
Geographic Routing in Large-Scale
Highly-Dynamic Mobile Ad hoc Networks

Ben Newton, Jay Aikat, Kevin Jeffay
Department of Computer Science

University of North Carolina at Chapel Hill
Email: {bn, aikat, jeffay}@cs.unc.edu

Abstract—In the near future extremely large scale mobile ad
hoc networks of thousands or tens of thousands of mobile nodes
will be physically feasible and desirable for a host of applications.
However, routing within these networks is challenging, especially
at high data rates and when node movement is highly-dynamic.
In this work we present Topology Aware Geographic Routing
(TAG), a position-based routing protocol that strategically uses
local topology information (when available) to make better local
forwarding decisions, decreasing the number of hops required to
deliver a packet when compared with other geographic routing
protocols. In addition TAG is able to reliably deliver packets even
in topologies that violate the often used but unrealistic unit disk
graph and quasi-static assumptions. We present empirical results
from a variety of simulations, illustrating how TAG outperforms
GOAFR+, GFG, and OLSR in both theoretical environments and
in a simulated, real-world, continental-scale airborne network.

I. INTRODUCTION

Mobile wireless ad hoc networks consisting of thousands
of mobile nodes are desirable for many applications. For
example, the United States military envisions a highly-adaptive
“ultra-large” ad hoc network consisting of tens of thousands
of nodes [1], [2]. Similarly, Google’s project Loon, proposes
launching tens of thousands of networked balloons into the
upper atmosphere in an effort to provide network access to
users on the ground even in remote locations [3], [4]. Another
example application in which we are specifically interested
is connecting thousands of in-flight commercial aircraft in
the continental United States into a high-capacity airborne
network. However, scaling ad hoc networks to this size is
difficult at best. In particular, efficient routing in such large
dynamic networks is an open problem.

Geographic routing (also called Geometric or position-based
routing) considers the physical positions of the nodes when
making forwarding decisions. This unique routing strategy has
been proposed as one solution to the challenge of routing
in huge mobile ad hoc networks [5]. Much of the work in
this domain, however, has been largely theoretical, ignoring
many real-world concerns, such as a realistic and constantly
changing topology. In this work we introduce Topology Aware
Geographic Routing (TAG) a new geographic routing protocol
that is able to essentially guarantee delivery while supporting
constantly changing topologies that are not restricted to be
unit disk graphs. Further, we show how the new protocol can
achieve even better performance by taking advantage of local
topology information.

Fig. 1. Continental-scale airborne network topology connecting the positions
of a set of actual aircraft as seen at 2:00 p.m. on July 9, 2015

The development of this new geographic routing protocol is
motivated by our desire to develop a set of protocols sufficient
to enable high-bandwidth communication among a large set of
high-flying aircraft. Such a network could be utilized for a host
of applications, especially if it were connected to the Internet.
Figure 1 shows a snapshot of the actual positions (blue dots)
of commercial aircraft above 10,000 feet altitude at 2:00 p.m.
on July 9, 2015, as reported by the Federal Aviation Adminis-
tration’s (FAA’s) Aircraft Situation Display to Industry (ASDI)
data [6]. The figure also shows a conceivable topology (red
edges) for interconnecting these aircraft assuming each plane
is equipped with three directional data links (as described
below). The topology of such a network is constantly changing
as nodes (aircraft) join or leave the network, and as nodes
move in and out of one another’s communication range. Our
goal is a routing protocol that can successfully deliver a high
percentage of packets in such a constantly changing network,
while keeping the overhead minimal.

II. BACKGROUND

A. Unit Disk Graphs

Before packets can be routed, network nodes must first
establish communication links with other nodes. The network
topology indicates the arrangement of these links between
nodes in the network. For traditional wired networks the
network topology is determined by the physical cables con-
necting network nodes, and it is generally fairly static. In
contrast, most wireless networks use omni-directional antennas
to transmit their messages in all directions to all nodes within



some maximum range. The topology of a wireless network is
often modeled as a unit disk graph (UDG), where an edge
exists between any two nodes whose separation distance is
less than 1 unit (the maximum range). In other words, a
node is always connected to all other nodes within some
maximum transmission range (which has been normalized
to 1 unit), and is never connected to any node outside that
range [7]. The unit disk graph is an accurate model of a
2-dimensional wireless network if: (1) all nodes have the
same transmission power, and the same receive gain, yielding
the same maximum transmission radius, (2) every node’s
transmission pattern is a perfect circle (each node transmits
and receives equally in every direction), and (3) there are
no radio opaque obstacles and no multipathing to interfere
with this perfect transmission. While convenient for theoretical
analysis, unit disk graphs rarely match real-world wireless
network topologies [7], [8], [9].

B. Directional Data Links and Topologies

Another option for wireless communication is the use of
directional data links. Rather than communicating by sending
energy in all directions, these nodes utilize “smart” anten-
nas [10], to instead focus their transmission energy towards the
intended receivers, enabling lower energy use, longer ranges,
and less interference. Directional Radio Frequency (RF) links
have been used by the military for years [11], enabling
long-range covert communications. Free-Space Optics (FSO)
is another cutting-edge directional communication method
that is becoming more attractive as demand for higher data
rates increases and frequency spectrum allocations become
more difficult to obtain. These steerable directional FSO links
communicate using pulses of light from a laser, essentially
enabling wireless fiber-optics. DARPA has demonstrated data
rates up to 10 Gbps and distances up to 200km using a hybrid
RF/FSO link[12]. Both Google and Facebook have proposed
utilizing FSO links in their airborne balloon [13] and airborne
drone [14] networks. In our research we consider commercial
aircraft outfitted with three FSO transceivers.

Unlike an omni-directional data link, which can essentially
form connections with every other node within range, a Free-
Space Optics directional link can form a connection with only
one other node at any given point in time. Thus, the degree
(number of incident edges) at each vertex in a directional
network topology graph is limited to the number of FSO links
on the associated node. More importantly, the topology for a
network using directional links must be explicitly managed.
Some protocol must coordinate which of the possibly many
potential neighbors each link should point at and connect with.
Networks of directional links avoid contention and interference
at the cost of having a more complicated topology which must
be managed.

