
Duty-Cycle-Aware Real-Time Scheduling of
Wireless Links in Low Power WANs

Md Tamzeed Islam
Department of Computer Science

UNC at Chapel Hill
tamzeed@cs.unc.edu

Bashima Islam
Department of Computer Science

UNC at Chapel Hill
bashima@cs.unc.edu

Shahriar Nirjon
Department of Computer Science

UNC at Chapel Hill
nirjon@cs.unc.edu

Abstract—Low Power Wide Area Networks (LPWANs) are an
excellent fit to city-scale IoT applications—offering a long range,
long battery life of several years, and a data rate of 25-50kbps,
which is sufficient to carry IoT traffic. However, a practical
limitation in realizing a LPWAN-based real-time wireless network
is the duty-cycle limit that is imposed on the sub-1GHz band by
the FCC. In this paper, we overcome this challenge by proposing
the first duty-cycle-aware wireless link scheduling algorithm for
real-time LPWANs that considers the urgency of the packets as
well as the availability of the channels. The proposed algorithm
is implemented in a five-node city-wide test-bed in multiple real-
world scenarios. Simulation results are provided to quantify
its performance under different settings (e.g. larger networks,
variety of workloads, and multiple baselines). In both real-world
deployments and simulations, the proposed scheduling algorithm
has outperformed all the baselines in terms of link schedulability,
deadline misses, and buffer size.

I. INTRODUCTION

The concepts of smart cities and smart communities have
started to become a reality in this age of the Internet of
Things (IoT). In the midst of this IoT revolution, recently,
low power wide area networking (LPWAN) technologies [1]–
[4] have become very popular, as they are an excellent fit to
the IoT data traffic that are generated and consumed by many
smart cities applications. For instance, if we think of city-scale
IoT applications like smart metering, environment monitoring,
road traffic monitoring, facility management, smart parking,
street lighting, vehicle tracking, waste management, precision
agriculture, and home automation, we observe that the basic
communication requirements in these applications include a
long radio range (i.e. several hundred meters of range), low
power (i.e. an extended battery-life of several months or
years), and low bandwidth (i.e. a data rate of few kbps). Thus,
low power WANs are being considered as the enablers of city-
scale IoT.

Among different choices of low power WANs, we study
one of the most popular technologies of today, which is called
the LoRa WAN [2]. LoRa has so far been mainly adopted by
the European countries, although recently, over 100 cities in
the USA have begun to deploy city-wide LoRa networks [5].
LoRa has an advertised radio range of up to 9 miles (in line-
of-sight), a data rate of up to 50kbps, and a battery life of
around 10 years. While these properties make LoRa perfect for
IoT applications, unfortunately, there is a regulatory constraint
on its duty-cycle, which does not allow a device to send data

packets at will. A device in a LoRa network must wait a certain
period after each successful transmission. For example, in EU,
LoRa has a duty-cycle limit of 1%, i.e. once a device has
used a particular communication channel for 10ms, it has to
wait for another 990ms for that channel to be available to it
again. The device, however, can send the packet over other
available channels, and other devices can send their packets
over that channel, as long as the duty-cycle constraint on any
channel, for any device is not violated. In other words, duty-
cycle constraint applies to each (device, channel) pair.

Although we study a specific network protocol in this
paper, the duty-cycle constraint in LPWANs is not a protocol
specific one, rather it is band specific. From the fundamentals
of wireless communication, the higher the frequency band
is, the shorter is its the communication range. Hence, for a
long range wireless communication, bands below 1 GHz are
used. For example, LoRa uses the 902–928MHz band in the
USA. Because of the long radio range, a large number of
devices (in a large geographic area) compete for the same set
of frequencies, and their transmissions are more susceptible
to collision. Hence, duty-cycle limits are imposed by the
authority to ensure fair access to the air for all devices. We
consider this limit as a challenge in designing real-time IoT
systems where a large number of connected devices have to
send data wirelessly to a central gateway over a long distance
in real-time, i.e. within an application-specific deadline.

The generic problem of scheduling wireless transmissions
dates back to decades [6]–[8]. Theoretical analysis as well
as results from practical deployments have been published
on various categories of real-time wireless networks such as
ad-hoc and sensor networks [9], [10] and WiFi [11]. The
problem we study in this paper has similarity to several of
these works that consider single-hop network topology [12],
time division multiple access (TDMA)-based link scheduling
approaches [13], [14], use of laxity to schedule packets [15],
and channel selection [16]. However, ours is the first work
that brings an additional pragmatic issue in real-time wireless
link scheduling algorithms, which is the duty-cycle-awareness.
Note that, although the term ‘duty-cycle’ is commonly used in
the wireless sensor network community to refer to the sleep-
vs-awake ratio of a node, the duty-cycle in the LPWAN context
is tied to both a node and a specific channel. Therefore, we are
required to design a solution to a new class of link scheduling

problems where both the packet and the channel need to be
scheduled judiciously.

When compared to classical real-time scheduling problems,
the problem at hand is analogous to scheduling tasks in a
multiprocessor system, where a specific processor becomes
unavailable to a specific task (but not necessarily to other
tasks) for a specific duration after an instance of it has been ex-
ecuted. We propose a simple yet effective scheduling strategy
for this scheduling problem by introducing a new metric that
dynamically scores each processor with respect to a given task
and the task’s remaining waiting time for that processor due
to the duty-cycle limit. We name this new metric: ‘gravity’. At
each scheduling step, a task (a wireless link) having the least
laxity [17] is scheduled on a processor (channel), which is
determined by a duty-cycle-aware maximum gravity processor
(channel) selection algorithm.

In order to demonstrate the performance of our proposed
scheduling algorithm, we implement a complete system—
consisting of five low-power LoRa nodes, a LoRa gateway,
and a server in the cloud. We deploy this network in the
city of Chapel Hill, NC. Our system is up and running since
September 1, 2017, and the packets sent from the nodes
can be viewed at [18]. Each node periodically generates a
packet and follows an offline-generated transmission schedule
(according to our duty-cycle-aware scheduling algorithm) to
send the packets to the gateway. The gateway forwards the
packets to the server over the Internet. We also have developed
a Java-based simulation software that generates the schedule
for a given a workload description. We use this software to
simulate the workload to analyze its schedulability as well as
to generate the schedule when the workload is schedulable.

We evaluate the real-time performance of the network in an
outdoor and an indoor setup. Although LPWANs are meant for
outdoors, we wanted to see its performance in indoor scenarios
as well, so that we can compare the two. Besides the real
deployments, we also have conducted multiple simulations to
quantify the real-time performance of the proposed algorithm
for large scale networks and for different real-time workloads.

The contribution of this paper are the following:

• We demonstrate the effect of duty-cycle on the real-
time performance of LPWANs, illustrate the need for
scoring communication channels, and propose a new
metric called the ‘gravity’ to score channels dynamically.

• We propose the first wireless transmission link scheduling
algorithm that explicitly handles the duty-cycle con-
straints in LPWANs. The time-complexity of this offline
scheduling algorithm is O(J2 log J).

