UNC Report No.
TR-76-007
May 1976

STRUCTURED PROGRAMMING EXAMPLES
- ~ FOR USE IN _
AN INTRODUCTORY BUSINESS PROGRAMMING COURSE

by

ALAN D. BERNARD

A thesis submitted to the faculty of the
Upiversity of North Carolina at Chapel Hill
in partial fulfillment of the requirenments
for the degree of Master of Science in the
Department of Computer Science.

Chapel Hill

1976

¢ Alan David Bernard 1976

ACKNOWLEDGEMENTS

I would:like to thank Dr. Domald F., Stanat for his
advice and help during the development of this thesis.
Dr. S. M. Pizer and Dr. M. Jazayeri also contributed
conments and suggestions which greatly im?roved the final
yersion. I am very grateful to all for theif prompt review
of early drafts. In addition I would like 'l:..o thank my wife,
Mary Jo, who acted as secretary and editor throughout the

"months of writing and revising this thesis.

ALAN D. BERNARD
Structured Programming Examples for Use in anm Introductory
Business Programming Course

{Under the direction of DONWALD F. STANAT)
ABSTRACT

This thesis is designed for. use by instructors of
intrcductdrv_ programming courses. ¥t contains exam@les
deménstratinq the use of stepwise refinement in problem
solving. althouqh the axamples are bﬁsiness criented, they
are written so that they can be understood by imnstructors
and students without business backgrounds. 4 1list of

additional problems for refinement is included.

TABLE OF CONTENTS

1. INTRODUCTION
2. ELEHEQTAR! BUSINESS APPLICATIONS
2.1 Depreciation
2.2 Financial Ratios
3., SIMULATION
3.1 A Craps Game
3.2 ¥aiting Line Problenm
4, FILE PROCESSING
4.1 Inventory

4,2 Payroll
BIBLTOGRAPHY

APPENDIX

A. TFurther Problems for Refinement

28

40
50

63
T4

87

89

Chapter 1 = Intreduction

This thesis is intend=d for use by instructors of an
introductory conpuier préqramminq course. It contains
sevaral exanples demonstrating t he use of stepwise
refinesent in problem solving. Where language dependent,
the lanquage used is PL/1; hoaéver, the examples could
readily be adapted to any general purpose langduage,

The examples are oriented toward students with a
business background. Because of the diversity of students?
backgrounds, however, I have written the examples in such a
way that é business bacqucund is not necessary for
understandinq the problemsf For example, in a ©problenm
dealing uit@ depreciation of fixed assets, I have given the
formulas for computing depreciation by the methods required,
rather than assuﬁe that the students or instructors would be
famiiiar #ith the téchniques unsed.

An introductory businsss programming course poses many
problems for teachers and students alike. The instructor in
sucﬁ a course is very often a graduate teaching assistant
from the Department of Computer Science or the School of
Business, Teachinq the course may be the first classroon
experience tﬁe instructor has had frdm the teacher's side of
the desk. To further complicate matters, the instructor may
hava a very limited business background; he may be
unfamiliar uith the types of problems in which the 'students’

are likely to be interested.

Another problem faced by teaching assistants is lack of
expertise in +he programming language used in the course.
First year qraduate students recruited to teach may very
well know less about <the lanquage used than their more
knowledgeable students,

The students in an introductory course are faced with a
variety of problems as well. The clatter 0of keypunch
~machines and the étmosphere of the computation center can be
o#erwhelminq for the novics programmer. As well as
familiarize himself with a new routiﬁe,_ the Stuaent nust
learn new technigues of communicating. Although they have
been solving problems all their lives, many students find a
formal approach to problem solving difficult to implement.
Learrning a computer programming language presents
difficulties, many more, perhaps, for students in a business
carriculum than for those in science and math.

The bhest way to @liminate problems facing the students
is to eliminate problems facing the instructors. G. Polya,
in ﬁgg To Solve It, says that there are two things everf
teacher should know: the material he is to teach, and a
little bi£ more than that. The material comrtained iﬁ this
thesis has been chosen to méet both of thése demands.

0f the many problems the instructors face, most can be
solved by ~the use of existing literature. There is ample
material available concerning language syntax; there are

many introductory texts on programming languages. These may

be used to supplement language details given in the course
textboock.

But when we comae to problem solving techniques, the
existing literature is not adequate. To be sure, stractured
programming has bhecome a popular topic in computer science
in recent vyears. There have been many articles on topics
ranging fﬁom how to comment programs to how to write GOTO-
less programs. But these materials give an instructor of an
introductory course very little help.

Most_introductorv programming textbhooks cover language-

s?ntax. The better texts, however, also include discussions

of program format, program documentation, program design,

and program testing. The general approach to problem
solvin§ is very good, but there are simply not enough
examples given to show a begimning student how to write good
programs. It is the lack of good examples towards which
this thesis is directed.

The problems in this thesis are presented in terms of a.
pfoblem -sﬁecification, problem clarification, and problen
refinenent; These correspond to a problem statement,
explanation, and solution, respectivelv.

The problem_specification is a statement of the problen
we wish to solfe. I.have attempted to specify problems in a
manner that is similar to what one can expeét outside the
classfoom. Thus, there are many ambiguities which the

programmer must resolve.

The section on problem clarification deals with these
ambiquities. Fxamples are given to indicate what processing
is required; the input and output are discussed in detail,
with remarks on output which will be useful when testing and
debugging the progranm.

The heart of each example is the stepwise refinement of
t+he problen. Eabh refinement is presented in the form of a
PL/1 comment outline. The c¢omments in the outliné are
indented +to show the refinement level of the subprobless
they represent.

In most.examples the p;oblem is refined +to the. level
above the introduction of PL/1 statements. In this way, I
have tried to show that the approach to understanding and
solving a problem 4is not entirely dependent upon the
programaing lanquage to be ‘used. The final refinements
given could be used to write programs in any general purpose
-langquage.

The refinements are intended for use as models of
program development, but there are other solutions which may
ba quite satisfactory. Instructors may choose to
demonstrate this fact by pfesenting alternate methods of
solution for omne or more problenms.

In the first example the probler is refined into a
complete PL/1 progran. The prograr uses some of the more
complex PL/1 concepts, but.inétructors could easily modify

it for use prior to the introduction of sophisticated PL/1

techniques (2. g., LIST X/0 could be used in place of EDIT
I/0). The format of the proqram will be as follows:
Comment describing function of proqranm
Program~name: PROCEDURE OQOPTIONS {MAIN) ;
_'Declaratipn of all variables
, Prbqraﬁ statements
END; /% Prograam-name */

The éiémples selected for refinement fall into three
cateqories: simple business applications, simulation, and
file processing. Thé:e are two examples in each category.

The - first example iﬁ. simple business applications
involves. calculatinq depreciation on fixed assets. The
problem is ;elatively_easy to solve, and iﬁ serves mainly as'
a vehicle for introducing the method of stepvwise refinement,

The second example involves calculating various
financial ratios. This problem is much more complex than
that developed in the first exanple because +the wuser has
‘many options available, The problemz becomnes one of.writinq
an interpreter for a special-purpose language.

Tﬁe third and fourth problems involve simulation. The
game of cTaps is sinulated in the third example. It has
beeﬁ chosen to demonstrate the use of a. random number
‘generator, Because students show great interest in playing
games onh the computer, they can be expected to follow the
class discussion of =the problém very carefully, learaing

about problem refinement and simulation at the same time.

The fourth example is much more complex, but not ¢too
difficult if the previous example 4is understood. It
involves simulating activitv in a store to determine _the'
optimur number of checkout counters. A great deal of
clarification is neeﬂed before the problem specification can
be nunderstood. This problesm is excellent for demonstrating
the necessitv of working a few sxamples before plunging into.
the refinement.

The problems selectad for file processing are comnon
" business problesms. The first of +these 1is an inyentorv
problem. The problem clarification and discussions of input
and outpgt are =mphasized.

The sixth example is a payroll problem. Most students
find payroll concepts very easy to understand, but the
example demcnstrates that there may be a great deal more to
a problem than is first realized. The level of complexity
must be controllad by the problem solver, and is virtually
unlinited by the problem specification.

A list of additional problems is provided in the
appendix., These problems are suitable for class assignments
or term proijects. I+ is my hope that more daring
instructoré will use these problems for class exaaples, in:

the same spirit as Phaedfus, in 2Zen and the Art of

i v R T - S e

He felt that by exposing classes to his own
sentences as he made them, with all the misgivings
and hang-ups and erasures, he vould give a more

honest picture of what writing was like than by
spending class time picking nits in <cogpleted
student work or holding up the completed works of
masters for emulation. ' '

Chapter 2 - _Simple Bugsiness Applications

2.1 _Depreciation

In the course of providing goods and services, most
businesses acquire relatively long-lived resources, such as
buildings, machinery,-etc. These resources are called fixed
gggggg. 4ith some exceptions, fixed assets have a limited
uséful life. Por example, a car cannot be sxpected to run
forever, nor cah a small vwarehouse be expected to satisfy a
qrowing company's needs for a long period of time. During
tﬁe time a fixed asset is used, the cost of the asset may be
charqged as an expense for +tax purposes, The accounting
process for reducing the value of a fixed asset by the
estimated value “used up" is called depreciation.

In order to determine the depreciation on a fixed asset
during a year, a company must determine four things:

1. Cost of the asset. This is the purchase price of
the asset or the cost incurred in building the asset in-
house, |

2. Seriice life of the asset, This.is the period of
time during which the asset will be useful +0 the company.

3. Salvage value of the asset. This is the resale
value of the asset at the end of its useful life.

u.. Method of depreciation. There are several
techniques for computing depreciation. In practice, we want

to select thé method which most accurately reflects the

usage of the asset. 1In this problem, we will compare three

comeonly usad methods of depreciation.

e e o A i e AP S . A

Compute the depreciation cost in each year of a fixed
assett's service lifea. Use the following methods .6f
depreciation for each asset: |

1. Straiqht Line : This method treatsran asset as if

it provides the same amount of service in =zach year of
its useful life. We charge an equal amount - of _the
cost each year.

Dep/yr = {cost - salvage value)/(service life).

An asset is often more useful in its early years than
at the end of its service life. Wher this is the case, we
want to use a depreciation method which reflects the greater
usefulness in early 1life. The two methods below are
examples of such methods:

2. Double peclining Balance : This method gives the

f&stest depréciation allowed under present tax laus.
The depreciation each year is computed by taking a
percentage of the book value of the asset at the
beqiﬁninq of the year. The book value'is defiped as
the cos£ of the asset 1ess.accumuiated depreciation.
The ﬁefcéntaqe used (rate of depreciation) is double
the réte used in the straight line method. Thus if an

asset has a useful life of ten vears, the depreciation

10

rate under the straight line method would be 10%/vear;
under the double daclining balance method, the rate
would be 20%/year. Depreciation in the last year is
the difference between the book value and the salvage

value.

{2/1ife) * cost

]

Dep in vr 1

N

Dep in yr 2 {(2/1ife) * {cost - accum dep)

Dep in last yr = cost - accum dep - salvage value

3. Sup of Year's Digits : This method is used for
assets that do not lose their usefulness as quickly as
the double declining balance method would indicate.

suR = 1 %+ 2 4 .0 + {(life-1) + life.

Dep in yr 1 = (life/sum)*(cost - salvéqe value)

I

Dep in yr 2 {{life=1) /sum })*{cost - salvage value)

Dep in last yr = (1/sun)#(cost - salvaqe value)

It is important to impress upon students the need for
vorking exanmples before starting the problem refinement.
The details of the problem become clear once we calculate
depreciation using the methods specified. Instructors ma?
find it useful to work this examgle for all ten years of the

assat's life,

o

11

Assume an asset costs $1100, has an 'expected useful
life of 10 yeats, and has a salvage value of $100. The
accumulated depreciation at the end of ten vyears will be

cost = salvage value, which is $1000., This is the same for

each of the three methods.

I b L iy . S W

Using the equation given in the problenm specification,

depreciation/year= {1100-100) /10 = $100/year.

The rate of depréciation is 2/10 = .20.

The undepreciated valué_in the first vyear 1is $1100.
Depreciation in the first year = .20.* $1100.= $220.

The-undepréciated value in the second vear is $1100-220
= $880. _Depreciation in the second year = .20 * 880 =.$1?6.

Continuing in the same manner, the undepreciated value
after 9 vyears is $147. The depreciation in the tenth year
#ill be $147-100 = $47,
Sum _of Years' Digits Method

The life of the asset is 10 vyears. The sum of the
year's digits is 1;2+3+...+9+10=55. A better method for
éalculatinq the sum of the years! digits is to use the
formula

1424, . 4N=N (N4 1) /2,
where N is the number of years.

A

Depreciation .in_ vear 1 = ((10-141)/55) * 1000 = $182.

12

pepreciation in vyear 2 = {{10-241)/55) * 1000 = $164,

And so forth.

Ipput
In working with the example, we saw that the input

information wmust include the purchase cost, expected useful
life, and salvaqe value of the asset. All other information
needed «can be comaputed fronm this information, In additiocn,
ve will include the name of £he asset.

Although the problenm specificatioh indicates that we
need only compute depreciation schedules for one asset, the

program will be much more useful if we modify it to work for

more than one asset.

Qutput

For each asset, we =must print the amount of
depreciation each vyear of its expected useful life, using
‘@ach of the three methods. In addition, we will print +the

accunulated depreciation for each year using each method,

Problem Refinement

Having investiqated the problem requirements, vwe will
now develeop a solution to the problem. We will do this by
refining the problem into a sequence of subproblems. The
sequence of subproblems must have the property that solving

the sequence is egquivalent to sclving the original problem.

13

The value of stepwise refinement is that ve can
consider ecach subproblem as a problesm in iﬁself and refine
it further. By doing this we can brsak the original problen
into a sequence of subproblems, each of which can be readily
solved. Let's begin with a statement of the basic problem.'