C. Airborne Network Topology Management

As mentioned earlier, one motivating application for our
proposed routing protocol is a continental-scale airborne net-
work of commercial cargo and passenger aircraft. To connect

these airplanes to one another at high data rates over long
ranges requires the use of directional links (FSO or RF).
The use of directional links, in turn, requires a topology
management protocol to explicitly manage which links point
at what other nodes as the airplanes move and the topology
evolves.

In our prior work [15] we introduce a distributed topology
management algorithm, called DCTRT, for forming a degree-
constrained topology graph among the nodes. Nodes using
this algorithm and associated protocol are able to actively
manage a large-scale network topology in a de-centralized
manner, exchanging nothing more than position information
with nearby nodes. Given only this position information, each
node periodically computes a local topology, and establishes
the links in the topology incident at that node. Because there is
no explicit connection agreement between nodes, there can be
cases where links are pointed at nodes that don’t reciprocate.
However, generally, given a dense enough network and the
right algorithm, a sufficient topology is produced.

For our airborne network we note that the FAA has
mandated that by the year 2020 every aircraft operating in
controlled airspace (classes A, B or C of the U.S. National
Airspace System) must constantly broadcast their position
information using Automatic Dependent Surveillance - Broad-
cast (ADS-B) [16]. This information is received by FAA
systems and other aircraft, effectively allowing aircraft to
exchange their position information with all other in-range
aircraft once a second. By utilizing this ADS-B information,
our topology management scheme is able to operate with
absolutely no overhead on the directional links.

D. MANET Routing Protocols

Mobile ad hoc networks typically employ nodes that act
as both routers and end-users. Nodes that are not within
mutual transmission range of one another must communicate
by relaying their messages through a series of intermediate
nodes, each acting as a router. A routing protocol is needed
to determine at each node in the series, where the message
should be forwarded next. Traditional routing protocols are
not well suited for routing in networks where the topology
changes frequently [17]. Mobile Ad hoc network (MANET)
routing protocols are designed to support networks of mobile
nodes, but even these protocols often fail to efficiently route
packets in highly-dynamic, large-scale networks [18]. Con-
sider, for example, a network of ten thousand mobile nodes,
and two nodes on opposite edges of this network attempting to
communicate. A reactive MANET routing protocol (one which
seeks to establish routes “on demand”), will need to buffer
packets until it can find a path through the network to the
distant node. Once a path is found packets may begin flowing.
However, unless the nodes are essentially stationary, there is
a high probability the path will quickly become invalid. All
it takes is one node along the long path to leave the network
or to move out of range of an adjacent node supporting the
path, to make the path obsolete. Packets must then be delayed



or dropped while the path is repaired, and extra management
packets will likely need to be sent, incurring overhead.

Using, instead, a proactive routing protocol (which seeks
to always maintain routes between every pair of nodes) only
exacerbates the situation, generating what has been described
as “torrents” of link status change messages in an effort to
recover from any failure on any path [19]. The overhead asso-
ciated with these messages can quickly saturate the available
network bandwidth for a large networks with a frequently
changing topology. Despite the high cost, only a fraction of
the packets may actually arrive at their intended destinations
because the routing information so quickly becomes stale. In
contrast, geographic routing protocols don’t actively maintain
routes, and never need to determine or repair paths through
the network.

E. Geographic Routing

Geographic routing protocols forward packets based on
the geographic position of the destination, not by identity or
address. The nodes supporting a geographic routing protocol
need only store minimal information about other nearby nodes,
and never global topology or path information. There is no
need to set up a path because hop-by-hop decisions are made
about where the packet should be forwarded next. This allows
the protocols to quickly adapt to changes in the network while
avoiding stale information.

These protocols, however, assume that a node is aware of
its own physical location and the positions of nearby nodes.
Further, these protocols require that a sending node knows the
position of a packet’s intended destination. This information is
often obtained using a separate location service protocol [20].
As described previously, in our example airborne network
application, the positions of nearby nodes are fortuitously
already being exchanged via ADS-B [16]. We call nodes
that are within transmission range that node’s neighbors, and
nodes that are within position exchange (ADS-B) range its
community members. Neighbors to which a connection exists
are directly connected neighbors.

There are two main approaches to geographic routing:
greedy routing and face routing. In greedy routing (aka greedy
forwarding or earlier as Cartesian routing) each node a packet
visits attempts to greedily forward it so that it makes maximum
progress towards its destination [21]. The packet is forwarded
at each hop to whichever directly connected neighbor is nearest
the packet’s destination. Greedy routing is generally efficient,
but it alone cannot guarantee delivery in arbitrary networks.
If the packet reaches a node whose neighbors are all further
away from the destination than it is, the packet has reached
a dead end, or local minimum, and cannot make greedy
progress. If local minima exist in a topology greedy routing
must employ some other method to assist in backtracking and
routing around the void (or hole) in the topology.

Face Routing (aka Compass Routing II) is the other main
geographic routing approach [22]. It requires that the topology
graph be planar. A planar graph is one where no two edges
cross, or in other words, one where all edge intersections occur

at vertices. A planar graph, therefore, consists of a set of
regions, called faces, bounded by edges. There may be many
interior faces, which make up a graph, but always also one
extra exterior face which encompasses all other space. Face
routing seeks to traverse faces of the planar graph, while at
each step advancing towards the destination.

To better understand face routing, it may help to visualize
the planar graph as a maze. The edges are corridors of the
maze, and the vertices are small rooms with a doorway leading
to a corridor for each of the potentially many adjacent edges.
The following right-hand rule applies equally well to solving
mazes and exploring the boundaries of faces in a planar graph.
“Upon entering the maze, always follow the wall to your right.
When confronted by an intersection, always turn right, keeping
the wall always to your right” [23]. Just as we can get out of
any maze by keeping our right hand on the right entry wall,
we can always travel around the entire boundary of any face
by, at each room (vertex), taking the doorway to the corridor
(incident edge) immediately to the right. To determine which
edge (corridor) should be used to initially start exploring a
face boundary, one may imagine traveling from the center of
the face which is to be traversed towards the start vertex, and
following the same right hand rule upon reaching the vertex
(enter the first doorway to your right). Note that one could,
with equivalent results, instead use the left-hand rule (always
turning left) to travel the opposite direction around any face.

