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Abstract

We propose an approach that can render environmental audio ef-
fects for a large number of concurrent voice users immersed in a
large distributed virtual world. In an off-line step, our approach ef-
ficiently computes acoustic similarity measures based on average
path length, reflection direction and diffusion throughout the envi-
ronment. The similarity measures are used to adaptively decom-
pose the scene into acoustic regions Sound propagation simulation
is performed on the acoustic regions, resulting in acoustic response
data that can be used efficiently at runtime along with deferred late
reverberation. We demonstrate realtime realistic sound rendering
of large number of voice streams in virtual environments of tens of
square kilometers of area at a fractionof the authoring and memory
cost of previous acoustical precomputation approaches.
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1 Introduction

For networked virtual environments, such as social communities
or massively multiplayer on-line (MMO) games, meaningful in-
teraction through voice conversation with other participants is a
valuable feature [Williams et al. 2007; Wadley et al. 2007; Sallnäs
2005]. First adopted through side-clients enabling telephone qual-
ity, walkie-talkie style communication, voice services are becoming
more integrated and are now connecting hundreds of millions of
users on PCs, game consoles and cell phones. For instance, group
voice chat is integral to gaming services such as Microsoft Xbox
LIVE, Sony Playstation Network, and Valve Steam and is also di-
rectly integrated into such games as Blizzard’s World of Warcraft,
CCP Games’ EVE Online, Electronic Arts’s Need for Speed World
and Linden Lab’s Second Life.

There has been much work on voice communication over the in-
ternet, typically called VoIP (Voice over Internet Protocol) [Goode
2002]. Latency, voice coding efficiency and network error re-
silience as well as endpoint voice cleaning and processing are some
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Figure 1: Overview of an immersive and scalable VoIP system:
a voice server is responsible for computing a spatial auditory scene
for each connected client, mixing or forwarding the voice streams
based on the local density of active users.

of the key issues [Markopoulou et al. 2002; Benesty et al. 2000].
While most work in scalable VoIP focuses on the infrastructure sys-
tem, there has been limited research on improving the immersive ef-
fects of the voice communication, typically through spatialized ren-
dering [West et al. 1992; Hollier et al. 1997]. Studies have shown
[Halloran 2009] that while voice communication helps users coor-
dinate in virtual environments, the lack of environmental effects can
cause difficulty in identifying sound sources. Modeling the effects
of sound propagation such as occlusion and echoes can help convey
scenes where participants communicate from different rooms or ar-
eas. For example, the direction of the sound reflections can help a
user spatialize the sound source position, while the time it takes for
the echoes to decay conveys the size of the environment. The direct
sound path and early sound reflection help the listener spatialize
the sound source, while the late reverberation echoes convey the
scale of the environment and the materials present. However, these
acoustic effects are difficult to implement in a large-scale VoIP sys-
tem. Since the voice mixing is generally performed on a remote
server, network delivery cost restricts the amount of data that can
be transferred. Moreover, a typical 8-core server platform must
handle thousands of remote clients simultaneously, strongly limit-
ing the processing capabilities. As a result, the most advanced VoIP
systems currently implement direct line-of-sight occlusion model-
ing as well as simplified diffraction effects resulting in unrealistic
proximity cues. For MMO games where localizing teammates and
enemies is of primary importance, rendering inappropriate distance
cues can lead to a tactical disadvantage.

In this paper, we focus on the immersive rendering of environmen-
tal reverberation effects on voice streams for such large-scale dis-
tributed virtual worlds.

1.1 Scalable spatial voice

The Massive system was an early project to enable voice communi-
cation in immersive environments [Greenhalgh and Benford 1995].
As voice communication is heavily used in MMO gaming, there is
a rising need for wider scale voice communication. Much work has
been done on creating methods for handling these large environ-
ments [Radenkovic et al. 2002; Boustead and Safaei 2004; Safaei
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Figure 2: Example integration into a VoIP system: Our efficient pre-computation and deferred reverberation algorithm enable realtime
rendering of environmental audio effects in large-scale environments with many connected clients.

2005].

