PAY *I

I* VACATION PAY *I

I* SICK LEAVE *I

We can nov refine I* DEDUCTIONS *I· This will include

social security, taxes, and voluntary deductions. For

modularity, ve vll also use a subroutine here.

I* SUBROUTINE TO COMPUTE DEDUCTIONS *I

I* SOCIAL SECURITY *I

I* FEDERAL TAX *I

81

I* STATE TAX *I

I* GROUP HEALTH INSURANCE *I

Because methods for computing social security and taxes

chanqe quite frequently, we will use subroutines to compute

social security, federal taxes, and state taxes. To

facilitate addinq payroll deduction plans such as stock

options, bonds, etc., we will use a subroutine to compute

voluntary deductions. The final refinement necessary in

I* COMPUTE PAY *I is the refinement of I* NET PAY *I· To

compute net pav, we subtract the deductions from qross pay.

Due to the simplicity of this step, we will not use a

subroutine here. The complete refinement of I* COMPUTE

PAY *I is shown below.

I* COMPUTE PAY *I

I* COMPUTE GROSS PAY *I

call subroutine to compute qross pay

I* COMPUTE DEDUCTIONS *I

call subroutine to compute deductions

I* COMPUTE NET PAY *I

I* SUBTRACT DEDUCTIONS FRO!! GROSS PAY *I

I* SUBROUTINE TO COMPUTE GROSS PAY *I

I* COMPUTE PAY FOR SALARIED EMPLOYEES *I

I* COMPUTE PAY FOR HOURLY EMPLOYEES *I

I* REGULAR HOURS *I

/* OVERTIME HOURS */
'

I* IF OVERTIME > 10 HOURS, *I
I* PRINT MESSAGE ON EXCEPTION REPORT *I

I* COMPUTE OVERTIME PAY *I

I* VACATION HOURS *I

I* SICK LEAVE *I

I* SUBROUTINE TO COMPUTE DEDUCTIONS *I

I* SOCIAL SECURITY *I

call subroutine to compute social security

I* FEDERAL TAX *I

call subroutine to compute federal tax

I* STATE TAX *I

call subroutine to compute state tax

I* VOLUNTARY DEDUCTIONS *I

call subroutine to compute voluntary deductions

I* SUBROUTINE TO COMPUTE SOCIAL SECURITY *I

I* SUBROUTINE TO COMPUTE FEDERAL TAX *I

I* SUBROUTINE TO COMPUTE STATE TAX *I

I* SUBROUTINE TO COMPUTE VOLUNTARY DEDUCTIONS *I

I* GROUP HEALTH INSURANCE *I

82

After computinq pay, we must update the master file.

This requires addinq this pay period's totals to the

cumulative totals in the employee's record. We will use a

subroutine for modularity.

I* SUBROUTINE TO UPDATE MAST~R FILE */

I* ADD THIS WEEK'S PAY TOTALS TO *I
/* CUMULATIVE TOTALS IN EMPLOYEE'S *I
/* MASTER FILE RECORD *I

I* UPDATE VACATION BALANCE AND *I
I* SICK LEAVE BALANCE *I

Next we will refine I* PRINT PAYCHECK */.

83

ile will

assume that the paycheck information will be printed on pre-

printed forms. Thus we will not have to print the bank

name, company name, account number, etc.; however, we will

have to print the employee's name and net pay. In order to

reduce chances of fraud or incorrect hours beinq entered on

the time card, we will print a messaqe on an exception

report whenever the pay for the week exceeds $1000.00. To

facilitate testinq of the proqram, we will use a subroutine

to print the paycheck. Usinq a subroutine, ve can easily

test this part of the proqram for correct information before

formatinq the information to be printed in the correct

locations on the pre-printed check forms.

I* SUBROUTINE TO PRINT PAYCHECK *I

I* ON PRE-PRINTFD FORM, PRINT *I
I* EMPLOYEE NAME AND NET PAY *I

I* IF GROSS PAY EXCEEDS $1000, *I
/* PRINT EXCEPTION REPORT *I

Finally, we will refine /* PRINT PAY STUB *I· As with

the paycheck, we will assume that the pay stub information

will be printed on a pre-printed form. ile must print the

84

date, information identifying the employee, totals for this

weeK's pay period, and cumulative totals. For reasons

similar to those above, we will use a subroutine for

pr intinq the pay stu b.

