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Abstract—The theory of parallel and distributed systems in
computer science has been developing for decades. Multiple
methods have emerged for the purpose of providing flexibility,
expressiveness and theories for concurrent processes. This paper
provides a comparative introduction to the history of concurrent
systems reasoning and a decision tree to guide the choice of a
reasoning method accordingly. Our account on these matters is
incomplete.

Index Terms—Concurrent systems, Formal methods, Program
logic, Process calculi.

I. INTRODUCTION

Concurrency theory has been developing for decades, yet
remains an unsolved problem today. Modern software heavily
relies upon the services provided by distributed systems,
ranging from smartphone applications to social media. It has
been long recognized that fault-tolerance, efficient concurrency
and performance are of crucial importance for concurrent
systems.

Shared variables play an essential role in concurrency.
Complex concurrency often exhibit unexpected failures: faults
may occur arbitrarily in any component or at any point, and
networks may experience packet losses, reordered packets and
duplicate packets. These concurrency patterns are driving the
need for further specification toward verifying the consistency
and the correctness to meet strict trustworthiness requirements.
Reasoning about shared state, however, has becomes a difficult
problem, because concurrent threads simultaneously work with
shared data.

Further, the implementation of critical section requires ei-
ther coarse-grained synchronization (i.e., locks or semaphores)
or fine-grained synchronization (i.e., compare-and-swap). For-
mal methods for concurrency reasoning need to provide a
corresponding semantics capable of reasoning functional cor-
rectness. Also, in the design stage, abstraction and modularity
are able to hide irrelevant details and ease the burden for pro-
grammers implementing a high-quality concurrent system that
satisfies the requirements of correctness, resource-efficiency or
fault-tolerance.

As discussed above, verification of programs by reasoning
methods is the only known way to guarantee that a software is
free of programming errors and meets the requirements or the
features we need. For many decades, there have been substan-

tial studies of formal methods for concurrency reasoning. In
this paper, we do not compare reasoning methods down to the
last detail (i.e., syntax, inference rules and proof systems). We
do, however, discuss concurrency reasoning approaches from
a high-level and provide a comparative introduction to them.

The authors would like to stress that our account on the
developmental history of concurrent systems reasoning is
incomplete. The guides to select a method accordingly are
provided in this paper. Others may well have very different
views.

II. HISTORY

The history of reasoning concurrency dates back to the late
twentieth century. The foundations of early concurrency theory
can be found in Petri nets, automata theory and formal lan-
guages. Today, concurrent systems reasoning can be separated
into two families: one is program logics started from Hoare
logic [1]; the other is process calculi deriving from Hoare’s
CSP [19] and Milner’s CCS [27].

The family of program logics includes assertional reason-
ing [2], rely-guarantee reasoning [3], [4], separation logic [7]
and concurrent separation logic [11], [12]. The family of
process calculi had an early stage of development, includ-
ing CSP, ACP [20] and CCS. Later, there were multiple
descendants, such as LOTOS [22], π-calculus [27], ambient
calculus [42] and join calculus [30]. The lineage tree of
methods for reasoning concurrency is shown in Figure 1.
It is organized roughly in chronological order to present
the development of concurrency theories. Although session-
types [31] and behavioral-types [41] belong to the family of
process calculi, we consider them as a new family because
they are built upon the theory of type systems.

III. CONCURRENCY REASONING

The reasoning of concurrent systems has taken two major
directions, as shown in Figure 2. The approach of process
calculi is introduced when interactions and communications
between a collection of independent agents or processes are
focused. The approach of program logic is suited for reasoning
entire programs when programming paradigms matter. Once
the reasoning direction is decided, a proper method can
be chosen, according to the discussion in the sections that
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Fig. 1. Lineage tree of different categories and methods for concurrent
systems reasoning, roughly organized chronologically.

Fig. 2. Two major directions for reasoning of concurrent systems.

follow. The following section provides a broad overview of
reasoning methods rather than a detailed review (i.e., syntax
and inference rules).

A. Program Logic

Hoare logic is the first formal method for program logic.
A programming paradigm is transformed into a Hoare triple.
Hoare triple is of the form {P} C {Q}, in which P is the
precondition, C is a command and Q is the postcondition.
Precondition and postcondition are assertions in predicate
logic. With the axioms and inference rules provided by Hoare
logic, a sequentially imperative programming can be verified.

Based on the foundation of Hoare logic, assertional reason-
ing combines Hoare logic and linear-time temporal logic to
reason shared variables in programs. It formalizes the access
to a shared variable (i.e., a critical section) being presented
as a simple state transition. The verification of assertional
reasoning can then be done by using temporal logic proof
systems.

Rely-guarantee method splits a specification of concurrent
systems syntactically into two corresponding conditions, the
rely and the guarantee. It gives a systematic way of describing
the state changes performed by the environment or by the pro-
gram, respectively. The rely-guarantee approach is also used
to reason asynchronous programs [6] and dynamic distributed
systems [40].

Although the rely-guarantee method does its job, its spec-
ifications are complex because the entire state is described
in global interference specification. It increases the reasoning
complexity when the program state updates. The interference
specification must be checked against every state update. Sep-
aration logic solves the problem discussed above by offering
a separating conjunction ∗. For instance, P ∗Q asserts that P
and Q are disjoint memory addresses. Separating conjunction
makes specifications local and reduces the reasoning work.
Vafeiadis et al. [5] balance the trade-offs between the rely-
guarantee method and separation logic, because separation
logic has its own difficulty with interference. Separation logic
is widely used for shared data structures reasoning [8], [9],
[10].