Various face routing methods utilize the right-hand and/or
left-hand rules to traverse the faces of a planar graph and
arrive at the destination. The general concept is to have a
packet travel around one face until an adjacent face is found
which is closer to the destination. The algorithm then changes
faces, and begins exploring the boundary of the new face. If
the topology graph is static, planar, and based on a unit disk
graph, and node locations are accurate, face routing guarantees
that one of two things always eventually happen: (1) the
destination is encountered while exploring a face boundary,
in which case the packet can be delivered, or (2) an entire
face boundary is explored and no adjacent face is found that
is closer to the destination. In the second case, the destination
is always unreachable given the assumptions above. However,
these assumptions are not always easy to guarantee [24].

Greedy and face routing are often combined producing so-
called hybrid greedy-face routing protocols, or greedy-face-
greedy protocols. These protocols start routing greedily until
a local minimum is reached, at which point face routing is
used to route around the face between the local minimum
and the destination. Greedy routing then takes back over,
until another dead end is reached. Many geographic routing
protocols employ this greedy-face-greedy cycle but in a variety
of different ways [19], [25], [26].

III. RELATED WORKS

Here we briefly discuss some of the most important and rel-
evant geographic routing protocols. (For more details see [27].)
GFG [26] was the first routing protocol to combine greedy and
face routing. Upon reaching a local minimum GFG employs



face routing until reaching a node that is located closer to the
destination than the node where face routing commenced, at
which point it returns to greedy routing. GPSR [19] which is
one of the most widely cited geographic routing protocols is
largely a duplication of GFG with minor variations.

The GOAFR (pronounced “gopher”) family of protocols
build on a slightly modified version of face routing called
Adaptive Face Routing (AFR) [25], [28]. One challenge with
face routing is deciding in which direction a face boundary
should be explored. It is possible that exploring in a clockwise
manner could result a huge number of edges being explored
before switching back to greedy routing, whereas exploring
the same face in a counter-clockwise manner would return
to greedy routing after just a couple of hops. Adaptive Face
Routing (AFR) employs a bounding circle centered at the
destination or an ellipse with foci at the source and destination,
that can be adaptively increased in size as a packet attempts to
determin in which direction a face boundary should be traced.
Greedy Other Adaptive Face Routing Plus (GOAFR+), which
most closely matches our proposed protocol, combines greedy
routing and a version of AFR to arrive at a geographic routing
protocol which is provably worst-case optimal and average-
case efficient.

A method similar to ours is employed by [29], where the
GPVFR algorithm exchanges path vector information between
nodes. The resulting method outperforms both GOAFR+ and
GPSR. GPVFR’s use of topology information is similar to
TAG’s, but TAG does not require extra overhead to exchange
information.

Geographic routing protocols (including GOAFR+ and
GPVFR) generally assume a quasi-static topology, one that
does not change for the duration of a particular routing activity.
TAG overcomes this assumption, supporting topology changes
even while packets are in flight.

IV. TOPOLOGY AWARE GEOGRAPHIC ROUTING (TAG)

We now describe Topology Aware Geographic Routing
(TAG), our new geographic routing protocol. First we describe
the protocol’s header and its contents, and then we detail a base
version of TAG. The base version is essentially a Greedy-Face-
Greedy algorithm with the addition of a bounding circle much
like that used in GOAFR+ [25]. Finally, in Sections V, VI, and
VII we describe various extensions to the base protocol.

A. Shim Header

The only source of overhead for our routing protocol is the
addition of an extra header to each packet’s contents. This
is a “shim header” like that used in Dynamic Source Routing
(DSR) [30], or even MPLS [31] in wired networks. In contrast
to protocols such as DSR, however, the size of our header does
not grow with the length of the path or the size of the network.
Table I lists and describes the contents of the header, while
Table II lists the input parameters and default values.

Each node is assumed to have a single unique identifier
(node ID). This value could be the IP-address associated with
one of its interfaces, or any other node unique value. The

TABLE I
FIELDS IN THE ADDITIONAL PACKET HEADER

M Mode: GREEDY, FACE-FWD,
FACE-REV, or FACE-RETURN

s Source Node ID

d Destination Node ID

D Destination Location (x, y)

f Face Start Node ID

F Face Start Location (x, y)

e first edge traversed (ID of 2nd node visited)

cw Direction (clockwise or counter-clockwise)

r Radius of the bounding circle

t time started face

TABLE II
TAG PARAMETERS

ρ0 Initial Bounding Circle Radius 1.4
(used only in base version)

ρ radius increase factor
√
2

c position exchange range 1.44 or 288 km

l maximum link range 1.0 or 200 km

n links per node (degree) 3

u topology update rate once per second

header first includes a mode flag, M . This value enables
each packet to independently store which of four modes it is
operating in (greedy mode or one of three face routing modes).
Next, the header includes a source node ID, s, a destination
node ID, d, and the ID of the node where the packet last
began tracing the boundary of a face (face start node ID), f .
In addition, e stores the node ID of the second node visited
(or to be visited) while tracing the boundary of a face. In
conjunction with f , this value essentially encodes the first edge
traversed on the current face. D and F store the destination
location and the face start location respectively. The Boolean
cw value facilitates the choice of tracing a face boundary in
either a clockwise (right-hand rule) or a counter-clockwise
(left-hand rule) direction. The radius of the packet’s current
bounding circle (which will be described shortly) is stored in
r. Finally, t stores the time at which this packet began tracing
the boundary of a face. If the nodes were assumed to be static,
or even quasi-static, s, d, f , and t would not be necessary, and
e could be replaced with a position value. The inclusion of
these extra header fields is one of the costs of fully supporting
node movement. Assuming 16-bit values suffice for location
resolution, and the radius and time values also require only
16 bits each, 256 nodes could be supported with a 17-byte
header, and 65,536 nodes with a 21-byte header.

B. Algorithm Overview

Our base algorithm works by first greedily advancing until
either reaching the destination or a local minimum (GREEDY).
If the destination is reached, the packet is delivered, and our
job is done. Otherwise, upon reaching a local minimum the



packet changes to face routing mode (FACE-FWD), and begins
tracing, in a clockwise direction, the boundary of the first face
encountered by a line extending from the local minimum node
to the destination.