• We develop a complete system consisting of a five-node
LoRa network and deploy the network in two real world
scenarios. We also conduct simulation-based experiments
under different settings (e.g. larger networks, variety of
workloads, and multiple baselines). In both real-world
deployments and simulations, the proposed scheduling
algorithm has outperformed all the baselines in terms of
link schedulability, deadline misses, and buffer size.

• We have open-sourced the software for the LoRa nodes
and the simulator. They are accessible from here [18].

II. BACKGROUND

A. Overview of LoRaWAN

LoRa [2] stands for ‘Long Range’. It defines the physical
layer of an emerging network technology that offers low
data rate wireless communication over long distances, while
consuming very little power. For example, LoRa radios have
a battery lifetime of around 10 years, a communication range
of up to 9 miles (line-of-sight), and a data rate of 27kbps–
50kbps. Because of these properties, LoRa has gained a lot
of attention in the Internet of Things (IoT) applications where
battery operated devices require access to the Internet but are
physically located miles apart from an Internet gateway.

Node

Network
Server

Application
Server

Node

Node Gateway

Gateway

Node

LoRA 4G/Ethernet TCP/IP 4G/WiFi

Fig. 1. LoRaWAN Network Architecture.

LoRaWAN is a specification for Low Power Wide Area
Network (LPWAN) that defines the system architecture and
network protocols for LoRa capable devices. LoRaWAN net-
works are organized as a star of stars topology as shown in
Figure 1. Four types of entities are present in a LoRaWAN.
The sensor nodes or end nodes send data packets to a LoRa
capable gateway. A single LoRa gateway is able to cover
an entire city (hundreds of square kilometers). Gateways are
connected to a network server over a backhaul network such
as 4G or Ethernet. Network servers are connected to an
application server via TCP/IP. Users can access the data from
application servers on any device with an Internet access such
as smartphones or personal computers.

Although LoRaWAN has a long range and a long battery
life, the low data rate limits its usage to applications which
do not generate large amount of data traffic. IoT applica-
tions where LoRa has shown promising results include smart
metering, facility management, smart parking, street lighting,
vehicle tracking, home automation, waste management, and
remote health-care.

B. LoRa Physical Layer Properties

LoRa physical layer handles the lower level details of wire-
less communication. LoRa operates in 433, 868 or 915MHz
ISM bands. Key properties of this layer are as follows:

• Chirp Spread Spectrum (CSS) Modulation: The LoRa
physical layer uses a special type of spread spectrum

modulation technique where information bits are en-
coded as frequency chirps (frequency varying sinusoidal
pulses) [19]. The use of chirps improves its robustness
against interference, Doppler effect, and multipaths [20].
Each symbol is encoded with 2SF chirps, where SF is
called the spreading factor and takes a value between 7
to 12. There is a trade-off between the spreading factor
and the communication range. A higher value of the
spreading factor results in a longer time for each symbol
transmission and yields a longer communication range.
The way chirps are designed for different spreading
factors, they are orthogonal to each other at different
values of SF ∈ [7, 12], and thus multiple data packets
can be sent in parallel as long as their spreading factors
are different.

• Time-On-Air: The Time-on-Air of a packet, Ta is the
duration for transmitting a LoRa packet. It is expressed
as a function of the number of symbols per packet ns,
chirp time Tc, and spreading factor SF as follows:

Ta = ns × 2SF × Tc (1)

Since the communication bandwidth and time-resolution
are inversely related (BW ≈ 1/Tc), we can use their
relationship to express the above equation as:

Ta = ns ×
2SF

BW
(2)

• Duty-Cycle Limit: The duty-cycle is defined as the frac-
tion of time an end-device keeps the channel occupied
for communication. To reduce collisions as well as to
increase the fairness of channel use by different trans-
mitters, there is a limit on the maximum duty-cycle for
an end-device. For example, European FCC allows a
maximum duty-cycle of 1% for EU 868 end-devices [21].
Therefore, if an end-device uses a channel to transmit a
frame, the limit on duty-cycle restricts it to transmit on
the same channel again until after a period of silence. The
device, however, can use other available channels (as long
as the duty-cycle limits on those channels are maintained,
of course). Formally, given the duty-cycle limit δ, an end-
device must not transmit anything on the most recently
used channel for a minimum off-period, Toff

Toff = Ta ×
(1
δ
− 1
)

(3)

Note that, if there are 8 channels and the duty-cycle is
limited to 1%, then the duty-cycle per channel is 1/8%.
For example, if an end-device transmits on a channel for
1 second, the channel will be unavailable for it for the
next 799 seconds.

C. LoRa MAC Layer Properties

LoRa MAC layer determines how multiple end-devices
access the wireless media to communicate with the gateways.
Key properties of LoRa MAC layer are as follows:

• Sub-bands and Channels: LoRa operates on a specific
range of frequencies (an ISM band). Each band is divided
into multiple sub-bands, and each sub-band is further
divided into a number of channels. For example, in
the USA, LoRa operates on the 915MHz ISM band
that contains the frequencies between 902–928MHz. This
band is divided into eight sub-bands, and each sub-band
contains 10 channels (eight 125KHz downlink channels,
one 500 KHz downlink channel, and one 500KHz uplink
channel).

• Interference: Each gateway in a LoRa network listens on
a particular sub-band. When two end-device communi-
cates with the same gateway, at the same time, at the
same channel, and using the same spreading factor, they
will cause interference and their packets will collide.

• Device Classes: LoRaWAN defines three classes of de-
vices: class A, class B, and class C, in order to meet
the demands of different types of applications. Class A
devices use ALOHA [22] protocol for an uplink packet
transmission, followed by two short downlink receive
windows. This class is defined for battery operated
devices. It does not require carrier sensing and thus
helps keep the energy consumption of an end-device to
the minimum. Class B is designed for devices which
may require additional downlink communication. Class
C devices always listen for ongoing transmissions before
transmitting anything. In this paper, we consider only the
class A devices which are low power and suitable for IoT
applications.

• Pure and Slotted ALOHA: ALOHA is a MAC layer
protocol that allows a node to send data whenever it is
ready. Because there is no coordination among different
transmitting nodes, ALOHA yields a high rate of colli-
sions. As the number of devices on the network increases,
the number of collisions increases.
Slotted ALOHA introduces the concept of time-slots and
allows a node to send a packet only at the beginning of
a time-slot. It eliminates partial collisions (i.e. collisions
in the middle of a packet transmission) but the medium
access is still not controlled. Collision occurs whenever
more than one end device become ready with a packet
to transmit. Due to the lack of coordination or a packet
transmission schedule, the real-time performance of both
pure and slotted ALOHA is extremely poor.

