
WACCO and LOKO : Strong Consistency at Global Scale

Darrell Bethea
University of North Carolina

djb@cs.unc.edu

Michael K. Reiter
University of North Carolina

reiter@cs.unc.edu

Feng Qian
AT&T Labs – Research

fengqian@research.att.com

Qiang Xu
NEC Labs America

qiangxu@nec-labs.com

Z. Morley Mao
University of Michigan

zmao@umich.edu

Abstract
Motivated by a vision for future global-scale services
supporting frequent updates and widespread concur-
rent reads, we propose a scalable object-sharing sys-
tem calledWACCO offering strong consistency seman-
tics. WACCO propagates read responses on a tree-based
topology to satisfy broad demand and migrates objects
dynamically to place them close to that demand. To
demonstrateWACCO, we use it to develop a service called
LOKO that could roughly encompass the current duties
of the DNS and simultaneously support granular status
updates (e.g., currently preferred routes) in a future In-
ternet. We evaluateLOKO, including the performance
impact of updates, migration, and fault tolerance, using
a trace of DNS queries served by Akamai.

1 Introduction

Today’s Internet is served by infrastructures that, in
general, scale remarkably well to the massive demands
placed on them. Both the Domain Name System (DNS)
and content-distribution networks (CDNs) are examples
of dramatic feats of engineering that facilitate global and
quick access to content. The power of these infrastruc-
tures, however, derives in part from the largely static na-
ture of the data they serve. DNS scales through caching
on the basis of time-to-live (TTL) values that are typi-
cally large enough to hide updates from parts of the net-
work for minutes or hours. CDNs serve primarily static
data or else data that, if updated, need not be viewed con-
sistently by different parts of the network.

The viability of such approaches may be challenged,
however, as the Internet evolves. Multiple visions for fu-
ture Internet designs anticipate the need to support more
dynamic information in the network (e.g., SCION’s ad-
dress and path servers [41], NIRA’s NRLS [39], or ren-
dezvous servers to support mobility in content-centric
networking [21]), which may enable mobile network lo-
cation, dynamic route control, or diagnosis of network

anomalies, for example. Because this information can
change quickly — in some cases at the granularity of
seconds or less — there is a need for infrastructure ser-
vices that support dynamic updates, strong consistency,
and global scalability. Even for existing uses to direct
clients to servers or to exercise route control, today’s
DNS has limited ability to provide fine-grained control
(e.g., [30, 32]), and we expect this shortcoming to be-
come more acute in the future.

In this paper we describe a system called Wide-Area
Cluster-Consistent Objects (WACCO). WACCO manages
access to stateful, deterministicobjectsthat support invo-
cations of arbitrary types, each of which is either anup-
datethat may modify object state or areadthat does not.
Objects are managed on a tree-based overlay network of
proxiesthat is arranged with respect to geography; i.e.,
neighbors in the tree tend to be close geographically or,
more to the point, enjoy low latency between them. Each
client is assigned to a nearby proxy to which it connects
to access objects, and object access is managed through
a protocol that offers a novel type of consistency that we
dub cluster consistency. Cluster consistency is strong:
it ensures sequential consistency [23] and also thatclus-
tersof concurrent reads see the most recent preceding up-
date to the object on which the reads are performed. The
resulting agreed-upon order and rapid visibility of up-
dates facilitate a wide range of applications, e.g., network
troubleshooting, trajectory tracking of mobile nodes, and
content-oriented network applications.

Scalability of services implemented usingWACCO is
achieved through two strategies. First,WACCO uses the
tree structure of the overlay to aggregate read demand,
permitting the responses to some reads to answer others.
As such, under high read concurrency, the vast major-
ity of reads are not propagated to the location of the ob-
ject; rather, most arepausedin the tree awaiting others
to complete, from which the return result can be “bor-
rowed”. Second,WACCO employs migration to dynam-
ically change where each object resides, permitting the

1

object to move closer to demand as it fluctuates, e.g., due
to diurnal patterns.

