
A Survey of Reasoning Methods for Concurrent
Systems

Chun-Kun Wang
Department of Computer Science

Univ. of North Carolina at Chapel Hill
Chapel Hill, NC 27599, USA

Email: amos@cs.unc.edu

Hao Xu
Data Intensive Cyber Environment Center

Univ. of North Carolina at Chapel Hill
Chapel Hill, NC 27599, USA

Email: xuh@cs.unc.edu

Abstract—The theory of parallel and distributed systems in
computer science has been developing for decades. Multiple
methods have emerged for the purpose of providing flexibility,
expressiveness and theories for concurrent processes. This paper
provides a comparative introduction to the history of concurrent
systems reasoning and a decision tree to guide the choice of a
reasoning method accordingly. Our account on these matters is
incomplete.

Index Terms—Concurrent systems, Formal methods, Program
logic, Process calculi.

I. INTRODUCTION

Concurrency theory has been developing for decades, yet
remains an unsolved problem today. Modern software heavily
relies upon the services provided by distributed systems,
ranging from smartphone applications to social media. It has
been long recognized that fault-tolerance, efficient concurrency
and performance are of crucial importance for concurrent
systems.

Shared variables play an essential role in concurrency.
Complex concurrency often exhibit unexpected failures: faults
may occur arbitrarily in any component or at any point, and
networks may experience packet losses, reordered packets and
duplicate packets. These concurrency patterns are driving the
need for further specification toward verifying the consistency
and the correctness to meet strict trustworthiness requirements.
Reasoning about shared state, however, has becomes a difficult
problem, because concurrent threads simultaneously work with
shared data.

Further, the implementation of critical section requires ei-
ther coarse-grained synchronization (i.e., locks or semaphores)
or fine-grained synchronization (i.e., compare-and-swap). For-
mal methods for concurrency reasoning need to provide a
corresponding semantics capable of reasoning functional cor-
rectness. Also, in the design stage, abstraction and modularity
are able to hide irrelevant details and ease the burden for pro-
grammers implementing a high-quality concurrent system that
satisfies the requirements of correctness, resource-efficiency or
fault-tolerance.

As discussed above, verification of programs by reasoning
methods is the only known way to guarantee that a software is
free of programming errors and meets the requirements or the
features we need. For many decades, there have been substan-

tial studies of formal methods for concurrency reasoning. In
this paper, we do not compare reasoning methods down to the
last detail (i.e., syntax, inference rules and proof systems). We
do, however, discuss concurrency reasoning approaches from
a high-level and provide a comparative introduction to them.

The authors would like to stress that our account on the
developmental history of concurrent systems reasoning is
incomplete. The guides to select a method accordingly are
provided in this paper. Others may well have very different
views.

II. HISTORY

The history of reasoning concurrency dates back to the late
twentieth century. The foundations of early concurrency theory
can be found in Petri nets, automata theory and formal lan-
guages. Today, concurrent systems reasoning can be separated
into two families: one is program logics started from Hoare
logic [1]; the other is process calculi deriving from Hoare’s
CSP [19] and Milner’s CCS [27].

The family of program logics includes assertional reason-
ing [2], rely-guarantee reasoning [3], [4], separation logic [7]
and concurrent separation logic [11], [12]. The family of
process calculi had an early stage of development, includ-
ing CSP, ACP [20] and CCS. Later, there were multiple
descendants, such as LOTOS [22], π-calculus [27], ambient
calculus [42] and join calculus [30]. The lineage tree of
methods for reasoning concurrency is shown in Figure 1.
It is organized roughly in chronological order to present
the development of concurrency theories. Although session-
types [31] and behavioral-types [41] belong to the family of
process calculi, we consider them as a new family because
they are built upon the theory of type systems.

III. CONCURRENCY REASONING

The reasoning of concurrent systems has taken two major
directions, as shown in Figure 2. The approach of process
calculi is introduced when interactions and communications
between a collection of independent agents or processes are
focused. The approach of program logic is suited for reasoning
entire programs when programming paradigms matter. Once
the reasoning direction is decided, a proper method can
be chosen, according to the discussion in the sections that



Concurrent systems reasoning

Program Logics

Hoare logic

Assertional reasoning

Rely-guarantee reasoning

Separation logic

Concurrent separation logic

Process Calculi

Hoare’s CSP

ACP

Milner’s CCS

LOTOS

Pi-calculus

Ambient calculus

Join calculus

Type System for Process Calculi

Session-types

Behavioral-types

Fig. 1. Lineage tree of different categories and methods for concurrent
systems reasoning, roughly organized chronologically.