III. PROBLEM FORMULATION

In LoRaWAN, a set of end-devices or nodes talk to a specific
gateway in a single-hop network by forming a star topology.
Similarly, multiple gateways form another star topology cen-
tering a network server. In this paper, our focus is on the real-
time communication issues in a LoRa network, i.e. the network
formed by the end-nodes and the gateways. Ensuring the end-
to-end real-time guarantee between an end-device and a data
consumer like the smartphone in Figure 1 is a completely
different problem as it involves multiple types of intermediate

networks and devices, and hence, is out of the scope of this
paper.

!" !#

$" $# $% $& $' $($)

L1
L2 L3 L4

L5 L6
L7

Fig. 2. Nodes and gateways in a LoRa network form a bipartite graph where
links {Li} exist only between a gateway {Mi} and a node {Ni}.

Communication networks are typically modeled using
graphs where nodes represent communicating entities and
edges represent communication links. In a LoRa network, we
have two types of communication entities— the end-devices
and the gateways. Information flows only between an end-
device and a gateway. Since no two gateways or no two
end-devices communicate between themselves, we model a
LoRa network as a bipartite graph, G = (M,N,E), where
M = {M1,M2, . . . ,Mn} represents the set of n gateways,
N = {N1, N2, . . . , Nk} represents the set of k nodes, and
the set of edges E = {eij} denotes all communication links
between M and N . An edge eij = (Ni,Mj) exists only if
there is a reliable communication link between a node Ni and
a gateway Mj .

We consider k communication links, L = {L1, L2, . . . , Lk}
between N and M . Because LoRa is a single-hop star network,
the links L are similar to the edges E of the network graph in
this context, but with the difference that links have additional
properties. For each link Li = (Ni,Mj , Ti, Ai, Di), a packet
is generated at the node Ni periodically at every Ti unit of
time, and is destined to reach the gateway Mj on or before
the deadline Di. The time-on-air for a packet transmission for
Li is Ai. We consider the spreading factor to be constant for
all links. We denote the kth packet generated at link Li by
τik. The generation of each packet at a node creates the need
for a link to be scheduled for transmission. Hence, scheduling
a link is similar to scheduling a task in real-time systems, and
like jobs are defined as invocations of tasks, transmission of
a packet can be thought of as activation of a link.

We denote the set of m channels as C = {C1, C2, . . . , Cm}.
In an ideal world where there is an infinite number of available
communication channels and there is no limit on the duty-
cycle, each link would require exactly 1 time-slot. So, in
practice, since we are limited to a fixed number of channels,
two links cannot be scheduled on the same channel at the
same time slot (unless they are so far apart that they are out
of each otherś interference range). Furthermore, because of the
duty-cycle constraint, a node cannot transmit packets even if
the channel is free. Hence, the end-to-end latency of a packet
depends on the duration a node has to wait in order to meet
these constraints before it can transmit a packet. We express
the end-to-end latency of a link by d = (f − r + 1), where

f and r denote the time slots in which a packet is generated
and gets scheduled, respectively.

When a link Li uses a channel Cj for its kth packet
transmission τik, and the time-on-air for this packet is Ai, the
link can not use Cj for the next toff (Li, Cj , Ai, σ) slots. The
value of toff (Li, Cj , Ai, σ) is calculated using the Equation 3.

Given a set of links L = {(Ni,Mj , Ti, Ai, Di)}, duty-
cycle limit δ, and the number of channels m, our objec-
tive is to schedule the links such that, di ≤ Di, and

Ai

Ai + toff (Li, Cj , Ai, σ)
≤ σ

100
,∀Li ∈ L,Cj ∈ C.

IV. MOTIVATION

Traditional real-time scheduling algorithms have been used
in scheduling data transmissions in both wired and wireless
networks [14], [15], [23]. However, these algorithms do not
take a duty-cycle constraint into their consideration. The duty-
cycle constraint in LPWANs makes the problem of scheduling
packet transmissions in a wireless network unique. Duty-cycle
forces an end-node to migrate from one channel to another
after using the channel for a fixed amount of time that is
regulated by the FCC [24]. In a multiprocessor scheduling
scenario, this is analogous to a scheduling problem where a
processor becomes unavailable to a task for a certain period,
after the processor has been used by the task recently.

TABLE I
EXAMPLE: TWO LINKS AND THEIR PARAMETERS.

Release Time Time-On-Air Deadline Period
Link Ri Ai Di Ti
L1 0 2 3 5
L2 0 4 5 5

For example, lets consider a network with two end-devices
N1 and N2, and one gateway G1. Two links L1 and L2 are
generating packets periodically at N1 and N2. Table I lists
their release times (Ri), time-on-air (Ai), deadlines (Di), and
periods (Ti). We assume that there are two channels C1 and
C2 to which links can be scheduled for packet transmission.
Moreover, we impose a duty-cycle limit of 40%, so that a
channel becomes unavailable for L1 and L2 for 3 and 6 time-
slots, respectively, after it has been used by a link.

Now, let us simulate the scheduling steps for an arbitrary
scheduling algorithm.

• At time-slot 0, both L1 and L2 generate their first packet.
Both channels C1 and C2 are available to the links.
The packet transmission of L1, τ11 uses channel C1

and packet transmission of L2, τ21 uses channel C2. In
Figure 3 we show that due to the duty-cycle limit, L1

and L2 can not use C1 and C2 until the 2 + 3 = 5th
and the 4 + 6 = 10th time slot, respectively. Therefore,
toff (L1, C1, A1, σ) = 3 and toff (L2, C2, A2, σ) = 6.

• At time-slot 5, both L1 and L2 generate their second
packet τ12 and τ22. Both packets have the same laxity of
1. Suppose, τ12 chooses channel C1, which is currently
available to it. Because traditional scheduling algorithms

0 1 2 3 4 5 6 7 8 9 10

L1

L2

Channel1	(C1) Channel2	(C2)
Time

τ11

τ21

L1 Can	not	use	Channel	1	(C1)	for	duty-cycle	limit

L2 Can	not	use	Channel	2	(C2)	for	duty-cycle	limit

Fig. 3. Link 1 (L1) and Link 2 (L2) releases their first transmissions at time
slot 0. Due to duty-cycle limit L1 and L2 can not use C1 and C2 until the
2 + 3 = 5th and the 4 + 6 = 10th time slot, respectively.

0 1 2 3 4 5 6 7 8 9 10

L1

L2

L1 Can	not	use	Channel	1	(C1)	for	duty-cycle	limit Deadline	miss

Channel1	(C1) Channel2	(C2)
Time

L2 Can	not	use	Channel	2	(C2)	for	duty-cycle	limit

τ11 τ12

τ21 τ22

Fig. 4. The second transmission τ12 of L1 uses C1. At time slot 5, the
second transmission τ22 of L2 can not use either of C1 or C2. Eventually,
τ22 misses deadline.

do not impose any restriction on channel/processor se-
lection, this choice is arbitrary (we discuss the other
selection option in the next bullet point). However, τ22
can not use channel C2 for its transmission at this
moment, as C2 is unavailable to L2 until time-slot 10.
At time slot 7, C1 becomes available to L2, and τ22 can
use it for transmission. However, from Figure 4, we see
that τ22 still misses the deadline.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

L1

L2

Channel1	(C1) Channel2	(C2)
Time

τ11 τ12 τ13

τ21 τ22 τ23

Fig. 5. The second transmission τ12 of L1 uses C2. So, At time slot 5,
the second transmission τ22 of L2 is able to use C1 and does not miss its
deadline.