To demonstrate and evaluateWACCO, we use it to
build a service called Low-Overhead Keyspace Objects
(LOKO). LOKO permits clients to create, modify and
query keyspaceobjects. A keyspace is identified by a
public keypk, and the keyspace forpk stores (or gener-
ates) mappings, each from a query stringqstr to a value
val and bearing a digital signature that can be verified by
pk. So, for example, querying the keyspace forpk for
the stringnytimes/publicKeymight return the signed
public key certificate that the owner ofpk believes to
be for nytimes. Similarly, the querywww/bestRoute
on the keyspace identified bypk′ might return a signed
mapping indicating the currently preferred route to reach
the web server representing the owner ofpk′. By iterat-
ing queries to a “chain” of keyspaces, each referring the
client to the next keyspace in the chain, a client could
securely resolve a multipart pathname, much as is done
with DNSSEC [2]. In this respect,LOKO could encom-
pass one of the main duties of today’s DNS/DNSSEC,
while supporting more dynamic mappings due to the
consistency provided byWACCO.

In evaluatingLOKO (and WACCO), we were handi-
capped in not having a global workload for such a ser-
vice. So, we approximated a global workload using a
trace of over 4.4 billion DNS requests served by Aka-
mai servers over 36 hours to 83,448 clients in four ge-
ographic regions across Asia, North America and Eu-
rope. We used this trace to drive 76-proxy emulations
of LOKO with network delays induced to represent a
LOKO deployment across these four regions. Our em-
ulations show thatLOKO provides good latency for oper-
ations, e.g., with up to 89% of reads completing in under
100ms. We also show that our implementation can sus-
tain the full per-proxy query rate represented by the Aka-
mai trace, while guaranteeing cluster consistency. We il-
lustrate the effectiveness of the components of our design
using measurements from these emulations.

We begin by presenting related work in Sec. 2. We
discuss our design goals in Sec. 3 and present the de-
sign of WACCO in Sec. 4. Our evaluation (including a
description ofLOKO) is in Sec. 5, and we conclude in
Sec. 6. The appendix presents the definition of cluster
consistency and a proof that our protocol implements it.

2 Related Work

The use of a tree-based topology inWACCO for object
access is reminiscent of hierarchical caching, which has
been studied and deployed extensively for wide-area sys-
tems such as the World-Wide Web (e.g., [7, 27, 34]). In
some respects,WACCO can be viewed as using apolling-
every-timecache validation strategy [6] in which the au-

thoritative object copy is consulted before returning a
cached answer in order to enforce strong consistency. To
reduce the overheads and response latencies induced by
such polling,WACCO employs two strategies. The first
is to leverage the tree structure to aggregate polling by
many concurrent reads into few messages along the tree.
This aggregation also allowsWACCO to reduce polling
latency by using ongoing polling requests to accelerate
others; this strategy has implications for the consistency
offered byWACCO, which we characterize precisely. The
second strategy is to migrate the authoritative object copy
closer to where demand is largest, an option available
to WACCO because it manages the authoritative copy of
each object itself, in contrast to web caches that do not.

Many wide-area caching, edge service, and storage de-
signs are also related to our work; space limitations pre-
clude a comparison to all of them. That said, if a replica-
tion (or caching) scheme is to prevent conflicting object
versions and to make updates available to reads immedi-
ately, it must apply reads and updates at a set (quorum) of
replicas that intersects the quorum employed in another
update [12, 17]. Different designs employ different quo-
rum systems; e.g., in a read-one-update-all quorum sys-
tem, every proxy (the update quorum) must be contacted
on the critical path of an update.WACCO employs a quo-
rum per object consisting of single authoritative copy,
uses a tree-based overlay to reach this copy, is optimized
toward widespread concurrent read load and moderate
concurrent update load, and, to our knowledge, offers a
new type of consistency achieved by a novel combination
of tree-based aggregation and migration.

Some designs offer stronger consistency thanWACCO.
For example, Scatter [14] supports linearizability [18].
However, partly due to its use of distributed hash tables,
it does not offer the same benefits of request aggregation
and geographic proximity thatWACCO achieves through
its tree structure and migration. Spanner [9] also im-
plements linearizability, though it does so in part by re-
lying on synchronized real-time clocks, whichWACCO

does not, and again does not leverage request aggrega-
tion. Other systems offer weaker consistency to improve
partition-tolerance: e.g., COPS [24] implements causal
consistency [1]. Here, we strive for stronger consistency
and necessarily1 presume that partitions in future Internet
architectures will be negligibly rare (e.g., due to redun-
dant routing paths [38, 35, 28]).