I* SUBROUTINE TO PRINT PAY STUB *I

I* ON PRE-PRINTED FORM, PRINT DATE, *I
I* EMPLOYEE NAME, SOCIAL SECURITY NUMBER, *I
I* CUMULATIVE TOTALS, *I
I* TOTALS FOR THIS PAY PERIOD *I

The complete refinement appears below.

I* COMPUTE W~EKLY PAYROLL *I

I* REPEAT FOR EACH EMPLOYEE *I

I* READ INFORMATION NEEDED TO COMPU~E PAY *I
I* FOR THE NEXT EMPLOYEE *I

I* READ EMPLOYEE'S MASTER FILE RECORD *I

I* READ EMPLOYEE'S TIME CARD *I

I* IF THE SOCIAL SECURITY NUMBERS DO NOT MATCH, *I
I* PRINT INVALID OR MISSING TIME CARD ON THE *I
I* EXCEPTION REPORT AND FIND THE NEXT MATCHING *I
I* TIME CARD AND !'lASTER FILE RECORD *I

call subroutine to match time card with
master file record

I* COMPUTE PAY *I

I* COMPUTE GROSS PAY *I

call subroutine to compute gross pay

I* COMPUTE DEDUCTIONS *I

call subroutine to compute deductions

I* COMPUTE NET PAY *I

I* SUBTRACT DEDUCTIONS FROM GROSS PAY *I

I* UPDATE MASTER FILE *I

call subroutine to update master file

I* PRINT PAYCHECK *I

call subroutine to print paycheck

I* PRINT PAY STUB *I

call subroutine to print pay stub

I* SUBROUTINE TO MATCH TIME CARD WITH *I
I* MASTER FILE RECORD *I

I* REPEAT UNTIL SOCIAL SECURITY NUMBERS MATCH *I

I* REPEAT WHILR TIME CARD IS INVALID *I

I* PRINT TIME CARD ON EXCEPTION REPORT *I

I* READ NEXT TIME CARD *I

I* REPEAT WHILE TIME CARDS ARE MISSING *I

85

I* PRINT MAS1'l':R FILE RECORD ON EXCEPTION REPORT *I

I* READ NEXT MASTER FILE RECORD *I

I* SUBROUTINE TO COMPOTE GROSS PAY *I

I* COMPUTE PAY FOR SALARIED EMPLOYEES *I

I* COMPUTE PAY FOR HOURLY EMPLOYEES *I

I* REGULAR HOURS *I

I* OVERTIME HOURS *I

I* IF OVERTIME > 10 HOURS, *I
I* PRINT MESSAGE ON EXCEPTION REPORT *I

I* COMPUTE OVERTI!IE PAY *I

I* VACATION HOURS *I

I* SICK LEAVE *I

I* SUBROUTINE TO COMPUTE DEDUCTIONS *I

I* SOCIAL SECURITY *I

call subroutine to compute social security

I* ~EDERAL TAX *I

call subroutine to compute federal tax

I* STATE TAX *I

call subroutine to compute state tax

I* VOLUNTARY DEDUCTIONS *I

call subroutine to compute voluntary deductions

I* SUBROUTINE TO COMPUTE SOCIAL SECURITY *I

I* SUBROUTINE TO COMPUTE FEDERAL TAX *I

I* SUBROUTINE TO COMPUTE STATE TAX *I

I* SUBROUTINE TO COMPUTE VOLUNTARY DEDUCTIONS *I

I* GROUP HEALTH INSURANCE *I

I* SUBROUTINE TO UPDATE MASTER FILE *I

I* ADD THIS WEEK'S PAY TOTALS TO *I
I* CUMULATIVE TOTALS IN EMPLOYEE'S *I
I* MASTEB FILE RECORD *I

I* UPDATE VACATION BALANCE AND *I
I* SICK LEAVE BALANCE *I

I* SUBROUTINE TO PRINT PAYCHECK *I

I* ON PRE-PRINTED FORM, PRINT *I
I* EMPLOYEE NAME AND NET PAY *I

I* IF GROSS PAY EXCEEDS $1000, *I
I* PRINT EXCEPTION REPORT *I

I* SUBROUTINE TO PRINT PAY STUB *I

I* ON PRE-PRINTED FORM, PRINT DATE, *I
I* EMPLOYEE NAME, SOCIAL SECURITY NUMBER, *I
I* CUMULATIVE TOTALS, *I
I* TOTALS FOR THIS PAY PERIOD *I

86

87

1. Aho, Alfred v., Hopcroft, John E., and Ullman, Jeffrey
D., Ihe Qesiga sn~ !aslY2i2 2! ~Q!!E~!~~ Alg~!t~!§,
Peadinq, Massachusetts, Addison-Wesley Publishinq
Company, 1974.

