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Abstract

Motivated by a vision for future global-scale services supporting fre-
quent updates and widespread concurrent reads, we propose a scalable
object-sharing system called wacco offering strong consistency seman-
tics. wacco propagates read responses on a tree-based topology to sat-
isfy broad demand and migrates objects dynamically to place them close
to that demand. To demonstrate wacco, we use it to develop a ser-
vice called loko that could roughly encompass the current duties of the
DNS and simultaneously support granular status updates (e.g., currently
preferred routes) in a future Internet. We evaluate loko, including the
performance impact of updates, migration, and fault tolerance, using a
trace of DNS queries served by Akamai.

1 Introduction

Today’s Internet is served by infrastructures that, in general, scale remarkably
well to the massive demands placed on them. Both the Domain Name System
(DNS) and content-distribution networks (CDNs) are examples of dramatic feats
of engineering that facilitate global and quick access to content. The power of
these infrastructures, however, derives in part from the largely static nature
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of the data they serve. DNS scales through caching on the basis of time-to-
live (TTL) values that are typically large enough to hide updates from parts
of the network for minutes or hours. CDNs serve primarily static data or else
data that, if updated, need not be viewed consistently by different parts of the
network.

The viability of such approaches may be challenged, however, as the Inter-
net evolves. Multiple visions for future Internet designs anticipate the need to
support more dynamic information in the network (e.g., SCION’s address and
path servers [43], NIRA’s NRLS [41], or rendezvous servers to support mobility
in content-centric networking [24]), which may enable, e.g., mobile network lo-
cation, dynamic route control, or diagnosis of network anomalies. Because this
information can change quickly — in some cases at the granularity of seconds
or less — there is a need for infrastructure services that support dynamic up-
dates, strong consistency, and global scalability. Even for existing uses to direct
clients to servers or to exercise route control, today’s DNS has limited ability
to provide fine-grained control (e.g., [33, 35]), and we expect this shortcoming
to become more acute in the future.

In this paper we describe a system called Wide-Area Cluster-Consistent
Objects (wacco). wacco manages access to stateful, deterministic objects
that support invocations of arbitrary types, each of which is either an update
that may modify object state or a read that does not. Objects are managed on
a tree-based overlay network of proxies that is arranged with respect to geogra-
phy; i.e., neighbors in the tree tend to be close geographically or, more to the
point, enjoy low latency between them. Each client is assigned to a nearby proxy
to which it connects to access objects, and object access is managed through a
protocol that offers a novel type of consistency that we dub cluster consistency.
Cluster consistency is strong: it ensures sequential consistency [3, 26] and also
that clusters of concurrent reads see the most recent preceding update to the
object on which the reads are performed. The resulting agreed-upon order and
rapid visibility of updates facilitate a wide range of applications, e.g., network
troubleshooting, trajectory tracking of mobile nodes, and content-oriented net-
work applications.

wacco achieves scalability via two strategies. First, wacco uses the tree
structure of the overlay to aggregate read demand, permitting the responses
to some reads to answer others. As such, under high read concurrency, the
vast majority of reads are not propagated to the location of the object; rather,
most are paused awaiting others to complete, from which the return result can be
“borrowed”. Second, wacco uses migration to dynamically adjust each object’s
location, permitting the object to follow demand as it fluctuates, e.g., due to
diurnal patterns.

To demonstrate and evaluate wacco, we use it to build a service called Low-
Overhead Keyspace Objects (loko). loko permits clients to create, modify and
query keyspace objects. A keyspace is identified by a public key pk , and the
keyspace for pk stores (or generates) mappings, each from a query string qstr
to a value val and bearing a digital signature that can be verified by pk . So,
querying the keyspace for pk for the string nytimes/publicKey, e.g., might
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return the signed public key certificate that the owner of pk believes to be for
nytimes. Similarly, the query www/bestRoute on the keyspace identified by
pk ′ might return a signed mapping indicating the currently preferred route to
reach the web server representing the owner of pk ′. By iterating queries to a
“chain” of keyspaces, each referring the client to the next keyspace in the chain,
a client could securely resolve a multipart pathname, much as is done with
DNSSEC [2]. In this respect, loko could encompass one of the main duties of
today’s DNS/DNSSEC, while supporting more dynamic mappings due to the
consistency provided by wacco.

In evaluating loko (and wacco), we were handicapped in not having a
global workload for such a service. So, we approximated a global workload us-
ing a trace of over 4.4 billion DNS requests served by Akamai servers over 36
hours to 83,448 clients in four geographic regions across Asia, North America,
and Europe. We used this trace to drive 76-proxy emulations of loko with net-
work delays induced to represent a loko deployment across these four regions.
Our emulations show that loko provides good latency for operations, e.g., with
up to 89% of reads completing in under 100ms. We also show that loko can
sustain the full per-proxy query rate represented by the Akamai trace, while
guaranteeing cluster consistency. We illustrate the effectiveness of the compo-
nents of our design using measurements from these emulations.

We begin by presenting related work in Sec. 2. We discuss our design goals
in Sec. 3 and present the design of wacco in Sec. 4. Our evaluation (including
a description of loko) is in Sec. 5, and we conclude in Sec. 6. In the appendix
we define cluster consistency and prove that our protocol implements it.

2 Related Work

The use of a tree-based topology in wacco for object access is reminiscent of
hierarchical caching, which has been studied and deployed extensively for wide-
area systems such as the World-Wide Web (e.g., [7, 30, 37]). In some respects,
wacco can be viewed as using polling-every-time cache validation [6], in which
the authoritative object copy is consulted before returning a cached answer in
order to enforce strong consistency. wacco uses two strategies to reduce the
overheads and response latencies induced by such polling: (i) it leverages the
tree structure to aggregate polling by many concurrent reads into few messages
along the tree. This aggregation also allows wacco to reduce polling latency by
using ongoing polling requests to accelerate others; this strategy has implications
for the consistency offered by wacco, which we characterize precisely; (ii) it
migrates the authoritative object copy closer to where demand is largest, an
option available to wacco because it manages the authoritative copy of each
object itself, in contrast to web caches that do not.

Many wide-area caching, edge service, and storage designs are also related to
our work; space limitations preclude a comparison to all of them. That said, if
a replication (or caching) scheme is to prevent conflicting object versions and to
make updates available to reads immediately, it must apply reads and updates
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at a quorum of replicas that intersects the quorum used in another update [13,
18]. Different designs use different quorum systems; e.g., in read-one-update-all
quorum systems, every proxy (the update quorum) must be contacted on the
critical path of an update. CASCADE [9] is such a system (when configured to
use its strongest consistency level). wacco uses a quorum per object consisting
of a single authoritative copy, uses a tree-based overlay to reach this copy, is
optimized toward widespread concurrent read load and moderate concurrent
update load, and, to our knowledge, offers a new type of consistency achieved
by a novel combination of aggregation and migration.

Some designs offer stronger consistency than wacco. For example, Scat-
ter [15] supports linearizability [21]. However, partly due to its use of dis-
tributed hash tables, it does not offer the same benefits of request aggregation
and geographic proximity that wacco achieves through its tree structure and
migration. Spanner [10] also implements linearizability, though it does so in part
by relying on synchronized real-time clocks, which wacco does not, and again
does not leverage request aggregation. Other systems offer weaker consistency to
improve partition-tolerance: e.g., COPS [27] implements causal consistency [1].
Here, we strive for stronger consistency and necessarily1 presume that partitions
in future Internet architectures will be negligibly rare (e.g., due to redundant
routing paths [40, 38, 31]).