As discussed in Sec. 1, our implementation ofLOKO

as a demonstration ofWACCO is motivated by short-
comings of the current DNS for future Internet archi-
tectures or even for serving more dynamic data in sup-

1The proof by Gilbert and Lynch [13] shows that linearizability is
impossible to achieve if all operations must return even when partitions
occur. This proof applies equally to cluster consistency, the property
that WACCO provides.

2

port of today’s mobility and content management (e.g.,
see [30, 32]). These shortcomings have led to numerous
attempts to modify DNS usage (e.g., [37]), to enhance
DNS operation (e.g., [8]), to replace it outright with al-
ternative designs (e.g., [20, 10, 32]), and to understand
the tradeoffs between new designs and the current DNS
(e.g., [31]). CoDoNS [32] is a noteworthy design that,
like LOKO, decouples namespace (or keyspace) manage-
ment from the location and ownership of name servers
(in our parlance, proxies) and accelerates the propaga-
tion of updates to clients. It provides fast read response
via a dynamic replication technique that ensures that a
large percentage of requests can be answered immedi-
ately by the first proxy to receive the request. However,
as in the discussion of read-one-update-all quorum sys-
tems above, consistency then requires that all of these
replicas be updated (or invalidated) when an update oc-
curs, making updates more costly.LOKO is a different
point in the design space that anticipates more frequent
updates and so strikes a different balance between read
and update cost — one that still favors reads particularly
when read load is high but that lessens the number of
proxies that updates must alter.

3 Design Considerations and Goals

We anticipate an object access workload that is gener-
ally read-dominated — maybe by orders of magnitude
— but that may nevertheless involve frequent and even
concurrent updates on a per-object basis. Updates to an
object may be frequent due to the transient nature of the
information used to update an object (e.g., the current
performance characteristics of a network link), and ob-
ject updates may be concurrent due to contributions from
many parties (e.g., one per link, for an object that calcu-
lates preferred routes based on current characteristics of
many links). Such workloads temper our willingness to
trade update performance for read performance arbitrar-
ily, e.g., as in a typical read-one-update-all system (see
Sec. 2). Rather,WACCO takes a more balanced approach
that favors read performance but that still limits updates
to a single authoritative object copy.

The consistency implemented inWACCO implies se-
quential consistency [23] (and more, see below). Se-
quential consistency is a “strong” consistency model: it
implies that clients observe update operations to objects
in the same total order (cf., [3, Ch. 9]). Sequential consis-
tency impliescausal consistency[1]: updates related by
potential causality [22] (e.g., a client reads an update and
then performs another) will be observed by any client
in order of their potential causality. But unlike causal
consistency, sequential consistency also implies that all
clients will observe all updates that arenot related by
potential causality in the same order.

Despite the strength of sequential consistency, it alone
does not ensure rapid propagation of updates: in the
limit, a client of a sequentially consistent (only) object
store would be permitted to read the same value forever
for an object, even if other clients have updated that ob-
ject. As such, our goals include an enforced rapid prop-
agation of updates, i.e., updates “take effect” (nearly)
immediately. Linearizability [18] strengthens sequential
consistency by mandating that an update be observed by
any operation on the same object that begins after (in real
time) the update operation returns to its caller. However,
linearizability comes at considerable performance cost
[3, Ch. 9], and so we adopt a weaker requirement that
nevertheless strengthens sequential consistency to make
updates take effect quickly.

The middle ground we adopt is one in which read op-
erations on the same object can be partitioned intoclus-
tersof concurrent reads,2 so that all reads in each cluster
return results based on the latest update preceding the
cluster in real time (or a more recent update, i.e., one
concurrent with the cluster). The resulting consistency
property, which we termcluster consistency, is weaker
than linearizability because a read may return results on
the basis of only updates that preceded the cluster con-
taining it, rather than all updates that precede the indi-
vidual read. (Updates to the same object are still ordered
according to their real-time order, however.) In exchange
for this weaker property, we show that cluster consis-
tency can be implemented scalably in wide-area settings
by permitting a read to carry responses to other reads
in its cluster, thereby accelerating the response times of
those reads and reducing load on the authoritative copy.