In these games, a player can be in audible range of many other
players which requires the voice streams to be routed through a
server that dynamically optimizes the auditory scene. In order to
scale to large numbers of users, VoIP servers generally implement
a combination of voice-packet forwarding as well as mixing of the
voice streams on the server (Figure 1). In the mixing mode, the
server creates a simplified representation of the voice scene audi-
ble to each client by clustering, that is, grouping different voice
streams together into a small number of combined streams. The
audio mixture corresponding to all the voice streams grouped in a
cluster is computed on the server and streamed back to the client.
The number of clusters, typically between one and three, is signif-
icantly lower than the number of connected clients therefore lim-
iting the required bandwidth. In most available commercial solu-
tions, the bandwidth is kept between 16 and 48 kilo-bits per second
(kbps). The cluster signals are delivered to the client with spatial-
ization information (e.g., direction of incidence) so that they can
be rendered over surround loudspeakers or binauralized over head-
phones [Begault 1994]. If the number of active talkers is small, the
voice streams can be directly forwarded to each client, avoiding a
decode/mixing/re-encode step. In this case, any further processing
must be carried out client-side and the server needs to forward all
the required metadata.

1.2 Sound reverberation and environmental effects

In current video games, reverberation is either directly pre-rendered
into the sound effects or implemented at run-time using dynamic
artificial reverberation filters [Jot 1999]. Parameters of the rever-
beration decay can be directly manipulated by the sound designer
to achieve a desired effect without requiring any geometrical mod-
eling. While simplifying the authoring process, traditional artificial
reverberators suffer from a number of issues. They impose a “sin-
gle room” model and constrain the shape of the decay profile (e.g.,
exponential). These methods also make limited use of geometry
and therefore fail to convincingly model coupled or outdoor spaces.
In [Bailey and Brumitt 2010], distance histograms extracted from a
cube map rendered at a position of interest are used to select the pa-
rameters for such an artifical reveberator. However distances to the
camera origin alone fail to capture local variations of the surfaces
which have a strong influence on the scattering properties [Tsingos
et al. 2007].

Client-server solutions have been proposed in the past to dynami-
cally compute sound propagation paths between clients connected
in a virtual environments using the actual geometry [Funkhouser
et al. 1999]. But even the most recent geometrical acoustic (GA)
approaches that can model dynamic sound reflection and diffraction

interactively [Taylor et al. 2009] cannot scale to large environments.

A practical approach to simulating acoustics of virtual environ-
ments is to pre-compute the acoustical impulse response at sev-
eral locations throughout the environment in an off-line process so
that the results can be efficiently re-used to process the audio sig-
nals at run-time [Pope et al. 1999; Tsingos 2009; Siltanen et al.
2009; Raghuvanshi et al. 2010]. The main benefit of the off-line
computation is that both early and high-order sound scattering (re-
flection/diffraction) can be simulated, providing improved proxim-
ity cues and distance perception. However, due to the high pre-
computing cost and the difficulty of combining reverberation pro-
cessing with clustering or spatial scene simplification, thus far, none
of the previous work was able to render convincing early sound
scattering and reverberation for large numbers of participants in
large-scale virtual environments.

1.3 Overview

To address this challenge, we introduce three main contributions:

1. Acoustical similarity measure: We introduce a geometric
measure which correlates well with variations in the acoustic
field as predicted by acoustic simulations. The measure can
be computed using the local neighborhood of a given point
location in the environment.

2. Acoustic region generation: We use the similarity measure
to sample the virtual environment and then group similar sam-
ples into acoustic regions. Since regions are segmented by
acoustic properties, our system need only sample the full
acoustic responses in each region. This results in a reduction
of both the precomputation time cost and the cost of storing
the precomputed data, enabling us to handle very large scenes,
spanning kilometers in virtual space.

3. Deferred late reverberation: We introduce a solution to se-
lect a single late reverberation filter for a group of sources
while preserving individual early reflection processing. The
early reverberation is processed by the server for each voice
while late reverberation effects are deferred to the client. This
makes our approach compatible with sound source clustering.

Figure 2 offers an overview of the proposed approach in the context
of a large-scale VoIP system as used in multi-player online games.
Our new algorithms can be used to automatically create environ-
mental reverberation maps up to 5 times faster than previous solu-
tions on indoor scenes and up to 80 times faster on outdoor scenes.
In addition, memory costs are also reduced by similar factor and
our optimized deferred processing allows rendering of reverbera-
tion effects for scenes comprising thousands of connected clients.



The rest of this paper is organized as follows. Section 2 introduces
our acoustical similarity measure. Section 3 details our adaptive re-
finement precomputation and section ?? our run-time deferred re-
verberation method. Sections 4 and 5 provide an analysis of the
accuracy and performance of our methods.

2 Acoustic Response Similarity

In this section, we introduce an acoustic response similarity mea-
sure that is used for offline adaptive sampling. We desire our mea-
sure provides a good estimate of the acoustic properties and re-
sponse at a point in the scene. Furthermore, it is important that
we can compute this measure efficiently.