Our implementation of loko as a demonstration of wacco is motivated by
shortcomings of the current DNS for future Internet architectures or even for
serving more dynamic data in support of today’s mobility and content manage-
ment (e.g., see [33, 35]). These shortcomings have led to numerous attempts to
modify DNS usage (e.g., [39]), to enhance DNS operation (e.g., [8]), to replace
it outright with alternative designs (e.g., [23, 11, 35]), and to understand the
tradeoffs between new designs and the current DNS (e.g., [34]). CoDoNS [35] is
a noteworthy design that, like loko, decouples namespace (or keyspace) man-
agement from the location and ownership of name servers (in our parlance,
proxies) and accelerates the propagation of updates to clients. It provides fast
read response via a dynamic replication technique that ensures that a large per-
centage of requests can be answered immediately by the first proxy to receive
the request. However, as in the discussion of quorum systems above, consis-
tency then requires that all of these replicas be updated (or invalidated) when
an update occurs, making updates more costly. loko is a different point in the
design space that anticipates more frequent updates and so strikes a different
balance between read and update cost — one that still favors reads particularly
when read load is high but that lessens the number of proxies that updates must
alter.

1Gilbert and Lynch [14] proved that linearizability is impossible to achieve if all operations
must return even when partitions occur. The proof applies equally to cluster consistency, the
property that wacco provides.
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3 Design Considerations and Goals

We anticipate an object access workload that is generally read-dominated —
maybe by orders of magnitude — but that may nevertheless involve frequent
and even concurrent updates per object. Updates to an object may be frequent
due to the transient nature of the information used to update an object (e.g., the
current performance characteristics of a network link), and object updates may
be concurrent due to contributions from many parties (e.g., one per link, for an
object that calculates preferred routes based on current characteristics of many
links). Such workloads temper our willingness to trade update performance for
read performance arbitrarily, e.g., as in a typical read-one-update-all system
(see Sec. 2). Rather, wacco takes a more balanced approach that favors read
performance but that still limits updates to a single authoritative object copy.

The consistency implemented inwacco implies sequential consistency [3, 26]
(and more, see below). Sequential consistency is a “strong” consistency model:
it implies that clients observe update operations to objects in the same total
order (cf., [3, Ch. 9]). Sequential consistency implies causal consistency [1]:
updates related by potential causality [25] (e.g., a client reads an update and
then performs another) will be observed by any client in order of their potential
causality. But unlike causal consistency, sequential consistency also implies that
all clients will observe all updates that are not related by potential causality in
the same order.

Despite its strength, sequential consistency does not guarantee rapid propa-
gation of updates: in the limit, a client of a sequentially consistent (only) object
store is permitted to read the same value for an object for an arbitrarily long
period, even if other clients update that object. As such, our goal is to enforce
rapid propagation of updates, i.e., updates “take effect” (nearly) immediately.
Linearizability [21] strengthens sequential consistency by mandating that an up-
date be observed by any operation on the same object that begins after (in real
time) the update operation returns to its caller. However, linearizability comes
at substantial performance cost [3, Ch. 9], and so we adopt a weaker require-
ment that nevertheless strengthens sequential consistency so that updates take
effect quickly.

The middleground we adopt allows read operations on the same object to
be partitioned into clusters of concurrent reads,2 so that all reads in each clus-
ter return results based on the latest update preceding the cluster in real time
(or a more recent update, i.e., one concurrent with the cluster). The resulting
consistency property, which we term cluster consistency, is weaker than lineariz-
ability in that a read returns results based only on updates that preceded the
cluster containing it, rather than all updates that precede the individual read.
(Updates to the same object are still ordered according to their real-time order,
however.) In exchange for this weaker property, we show that cluster consis-
tency can be implemented scalably in wide-area settings by permitting a read to

2More specifically, in each cluster, the union of real-time intervals beginning with each read
invocation and ending with its return, is contiguous. See App. .2 for details.
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carry responses to other reads in its cluster, thereby accelerating the responses
of those reads and reducing load on the authoritative copy.

Cluster consistency still permits a read operation to observe a stale value,
but only if the operation is in a cluster of other reads that began before the
latest update completed. In this respect, cluster consistency might be viewed as
a weakening of linearizability that is analogous to how obstruction freedom [20]
weakens wait freedom [19]: Wait freedom ensures that a client can drive its
operation to completion in finitely many steps, whereas obstruction freedom
only ensures this property if all other clients are inactive for sufficiently long.
Analogously, cluster consistency ensures that a read returns the most recent
value if other clients are inactive during this read. We note, however, that
wacco’s implementation of cluster consistency limits the other read operations
with which a read can be clustered to one per proxy, and so even when other
reads are active, the value it returns can be only as stale as that returned by
the earliest of these other reads.

Beyond applications to future Internet designs (see Sec. 1), we also see
cluster consistency as potentially useful in nearer-term applications of wacco,
e.g.:
• Network troubleshooting Updates from network sensors that publish to
wacco will appear in the same order, enabling consistent diagnosis and ac-
tuation of the network by distributed analysis engines. For example, routing
anomalies caused by MED oscillation [16] and BGP policy divergence [17] in
today’s Internet require distributed monitoring to quickly detect and react to
an anomaly, e.g., by modifying local routing policies to eliminate the diver-
gent behavior and so to minimize its impact on traffic. A cluster-consistent
view of routing updates published to wacco will make it simpler for dis-
tributed monitors to concur on the anomaly and effect changes in policy
at multiple locations to rectify the problem. Another example is real-time
response to routing pollution, e.g., prefix hijacking [44]. Rapid update propa-
gation and consistent event ordering (e.g., which networks are polluted first)
could help reveal the source of pollution and enable a faster reaction to the
propagation of polluted routes.

• Trajectory tracking of mobile nodes Predicting the future location of a
mobile endpoint (e.g., a train) for use in routing (e.g., [32]) would be greatly
simplified with a cluster-consistent view of the endpoint’s trajectory. For ex-
ample, if each network appends its name to a wacco object representing the
endpoint’s trajectory when the endpoint attaches to the network, cluster con-
sistency implies that the trajectory will be accurate. A weaker property like
causal consistency might yield incomplete and even conflicting trajectories,
since appends would not be causally related (in the sense of Lamport [25]).

• Online gaming applications To keep online games fair to all players, it
can be at least as important for users see the same content as it is that the
content they see is the most up-to-date [12, 28]. Such applications can be
simplified if built on objects that appear to all clients to be modified in the
same order.
As suggested in Sec. 2 and detailed in Sec. 4, wacco implements cluster
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Figure 1: Example of pausing some reads and resuming them later

consistency using a protocol in which each read cluster collectively polls an
authoritative object copy before returning responses for the reads it contains.
Prior work has generally found polling costlier than cache invalidation (e.g., [6]),
and in ongoing work we are investigating scalable designs for implementing
cluster consistency using cache invalidations. That said, polling serves dual
purposes in wacco; in addition to consistency, polling messages carry load
information to the proxy holding the authoritative object copy, which it uses to
determine if the object should be migrated. Migration enables an object to be
placed closer to the predominant sources of demand and, as we will show, can
significantly reduce response times for operations.