Beyond applications to future Internet designs men-
tioned in Sec. 1, we see cluster consistency as poten-
tially useful in other, nearer-term applications ofWACCO,
e.g.:
• Network troubleshooting Updates from network

sensors that publish toWACCO will appear in the same
order, enabling consistent diagnosis and actuation of
the network by distributed analysis engines. For ex-
ample, routing anomalies caused by MED oscilla-
tion [15] and BGP policy divergence [16] in today’s
Internet require distributed monitoring to quickly de-
tect and react to an anomaly, e.g., by modifying lo-
cal routing policies to eliminate the divergent be-
havior and so to minimize its impact on traffic. A
cluster-consistent view of routing updates published
to WACCO will make it simpler for distributed mon-
itors to concur on the anomaly and effect changes
in policy at multiple locations to rectify the problem.
Another example is real-time response to routing pol-

2More specifically, in each cluster, the union of real-time intervals
beginning with each read invocation and ending with its return, is con-
tiguous. See the appendix for details.

3

lution, e.g., prefix hijacking [42]. Rapid update prop-
agation and consistent event ordering (e.g., which net-
works are polluted first) could help reveal the source
of pollution and enable a faster reaction to the propa-
gation of polluted routes.

• Trajectory tracking of mobile nodes Predicting the
future location of a mobile endpoint (e.g., a train) for
use in routing (e.g., [29]) would be greatly simpli-
fied with a cluster-consistent view of the endpoint’s
trajectory. For example, if each network appends its
name to aWACCO object representing the endpoint’s
trajectory when the endpoint attaches to the network,
cluster consistency implies that the trajectory will be
accurate. A weaker property like causal consistency
might yield incomplete and even conflicting trajecto-
ries, since appends would not be causally related (in
the sense of Lamport [22]).

• Content-oriented network applications In some
content-oriented network applications such as online
gaming, it can be at least as important for users see
the same content as it is that the content they see is
the most up-to-date [11, 25]. Otherwise, the game
may be unfair. Such applications can be simplified if
built on objects that appear to all clients to be modi-
fied in the same order.

As suggested in Sec. 2 and detailed in Sec. 4,WACCO

implements cluster consistency using a protocol in which
each read cluster collectively polls an authoritative ob-
ject copy before returning responses for the reads it con-
tains. Prior work has generally found polling costlier
than cache invalidation (e.g., [6]), and in ongoing work
we are investigating scalable designs for implementing
cluster consistency using cache invalidations. That said,
polling serves dual purposes inWACCO; in addition to
consistency, polling messages carry load information to
the proxy holding the authoritative object copy, which it
uses to determine if the object should be migrated. Mi-
gration enables an object to be placed closer to the pre-
dominant sources of demand and, as we will show, can
significantly reduce response times for operations.

4 WACCO Design

The object-sharing protocol that underliesWACCO uti-
lizes a logically tree-structured overlay network that
spans a collection ofproxies. This overlay network
should be assembled in a “geographically aware” man-
ner, i.e., so that geographically close (and so presumably
well-connected) proxies are also close to one another in
the tree. The manner in which a client is paired with a
proxy can be decoupled from the rest of our system de-
sign; our present design simply leverages a few widely-
known proxies to refer each new client to a proxy near it.
We assume that each client interacts with only a single

proxy at a time, awaiting the completion of any opera-
tions it issued to one proxy before switching to another.

The proxies provide clients with access to a collec-
tion of objects. A client submits a read or update invo-
cation for an object to its proxy and awaits a response
from that same proxy. Updates (potentially) modify the
object state; reads do not. Our protocol description and
proof presume that a read simply returns the current ob-
ject state, though obviously a proxy can derive a cus-
tomized read result from that state before returning the
result to the client. An example of this behavior in the
context ofLOKO is described in Sec. 5.1.