/* COMPUTE DEPRECIATiGN ON FIXED ASSETS */ |)
since we expect more than one asset, this will be a

repatitive process. We can refine each repetition into twmo

subproblerms:

/% COMPUTE DEPBECIATION ON FIXED ASSETS */
/% REPEAT UNTIL ALL ASSETS PROCESSED */
/* EBAD NAME,COST,LIFE,SALVAGE VALUE OF ASSET */

/* COHPUTE DEPRECIATION ON THIS ASSET */

We will not refine the read subprobiem further before
we write oprogqram statements. He «c¢an now concentrate on
/f COMPUTE DEPRECIATION ON THIS ASSET */, ¥§He will ﬁant. to
conmpute the depreciation for each year, comparing the three
methods., This is é repetitive process, and for each yvyear we
will want ¢to compute the depreciation .and accumulated

depreciation, and print the results.

/% COMPUTE DEPRECIATION ON THIS ASSET */
/% REPEAT FOR EACH YEAR OF USEFUL LIFE */

/% COMPUTE DEPRECIATION FOR CURRENT YEAER */
/% AND ACCUMULATED DEPRECIATION */

/* PRINT RESULTS %/

14

To refine 7% COMNPUTE DEPRECIATION FOE CUREENT YEAR .AND
ACCUMULATED DEPRECIATION */, we can simply indicate that we

must compute depreciation by three methods.

/% REPEAT FOR EACH YEAR OF USEFUL LIFE */

/% CONPUTE DEPRECIATICN FOR CURRENT YEAR ¥/
/% AND ACCUMULATED DEPRECIATION */

/% STRAIGHT LINE METHOD */
/% DOUBLE DECLINING BALANCE HETHOﬁ */
/* SUM OF YEARS' DIGITS METHOD */

/% PRINT RESOLTS */

Hé will not refine the sabptoblems for each of the
methods of depreciation at this point. We can do so when we
are ready to write prograns stateménts.

The last refinemqnt needed before we can write the

program is to indicate what we want to print.

/% PRINT RESULTS */
/% PRINT DEPRECIATION AND ACCUMULATED */
/% DEPRECIATION FOR EACH METHOD */
The refinement up to this point is listed below:
/* COMPUTE DEPRECIATION ON FIXED ASSETS ¥/
/%* FEPEAT UNTIL ALL ASSETS PROCESSED */
/* READ NAHE,COST,LIFE,SALVAGE VALUE.OF ASSET */
/* COMPUTE DEPRECIATION ON THIS ASSET */
| /% REPEAT FOR EACH YEAR OF BSEFYL LIFE */

/¥ COMPUTE DEPRECIATION FOR CURRENT YEAR */
/% AND ACCUMULATED DEPRECIATION */

15

/* STRAIGHT LINE METHOD */
/* DOUBLE DECLINING BALABCE METHOD */
/* SUM OF YEARS' DIGITS METHOD */

/* PRINT RESULTS */

/% PRINT DEPRECIATION AND ACCUMULATED %/
/% DEPRECIATION FOR EACH METHOD */

Program Development
Now.that we héve a detailed outline of the problem:
solution, we can develop a complete PL/1 program. We will
use the comment outline as the skeleton for the PL/1
program,
As mentioned in the introdﬁction, our progran uill.have
the following structure:
Comment describing function of program
Program-name: PROCEDURE OPTIONS (MAIN) ;
Decla;ation of all variables
Program statements
EX¥D: /* Progran-name */
We will iake the first comment in the outline as the
description of the program. ZSelectinq a reasonable name for
our program, we can continue ¢the program development, as

follows:

/* COMPUTE ﬁEPRECIATION ON FIXED RSSETS */
DRPREC: PROCEDURE OPTIONS(HAIN)§
/% BREPEAT UNTIL ALL ASSETS PRQCESSED */

/% RBAD NAME,COST,LIFE,SALVAGE VALUF COF ASSET */

16

- /% COMPUTE DEPRECIATIOCN ON THIS ASSET */
/* REPEAT FOR EBACH YEAR OF USEFUL LIFE */

/* COMPUTE DEPRECIATION FOR CURRENT YEAR */
/¥ AND ACCUMULATED DEPRECIATION */

/* STRAIGHT LIKNE HETHOD */
/* DOUBLE DECLINING BALANCE METHOD */
/* SUM OF YEARSY' DIGITS METHOD */

/* PRINT RESULTS */

/% PRINT DEPRECIATION AND ACCUMULATED %/
/* DEPRECIATION FOE EACH METHOD *y/

END; /% DEPREC */

The first desiqgn decision comes when we look at
/% REPEAT UNTIL XLL ASSETS PROCESSED */
/% READ NAME,COST,LIFE,SALVAGE VALUE OF ASSET %/

/% COMPUTE DEPRECIATION ON THIS ASSET */

Because this is a repetitive process, we will want to use a
DO lcop. There are three ways we can determine when to exit
from the loop.
1. Count the number of assets to be processed, and
include the count as the first item in the input; use
the count to control the number of items read and
processead. |
We would like to avoid this method because couhtinq is =a
tedious chore, and nmiscounting would cause errors in the

processing.

2. Add a dummy item as the last item in the input.

17

#hen this item is read, we know that all assets have
been processed.
This method is preferable to the first, but it can only be
used if .we can find a dummy value which would never appear
as valid input to ¢the proqgram. While this method is
suitable for this problem, instructors will find the third
method useful in introducing the ENDFILE condition. In
addition, the instructor can discuss the concept of
maintaining the integrity of the file - should we allow
invalid data in our asset file if it can be avoided?
3, Stop processing when there are ro more assets to
_be_proceésed.
This is the_most natur;l way to stop the program. The PL/?
ENDFILE condition will signal that thefe is no more data in
the input stream., We will wuse +he ENDFILE condificn to
terminate the 1Qop._
Using the ENDFILE condition to terminate the loop, we
have two possibilities:
1. ON EﬁBFILE qo out of loop
DO WHILE (forever);
read asset data
process this asset
EﬂD;
2. read asset data
DO WHILE (ENDFILE condition not raised);

process this asset

18

read next asset data
END;
We will select the second method because it reflects the
basic iterative process:
1. Set the condition (read asset data)
2. fest the condition (DO WHILE ...)
3. perform the body ¢f the loop {process this asset)
4, Modify the value of the conditior (read next asset.
data)
5. Go back to step 2. (END}
Having selected the approach we will use, we can now

refine our program to the following level:

/* COMPUTE DEPRECTATION ON FIXED ASSETS */
DEPREC: PROCEDURE OPTIONS (MAIN):
DECLARE ANOTHER_ASSET FIXED DECIMAL; /* STCP FLAG */

ANOTHER_ASSET = 1;
ON ENDFILE(SYSIN) ANCTHER_ASSET = 0

L]

/% BEAD NAHE,COST,LIFE,SALVAGE VALUE OF.ASSET */
/% REPEAT UNTIL ALL ASSETS PROCESS®D */
DO WHILE (ANOTHER_ASSET=1);
/% COMPUTE DEPRECIATION ON THIS ASSET */
/* REPEAT FOR EACH YEAR OF USEFUL LIFE %/

/*¥ COMPUTE DEPRECIATION FOF CUEREBNT YEAR */
/% AND ACCUMULATED DEPRECIATICN ' x/

/* STRAIGHT LINE METHOD */
/% DOUBLE DECLINING BALANCE METHOD */

/* SUM OF YEARS' DIGITS METHOD */

19

/% PRINT RESULTS =/

/% PRINT DEPRECIATION AND ACCUMULATED */
/* DEPRECIATION FOR EACH METHOD */

/* REBAD NANME,COST,LIFT,SALVAGE VALUE OF ASSET */
END;

BND: /* DEPREC */

In the refinements that follow, we will list only the -
parts of the progqram that are being refined aﬂd the
declarations of the variables introduced in the refinements;
These declarations and refinements will then be combined and
collated'fo forn thg final progranm.

We can now refine /* READ'Naﬁg,cosw,irrz,saivasz' VALUE
OF ASSET. x,/, We will select variable names of NAME, COST,
LIPE, and SALVAGE for the values to be read. NAME will hold

character strinds of length up to 15 characters; LIFE will

~hold integer values, We are not sure what the largest cost

can be, so we will declare COST and SALVAGE as FLQAT

DBCIMAL.
We can use LIST or RDIT input. To eliminate the use of
quotes around asset names, we will use EDIT input. The

format used must be reasonable for the values to be read.

DECLARE NAME CHARACTER({15); /* ASSET NAME %/

DECLARE COST FLOAT DECIMAL; /* INITIAL COST OF ASSET */
DECLARE LIFE FIXED DECIMAL; /* YEARS ASSET CAN BE USED*/
DECLARE SALVAGE FLOAT DECIMAL; /* SALVAGE VALUE */

/% READ NAME,COST,LIFE,SALVAGE VALUE OF ASSET */
GET EDIT (NAME,COST,LIFE,SRLVAGE)
(COL(N ,A(13) ,X(1),F(8) ,X(1),F(2),X(1),F(6));

20

This refinement will be used in both places in the vbprogranm
where +he read comment OCCUrS. The variables will be
declared only once, however.

We can now refine /% REPEAT FOGR FEACH YEAR OF USEFUL
LIPE %/, This is a'repetitive process and will be replaced
by a DO loop; Although we can use a DO WHILE 1loop, the

self=-incrementing loop will better reflect the activity.

DECLARE YEAR FIXED DECIMAL;

- /* REPEAT FOR BACH YEAR OF USEFUL LIFE */

DO YEAR = 1 TO LITE;

/% COMPUTE DEPRECIATION FOE CURBRENT YEAR */
/% AND ACCUMULATED LDEPRECIATION */

/* STRAIGHT LINE METHOD %/
/* DOUBLE DECLINING BALANCF METHQD */
/% SUM OF YEARS' DIGITS METHOD */

/% PRINT RESULTS */

/% PRINT DEPRECIATION AND ACCUMULATED */
/% DEPRECIATION FOR EACH METHOD */

END;

We can novw insert the code for computing depreciation
and acéumuiated depreciation. The code follows from the’
formulas - qiven for each method of depreciation.
(Instructors may want to sxpand the comments used in declare
statements since they will have 72: card columns available

rather than the 60 column limitation of this paper.)

DECLARE STRT_DEP FLOAT DECIMAL; /* STRAIGHT—LINE *x/

21

DECLARE TOTAL_STRT FLOAT DECIMAL; /% ACCUMOLATED STRT */
DECLARE BOOCK_VALUE FLOAT DECIMAL; /% COST=-DEPRECIATION*®/
DECLARE DBL_DEP FLOAT DECIMAL; /% DOUBLE DECLINING */
DECLARE TOTAL_DBL FTLOAT DECIMAL; /% ACCUMULATED DBL */
DECLARE SUM_OF_DGTS FIXED DECIMAL; /* 14+2+4...4LIFE %/
DECLARE DGTS_DEP FLOAT DECYMAL; /* SUM OF YEARS' */
DECLARE TOTAL_DGTS FLOAT CECIMAL; /% ACCUMULATED YEARS*/

/% COMPUTE DEPRECIATICN FOR CURRENT YEAR */
/% AND BACCUMULATED DEPRECIATION : */

/¥ STRAIGHT LINE METHOD */

STRT_DEP= (COST-SALVAGE) /LIFE;
TOTAL_STRT = TOTAL_STRT + STRT_DEP;

/* DOUBLE DECLINING BALANCE NETHOD */
BOOK_VALUE = COST = TOTAL_DBL;
“IF YEAR ~= LIFE '
THEN DBL_DEP=2*%BOOK_VALUR/LIFE;
ELSE DBL_DEP=BOOK_VALUE~SALVAGE;
TOTAL_DBL=TOTAL_DBL + DBL_DEP;

/% SUM OF YEARS® DIGITS METHOD */
SUM_OF_DGTS=LIFE* (LIFE+41) /2;
DGTS_DEP:{LIFE-YE&E+1)*(COST-SALVBGE)

o /SUM_OF_DGTS; -
TOTAL_DGTS=TOTAL_DGTS 4 DGTS_DEP;
We are not vet finished with this part of'ihe pProgram.
The problem is that wwe must initialize the values for
accumulated depreciation. We will want them to be set to 0
each time we process a new asset. The initialization will

have to come before /¥ RE?EAT FOR FACH YEAR OF USEFUL LIFE

*/, but after DO WHILE (ANCTHER_ASSPET=1).,

DO WHILE (ANOTHER_ASSET=1);
/% COMPUTE DEPRECIATION ON THIS ASSET */
TOTAL_STRT=0; TOTAL_DBL=0; TOTAL_DGTS=0;

/% REPEAT FOR EACH YRAR OF USEFUL LIFE */

22

DO YEAR = 1 TO LIFE;

/% COMPUTE DEPRECIATION FOR CURRENT YEAR */
/*¥ AND ACCUMULATED DEPRECIATION %/

/% STRAIGHT LINE METHOD */

STRT_DEP= (COST-SALVAGE) /LIFE;
TOMAL_STRT = TOTAL_STRT + STRT_DEP;

/% DOUBLE DECLINING BALANCE METHOD */

BOOK_VALUE = COST - TOTAL_DBL;
IF YEAR ~= LIFE
THEN DBL_DEP=2%BOOK_VALUE/LIFE;
ELSE BBL_DEP=BOOK_VALUE-SALVAGE;
TOTAL_DBL=TOGTAL_DBL % DBL_DEP;

/% SUM OF YEARS' DIGITS METHOD */
SUM_OF_DGTS=LIFE* {LIFE+1) /2; |
DGTS_DEP= (LIFE-YEAR+1) * (COST~SALVAGE)

/SUM_OF_DGTS;
TOTAL_DGTS=TOTAL_DGTS 4 DGTS_DEP;
/% PRINT RESULTS */

/* PRINT DEPRECIATION AND ACCUMULATED */
/* DEPRRCIATION FOR EACH METHOD */

ENRD;

¥e can now add the PL/1 statements +to0 print our
rasults. Inétructors should stress the fact that the cutput
rust be carefully laid out rather than haphazardly printed.
We want the output to be in a readable format, with
variables printed in the most useful order.
/% DRINT DEPRECIATION AND ACCUMULATED */
/% DEPBECIBTION FOR EACH METHOD */
PUT SKIP EDIT (Y®AR, STRT_DEP,DBL_DEP,
DGTS_DEP, TOTAL_STRT,
TOTAL_DBL,TOTAL_DGTS)
{(F{5) ., X(2) ,F(11,2) ,X¢(4),

F(11,2),X(7),F(11,2),
COL(56),F{11,2),C0L{T1),

23

F{11,2),COL(80),F{11,2));

The output will not be very useful unless ve indicate
which asset we are processing and print headinqs'over each
column. This will have to be done before the printing of
the valués. | We <can print headings before we compute the
depreciation for an asset.