Fig. 2. Two major directions for reasoning of concurrent systems.

follow. The following section provides a broad overview of
reasoning methods rather than a detailed review (i.e., syntax
and inference rules).

A. Program Logic

Hoare logic is the first formal method for program logic.
A programming paradigm is transformed into a Hoare triple.
Hoare triple is of the form {P} C {Q}, in which P is the
precondition, C is a command and Q is the postcondition.
Precondition and postcondition are assertions in predicate
logic. With the axioms and inference rules provided by Hoare
logic, a sequentially imperative programming can be verified.

Based on the foundation of Hoare logic, assertional reason-
ing combines Hoare logic and linear-time temporal logic to
reason shared variables in programs. It formalizes the access
to a shared variable (i.e., a critical section) being presented
as a simple state transition. The verification of assertional
reasoning can then be done by using temporal logic proof
systems.

Rely-guarantee method splits a specification of concurrent
systems syntactically into two corresponding conditions, the
rely and the guarantee. It gives a systematic way of describing
the state changes performed by the environment or by the pro-
gram, respectively. The rely-guarantee approach is also used
to reason asynchronous programs [6] and dynamic distributed
systems [40].

Although the rely-guarantee method does its job, its spec-
ifications are complex because the entire state is described
in global interference specification. It increases the reasoning
complexity when the program state updates. The interference
specification must be checked against every state update. Sep-
aration logic solves the problem discussed above by offering
a separating conjunction ∗. For instance, P ∗Q asserts that P
and Q are disjoint memory addresses. Separating conjunction
makes specifications local and reduces the reasoning work.
Vafeiadis et al. [5] balance the trade-offs between the rely-
guarantee method and separation logic, because separation
logic has its own difficulty with interference. Separation logic
is widely used for shared data structures reasoning [8], [9],
[10].

Concurrent separation logic (CSL) takes one more step to
express concurrency. It provides a parallel composition to
describe concurrent threads. For example, P ‖ Q represents
that thread P and thread Q are executed concurrently. CSL
also preserves the private resources, which are invisible to
the environments, for each thread. With these features, CSL
is able to support thread modularity and memory modular-
ity [13]. Many works extend CSL for modular reasoning
to support fine-grained concurrency (i.e., compare-and-swap
instructions) [14], [15], [16], [17], [45], [46].

Figure 3 presents a decision tree for choosing validation
methods in the category of program logic. Hoare logic is
a set of logical rules for reasoning sequential programs. As
regards concurrent programs, assertional reasoning combines
Hoare logic with temporal logic to reason shared variables.
R/G reasoning splits specification into rely and guarantee parts,
which provides systematic reasoning when the number of
shared variables becomes large. Reasoning memory pointers
requires more extensions (i.e., shape analysis and separating
conjunction) provided by separation logic. Concurrent separa-
tion logic supports thread modularity and memory modularity,
which allow each thread to have its private resources to reduce
the work of reasoning.

B. Process Calculi

Process calculi are algebraic languages to describe interac-
tions and communications between a collection of independent
agents or processes. The early development of process calculi



Fig. 3. Decision tree for choosing validation methods in the category of
program logic. A circle represents a decision node, which is a condition rule
for the feature of concurrent systems. The outcome of TRUE goes right node,
while the outcome of FALSE goes left node.

mainly focused on ACP, CSP and CCS. Many works [21], [24],
[25], [47], [48] compare the difference between ACP, CSP and
CCS. The development of CSP and CCS are similar because
they influenced one another. For instance, their fundamental
operations both have sequencing, nondeterministic choice and
parallel composition. The main difference between CSP and
CCS lies in their synchronization mechanisms. CCS’s com-
munication adopts a binary handshake via matching actions,
which is combined with abstraction. CSP’s communication
uses multi-way synchronization combined with restriction.
ACP emphasizes the algebraic aspect and has a more general
communication scheme. LOTOS, combining CSP and CCS,
was developed in response to the protocol specification in ISO
OSI standards.
π-calculus was first introduced by Robin et al. [27]. It is an

extension of the process algebra CCS and a type of process
calculus designed for representing parallel computation. Since
its introduction, it has been widely used in many applications.
Abadi et al. [43] extended π-calculus to have more primitives
for encryption and decryption. π-calculus has also been ex-
tended to Business Process Modeling Language (BPML) [44].
Another advantage of π-calculus is that it can handle dynamic
network configuration by allowing channels to be passed as
data along the channels themselves. π-calculus influences
the way to specify distributed systems [28]. Pict [29] is a
programming language based on π-calculus.

