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Figure 1: From left: Overlapping proposals from Task 1, predicted BPSH, building masks after NMS, additionally recovered
building proposals, and final building masks. The overlapping proposals are the purple and teal buildings in the top left,
where the teal proposal actually covers two buildings, and the purple proposal overlaps the part of the teal that covers the
smaller building.

In this supplementary material, we present additional de-
tails about the network, optimization, and building overlap
refinement strategies of our method. We also present addi-
tional qualitative results and ablative analysis.

1. Shared feature representation between T2,
T3, T4

Our proposed multi-task learning framework for Tasks
2, 3 and 4 utilizes a common feature representation, as dis-
cussed in Sections 3.1.2, 3.3, and 3.4 of the main paper.
From the feature layer P2 of the Feature Pyramid Network
(FPN), we perform two (3 × 3) convolutions, followed by
a (1 × 1) convolution and a skip connection to obtain this
shared feature representation. We obtain the outputs of Task
2, 3, and 4 by using this shared representation, and by per-
forming lightweight task-specific convolutions. This con-
struct is illustrated in Fig. 2 of the main paper.

2. Optimization for multi-task learning
We initialize parts of our network from pre-trained

weights. The FPN and the region proposal network are ini-
tialized using Mask R-CNN trained on the SpaceNet dataset
[3]. Since many overhead datasets have multi-spectral im-
ages (for example, 8-channel images instead of typical 3-
channel RGB) we initialize the parameters of the first layer

using He initialization [6]. All of the newly added layers
are also initialized with this method. All batch normaliza-
tion layers are frozen during the training. Random flipping,
cropping, and rotation are used as data augmentation tech-
niques. We optimize the loss using stochastic gradient de-
scent with an initial learning rate of 2 × 10−3, momentum
of 0.9, weight decay of 10−4, and batch size of 6 images of
(512 × 512) px. Loss gradients are clipped to [−0.5, 0.5],
and gradient norms are clipped at 1.

3. Overlap refinement – recovering buildings
after NMS

In this section, we provide additional detail on how we
recover valid building proposals that were removed during
overlapping proposal detection, which is described in Sec-
tion 3.1.3 of the main paper. Recall that Task 1 of the mul-
titasking framework provides us with building proposals,
where the proposals may overlap with each other. Task 2
learns the boundary proximity signed heatmap (BPSH) of
the image, which is used to refine the overlapping propos-
als of Task 1. For this refinement, each building proposal
is scored using (1) the proposal confidence from Task 1 and
(2) the proposal’s agreement with the building boundaries
indicated by the zero-level set of the BPSH. We apply a non-
maximum suppression (NMS) based on these new scores to



remove proposals whose predicted building masks overlap.
However, this NMS may in turn suppress valid build-

ings. For example, consider the two buildings shown in the
top left corner of the left subfigure in Fig. 1, above. For two
buildingsB1 andB2 that are very close to each other, Task 1
may generate two building proposals: (1) one proposal that
coversB1 but notB2 (the purple-colored proposal in the fig-
ure), and (2) a proposal that combines B1 and B2 together
into a single building (the teal-colored proposal; parts of the
teal-colored mask are covered by the purple-colored pro-
posal’s mask). The scoring mechanism described in Eq. (2)
of the main paper will give a higher score to the first pro-
posal, as it will have a stronger agreement to the BPSH zero-
level set. The NMS will suppress the second proposal as a
result. To recover building B2, we regenerate proposals as
explained next.

Let B denote the set of building proposals output by
Task 1, with each building B ∈ B having a binary pixel-
wise maskMB and confidence cB . LetM be the aggregated
pixel-wise mask of all building proposals after NMS (Fig. 1,
middle). We create a “recovered” mask M+ (Fig. 1, second
from right) for suppressed buildings containing pixels that:
(1) have no overlap with M , (2) are inside a building ac-
cording to the BPSH, and (3) are part of at least one highly
confident proposal in B. We specify these criteria at each
pixel p:

M+(p) =

(
M(p) ∧ (BPSH(p) > α1)

∧ ∃B∈B (MB(p) ∧ cB > α2)

)
(1)

For the second condition enforcing that the pixel is inside
a building as indicated by the predicted BPSH, we use
α1 = 0.5. The last condition enforces that at least one
building mask proposal covers pixel p with some minimum
confidence α2. We experimentally found that α2 = 0.7
offers good building retention without introducing many
false-positive detections. The connected components in
M+ with covering fewer than 256 pixels are suppressed.
Finally, the remaining connected components of M+ are
added to the predicted building set to obtain the final set of
building outlines.

4. Evaluation datasets
In this section, we give a brief overview of the different

datasets used in our experiments.
GRSS DFC 2019 dataset The GRSS DFC 2019

dataset [1, 4] contains multi-spectral satellite images,
nDSMs, and semantic segmentations for parts of Jack-
sonville, FL and Omaha, NE with over 100,000 building
instances. We split the dataset containing buildings into a

training set containing 88 regions and a test set containing
11 other regions. The ground truth contains semantic
segmentations over building, ground, vegetation, water,
bridge deck, and unclassified regions. To extract the
ground-truth building footprints from the slightly noisy
semantic segmentation, we apply a morphological closing
operation on the building mask, followed by removing
objects with areas smaller than 23m2 (256 pixels).

USSOCOM Urban 3D dataset The USSOCOM Urban
3D dataset [5] contains RGB satellite images and nDSMs
for parts of Jacksonville and Tampa, Florida, with over 180
km2 of land coverage containing over 74000 buildings. We
split the dataset into a training set containing 130 regions
and a test set containing 44 other regions.