The packet begins routing around this face inside of an
annulus (a rind-shaped object) centered at the destination. The
space inside the inner circle of the annulus is closer to the
destination than the node (f ) where this packet started face
routing, and the radius of the inner circle is equal to the
distance from the face start position (F ) to the destination
(D). The outer circle is a bounding circle whose radius (r)
was set when switching to face routing mode. If the packet
crosses the inner circle it has made progress, and is now closer
to the destination than when it began face routing. It may now
safely attempt to switch back to GREEDY mode. If, on the
other hand, the packet would cross the outer circle on its next
hop, cw is flipped and the packet begins backtracking (in the
counter-clockwise direction). The packet eventually arrives at
the node where it began face routing (f ), and continues tracing
the face in the opposite direction (FACE-REV). As before, if
the packet crosses the inner circle it transitions to GREEDY
mode, but if on its next hop it would cross the outer circle,
cw is again flipped (again exploring clockwise), and the packet
transitions to the FACE-RETURN mode. This will cause the
packet to backtrack all the way to the node where it started
face routing (f ). Finally, the radius of the outer circle (r)
is increased, and the packet begins the entire face routing
procedure again, starting in the FACE-FWD mode. While face
routing, if the packet ever encounters the destination, it is
delivered. If however, while in FACE-FWD mode, the packet
detects that it has traced the entire boundary of a face, there
is no path to the destination, and the packet is intentionally
dropped. Dropping the packet at this point is actually a critical
benefit of Face Routing, for if the packet were allowed to
continue trying to reach the unreachable destination, it would
waste valuable resources while it looped indefinitely.

C. Algorithm Details

Before each packet begins its journey, the position of its
intended destination must be determined. Depending on the
type of network and destination node, the destination position
may need to be obtained from a separate location service such
as [20].

For each new packet to be routed, the destination position
and ID (D and d) are added to the shim header, along with
the source node (current node) ID. Every packet starts in
GREEDY mode (M= GREEDY). The shim header is attached
to the packet and then the TAGFORWARD function, shown
below, is called.

TAGRFORWARD is the main routing function, and is called
at each hop along the path. If the packet has reached its
destination the packet is delivered. Otherwise various methods
are called depending on which mode the packet is in, with each
method returning the ID of the node to which the packet should
be sent next. For packets in GREEDY mode, the GREEDYOR-
REVERTTOFACE function is called to either send the packet

to the neighbor that is nearest the destination, or revert to
face routing if the current node is a local minimum. If the
packet is in FACE-FWD or FACE-REV the FACECOMMON
method is simply called (detailed later). Lastly, for packets in
the FACE-RETURN mode (in which the packet is returning
to the face start node), the next node to be visited while
backtracking to the face start node is determined by the
RIGHTHANDFORWARD function. If, however, the packet has
reached the face start node, the boundary circle is expanded
and face routing is restarted by (EXPANDANDRESTARTFACE).
Lastly, if the packet is in FACE-FWD or FACE-REV the
FACECOMMON method is called.

1: function TAGFORWARD(h, incomingIf)
2: if h.d == self.id then
3: deliver packet
4: else
5: switch h.M
6: case GREEDY
7: next = GREEDYORREVERTTOFACE(h)
8: case FACE-FWD
9: next = FACECOMMON(h, incomingIf)

10: case FACE-REV
11: next = FACECOMMON(h, incomingIf)
12: case FACE-RETURN
13: if h.f == self.id then
14: next = EXPANDANDRESTARTFACE(h, IncomingIf)
15: else
16: next = RIGHTHANDFORWARD(h, false)
17: end if
18: forward to next and call TAGFORWARD
19: end if
20: end function

The FACECOMMON method first determines the proposed
next node to be visited according to the right-hand rule. If
the packet is (1) in FACE-FWD mode, (2) at the face start
node f , and (3) expected to visit node e next, the packet
has made a full loop around the face, and it is mercifully
dropped because there is no route to the destination. If instead,
the packet reaches a node that is nearer the destination than
the face start node, it calls GREEDYORREVERTTOFACE. This
method starts greedily routing unless this node is found to be
another local minimum, in which case face routing is started
on the face between this node and the destination. Ignoring
for now, the highlighted code, if the proposed next node lies
outside the bounding circle then if the packet was in FACE-
FWD mode, we REVERSETHEDIRECITON the packet was
traveling in (changing directions, for example, from clockwise
to counter-clockwise) and change to FACE-REV mode. If
instead the packet was already in FACE-REV mode we also
REVERSETHEDIRECTION in which the packet is traveling and
change to FACE-RETURN mode. In some cases the packet is
already at the face start node so the FACE-RETURN mode is
skipped and the bounding circle is immediately expanded and
face routing restarted with EXPANDANDRESTARTFACE.

V. TOPOLOGIES THAT ARE NOT UNIT DISK GRAPHS

Our face routing algorithm assumes that at some point while
traveling around any face one of three events will occur: (1)
the packet will arrive at the destination, (2) the packet will



1: function FACECOMMON(h, incomingIf)
2: next = RIGHTHANDFORWARD(h, false)
3: if h.M == FACE-FWD and self.id == h.f and next == h.e then
4: return failure . No route to destination, drop
5: end if
6: if DIST(self.position,h.D) <DIST(h.F ,h.D) then
7: return GREEDYORREVERTTOFACE(h) . Fall back to greedy
8: end if
9: if INTERSECTS(F, D, self.position, next.position) then

10: return STARTFACE(h)
11: end if
12: if DIST(next.position, h.D) >h.r then
13: next = REVERSETHEDIRECTION(h, incomingIf)
14: if h.M == FACE-FWD then
15: h.M = FACE-REV
16: return next
17: end if
18: if h.f == self.id then
19: return EXPANDANDRESTARTFACE(h)
20: end if
21: h.M = FACE-RETURN
22: return next
23: end if
24: return next
25: end function

arrive at a node that is closer to the destination than the node
at which face routing began, or (3) only if there is no route
to the destination, the packet will arrive back at the node at
which it started, having traversed the entire face. The implied
assumption in these cases is that either there is a node closer
to the destination on the face that stands between the start
node and the destination, or the destination is unreachable.
This assumption is true in a unit disk graph, but what of the
scenario shown in Figure 2 where S is the source of a packet;
D the destination, and the circle encompasses the space which
is closer to D than A? Note that B and C are both outside
the large circle, and are both further from D than A. This
also means that A is a local minimum. If the unit disk graph
assumption were employed here, A and D would have to be
connected, since they are closer to one another than C and
D (which are presumably closer to one another than 1 unit).
Since this is not a unit disk graph, tracing the boundary of
the face from A to B to C bring us back to A without finding
any node which is closer to D. This violates the assumption
of our proposed routing scheme, since there is a route to the
destination through B or C.