Concurrent separation logic (CSL) takes one more step to
express concurrency. It provides a parallel composition to
describe concurrent threads. For example, P ‖ Q represents
that thread P and thread Q are executed concurrently. CSL
also preserves the private resources, which are invisible to
the environments, for each thread. With these features, CSL
is able to support thread modularity and memory modular-
ity [13]. Many works extend CSL for modular reasoning
to support fine-grained concurrency (i.e., compare-and-swap
instructions) [14], [15], [16], [17], [45], [46].

Figure 3 presents a decision tree for choosing validation
methods in the category of program logic. Hoare logic is
a set of logical rules for reasoning sequential programs. As
regards concurrent programs, assertional reasoning combines
Hoare logic with temporal logic to reason shared variables.
R/G reasoning splits specification into rely and guarantee parts,
which provides systematic reasoning when the number of
shared variables becomes large. Reasoning memory pointers
requires more extensions (i.e., shape analysis and separating
conjunction) provided by separation logic. Concurrent separa-
tion logic supports thread modularity and memory modularity,
which allow each thread to have its private resources to reduce
the work of reasoning.

B. Process Calculi

Process calculi are algebraic languages to describe interac-
tions and communications between a collection of independent
agents or processes. The early development of process calculi



Fig. 3. Decision tree for choosing validation methods in the category of
program logic. A circle represents a decision node, which is a condition rule
for the feature of concurrent systems. The outcome of TRUE goes right node,
while the outcome of FALSE goes left node.

mainly focused on ACP, CSP and CCS. Many works [21], [24],
[25], [47], [48] compare the difference between ACP, CSP and
CCS. The development of CSP and CCS are similar because
they influenced one another. For instance, their fundamental
operations both have sequencing, nondeterministic choice and
parallel composition. The main difference between CSP and
CCS lies in their synchronization mechanisms. CCS’s com-
munication adopts a binary handshake via matching actions,
which is combined with abstraction. CSP’s communication
uses multi-way synchronization combined with restriction.
ACP emphasizes the algebraic aspect and has a more general
communication scheme. LOTOS, combining CSP and CCS,
was developed in response to the protocol specification in ISO
OSI standards.
π-calculus was first introduced by Robin et al. [27]. It is an

extension of the process algebra CCS and a type of process
calculus designed for representing parallel computation. Since
its introduction, it has been widely used in many applications.
Abadi et al. [43] extended π-calculus to have more primitives
for encryption and decryption. π-calculus has also been ex-
tended to Business Process Modeling Language (BPML) [44].
Another advantage of π-calculus is that it can handle dynamic
network configuration by allowing channels to be passed as
data along the channels themselves. π-calculus influences
the way to specify distributed systems [28]. Pict [29] is a
programming language based on π-calculus.

Unlike π-calculus, ambient calculus has the ability to model
hierarchical process boundaries. It formalizes the distributed
system components, including nodes, channels, messages, and
mobile code. With these system components, ambient calculus
is able to describe the situation where entire computational
environments are changed, like dynamic network topology.

Join calculus is considered as an asynchronous π-calculus,
which avoids rendezvous communications in other process

Fig. 4. Decision tree for choosing validation methods in the category of
process calculi. A circle represents a decision node, which is a condition rule
for the feature of concurrent systems. The outcome of TRUE goes right node,
while the outcome of FALSE goes left node.

calculi. The implementation of atomic non-local interaction is
difficult in distributed settings. Join calculus can be encoded
into π-calculus and vice versa.

Session-types has became a popular way to verify the
protocols [32], [34], [49]. Session-types is considered to be
a type of π-calculus that describes communication protocols,
in which programs can be checked to see if they conform to
protocols either statically (at compile-time) or dynamically (at
runtime) [33]. Session-types reasoning [35] is built upon a
Curry-Howard correspondence between session-types and the
process model of π-calculus. This result has influenced much
other research in classical linear logic [37], [38], [39] and
also led to the birth of behavioral-types [36], [41], [50], [51].
Behavioral-types enriches the expressiveness of session-types
to specify its expected patterns of interaction, rather than treat
communication channels as raw data types (i.e., bytes arrays or
strings). This feature preserves all the benefits and guarantees
provided by type systems while verifying protocols.

A decision tree for choosing validation methods in the
category of process calculi is shown in Figure 4. The first
factor should be considered is whether network configuration
may change during the computation. If network configuration
is static, a basic process algebra method, like ACP, CSP, or
CCS, can be adopted. LOTOS serves the purpose of ISO
OSI protocol standards. Under the circumstance of changed
network configuration, the chosen reasoning methods must be
in the family of π-calculus. Join calculus is able to formalize
asynchronous communication, such as no rendezvous commu-
nications. If the protocol is complex and large, the support
from type systems is needed. Behavioral-types is selected
when the sent or received data must be typed; otherwise,
session-types will be chosen.

IV. CONCLUSION

Modern software heavily relies upon the services provided
by distributed systems. It has been long recognized that fault-
tolerance, efficient concurrency and performance are of crucial



importance for concurrent systems. These features are driving
the need for further specification toward verifying consistency
and correctness. The theory of parallel and distributed systems
in computer science has been developing for decades. This
paper provides a comparative introduction to the history of
concurrent systems reasoning and a decision tree to guide the
choice of a reasoning method accordingly.
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