• At time-slot 5, we have another option, which is shown
in Figure 5. Suppose, τ12 chooses channel C2 this time,
as it is also available to it at time-slot 5. Given this, τ22
can use channel C1 for its transmission, which is available
and does not restrict τ22 at that moment due to duty cycle
limit. Therefore, by using C1, τ22 makes the deadline.

0 1 2 3 4 5 6 7 8 9 10

L1

L2

Channel1	(C1) Channel2	(C2)
Time

τ11 τ12

τ21 τ22

Gr(C1,	2)	=	3 Gr(C2,	4)	=	6 Gr(C1,	5)	=	0 Gr(C2,	5)	=	5

Fig. 6. C1’s gravity is updated at time slot 2, Gr(C1, 2) = 3 after being
used by L1 for its transmission. Likewise, C2’s gravity is set after being used
by L2, Gr(C2, 4) = 6.

It is evident from the above example that L2 would not have
missed deadline if L1 used C1 for its second transmission τ12.
Therefore, unlike traditional scheduling algorithm, we need
to have some mechanism to choose a right channel from the
available ones. We need to force L1 select C2 at time slot 5,
to make the links schedulable. To enable this, we propose a
scoring-based channel selection algorithm.

The goal of the algorithm is to let a link select its channel in
a way that the selection helps other links to avoid the channels
that are unavailable to them. In other words, when a link has
multiple channels to choose from, it should choose the one
that hurts the other links the least. To implement this, we
score each channel based on the number of time-slots they
are unavailable due to the last successful transmission of a
link on it. We call this the ‘gravity’ of a channel.

V. SCHEDULING ALGORITHM

A. Defining Channel Gravity

The gravity is a dynamic property of a channel. Gravity is
defined by the maximum unavailability of a channel over all
links. At each time-slot, a node gets to use the channel that
has the highest gravity among all the available channels at that
moment. The intuition behind this scoring is that the channel
that is unavailable to other links for the longest period should
be selected to the next packet transmission so that other links
can use the remaining channels when needed. The value of
gravity is updated at each time-slot. After a channel Ci has
been used by a link Lj , the gravity of that channel Gr(Ci) is
updated using the following equation:

Gr(Ci, 0) = 0 (4)

Gr(Ci, t) = max
j

{
Gr(Ci, t− 1), toff (Lj , Ci, Aj , σ)

}
B. An Example

We revisit the example from the previous section but this
time we also demonstrate the role of gravity. At time-slot 0,
the gravity of each channel is set to zero. At time-slot 2, link
L1 finishes its first transmission τ11 over channel C1. As men-
tioned earlier, toff (L1, C1, A1, σ) = 3. Therefore, at time-slot
2, the gravity of C1 is updated to Gr(C1, 2) = max{0, 3} = 3.

Likewise, at time slot 4, after the end of transmission τ21, the
gravity of C2 is updated to Gr(C2, 4) = max{0, 6} = 6.

After each time-slot, the gravity of all channels is decre-
mented. At time slot 5, Gr(C1, 5) = 0 and Gr(C2, 5) = 5.
Since our proposed scheduling algorithm picks the channel
with the maximum gravity, L1 will choose C2 for its second
transmission τ12, as opposed to C1. This enables L2 to choose
C1 for its second transmission τ21, which is our desired
schedule.

C. Algorithm Design

The proposed duty-cycle-aware link scheduling algorithm
works in two steps. Since two transmission cannot use the
same channel at the same time-slot, at each time-slot, the
following two steps are applied multiple times, until there is
no channel that can be used in that time-slot.

• Packet Selection: In the first step, we select a transmission
packet based on its laxity. Among all the transmissions
that are ready to go, the packet with the least laxity [17]
is selected for transmission. In case of a tie, the packet
having the earliest deadline is selected. For further ties,
we choose the transmission arbitrarily [15].

• Channel Selection: In the second step, we select a channel
for transmitting the selected packet based on its gravity.
Among all available channels for the selected link, the
channel with the highest gravity is selected for trans-
mission. After using the channel, the gravity is updated
according to Equation 4.

D. Pseudocode

Algorithm 1 shows the pseudocode of the scheduling algo-
rithm. We call this D-LLF. It takes a set of packets to transmit
{τik}, total number of channels m, and the duty-cycle σ as
inputs, and outputs a 2D scheduling table S specifying which
packet is scheduled in which channel at each time-slot.

In lines 1 to 3, we initialize time-slot to 1, set all un-
scheduled transmissions at time-slot 1 and set all of channels’
gravity to 0. In line 5, we get all the released transmissions at
time-slot s. Line 6 decreases the gravity of all channels if it
is greater than 0 at that time slot.

In line 7, the function sortgravity(ch) sorts the chan-
nels in the descending order of their gravity. In line 8,
sortlaxity(Released(s)) sorts the released transmissions in an
ascending order of laxity of the transmissions.

In line 10 to 12, if any of the transmissions misses the
deadline, we declare the workload as unschedulable. We
select the channel for a transmission in line 13 to 20. While
selecting a channel for a ready transmission, the function
channelAvailable(τik, c) in line 14, returns a boolean to
indicate the availability of channel c to transmission τik. This
function checks two things: a) if channel c is being used by
any other transmission, and b) if τik is restricted from using
channel c due to the duty-cycle limit. If both of these cases are
false, the function returns true, otherwise, it returns false. We
update the gravity of a channel in line 17. Note that the gravity
is updated at the end of a transmission. Therefore, instead of

Algorithm 1: D-LLF Scheduling Algorithm
Input : {τik} ← All packets to transmit.
m← Total number of channels.
σ ← Duty-cycle limit.
Output: s[1...T][0...m− 1] // schedule

1 s← 1 // initialize time slot
2 τs ← {τik} // unscheduled transmission
3 Set All Channel gravity to 0
4 while τs 6= φ do
5 Released(s)← set of released transmissions at slot s
6 Reduce all channel gravity by 1 if greater than 0
7 sortgravity(ch)
8 sortlaxity(Released(s))
9 for each τikεReleased(s) do

10 if τik misses deadline then
11 return unschedulable
12 end
13 for c ε ch do
14 if channelAvailable(τik, c) = true then
15 S[s][c]← τik
16 τs = τs − τik
17 Gr(c, s+Ai) =Max(Gr(c, s− 1 +

Ai), toff (Li, c, Ai, σ))
18 break
19 end
20 end
21 end
22 s← s+ 1
23 end

updating the gravity at time-slot s, we update it at time-slot
s+Ai. Finally, in line 22, we move to the next time-slot.