D

B

C

A

Fig. 2. Example of a topology that violates the Unit Disk Graph assumption

To overcome this issue we simply add three lines to the
FACECOMMON function (10-12 highlighted). As the packet

moves around the face, we intersect the line segment repre-
senting the next edge to be traversed with the line segment
extending from the face start position to the destination
position in a manner similar to basic face routing [22]. If an
intersection is detected, we simply restart face routing at the
current node. The packet will then seek to navigate the face
between the current node and the destination. Depending on
the geometry of the graph, the next face traversed may not
be the next face encountered by the line which intersected
the edge, however, progress towards the destination has been
made. This very simple change to our algorithm allows us to
conquer the potential issues with non-unit disk graphs.

VI. TOPOLOGY AWARENESS

We now propose an enhancement to our base algorithm
for cases where a node has or can obtain local information
regarding the topology of the network. The base algorithm
outlined above has a few key decision points, and we propose
using any topology information available to help make the
best possible decisions. Note that in general performance can
be improved without global topology information, and even
when local topology information differs from the actual global
topology. Nodes need not learn the entire topology to benefit
from the topology awareness enhancements!

When a packet initiates face routing, it can proceed in a
clockwise direction (right-hand), or decide instead to travel
in a counter-clockwise direction. If topology information is
available, it can be used to make a better choice about which
direction to head. Similarly, if some topology information
is available, the initial radius of the bounding circle can
be set intelligently. Topology information can also assist in
the selection of the next hop for greedy routing, enabling a
more global greedy choice. The immediate next greedy hop,
however, must always make progress towards the destination.

To enable this enhancement local Topology information can
be exchanged periodically via some other protocol, incurring
an overhead penalty. However, in the case where a topology
management protocol is employed, the local topology infor-
mation may already be known by each node. In protocols
such as LTRT [32] nodes use the positions of their neighbors
to compute their own view of the local topology and make
local transmission power decisions, ultimately controlling the
network topology. Similarly, networks supported by direc-
tional links can use similar distributed topology management
protocols to determine where to point their directional links.
The nodes in these networks already have the local topology
information necessary for to benefit from this enhancement
without any extra overhead.

Since this information is essentially only used to provide
“hints” to the routing protocol, it doesn’t even have to be
correct. If a packet starts face routing in the non-optimal
direction, it will eventually turn around and go the other way.
If a chosen bounding circle size is too small, it will eventually
be increased. This is important, because in the case where local
topology management protocols are used, the local topology
information does not always match the global topology.



The STARTFACE function shows how the topology aware
aspects can be inserted into our face routing function. This
function is called any time a packet is to begin routing around
a face. Its purpose is to set up the header values correctly for
face routing. The highlighted lines are the only lines added
or changed to support topology awareness. We call two nodes
connected if the local topology graph contains a path between
them, and we call two nodes directly connected, if they are
connected with a path of length 1 hop. The FINDCONNECT-
EDNODENEARESTPOSITION function uses the available local
topology graph to find and return the ID of the node nearest
the destination to which there is a path from this node.

An additional function, RIGHTWAYTOREACH takes the
nearest node ID and determines which direction (counter-
clockwise or clockwise) face routing should proceed to effi-
ciently reach the nearest node. This is far better than our base
protocol, where faces boundaries were always initially traced
in a clockwise direction. Lastly, the SMARTRADIUS function
determines the appropriate radius value for the bounding
circle. Previously, as in GOAFR+ this value was set to the
product of the distance from F to D and an initial radius
factor. The SMARTRADIUS function determines which node
on the path to the “nearest” node is furthest from the D and
uses that distance as the radius value, ensuring that expected
path can be traveled without increasing the radius. In cases
where the “nearest” node is the current node, the radius is
set such that the bounding circle encompasses the entire area
within which the local topology is known.

1: function STARTFACE(h)
2: h.M = FACE-FWD
3: h.f = self.id
4: h.F = self.position
5: nearest = FINDCONNECTEDNODENEARESTPOSITION(h.D)
6: h.cw = RIGHTWAYTOREACH(nearest) . before always clockwise
7: h.r = SMARTRADIUS(nearest, h.D) . before, DIST(F ,D) * ρ0
8: next = RIGHTHANDFORWARD(h, true)
9: h.e = next

10: h.t = time.Now()
11: return next
12: end function

VII. DEALING WITH TOPOLOGY CHANGES

Standard face routing can fail miserably when the movement
of nodes causes changes in the topology. For example, Figure 3
shows a topology of 5 nodes. Assume that initially the edge
between nodes A and C does not exist. A packet beginning
face routing at node S and traveling clockwise would visit
node A, then B. Now assume that while the packet is at node
B, the network topology changes and the edge between A and
C is added. Upon reaching node C the packet would use the
right-hand rule to determine where to go next, and would find
that the new edge should be traversed, sending the packet to
A, not to node E. A would again forward the packet to B, and
B to C, and the packet would be stuck in a potentially infinite
routing loop.

Most other geographic routing protocols assume a static
or quasi-static network topology, suggesting that the routing

A

B

C

E

S

Fig. 3. Example of a routing loop formed when the topology graph changes
while face routing

is so fast compared to the node movement that no topology
changes happen while a packet is in flight. This is obviously
not realistic, as in a busy network there will always be packets
flowing, some of which will be affected by a topology change.
To our knowledge we are the first to propose a greedy-face-
greedy style geographic routing protocol which can operate
correctly on topology graphs which are constantly changing.

A. Approach

Our approach is to essentially take a snapshot of a face (in
a distributed manner) each time a packet begins tracing a face
boundary. The snapshot, not the potentially changed current
topology, is then used to determine how to forward the packet
around the face. Back to our example in Figure 3, assume
the packet is again at node S and is begin routed around the
face in a clockwise direction. This time, however, the packet
follows the face as it existed at the time face routing began.
The packet would visit node A, then B, then C. Node C would
realize that at the time the face traversal began, its connection
to node A did not exist, and so would correctly forward the
packet to E, avoiding the potential routing loop.

What if, however, instead of the link between A and C being
added to the graph, it was instead taken away? Assume the
packet starts at node S, where it takes a virtual “snapshot” of
the face that includes the connection from A to C, and while
traveling to node A, the link from A to C goes away. We need
a way to get the packet to node C and allow it to continue
to traverse the face, but the direct path no longer exists. The
packet could, instead, take the indirect path to C, traveling
through node B. In Section VII-C we will describe how this
can be done.