/¥ PRINT HEADING */
PUT SKIP{3) EDIT (NANE,'CQST=!',COST,
*SERVICE LIFE=!',LIPE,'YRARS®,
*SALVAGE VALUE=?' ,SALVAGE)
(B, X{(3),A,F{8),X(3).,A,F(2),
(1) R, X(3),4,F(6));
POT SKIP EDIT {(*CURRENT DEPRECIATION?,
*ACCUMULATED DEPRECIATION')
{COL {19) ,A,COL(67).4):
PUT SKIP EDIT {('STRAIGHT', 'DOUBLE DECLINIKGY,
'SUM OF YEARS®!1? $STRAIGHT',
'DOUBLE DECLINING','SUM OF YEARST© 1Y)
{COL{10) ,A,COL{21),4,COL{40) ,2,
COL (58) ,A,COL(69),A,COL (89) ,1);
PUT SKIP EDIT ('YEAR?,'LINE’,'BALANCE','DIGITS®,
. ' YLINE®, *BALANCE?Y ,*DIGITS?)
{COL(3),A,COL(12},A,COL(2ﬂ),A,CGL(&3),
A,COL(60) ,A,COL{72),A,C0OL (92} ,4);

/% COMPUTE DEPRECIATION ON THIS ASSET */

Improvaments

We now have a completa PL/1 proqrém for this problenm.
However, ﬁhere are several changes we may want to make. 1In
order to make the program more efficient, we could reduce.
outpqt by printing héadinqs only once per page. This would
involve the use of the ENDPAGE condition and would not be

advisable in an introductory course,.

24

He will, however, want to remove calculations fronm
loops where possible, In this way, we can. perforn
calculations once instead of many times. The place to look
is in the innermost loop, DO YFAR=1 70 LIFE.

Under /% STRAIGHT L%NE ‘HETHpD ¥/, w¥e are computing
STET_DEP = (COST =- SALVAGE) /LIFE. Since COST, SALVAGE, and
LIFE do not change values during +the computation, we can
move this statement outside the lbop.

In computing double declining balance depreciation, we
compute DBL_DR®RP = ZfBOOK_VALUE/LIFE; We can set
DBL_FATE=2E0Q/LIFE outside the loop, _and change the
calculation +to DBL_DRP = DBL_RATE*BOOK_VALUE. Note that we
must_use 2EO/LIBE rather +than 2/LIFF because we wWant a
floating point result.

The final changes occur in computing sum of vyears!
digits depreciation. ‘We can move the calculation of
SUM_OF_DGTS outside the loop. Furthermore, Wwe can coOmpute
USEPUL_VALUE = COST =~ SALVAGE outside the loop and chanqe-
the calculations for STET_DEP and DGTS“DEP to usa
USEFUL_VALU® rather than COST - SALVAGE.

After adding DBL_RATE and USEFUL_VALUE to the declare
statements, we can group the declare statemenis so that they
are more :eadable.

The final program appears below.

/* COMPUTE DEPRECTATION ON FIXED ASSETS */

DEPREC:PROCEDURF OPTIONS (MAIN) ;

25

DECLARE NAWE CHARACTER(%5), /% RSSET NAME #*/
{COST, /* INITIAL COST OF ASSET */
SALVAGE) /* SALVAGE VALUE OF ASSET */
FLOAT DECIMAL,
LIFE FIXED DECIMAL, /* YEARS ASSET USEFUL */

{STRT_DEP, /% STRAIGHT LINE DEPRECIATION */
TOTAL_STRT, /% AND ACCUMULATED DEPRECIATIOR */

DBL_DEP, /* DOUBLE DECLINING BALANCE */
TOTAL_DBL, /* AND ACCUHULATED DEPRECIATION */

DGTS_DEP, /¥ SUM OF YEAFS' DIGITS DEP */
TOTAL_DGTS, /* AND ACCUMULATED DEPRECIATION */

BOOK_VALUE, /* COST-ACCUMULATED DEPRECIATION */
DBL_RATE, /* HIGHEST ALLOWABLE RATE */
/% OF DEPRECIATION #*/
SUM_OF_DGTS, /* 1424...+LIFE */
USEFUL_VALUE) /% COST=-SALVAGE VALUE */
o FLOAT DECIMAL,

ANDTHER_QSSET FIXED DECIMAL, /* END OF DATA */
YEAR FIXED DECIMAL; /* LOOP INDEX VARIABLE */

ANOTHBR ASSET = 1; '
ON ENDFILE(SYSIN) ANOTHER_ ASSFT = 0;

/* READ NAME,COST,LIFE,SALVAGE VALUE OF ASSET */
GET EDIT (NAME,COST,LIFF,SALVAGE)
(COL (1), R (15),X(1),F(8) ,X{1),F{2),X(1),F(B));

/* REPEAT UNTIL ALL ASSETS PROCESSED */
DO WHIL® (ANOTHER_ASSET=1);:

/% PRINT HPADING */ _
PUT SKIP(3) EDIT (NAME,'COST=',COST,
: ' "SERVICE LIFE=',LIFE,'YEARS',
t*SALVAGE VALUE=!',SALVAGE)
(R,X(3),A,F(8),X(3),A,F(2),
x(1)lhlx(3) cthfs)):

PUT SKIP EDIT ('CURRENT DEPRECIATION',
'ACCUMULATED DEPRECIATION')
(COL(19) ,2,COL(67),R):

PUT SKIP EDIT ('STRAIGHT', *DOUBLE DECLINING',
SUM OF YEARSY?,*STRAIGHT®,
*DOUBLE DECLININGY,'SUM OF YEARS''')
(COL (10) ,A,COL(21),A,COL (40) ,4,
COL {58) ,2,COL(69),A,COL{89),13);

Vi

PUT SKIP EDIT (‘YEAR’,’LINE’,‘BALAHCE’,'DIGITS’,
'LINE', *BALANCE? ,'DIGITS')

26

{COoL(3) ,A,COL{(12) ,B3,COL(24),A,COL{43),

A,COL(60),A,COL{72),A,COL(92),8);

COMPUTE DEPRECIATION ON THIS ASSET */

TOTAL_STRT=0; TOTAL_DBL=0; TOTAL_DGTS=0;

USEFUL_VALUE=COST=SALVAGE;
DBL_RATE=2E0/LIFE;

‘SﬂH“OF_DGTszLIFE*(LIFE+1)/2;

/*.STRKIGHT LINE DEPRECIATION PER YZAR */
STRT_DEP=USEFUL_VALUE/LIFE;

/% REPEAT FOR FACH YEAR OF USEFUL LIFE */

DO YFAR

/% COMPUTE DEPRECIATION FOR CURRENT YEAR */
/% AND ACCUMULATED DEPRECIATION

1 TO LIFE;

/¥ STRAIGHT LINE METHOD %/
TOTAL_STRT = TOTAL_STRT + STRT_DEP;

,*

DOUBLE DECLINING BALANCE METHOD */

BOOK_VALUE = COST - TOTAL_DBL;
IF YEAR ~= LIFE _
THEN DBL_DEP=DBL_EATE*BOOK_VALUE;
ELSE DBI_DEP=BOOK_VALUE-SALVAGE;
TOTAL_DBL=TOTAL_DBL 4 DBL_DEP;

SUM OF YEARS'® DIGITS METHOD */

DGTS_DEP= (LIFE-YEAR41) *USEFUL_VALUE
/SUM_OF_DGTS ;

TOTAL_DGTS=TOTAL_DGTS + DGTS_DEDP;

/% PRINT DEPRECIATION AND ACCUMULATED */
/*¥ DEPRECIATION FOR EACH METHOD */

PUT SKIP BDIT (YRAR, STRT_DFP,DBL_DEP,

END;

DGTS_DEP, TOTAL_STET,
TOTAL_DBL,TOTAL_DGTS)
(F(5),X{(2) ,F{11,2},X({4),
F(11,2),X(N,F(11,2),
COL(56) ,F(11,2),CO0L(71),
F(11,2),C0L (90) ,F(11,2));

*/

27

/*'READ NAME,COST,LIFE,SALVAGE VALUE OF ASSET */
GRBT EDIT {(NAME,COST,LIFE,SALVAGE)
(COL(1),A(15),X(1),F(8),X{1),F{(2},X(1)},F(6});
END;'

EX¥D; /% DEPREC */

28

Financial analysis revolves around +two major accounting
reports - the firm's balance sheet and its income statement.
The balance sheet is a statement of the firm's financial
conditioﬁ at a specified point in time (e.g. the end of the
year). The income statement 1is a record of the fifm's
activity during a period of time {e.g. One year}. Financiél
analysts relate the +two reports by means of financial
ratios.

2 financial analyst may be interested in ¢ne particular
ratio. For instance, he may want to knov¥ the return on
investment for a firm, in which case, he would look at the
return on net worth ratioc (net profit after taxes/net
worth}.

In some situations the analyst may be interested in a
group of ratios, Por instance, before a banker gives a
short term loan, he may want to know how quickly the firm's
assets can be turned into cash and whether this cash can be
used to repav the lean. For this pufpose, he will 1look at
the ratio of current assets (assets which are expected to be
converted into cash in a short period of time) to current
liabilities (debts which must be paid in a short peridd of
time). He also may want to look at the ratio of {current

assets - inventory) / current liabilities.

29

The finance executive in a company will want to see.hou
his company compares to others in the same industry. To do
this, he can compare his company's ratios with the averages
of the financial ratios of companies in his industry.

We will deal with a pfoblem to dOmpute ‘the more

comimonly used ratios.

T R e e o .

Compute financial ratios requested by the user. The

ratios are divided into the following cateqories:

1. Liquidity Ratios
turrent; (current assets) / (current liabilities)
Quick: (current assets = inventor?) / {current
liébilities)

2. Leverage Ratios

Debt: (total liability} ,/ (total assets)
Interest: (profit before taxes + interest charges) /

(iﬁterest charges)

3. Activity Ratios
Inventory Turnover: sélés / inventofy
Collection Period: receivables / {sales per day)
Fixed Asset Turnover: salgs / (fixed'assets)
Total.nsset Turnover: sales / (total assets)

4. profitability Ratios:

. i e s i v

Profit Margin on Sales: (net profit after taxes) /

sales

30

return on Total Assets: {net profit after taxes)y /

(total assets)

Return on Net Worth: (net profit after taxes) /

{net worth)

Problem Clarification
The ratios to be calculated are standard ratios used in
managerial finance. The fiqures used in the ratios come

from balance sheets and incoms statements. 'The breakdown is

as follovs:

Balance Sheet Income Statement

fat a specified {(during the

point_in time) _ specifiad period)
receivables sales

inventory interest charges
current assats profit before taxes
fixed assets net profit after taxes

total assets
current liabilities
total liability

net worth

Based on our discussion of the uses of the ratios, we
can anticipate the reguests we will receive from users. ¥Hes
should have the capability of printing one ratioc, a qroup of
ratieos, or all the ratios. In addition, thé user should be
able +to specify the industry average for any ratio
requested, and our..proqram should be able to print the

company ratio alongside the industry avéraqe.

31

We can expect the user to make more than ong request,
so we should write the program _in such a way that many
requests can be processed. It is alsc possible . that the
gser will want to compute ratios for more than one coampany,
so we should allow him to read values from more than one set
of finanéial statements. |
Input

The input will consist of commands to calculate various
ratios. The previous discussion indicates that we should
supply command names for =ach. group of ratios (e.g. a
command named LIQUIDITY_ would require that we print the
current ratio and £he guick ratio). Ccmmands should specify
whether the industrv‘averaqe is to be printed.

In addition, we mus*t supply a command to read balance
sheet and incoae statement fiqures. ¥e will also need to
read the industry averages.

Qutput

We should print the name and value of every ratio we
compute. "when a gqgroup of ratios is requested, we should
print the name of the group, and the names and vaiues of the
ratios in tﬁe group. We should also print the industry

average when it is requested.

A straidhtforﬁa:d statement of the problem is

/* COMPUTE PINANCIAL RATIOS */.

32

This is a repetitive problem which can be broken into two

parts.

/* COMPUTE FINANCIAL RATIOS */
/* REPEAT UNTYL NO MORE COMMANDS */
/% EEAD A COMMAND */

/* EXECUTE THE COMMAND */

The problem /¥ EXECUTE THE COMMAND =*/ can be broken

into parts according to the three basic types of commands.

/* EXECUTE THE COMMAND */
/* COMMANDS TO RFAD DATA */
/* SINGLE RATIO COMMANDS */

/* GROUP COMMANDS */

There are three commands to read data. The commands
and the information read for each of them are given in the

next refinement.

/% COMMANDS TO KEAD DATA */
/* BRALANCE SHEET COMMAND */

/* READ VRLUES FOR RECEIVABLES,INVENTORY, */

/* CURRENT ASSETS, FIXED ASSETS, */
/* TOTAL ASSETS, CURRENT LIABILITIES, */
/% TOTAL LIABILITY, NET WOETH 7 4

/* PRINT NAMES AND VALUES OF ITEMS READ */
/* INCOMB STATEMENT CCMMAND */
/* READ VALUES FOR SALES,INTFREST CHAERGES,*/

/% PROFIT BEFORE TAXES, */
/* PROFIT AFTER TAXES o 4

33

/* PRINT NAMES AND VALUES OF ITEMS READ */
/* INDUSTRY AVERAGES COMMAND */

/* READ IRDUSTRY AVERAGES FOF ALL FATIOS */

The second type of command asks for a single ratio to
be computed. There will be a routine for each ratio, but

the refinement of each is the same.