4 wacco Design

The object-sharing protocol that underlieswacco utilizes a logically tree-structured
overlay network that spans a collection of proxies. This overlay network should
be assembled in a “geographically aware” manner, i.e., so that geographically
close (and so presumably well-connected) proxies are also close to one another
in the tree. The manner in which a client is paired with a proxy can be decou-
pled from the rest of our system design; our present design simply leverages a
few widely-known proxies to refer each new client to a proxy near it. We as-
sume that each client interacts with only a single proxy at a time, awaiting the
completion of any operations it issued to one proxy before switching to another.

The proxies provide clients with access to a set of objects. A client sends
a read or update invocation for an object to its proxy and awaits a response
from that same proxy. Updates (potentially) modify the object state; reads do
not. Our protocol description and proof presume that a read simply returns
the current object state, though a proxy can instead return to the client a
customized result derived from that state. Sec. 5.1 gives an example of this
behavior in the context of loko.
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4.1 Basic Protocol

wacco maintains a single authoritative copy of each object. At any point in
time, the proxy at which this copy of the object resides is said to host the
object and, synonymously, to be the location of the object. Proxies implement
a protocol to route client invocations toward the current location of the object
over tree edges (see [36]). Once performed on the object, an operation’s response
is routed back over the tree to the client that invoked it.

While all update invocations are always routed to the object itself, a read
invocation will be paused in the tree if the invocation, while en route to the
object, encounters a proxy that already forwarded a read request for the same
object and has not yet received a response. The paused read will not be for-
warded further in the tree; rather, it will be held by the proxy until the response
to the invocation on which it paused is returned. When that response arrives,
it can serve as the response for any read invocation on the same object that
was paused awaiting it and that meets certain conditions described below. In
this way, a single read invocation that reaches the object may, in fact, end up
serving numerous read requests that are paused on it elsewhere in the tree. This
effect is shown in Fig. 1, where the second and third reads are paused waiting
on the first (Fig. 1(a)) and then adopt the response to the first read as their
own (Fig. 1(b)).

Pausing read requests in this way offers at least two benefits. First, it reduces
overall latency in comparison to forwarding each request all the way to the
object, since the read request on which another is paused is farther along the
path to the object (and so should solicit a response sooner) than the paused
read is. I.e., in Fig. 1(a), the first read is at least as close to the object as the
second or third read is when each is paused, and a response may even already
be traversing the path back. Second, in comparison to forwarding every read
request to the object and returning each read response individually, pausing
reduces bandwidth use, routing costs to proxies, and computational load on the
proxy hosting the object.

Pausing also presents some challenges. First, a paused read constitutes state
that a proxy must store until the response for the read on which it is paused
returns, possibly opening the door to resource exhaustion. That said, aside
from read invocations submitted to a proxy directly by clients, the number of
paused reads for an object that a proxy must maintain simultaneously is limited
by the number of its neighbors. Reads submitted to a proxy directly by clients
(and that are paused) still pose a denial-of-service risk, but it can be managed
using any of several techniques (e.g., [22]), and moreover, dropping these read
requests as needed can never interfere with other reads (since none are paused
on these reads). Resource exhaustion will be discussed further in Sec. 4.4.

Second, pausing erodes the consistency of the protocol, and, indeed, to
achieve cluster consistency — and specifically to achieve the sequential con-
sistency that implies — we must restrict which read responses can be used to
respond to paused reads. Intuitively, implementing cluster consistency requires
that a paused read is not answered by an incoming response that is too out-
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dated. Specifically, as we prove in the appendix, the following conditions suffice
to implement cluster consistency: Each read request from a client carries the
largest Lamport time [25] at which any update that the client has observed was
applied, and each read response carries the Lamport time at which the response
was emitted from the authoritative object. A read response that returns to a
proxy can be used to satisfy a read request paused at that proxy only if the re-
sponse’s timestamp exceeds the request’s timestamp. If this requirement leaves
any reads paused at the proxy unsatisfied, then the proxy unpauses one and
forwards it along toward the object.

4.2 Caching

Each object state has a version number (an integer, initially zero). Applying
an update to the object increments that version number. wacco uses these
version numbers to optimize the protocol above as follows.

Each proxy maintains a cache holding at most one cached state per object.
The proxy is free to delete states from this cache and manage it using policies
independent of those of other proxies. Each read request is augmented to carry
a version number. If upon receiving a read request with version number v (new
read requests submitted by clients have v = −1), a proxy has a version v′ > v
of the relevant object in cache, then the proxy can increase the read request’s
version number to v′ when forwarding it. If it does so, the proxy is said to have
taken responsibility for the request and is obligated to retain the cached object
state until it has responded to this request. (Our current proxy implementation
defaults to taking responsibility; others could do so more selectively.)

When responding to a read request, the proxy hosting the authoritative
copy sends the object state (as in Sec. 4.1) if the current object version is larger
than the version number in the read request, and sends same otherwise. On
receiving a response to a read for which a proxy took responsibility, the proxy
identifies the latest object version it now has — either the object state in the
response or, if the response was same, the version in its cache — and responds
to paused reads similarly (subject also to the constraints of Sec. 4.1 on Lamport
timestamps). I.e., it returns same to paused reads bearing the version number
of the proxy’s latest object version, and it responds with the latest object state
to the rest.

A proxy that forwards a read request but that does not take responsibility
for it might receive a same response, at which point it may not have the latest
object version and so would be unable to respond to any paused read bearing
an older object version number. Thus, one of these reads is unpaused and
forwarded toward the authoritative object, as discussed in Sec. 4.1. Forwarding
any read request bearing an old object version number guarantees a response
containing the object state, and so when the proxy selects one to unpause and
forward, it prefers those with smaller object version numbers.
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4.3 Migration

wacco responds to demand by strategically moving objects among proxies, a
process called migration. E.g., a proxy may migrate an object to a neighbor
that is forwarding a majority of the invocations for that object, or a proxy that
is becoming too heavily loaded may choose to migrate objects away. In this way,
migration can be used to reduce load by moving objects closer to areas of greater
interest and to otherwise reposition load as needed to deal with hotspots. The
former use of migration is particularly beneficial for loko (see Sec. 5), since
it can be used to position objects to best serve the time zones that are most
active at a particular time of day. Moreover, many entities will be accessed with
a clear geographic preference — e.g., Chinese websites will likely be accessed
mostly from China — and so migration makes sense for positioning such an
object near where it is accessed most.

wacco is not closely tied to the mechanics of migration; it requires only the
ability to migrate an object from a proxy to its neighbor between invocations.
So while wacco uses the migration mechanism in Quiver [36], other migration
mechanisms would also work. That said, effective migration requires us to
resolve two issues. First, we must determine from where an object is currently
experiencing the most load; because of paused reads, no single proxy necessarily
observes the entire load on an object. Then, we need to determine the specific
conditions under which an object should be migrated.

The first issue is resolved in wacco by appending to each message carrying
an object invocation the number of read invocations for that same object that
were recently paused along the path the message has traveled. If this invocation
is paused, the proxy that does so accumulates the message’s count into a per-
object, per-neighbor counter (using the neighbor that sent the invocation) that
the proxy maintains and then further increments this counter by one (for the
newly paused invocation). Otherwise, the proxy adds all its counters for this
object into the field on the invocation message and forwards the message along
toward the object, subsequently zeroing each of these counters. Fig. 1(c) shows
an example where the field of a fourth read invocation, initially with value 0,
is updated to 1 at the proxy where read3 was formerly paused and then to 2

as it travels through the proxy at which read2 was formerly paused. In this
way, a count of paused reads trickles toward the object at all times, which the
hosting proxy can similarly incorporate into per-object, per-neighbor counts
of paused invocations. (Update invocations cannot be paused, but the hosting
proxy incorporates them into this count, as well, so that updates too are reflected
in the load calculations.)