E. Complexity Analysis

An upper bound of the released transmissions at any time
slot is O(J), where J is the total number of packet trans-
missions to schedule. The sorting of channels and released
transmissions take O(C logC) and O(J log J), respectively.
Here, C is the number of channels. Finding available channels
for each released transmission is O(JC). Hence, the total time
complexity of our algorithm is O(J(C logC+J log J)+JC).
Since the number of channels is constant for a given network,
the overall time complexity of the algorithm is O(J2 log J).

VI. SYSTEM DEVELOPMENT

This section provides some highlights from our implemen-
tation of the LoRa network that we feel would be helpful
to anyone who wants to replicate the complete system. Fig-
ure 7(a) shows a photo of the main elements of our LoRa
network.

A. Developing the LoRa Nodes

We develop LoRa nodes in our lab by interfacing a LoRa
radio shield [25] with an Arduino Uno [26] that hosts an
ATmega328P microcontroller. The radio shield internally uses

(a) (b)

Fig. 7. (a) A LoRa Node is connected with a clock and battery. A Gateway is placed beside the node. (b) A LoRa node communicates with gateway using
LoRa protocol. The gateway relays the node’s message to access point via Ethernet. The access point connects with server using internet.

a transceiver SX1272/73 [27] which is controlled from the
Arduino using a modified software library from IBM [28].
Each node is powered by a 10,000mAh USB power bank. The
internal 16MHz quartz crystal of Arduino Uno is unreliable
for time synchronization as the clock drifts over time. Hence,
to time synchronize all the nodes in our network, we interface
an external real-time clock [29] with the Arduino board.
These real-time clocks are powered by their own battery and
their drift over 24 hours after synchronization is too small
to be noticeable (< 1ms). Both the modified library and our
customized application are written in C. Our source code is
open and accessible online from here [18].

B. Configuring the Gateway

We use a Multitech Conduit device [30] as the gateway. This
is a configurable and scalable Internet gateway for industrial
IoT applications where LoRa is used for the local wireless net-
work. The gateway is equipped with an ARM9 processor hav-
ing a 32-bit ARM and 16 bit thumb instruction set, 16K data
cache, 256 MB flash memory and 128×16MB DDR RAM.
This runs on an enhanced closed source embedded Linux
platform. We use the gateway as a LoRa packet forwarder.
The gateway listens to one sub-band at a time, and therefore,
a gateway can listen to eight channels simultaneously.

To configuring the Gateway, first we connect it to a com-
puter via the Ethernet port. We set the gateway as a DHCP
network via WAN. Finally, we connect it to a WiFi access
point via Ethernet. In order to program it, we connect a
computer to the same access point and remotely log in to the
gateway via secure shell ssh. To enable the packet forwarder,
we run a script which also logs the packet information on the
device. The setup is shown in Figure 7(b).

C. Configuring the Server

For the application server, we use a free and open server
called the LORIOT [31]. LORIOT is a cloud based LoRaWAN

network server. This server platform contains both the network
and the application server which are required to setup a
LoRaWAN. The platform provides APIs for IoT applications
to access the data streams from the end nodes. We use a com-
munity network account which has a limit of 1 gateway and
10 nodes. Because of the free community account, we faced
some limitations that made the application at the server end
unreliable in terms of real-time display of packets, although
the gateways were receiving them in real-time. For this reason,
we rely upon the packet information logged in the gateway.

VII. REAL-WORLD DEPLOYMENT

We setup a LoRa network consisting of five LoRa nodes
and a gateway, and conduct experiments in two real-world
scenarios–an outdoor and an indoor scenario.

A. Testbeds and Workload

We setup a five-node outdoor LoRa network in the city of
Chapel Hill. Two residential areas, separated by a highway,
were chosen to place the nodes. The map of the test environ-
ment is shown in Figure 8(a). We positioned the gateway in the
balcony on the first floor of a two storied building. We had to
place the gateway inside the building as it was powered from
an electric outlet. The nodes were placed around the gateway
within a radius of 220m and were powered by USB power
banks. Prior to choosing the exact locations of the nodes,
we did a day long survey to measure signal strengths and
the reliability of the communication links at various locations
in the test area. Finally, we selected the locations where we
observed the least packet drops and that were at a reasonably
long distance from the gateway. For the LoRa network, a
moderate spreading factor of 9 and a code rate of 4/5 were
chosen to have a bandwidth of approximately 125KHz.

For indoor test-bed, we place the nodes and the gateway
inside the Computer Science building at the UNC. The gate-
way was placed on the second floor of the building. Two of

Lora Map

Untitled layer

N1

Point 10

Point 12

Point 13

Point 5

Point 6
N1

N2

N3

N4

N5

23
3m

218m220m

185m 12m

-82dB

-91dB

-113dB

-103dB

-34dB

(a) Outdoor Scenario (b) Indoor Scenario

Fig. 8. Placement of the nodes and the gateway in the real-world experiment.

the nodes N1 and N2 were placed on the same floor, but in
different rooms. N3, N4, and N5 were placed on the ground,
the first, and the third floor, respectively. Figure 8(b) shows
the positions of the nodes and the gateway on the floor plan.

We send one-byte payloads from four of the nodes and five-
byte payloads from one node. Given the Ai and toff for one-
byte payloads, we set the period of each node to (Ai+toff). To
stress-test our algorithm, we set the deadlines of all the nodes
to their time-on-air. We run the whole experiment for both least
laxity first (LLF) and our duty-cycle-aware algorithm (D-LLF)
for a duration of twenty hyper-period.

B. Experimental Results

In order to compare the real-time performance of our
proposed approach (D-LLF) with the baseline least laxity
first (LLF), we count the number of packets that missed the
deadline. In Figures 9 and 10, we report the percentage of
packets dropped as well as the percentage of packets that
actually missed the deadline for both algorithms, for outdoor
and indoor scenarios, respectively.

0.00

9.23

4.62
6.15

0

2

4

6

8

10

D-LLf LLF

Pe
rc
en
ta
ge

Scheduling	Algorithm
Packets	Missing	Deadline Packets	Dropped

Fig. 9. The proposed D-LLF finds a feasible schedule for the outdoor scenario.
Thus, no packet misses the deadline. The baseline LLF does not find a feasible
schedule, and as a result, 9.23% packets miss their deadlines. We observe
typical packet drops in both cases.

In the outdoor scenario, proposed D-LLF outperforms LLF.
When links are scheduled using D-LLF, no packet misses
the deadline, whereas, for the regular LLF, the percentage
of packets missing deadline is 9.23%. We observe about
4.62 − 6.15%% packets were dropped, which is typical in a
LPWAN.

0.00

9.23

1.54

4.62

0

2

4

6

8

10

D-LLf LLF

Pe
rc
en
ta
ge

Scheduling	Algorithm

Packets	Missing	Deadline Packets	Dropped

Fig. 10. The D-LLF finds a feasible schedule for indoor scenario as well.
With LLF, 9.23% packets miss their deadlines. We observe less packet drops
indoors than outdoors.