An acoustic response is computed between a source point and a
receiver point. However, given n possible sampling points in the
scene, there are O(n2) possible acoustic responses. We observe
that for a given source location, the geometric configuration of the
scene walls and objects directly controls the acoustic response at
any receiver. Many geometric acoustic methods, such as the ones
based on beam tracing [Funkhouser et al. 1998] and frustum-tracing
[Chandak et al. 2009] take advantage of the static nature of the
scene in terms of precomputing the visibility tree. These meth-
ods assume that there is either a single fixed source or the receiver’s
position is fixed. For any receiver position, the visibility tree can
accurately predict the acoustic response for up to the number of or-
ders of response that the tree was precomputed. However, the tree
computation is relatively expensive a separate tree is need for each
source position. Moreover, in our case we would like to develop an
approach that is applicable to large indoor and outdoor scenes.

We present a similarity measure that uses low order sampling of the
geometric primitives in the scene can be computed efficiently using
standard visual algorithms such as cube mapping [Greene 1986].
Our method retains the advantage of being independent of receiver
position. To compute our measure, we sample the geometric prop-
erties that influence high order reflections: surface distance and sur-
face normal. Since our measurement requires spatial data from the
scene, we use cardinal axes aligned cube maps.

Once the surface distance and normal are computed, a gradient is
taken over surface distance and surface normal. The three values
corresponding to distance, normal, and gradient relate to the phys-
ical properties that influence the reflection of sound in the scene:
reflection distance, reflection direction, and reflection diffusion, re-
spectively.

These data values are stored per each face of the cube map and
forms a first order response measure related to the surfaces near
the sampling point. Storing the cube face images for each sample
point requires large amounts of storage and can result in very high
storage overhead for large scenes. To avoid exhausting memory
when rendering large scenes, an integration step is used to compute
the mean of the geometric properties on each cube face. Given a
geometric value v (representing one of the three data values) across
s cube map samples, we compute the mean vavg:

vavg =

s∑
i=0

vi
s
.

The spatial data we measure corresponds to some of the physical
properties that influence the first order of sound reflections: average
path length, average reflection direction, and average diffusion.

2.1 Path length

We assume it is likely that most first order acoustic paths will travel
by reflection off a nearby object. After reflection, the sound waves
propagate to the receiver position. The acoustic path may then be
viewed as a combination of two segments: the first segment is the
path from the source to the reflecting object, and the second seg-
ment is the path from the reflecting object to the receiver.

Given an object at distance d from the source position, and a re-
ceiver at distance r from the source position, the longest length t of
the first order reflection path occurs when the object and receiver
are on opposite sides of the source, such that the reflection path
passes through the source position before arriving at the receiver,
resulting in a path length of `:

` ≤ d+ (d+ r)

The shortest reflection path occurs when the object lies near planar
to the path between source and receiver, resulting in a path length
of nearly d+ (r− d) with some additional distance caused by per-
pendicular deviation distance e from the straight line direct path.
The shortest reflection path length is given as:

` ≥ d+
√
e2 + (r −

√
d2 − e2)2.

As e goes to 0, the reflection path becomes the direct path. We
note that for both the longest and shortest path cases, there is a
distance term which is directly related to the distance d to nearby
objects, and a reflection term of d and r are based on the receiver’s
geometric relation to d. All reflection paths are variants of these
terms.

In our similarity measure, we do not assume a given receiver posi-
tion, so our measure is based only on object distances. This average
distance value serves at the first component in our similarity metric.
As the distance measure changes, the average first order reflected
path length is also likely to change.

2.2 Reflection direction

The incoming direction of the earliest sound paths to a receiver is
highly indicative of the direction of the sound source. In cases when
there is no line of sight between the source and the receiver, this cue
is especially important. The direction of an object’s surface normal
directly influences the direction of any reflected sound paths off the
surface.

Reflection direction r can be determined give the view direction
v and the surface normal direction n. We note that v is fixed by
the cube map sample location, and the direction is a function of n,
given as:

r = 2(v · n)n− v.

Since the surface normal directly influences the direction of first or-
der reflection direction, we use the normal as the second component
in our measure.

2.3 Diffuse scattering

The amount of diffuse scattering of surfaces can significantly in-
fluence the final acoustic response at the receiver’s location. As



such, source positions that are likely to have very different spec-
ular/diffuse properties are likely to produce very different sound
fields.