2. Anthony, Robert N., ~s.!lA~~~nt AC£Q~~ting~ !~~t s.!lg
~A§~• Homewood, Illinois, Richard D. Irvin, Inc.,
1964.

3. Breckner, David, and Abel, Peter, 1!1:in£i12J&§ gf
n~e!ng§§ ~~~~~ ~Qg~~~!ng, Enqlewood Cliffs, New
Jersey, Prentice-Hall, Inc., 1970.

4. Conway, Richard, and Gries, David, An IntrogY£!i2n tQ
f£ggramming~ A ~~ucty~ed AEE~2A£h Y2ing f1L1 And f1L~= z, Cambridqe, Massachusetts, Winthrop Publishers, Inc.,
1975.

5. Huqhes, Joan K., f1L1 g~gram~ing, New York, John Wiley
& sons, Inc., 1973.

6.

7.

8.

Kennedy, Michael, and Solomon, ~artin B.,
st~tement nlL£ 12lL~~Ql n!~ nlL2n~. Enqlewood
New Jersey, Prentice-Hall, Inc., 1972.

LaFave, L. J., Milbrandt, G. D., and Garth,
f~Ql!le~ a2lvin~ The CO~EY!~~ !£££Q2£h, New
McGraw-Hill Ryerson Limited, 1972.

~ight
Cliffs,

D. W.,
York,

Neuhold, Erich
J1schin~.t All
Massachusetts,
1971.

J., and Lawson, Harold W., Jr., !~ f1Ll
Inttodu£ti2n !2 ~£2gts~ing, Feadinq,

Addison-Wesley Publishing Co., Inc.,

9. Polya, G., How !Q Soly~ It, Princeton, New Jersey,
Princeton University Press, 1945.

10. Shelly, Gary B~, and Cashman, Thomas J., Inttody£ti2n
tQ compute.r f!Qgra,m,!ing_t .!l!ai £QEQJ., Fullerton,
California, Anaheim Publishinq Co., 1973.

11. Sprowls, R. Clay, f1L~.t A £~2£~§§2£ !~ f1Ll• San
Francisco, California, Canfield Press, 1972.

12. Van Tassel, Dennie, ~Qg~~ ~iyleL ~§ignL
Debyggin~ and Testing, Enqlewood Cliffs,
Prentice-Hall, Inc., 1974.

88

Effici~n~YL
New Jersey,

13. Weinberq, Gerald M., R1L1 g~gg~~~!ing g~i!~~. New York,
McGraw-Hill Book company, 1966.

14. _____ , R1L1 g~gg~~mmingi A ~~nyal g! ~iY!~. New York,
McGraw-Hill Book company, 1970.

15. Weinberq, Gerald, Yasukawa, Norie, and Marcus, Robert,
~!~uctu~ed ~gg~~mming in PLL~i An !h~~daii~n. New
York, John Wiley & sons, Inc., 1973.

16. Weston, J. Fred, and
tl~n~i~! Fin~n~~.
Press, 1974.

Brigham, Eugene F., ~~nli~12 Qf
Hinsdale, Illinois, The Dryden

89

Appendix A

Further Problems for Refinement

~~ing§§_~gblgm§

1. Program a Point of Sale terminal, such as that used in

a fast food restaurant. The program should accept

input such as HAMBURGER, CHEESEBURGER, FRIES, LARGE

COKE, SMALL COKE, etc., and determine the cost of each

item, the subtotal, the sales tax, and the total cost.

The program should also keep count of the total number

of each item sold over a period of time. In addition,

the program should determine the amount of change to be

returned to the customer and the minimum number of

coins and bills of each denomination required to make

the change.