B. Storing the Snapshot

To support topology changes while a packet is in-flight we
propose sending a packet along the face as it existed at a
previous point in time. To achieve this, we add a time field, t
to the packet header, that corresponds to the time at which
the current face boundary began being traced. In addition,
every node stores in a small buffer the positions and IDs of
nodes they have recently (in the last few seconds) been directly
connected to. The amount of storage required is essentially
controlled by the maximum degree of each node. When a node
needs to determine where to forward a packet as it travels



around a face, it need only use the time stored in the packet
to look up the IDs and positions of nodes it was connected to
at the given time. It then makes the routing decision it would
have been made at the time the face routing began, and the
virtual “snapshot” was taken.

C. Via-Points

Our proposed method works until the rare situation is
encountered where a node is no longer directly connected to
the next node on the face snapshot. To overcome this, we note
that our routing protocol allows a packet to be routed to any
node whose position and ID are known. Since the position and
ID of the next node along the boundary of the snapshot face
are known, we forget about our ultimate destination, briefly,
and concentrate on routing the packet to the next stop along the
face, which we call the “via-point”. Our shim header becomes
a stack of shim headers, and we push on a new header whose
destination is the via-point. The packet is now forwarded like
a new packet, toward the via-point. Once the via-point is
reached, the header is popped off, and the packet is ready to
continue routing around the original face, having “virtually”
traced the face edge that no longer exists.

VIII. SIMULATION RESULTS AND EVALUATION

To evaluate TAG we present the results of several simu-
lations, which demonstrate the advantages of TAG compared
with other geographic and MANET routing protocols. We first
report the results of simulating our protocol in a theoretical
square field (as in [25]), randomly placing static nodes on a
plane in a square measuring 20 units on each side. Next we
briefly describe a study comparing TAG and OLSR. Finally,
we report results from a more realistic simulation, where
mobile nodes trace the paths traveled by over 600 actual
aircraft moving at hundreds of miles per hour.

A. Simulation Environment

We use the ns-3 [33] network simulator (version 3.21)
for our evaluation experiments. We utilize the default ns-3
implementation of OLSR, and our own implementations of
GFG and GOAFR+ (these latter protocols are not included
with ns-3). Since our goal at this stage is to measure the
performance of our routing protocol without interference from
the environment or other layers of the stack, we assume perfect
wireless links and a collisionless MAC layer. By perfect
links we assume that no packets are dropped at the link
layer, and that the directional links are able to re-point and
reconnect instantly. Instant re-connection could essentially be
accomplished by doubling the number of links and allowing
one to remain connected while it’s counterpart established the
next connection. A collisionless MAC layer is also not so
unrealistic for directional links where interference is less com-
mon given the directional nature of the connections. Further,
we assume (as in [25]) that all position information required
by the geometric routing protocol is available without extra
communication overhead. This includes a node’s knowledge
of its position and the positions of nearby nodes (nodes within

the position exchange range c of 288 km or 1.44 units), as well
as each source node’s knowledge of the destination positions
of its flows. Remember for our airborne network application
the positions of nearby nodes are already regularly updated
via an independent system. Finally, we assume all nodes have
a synchronized time reference, such as GPS.

B. Varied Density with a Static Topology

We first compare the performance of TAG, TAG with
topology awareness disabled, GOAFR+(ρ0=1.4, σ= 1

100 ), and
GFG on a static topology using the hop stretch metric [29].
Hop stretch is the ratio of the number of hops required by a
routing protocol to reach the destination d to the number of
hops on the shortest path (in terms of hops) between s and
d. Lower hop stretch values imply better performance for the
geographic routing protocol.

For this experiment the number of nodes is increased from a
density value of 1 to a density value of 20 nodes per unit disk.
A density value of 5 implies that on average each node will
have 4 other nodes within communication range (within its unit
disk). For reference, the density values 1 and 20 correspond to
128 and 2547 total nodes, respectively. For each run, a source
node, s, and destination node, d, were randomly selected from
the simulated nodes. A single UDP packet was then sent from
the selected source node towards the destination node. The
number of hops taken by the simulated routing protocol was
recorded, as were the number of hops in the shortest path
from the source to the destination. Figure 4 shows a plot of
the resulting hop stretch values for the various protocols.

5 10 15 20
network density (nodes per unit disk)

0

1

2

3

4

5

6

7

8

9

ho
p 

st
re

tc
h

connectivity
GFG
TAG-NoTopoAware
GOAFR+
TAG

0.0

0.2

0.4

0.6

0.8

1.0

co
nn

ec
tiv

ity

Fig. 4. Comparison of hop stretch with increasing node density

Each point on the figure represents the mean value for
2000 trials (each with a random set of node positions and
source, destination pair). Also plotted on the right y-axis
is the connectivity of the network at the given densities.
Note that below a critical density of about 5 nodes per unit
disk the source and destination have a path between them
(are connected) less than half of the time. Nodes that are
able to connect to one another at these densities generally



are within a few hops of one another. Hop stretch values
for disconnected source/destination pairs are not included,
yielding low hop stretch values for the lower densities. Once
a majority of source/destination pairs are connected the hop
stretch values become very large. This is because, although
the nodes are connected, any path connecting them must wind
its way through the “nearly disconnected” network. Finally
the hop stretch values basically level off. TAG makes a slight
improvement on the performance state-of-the-art GOAFR+
protocol, and performs significantly better than the basic
Greedy-Face-Greedy protocol (GFG). The mean hop stretch
for TAG is 1.73, compared with 1.97 for GOAFR+ and 3.57
for GFG. This improvement is credited to the effective use of
the local topology information at each node.

C. Comparison with OLSR

We now describe a simple experiment comparing our rout-
ing protocol with Optimized Link State Routing (OLSR) [34].
We simulate 24 mobile nodes tracing the actual paths taken by
aircraft on July 9, 2015. The topology management protocol
described in Section II-C is used to form a topology assuming
three directional links per aircraft and a maximum air-to-air
link range of 200 km. The node movement and topology
management is such that there always exists a topological path
between every pair of nodes in the network. We simulate a
low-rate (10 Kbps) UDP flow between every pair of mobile
nodes in the network for 1 hour. The default Hello interval
of 2.0 seconds is used for OLSR. TAG successfully delivers
every packet achieving a PDR of 1.0, while OLSR is only
able to successfully deliver 94.2% of the packets (a PDR
of 0.942). In addition, OLSR sends over 281,000 overhead
packets (a total of 53 Megabytes). Tag has no overhead besides
the small additional header attached to each packet. Similar
OLSR experiments with about 600 nodes have yielded PDRs
as low as 0.44.