4.1 Basic Protocol

WACCO maintains a single authoritative copy of each ob-
ject. At any point in time, the proxy at which this copy
of the object resides is said tohost the object and, syn-
onymously, to be thelocationof the object. Proxies im-
plement a protocol to route client invocations toward the
current location of the object over tree edges (see [33]).
Once performed on the object, an operation’s response is
routed back along the tree to the client that invoked it.

While all update invocations are always routed to the
object itself, a read invocation will bepausedin the tree
if the invocation, while being routed toward the object,
encounters a proxy that already forwarded a read request
for the same object and has not yet received a response.
The paused read will not be forwarded further in the tree;
rather, it will be held by the proxy until the response to
the invocation on which it paused is returned. When that
response arrives, it can serve as the response for any read
invocation on the same object that was paused awaiting
it and that meets certain conditions described below. In
this way, a single read invocation that reaches the ob-
ject may, in fact, end up serving numerous read requests
that are paused on it elsewhere in the tree. This effect
is shown in Fig. 1, where the second and third reads are
paused waiting on the first (Fig. 1(a)) and then adopt the
response to the first read as their own (Fig. 1(b)).

Pausing read requests in this way offers at least two
benefits. First, it can reduce the latency of read requests
in comparison to forwarding each read request all the
way to the object, since the read request on which an-
other is paused is farther along the path to the object (and
so should solicit a response sooner) than the paused read
is. That is, in Fig. 1(a), the first read is at least as close
to the object as the second or third read is when each is
paused, and a response may even already be traversing
the path back. Second, in comparison to forwarding ev-
ery read request to the object and returning each read re-
sponse individually, pausing reduces the bandwidth use
of the protocol, the routing costs to proxies, and the com-
putational load on the proxy hosting the object.

4

object

read
1

read
2

read
3

(a) Second and third reads are paused on the
first.

object

read
1

response

read2
response

read3
response

(b) Return value for first read used to resume
(respond to) second and third reads.

object
read

4
2

(c) Fourth read carries aggregated count of re-
cently paused read invocations toward object.

Figure 1: Example of pausing some reads and resuming them later

There are also challenges that arise from pausing.
First, a paused read constitutes state that a proxy must
store until the response for the read on which it is paused
returns, possibly opening the door to resource exhaus-
tion. That said, aside from read invocations submitted to
a proxy directly by clients, the number of paused reads
for an object that a proxy must maintain simultaneously
is limited by the number of its neighbors. Reads submit-
ted to a proxy directly by clients (and that are paused)
still pose a denial-of-service risk, but it can be managed
using any of several techniques (e.g., [19]), and more-
over, dropping these read requests as needed can never
interfere with other reads (since none are paused on these
reads). Resource exhaustion will be discussed further in
Sec. 4.4.

Second, pausing erodes the consistency of the pro-
tocol, and, indeed, to achieve cluster consistency—and
specifically to achieve the sequential consistency that
implies—we must place restrictions on which read re-
sponses can be used to respond to paused reads. Intu-
itively, implementing cluster consistency requires that a
paused read is not answered by an incoming response
that is too outdated. Specifically, as we prove in the
appendix, the following conditions suffice to implement
cluster consistency: Each read request from a client car-
ries the largest Lamport time [22] at which any update
that the client has observed was applied, and each read
response carries the Lamport time at which the response
was emitted from the authoritative object. A read re-
sponse that returns to a proxy can be used to satisfy a
read request paused at that proxy only if the response’s
timestamp exceeds the request’s timestamp. If any reads
paused at the proxy remain unsatisfied due to this re-
quirement, then the proxy unpauses one and forwards it
along toward the object.

4.2 Caching

Each object state has aversion number(an integer, ini-
tially zero). Applying an update to the object increments

that version number.WACCO uses these version numbers
to optimize the protocol above as follows.

Each proxy maintains a cache holding at most one
cached state per object. A proxy can unilaterally delete
states from this cache and manage it using policies inde-
pendent of those of other proxies. Each read request is
augmented to carry a version number. If upon receiving a
read request with version numberv (or if upon receiving
a read request from a client, in which casev defaults to
−1), a proxy has a versionv′ > v of the relevant object in
cache, then the proxy can increase the read request’s ver-
sion number tov′ when forwarding it. If it does so, the
proxy is said to havetaken responsibilityfor the request
and is obligated to retain the cached object state until it
has responded to this request. (Our current proxy imple-
mentation defaults toward taking responsibility; others
could do so more selectively.)