Unlike π-calculus, ambient calculus has the ability to model
hierarchical process boundaries. It formalizes the distributed
system components, including nodes, channels, messages, and
mobile code. With these system components, ambient calculus
is able to describe the situation where entire computational
environments are changed, like dynamic network topology.

Join calculus is considered as an asynchronous π-calculus,
which avoids rendezvous communications in other process

Fig. 4. Decision tree for choosing validation methods in the category of
process calculi. A circle represents a decision node, which is a condition rule
for the feature of concurrent systems. The outcome of TRUE goes right node,
while the outcome of FALSE goes left node.

calculi. The implementation of atomic non-local interaction is
difficult in distributed settings. Join calculus can be encoded
into π-calculus and vice versa.

Session-types has became a popular way to verify the
protocols [32], [34], [49]. Session-types is considered to be
a type of π-calculus that describes communication protocols,
in which programs can be checked to see if they conform to
protocols either statically (at compile-time) or dynamically (at
runtime) [33]. Session-types reasoning [35] is built upon a
Curry-Howard correspondence between session-types and the
process model of π-calculus. This result has influenced much
other research in classical linear logic [37], [38], [39] and
also led to the birth of behavioral-types [36], [41], [50], [51].
Behavioral-types enriches the expressiveness of session-types
to specify its expected patterns of interaction, rather than treat
communication channels as raw data types (i.e., bytes arrays or
strings). This feature preserves all the benefits and guarantees
provided by type systems while verifying protocols.

A decision tree for choosing validation methods in the
category of process calculi is shown in Figure 4. The first
factor should be considered is whether network configuration
may change during the computation. If network configuration
is static, a basic process algebra method, like ACP, CSP, or
CCS, can be adopted. LOTOS serves the purpose of ISO
OSI protocol standards. Under the circumstance of changed
network configuration, the chosen reasoning methods must be
in the family of π-calculus. Join calculus is able to formalize
asynchronous communication, such as no rendezvous commu-
nications. If the protocol is complex and large, the support
from type systems is needed. Behavioral-types is selected
when the sent or received data must be typed; otherwise,
session-types will be chosen.

IV. CONCLUSION

Modern software heavily relies upon the services provided
by distributed systems. It has been long recognized that fault-
tolerance, efficient concurrency and performance are of crucial



importance for concurrent systems. These features are driving
the need for further specification toward verifying consistency
and correctness. The theory of parallel and distributed systems
in computer science has been developing for decades. This
paper provides a comparative introduction to the history of
concurrent systems reasoning and a decision tree to guide the
choice of a reasoning method accordingly.

REFERENCES

[1] Floyd, Robert W. Assigning meanings to programs. In Program Verifi-
cation, pp. 65-81. Springer, Dordrecht, 1993.

[2] Shankar, A. Udaya. An introduction to assertional reasoning for con-
current systems. ACM Computing Surveys (CSUR) 25, no. 3 (1993):
225-262.

[3] Xu, Qiwen, Willem-Paul de Roever, and Jifeng He. The rely-guarantee
method for verifying shared variable concurrent programs. Formal
Aspects of Computing 9, no. 2 (1997): 149-174.

[4] Jones, Cliff B. Wanted: a compositional approach to concurrency. In
Programming methodology, pp. 5-15. Springer, New York, NY, 2003.

[5] Vafeiadis, Viktor, and Matthew Parkinson. A marriage of rely/guarantee
and separation logic. In CONCUR, vol. 4703, pp. 256-271. 2007.

[6] Gavran, Ivan, Filip Niksic, Aditya Kanade, Rupak Majumdar, and Viktor
Vafeiadis. Rely/guarantee reasoning for asynchronous programs. In
LIPIcs-Leibniz International Proceedings in Informatics, vol. 42. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2015.

[7] Reynolds, John C. Separation logic: A logic for shared mutable data
structures. In Logic in Computer Science, 2002. Proceedings. 17th
Annual IEEE Symposium on, pp. 55-74. IEEE, 2002.

[8] Parkinson, Matthew, Richard Bornat, and Peter O’Hearn. Modular
verification of a non-blocking stack. In ACM SIGPLAN Notices, vol.
42, no. 1, pp. 297-302. ACM, 2007.