As described so far, this approach for conveying the numbers of paused
reads to the proxy holding the object does not adjust these counters for the
passage of time, but intuitively such adjustment is necessary — reads paused
ten minutes ago should have less bearing on whether to migrate the object than
reads paused within the last few seconds. For this reason, each wacco proxy
decays its per-object, per-neighbor counters to account for the passage of time
before incorporating them into invocation messages bound for the object or
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calculating whether to migrate an object. In our present implementation, the
proxy decays these counters linearly as a function of the time that passed since
last unpausing (and returning values for) reads for that object, i.e., the interval
between the proxy seeing the last object response and the subsequent object
invocation.

Finally, the a proxy holding the object must determine whether to migrate
an object and if so, to which of its neighbors. In our implementation, the proxy
hosting an object periodically sums its per-neighbor counters for that object
and, if one such counter accounts for more than a fraction m of this sum (for a
fixed threshold m), then the proxy asks the neighboring proxy corresponding to
that counter to migrate the object to it. That neighboring proxy might not do
so (e.g., because it is already hosting too many other objects), but otherwise it
initiates the object migration. Note that the threshold m value can be different
per object, though in our present implementation we use the same m for all
objects.

4.4 Resilience

Fault tolerance In wacco as described so far, a proxy failure would dis-
connect the tree until the proxy recovers. A generic approach to tolerate proxy
failure is to locally replicate each proxy; e.g., in our implementation, each proxy
can optionally have a backup to which it commits any meaningful change in
internal state [5, §8.2.1] before acting on it. In wacco, such changes include
changes to an object (due to update operations) and changes to internal rout-
ing tables (e.g., due to migration). In a straightforward implementation, this
primary-backup configuration would double hardware requirements. In practice,
we expect clusters of proxies to reside in datacenters in major metropolitan ar-
eas, in which case these proxies can provide backup service for others in the
same datacenter.
Denial-of-service defense The most acute threat of denial-of-service at-
tacks is interfering with proxy-to-proxy communication. Multi-path routing
(e.g., [40, 38, 31]), using private leased lines, or other suitable defenses (e.g., [42])
can mitigate the threat of link overload. Each proxy should also ensure that it
reserves adequate resources to retain communication with its neighbor proxies,
e.g., by using two network interfaces, one dedicated to proxy-to-proxy commu-
nication and the other for serving clients that contact it directly. Moreover,
proxies can prioritize tasks for managing inter-proxy activities ahead of those
responding to clients and can terminate (or refuse) client requests in favor of
retaining proxy-to-proxy communication.

Migration creates the risk of a degradation of service if a flood of read re-
quests can migrate an object (see Sec. 4.3) far from the legitimate demand. If
the region of legitimate demand is known in advance, this risk can be mitigated
by each object expressing to wacco its preferences or requirements for where
it can be hosted. (This mechanism is also useful to enforce regulatory con-
straints on where data can reside.) Otherwise, allowing only authorized reads
(see Sec. 5.1) to influence migration can mitigate this risk.
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5 wacco Evaluation

We have implemented wacco in Java. Our implementation consists of roughly
11,500 physical source lines of code. To evaluate wacco, we used it to construct
a service called loko, which we describe in Sec. 5.1. We then describe the traces
that we use to induce a realistic workload on this service in Sec. 5.2. We describe
our experimental setup in Sec. 5.3 and our results in Sec. 5.4.

5.1 loko

As discussed in Sec. 1, we have used wacco to implement a service called
loko that hosts keyspace objects. A keyspace is identified by a public key pk
and stores (or generates) mappings, each from a query string qstr to a value
val . When responding to a query, the keyspace sends the mapping qstr → val ,
digitally signed so that it can be verified by pk . The signature could be inserted
into the keyspace through an update invocation, or the keyspace could produce
the signature itself using a private key it holds. The latter strategy might be
appropriate for keyspaces that generate responses dynamically.

Generating dynamic responses is useful, e.g., to support CDNs by customiz-
ing the content-server address returned in response to a read query. I.e., a
keyspace for pk , when queried for nytimes/www/address, could select the an-
swer val from a set of candidate addresses based on load conditions and the
address of the client. (This selection would be performed by the proxy directly
returning the response to the client.) The cluster consistency offered by loko

would improve the responsiveness of this mapping to changing conditions over
that provided by DNS today (cf., [33]). Of course, keyspaces can also be used
to store static mappings, e.g., to addresses or public keys, and keyspaces can be
queried iteratively to resolve hierarchical names, analogous to DNS/DNSSEC
today.

Any loko object can enforce its own access control by checking a signature
for each invocation — possibly the same one that it will store and return in
response to read invocations later. But by virtue of it having a public key,
a keyspace enables the enforcement of coarse access-control policy at the first
proxy to receive a request for it, even if that proxy does not host the object. That
is, we could extend loko so that a proxy, upon receiving a read request for the
keyspace identified by pk from a client, confirms that the request is accompanied
by a delegation credential signed by the owner of pk and that authorizes the
read. The proxy would do so prior to acting on the read request, dropping it
if the check fails. This defense would hinder attempts to migrate the keyspace
away from legitimate demand by submitting unauthorized read requests in order
to degrade service (see Sec. 4.4). We have not yet implemented this extension,
however.
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5.2 Traces

The data we used in our evaluation of loko (and hence wacco) are traces of
DNS queries received by Akamai, collected for 36 hours beginning 6am, March
9, 2011. In addition to serving DNS queries for domain names of its own,
Akamai also serves queries for the domain names of a number of customers. The
dataset includes queries of both types and reportedly includes all queries Akamai
received during that period by 357 of these (globally distributed) servers.

We stress that the goal of using Akamai data was not to evaluate loko

as a DNS replacement per se but to subject loko to a global workload with
diurnal patterns and regional object affinities. Thus, when populating objects
and generating a workload for our evaluation (see below), we strived primarily
to preserve the object-access and client distributions.

5.3 Experimental Setup

Hardware Our experiments consisted of emulations run using 4 servers, each
with 64 2.3 GHz cores and 128 GB of RAM. Most emulations used 76 proxies
spread across the servers — an average of between 3 and 4 CPUs each. In our
fault-tolerance experiments, though, each proxy was given a backup, resulting
in 152 proxies on the same hardware.
Proxy placement Recall that the number of servers (with consistency falling
short of loko) that Akamai dedicates for the load that our traces represent
is 357, and so we needed to scale down the Akamai trace to permit a realistic
evaluation for 76 proxies. To do this, we selected 4 geographic regions that
accounted for 72/357 = 20.2% of all queries in the original trace and allocated
72 proxies to those regions proportionally to the number of requests originating
there.3 (The remaining 4 proxies in our experiments are described below.) The
20.2% of the original trace that we used included 4,460,838,100 queries spanning
1,009,689 domain names and 83,448 clients. Clients at each region were then
assigned to that region’s proxies to yield a roughly balanced number of queries
at each proxy (but while ignoring the contents of those queries). There was one
region in Asia, one in Europe, and two in North America, and so we believe
this methodology produced a reasonable approximation to a global workload.
While client requests drive our experiments, we do not instantiate (or measure)
clients themselves, so latency between a client and its proxy is not represented
in our measurements, nor are client computational costs. See App. .1 for more
statistics about the data and how those statistics informed our experimental
setup.
Network latencies To generate the tree topology for our experiments, we
added an additional head proxy per region and built a minimum spanning tree
covering the head proxies using geographical distance as our distance measure.