/% SINGLE RATIO COMMANDS */
/* PRINT NAME OF RATIO */
/* COMPUTE AND PRINT VALUE OF RATIO */
/* IF REQUESTED, PRINT INDUSTFY AVERAGE */
/* FOR RATIO */
The last gqroup contains commands to execute more than
one ratio. The groups conform to the types of ratios as

indicated in the problem specification.

/* GROUP COMMANDS */
/% LIQUIDITY RATIOS */
/* LEVERAGE RATIOS */
/* ACTIVITY RATIOS */
/* PROPITABILITY RATICS */

/* ALL RATIOS */

We must now refine each of the group headings. There
are two essential activities in each group: print the name
of the qroup, and compute the ratios included in each group.

When we compute each ratio, we will perform the same

34

activities as we do when the <c¢ommand for that ratio is
given, It is certainly worth pointing out to the students
that if we use subroutines for +he single ratios, this

segment of the program can be written almost exclusively

with subroutine calls.

/% LIQUIDITY RATIOS */
/% PRINT NAME OF GROUP */
/% COMPUTE CURRENT AND QUICK RATIOS %/
/* LEVERAGE RATIOS */
/* PRINT NAME OF GROUP %/
/% COMPUTE DEBT AND INTEREST RATIOS */
/* ACTIVITY RATIOS %/
/% PRINT NAME OF GROUP */
/% COMPUTE INVENTORY TUENOVER, COLLECTION */
/% PERICD, FIXED ASSET TURNOVER, ®/
/* TOTAL ASSETS TURNOVER * 7
/% PROFITABILITY RATIOS */
/% PRINT NAME OF GROUP */
/% COMPUTE PROFIT MARGIN ON SALES, */
/% RETUEN ON TOTAL ASSETS, * /
/% RETURN ON NET WORTH %/

/% ALL RATIOS */
/% COMPUTE LIQUIDITY, LEVEBAGE, ACTIVITY, */
/*¥ AND PROFITABILITY RATIOS x/
The complete refinement is listed below.
/* COMPUTE FINANCIAL RATIOS */
/% BEPEAT UNTIL NO MORE COHMANDS ®/

/% BEEAD B COMMAND */

35

/% EXECUTE THE COMHAND */

/% COMMANDS TO EREAD DATA */

/x

./*

/¥ BALRNCE SHEET COMMAND %/

/%
Vi
/'
/¥

/*

READ VALUES FOR BECEIVABLES,INVEKTORY, */
CURRENT ASSETS, FIXED ASSETS, */
TOTAL ASSETS, CURRENT LIABILITIES, * s
TOTAL LIABILITY, NET WORTH */

PRINT NAMES AND VALUES OF ITEMS READ */

/% INCOME STATEMENT COMHAND */

e
S*
/%

/*

READ VALUES FOR SKLES,INTEBEST CHARGES,*/
PROFIT BEFORE TAXES, */
PROFIT AFTER TAXES o */

PRINT NAMES AND VALUES OF ITEMS READ */

/% INDUSTRY AVERAGES COMMAND */

/¥

READ INDUSTRY AVERAGES FOR ALL RATIOS */

SINGLE EATIO COMMANDS */

/% PRINT NAME OF RATIO */

/% COMPUTE AND PRINT VALUE OF RATIO */

/* IF RRQUESTED, PRINT INDUSTRY AVERAGE %/
/¥ FOR RATIO _ _ */
GROUP COMMANDS */

/% LIQUIDITY RATIOS */

/% PRINT NAME OF GROUP */

/* COMPUTE CUFRENT AND QUICK RATIOS */

/¥ LEVERAGE RATIOS */

/¥

PRINT NAME OF GROUP */

/% COMPUTE DEBT AKD IHTERES: RATIOS */

J¥ ACTIVITY RATIOQS */

/¥ PRINT NAME OF GROUP */

36

/* COMPUTE INVENTORY TURNOVER, COLLECTION */
/% PERIOD, FIXED ASSET TURNOVER, */
/% TOTAL ASSETS TURNGVER ®/
/% PROFITABILITY RATIOS */

/* PRINT NAME OF GROUP =*/

/% COMPUTE PROFIT MARGIN ON SALES, */

/% RETURN ON TOTAL ASSETS, */

/* RETURN ON NET WORTH */

- /% ALL BRATIOS */

/% COMPUTE LIQUIDITY, LEVERAGE, ACTIVITY, */
/%* AND PROFITABILITY ERATIOCS * s

Program Development

The refinement of /% EXECUTE THE COMMAND */ showé what
must be done when we execute a particular command, but it
does not show how to determine which. cqmmanﬁ must be
axecuted. There are several possibilities, some of which
are very simple, and some of which are very sophisticated.

The most obvious way to determine which command %o
execute involves the use of IF statements. The comrand read
can be coapared to eﬁch of the possible command names. When
a match is found, the appropriate subroutine can be called.
If no match is found, an error message should be printed

indicating the use of an invalid command nanme,

/% EXECUTE THE COMMAND %/
/% COMMANDS TO READ DATA */

IF command=-name = 'BALANCE' THEN
CALL subroutine to read BRLANCE SHEET data:

FLSE IF command-name = 'INCOME' THEN
CALL subroutine to read INCOME STATEMENT data:

37

/* SINGLE RATIO COMMANDS */

ELSE IF command-name = *QUICK' THEN
CALL suabroutine to compute QUICK RATIC;

/% GROUP RATTOS */

ELSE IF command-name = 'LIQUIDITY' THEN
CALL subroutine to compute LIQUIDITY RATIOS:

»
-

*

ELSE print invalid command name message;

Instfuctors may choose to use +the -above control
structure with or without using subroutines. It may be
useful to use this example before subroutines are introduced
to the class and modify it to use subroutines later. 1In
this way £h§ instructor could _qive practice in writing
subroutines.while démonstrafinq their value. |

If students are already proficient in the use of nested
IF statements, instructors may choose to introduce the use
of label variables or entry variables, ¥hile these
fechniques could be discussed irn class, it may not be
appropriate to use them in assignments in 'an' introductory

class.

Program Modification

Due to incorrect assumptions or changes in the problem

specification, programs used in a business environment often

38

need ¢o be modified many times during +their useful 1life.
one of the advantages of using stepwise refinement is that
it simplifies program modification.

The most likely change in this program would be the
addition of new ratios. Suppose, for example, that we wish
to add a iatio to determine whether a business has énouqh
cash on hand to meet its current liabilities. #e will call
this ratio CASH,'and #e will compute it as

CASH = (;ash on hand) / (current liabilities).

The first modificatiogs to the refine@ent are under
/% COMMANDS TO READ DATA */. We will have to read a value
for cash §n hand. Because this is an item on the balance
sheet we will modify the Balance Sheet Command to read CASH
ON HAND in addition to the values presently read. Although
we do not have to change the problem refinement of /*
INDUSTRY AVERAGES COMMAND */, Wwe will have +to modify the
actual subroutine so that we read an average for the CASH
ratio,

Sincé CASH is a new ratio, we will "have to add a
subroutine to compute it. It will have the same basic
structure as the other SINGLE RATIO COMMANDS.

It is likely that we will also wanrt to include CASH in |
one of the groups of ratios. It naturally falls into the
category of LIQUIDITY RATIOS.

These are the only changes necessary in the problen

refinement. We will, however, have to rodify the control

39

structure to allow execution of the ne¥ command. Using the
nested IF statements this will simply involve the addition

of a statement to test for the command name CASH.

40

Chapter 3 - Simulation

3.1 Craps Game

Host businesses are influenced by events which are not
directly wunder +their control. For example, the rental of
hotel roomé in a resort area is closely related +to the
weather during the peak sesason, a factor over which the
hotel industry has very little control. ¥hen a business
cannot control 2vents, it is often of great importance to be
able to predict.their effect. |

Simulation is one method used to estimate. what will
happen under uncertain conditions. We will demonstrate
simulation techniques in a problem concerned with a popular

game of chance,

Problem Specification

Simulate the play at a craps ganme. Craps 1is a gane
played with two dice, each of which has faces numbered one
through six. Rollind-both dice gives a number ranging from
2 to 12. | The rules of the game are as follows: FRoll the
dice. If the roll is a 7 or 11, you win the game. If the
roll is Va 2, 3, or t2, vou iose the qame. Otherwise the
number rolled is called the point. Continue rolling the
dice- until vyou win by rolling the point again, Or you lose

by rolling a 7.

41

There are several possible side bets in the game, but

¥ve will restrict ourselves to the basic game as_described

above,

Broblem Clarification

_The. probler specification omits much useful
information, including such points as the input, ontput, or
number of games to plav. He will have +to make m@many
assumptions in order to write a satisfactory program. These
assumptions can best be made after 1looking at several
examples of craps games.
Examples

Investigation of the rules indicates that there are

.four possible results: win on the first roll, lose on the

first roll, win on some roll after the first roll, or lose

on some roll after the first roll., Following is a set of

examsples illustrating the four possible ocutcomes.

first rdll: 11 Yoa win on the first roll.
first roll: 3 You lose on the first roll.
first roll: 6 6 becomes the point,

continue rolling.

additional reolls: 5,3,11,8,6 You win because the
point wvas rolled again
hefore a 7 vwas rolled.

first roll: 9 9 becomes the point,
continue rolling.

additional rolls: 6,8,6,7 You lose because 7 was
: rolled before the point

was rolled again.

4?2

Input

No input is specified in the problem. It 1is possible
that wvwe will want to read values for the'rolls of the dice,
but this would be recording the play at a craps game rather
than simulating it. To simulate play, we Shguld hgve the
computer "tﬁrow the dicet itself. This can be done by using
a random number generator. The random number generator
should produce two numbers betwesn one and six, one for each
die.

We will use no input to this progranm but will'cpnstruct
the program in such a way that this does not compromise its
versatility. TInstructors should. emphasize the fact that
input could be used during the development and testing of
the proqrém. We could write the program and use numbers
from input rather than from a fandom number generatﬁr for
the rolls of the dice. This would allow us to control the
roll of +the dice in such a way that we could test the
program to see if it behaves as it should when given various
sequences of numbers. Once wWe were sure.qf the reliability
of the program, we could substitute a randonm number
generator in the final program. Proper problem refinement
should make the interchanging of methods of rolling the dice

trivial.

43

Qutput

As with input, the problem specification says nothing
about the output of the program. What to print and how to
print it are left to our discretion, There are, however,
certain obvious choices for output.

We will certainly vant to print how 'manv games were
plévéd; ahd of tliese games, how many wers wor and how many
were lost, In addition, we may want to print the number of
qamesl won as a percentage of +the total number of games
played.

Most of the excitement of craps comes from watéhing the
| dice, not just findiﬁq out the result of ihe qame. For this
reason, we should alsq print the value of each roll of the
dice. ¥a should indicate the begimning and end of a game
and whether the game was won or lost. This information will.

also be useful when testing the program.

Termination

We have not yet decided how long we should play the
qéme. There are two reasonable stopping criteria. The
first is to play until the number of games won exceeds the
number of games lost by some amount x, or viée Yersa. 'This
would correspond *o a.plaver starting with x dollars and
plaving for one dollar per game until he had lost his

bankroll or doubled it.

44

The second criterion is to set a limit of y qames to be
plaved. This would correspond to a player setting a limit
on the nhmber of games he will play or the amount of time he
will play. Thera is, however, a more important reason for
setting a maximum number of games, and that is to insure
that the computer program will halt in a reasonable length
of time.:.Probahility theory tells us that eventually the
player must gqo broke or double his money (stoppinq.criterion
1)}:; however, the length of time for this to occur may be
arbitrarily long. Due to computer costs, ve must be able to
control the amount of time our program runs.

This reason is sufficient in itself, but there is a
mech more subtle reason for using the second stopping
criterion. Random number generators do not generate an
arbitrarily long sequence of random numbers, but rather, a
series of random numbers that is repeated. Although it_ is
unlikely, it 1is certainly possible that the random number
geanerator ﬁsed may generate a sequence of numbers such that
the reqnired difference between the number of games won and
the number of gares lost is never reached. That 1is, the
program would never halt. |

This discussion indicates that it is imperative that we
use the second stobpinq criterion {limit the nuaber of games
played) ; however, due to the nature of the problem, we will
use the first c:iterion as well. Thus we will play until We

have doubled our =money, lost our money, or played the

45

maximus number of games allowéd.

Haéinq decided uwpon our stopping criferia, ¥e npust
decide how to specify this in the program. We can assign
values to the bankroll and maximum number of gqames using
constants within the program, but this means that we must
chénqe the program whenaver ve want to change +the values
used. To avoid this, we will read the values for bankfoll
and maximuz number of games to be plaved frbm input. Thus

we have determined hov# to stop the program without having

decided how many games to plav.

Proglgg Refinement

The basic problem can be stated as follows:
/% SINULATE PLAY AT A CRAPS GAME %/

This can be divided into two subproblenms,

/* SIMULATE PLAY AT A CRAPS GAME */
/% PLAY THE REQUIRED NUMBER OF GAMES */

/% PRINT THE FINAL RESULTS */

We will now refine the subproblem /* PLAY THE REQUIRED
NUMBER OF GAMES */,

Since we may be reguired to plav many games, this will.
be a repetitive step. ¥e will use the stopéinq criteria
discussed above. The action that we repeat is the playing

of the games and the recording of the outcome of each game.

/% PLAY THE REQUIRED NUMBER OF GAMES */

46

/% SET THE VALUE FOR BANKROLL BAND */
/% MAXIMUM NUMBER OF GAMES TO BE PLAYED */

/% BREPEAT UNTIL BANKEROLL DOUBLED OR LOST */
/* OR MAXTMUM NUMBER OF GAMES PLAYED */

/* PLAY ONE GANE */

/* RECORD WIN OR LOS3 */

We have now refined_the subproblem ir such a way that
We can concentrate on the play of one game. Examining the

rules of the game, we can refine /% PLAY ONE GAME */.