In the indoor scenario, no packet missed the deadline in
case of the D-LLF, but in case of the LLF, 9.23% of the total
packets missed the deadline. We observe about 1.54%−4.62%
deadline misses due to packet drops, which is less than what
we observed in the outdoor scenario.

C. Lessons Learned

During the deployment, we observe that using the highest
spreading factor (12) increases packet drops. It increases the
time-on-air and thus not ideal for scenarios where a gateway
listens for multiple nodes at the same time. Hence, we use
moderate spreading factor of 9 to achieve reliable communi-
cation at the cost of slightly reduced radio range.

Ideally, a gateway should be placed at a high location, e.g.
on a tower to get the best range. But due to power supply
and Internet connectivity issues we place it in a building. To

test the different, we place the gateway both inside (inside
a room) and outside (on a balcony) on the first floor of a
building. There was a noticeable difference in radio range and
we could not receive packets from the nodes that were placed
far (on the other side of the highway).

Some LoRaWAN servers have restrictions and inefficien-
cies. For example, the popular Things Network [32] has a
limit of only 30 seconds of air time per day, which is too
small to conduct scientific experiments. Therefore, we chose
LORIOT [32], which does not have such a limit on air-time.
However, this server supports only 10 nodes and does not
show the received packets in real-time. Hence, we developed
a logger application at the gateway to get useful information,
e.g. number of successful packet receptions, received signal
strength, time-on-air, and time-stamps.

VIII. SIMULATION EXPERIMENTS

This section provides some additional simulation-driven
experiments that provides more insight on our algorithm.

A. Simulation Setup

We compare our proposed scheduling algorithm’s (D-LLF)
performance with four baseline scheduling algorithms: 1)
Least Laxity First (LLF) [17], 2) Earliest Deadline First
(EDF) [33], 3) Deadline Monotonic (DM) [34], and 4) Rate
Monotonic (RM) [35] scheduling. We exclude ALOHA from
this list since it almost always failed to find a feasible schedule
in our simulation.

We use three comparison metrics: 1) schedulability ratio (i.e.
ratios of schedules for which an algorithm finds a feasible
solution), 2) deadline miss ratio (i.e. percentage of packets
that miss the deadline for all links), and 3) buffer size (i.e. the
maximum number of packets buffered at each node).

To simulate a LoRa network, we randomly choose a spread-
ing factor from 7 to 12 for the links. We randomly choose
1–5 byte sized packets for each link. We assume a duty-cycle
constraint δ = 1% to calculate Toff of a link for a channel. To
generate schedulable links, we set the period to the minimum
Toff + time on air among all links. We set the deadline
to time-on-air multiplied by α, which is a random number
between 1 and 5. All transmissions are released at the same
time-slot.

All the simulations are performed on a 2013 MacBook Air
having an Intel Core i5 dual-core processor and 4GB DDR3
RAM. The simulation software is written in Java.

B. Simulation Results

• (Figure 11) We compare the schedulability ratio of all
five algorithms by varying the number of links to schedule
from 8 to 40. Ten different link sets were generated for
each test case. We assume eight channels. In Figure 11
we observe that the proposed D-LLF outperforms all four
baselines for any number of links. For 8 links, D-LLF achieves
a schedulability ratio of 1, whereas the baseline algorithms
achieve 0.6. Since we keep the number of channels fixed, with
an increased number of links, the schedulability ratio drops for

0

0.2

0.4

0.6

0.8

1

8 16 24 32 40

Sc
he
du
la
bi
lit
y	
Ra

tio

Number	of	Links
D-LLF LLF EDF DM RM

Fig. 11. D-LLF has better schedulability ratio with varying number of links.

all algorithms, because more links are contending for limited
number of channels . Yet, the proposed D-LLF outperforms
the baselines by scheduling 20% − 40% more link-sets on
average.

0

0.2

0.4

0.6

0.8

1

20 25 30 35 40

Sc
he
du
la
bi
lit
y	
Ra

tio

Number	of	Channels
D-LLF LLF EDF DM RM

Fig. 12. D-LLF performs better than baseline algorithms with different
number of number of channels

• (Figure 12) We vary the number of channels to see
its effect on different algorithms. We use ten link-sets in
this simulation, where each set has 40 links. α was chosen
randomly between 1–2. In Figure 12 we observe that when the
number of channels is 8, D-LLF achieves a schedulability ratio
of 0.4, whereas the baselines achieve a maximum of 0.3. As
the number of channels increase, the scheduling task becomes
easier and the baseline algorithms catch up with the D-LLF.
However, with 40 channels, D-LLF achieves a schedulability
ratio of 1, whereas the baselines achieve a maximum of 0.8.
• (Figure 13) We evaluate the performance of the al-

gorithms for a tight scenario where we set the deadline
to the execution time or time-on-air (α = 1). We use
ten link-sets, each having 8 links. We use three different
periods: T1 = min(Toff) + time-on-air(TOA), T2 =
2T1/number-of -channels(#Ch), and T3 = 0.5T2. From
Figure 13 we observe that D-LLF outperforms all baselines
by a large margin. D-LLF achieves a schedulabity ratio of
1 for both T1 and T2. On the other hand, LLF has the
best schedulability ratio among the baselines, and achieves
0.5 and 0.4 for T1 and T2, respectively. For, T3 D-LLFś
schedulability ratio drops to 0.4, which is still twice of LLF’s.

1

0.5

0.3
0.2 0.2

1

0.4

0.2
0.1 0.1

0.4

0.2

0 0 0
0

0.2

0.4

0.6

0.8

1

D-LLF LLF	 EDF RM DM

Sc
he
du
la
bi
lit
y	
Ra

tio

Scheduling	Algorithms

T1	=	min(T_Off)	+	TOA	 T2	=	2T3 T3	=	T1/#Ch

Fig. 13. D-LLF has better schedulability ratio with deadline being equal to
execution time under different periods

0

3.13

1.44 1.06 1.13
0

7.38

4.97 5.17 5.24

1.55

4.85

6.27 6.05 6.27

0

2

4

6

8

D-LLF LLF	 EDF RM DMM
ax
im

um
	P
ac
ke
t	M

is
si
ng
	

De
ad
lin
e	
(%

)

Scheduling	Algorithms
T1	=	min(T_Off)	+	TOA	 T2	=	2T3 T3	=	T1/#Ch

Fig. 14. D-LLF has least maximum percentage of packets missing deadline
for different periods among all algorithms

• (Figure 14) For the same scenario as in Figure 13,
we report the maximum percentage of packets that miss the
deadline as a metric in Figure 14. We observe that D-LLF
achieves 0 deadline miss for both T1 and T2. For T3, D-
LLF’s maximum deadline miss is 1.55%. On the other hand,
LLF has the least maximum deadline miss of 4.85% among
the baselines for T3.