3More precisely, we first geolocated the clients in the Akamai traces using the database
from IP2Location (http://ip2location.com) and truncated each one’s latitude and longitude
to an integral value, yielding its “region”. We allocated a number of proxies to each selected
region proportional to its queries; e.g., if one region originated 10% of the 20.2% of queries
selected from the original trace, then it was allocated 10%× 72 = 7 proxies.
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Each region’s other proxies were then organized in a balanced ternary tree under-
neath the region’s head. So, the total proxies in each experiment was 72+4 = 76,
of which only the 72 non-head proxies accepted requests from clients directly.
Once the tree was fixed, we estimated latencies between neighboring proxies as
a linear function of the geographical distance between them, where this function
was calculated using linear regression on real distance/latency pairs.4 We em-
ulated proxy-to-proxy latencies at user level, using the method implemented in
the EmuSockets toolkit [4].5 We did not limit the bandwidth between proxies,
because we do not expect loko to even remotely tax the capacity of future
networks (or even today’s).
Keyspace objects We used the queries selected as described above to pop-
ulate keyspace objects as follows. Every DNS query indicates a DNS zone, the
requested name in that zone, and a query type (e.g., IPv4 host (A) record, name
server (NS) record). We created a keyspace object per zone and initialized it
with a field for each name within that zone for which an A record was requested
(e.g., “www/A”), since A records were by far the most common form of query.
We assigned a random 16-byte value to each such field. We made no effort to
represent resource records in keyspaces more explicitly, remembering that the
goal of using the Akamai traces is to induce a realistic global workload on loko,
not to make loko mimic DNS faithfully. Rather than signing each mapping
individually, we compute a Merkle tree [29] over the mappings, signed by the
private key corresponding to the keyspace’s public key. The Merkle tree is tran-
sient; i.e., only the signed root is sent when the keyspace is copied (to support
a read) or migrated; the interior nodes are recomputed on demand.

Prior to each measurement run of loko, we determined the starting location
of each object by executing a warmup. The warmup migrated each keyspace
object to its dominant proxy, i.e., the proxy that will make the most requests
of it during the run. The warmup thus implements an optimal static placement
of keyspace objects for the run.
Update operations As the Akamai traces include no updates, we introduce
them artificially: For a parameter u ∈ [0, 1], each read operation for a keyspace
submitted to its dominant proxy was converted to an update operation with
probability u.

If a query was chosen to become an update, an update was generated in its
place for the relevant keyspace object, consisting of the relevant query name and
query-type string (e.g., “www/CNAME”), a 16-byte value, and a 128-byte digital
signature on the root of that keyspace’s new Merkle tree (i.e., the previous

4We took round-trip latencies (ms) from AT&T (see http://ipnetwork.bgtmo.ip.att.

net/pws/current_network_performance.shtml) on 9 Oct 2011 from Kansas City to 24 other
cities in the continental US, as well as from San Francisco to Hong Kong, New York to London,
and Washington to Frankfurt. We then obtained distance estimates (miles) for these city
pairs. Using simple linear regression, the best fit line to these distance/latency points was
y = 0.019732193x + 8.712212072 with an R2 of 0.96820894, indicating a strong goodness of
fit. We believe our use of distance-based latencies from within a single provider’s network is
reasonable, since our service may well be implemented by a major global provider.

5This design is an artifact of our trying out several different platforms for our emulations,
including some where we were restricted to user-level modifications only.
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Merkle tree updated to reflect the newly added or modified field). The accepting
proxy verified the signature using the keyspace’s public key. Since client costs are
not included in our measurements, signature generation for update operations
or signature verification after a read were omitted.
Time scaling Though the Akamai trace was 36 hours in length, it would have
been impractical to allocate a full 36 hours for each experiment we planned to
run. Simply truncating the trace would hide important features, notably any
diurnal pattern. As such, we “compacted” the trace as follows, while retaining
its features. Each experiment was parameterized by a sampling rate s ∈ (0, 1]
and an acceleration a ≥ 1. Each query in the trace was replayed in the ex-
periment independently with probability s, and the trace was accelerated by a
factor of a. So, in a period in which the rate of requests in the original trace
was q requests per second, sampling reduced this rate to sq requests per second
in expectation, and acceleration increased this to sq requests per 1/a second
in expectation. This method shortens the trace replay to 1/a times the orig-
inal, thereby expediting our tests; in our tests we fixed a = 48 so that each
test required 45 minutes. However, we sometimes varied the sampling rate s
between experiments. It is convenient to describe an experiment in terms of the
product sa, which we will call its load factor. For example, an experiment with
load factor sa = 0.1 has an expected request rate of 10% of the original Akamai
trace’s rate.

5.4 Experimental Results

All performance numbers in this section were produced using Java SE 7 Server.
Unless otherwise noted, we use m = 0.75 and load factor 0.1.
Updates We first explore the impact of varying the fraction of updates in
an execution on request latencies. Fig. 2 shows CDFs of operation latencies
in experiments for update probabilities u ∈ {0.0, 0.005, 0.01}, where u = 0.0
implies no updates. Fig. 2(a), shows that as updates increase, read latency
increases somewhat, because updates invalidate caches, creating the need for
more network traffic. Such cache invalidations also tend apply to larger and
popular objects (see App. .1), amplifying the effect. Despite these effects, read
latency stays low, with 89.5%, 86.7% and 84.7% of reads completing in under
100ms for u = 0.0, 0.005, and 0.01, respectively.

Latencies for the updates themselves appear in Fig. 2(b). These too perform
well, with 67.7% and 66.0% completing in under 100ms for u = 0.005 and 0.01,
respectively. This low latency is partly due to our warmup method, which
places objects at the proxy which requests them most, making many updates
local (unless the object has been migrated away). Note that this behavior is
part of our design — migration moves objects toward the proxies requesting
them most.
Migration We show the impact of object migration on operation latency
in Fig. 3. Recall that m represents the fraction of the total load for which a
neighbor must account in order for migration in the direction of that neighbor
to begin. Thus, m > 1 is impossible to satisfy and allows no migration at all.
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Figure 2: CDFs of latencies (ms) as u varies.

We ran experiments with various migration thresholds: m = 0.55 to 0.95 in
increments of 0.1, as well as m > 1.

Fig. 3(a) shows the total number of migrations for each value of m, and
Fig. 3(b) shows the impact of these migrations on operation latencies. With-
out migration, 85% of operations finished in less than 120ms. But even with
migration enabled at a very conservative threshold (m = 0.95), that figure was
reduced by 17% to 100ms. Migration at that level also reduced the total num-
ber of proxy-to-proxy messages by 19%. Objects migrated within the tree over
110,000 times, resulting in faster response times as well as fewer and smaller
network messages.