When responding to a read request, the proxy host-
ing the authoritative copy sends the object state (as in
Sec. 4.1) if the current object version is larger than the
version number in the read request, and sendssame oth-
erwise. Upon receiving a response to a read for which
a proxy took responsibility, the proxy identifies the lat-
est object version it now has—either the object state in
the response or, if the response wassame, the version in
its cache—and responds to paused reads similarly (sub-
ject also to the constraints of Sec. 4.1 on Lamport times-
tamps). That is, it returnssame to paused reads bearing
the version number of the proxy’s latest object version,
and it responds with the latest object state to the rest.

A proxy that forwards a read request but that does
not take responsibility for it might receive asame re-
sponse, at which point it may not have the latest ob-
ject version and so would be unable to respond to any
read it paused bearing an older object version number.
These paused reads therefore remain paused while one
is unpaused and forwarded toward the authoritative ob-
ject, as discussed in Sec. 4.1. Note that forwarding any
read request bearing an old object version number guar-
antees that the response will contain an object state, and

5

so when the proxy selects one to unpause and forward,
it gives preference to those with smaller object version
numbers.

4.3 Migration

A component ofWACCO is migration, by which an ob-
ject is migrated from one proxy to another in response
to demand. For example, a proxy currently holding an
object can migrate the object toward its neighbor from
which a majority of the invocations on the object arrive,
or a proxy can migrate an object away if the proxy is be-
coming too heavily loaded. In this way, migration can
be used to reduce load by moving objects closer to ar-
eas of greater interest and to otherwise reposition load as
needed to deal with hotspots. The former use of migra-
tion is particularly beneficial forLOKO (see Sec. 5), since
migration can be used to position objects to best accom-
modate the time zones that are most active at a particular
time of day. Moreover, many entities will be accessed
with a clear geographic preference — e.g., websites in
Chinese will presumably be accessed most often from
China — and so migration makes sense for positioning
such an object near where it is accessed most.

WACCO is not closely tied to the mechanics of migra-
tion; all thatWACCO requires is that it be able to migrate
an object from one proxy to a neighbor in between object
invocations. So whileWACCO uses the migration mech-
anism in Quiver [33], it would presumably work using
other migration mechanisms, as well. That said, in or-
der for migration to work effectively, two issues must be
resolved. The first is how to determine from where an ob-
ject is currently experiencing the most load; because of
pausing reads, no single proxy observes the entire load
on an object. Given an answer to this issue, we then need
to determine the specific conditions under which an ob-
ject should be migrated.

The first question is resolved inWACCO by amending
each message carrying an object invocation to also in-
clude the number of read invocations for that same object
that wererecentlypaused along the path the message has
traveled. If this invocation is paused, the proxy that does
so accumulates the message’s count into a per-object,
per-neighbor counter that the proxy maintains (i.e., for
the object to which the invocation pertains and the neigh-
bor from which the proxy received the invocation) and
then further increments this counter by one (for the in-
vocation that was just paused). Otherwise, the proxy ac-
cumulates its counters for this object and forall of its
neighbors into the field on the invocation message and
forwards the message along toward the object, subse-
quently setting each of these counters to zero. Fig. 1(c)
shows an example where the field of a fourth read in-
vocation, initially with value0, is updated to1 at the

proxy whereread3 was formerly paused and then to2
as it travels through the proxy at whichread2 was for-
merly paused. In this way, a count of paused reads trick-
les toward the object at all times, which the proxy hold-
ing the object can similarly incorporate into per-object,
per-neighbor counts of paused invocations.3

As described so far, this approach for conveying the
numbers of paused reads to the proxy holding the object
does not adjust these counters for the passage of time,
but intuitively such adjustment is necessary. After all,
reads paused ten minutes ago should presumably have
less bearing on whether to migrate the object than reads
paused within the last few seconds. For this reason, each
WACCO proxy decaysits per-object, per-neighbor coun-
ters to account for the passage of time, before incorpo-
rating them into an invocation message that the proxy
forwards toward the object (or, in the case of the proxy
holding the object, before calculating whether to migrate
the object). In our present implementation, the proxy de-
cays these counters linearly as a function of the time that
passed since last unpausing (and returning values for)
reads for that object, i.e., the interval between the proxy
seeing the last object response and the subsequent object
invocation.