/% PLAY THE REQUIRED NUMBER OF GAMES */

/% SET THE VALUE FOR BANKROLL AND . %y
/* MAXINUM NUMBER OF GAMES TO BE PLAYED */

/% REPEAT UNTIL BANKROLL DOUBLED OR LOST */
/* OR MAXIMUM NUMBER OF GAMES PLAYRD */

/* PLAY ONE GAME */
/* ROLL THE DICE */
/% PRINT VALUE OF ROLL %/
/* CHECK FOR WIN OR LOSS ON FIRST RCLL */

/* IF GAME KOT OVER, CONTINUE PLAYING */

lLet's look at the subproblems in the above refinement.
| /% FEOLL THE DICF %/ has been discussed under the section on
input. We will eventually solve this problem with a randoe
number generator, but the refinement up to this point does
not restrict us to this method. Thus wve dan use numbers
from input to test the other steps in the refinement. For
instance, ve will certainly want to test /* PRINT VALUE OF

ROLL */ with values that we know rather than with values

47

that have been randomly qenerated; The advantage %0 this
approach is that if, at a later point, we find numbers such
as 1, 13, or 6.5 being printed, we can be reasonably certain
that the ptéblem is in the random number generation process}
not in the print section.

The problem /* CHECK FOR WIN OR LOSS ON FIRST ROLL */.
can .be programmed by looking at the rules of the game., VWe
will not refine it further until we are ready to write
program statements.

We are now ready to vrefine /* IF .GAHE NOT OVER,
CONTINUE PLAYING */. Looking at the :ules for craps, we see
that this involves rolling until a 7 has been rolled or the

ppint has been_rolled aqain;

/* PLAY ONE GAME */
/% ROLL THE DICE */
/% PRINT VALUE OF ROLL */
/* CHECK FOR WIN OR LOSS ON FIRST ROLL */
/* if saaé NOT OVER, CONTINUE PLAYING %/
/% SET POINT = FIRST ROLL */
/% KEEP ROLLING UNTIL NEW ROLL=7 (LOSE) */
/% OR NEW ROLL=POINT (WIN) */
/% SET POINT = FIRST ROLL */ can be refined by program
statemaents. /% KEEP ROLLING UNTIL NP¥ ROLL = 7 (LOSE) OR
NEW ROLL = POINT (WIN) #*/ needs further refinement.

/* KEEP ROLLING UNTIL NEW ROLL = 7 (LOSE) */
/% OR HWEW ROLL = POINT (WIN) */

48

/% ROLL THE DICE %/

/% PRINT VALURE OF ROLL */

The statements in the above refineﬁent nesd no farther
refining until we are ready to write the program statements.

We have now completed the refinement of /¥ PLAY THE
PEQUIRED NUHMBER OF GAMES */, He must no¥ refine the problem
/% PRINT THE FINAL RESULTS */, This involves specifying the

information to be printed.

/% PRIKT THE FINAL RESULTS */

/* PRINT NUMBER OF GAMES PLAYED, */

/% NUMBER OF GAMES WCN, %/
/*¥ NUMBER OF GAMES LOST, */
/% PERCENTAGE OF GAMES WON */

This coapletes the refinement of the problen. Tﬁe
complete iefinenent is listed below. VNote that we have not
written any of the PL/1 statements necessary to refine the
solution into a computer program., Using this refinement wse
could easily write a computer program in any general purposé

lanquage with vhich we are familiar,

/* SINULATE PLAY AT A CRAPS GAME */
/%* PLAY THE REQUIRED NUMBER OF GAMES */

/% SET THE VALUE FOR BANKROLL AND */
/% MAYXIMUM NUMBER OF GAMES TO BE PLRYED */

/* REPEAT UNTIL BANKROLL DOUBLED OR LOST */
/* OR MAXIMUM NUMBER OF GAMES PLAYED */

/% PLAY ONE GAME *x/

/% ROLL THE DICE */

/%* PRINT VALUE OF ROLL #*/

/%* CHECK POR WIN OR LOSS ON FIRST ROLL */
/* IF GAME NOT OVER, CONTINUE PLAYING */

/% SET POINT = FIRST ROLL */

/% KEEDP ROLLING UNTIL NEW ROLL=7 (LOSE) %/

/% OF NEW ROLL=POINT (WIN)
/% ROLL THE DICE */
/* PRINT VALUE OF ROLL */
/* BECORD WIN OR LOSS */
/% PRINT THE FINAL RBSULTS */
/¥ PRINT NUMBER OF GAMES PLAYED, */
/* WUMBER OF GAMES WON, */

/* NUMBER OF GAMES LOST, */
/* PERCENTAGE OF GAMES WON *x/

43

x/

50

3.2 Haiting Line Problem

In many situations, the length of time a customer nust
wait +to be served has considerable impact on a business's
success. Most of us have had the experience of waitirg in
line for a table at a restaurant, oOr vorse, sittiﬁq at a
téble for an intoler;bla length of time waiting to be
served. Unless the business has a monopoly on the product
it provides, future sales will suffer due to poor service.

To prevent loss of revenue, a husiness must deternine
the balance between lost sales and added costs of
facilities, This is not as easy as it may seem. The cost
of the added facilities (waiters! salariés, tables, linens,
etc.) may be easy to calculate, but the amount of sales
lost due to customers waiting to be served is difficult to
determine;

In this problem, we will assume that the cost of
customer dissatisfaction and the cost of added facilities is
known. ®e will be concerned with determining the number of

added facilities which minimizes costs.

Problem Specification

Determine the optimum number of checkout counters to

install in a store.! Assume the following:

— — i AUk S L. s

tMichael Kennedy and Martin B, Solowmon, eight
statement pl/c {pl/zero) plus plsone (New Jersey, 1972},

——— iy, s S i o S

p. 375,

51

i. There may be customers waitihq in line Dbefore
the simpulation begins.

2. No customer, one customer, or two customers
can arrive in any minute.

3. & customer will doin the shortest line.

4, ¥When a customer arrives in line, he remains in
line until he is served.

5. A customer pust be checkad out before the next
person in line can advance to the counter.

6. The store loses a certain amount in future
purchases for esach minute that a customer wvaits in
line. '

7. A salary must be paid to one «clerk for each
countar. i

8. The initial éost of installing the <counters
will be ignored. :

aggklg.aws.l.ggi_ﬁ.igg.tiga

The problem given could be. solved by an analytical
approach (using results from stochastic analysis, gueueing
theory, etc.). Such a solution proceduré would, in most
cases, be both cheaper and more accurate than a computer
simulation. Many problems exist, however, for vhich no
analytical approaches are known, and for some of these a
computer simulation ié the only feasible way of estimating
the answer. To illustrate the principles of sinulation, we
will determine the optimum number of countérs by simulation
of the aétivitv in the store, The simulation should closely
model the activities of customers entering a line,' wéiting

in line, and being checked out.

52

Sone of the assumptions in the problem specification
are questionabla, It 1is very possible that smore than two
customars _ﬁéuld artive in 1line in a given minute,
particulaflv during the store's peak activity period. For
simplicity, Lowever, vwe will limit the numbér of customers
arriving in any aninute to two.

We will allow the user of the progqram to specify the
probability of a person oOr persons afrivinq in line. ¥We
¥ill also allow the user to spécify the number of people
waiting in line at the beginning of the simulation, the time
raquired to check out cone customer, the cost incurred by
making customers wait in line, and the hourly wages of the
clerks.

By specifying the above variables as program parameters
rather +than constants, we make the program much more
versatile. Using program parameters, the user could use the
program to simulate average store activity; or, if desired,
he could simulate activity during the peak hours or slack
_hours; or he could even use the program to estimate how long
it would tdke tha linas to enmnpty immediately after peak.
hours.

If our simulation is reasonable, then +the longer the
period of. activity in the store simulated, the better our
approximation of costs; hovwever, the Ioﬁqer the period
simulated, +the longer the execution time of our program and

the greater the cost of the simulation. Rather than

53

arbitrarily selecting a time 1limit, we will let the user
specify the period of time to be simulated.

Having resolved fhe question of how much store activity
to simulate, we must decide how many simulations to run,
using a different numbsr of counters each tinme. If the
parameters used in the program resemble costs and activities
in the real world, we can uée personal observations to guess
at the number of counters to simulate.

Consider the local grocery store. There will be at
least one counter, and probably not more than five dr six.
Even if the number of counters is not optimum, we should
certainly expect +tha ideal number of couniers to be ten or
less. Thus we should be able to restrict our simulations to
a store with one to ten counters. We will, however, let the
user specify the marimum number of counters to be simulated,
thus assuring that the program will halt.

¥e must now determine how we will select the optimum’
number of counters. One method is to simulate a store with
one counter, then with two counters, etc., uﬁtil we have
simulated a store with ten counters, In'éach simulation we
will determine the costs of operating with the given number
of counters. We can then compare the costs calculated. The
simulation giving the lowest costs will indicate the optimua
number of counters.

A little analvéis on our part, however, will show us a

better method. Assume that the optimum number of counters

54

is 5. The cost with 4 counters will be qreater since 5 is
the number of <counters whick minimizes cost. But since 8
counters is closer to optimum than 3 counters, the cost of
operating with 4 counters should be less than the cost of
operating with 3 counters. The same relationship holds with
3 counters vs. 2, and with 2 counters vs. 1. Thus we can
expect the costs to follow the pattern:

‘cost of 1 countér > cost of 2 counters > ,.. >

cost of optimum number of counters < cost of

optimur number + 1 counters.

This shows that as we increase the number of counters, the
operating expehses will drop until we go bevond the optimum
number_of counters, Because of +this, we can stop our
simulation when the cost of opefatinq increases; the optimum
number of counters will be one less than the number of
counters in the final simulation.

The validity of our assunption that costs will decrease
as we approach the optimum number o£ counters depends upon
the values of the progran paraméters and the method used to
Simulate customer arrivals. We will use a random number
gqenerator to determine the number of customers arriving in a
given wminute, We would 1ike t0 compare runs (oné counter,
two coﬁnters; etC.) using the same sequence of rﬁndom
numbers., With a deterministic random number generator, such
as that discussed in problem 3.1, this is relatively sinmple.

He need only restart the random pumber generator each time

55

ve add another store counter in the simulation. Thus we see
that the cyclic nature of the randos numbers was a hazard in
the craps game simulation, but it will be a virtue in this
problen.

He would like +to0 be able +tco use a random number
qenerator‘ to simulate customer checkout as well as customer
arrival. W¥e cannot, however, use the same random number
generator for both purposes. To do so0 would interfere witﬁ
the sequence'of numbers generated to determine custoamer
arrival, _and w2 would not be able to0 compare rums using the
same sequences. FRather than uée another random number
qeneratbr, we wiil'allow the user to specify the amount of
time necessary to process one customer at the checkout
-counter, | |
Exagples - _

This is a complex problem, nmore diffiéult than nmost
problems that an introductory student will face. Working an
example should help pinpoint problem areas and decisions
that need +to be made. We will simulate 10 minutes of
activity in a store with 2 counters.

Before we «can work fhe example, we: hﬁve to maks
~decisions ahout the order.in vhich events occur. Our first
~ assumption is that.a customer enters a line at the beginning
of a minute, This eliminates the problem of charqing for
part of a minute in line, Second, we assume that if tio

lines are aqually short, the customer will enter the first

56

of the equally short lines he reaches. Third, we assume
that loss of future revenue will be incurred only while a
person is waiting in line, not once he reaches the checkout

counter, Pourth, we assume that the customers in line at

minute 0 have just arrived @n line.

»

MINUTE ACTIVITY

0 1 customer at counter 1
1 customer at counter 2

1 no customer arrives
cost of clerks = $.08 _
both customers being served; no waiting expense

total cost = $.08

2 1 customer arrives, enters line 1
cost of clerks = $.08
1 customer waiting to be served; cost $.80
.total cost = §£.88
accumulated cost = $.96

3 no customer arrives
cost of clerks = $.08
1 customer ¥waiting; cost
total cost = $.88
accumulatad cost = $1.84

$.80

4 no customer arrives
cost of clerks = $.08
1 customer waiting; cost
total cost = $.88
accupulated cost = $2.72

]

$.80

5 customer at counter 1 checked ount
customer in line 1t moves to counter
customer at counter 2 checked out
1 customer arrives, moves to counter 2
1 customer arrives, enters line 1
cost of clerks = $.08
1 customer waiting:; cost = $.80
total cost = $.88 '
accumulated cost = $3.60

6 1 customer arrives, enters line 2
cost of clerks = $.08
2 customers waiting; cost = $1.60

total cost = $1.68
accumulated cost = $5.28

7 ‘no customer arrives
cost of clerks = $.08
2 customers waiting; cost = $1.60
total cost = $1.568
accumulated cost = $6.96

8 ‘1 customer arrives, enters line 1
cost of clerks = $.08
3 customers waiting; cost = $2.40
total cost = $2.48
accuaulated cost = $9.44

9 customer at counter 1 checked out

customer in line 1 moves 4o counter
" custoser in line 2 checked out

custoner in line 2 moves to counter
ne customer arrives
cost of clerks = $.08
1 customer waiting; cost = $.80
total cost = $.88 _ _
accumulated cost = $10.32

10 no customer arrives
cost of clerks = $.08
"1 customer waiting; cost = $£.80
total cost = $.88
accurulated cost = $11.20

cost of 2 counters for 10 minutes = $11.20.

Input

57

The program parameters are the dnly input required.

These wWill include the length of simulation;

of counters to simulate, number of customers
line, probabilities of <customer arrivals,
check out a customer, cost Jincurred because

waiting in line, and clerk's salary.

maximum number
initially in
time needed to

of customers

58

Qutiput

We are required to print out the optimum number of
counters. In addition, we will print the cost of operating
with this number of counters.

There is other output which will be useful during the
testing and debugging of the program. In order to know if
our program is behaving as expected, we <can print the
details of each minute, as we did in the example. This can
show us whether costs are being calculated and accumulated
correctly and whether customers are entering at a reasonable
rate. Due to the large amount of output this would
generate, however, ve would like to be able to prevent this
output during the actdal simulation. This is an -excellent

opportunity to introduce thé use of executable comments in a

language such as PL/C.