D. Realistic Airborne Network with Mobility

We now present results from another experiment utilizing
the real mobility data of a subset of all commercial air-traffic
in the United States (several hundred aircraft), and compare
the performance of the chosen geographic routing protocols
in this environment. The density of the network increases
as the simulation progresses from 3.11 to 10.47 nodes per
unit disk. In striving for perfect PDR, we do not limit the
number of hops each packet may take (deactivating the IP
TTL countdown). Figure 5 shows the cumulative distribution
function (CDF) of the mean numbers of hops for each of
1000 individually simulated flows in the network. The curve
for the optimal number of hops (given a global view of
the network) is also plotted for comparison. TAG performs
better than GOAFR+, especially in the tail of the distribution,
with the worst performing flow requiring only 111 hops on
average for TAG, but over 2,000 hops for GOAFR+ and
nearly 3,000 hops for GFG. The high numbers of hops are
a result of either cases where a packet gets stuck in a loop
until the topology changes allowing progress, or cases where

the basic geographic protocols make bad choices or must
backtrack several times while expanding the bounding circle.
Also notable, is the fact that many flows using GOAFR+
were unable to guarantee delivery, with some achieving PDRs
lower than 0.96. The large numbers of hops in the worst
case, highlight how helpful a small amount of local topology
information can be, and the importance of supporting full
mobility.

10 100 1,000 10,000
mean number of hops

0.0

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ili

ty

optimal
TAG
TAG-NoTopoAware
GOAFR+
GFG

Fig. 5. CDF of the mean numbers of hops in a realistic scenario

IX. FUTURE WORK

These results are promising, but more work must be done to
fully investigate TAG’s performance, especially when higher-
layer protocols are used. Preliminary results indicate that TCP
functions well with TAG, and we hope to present more detailed
results soon. We suspect that TAG’s performance may still
be improved upon by using probabilities to determine which
direction a packet should be forwarded when even the available
local topology information doesn’t induce a preference. We
plan to make this and other optimizations to the protocol going
forward.

Finally, a more thorough temporal analysis of the protocol
would be helpful. It could answer questions such as: How
often are position updates are necessary? and How delayed
can destination positions be?

X. CONCLUSION

We have introduced TAG a new geographic routing protocol
that advances the state of the art by (1) supporting topologies
that are not unit disk graphs, (2) using local unreliable
topology information to make better geographic forwarding
decisions, and (3) supporting full mobility of nodes without
risk of looping. We detailed the routing protocol, and then
presented simulated comparisons of TAG in a theoretical
network, and a real-world large-scale mobile airborne network.
TAG outperforms GOAFR+, GFG, and OLSR in our simula-
tions. We envision a day when mobile ad hoc networks will



connect aircraft, spacecraft, watercraft, and vehicles, into high-
capacity large-scale networks. Efficient routing protocols for
these unique futuristic networks are needed, and we believe
that TAG is a step towards that future.

REFERENCES

[1] J. Redi and R. Ramanathan, “The DARPA WNaN Network Architec-
ture,” in 2011 - MILCOM 2011 Military Communications Conference,
Nov 2011, pp. 2258–2263.

[2] DARPA, “Broad Agency Announcement BAA07-07 WNaN
Adaptive Network Development (WAND),” Feb. 2007.
[Online]. Available: http://www.federalgrants.com/WNaN-Adaptive-
Network-Development-WAND-8854.html

[3] T. Simonite, “10 breakthrough technologies: Project loon,” MIT Tech-
nology Review - Best in Tech: 2015, pp. 20–25, 2016.

[4] E. Teller and W. Patrick, “Balloon clumping to pro-
vide bandwidth requested in advance,” Nov. 21 2013,
wO Patent App. PCT/US2013/035,959. [Online]. Available:
http://www.google.com/patents/WO2013173002A1?cl=en

[5] H. Frey, “Scalable geographic routing algorithms for wireless ad hoc
networks,” IEEE Network, vol. 18, no. 4, pp. 18–22, July 2004.

[6] “Aircraft situation display to industry: Functional description and inter-
face control document,” Volpe Center, Tech. Rep. Version 4.0, August
2000, report no. ASDI-FD-001.

[7] F. Kuhn, R. Wattenhofer, and A. Zollinger, “Ad-hoc networks beyond
unit disk graphs,” in Proceedings of the 2003 Joint Workshop on
Foundations of Mobile Computing, ser. DIALM-POMC ’03. New
York, NY, USA: ACM, 2003, pp. 69–78. [Online]. Available:
http://doi.acm.org/10.1145/941079.941089

[8] Y.-J. Kim, R. Govindan, B. Karp, and S. Shenker, “On the pitfalls of
geographic face routing,” in Proceedings of the 2005 Joint Workshop
on Foundations of Mobile Computing, ser. DIALM-POMC ’05.
New York, NY, USA: ACM, 2005, pp. 34–43. [Online]. Available:
http://doi.acm.org/10.1145/1080810.1080818

[9] ——, “Geographic routing made practical,” in Proceedings of the
2Nd Conference on Symposium on Networked Systems Design
& Implementation - Volume 2, ser. NSDI’05. Berkeley, CA,
USA: USENIX Association, 2005, pp. 217–230. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1251203.1251219

[10] H. Boche, A. Bourdoux, J. R. Fonollosa, T. Kaiser, A. Molisch,
and W. Utschick, “Smart antennas: state of the art,” IEEE Vehicular
Technology Magazine, vol. 1, no. 1, pp. 8–17, March 2006.

[11] Q. Balzano, J. Rzasa, S. Milner, and C. Davis, “High capacity tactical
networks with reconfigerable, steerable, narrow-beam agile point-to-
point rf links,” in Military Communications Conference, 2007. MILCOM
2007. IEEE, Oct 2007, pp. 1–7.

[12] L. Stotts, N. Plasson, T. Martin, D. Young, and J. Juarez, “Progress to-
wards reliable free-space optical networks,” in Military Communications
Conference, 2011 - MILCOM 2011, Nov 2011, pp. 1720–1726.