We measure the surface gradient with respect to surface normal
and surface depth to estimate diffuse reflectance properties. For
a given cube map face the depth values and surface normal values
are known. We then use a series of 2D operators over the cube
face to find discontinuities in depth gradient and normal gradient.
These discontinuities represent regions where diffraction is likely
and diffusion will be introduced into the sound field.

First, a 2D gradient is computed from the depth information:

∇x = [1,−1]; ∇y =

[
1
−1

]
.

This results in a two component image representing depth changes
in x and y directions. To estimate portions where scattering is likely
to occur, we detect discontinuities in this image. An edge detection
kernel is applied to the components of the gradient:

k =

0 1 0
1 −4 1
0 1 0

 .
The maximum value of the two components is retained and clamped
to the range [0, 1], resulting in a black and white map with depth
and normal discontinuities detected. Since the depth and normal
discontinuities influence the scattering of sound in the scene, we
use these discontinuities as the final component in our measure.

2.4 Similarity comparison

In the previous sections, we described our method for extracting
geometric properties that correspond to expected reflection path
length, expected reflection direction, and expected diffuse energy.
If two sample points have similar values for these parameters, it is
likely that the acoustic field measured around the sample positions
will be similar. The similarity measure S between sample points a
and b can be computed using the three metric previously described:

S =< daavg, r
a
avg, f

a > − < dbavg, r
b
avg, f

b >; S = ||S||,

where davg is the mean surface distance, ravg is the mean surface
normal, and f is the estimated diffusion coefficient.

If each component of this measure is below defined threshold val-
ues, the two sample points are considered similar. In addition to
these parameters, line of sight is also used to restrict similarity. For
two sample points to be considered similar, there must exist a line
of sight between the points.

This forms the basis for our similarity metric: sample points are
likely to have a similar acoustic response if the early response (cube
map measured data) is similar and the points are visible to each
other (LOS restriction). Appropriate similarity threshold values are
shown in Section 4.

3 Scene Decomposition and Sampling

Precomputing the acoustic response in large scenes can be challeng-
ing. A common method is to compute and store the acoustic field

for many possible listener and source positions. This can be per-
formed by placing a series of sample points in the scene, and mea-
suring the acoustic response between each pair of sample points.
This is an O(n2) computation, where n is the number of posi-
tions and can result in high computational overhead and storage
cost, even for small scenes. However, this approach has a relatively
small runtime overhead as the resulting data can be queried based
on the sample points that are closest to the source and receivers.
In this section, we present a scene decomposition algorithm that
reduces the time and storage cost of the acoustic precomputation,
while maintaining the same level of accuracy.

Previous approaches either precompute the environment’s acous-
tic response over a densely sampled regular grid or generate a sin-
gle acoustic response based on arbitrary decompositions of acous-
tic space (often individual rooms) [Raghuvanshi et al. 2010]. One
possibility is to use a regularly sampled, dense grid which can ap-
proximate the sound field with high accuracy. However, a dense
grid requires large amounts of storage and computation time. Ad-
ditionally, in large open scenes, dense sampling may be overly con-
servative, as there will be little variation between nearby samples.
Conversely, other methods that precompute a single response per
acoustic space are more efficient in terms of space and computation
time, the sampling resolution may be too low to capture directional
effects such as early reflections.

Precomputation storage cost can also be lowered by reducing the
number of samples needed. This can be achieved by decreasing
the sample density or by combining nearby sample points that have
similar acoustic impulse responses. Unfortunately, combining sam-
ple points in this manner only reduces the final storage cost, not the
time cost required to precompute the scene response. This is due
to the fact that checking if two sample points have similar acoustic
responses requires the response to already be known at each point.
Our goal is to reduce the precomputation time as well as storag
overhead.

The storage cost of final acoustic field data is reduced by eliminat-
ing acoustic sampling at positions that are likely to be very similar
to a nearby sample. The time cost of computing the acoustic re-
sponse is reduced by using by using our similarity metric instead
of performing a complete uniform sampling of the acoustic space.
We note that our similarity measure is based on surface properties
that contribute to the first order acoustic response and not the actual
acoustic response.

Moreover, since the similarity measurement is computed using the
surfaces of the objects near the sample point, this measurement is
not directly related to an individual receiver position. This is in
contrast to a typical acoustic response computation that represents
a sampling of the acoustic field between a source and receiver. Our
similarity measurements are computed in O(n) time.

Since the similarity measure is fast to compute, our algorithm first
densely samples the similarity measure on a grid of points. Once
the surface properties near each sample point have been measured,
sample points with similar properties are merged and the total sam-
ple point count in the scene is reduced.