[9] Jacobs, Bart, and Frank Piessens. Expressive modular fine-grained
concurrency specification. ACM SIGPLAN Notices 46, no. 1 (2011):
271-282.

[10] Sergey, Ilya, Aleksandar Nanevski, and Anindya Banerjee. Mechanized
verification of fine-grained concurrent programs. In ACM SIGPLAN
Notices, vol. 50, no. 6, pp. 77-87. ACM, 2015.

[11] Ohearn, Peter W. Resources, concurrency, and local reasoning. Theo-
retical computer science 375, no. 1-3 (2007): 271-307.

[12] Feng, Xinyu, Rodrigo Ferreira, and Zhong Shao. On the relationship
between concurrent separation logic and assume-guarantee reasoning.
In ESOP, vol. 7, pp. 173-188. 2007.

[13] Leino, K. Rustan M., and Peter Mller. A basis for verifying multi-
threaded programs. In ESOP, vol. 9, pp. 378-393. 2009.

[14] Dinsdale-Young, Thomas, Mike Dodds, Philippa Gardner, Matthew J.
Parkinson, and Viktor Vafeiadis. Concurrent abstract predicates. In
ECOOP, vol. 6183, pp. 504-528. 2010.

[15] Jung, Ralf, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron
Turon, Lars Birkedal, and Derek Dreyer. Iris: Monoids and invariants as
an orthogonal basis for concurrent reasoning. ACM SIGPLAN Notices
50, no. 1 (2015): 637-650.

[16] Jung, Ralf, Robbert Krebbers, Lars Birkedal, and Derek Dreyer. Higher-
order ghost state. In ICFP, pp. 256-269. 2016.

[17] Dinsdale-Young, Thomas, Pedro da Rocha Pinto, Kristoffer Just Ander-
sen, and Lars Birkedal. Caper. In European Symposium on Program-
ming, pp. 420-447. Springer, Berlin, Heidelberg, 2017.

[18] Sergey, Ilya, JAMES R. WILCOX, and ZACHARY TATLOCK. Pro-
gramming and proving with distributed protocols. Personal communica-
tion (2018).

[19] Hoare, Charles Antony Richard. Communicating sequential processes.
In The origin of concurrent programming, pp. 413-443. Springer New
York, 1978.

[20] Bergstra, Johannes Aldert, and Jan Willem Klop. Fixed point semantics
in process algebras. (1982).

[21] Baeten, Jos CM. A brief history of process algebra. Theoretical Com-
puter Science 335, no. 2-3 (2005): 131-146.

[22] Bolognesi, Tommaso, and Ed Brinksma. Introduction to the ISO spec-
ification language LOTOS. Computer Networks and ISDN systems 14,
no. 1 (1987): 25-59.

[23] Milner, Robin. A calculus of communicating systems. (1980).

[24] Fidge, Colin. A comparative introduction to CSP, CCS and LOTOS.
Software Verification Research Centre, University of Queensland, Tech.
Rep (1994): 93-24.

[25] He, Jifeng, and Tony Hoare. CSP is a retract of CCS. In International
Symposium on Unifying Theories of Programming, pp. 38-62. Springer,
Berlin, Heidelberg, 2006.

[26] Abadi, Martin, Michael Burrows, Butler Lampson, and Gordon Plotkin.
A calculus for access control in distributed systems. ACM Transactions
on Programming Languages and Systems (TOPLAS) 15, no. 4 (1993):
706-734.

[27] Milner, Robin, Joachim Parrow, and David Walker. A calculus of mobile
processes, i. Information and computation 100, no. 1 (1992): 1-40.

[28] Magee, Jeff, Naranker Dulay, Susan Eisenbach, and Jeff Kramer. Speci-
fying distributed software architectures. Software EngineeringESEC’95
(1995): 137-153.

[29] Pierce, Benjamin C., and David N. Turner. Pict: a programming lan-
guage based on the Pi-Calculus. In Proof, Language, and Interaction,
pp. 455-494. 2000.

[30] Fournet, Cdric, and Georges Gonthier. The reflexive CHAM and the
join-calculus. In Proceedings of the 23rd ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pp. 372-385.
ACM, 1996.

[31] Honda, Kohei, Nobuko Yoshida, and Marco Carbone. Multiparty asyn-
chronous session types. ACM SIGPLAN Notices 43, no. 1 (2008): 273-
284.