Problem Refinement

The initial problem can be stated as
/* DETERQINE OPTINUM NUMBER OF CHECKOUT COUNTEES */.
This problem involves simulating activity until we have
found the opfimum number of counters. We will also want to

print our results when the simulation is finished.

/* DETERHINE OPTIMUM NUMBER OF CHECKOUT COUNTERS */

/* VKRY'NUHBER OF COUNTERS IN STMULATION OF */
/% STORE ACTIVITY UNTIL OPTIMUM COST FOUND */

/* PRINT OPTYIMUM NUMBER OF COUNTERS AND COST */

59

We novw need to determine what must be done in the
simulation. First, we must read parameiers to be used
during this simulation. Next, we must simulate the cost of
operating with one counter, then two counters, then three
counters, etc., until the cost of operating increases. He
will know that <the optimum number of counters was used
during the simulatiorn preceding the increase in cosf.

/% VARY NUMBER OF COUNTERS IN SIMULATION OF */
/* STORE ACTIVITY UONTIL OPTIMUM COST FOUND */

. /* READ IN LENGTH OF SIMULATION, *®/
/% MAX NUMBER OF COUNTERS TO SIMULATE, * /
/*¥ NOMBER OF CUSTOMERS INITIALLY IN LINE, %/
/* PROBABILITIES QF CUSTOMER ARRIVALS, */
/¥ TIME NEEDED TO CHECK OUT CUSTOMER, */
"~ /% COST INCURRED BECAUSE OF CUSTOMERS */
" /* WAITING IN LINE, CLERK'S SALARY */
/* REPEAT OUNTIL COST OF X COQUNTERS IS GREATER */
/% THAN THE COST OF X~-1 CODUNTERS, OR MAX =~ */

/* NUMBER OF COUNTERS SIMULATED */
/% ADD ONE COUNTER */

/* DETERMINE COST OF OPERATING FOR THE */
/% SPECIFIED LENGTH OF TIME */

/% PRINT COST OF OPERATING */

To determine the steps involved in simulation, we can
look at tﬁe example given earlier. We need to put the
initial ¢ustomers in the éheckout lines and simulate the
activitv. for the time specified by the user. Unlike the
example, we will compute the total cost for clerks only
once, at the beginning of the simulatioh, rather than

computa their cost each minute,

€0

/* DETERMINE COST CF OPEFATING FOR THE */
/* SPFCIFIED LENGTH OF TIME */

- /% COMNPUTE COST OF CLERKS */
/% PLACE INITIAL CUSTOMERS IN LINE */
/% SIMULATE ACTIVITY FOR EACH %/
/% MINUTE OF SIMULATION */

At last we have reached the subproblen which.is at the
heart of the problem: sirulate activity for each minute.
The axample given earlier is most helpful here. Looking at
tﬁe example, #e see that we must allow customers that have
completed the checkout process to 1leave, bring in new
customers, and co;pﬁte the cost of future businhess lost
because of long lines.

/% SIMULATE ACTIVITY FOR EACH */
7% WINUTE OF SIHULRTION "7
/% CHECK CUSTOMERS OUT */
/% PROCESS ARRIVING CUSTOMERS */
/% COMPUTE COST OF BUSINESS LOST DUE TO */
/* CUSTOMERS WAITING IN LINE */

Checkiﬁq'a customér out involves two sSteps.: He aus£

move +the o0ld customer out of the line, and move the next

customer in line to the counter.

/% CHECK CUSTOMERS OUT #*/.
/* REPEAT FOR EACH COUNTER */

/* TP CUSTOMER AT COUNTER FINISHED, */
/% MOVE HIN OUT,MOVE NEXT CUSTOMER IN */

61

Finally, ve must determine how to add a new customer to
the 1line, ¥Ye must first determine if there are any new
arrivals, and if so, how many. Second, we must decide where

to place the new customers.

/% PROCESS ARRIVING CUSTOMERS */
/* DETERMINE WHETHEP NEW ARRIVALS */

/% IF SO,ADD THEM.TO_SHOETEST LINES */

The entire refinement is listed below. Further

refinement would involve the actual PL/1 statements.

62

/% DETERMIRE OPTIMOM RUMBER OF CHECEKOUT COUNTERS */

/% VARY NUMBER OF COUNTERS IN SIMULATION OF */
/% STORE BRCTIVITY UNTIL OPTINUM COST FOUND */

Sk
/*
/%
/%
/%
/%
Ve

READ IN LENGTH OF STMULATION, ¥/
MAX NUMBER QF COUNTERS TO SIMULATE, */
NUMBER OF CUSTOMERS INITIALLY IN LINE, */
PROBABILITIES OF CUSTOMER ARRIVALS, */
TIME NBEDED TO CHECK QUGT CUSTOMER, */
COST INCURBRED BECRUSE OF CUSTOMEERS */
WATITING IN LINE, CLERK'S SALARY */
REPEAT UNTTIL COST OF X COUNTERS IS GREATER */
THAN THE COST OF X-1 COUNTERS, Ok MAX %/
NUMBER OF COUNTERS SIMULATED ¥/

/* ADD ONE COUNTER */

/% DETERMINE COST OF OPERATING FOR THE ¥/
/% SPECIPIED LENGTH OF TIME ' */

./*
Vi

Vi
Vi,

COMPUTE COST OF CLERKS */

PLACE INITIAL CUSTOMERS IN LINF */

STMULATE ACTIVITY FOR EACH %/
MINUTE OF SIMULATION */

/x

S *

CHECK CUSTOMERS OODT %/
/% REPEAT FOR FACH COUNTER »/

/* IF CUSTOMER AT COUNTER FINISHED, */
/% MOVE HIM OUT,MOVE NEXT CUSTOMER IN */

PROCESS ARRIVING CUSTOMERS */

/* DETERMINE WHETHER NEW AREIVALS */

/% IF S0,ADD THEM TO SHORTEST LINES */

/%
/%

/* PRINT

COMPUTE COST OF BUSINESS LOST DUE TO */
CUSTOMERS WAITING IN LINE %/

COST OF OPERATING */

/% PRINT OPTIMUM NUMBER OF COUNTERS AND COST */

63

Chapter 4 - File Processing

4.1 Inventory

In order to minimize the time needed to deliver goods
ordered, businesses maintain inventories of goods to be
sold. Inventory levels for an item are determined by the
number of_uaits producad and the number of units sold. Note
that the term "item® distinguishes products' rather than
units of a product.

It is necessary to keep track of the flow of goods into
and out of inventory. In this problenm, we will be concerned
with ksepinq track of inventory activity as it relates to

the shipment of qoods to customers.

E;ite a program to process customer orders for a
furniture manufacturer. Print the status of inventory items

after the orders have been processed.

Problem Clarification

Processing customer orders involves several activities.
If +there is enough in inventory to cover the order, then a
shipping invoice is written. 1If the order canﬁot be filled,
an invoice is written for the quantity which can be shipped

and a backorder is written for the remainder of +the order.

6u

We will +trv +to fill backorders before new orders the next
time Wwe run the progran.

Becéuse we must look at inventory to see whether we can
fill an order, we _will have to update the inventory file
during processing. If an invoice is filled out for an itenm,
¥ve npust subtract:the quantity shipped from the guantity on
hand. Otherwise we might plan to send the same goods to
more than one customer.

Since inventory maintenancs 1is necessary vith order
processing, we will imbed order processing in an inventory
system., There are three other phases involved in inventory
processing.

The first phase must come before order processing.
This is the éddiﬁion ¢f finished goods to the inventory. If
goods were not added to the inventory before order
processing, many items which <could be shipped would be
backordered rather than invoiced. This would increase
inventory costs and decrease customer satisfaction.

After customer orders (those not filled on the previous
run and ﬁew orders) are processed, we will want to print a
reorder list for items that have been backordered. To
reduce the number of backorders, we will also list items to
be reordered which havé not been backordered, but which have
low inventory levels. The level below which an item will be
reordered is called the reorder point. The'quantitv to be

ordered is called the reorder guantity. These valuss will

65

vary for the different items in inventory.
The last phase of inventory processing will be printing
the status of each item in inventory.

Input

There are two tvypes of dinput. The first is a

procurement record. This includes the item number and the
quantity received for an item which was reordered. There
will be one procurement record for each item received.

The second type of input record is the customer _order.

Fach customer worder will contain the customer name and
address, item numbgr,_and quantity ordered. There will ba
one input xe¢ord for each item ordered by a customer.
Qutput

When procéssigq customer orders, we will have to print
invoices and.backorders. Ipvoices will contain the customer
name and address, and the following information for each
itenm shipped: item aumber, guantity shipped, unit price, zand
amount due. The total amount due will be printed after all
items ordered by one customer have been proceséed.

Backorders will contain information on iteas vhich vere
ordered but not available for shipment. For each item the
backorder will contain the customer name.and address, iten
number, ngmher of units backordered, and unit price.

After pr0cessinq ;ustoner orders, we wiil print the
reorder list and sﬁatus list. The reorder list'vill contain

R e T Wil SH s e s e

the item number aﬁdiquantitv to order for each item which

66

erust be reordered.

The status 1list will include the following information
for each item in the inventory: iten numher,_quantitv on
hand, number backordered, number shipped, and dollar value
of item sales.

Inventory File

In early references to the inventory file, we did not
discuss the'information contained in the file. Now that we
know the output required, we can determine what information
will be needed before and during each run.

There will be one record in the inventory file for each

item in inventory. We will know which item is being

referred to in the record by keeping the item number in the

record. Obviously, no two items may have the same iten
number.

The-status list requires that we print the item number,
guantity on hand, number backorderad, number shipped and
dollars in sales for each item. To simplify the program we
will store this information ipr the inventory file rather

than in a separate file. So that we may calculate the price

‘of qoods shipped, we nust also include the unit price of

each item in the inventbry file,
To determine the information necessary for the reorder
list, we need to know the reorder point and reorder

quantity. _These_should also be kept in the inventory file.

67

If an item has already beeh ordered.but not received,
we must know this %o prevent reordering items more than
once. Therefore, the inventory file record will also
contain the gquantity on order for the item.

To summarize, the following information for each itenm

will be kept in the master file:

Permanent:

iten number

guantity on hand

unit price

raorder point

reordser quantity

quantity on order

Determined for each run:

number backordered

number shipped .

dollar value of salesy
Assumptions

We have made several assumptions .in the problem

clarification. First, we have assumed that the inventory
file already exists. We have providad no means of creating
this file; we have no wmechanism for adding items to the
file, deleting items from the file, or changing the price,
reorder point, or reorder quantity for arn item. These are
events which will almost certainly take place during the
life of the file, but we will not deal with them in this
problen.

We will also assume that the inventory file is sorted

by iten humber, that the transactions concerning shipments

68

from the factory to the warehouss are sorted by ites number,
and that the customer orders are sorted by itenm number
within customer number {or name), and that backorde;s from

the previous run precede new orders.

Problem Refinement

The problem we are dealing with is
/¥ INVENTORY MAINTENANCE AND ORDER PROCESSING #*/,
This problem can be refined into four parts, reflecting

the four phases discussed in the problem clarification.

/% INVENTORY MAINTENANCE AND ORDER PROCESSING */
/* PROCESS ITEMS RECEIVED */
/% PROCESS BACKORDERS, THEN NEW ORDERS */
/% LIST DEPLETED INVENTORY ITEMS */

/% DPRINT STATUS REPORT */

If possible, we should combine the- third an& fourth
phases so that we do ndt have to make two passes through the
master file, Since these phases are logically separate,
however, we will treat them separately here.

The first subproblem is a repetitive problem. We must
look at the inventory record for each itea received. 1In
addition to updating-tha inventorv.file, we will want to
print an exception report for an item if the gquantity

received is not the same as the quantity on order.

/* PROCESS ITEMS RECEIVED */

69

Vo EEPEBT FOR EACH ITEM RECEIVED */
/* ADD QUANTITY RECEIVED TO QUANTITY ON HAND */
/% SUBTRACT FEOM QUANTITY ON ORDER %/
/% IF'QUANTITY RECEIVED DIFFERS FRON QUANTITY */
/% ON ORDER PRINT MESSAGE ON EXCEPTION REPORT */
The second phase involves printing invoices and
backorders. Wa will also have to update the inventory file

to reflect the number of items shipp=d and backordered.

/* PROCESS BACKORDERS, THEN NEW QBBEES */
/% REPEAT FOR BACH CUSTOMNER */
/% FILL OUT INVOICE AND BACKORDER IF NECESSARY */

s%* PRINT NAME AND ADDEESS ON INVOICE %/

/% REPEAT FOR EACH ITEN CUSTOMER ORDERED %/
/% PRINT MESSAGE IF ORDER UNUSUALLY LARGE %/
/% ADD ITEM 70 INVOICE */
/% ADD ITEM TO BACKORDER, IF NECESSARY */
/% UPDATE INVENTORY EFCORD */

/* PRINT TOTAL COST ON INVOICE */

Adding an item to the invoice involves determining the

quantity and price of each item to be shipped.

/% ADD ITEM TO INVOICE %/
/% DETERMINE QUANTITY TO BE SHIPPED */

/* CALCULATE COST FOR THIS ITENM */

70

Backorders will not be filled out for each iten. The
quantity to be backordered is the difference between the

quantity ordered and the quantity available for shipment.

/% ADD ITFM TO BACKORDER, IF NECESSARY */

/* QUANTITY BACKORDERED=NUMBER ORDERED */
/7% LESS NUMBER SHIPPED */

/% IF QUANTITY BACKORDEERED > 0 THEN %/
/% ADD ITEN TO BACKORDER x/

The third phase of processing involvés determining
which items must be reordered. We will not réordar an iten
if it is already on order. Otherwise, we will reorder if
the quantity on hand is below the reorder point. This
algorithm should hersatisiactorv if managément has chosen an
apropriate reorder point and reorder quantity.

Under ideal conditions there would be no backorders.
The vreorder point would be high enough to £ill all customer
orders arriving between the time an item is reordered and
the +time the guantity reordered is received., Because this
condition cannot always be met, our program must have the
capability of handling backorders.