3.1 Sample selection

Once the similarity properties at each sample point have been mea-
sured, the scene decomposition algorithm is used to compute adap-
tive sampling. We note that the similarity measure S is useful for
evaluating whether two sample positions are similar, but not di-
rectly useful for eliminating the sample positions.

If a sample point is removed, the nearby acoustic field will be sam-
pled more sparsely and this may lead to more error at reconstruc-
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Figure 3: Adaptive sampling: (a) Regular grid sampling creates a
very high number of samples while adaptive refinement (b) removes
redundant samples resulting in an adaptive sampling of the scene
with fewer samples (c).

tion when a receiver that is placed near that sample point. To reduce
the error in the final response computation and to determine which
sample positions should be merged and eliminated, the error cost of
removing each sample point is computed. If a given sample point is
merged with a neighboring point, there is a single resulting sample
point that serves as a representation of the original sample positions.

We create a graph of sample points with edge nodes that connect
neighboring sample points. Edge weights are determined by the
error in similarity measure that will result if the sample points are
merged. For two sample points with similarity measures S1 and S2

and top, bottom, left, and right edges over four dimensions (with
dim representing the direction corresponding to each neighboring
similarity measure), the merge cost C can be given as:

Sa =
S1 + S2

2

C =

4∑
dim=0

(Sa − Sdim
1 ) +

4∑
dim=0

(Sa − Sdim
2 )

These sample points are merged with their neighbors in a greedy
manner. In order to avoid exceeding the error thresholds in the
similarity measure, the error in merging two points p is compared
against the similarity threshold Sthr:

max
dim,p

(Sa − Sdim
p ) < Sthr

If the error criteria is satisfied, these points may be merged to com-
pute a new sample point. The new sample point position and simi-
larity measure are defined as the average position and average sim-
ilarity measure of the combined points. As nearby sample points
are merged, the merged edges are removed from the graph and the
costs associated with all the edges incident to those sample points
are reevaluated. The process repeats until all points have been com-
bined or fail to satisfy the error threshold.

3.2 Acoustic regions

The output of the refinement stage is an irregular arrangement of
samples (see Figure 3). However, the process of sample merging
forms the acoustic regions. If two sample points were merged, they
were determined to be similar by the error criteria. If two points
are merged, their original positions in the 2D grid are marked as
belonging to the same region. As points are merged, the acoustic
regions grow until the edges at the boundary of the region no longer
satisfy the error criteria.

At runtime, the acoustic region of the source point and receiver
point must be selected. This is based on the spatial position of
the source and receiver. In general environments, the source and
receiver will not lie directly on the sample points used during pre-
computation.

The acoustic region of the source and receiver is computed by
checking if the four nearest grid locations. The simplest case is
when the four nearest grid locations were combined into a single
acoustic region. This region can then be immediately determined.
If not, line-of-sight queries with O(logn) time cost are conducted
to the four points against the objects in the scene. The closest point
with clear line-of-sight is selected as the closest grid node.

3.3 Simulation of sound propagation

Our method treats the sound propagation simulation as a black box
and has no requirements other than scene input and impulse re-
sponse output formats. We have chosen to use a GA simulation in
order to compute responses on scenes of very large size.

Our simulator traces specular rays [Vorländer 1989]. Given a re-
ceiver position and a source position, our simulator outputs an
acoustic impulse response that represents how the environment af-
fects the sound waves that travel from the source to the receiver.
This impulse response can be convolved with any input signal to
render an output signal with the appropriate effects.

We consider each sample obtained after the previous decomposi-
tion process as a source and trace rays from the position, collecting
propagation paths to every other sample, which act as listeners.

3.4 Response storage

Reverberation filters can be represented in a compact manner by
sampling the energy decay profile through time [Merimaa and Pul-
lki 2004; Tsingos 2009]. The decay profiles are built by integrat-
ing the energy in the impulse response over small time-steps and
a number of frequency sub-bands. In this way, both temporal and
frequency resolution can be controlled by the user. Similar to pre-
vious work [Tsingos 2009], we store pressure values for several
spectral sub-bands quantized in the time domain. In addition to
the spectrum data, directionality and diffusion data is stored. An
energy-weighted average direction of incidence is stored at time-
step resolution, with all frequency bands sharing the same direc-
tion. Similarly, a directional-to-diffuse energy value is also com-
puted [Merimaa and Pullki 2004].