Reducing m further increases performance. At a very liberal threshold, m =
0.55, 85% of operations finished in less than 95ms. In general, the performance
differences resulting from different migration thresholds (e.g., m = 0.55 vs.
m = 0.95) are much smaller than the differences between runs with migration
and those without it (e.g., m = 0.95 vs. m > 1), because even a high migration
threshold allows objects to move quite close to their areas of demand. If an
object is far (in the tree) from the part of the tree where demand for the object
is high, then the proxy hosting that object will see that nearly 100% of the load
for that object is coming to it from whatever neighbor is in the direction of the
load. The host will thus try to migrate the object to that neighbor (see Sec. 4.3).
Thus, any migration threshold will allow migration of sufficiently out-of-place
objects toward the parts of the tree where they are in demand. The exact value
of m only becomes relevant once the object is near enough to its demand that
significant fractions of demand for it come from different neighbors. But by
that point, objects are already fairly close to the demand, and performance has
already improved substantially.
Fault tolerance We measured the effect of fault tolerance on operation laten-

16



Threshold

M
ig

ra
ti
o

n
s
 (

th
o

u
s
a

n
d

s
)

.55 .75 .95

1
0

0
1

5
0

2
0

0

(a) Migration count

Latency (ms)

P
e

rc
e

n
t

m=0.75

m=0.95

m>1

0 100 200

5
0

7
5

1
0

0
5

0
1

0
0

(b) Latency

Figure 3: Impact of varying m, with u = 0.0. Lines for some values of m are
omitted from Fig. 3(b) for clarity.

cies when using a backup per proxy (see Sec. 4.4) and u = 0.01. Fig. 4 shows the
results. As expected, the overhead of fault tolerance is much more evident for
update operations, since communication with the backup is on the critical path
of each update operation. A possible cause of the added read latency is that
we allocated no new hardware to host backups, nor did we reduce the number
of primary proxies to make room for their backups. Instead, the primaries and
their backups shared the same resources that, in other experiments, were avail-
able exclusively to the primaries. Despite the more thinly spread resources and
the synchronization costs of the primary-backup protocol, operation latencies
with backups were still reasonably close to those without.
Throughput We next present experiments that offer insights into the achiev-
able throughput of our system. In these tests, we increased the sampling rate s
and so the load factor, up to a load factor of 1.0, i.e., the same query rate per
proxy as Akamai supported in the original trace. Fig. 5(a) shows the achieved
throughput in operations per second with u = 0.01. This figure shows that
our loko implementation absorbs the full per-proxy query rate of the Akamai
trace. Fig. 5(b) illustrates one reason behind this throughput, namely that as
the operation rate increases, the efficacy of read pausing also increases, since
more reads are concurrent. This increase in read pausing then results in a re-
duced number of messages needed per operation, on average (Fig. 5(b)). Finally,
Fig. 5(c) shows that the average number of proxy-to-proxy hops a read request
travels before it is paused or reaches the object is stable, even as the load factor
increases. At load factor 1.0, each read request travels less than 1.1 hops on
average.
Consistency To better show the performance gain from cluster consistency,
we built a linearizable version of loko that we subject to the same load as the
cluster-consistent version. Since cluster consistency itself represents a very spe-
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Figure 6: Impact of varying load factor on median latency and total bytes sent
in both the cluster consistent (CC) and linearizable (LIN) versions of loko.

cific weakening of linearizability, we can revert to a linearizable version of loko
with few changes. For clarity, in this section we will refer to the linearizable
version of loko as lin-loko and the standard, cluster consistent version of
loko as cc-loko.

The main change is that lin-loko lacks read clusters. Instead, each read re-
quest passes through the tree all the way to the object (as is done in Quiver [36]),
even if other requests are concurrent for the same object. Since read clusters
contribute significantly to loko’s scalability, we expect lin-loko to succumb
to heavy loads far sooner than cc-loko does.

Lacking clusters, lin-loko can make a minor optimization. Instead of for-
warding responses back through the tree, the hosting proxy can reply directly
to the original proxy. Recall from Sec. 4.1 that the main reason responses re-
turned through the tree was so that they could answer paused reads along the
way, which does not apply to lin-loko.

A final lin-loko change is that, since no responses are sent through the
tree, proxies forwarding requests no longer update their object version numbers
— it is pointless for a proxy along the request path to take responsibility (see
Sec. 4.2) for a request if the response never actually reaches that proxy.

Fig. 6 gives the results of our comparison between cc-loko and lin-loko.
Fig. 6(a) shows the median request latency vs. load factor, with each point
representing a single run at the given configuration. The graph shows that the
two versions perform essentially equally at load factors of .012 and below. As
the load factor increases to .015, lin-loko quickly climbs to a median latency
of 150 ms. We were unable to complete lin-loko runs with load factors higher
than .015 due to the massive computational burden placed in the proxies. In
contrast, the median latency for cc-loko remains relatively constant until a
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load factor of .6. Then it begins to rise, only reaching a median latency of 160
ms at load factor 1 — equivalent to the full Akamai load. In both versions,
increasing load factor eventually causes a spike in median latency, but the cc-

loko spike occurs at load factors almost two orders of magnitude higher than
in the lin-loko case.

Fig. 6(b) shows that the total amount of data sent in the two cases. The
graph clearly shows that lin-loko sends far more traffic than cc-loko, due
to the lack of read clustering. For example, at load factor 1, cc-loko sent 177
GB. In contrast, lin-loko sent 171 GB at only .007, a difference of 2–3 orders
of magnitude. Together, these results show that the relaxation of consistency —
bounded though it is in our case — can indeed lead to dramatic improvements
in scalability.

5.5 Limitations

The Akamai data we used in our experiments is the best data we have found
for a realistic, global workload. That said, it is important to recognize that
this dataset has limitations for the purposes it is used here. First, Akamai
customers tend to be large organizations for which domain-name query activity
might be heavier and more widespread than most domain names not served by
Akamai or than other objects that one might envision in a future application
(e.g., a mobile device’s location). This tendency might yield an overly optimistic
evaluation of loko, since it makes more opportunities to aggregate (i.e., pause)
reads in the tree, but it also might yield an overly conservative evaluation, since
global demand reduces the ability to improve access latencies through migration.
Second, as already noted, the Akamai dataset contains no update operations,
and so it was necessary to fabricate them.

6 Conclusion

This paper describes the design and evaluation of wacco, a system for im-
plementing object-based services that need to support both frequent updates
and widespread, massive read demand with strong consistency. A contribution
of our work is a novel type of strong consistency dubbed cluster consistency,
which implies both sequential consistency and rapid update propagation and,
we argue, can be useful in a range of future networked applications. We used
wacco to implement a service called loko that supports keyspace objects and,
in one style of usage, could roughly encompass the current duties of DNSSEC.
Our evaluation using an emulated global topology and trace of DNS queries to
Akamai shows that loko provides good responsiveness and can scale to large
demand. Through our evaluation, we also documented the importance of object
migration and read pausing (and hence cluster consistency) to the performance
loko achieves.
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.1 Namespace statistics

In general, most namespaces in the Akamai dataset are small (i.e., having few
keys) and represent only a small fraction of the total number of queries. How-
ever, Fig. 7(a) shows that there are a few keyspaces which represent a significant
portion of the total requests. The most frequently queried keyspace object com-
prised over 14% of the total, and the 5 most frequently queried keyspace objects
comprised over one third of all requests. The distribution of keyspace sizes was
also far from uniform, as shown in Fig. 7(b). While over 88% of all keyspaces
contained less than 10 keys, some contained over one million.

In Sec. 5.3, we explained that the warmup phase of our experiments places
each keyspace object at its dominant proxy. Fig. 7(c) shows that the request
rate by the dominant proxy for a keyspace is strongly correlated with the request
rate by other, non-dominant proxies for that keyspace, implying that operation
workloads will be dominated by nonlocal operations in any static placement
of keyspaces — that is, our placement of keyspaces at their dominant proxies
at the start of each experiment does not significantly reduce their demand by
remote proxies.