If the reorder point or reorder guantity is too low,
backorders can accuﬁdlate in such a way that the inventory
for a particular item is seldom, if ever, sufficient to fill
customer ordars. It is therefore imperative that management'
carefully select the reorder point and reorder quantity for

eaach iten. In order to help them do this, when we list an

71

item in the status report, we will indicate whether the
quantity backordered is greater than the guantity on order.
This will point out items which may need adjustment in the

recorder point or reorder guantity.

/% PRINT EEOQORDER LIST */
/* REPEAT FOR BACH ITEN IN INVENTORY */
/* DETERMINE WHETHER ITENM SHOULD BE REORDERED */

/* IF QUANTITY ON ORDER IS ZEEO AND */
/% QUANTITY ON HAND IS BELOW REORDER POINT =*x/

/% UPDATE INVENTORY FILE */
/¥ QUANT:TY ON ORDER=REORDER QUANTITY */

/% PRINT ITEM ON REORDER LIST */

The last phase of processing dinvolves printing the
status of each item in the inventory file. We will have to

look at every item in the file.

/% PRINT STATUS REPORT */
/* REPEAT FOR EACH ITEM IN INVENTORY */
/* PRINT ITEM NUMBER, QUANTITY ON HAND, */
/* NUMBER BACKORDERED, NUMBER SHIPPED, */
/* DOLLAR SALES OF SHIPMENTS */
/% TF QUANTITY ON ORDER IS LESS THAN */
/* QUANTITY BACKORDERED, MARK THIS */
/* ITEM FOR EASY IDENTIFICATION */
The conplete refinement is listed below.
/* INVENTORY MAINTENANCE AND ORDER PROCESSING */
/%* PROCESS ITEMS RECEIVED */

/% REPEAT FOR EACH ITEM RECEIVED */

72

/% ADD QUANTITY RECEIVED TO QUANTITY GN HAND */
/% SUBTRACT FEOM QUANTITY ON ORDER */

/% IF QUANTITY RECEIVEDR DIFFERS FRCM QUANTITY */
/% ON ORDEE PRINT MESSAGE ON EXCEPTION REPORT */

/* PROCESS BACKORDERS, THEN NEW OEDERS */
/% REPEAT FOR EACH COSTOMER */
/% FILL OUT INVOTCE AND BACKORDER IF NECESSARY */
/* PRINT NANE AND ADDRESS ON INVOICE %/
/% REPEAT FOR EACH TTEM CUSTONFE ORDERED %/
/% PRINT MESSAGE IF OFDER UNUSUALLY LARGE %/
/% ADD ITEM TO INVOICR */
/% DETERMINE QUANTITY TO BE SHIPPED %/
/* CALCULATE COST FOR THIS TTEM */
/% ADD ITEM TO BACKORDER, IF NECESSARY */

/* QUANTITY BACKORDERED=NUMBEE ORDERED */
/* LESS NUMBER SHIPPED */

/% IF QUANTITY BACKORDERED > 0 THEN */
/* ADD ITEM T0O BACKORDER x/

/* UPDATE INVENTORY RECORD */
/* PRINT TOTAL COST ON IﬁVOICE ®/
/* PRINT BEORDER LIST */
/% REPEAT FOR EACH ITEM IN INVENTORY */
/% DETERMINE WHETHER ITEM SHOULD BE.EEORDERED */

/% IF QUANTITY ON ORDER IS ZEROC AND */
/*¥ QUANTITY ON HAND IS BELCW EEORDEER POINT */

/¥ UPDATE INVENTORY FILE */
/% QUANTITY ON ORDER=RECRDER QUANTITY */

/% PRINT ITEM ON REORDER LIST */

/¥ PRINT

.STATUS REPORT */

/% REPEAT FOR BACH ITEM IN INVENTORY */

/*
/*
/*

PRINT ITEM NUMBER, QUANTITY ON HAND,
NUMBER BACKORDERFED, NUMBER SHIPPED,
DOLLAR SALES OF SHIPMENTS

IF QUAXTITY CN ORDER IS.LESS THAN */

QUANTITY BACKORDERED, MAEK THIS */
ITEM FOR EASY IDENTIFICATION */

73

*/
x/
*/

74

311 businesses require emplovees, and most emplovees
reguire compensation for the work they perfore. The
procedurs for coﬁputinq and recording employee compensation
is called pavroll, 1In many businesses, payroll is a complex
and time-consuming activity.

The first activity required is the collection of basic
employee information. This includes items such as employeas
namps, éddress, social security number, authorized
dednctions; and rate of pay. This iﬂformaiion ﬁust be kept
in a master file, Provisions must be made for adding
information. for new enmnployees, changing information for
carrent employees, and deleting information for emplovees
leaving the organization.

Another activity is computing the payroll., Information
identifying the emplovee and the number of hours worked must
be obtained. Gross pay must be calculated, based on the
hours worked and rate of pay. Overtime must be paid when
required. Employee deductions must be calculated, including
insurance; bonds, stock options, etc., as well as social
security, withholding taxes, and city and state taxes.

Pinally, we must write the vpayroll. This includes
empployee compensatioh_ (paycheck, transfer of funds to his
a0count,_recordinq of gash disbursements, etc.), record of

earnings (pay stub), tax records for government agencies,

75

and management reports.

The problem we will deal with concerns comnputing and

recording payroli inforamation.

Problem Specification

Write a payroll program. The program should wmaintain
the following information for each employee: social security
number, name, address, year-to-date gross earnings, yvear-to-
dafe federal taxes, yvear~to-date state taxés, vear-to~-date
social security taxes, number of dependents, hourly rate,
vacation time accrued, sick leave accrued, apnd a code
indicating whether or not the emplovyee makes a voluntary
deduction of $1.25 per week for qroup health insurance,

A1l employees should be psid.each week, A time card
contéininq the social security number and hogrs'worked will
ba provided for each employee. Time and a half will be paid
for overtime (hours over 40). The payfoll program should

print a payvycheck and stub for each emrployee,

Eggélgg-gi_aziiismga

The problem is concerned with computing and writing the
payroll. Ve will .assume that‘the master file has alr=sady
been created and contains all the information we will ﬁeed
except for the number of hours worked. It is assumed to be
sorted in ésceﬁdinq order on socia1 security number and to

contain a single record for each emplovee.

76

Input

The only input will be time cards., Pach time card will
contain identifving iqformation (social security number) and
the number of hours the employvee workad during the week.
Since we have to allow vacation and sick leave, the amount
of timé to be charged to each must be include2d on the time
card. We will assume that thefe is ope time card for each
employee and that the time cards are sorted in ascending
order on social security number.

Qutput

The two things our program must print are paychecks and
pay stubs. #a must print one of each for every employee.
Fe will not pfiat tax records for the government or. reports

for wmanhagement, although these are a part of the output of

most payroll prograas.

Problem Refinement

The prdblem can be stated as
/% COMPUTE WEEKLY PAYROQLL */.
This will be a repetitive process. We will héve to compute
payrell for éach employee, ‘The activities involved will be
reading the information needed, computing pay, writing a

paycheck, and writing a pay stub,

/* COMPUTE WEEKLY PAYROLL */

/* REPEAT FOR EACH EMPLOYEE */

77

SE FEAD INFORMATION NEEDED TO COMPUTE PAY */
/* FOR THE NEXT EMPLOYEE %/

/% COMPUTE PAY */
/* UPDATE MASTER FILE */
/% PRINT PAYCHECK */

/* PRINT PAY STUB */

The infbrmation naeded to process one employee's weekly
pay comnes from two sources: the payroll master file and the
employee?'s time card, We have assumed that the master file
and time ca:ds are sorted, and that there is one master file
record and one time card for each employee. If this is
true, ué will only need to read the next master file record
and the next time card in order to compute the next
emploveé‘s' pay. _A close look at the'problem, however,

‘indicates that we should not accept the assumption that
i there will be one master file record and one time card for
each emplbyee._ .

If a new employee submits a time card before his
payroll record is added to the master file, all of the time
cards after his wiil be matched with the wrong master file
record. __This means that all the emplovées with social
security numbers greater than his will receive incorrect
paychecks, Their méster file records wiil also be updated

with the vrong information, destroving the inteqrity of the

master file.

78

Even if we assuse that +this could never happen, we
would have a similar problem if an employeet?!s time card were
not submitted. 1In this case we would have a master (file
record for an employee without a time card, and the master
file and time cards would again be processed out of
synchronization,

There are manual checks which can anrd should be
implemented to prevent the above situations from occurrinq;
But there is still one problem that is likely %0 arise,
That is error in data entry. It is virtually certain that
at sone timé an employee's social security number will be
incorrectly entered én his time card. This would produce a
master file record without a time card :and a time card
without a méster file ¥ecord.

In order to prevent incorrectly matghing time cards
with master file records, #e will not compute pay for an
employee unless the social security numbers on the mastar
file record and the time card are the same. If ve read a
master filé record and time card which do not match, we will
print +the one with the lower social secutity nugbher on an
exception raport, and read a new time card or master file
racord, Wa will repeat this process until we find a
matching time card and master file record.

/% READ INFORMATION NEEDED TO COMPUTE PAY */
/* FOR THE NEXT EMPLOYEE x/

/% READ NEXT MASTER FILE KECORD */

7%

/* READ NEXT TIME CARD %/

/* IF THE SOCIAL SECURITY NUMBERS DO KROT MATCH, */

/% PRINT INVALID OR MISSING TIME CARD ON THE */
/* EXCEPTION REPORT AND FIND THE NEXT MATCHING */
/% TIME CARD AND MASTER FILE RECORD */

The matching process is not inherent in the nature of
the payroll program, so we will use a subroutine to match
time cards and master file records.

/¥ SUBROUTINE TO MATCH TIME CARD WITH %/
/¥ MASTER FILE RECORD */
/* REPEAT UNTIL SOCIAL SECURITY NUMBERS MATCH */
/* REPEAT SHILE TINE CABD IS INVALID */
/* PRINT TIME CARD ON EXCEPEICN.REPORT x/
/* READ NEXT TIME CARD %/
/* EEPEAT WHILE TIME CARDS ARE MISSISG */
/% PRINT MASTER PILE REéORD OR EXCEPTION REPORT */

/% READ NEXT MASTER FILF RECOED */

He can nov refine /% COMPUTE PAY */., He must compute

gqross pay, deductions, and net pay.

/% COMPUTE PAY */
/* COMPUTE GROSS PAY */
/* COMPUTE D3IDUCTIONS */

/% COMPUTE NET PAY */

In computing gross pay we use the _nuﬂber of hours
- worked. We should test to make sure that the number of

hours worked seems reasonable, If the employee works over

80

ten hours of overtime, we will print a message on the
exception report.

We must compute regular pay, overtime ©pay, vacation
pay, and sick leave. Note +that the method of computing
qross pa? is different for employees who are paid salaries

and those who are paid hourly wages. TIf we use a subroutine

to compute qross pay, changes to the method of calculating

pay will be internal to the subroutine and will not affect

the structure of the main progran.

/* SUBROUTINE TO COMPUTE GROSS PAY */
/* COMPUTE PAY FOR SALARIED EMPLOYEES %/
/% COMBUTE PAY FOR HOURLY EMPLOYEES */
/% REGULAR HOURS */
/* OVERTINE HOURS */

/* IF OVERTIME > 10 HOURS, oy
/% PRINT MESSAGE ON EXCEPTION REPORT */

/% COMPUTE OVERTINE PRY */
/¥ VACATION PAY */

/¥ SICK LEAVE */

We can now refine /% DEDUCTIONS */, This will include
social security, taxes, and voluntary deductions. For

modularity, we wll also use a subroutine here.

/* SUBROUTINE TO COMPUTE DEDUCTIONS %/
/% SOCIAL SECURITY */

/* FEDERAL TAX %/

8t

/* STATE TAX */

/* GROUP HEALTH INSURANCE */

Because methods for computing social security and taxes
change quite frequently, we will use subroutines to compute
social security, federal taxes, and state taxes. To
facilitate adding payroll deduction plans such as stock
options, bonds, etc., we will use a suhroutine to compute
voluntary deductions, The final refinement necessary in
/¥ CO&PUTE PAY %/ is the refinement of /% NET PAY */. To
compute net pay; we subtract the deductions from gross pave.
Due o the simplicity of this step, we will not use a
subroutine. here, Tha complete refinemeht of /% COMPUTE

PAY */ is shown below.

/% COMPUTE PAY %/
/* COMPUTE GROSS PAY */
call subroutine to compute gqross pay
/* COMPUTE DEDUCTIONS */
call subroutine to compute dedgctions
/% COMPUTE NWT PAY */ |
_/* SUBTRACT DEDUCTICNS FROM GEOSS PAY */
/% SUBROUTINE TO COMPUTE GROSS PAY */
/* COMPUTE PAY FOR SALARIED EMPLOYEES */
V. COEPUTB PAY FOR HOURLY EMPLOYEES */ |
Vd. EBGULAR HOURS */

/% OVERTINE HOURS */

/*

Vi
J*
x
VL

B2

/% IF OVERTIME > 10 HOURS, * /
/* PRINT MESSAGE ON EXCEPTION KEPORT */

/% COMPUTE OVERTINE PAY */

/* VACATION HOURS */

/* SICK LEAYB */
SUBFOUTINE TO COHPUTE DEDUCTICNS */
/% SOCIAL SECURITY */

call subroutine to compute social security
/* FEREDERAL TAX */

call subroutine to compute federal tax
/* STATE TAX %/

call subroﬁtine to compute state tax
/% VOLUNTARY DEDUCTIONS */

call subroutine to compute voluntary d=ductions
SUBROUTINE TO COMPUTE SOCIAL SECURITY */
SUBEOUOTINE T0 COMPUTE FEDERAL TAX */
SUBROQUTINE TO COMPUTE STATE TAX */
SUBROUTINE TO COHPUTE VOLUHTA#Y DEDYUCTIONS =/

/* GROUP HEALTH INSURANCE */

After computing pay, we must update the master file.