Each impulse response signal is split into an early and late response
component. The boundary can be controlled by the user. The pres-
sure values in the late portion of the response are quantized in log
scale to the nearest value and normalized to the lowest value. The
normalization factor is recorded during this process. The three parts
of this operation, early response, late response, and normalization
factor are stored in a bank of reverberation data.

The normalized late response is compared against all previously
collected late response data in the late response data structure. If the
response difference is less than a user specified error threshold, the
mean of the responses is stored in the bank, and the new response
data is discarded. Early responses and the normalization factors are
not combined when inserting into the response bank.

3.5 Response reconstruction

Since the paths that are captured in the early response portion are
dependent on the source and receiver positions, large acoustic re-
gions produce overly strong early response output when source and



receiver have a large separation distance, but are in the same region.
When reconstructing the final signal, the early response portion has
a distance attenuation factor applied to it. We scale each pressure
value by 1

d
, where d is the distance that leads to to a response in

that time step. This attenuation factor is reduced over time, with
no attenuation be applied to the final early time sample. This pro-
cess allows the early field to be attenuated, while not altering the
standing late reverberation field.

Final reconstruction combines the early response with the late re-
sponse. The late response is scaled by its normalization factor and
appended to the early response. The performance of our reconstruc-
tion method is analyzed in section ??.

4 Analysis

In this section, we discuss the results generated by our algorithms.
We analyze the complexity of our approach and the accuracy of
our precomputation method as well as the quality of the defered
late reverberation processing. For analysis, we have used several
benchmark scenes shown in Figure 8.1. The selected test scenes
represent likely use cases, with both indoor and outdoor scenes cor-
responding to game maps and virtual worlds. The scene details are
described in Table 1.

Scene # Triangle Size (m) Grid spacing Grid count

Simple outdoor 2k 33 x 33 x 10 2m 289
FPS game 14k 30 x 60 x 20 2m 465
Small city 2k 245 x 310 x 33 2m 800
Large city 4k 600 x 980 x 33 2m 132k
Canyon 540k 4k x 4k x 100 10m 160k

Table 1: Benchmark scenes: These scenes are used throughout
the analysis section for accuracy and performance metrics.

(a) (b)

(c) (d)

Figure 4: Benchmark scenes: We illustrate the benchmark scenes
to highlight the performance and accuracy of our algorithm: a)
Simple outdoor, b) FPS game, c) City (Small city is a subsection of
this scene), d) Canyon.

4.1 Similarity measure thresholds

During the precomputation step, our method computes an acoustic
similarity measure for many positions in the environment. An error
threshold is used to select regions that are similar when decompos-
ing the scene.

When merging sample points and decomposing the scene, the error
between to sample points then ranges between (0, 1]. For the results
presented in this paper, we set our error threshold Sthe to 0.3. When
combining the portions of the late response, we divide early and late
after 640 milliseconds. At a sampling rate of 16kHz, this results in
an early response of 32 time steps of 20 milliseconds and a late
response of 368 time steps.

4.2 Error computation

We measure the error in the reconstructed results based on proper-
ties of the impulse responses. We compare the initial onset time,
average early direction, and the reverberation times in the form of
RT60. The ground truth data is the full set of responses from a GA
simulator with source and receivers set at the same grid size. In the
ground truth and our decomposed simulation, we traced 50k rays
for 50 reflections for each sample point.

Due to the decomposition process, it is possible for some regions to
have different responses from the reference GA solution. Moreover,
some positions in one solution may have response values, while the
same positions in the other solution have no values. In this case, the
error at those positions is undefined and we assume the worst possi-
ble error value at these locations. For initial onset, a missing value
indicates the onset occurred outside of the measurement range, re-
sulting in temporal error of 100%. For early direction, when values
are not present, we assume a maximum error of π radians from the
ground truth. RT60 is estimated by a least squares fit in log space,
and is assumed to be zero when no value is present.

4.3 Precomputed response accuracy

Since our system reduces the number of acoustic responses by
based on our similarity measure, it is possible that the final acoustic
map does not accurately represent the environment. We compare
the results for the sample points from our precomputation to a com-
plete GA simulation for a 2m x 2m grid of sample points for the
same environment. Figure 5 shows the error visually.

(a)

Figure 5: Response accuracy: This figures shows the expected
error from a source position to any receiver in the Game FPS scene.
A wireframe of the scene is presented at the top (a). Red areas
indicate high error. From left to right the error plots are: early
direction error, initial onset error, and RT60 error.