[32] Castagna, Giuseppe, Mariangiola Dezani-Ciancaglini, Elena Giachino,
and Luca Padovani. Foundations of session types. In Proceedings of
the 11th ACM SIGPLAN conference on Principles and practice of
declarative programming, pp. 219-230. ACM, 2009.

[33] Dezani-Ciancaglini, Mariangiola, and Ugo De’Liguoro. Sessions and
Session Types: An Overview. In WS-FM, vol. 9, pp. 1-28. 2009.

[34] Gay, Simon J., and Vasco T. Vasconcelos. Linear type theory for
asynchronous session types. Journal of Functional Programming 20, no.
1 (2010): 19-50.

[35] Caires, Lus, and Frank Pfenning. Session Types as Intuitionistic Linear
Propositions. In CONCUR, vol. 10, pp. 222-236. 2010.

[36] Wadler, Philip. Propositions as sessions. ACM SIGPLAN Notices 47,
no. 9 (2012): 273-286.

[37] Giunti, Marco, and Vasco Thudichum Vasconcelos. Linearity, session
types and the pi calculus. In UNDER CONSIDERATION FOR PUB-
LICATION IN MATH. STRUCT. IN COMP. SCIENCE. 2013.

[38] Summers, Alexander J., and Peter Mller. Actor Services. In European
Symposium on Programming Languages and Systems, pp. 699-726.
Springer, Berlin, Heidelberg, 2016.

[39] Caires, Luis, Frank Pfenning, and Bernardo Toninho. Linear logic
propositions as session types. Mathematical Structures in Computer
Science 26, no. 3 (2016): 367-423.

[40] Desai, Ankush, Amar Phanishayee, Shaz Qadeer, and Sanjit A. Seshia.
Compositional Reasoning for Dynamic Distributed Systems. (2017).

[41] Ancona, Davide, Viviana Bono, Mario Bravetti, Joana Campos,
Giuseppe Castagna, Pierre-Malo Denilou, Simon J. Gay et al. Behavioral
types in programming languages. Foundations and Trends in Program-
ming Languages 3, no. 2-3 (2016): 95-230.

[42] Cardelli, Luca, and Andrew D. Gordon. Mobile ambients. In Interna-
tional Conference on Foundations of Software Science and Computation
Structure, pp. 140-155. Springer, Berlin, Heidelberg, 1998.

[43] Abadi, Martn, and Andrew D. Gordon. A calculus for cryptographic
protocols: The spi calculus. Proceedings of the 4th ACM conference on
Computer and communications security. ACM, 1997.

[44] Smith, Howard. Business process managementthe third wave: business
process modelling language (bpml) and its pi-calculus foundations.
Information and Software Technology 45.15 (2003): 1065-1069.

[45] Svendsen, Kasper, and Lars Birkedal. Impredicative Concurrent Abstract
Predicates. In ESOP, vol. 8410, pp. 149-168. 2014.

[46] da Rocha Pinto, Pedro, Thomas Dinsdale-Young, and Philippa Gardner.
TaDA: A logic for time and data abstraction. In European Conference
on Object-Oriented Programming, pp. 207-231. Springer, Berlin, Hei-
delberg, 2014.

[47] Luttik, Bas. What is algebraic in process theory?. Electronic Notes in
Theoretical Computer Science 162 (2006): 227-231.

[48] Hatzel, Meike, Christoph Wagner, Kirstin Peters, and Uwe Nestmann.
Encoding CSP into CCS. arXiv preprint arXiv:1508.06712 (2015).

[49] Bhargavan, Karthikeyan, Ricardo Corin, Pierre-Malo Denilou, Cdric
Fournet, and James J. Leifer. Cryptographic protocol synthesis and



verification for multiparty sessions. In Computer Security Foundations
Symposium, 2009. CSF’09. 22nd IEEE, pp. 124-140. IEEE, 2009.

[50] Caires, Lus, Jorge A. Prez, Frank Pfenning, and Bernardo Toninho.
Behavioral Polymorphism and Parametricity in Session-Based Commu-
nication. In ESOP, vol. 7792, pp. 330-349. 2013.

[51] Httel, Hans, Ivan Lanese, Vasco T. Vasconcelos, Lus Caires, Marco
Carbone, Pierre-Malo Denilou, Dimitris Mostrous et al. Foundations
of session types and behavioural contracts. ACM Computing Surveys
(CSUR) 49, no. 1 (2016): 3.