2. Write a program to maintain savings accounts for a

bank. The program should process deposits,

withdrawals, interest accumulation, and service

charges. Allow for at least two types of savings

accounts, one which pays the minimum interest rate but

allows immediate withdrawals with no service charge,

and another which pavs a higher interest rate but

requires a minimum balance and six months notice for

withdrawals without penalty.

3. Write a program to compute salesmen's commissions.

90

There should be different commissions for the different

types of items sold and higher commission rates for

larger sales volumes.

4. Write a program to verify employee time cards used in a

payroll program. The program should verify that the

employee identification number field contains only

numeric data, the employee name field contains only

alphabetic data and valid punctuation, and the hours

worked field contains only numeric data. The program

should also verify that cards are arranged in ascending

order by employee identification number.

5. Write a program to maintain a file containing

subscribers to magazines. Each record should contain

the subscriber's name and address, names of magazines

ordered, and number of issues ordered. The program

should print mailing labels for each customer

subscription on a weekly or monthly basis, depending

upon the magazine. It should also send renewal notices

prior to the subscription expiration date.

6. Write a program to maintain a list of activities on an

executive's schedule, (e. g., MARCH 5, 9:30 AM,

CONFERENCE WITH CARL). The program should print the

activities in calendar form upon request, (e. g.,

CALENDAB,MARCH would request that the program print all

activities scheduled for March).

7. Write a program to produce personalized form letters.

91

The letter to be printed should be entered with sp9cial

characters denoting parts of the text that vary for

each person on the mailing list (for example, name,

company name, address, etc.). The name, company name,

and address should be included for every person on the

mailing list. The letters should have marqins right

;ustified.

8. Write a program to maintain a list of a person's stock

holdings. The list should contain the name of the

company, number of shares purchased, date of purchase,

and purchase price. Given the present market value of

the stocks, the pro gram should print the gain or loss

for each stock held, and the overall gain or loss.

9. Write a program to keep track of accounts for a credit

card company. The program should process charqes,

payments, cash advances, and finance charges. In

addition, each customer should be sent a monthly

statement.

10. Write a program to convert from one currency to

another. The proqram should accept an amount in any

currency and convert it to the currency requested.

11. Write a program to determine whether it is better to

' buy or lease an automobile. The program should

consider factors such as purchase cost, number of years

to be driven, cost of maintenance, leasing cost, and

cost of insurance.

92

12. Write a program to orocess
'

inquiries about census

information. The census information should include

items such as district, type of dwelling, and name,

age, sex, and race of persons in the household. The

program should be able to answer inquiries such as

NUMBER OF FEMALES, AGE < 18, DISTRICT 1.

13. Write a program to compute grade averages for students

in a class. The program should keep the names and

homework grades for each student in the class. It

should print the class averaqe and median for each

assignment, the final average for each student, the

class rank for each student, and a graph of the

distribution of final averages.

14. Write a program to compute statistics on a collection

of data requested by a user. The user should be

allowed to enter the test data and the names of the

statistics he wants printed (e. q., MEAN, MEDIAN,

STANDARD DEVIATION, etc.).

15. write a program to simulate the qame of blackiack. The

dealer should be allowed to use multiple decks of

cards. The dealer must take another card if his point

total is 16 or less and may not take another card if

his point total is 17 or more. Devise a strategy for

93

the player (e. g., stand pat with 12 or more points)

and determine the player's gain or loss after many

games have been played.

16. Write a program to deal a bridqe hand and bid the first

round.

17. Write a program to store recipes. The program should

print recipes requested and the amount of each

ingredient ne~ded to serve a specified number of

people.

18. Each senior hiqhvay

hiqhvay patrolman

patrolman

as a

is assigned a junior

partner. To minimize

dissatisfaction, the highway patrol tries to assign

each man his preferred partner. Each senior patrolman

ranks the iunior patrolmen according to his preference,

and vice versa. Write a program to assign partners

based on the rankings. The pairings are optimal if for

each twp senior patrolmen S1 and 52, and their paired

junior patrolmen J1 and J2,

1. either 51 ranks J1 hiqher than J2, or J2 ranks

52 higher than S1, and

2. either 52 ranks J2 higher than J1, or .J1 ranks

51 higher than 52.

New address:

Alan D. Bernard

General Robotics corporation

57 N. Main street

Hartford, Wisconsin 53027