1 1
20 20 20

1

41

83 83 8381

166 166 168 168

0

50

100

150

200

D-LLF LLF	 EDF RM DM

M
ax
im

um
	B
uf
fe
r	S
iz
e

Scheduling	Algorithm

T1	=	min(T_Off)	+	TOA	 T2	=	2T3 T3	=	T1/#Ch

Fig. 15. D-LLF has the lowest maximum buffer size for different periods.

• (Figure 15) We compare the maximum buffer size of a
node for different algorithms in Figure 15. D-LLF results in
a maximum buffer size of 1, 1, and 81, for T1, T2, and T3,
respectively. LLF has the smallest maximum buffer size among
the baseline algorithms. For T1, T2 and T3, LLFś maximum
buffer size reaches 1, 41 and 166, respectively, which is up to

41X larger than D-LLF.

IX. RELATED WORK

Scheduling in wireless communication has been studied
by many. [6] introduced a topology dependent transmission
scheduling. [7], [36], [37] proposed distributed scheduling
algorithms in wireless networks. [38] leverages wireless
communication to achieve sub-nanosecond level clock syn-
chronization. [39] analyzes time sensitive network protocols
of IEEE 802.1 for their suitability to real-time communica-
tion. [40] proposes a dynamic network scheduling solution to
minimize errors in a wireless control system. [41] introduced
a network reconfiguration framework to tackle network de-
lay, packet loss, and time-correlated link failures in wireless
control system. [42] proposes an algorithm that minimizes the
buffer space for target priority-aware network. [9], [43] used
schedulability algorithms to minimize power consumption.
However, none of these algorithms explicitly deal with duty-
cycle constraints.

[11], [13], [14], [23] proposed time-division multiple ac-
cess (TDMA) based scheduling algorithms for single channel
wireless communication. In this paper, we are dealing with
TDMA based multi-channel wireless communication network
where selecting the channel is one of the challenges.

Multi-channel wireless communication scheduling has been
explored in [12], [15], [16], [44], [45]. However, they do
not assume any constraints on the duty cycle. We tackle the
duty cycle constraint provided by LoRa network protocol.This
constraint decreases the efficiency of the wireless network.

A few works have been done considering duty cycle con-
straint in wireless system. [10], [46]–[48] consider wireless
networks with duty-cycle limit imposed on nodes. Here, nodes
can not send or sense continuously, rather, they have to
maintain a duty-cycle limit to reduce energy consumption. In
this paper, the duty-cycle limit is imposed on a (node, channel)
pair rather than only on the node.

In real time multi-processor scheduling [49]–[51] processor
affinity has been considered such that there is a restriction on
the migrations of any task to a specified subset of processors.
We take inspirations from these multiprossesor scheduling
works but solve our constrained wireless network problem
differently.

X. CONCLUSION

We present the first duty-cycle-aware wireless link schedul-
ing algorithm for LPWAN. We demonstrate the effect of duty-
cycle on real-time link scheduling, illustrate the need for
scoring wireless channels, and propose a scheduling algorithm
that considers both the laxity of a packet and the availability of
the channels. We implement a complete system by deploying
a long-range LPWAN network in the city of Chapel Hill, NC.
We evaluate the performance of the proposed algorithm in
multiple real testbeds as well as with simulations.

REFERENCES

[1] U. Raza, P. Kulkarni, and M. Sooriyabandara, “Low power wide
area networks: An overview,” IEEE Communications Surveys Tutorials,
vol. 19, no. 2, pp. 855–873, Secondquarter 2017.

[2] “The lora alliance,” https://www.lora-alliance.org/.
[3] http://www.weightless.org/.
[4] Wikipedia, “DASH7 — Wikipedia, the free encyclopedia,”

http://en.wikipedia.org/w/index.php?title=DASH7oldid=801485799,
2017, [Online; accessed 04-October-2017].

[5] S. K. M. Editor, “100 us cities covered by senet
lora network for iot,” Jun 2016. [Online]. Avail-
able: https://www.rcrwireless.com/20160615/internet-of-things/100-u-s-
cities-covered-senet-lora-network-iot-tag17

[6] Z. Tang and J. J. Garcia-Luna-Aceves, “A protocol for topology-
dependent transmission scheduling in wireless networks,” in WCNC.
1999 IEEE Wireless Communications and Networking Conference (Cat.
No.99TH8466), 1999, pp. 1333–1337 vol.3.

[7] N. Vaidya, A. Dugar, S. Gupta, and P. Bahl, “Distributed fair scheduling
in a wireless lan,” IEEE Transactions on Mobile Computing, vol. 4,
no. 6, pp. 616–629, Nov 2005.

[8] X. Liu, E. K. Chong, and N. B. Shroff, “Transmission scheduling for
efficient wireless utilization,” in INFOCOM 2001. Twentieth Annual
Joint Conference of the IEEE Computer and Communications Societies.
Proceedings. IEEE, vol. 2. IEEE, 2001, pp. 776–785.

[9] D. Tian and N. D. Georganas, “A coverage-preserving node scheduling
scheme for large wireless sensor networks,” in Proceedings of the
1st ACM International Workshop on Wireless Sensor Networks and
Applications, ser. WSNA ’02. New York, NY, USA: ACM, 2002, pp.
32–41. [Online]. Available: http://doi.acm.org/10.1145/570738.570744

[10] G. Lu, N. Sadagopan, B. Krishnamachari, and A. Goel, “Delay efficient
sleep scheduling in wireless sensor networks,” in Proceedings IEEE 24th
Annual Joint Conference of the IEEE Computer and Communications
Societies., vol. 4, March 2005, pp. 2470–2481 vol. 4.

[11] D. Panigrahi and B. Raman, “Tdma scheduling in long-distance wifi
networks,” in IEEE INFOCOM 2009, April 2009, pp. 2931–2935.

[12] F. Jia, B. Mukherjee, and J. Iness, “Scheduling variable-length messages
in a single-hop multichannel local lightwave network,” IEEE/ACM
Trans. Netw., vol. 3, no. 4, pp. 477–488, Aug. 1995. [Online].
Available: http://dx.doi.org/10.1109/90.413222

[13] T. W. Carley, M. A. Ba, R. Barua, and D. B. Stewart, “Contention-
free periodic message scheduler medium access control in wireless
sensor/actuator networks.”

[14] K. Liu, N. Abu-Ghazaleh, and K.-D. Kang, “Jits: Just-in-time scheduling
for real-time sensor data dissemination,” in Pervasive Computing and
Communications, 2006. PerCom 2006. Fourth Annual IEEE Interna-
tional Conference on. IEEE, 2006, pp. 5–pp.

[15] A. Saifullah, Y. Xu, C. Lu, and Y. Chen, “Real-time scheduling for
wirelesshart networks,” in Real-Time Systems Symposium (RTSS), 2010
IEEE 31st. IEEE, 2010, pp. 150–159.

[16] X. Wang, G. B. Giannakis, and A. G. Marques, “A unified approach
to qos-guaranteed scheduling for channel-adaptive wireless networks,”
Proceedings of the IEEE, vol. 95, no. 12, pp. 2410–2431, Dec 2007.