The wide range of query counts per keyspace also means that update op-
erations were not uniformly spread across keyspace objects but instead were
concentrated in those that were also read most often, including read most often
from non-dominant proxies (again, see Fig. 7(c)). So, update operations caused
many caches to become invalid and thus many copies of objects to be sent, and,
because the keyspaces accessed the most often tended to be larger (Fig. 7(d)),
these sent objects also tended to be large.

.2 Definition of Cluster Consistency

.2.1 Definition

Here we define cluster consistency. An object consists of state and a set
of methods that can be invoked. Each invocation returns a response, and an
invocation/response pair is called an operation. Correct behavior of the object
is defined by its sequential specification, which specifies the return results of
operations invoked sequentially on the object.

We use op to denote any operation, and r -op or u-op denote a read or
update operation, respectively. The invocation and response for any op occur
at distinct real times op .inv and op .res, respectively, with op .inv < op .res and
[op .inv, op .res] denoted as op .interval. A history H is a set of operations and an
induced partial order ≺H defined as op1 ≺H op2 ⇐⇒ op1.res < op2.inv. If ≺H

is a total order, H is sequential. For an object obj , the set H |obj includes only
those operations in H that are invoked on obj , and for a client c, the set H |c
includes only those operations in H that are invoked by c. By convention, we
assume that H |c is sequential for each client c. (In practice, each “client” is a
client thread.) A serialization S of H is the set H totally ordered by a relation
≺S.
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(a) CDF of queries per keyspace. A few
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(b) CDF of keyspace size. Note the x-axis
is log-scale. Most keyspaces are small, but
some are quite large.
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Figure 7: Keyspace query and size distributions
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Definition 1 (Sequential consistency [3, 26]). A history H is sequentially con-
sistent if there exists a serialization S of H such that the following properties
hold: (i) Legality: For each object obj , S|obj is legal (i.e., is in the sequential
specification of obj ). (ii) Local-Order: If op1 and op2 are executed by the same
client and op1 ≺H op2, then op1 ≺S op2.

The consistency implemented in wacco, called cluster consistency, implies
sequential consistency. As such, there is a well-defined order in which updates
are applied to each object, and each update operation produces a new version of
the object on which it operates. The version number of the new object instance
is one greater than that of the object instance to which the update was applied.
Let u-op .ver be the version number of the object instance produced by u-op .

Definition 2 (Read cluster). A read cluster C is a nonempty set of read opera-
tions (i) that return the same object version, and (ii) for which

⋃
op∈C

op .interval
is a contiguous interval of time. For a read cluster C, we define C.inv =
minop∈C op .inv and C.res = minop∈C op .res. Let C.ver be the version of the
object when it was read by C.

We also represent each u-op as its own update cluster C = {u-op}, with
C.inv = u-op .inv, C.res = u-op .res, and C.ver = u-op .ver. We then use C1 ≺H

C2 (where C1 and C2 are read or update clusters) to mean C1.res < C2.inv.

Definition 3 (Cluster consistency). A set of operations is cluster-consistent if
it is sequentially consistent and satisfies Cluster-Order: There exists a partition
of the operations into clusters so that if C1, C2 are performed on the same object
and C1.res < C2.inv, then C1.ver ≤ C2.ver.

Fig. 8(a) shows an execution that is sequentially consistent but not cluster-
consistent, and so cluster consistency is strictly stronger. However, cluster con-
sistency is weaker than linearizability [21], which requires that for any op1 and
op2, if op1.res < op2.inv then op1.ver ≤ op2.ver; i.e., history precedence must
hold at the operation level, not only the cluster level. Fig. 8(b) shows a cluster-
consistent execution may not be linearizable.

.2.2 Proof of Cluster Consistency

We now prove that the protocol described in Sec. 4.1 implements cluster con-
sistency, ignoring caching (Sec. 4.2), migration (Sec. 4.3), and proxy backups
(Sec. 4.4), as these do not alter the semantics of the protocol. Given a history
H , consider a directed graph GH with operations in H as vertices and three
types of edges:
• Client order ( c−−→ ): if op1 and op2 are performed by the same client and
if op1 ≺H op2, then op1

c−−→ op2.
• Reads-from order ( rf−−→ ): if u-op results in an object state on which op
is applied, then u-op rf−−→ op .

• Version order ( v−−→ ): Let u-op1 and u-op2 denote distinct update opera-
tions on the same object, and let op denote any other operation on that object
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write(0) write(1)

0 ← read()

0 ← read()

(a) A sequentially consistent history. To be cluster-consistent, the second read must
return 1 since its read cluster (itself only) occurs after the write of 1.

write(0) write(1)

0 ← read()

0 ← read()

(b) A cluster-consistent history (since the read operations form a cluster). To be
linearizable, the second read must return 1 since it occurs after the write of 1.

Figure 8: Execution histories for a single object. Time increases left-to-right.
Each row denotes one client.

such that u-op1
rf−−→ op . If u-op1.ver > u-op2.ver, then u-op2

v−−→ u-op1 and
otherwise op v−−→ u-op2.

We use natural shorthands such as c,rf−−−→ = c−−→ ∪ rf−−→ . We also use c−−→+

to denote the irreflexive transitive closure of c−−→ , and similarly for other orders.
c−−→ and rf−−→ naturally capture the temporal and data-flow relationships

relevant when serializingH , whereas v−−→ constrains any serialization to respect
the object versions observed by operations. To prove the sequential consistency
of H , we first show that GH is acyclic (Lemma 6) and then that this implies that
there is a serialization of H respecting Legality and Local-Order (Corollary 1).
We then argue in Lemma 7 that there must be such a serialization that also
satisfies Cluster-Order.

Below we prove several lemmas which we then use to prove that GH is acyclic.
Our proofs below involve the following additional notation. To each operation
op is associated a logical (Lamport) time [25] op .linv at which the client invoked
it and another logical time op.lres at which it returned its result at that client.
In addition, each u-op has a (logical) effective time of u-op .leff, which is the
Lamport clock value assigned to the event applying u-op to the object at the
proxy hosting the object. For reads, r -op .leff is the logical time at which a
response r -op was issued, either by the last proxy to pause r -op or (if r -op
reached it) by the proxy hosting the object. Note that op .linv < op .leff < op .lres
for all operations.

Lemma 1. The subgraph of GH consisting of only edges in c,rf−−−→ is acyclic.

Proof. Since op1
c−−→ op2 implies op1.lres < op2.linv, it also implies op1.leff <

op2.leff. Similarly, it must be that op1
rf−−→ op2 implies op1.leff < op2.leff, since

an update must have been written before it can be read from. Therefore, each
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edge in c,rf−−−→ represents an increase in op .leff, meaning op1
c,rf−−−→ + op2 implies

op1.leff < op2.leff.
If there is a cycle consisting only of edges in c,rf−−−→ , then we have op c,rf−−−→ + op ,

implying op .leff < op .leff, a contradiction.

Lemma 2. If there is a cycle in GH , then there is a cycle in GH in which every
v−−→ edge appears in an edge sequence of the form u-op1

c,rf−−−→ + r-op2
v−−→ u-op3.

Proof. We prove the result by first showing that for any cycle in GH , any v−−→
edge not already in an edge sequence of the form op1

c,rf−−−→ + r -op2
v−−→ u-op3

can be replaced by edges not in v−−→ to produce a new cycle in GH . Since
v−−→ edges must point to an update, we must consider v−−→ edges of only the

forms r -op v−−→ u-op and u-op′ v−−→ u-op . In the first case, since op v−−→ r -op is
impossible (again, v−−→ edges point to updates), an edge r -op v−−→ u-op already
occurs within an edge sequence of the form op1

c,rf−−−→ + r -op2
v−−→ u-op3 on

the cycle. In the second case, because updates on each object are applied
sequentially, u-op′ is applied before u-op , and so there is a chain of updates
to the object such that u-op′ rf−−→+ u-op . Replacing the edge u-op′ v−−→ u-op
with this chain produces a cycle not containing u-op′ v−−→ u-op .