By adjusting the error threshold in the region segmentation step,
higher reconstruction accuracy can be achieved. This requires more
acoustic regions to be stored. Figure 6 shows how our method can
have high accuracy with a small number of samples.
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Figure 6: Sampling accuracy: As merge threshold error is re-
duced, error is decreased at the expense of storage and time cost.
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5 Performance

In our tests we used an NVIDIA 480 GTX and an Intel Xeon 5150 at
2.66 GHz. The test GPU has 1.5GB memory and the test CPU has
4GB memory. The cube sampler and similarity metrics were im-
plemented in OpenGL with GLSL shaders to provide the diffusion
and integration steps. The reduction process, the pre computation,
and the analysis programs were implemented in C++ with OpenMP
threading.

5.1 Similarity and reduction cost

Our similarity metrics are compute on cube faces using GPU hard-
ware. Custom GLSL shaders sample the surface distance and nor-
mals. Distance is computed in world space scales and world nor-
mals are recorded. The diffusion metric is computed in one pass by
computing the gradient for each query in the edge convolution ker-
nel. Integration is a simple texture value summation kernel, scaled
by the kernel size. We found that a kernel size of 4 pixels was
optimal for our hardware.

The reduction step line-of-sight queries are computed using a fast
CPU based BVH ray tracer. All edge reduction and region compu-
tations are done using custom data structures backed by STL con-
tainers. The reduction process is not multi-threaded due to its al-
ready low overhead compared to the other tasks.

Using the error thresholds described in the previous section, we
preformed sampling and segmentation on the benchmark scenes.
The time to compute the similarity measure at each sample point,
as well as the time cost to eliminate similar sample points is shown
in Table 2.

Full Reduced Time
Scene grid Cubemap Segmentation Trace improvement

Simple outdoor 146.8s 1.3s 1ms – –
FPS game 35m 2.0s 1ms 12m 2.9x
Small city 12.3h 8.6s 3ms 2.9h 4.24x
Large city 192h* 26s 69ms 16.3h 11.8x
Canyon 13d* 5.2m 22s 37.8h 8.25x

Table 2: Precompute time cost: Region segmentation using cube
maps allows a significant reduction in precompute time. Full grid
computes marked with a * were estimated by subsampling a num-
ber of grid positions and scaling by the number of remaining grid
positions.

5.2 Precomputation

By segmenting the scene and reducing the number of samples
points used in acoustic precomputation, the time and storage cost
to simulate the acoustic response across a virtual environment can
be greatly reduced.

Our sound propagation simulator is based on discrete ray tracing,
accelerated by efficient BVH trees. The ray tracer is heavily multi-
threaded, but not SIMD accelerated due to the diffusion that occurs
at high reflection orders. Receivers are modeled as spheres and
intersection paths are not validated as occlusion free. The simulator
computes the response at each receiver in the scene from a single
source in one simulation cycle. This results in n simulation cycles
for n regions or source positions.

We store our acoustic data as quantized decay filters. A four sec-
ond reverberation decay profile can be efficiently encoded using
200 blocks each containing 6 bytes of information for a total of
1.2 KB [Tsingos 2009]. Reducing sample count also significantly
reduces the memory cost compared to grid methods. Table 3 com-
pares our storage method to standard grid based methods.

Full Reduced Storage
Scene samples storage samples storage improvement

Simple outdoor – – – –
FPS game 216k 259MB 36k 81MB 3.19x
Small city 640k 768MB – – –
Large city 132k 20TB 9.4k 2186MB 9,149x
Canyon 160k 30.7TB 35k 2316MB 13,347x

Table 3: Storage cost: Our storage algorithm reduces nearly in-
tractable scene storage to a manageable size.

5.3 Runtime cost

By implementing our runtime mixing in efficient GPU kernels,
we can mix thousands of clusters in realtime on high-end GPUs.
We implemented CPU and GPU versions of our runtime mixer.
Results are presented in Table 4.

Scene 10 clients (ms) 100 clients (ms) 1000 clients (ms)

Walkway – – –
Game FPS 6 63 –

City 6 65 –
Large outdoor 7 68 –

Table 4: Runtime time costs: Even when simulating many sound
sources, our system can mix hundreds of audio streams in realtime.
We assume that all clients have 3 audible streams to be mixed.

In traditional spatial VoIP systems, occluded voices not in direct
line of sight would fade out to silence and therefore would not
be considered for mixing, which can indirectly improve the com-
pute and bandwidth scalability of the system. In our case, occluded
voices will still be considered for clustering as they might be audi-
ble due to early scattering and reverberation which will decrease the
forwarding-to-mixing ratio and therefore require more processing.