[17] S.-H. Oh and S.-M. Yang, “A modified least-laxity-first scheduling
algorithm for real-time tasks,” in Real-Time Computing Systems and
Applications, 1998. Proceedings. Fifth International Conference on.
IEEE, 1998, pp. 31–36.

[18] “Project real-time lora,” http://lora.web.unc.edu/.
[19] “Chirp signal,” https://en.wikipedia.org/wiki/Chirp.
[20] “Doppler effect,” https://www.nutaq.com/blog/doppler-shift-estimation-

and-correction-wireless-communications-0.
[21] F. Adelantado, X. Vilajosana, P. Tuset-Peiro, B. Martinez, J. Melia-

Segui, and T. Watteyne, “Understanding the limits of lorawan,” IEEE
Communications Magazine, vol. 55, no. 9, pp. 34–40, 2017.

[22] N. Abramson, “The aloha system: another alternative for computer
communications,” in Proceedings of the November 17-19, 1970, fall
joint computer conference. ACM, 1970, pp. 281–285.

[23] O. Chipara, C. Lu, and G.-C. Roman, “Real-time query scheduling
for wireless sensor networks,” in Real-Time Systems Symposium, 2007.
RTSS 2007. 28th IEEE International. IEEE, 2007, pp. 389–399.

[24] “Federal communications commission(fcc),” https://www.fcc.gov/.
[25] “Lora dragino shield,” http://www.dragino.com/products/module/item/102-

lora-shield.html.
[26] “Arduino uno,” https://store.arduino.cc/usa/arduino-uno-rev3.

[27] “Semtech sx1272,” http://www.semtech.com/wireless-rf/rf-
transceivers/sx1272/.

[28] “Ibm lmic,” https://github.com/matthijskooijman/arduino-lmic.
[29] “Timer module,” https://partnums.com/gtin/00747465491461.
[30] “Multitech conduit,” https://www.thethingsnetwork.org/docs/gateways/multitech/.
[31] “Loriot, lorawan services,” https://us1.loriot.io/.
[32] https://www.thethingsnetwork.org/.
[33] J. A. Stankovic, M. Spuri, K. Ramamritham, and G. Buttazzo, Deadline

scheduling for real-time systems: EDF and related algorithms. Springer
Science & Business Media, 2012, vol. 460.

[34] N. C. Audsley, A. Burns, M. F. Richardson, and A. J. Wellings, “Real-
time scheduling: the deadline-monotonic approach,” in in Proc. IEEE
Workshop on Real-Time Operating Systems and Software. Citeseer,
1991.

[35] M. Klein, T. Ralya, B. Pollak, R. Obenza, and M. G. Harbour, A
practitioner’s handbook for real-time analysis: guide to rate monotonic
analysis for real-time systems. Springer Science & Business Media,
2012.

[36] T. Zhang, T. Gong, C. Gu, H. Ji, S. Han, Q. Deng, and X. S. Hu,
“Distributed dynamic packet scheduling for handling disturbances in
real-time wireless networks,” in 2017 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), April 2017, pp. 261–
272.

[37] T. Gong, H. Ji, S. Han, T. Zhang, C. Gu, X. S. Hu, and M. Nixon, “Demo
abstract: A cross-device testing and reporting system for large-scale
real-time wireless networks,” in 2017 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), April 2017, pp. 157–
158.

[38] A. Dongare, P. Lazik, N. Rajagopal, and A. Rowe, “Pulsar: A wireless
propagation-aware clock synchronization platform,” in 2017 IEEE Real-
Time and Embedded Technology and Applications Symposium (RTAS),
April 2017, pp. 283–292.

[39] M. Gutiérrez, W. Steiner, R. Dobrin, and S. Punnekkat, “Synchronization
quality of ieee 802.1as in large-scale industrial automation networks,”
in 2017 IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), April 2017, pp. 273–282.

[40] W. Wang, D. Mosse, J. G. Pickel, and D. Cole, “Work-in-progress:
Cross-layer real-time scheduling for wireless control system,” in 2017
IEEE Real-Time and Embedded Technology and Applications Sympo-
sium (RTAS), April 2017.

[41] ——, “Work-in-progress: Wireless network reconfiguration for control
systems,” in 2017 IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), April 2017, pp. 145–148.

[42] H. Kashif and H. Patel, “Buffer space allocation for real-time priority-
aware networks,” in 2016 IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS), April 2016, pp. 1–12.

[43] T. ElBatt and A. Ephremides, “Joint scheduling and power control for
wireless ad hoc networks,” IEEE Transactions on Wireless communica-
tions, vol. 3, no. 1, pp. 74–85, 2004.

[44] S. Han, X. Zhu, A. K. Mok, D. Chen, and M. Nixon, “Reliable and real-
time communication in industrial wireless mesh networks,” in Real-Time
and Embedded Technology and Applications Symposium (RTAS), 2011
17th IEEE. IEEE, 2011, pp. 3–12.

[45] A. Saifullah, D. Gunatilaka, P. Tiwari, M. Sha, C. Lu, B. Li, C. Wu, and
Y. Chen, “Schedulability analysis under graph routing in wirelesshart
networks,” in Real-Time Systems Symposium, 2015 IEEE. IEEE, 2015,
pp. 165–174.

[46] L. Cheng, J. Niu, Y. Gu, T. He, and Q. Zhang, “Energy-efficient
statistical delay guarantee for duty-cycled wireless sensor networks,” in
Sensing, Communication, and Networking (SECON), 2015 12th Annual
IEEE International Conference on. IEEE, 2015, pp. 46–54.

[47] Y. Gu and T. He, “Dynamic switching-based data forwarding for low-
duty-cycle wireless sensor networks,” IEEE Transactions on Mobile
Computing, vol. 10, no. 12, pp. 1741–1754, 2011.

[48] Y. Gu, T. He, M. Lin, and J. Xu, “Spatiotemporal delay control for low-
duty-cycle sensor networks,” in Real-Time Systems Symposium, 2009,
RTSS 2009. 30th IEEE. IEEE, 2009, pp. 127–137.

[49] V. Bonifaci, B. Brandenburg, G. DAngelo, and A. Marchetti-
Spaccamela, “Multiprocessor real-time scheduling with hierarchical pro-
cessor affinities,” in Real-Time Systems (ECRTS), 2016 28th Euromicro
Conference on. IEEE, 2016, pp. 237–247.

[50] S. Baruah and B. Brandenburg, “Multiprocessor feasibility analysis of
recurrent task systems with specified processor affinities,” in Real-Time

Systems Symposium (RTSS), 2013 IEEE 34th. IEEE, 2013, pp. 160–
169.

[51] A. Gujarati, F. Cerqueira, and B. B. Brandenburg, “Multiprocessor real-
time scheduling with arbitrary processor affinities: from practice to
theory,” Real-Time Systems, vol. 51, no. 4, pp. 440–483, 2015.