This requires adding this pay period*'s totals to the

cunualative totals in the esployee's record. Wwe will use a

subroutine for modularity.

83

Véd SUBROUTI?E TO UPDATE MASTER FILFE */
/% ADD TﬁIS WEEK'S PAY TOTALS TO */
/% CUMULATIVE TOTALS IN EMPLOYEE'S %/
/% MASTER FPILE RECORD ; */
/% UPDATE VACATION.BALAHCE AND */
/% SICK LEAVE BALANCE */

Next we will refine s* PRINT PAYCHECK */, | e will
assume that the paycheck information will be printed on pre-
printed foras. Thus we will not have t¢ print +the bank
name, company name, account number, etc.; however, we will
have to print the employee's name and net pay. In order to
reduce chances of ffaud or incorrect hours being entered on
the time éard; we willl print a -meSSaqe on an exception
repoﬁt whenever the pay for the week excseds $1000.00. To
facilitate testinq'of the progran, éé #ill use a subroutine
to print thé_ paycheck, Using a subroutine, we can sasily
test this part of the program for correct-information pefore

formating the information to be printed in the correct

locations on the pre-printed check forms.

/% SUBROUTINE TO PRINT PAYCHECK */

/%* ON PRE-PRINTED FORM, PRINT */
/* EMPLOYEE NAME AND NET PAY */

/% IF GROSS PAY EXCEEDS $1000, */

/% PRINT EXCEPTION RRPORT * 7
Finally, we will refine ,/* PRINT PAY STUB */. As with
the paycheck, we will assume that the pay stub information

will be printed on a pre-printed form. We wmnust print the

g4

-daté. information identifving the employvee, totals for this
week's pay period, and <cunmulative totals, For reasons

similar %o those above, we will use a subroutine for

printing the pay stub.

/* SﬂBROUTINE TO PRINT PAY STUB */

/% ON PRE-PRINTED FORM, PRINT DATE, L4
/* EMPLOYEE NAME, SOCIAL SECURITY NUMBER, */
/% CUMULATIVE TOTALS, */
/* TOTRLS FOR THIS PAY PERIOD */

The complete refinement appears below.

/% COMPUTE WEEKLY PAYROLL */
/* REPEAT FOR RACH EMPLOYEE */

/* READ INFORMATION NEEDED TO COMPUTE PAY */
/% FOR THE NEXT EMPLOYEE */

/% READ EMPLOYEE'S MASTER FILE RECORD %/
/* READ EMPLOYEE'S TIME CARD */

/* IF THE SOCTAL SECURITY NUMBERS DO NOT MATCH, */

/% PRINT INVALID OR MISSING TIME CARD ON THE */
/% BXCEPTION REPORT AND FIND THE NFXT MATCHING ¥/
/% TINE CARD AND HASTER FILE RECORD x/

call subroutine to match time card with
master file record

/% COMPUTE PAY */
/* COMPUTE GROSS PAY */
call subroutine to compute gross pay
/% COMPUTE DEDUCTIOHNS */
'call_subroutine to compute deéucfions
/¥ COMPUTE NET PRY */

/* SUBTRACT DEDUCTIONS FROM GROSS PAY */

85

- /% UPDATE MASTER FILE */
call sub:routine +to update master file
Vb PBINT PRAYCHECK */
call subroutine to print paycheck
/* PRINT PAY STUB */
call subroutine to print pay stub

/* SUBROUTINE TO MATCH TIME CARD WITH */
7x MASTER FILE RECORD */

/* RE?EAT UNTIL SOCIAL SECURITY NUMBERS NATCH */
/* ERPEAT WHIL® TIME CARD IS INVALID */
/* PRINT TIME CARD ON EXCEPTION RRPORT */
/* READ NEXT TIME CARD */
/* REPEAT WHILE TIME CARDS ARE MISSING */
~— _ /* PRINT MASTER FILE RECORD ON EXCEPTION REPORT */
/* READ NEXT MASTER FILE RECORD */
/% SUBROUTINE TO COMPUTE GROSS PAY */
/* COMPUTE PAY FOR SALARIED EMPLOYRES */
/% COMPUTE PAY FOR HOURLY EMPLOYEES */
/* REGULAR HOURS */
/% OVERTIME HOURS */

/* IF OVERTIME > 10 HOURS, */
/* PRINT MESSAGE ON EXCEPTION REPORT */

/% COMPUTE OVERTINE PAY */
' !
/% VACATION HOURS %/
/% SICK LEAVE */
/* SUBROUTINE TO COMPUTE DEDUCTIONS */

/* SOCTIAL SECURITY */

call subroutine to compute social security
/% FEDERAL TAX %/

call subroutine to compute federal tax
/¥ STATE TAX */

call subroutiné to compute state tax
/% VOLUNWNTAEY DEDUCTIONS */

call subroutine to computs voluntary deductions

/%
Vi
/%

Vi

S¥

S

SUBROUTINE TO COMPUTE SOCIAL SECURITY */

SUBROQUTINE TO COMPUTE FEDERAL TAX */

SUBEOQUTINE TO COMPUTE STATE TAX */

SUBROUTINE TO COMPUTE VOLUNTARY DEDUCTIQNS %/

/% GROUP HEALTH INSURANCE */
SUBKOUTINE TO UPDATE MASTER FILE */

/% ADD THIS WEEK'S PAY TOTALS TO */

/% CUMULATIVE TOTALS IN EMPLOYRE'S %/
/% MASTER FILE RECORD ' - Xy
/% UPDATE VACATION BALANCE AND */

f*

SICK LEAVE BALANCE */

SUBRQUTINE TOQ PRINT PAYCHECK */

V&
/¥

/x
/*

ON PRE~-PRINTED FORM, PRINT */
EMPLOYEE NAME AND NET PAY - */

IF GROSS PAY EXCEEDS §$1000, */
PRINT EXCEPTION REPORT x/

SUBROQUTINE TO PRINT PAY STUB */

TOTALS FOR THIS PAY PERIOD

/* ON PRE~-PRINTED FORM, PRINT DATE, *s
/* EMPLOYEE NAME, SOCIAL SECURITY NUMBER, */
/% COMULATIVE TOTALS, */
7% */

10.

11.

87

BIBLIOGRAPHY

Aho, Alfred V., Hopcroft, John E., and Ullman, Jeffrey
D., ZThe Degsign apd Analysis of Computer Algorithnms,

Reading, Massachusetts, - Addison-Wesley Publishing
Company, 1974,

Cases, Homewood, Illinois, Richard D. Irwin, 1In
1964,

Anthony, Robert N., Management Accounting: Text and
C.;

Breckner, David, and Abel, Peter, Brinciples of
Business Computer Programaing, Englewood Cliffs, New
Jersey, Prentice-Hall, Inc., 1970.

Conway, Richard, and Gries, David, Amn Introduction to
Programeing: A Structured Approach Using PL/1 and PL/C-
7, Cambridge, Massachusetts, Winthrop Publishers, Inc.,
1975.

Hughes, Joan K., PL/1 Programming, New York, John Wiley
& Soms, Inc., 1973.

Kennedy, Michael, and Solomon, Martin B., g¢ight
statement pl/c {pl/zero) plus pl/one, Englewood Cliffs,
New Jersey, Premtice-Hall, Inc., 1972.

LaFave, L. J., Milbrandt, &G. D., and Garth, D. ¥W.,
Problem Solving: The Coeputer Appreach, VNew York,

s S s i S e S ———

McGraw~Hill Ryerson Limited, 1972,

Neuhold, Erich J., and Lawson, Harold W., Jr., The PL/1
Machine: An Iptroduction o programming, Feading,

Massachusetts, Addison-Wesley Publishing Co., Inc.,
1971, '

Polya, G., Ho¥ to Solve It, Princeton, New Jersey,

Princeton University Press, 1945,
Shelly, Gary B., and Cashman, Thomas J., Introduction

to Computer Progragming: ANSI Cobol, Fullerton,
California, Anaheim Publishing Co., 1973.

Francisco, California, Canfield Press, 1972.

12.

13.

14,

15-

16,

88

Van Tassel, Dennie, Program Style, Design, Efficisncy,
Debugging, =and Testing, Fnqlewood Cliffs, New Jersey,
Prentice-Hall, Inc., 1S974,

Weinberq, Gerald M., PL/1 Programming Primer, New York,
McGraw-Hill Book Company, 1966.

et BL/ZY Programming: A Manpal of Style, New York,

McGraw-Hill Book Company, 1970.

deinberqg, Getald, Yasukawa, Norie, and Marcus, Eobert,
Structured Programming in PBL/C: Ap Abecedarian, New

York, John ®Wiley & Sons, Inc., 1973,

Weston, J. Fred, and Brigham, Rugene F., Essentials of
Managerial Finance, Hinsdale, Illinois, The Dryden
Press, 1974, .

89

Appendix A

Further Problems for Refinement

s . S e i s .

1.

Prograsm a Point of Sale terainal, such as that used in
a fast food :estaurant. The program should accept
input.such as HAMBUERGEER, CHEESEBURGER, FRIES, LARGE
CGKE,- SMALL COKE, etc., and détermine the cost of each
item, the subtotal, thg_sales tax, and the total cost.
The program should also keep count of the total nuaber
of each item sold over a period of time. 1In additioﬁ,
the progqram should determine the amount of change to be
returned to the customer and the minimum number of
coins and bills of each denomination required to make
thé change,

Write a program to maintain savings accounts for a
bank. Tfhe program should process "deposits,
withdrawals, interest accumulation, and service
charges. Allow for at least two types of savings
accounts, one which pays the miﬁimum interest Tate bqt
allows immediate withdrawals vitﬁ no service charge,
and another which pays a higher interést rate but
requires a mwminimum balance and six months notice for
Qithd:auals without penalty. |

Write a program to compute salesmen's conmmissions.

90

There should be different commissions for the different
types of items sold and higher commission rates for
larger sales volumes,

Write a program to verify employee time cards used in a
payroll progranm. The program should verify that the.
employee identification number field contains only
numeric data, the employee name field contains only
alphabetic data and valid punctuation, and the hours
worked field contains only numeric data. The progranm
should also verify thaﬁ cards are arranged in ascending
order 5y emplovee.identification number.

Write a vprogram to maintain a file containing
subscribers to magazines. Each record should contain
the subscriber?s name and address, names of maqazines_
ordered, and number of issues ordered, The progranm
should print mailing labels for each customer
subscription on a weekly or monthly hasis, depending
upon the magazine. It should also send renevwal notices
prior to the subscription expiration date.

Write a program to maintain a list of activities on an
executivers schedule, {e. g., MARCH 5, 9:30 2aH,
CONFERENCE WITH CARL). The program should print the
actiﬁities in c¢alendar form uypon reguest, (€. g.,
CALENﬁAB.HARCH would reguest that the program print all
activities scheduled for March).

Write a progranm tb produce personalized form letters.

h

10.

11.

LA

The letter to be printed should be entered with spacial

charactérs denoting parts of the +text that vary for

each Ipe:son' on the mailing list {for example, nare,
c0mpanv name, address, etc.). The name, company nanme,
and address should be included for every person on the
mailing list. The letters should have margins right
justified.

Write a program to maintain a list of a person's stock
holdinés. - The list should contain the name of the
company, numhe: of shares purchased, datg of - purchase,
and ﬁurchase price. Given the present market value of
the stocks, the program should print the gain or 1loss

for each stock heid; and the overall gain or loss,.

_Write a“proq:am to keep track of accounts for a «credit

card company. The proqﬁam should_ process charges,
payments, cash- advances, and finance charges. Iﬁ
addition, each customer should be sent a monthly
statement. |

Write a program to convert from one currency to
another., The prodram should accept an amount in any
curréncv and convert it to the curreﬁcy requasted.
Hrite'a prpq:amlto determine whether it is better to
buy or leése.-an automobile. The proqram should
considér-factors such as purchase cost, number of years
to pe driven, «cost of maintenance, leasing cost, and.

cost of insurance.

92

Statistics Probless

12. Write a program to process inquiries about cenéus
information. The census information should include
items such as disirict, tvype of dwelling, and nane,
age, sex, and race of persons in the household. The
program should be able +to answer inquiries such as
NUMBER OF FEMALES, AGE < 18, DISTRICT 1.

13. Hrite a'proqram to compute grade averades for students
in a class, The program should keep the names and
homework grades for each student _in the class. It
should print the class average and median for each
assignment, the final averagqe for each student, the
class rank for each student, and a graph of the
distribution of final averages.

14, HWrite a program to compute statistics on a collection
of déta requested by a user. The user should be
allowed to enter the test data and the names of the
$tatistics he wants printed (e. g., MEAN, MEDIAN,

STANDARD DEVIATION, etc.).

Al TR ST P R S Ay S S " B ——

15. Write a_proqram.to simulaté the game 5f_b1ackiack. The
dealer should be allowed to use multiple decks of
cards, The dealer must take another card if his point
total is 16 or less and may not také another card if

his point total is 17 or more. Devise a strategy for

16-

17.

18,

23

the player (e. g., stand pat with 12 or mére points)
and determine the plavert's gain or 1loss after many
gqames have been played.

Write 'a proqram to deal a bridge hand and bid the first
round.

Write a program %o store reéipes. The proqra# -should
print recipes requested ard the amount of each
ingredient ne=ded td serve a specified 'number of
people,

Each'segiqr highway patrolman is assigned a ijunior

- highwvay patrolman as a partner. To minimize

dissatisfaction, the highway patrol _tfies to assign
each man his preferred partner. Fach senior patrolman
ranks the junior patrolmen according to his preference,
and vice versa. Write a program to assigm partners
based on the rankings. The pairings are optimal if for
each two senior patrolmen $71 and 32; and their paired
juniof patrolmen J1 and J2, _

1. either S1 ranks J1 hiqher_than J2, or J2 ranks

| S2 higher than 51, and
2. either §2 ranks J2 higher thaﬁ J1, or J1 ranks

81 higher than 52.

New adﬂress:
Alan D. Bernard
General FRobotics Corporation
57 N. Main Streei

Hartford, Wisconsin 53027