To complete the proof, we now must argue that for any edge sequence of
the form op1

c,rf−−−→ + r -op2
v−−→ u-op3 on the cycle, there is a corresponding

edge sequence u-op1
c,rf−−−→ + r -op2

v−−→ u-op3 on the cycle. If op1 is an update,
then setting u-op1 = op1 completes the argument. Otherwise, consider walking
the cycle backward along rf−−→ and c−−→ edges from op1, terminating at a v−−→
edge. Since this v−−→ edge must point to an update, this update suffices for
u-op1.

If there is a cycle in GH , then Lemma 2 guarantees the existence of a cycle
in which all v−−→ edges occur within edge sequences of a certain form. Below
we refer to such a cycle as constrained.

Lemma 3. If there is a cycle in GH , then within a constrained cycle, at least
one edge sequence u-op1

c,rf−−−→ + r-op2
v−−→ u-op3 has u-op3.leff ≤ u-op1.leff.

Proof. Consider an alternative graph G′

H
that includes all of the edges of GH and

additionally the edge u-op1
s−−→ u-op3 whenever u-op1

c,rf−−−→ + r -op2
v−−→ u-op3.

From any constrained cycle in GH we can construct a cycle op c,rf,s−−−−→+ op in G′

H

by replacing edge sequences u-op1
c,rf−−−→+ r -op2

v−−→ u-op3 on the constrained
cycle with the edge u-op1

s−−→ u-op3. Recall from the proof of Lemma 1 that
op′ c,rf−−−→ + op implies op′.leff < op .leff. Moreover, if Lemma 3 were false,
then u-op1.leff < u-op3.leff for every edge u-op1

s−−→ u-op3 used in the cycle
in G′

H
. So, from the cycle op c,rf,s−−−−→ + op we could infer op .leff < op .leff, a

contradiction.

Each read cluster C has exactly one read operation that reads from the
authoritative object itself. We call this “representative” read operation C.rep.
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Lemma 4. If there is an edge sequence u-op′ c,rf−−−→ + r-op v−−→ u-op in
GH where u-op .leff ≤ u-op′.leff, then r-op′.leff ≤ u-op′.leff where C is the read
cluster containing r-op and r-op′ = C.rep.

Proof. If u-op′.leff < r -op′.leff, we have u-op .leff ≤ u-op′.leff < r -op′.leff. Since
r -op′ read from the object itself and u-op .leff < r -op′.leff, r -op′ (and thus
r -op ) must have read from u-op (or a later update), giving u-op rf−−→+ r -op ,
contradicting r -op v−−→ u-op .

Lemmas 1–4 show that for GH to have a cycle, a necessary condition is an
edge sequence of the form u-op′ c,rf−−−→ + r -op v−−→ u-op where r -op is contained
in a read cluster C whose representative r -op′ = C.rep is too outdated, i.e.,
r -op′.leff ≤ u-op ′.leff. It is for this reason that wacco is designed to prevent
this possibility. Specifically, each returning response to a read operation r -op
carries with it the effective time of representative r -op′ of the cluster containing
r -op and the effective time of the update from which r -op′ and thus r -op are
reading, called r -op .lueff. That is, if u-op rf−−→ r -op , then r -op .lueff = u-op .leff.
Responses to updates can also carry the effective time back to the requester, so
that u-op .lueff = u-op .leff.

Each client c tracks the largest op .lueff for all operations op it has issued,
denoted c.after; i.e., c.after = maxop{op .lueff} where the maximum is taken over
all operations issued by c. The outbound request for each r -op carries with it
the current value of c.after, called r -op .after. When a read response arrives at
a proxy, it carries with it the effective time of the read operation r -op′ that
reached the authoritative object to elicit that response. The proxy will use
this read response to answer a paused read operation r -op only if r -op′.leff >
r -op .after; in this case, r -op is added to the cluster for which r -op′ serves as
the representative and so r -op .lueff is set to r -op′.lueff. Any reads r -op′′ that
were not answered by r -op′ (i.e., because r -op′.leff ≤ r -op′′.after) must still
be addressed, and now no response is expected inbound. Therefore, the proxy
chooses any remaining r -op′′ to forward along to elicit another response.

Lemma 5. There is no edge sequence u-op′ c,rf−−−→ + r-op v−−→ u-op in GH

such that u-op.leff ≤ u-op′.leff.

Proof. By Lemma 4, the existence of edge sequence u-op′ c,rf−−−→ + r -op v−−→
u-op in GH such that u-op .leff ≤ u-op′.leff implies that r -op′.leff ≤ u-op′.leff
where C is the read cluster containing r -op and r -op′ = C.rep. By construc-
tion, r -op can be answered by a read response only if the effective time of the
read operation r -op′ that reached the authoritative object to elicit the response
satisfies r -op′.leff > r -op .after. So, to prove the lemma, it suffices to show that
u-op′.leff ≤ r -op .after.

Given the edge sequence u-op′ c,rf−−−→ + r -op v−−→ u-op , let u-op′′ be the up-
date operation on this sequence that precedes and is closest to r -op ; i.e., there is
no update operation between u-op′′ and r -op along this edge sequence. Let c be
the client that issued r -op . Either u-op ′′ = u-op′ and so u-op′.leff = u-op ′′.leff,
or u-op′ c,rf−−−→+ u-op′′ and so u-op′.leff < u-op′′.leff. It thus suffices to
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prove that u-op′′.leff ≤ r -op .after. If the chain u-op′′ c,rf−−−→ + r -op includes
no rf−−→ edges, then c also issued u-op′′, and so u-op′′.leff = u-op′′.lueff ≤
r -op .after because r -op .after is defined as the maximum op .lueff for all op-
erations op that c has issued so far (including u-op′′ itself). If the chain
u-op′′ c,rf−−−→ + r -op includes one rf−−→ edge, it must be the first edge, giv-
ing u-op′′ rf−−→ r -op′′ c−−→+ r -op v−−→ u-op . Then, c also issued r -op′′, and so
u-op′′.leff = r -op′′.lueff ≤ r -op .after, again due to the construction of r -op .after.

Lemma 6. GH is acyclic.

Proof. If there is a cycle in GH , a sequence u-op1
c,rf−−−→ + r -op2

v−−→ u-op3 such
that u-op3.leff ≤ u-op1.leff must appear in the cycle (by Lemma 3), which is
not possible (by Lemma 5), giving a contradiction.

Corollary 1. The protocol of Sec. 4.1 is sequentially consistent.

Proof. Consider any topological sort of GH . Due to the c−−→ edges, it satis-
fies Local-Order. Moreover, every read and update operation appears in this
serialization after the update producing the object state to which it is applied
(due to rf−−→ edges) and before any subsequent update (due to v−−→ edges).
Consequently, Legality is satisfied.

Lemma 7. The protocol of Sec. 4.1 satisfies Cluster-Order.

Proof. Consider two clusters C1, C2 ⊆ H |obj as defined above, such that C1 ≺H

C2. Therefore, C1.rep was applied to the authoritative object before C2.rep (in
real time), and so C1.ver ≤ C2.ver.
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