We measure performance by the number of audio streams that can
be rendered simultaneously. For our purposes, an audio stream is
the data that must be mixed for each source to each receiver. For
example, if a single source is within range of three receivers, three
streams would need mixed. Details on how our method scales with
streams is shown in figure 7.
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Figure 7: Runtime scaling: Implementations of our method can
scale up to thousands of sources while rendering all streams in re-
altime (i.e. less than 100% processor time used).

6 Discussion and limitations

6.1 Comparison

Other pre computation methods have been presented. However,
none focus on fast rendering and automatic scene decomposition,
both needed when rendering large scenes with many sources. We
compare our approach to other pre computation methods in Figure
8.

Figure 8: Method comparison: Ours is the only methods that
allows simulation of many sources on large scenes at realtime rates.

Frequency and time decomposition: Other solutions introduced
frequency-domain precomputation based on acoustic rendering
equation [Siltanen et al. 2009] but were limited to static sources.
Recently, [Antani et al. 2012] extended the approach by precom-
puting acoustic transfer operators. This approach can only handle a
few moving sources, is limited to diffuse reflections and its storage
overhead (50-100X) is quite high as compared to our method.

Numerical propagation: Numeric based precomputation ap-
proaches [Raghuvanshi et al. 2010] are more accurate than GA
methods and can model high order diffraction and scattering effects.
However, the complexity increases as a fourth power of frequency
and a linear function of the volume. As a result, they are limited
to small indoor scenes. The accuracy of our approach is ultimately
limited by the use of GA for the simulation step. However, while
it relies on geometrical criteria, we believe our similarity measure
and adaptive sampling could be used independently from the actual
simulation technique and provide speed-up to previous approaches
such as [Raghuvanshi et al. 2010].

Cell and portals: Many games and interactive applications use
cell-and-portal scene decompositions and this can be utilized to pre-
compute higher-order reflections of sound between moving sources
and listeners using ray tracing [Foale and Vamplew 2007; Stavrakis
et al. 2008; Tsingos 2009]. These approaches typically store IRs
sampled at a single position for each cell and/or portal encountered
along the paths between the source and the listener but require sig-
nificant manual intervention to define regions and portals which is
unpractical for large-scale environments. Defining cells and portal
suitable for acoustic rendering can often be unintuitive, in particular

for outdoor situations. In contrast, our solution provides an implicit
and automatic definition of regions without manual intervention.

6.2 Limitations

Our approach introduces several approximations to the reverber-
ation process. First, we render integrated decay profiles recon-
structed with random phase, instead of the original impulse re-
sponses. This reduces the accuracy with which the early reflections
can be rendered. In particular, flutter echoes might not be captured
by this approach unless the number of sub-bands is increased. How-
ever, it is sufficient to capture relevant acoustical cues such as sur-
face proximity effects and diffraction by obstacles. Second, the late
reverberation is rendered on the client using an approximation to the
dry cluster signal. This was found to have very limited impact on
the perceived quality of the reverberation as the reverberation filter
itself is modeled with random-phase. In the supplemental material,
we provide several examples comparing the result of the convolu-
tion with a reference binaural impulse response generated from our
simulation to our deferred reverberation processing using the cor-
responding decay profile.

Since are similarity reduction process is a heuristic based on the ge-
ometric data that forms the first order response, it may fail in some
case to accurately estimate the late response. In scenes where the
depth variance is very large, the early response time cannot be re-
liably estimated from local geometry. Also, in scenes with large
amounts of occlusion, the earliest response is often the result of
diffraction paths and our method may not handle these scenes ro-
bustly.

Additionally, our reduction metrics will be overly conservative in
some scenes. In scenes with small enclosed areas, our method may
not find similar points even if the regions are acoustically simi-
lar, since line-of-sight is used to determine sample point merging.
Cases which cause the similarity heuristic to fail can result in un-
der sampling and over sampling, possibly resulting in environment
acoustic maps that are not accurate or larger than necessary.

7 Conclusion and Future work

We have presented a VoIP system that can scale to thousands of
clients in massive environments. We provide early and late acoustic
responses appropriate to the environment complete with diffraction
and reverberation effects. With an efficient server-side GPU imple-
mentation, our system can perform well with low hardware cost.

In the future, we plan on investigating additions to adjust the acous-
tic response based on dynamic objects using precomputed filters.
We also would like to study possible perceptual reduction methods
to further reduce the number of samples that must be stored.
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