[13] R. Devaul, E. Teller, C. Biffle, and J. Weaver, “Balloon network with
free-space optical communication between super-node balloons and rf
communication between super-node and sub-node balloons,” Jul. 18
2013, wO Patent App. PCT/US2013/020,705. [Online]. Available:
https://www.google.com/patents/WO2013106348A1?cl=en

[14] M. Wohlsen, “Facebook drones to battle google balloons
in the war of airborne internet,” Wired, March 2014.
[Online]. Available: http://www.wired.com/2014/03/facebooks-drones-
launch-race-airborne-internet/

[15] B. Newton, J. Aikat, and K. Jeffay, “Analysis of topology algorithms
for commercial airborne networks,” in Network Protocols (ICNP), 2014
IEEE 22nd International Conference on, Oct 2014, pp. 368–373.

[16] Automatic Dependent Surveillance-Broadcast (ADS-B) Out Performance
Requirements To Support Air Traffic Control (ATC) Service;
Final Rule, Department of Transportation - Federal Aviation
Administration Std. 14 CFR Part 91, May 2010. [Online]. Available:
https://www.gpo.gov/fdsys/pkg/FR-2010-05-28/pdf/2010-12645.pdf

[17] B. Epstein and V. Mehta, “Free space optical communications routing
performance in highly dynamic airspace environments,” in Proceedings
of Aerospace Conference, IEEE., vol. 2, 2004, pp. 1398–1406 Vol.2.

[18] B. Newton, J. Aikat, and K. Jeffay, “Simulating large-scale airborne
networks with ns-3,” in Proceedings of the 2015 Workshop on Ns-3, ser.
WNS3 ’15. New York, NY, USA: ACM, 2015, pp. 32–39. [Online].
Available: http://doi.acm.org/10.1145/2756509.2756514

[19] B. Karp and H. T. Kung, “GPSR: Greedy Perimeter Stateless Routing
for Wireless Networks,” in Proceedings of the 6th Annual International
Conference on Mobile Computing and Networking, ser. MobiCom ’00.
New York, NY, USA: ACM, 2000, pp. 243–254. [Online]. Available:
http://doi.acm.org/10.1145/345910.345953

[20] J. Li, J. Jannotti, D. S. J. De Couto, D. R. Karger, and
R. Morris, “A scalable location service for geographic ad hoc
routing,” in Proceedings of the 6th Annual International Conference
on Mobile Computing and Networking, ser. MobiCom ’00. New
York, NY, USA: ACM, 2000, pp. 120–130. [Online]. Available:
http://doi.acm.org/10.1145/345910.345931

[21] G. G. Finn, “Routing and Addressing Problems in Large Metropolitan-
Scale Internetworks,” University of Southern California ISI Research
Report ISI/RR-87-180, March 1987.

[22] E. Kranakis, H. Singh, and J. Urrutia, “Compass routing on geometric
networks,” in in proc. 11th Canadian Conference on Computational
Geometry, 1999, pp. 51–54.

[23] D. Q. O’Brien, “Maze demystified,” New York Times, July 26, 1989.
[Online]. Available: http://www.nytimes.com/1989/07/28/opinion/l-
maze-demystified-303989.html

[24] H. Frey and I. Stojmenovic, “On delivery guarantees and worst-case
forwarding bounds of elementary face routing components in ad hoc
and sensor networks,” IEEE Transactions on Computers, vol. 59, no. 9,
pp. 1224–1238, Sept 2010.

[25] F. Kuhn, R. Wattenhofer, and A. Zollinger, “Worst-case optimal
and average-case efficient geometric ad-hoc routing,” in Proceedings
of the 4th ACM International Symposium on Mobile Ad Hoc
Networking and Computing, ser. MobiHoc ’03. New York,
NY, USA: ACM, 2003, pp. 267–278. [Online]. Available:
http://doi.acm.org/10.1145/778415.778447

[26] P. Bose, P. Morin, I. Stojmenović, and J. Urrutia, “Routing with
guaranteed delivery in ad hoc wireless networks,” in Proceedings
of the 3rd International Workshop on Discrete Algorithms and
Methods for Mobile Computing and Communications, ser. DIALM ’99.
New York, NY, USA: ACM, 1999, pp. 48–55. [Online]. Available:
http://doi.acm.org/10.1145/313239.313282

[27] F. Cadger, K. Curran, J. Santos, and S. Moffett, “A survey of geographi-
cal routing in wireless ad-hoc networks,” IEEE Communications Surveys
Tutorials, vol. 15, no. 2, pp. 621–653, Second 2013.

[28] F. Kuhn, R. Wattenhofer, Y. Zhang, and A. Zollinger, “Geometric
ad-hoc routing: Of theory and practice,” in Proceedings of the Twenty-
second Annual Symposium on Principles of Distributed Computing, ser.
PODC ’03. New York, NY, USA: ACM, 2003, pp. 63–72. [Online].
Available: http://doi.acm.org/10.1145/872035.872044

[29] B. Leong, S. Mitra, and B. Liskov, “Path vector face routing: geographic
routing with local face information,” in 13TH IEEE International
Conference on Network Protocols (ICNP’05), Nov 2005, p. 12.

[30] D. B. Johnson and D. A. Maltz, “Dynamic source routing in ad
hoc wireless networks,” in Mobile Computing. Kluwer Academic
Publishers, 1996, pp. 153–181.

[31] E. Rosen, A. Viswanathan, and R. Callon, “Multiprotocol label
switching architecture,” Internet Requests for Comments, RFC
Editor, RFC 3031, January 2001. [Online]. Available: http://www.rfc-
editor.org/rfc/rfc3031.txt

[32] K. Miyao, H. Nakayama, N. Ansari, and N. Kato, “Ltrt: An efficient
and reliable topology control algorithm for ad-hoc networks,” IEEE
Transactions on Wireless Communications, vol. 8, no. 12, pp. 6050–
6058, December 2009.

[33] G. F. Riley and T. R. Henderson, “The ns-3 network simulator.” in
Modeling and Tools for Network Simulation, K. Wehrle, M. Gnes,
and J. Gross, Eds. Springer, 2010, pp. 15–34. [Online]. Available:
http://link.springer.com/chapter/10.1007%2F978-3-642-12331-3 2

[34] “Optimized link state routing protocol (olsr),” United States, 2003.