SpaceNet Buildings Dataset v2 SpaceNet [3] contains
multi-spectral satellite images with ground-truth building
masks for over 300,000 building instances, which we use
to evaluate 2D building outline detections, without training
for height or semantic segmentation. For our experiments,
we split the dataset with 7128 training and 1254 testing im-
ages.

Potsdam and Vaihingen datasets These datasets are
released by the ISPRS 2D Semantic Labeling contest
[2] and contain high-resolution but lower-spatial-coverage
aerial images. The Potsdam dataset contains 4-channel
(R,G,B,NIR) aerial images, while the Vaihingen dataset
provides 3-channel (IR,R,G) aerial images. Semantic seg-
mentations of buildings, low vegetation, trees, impervi-
ous surfaces, cars, and background are available for both
datasets, and both datasets include normalized DSMs.

Following [7], for the Potsdam dataset we select 10 im-
ages for training, and the remaining 7 images (image IDs:
02 11, 02 12, 04 10, 05 11, 06 07, 07 08, and 07 10) are
used to test all models. Similarly, for the Vaihingen dataset
we follow [7] and select 11 images for training, and the re-
maining 5 images (image IDs: 11, 15, 28, 30, and 34) are
used for testing our model.

5. Additional ablation
We study the effectiveness of our proposed overlap re-

finement technique compared to an naı̈ve NMS technique.
In the näive NMS setting, building outline proposals gener-
ated by Task 1 are suppressed if they overlap another pro-
posal with higher confidence. Table 1 shows that, in com-
parison of F1 scores, the proposed refinement technique is
more robust in retaining true building instances compared
to the näive NMS. The table also contrasts between per-
forming the overlap refinement using the BPSH learned by
the multi-task network, and using the improved BPSH us-
ing instance-level reasoning (see Section 3.5 in the main
paper). Instance-level reasoning improves the BPSH across
all datasets, which is evidenced by the fact that this step
consistently improves refinement.
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Figure 2: Ground-truth (GT) and predicted masks, height maps, and BPSH maps for different satellite images from the
GRSS DFC 2019 dataset.

Naı̈ve
NMS

With Overlap
Refinement

Overlap & BPSH
Refinement

SpaceNet 67.12 68.50 68.87
GRSS DFC 63.70 67.53 68.34
Urban 3D 80.87 82.67 82.89
Potsdam 67.47 69.81 71.98
Vaihingen 67.39 70.23 72.85

Table 1: Comparison of building detection F1 scores
(higher is better) for different overlap refinement tech-
niques, and with our BPSH refinement network.

6. Additional qualitative results

Fig. 2 provides example building mask, nDSM, and
BPSH outputs of our network for images from the
GRSS DFC 2019 dataset, along with 3D reconstruction vi-
sualizations for each image. We provide additional quali-

tative results for our method versus the methods of Wang
and Frahm [9] and Srivastava et al. [8] on the Potsdam, Vai-
hingen, and Urban3D datasets. We compare the building
outline detection performance of our method versus Wang
and Frahm [9] in Figs. 3 and 8. Our proposed method is
contrasted against Srivastava et al. [8] in Figs. 4, 5, 6, 7, 9,
10, 11, and 12. Results on the Urban3D dataset with zoom-
in crops are shown for both methods, as well as our own, in
Fig. 13. For nDSM visualizations, the black-to-white visu-
alization range is clamped between 0 and 25.5 meters. Ad-
ditional 3D scene reconstructions for our method are shown
in Figs. 14 and 15 for the Potsdam and Vaihingen datasets,
respectively.
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Figure 3: Qualitative result on our method versus Wang and Frahm’s [9] method. First two rows: Potsdam dataset. Bottom
two rows: Vaihingen dataset.
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Figure 4: Results on the Potsdam dataset for our method versus [8]. First row: aerial image. Second row: predicted building
instances overlaid on the overhead image. Third row: nDSM. Fourth row: semantic segmentation.
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Figure 5: Additional results on the Potsdam dataset for our method versus [8]. First row: aerial image. Second row: predicted
building instances overlaid on the overhead image. Third row: nDSM. Fourth row: semantic segmentation..
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Figure 6: Results on the Vaihingen dataset for our method versus [8]. First row: aerial image. Second row: predicted building
instances overlaid on the overhead image. Third row: nDSM. Fourth row: semantic segmentation.
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Figure 7: Additional results on the Vaihingen dataset for our method versus [8]. First row: aerial image. Second row:
predicted building instances overlaid on the overhead image. Third row: nDSM. Fourth row: semantic segmentation.
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Figure 8: Qualitative results on our method versus Wang and Frahm’s [9] method on four images from the Urban3D dataset.
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Figure 9: Results on the Urban3D dataset for our method versus [8]. First row: aerial image. Second row: predicted building
instances overlaid on the overhead image. Third row: nDSM.
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Figure 10: Additional results on the Urban3D dataset for our method versus [8]. First row: aerial image. Second row:
predicted building instances overlaid on the overhead image. Third row: nDSM.
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Figure 11: Additional results on the Urban3D dataset for our method versus [8]. First row: aerial image. Second row:
predicted building instances overlaid on the overhead image. Third row: nDSM.
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Figure 12: Additional results on the Urban3D dataset for our method versus [8]. First row: aerial image. Second row:
predicted building instances overlaid on the overhead image. Third row: nDSM. Our prediction apparently does not capture
two ground-truth building instances in the top-right corner. However, the ground truth may be incorrect for both of these
instances, as we can observe roads passing through them. When visualized in Google Earth, as well, these instances do not
appear to be buildings.
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Figure 13: Comparison of building mask predictions, plus zoom-in crops, for our method versus [9] and [8] on two images
from the Urban3D dataset.



Figure 14: 3D building models generated for the Potsdam dataset.



Figure 15: 3D building models generated for the Vaihingen dataset.