Finally, this brings us to the question of how a proxy
holding an object determines whether to migrate an ob-
ject and if so, to which of its neighbors. In our imple-
mentation, the proxy hosting an object periodically sums
its per-neighbor counters for that object and, if one such
counter accounts for more than a fractionm of this sum
(for a fixed thresholdm), then the proxy asks the neigh-
boring proxy corresponding to that counter to migrate the
object to it. That neighboring proxy might not do so, e.g.,
because it is already hosting too many other objects. If
it decides to do so, however, then it initiates the object
migration. Note that the thresholdm value can be differ-
ent per object, though in our present implementation we
simply setm the same for all objects.

4.4 Resilience

Fault tolerance In WACCO as described so far, a proxy
failure would disconnect the tree until the proxy recov-
ers. A generic approach to tolerate proxy failure is to
locally replicate each proxy; e.g., in our implementa-
tion, each proxy can optionally have a backup to which
it commits any meaningful change in internal state [5,
§8.2.1] before acting on it. InWACCO, such changes
include changes to an object (due to update operations)
and changes to internal Quiver routing tables [33] (e.g.,

3Though an update invocation cannot be paused, the proxy hold-
ing the object incorporates each update invocation into this count, as
well, so that updates are reflected in the load from that neighbor for the
object.

6

due to migration). In a straightforward implementa-
tion, this primary-backup configuration would double the
hardware needed for the service. In practice, we ex-
pect clusters of proxies to reside in datacenters in major
metropolitan areas, in which case these proxies can pro-
vide backup service for others in the same datacenter.
Denial-of-service defense The most acute threat of
denial-of-service attacks is interfering with proxy-to-
proxy communication. Multi-path routing (e.g., [38, 35,
28]), using private leased lines, or other suitable defenses
(e.g., [40]) can mitigate the threat of link overload. In
addition, each proxy should ensure that it reserves ade-
quate resources to retain communication with its neigh-
bor proxies. For example, each proxy can utilize two net-
work interfaces, one dedicated to proxy-to-proxy com-
munication and the other for serving clients that con-
tact it directly. Moreover, proxies can prioritize tasks for
managing inter-proxy activities ahead of those respond-
ing to clients, for example, and can terminate (or refuse)
client requests in favor of retaining communication with
neighbor proxies.

Migration opens the possibility of a degradation of ser-
vice if, e.g., a flood of read requests can cause an object
to be migrated (see Sec. 4.3) to a region of the network
far from legitimate demand. This risk can be mitigated
by each object expressing toWACCO its preferences or
requirements for where it can be hosted, if the region of
legitimate demand is known in advance. (This mecha-
nism is also useful to enforce regulatory constraints on
where data can be hosted, for example.) In other cases,
allowing only authorizedreads to influence migration
can mitigate this risk. One method for doing this is de-
scribed in Sec. 5.1 in the context ofLOKO.

5 WACCO Evaluation

We have implementedWACCO in Java. Our implemen-
tation consists of roughly 11,500 physical source lines
of code. To evaluateWACCO, we used it to construct a
service calledLOKO, which we describe in Sec. 5.1. We
then describe the traces that we use to induce a realis-
tic workload on this service in Sec. 5.2. We describe our
experimental setup in Sec. 5.3 and our results in Sec. 5.4.

5.1 LOKO

As discussed in Sec. 1, we have usedWACCO to imple-
ment a service calledLOKO that supportskeyspaceob-
jects. A keyspace is identified by a public keypk and
stores (or generates) mappings, each from a query string
qstr to a valueval. When responding to a queryqstr, the
keyspace sendsval, along with a digital signature on the
mapping that can be verified bypk. The signature could

be inserted into the keyspace object through an update in-
vocation, or the object could produce the signature itself
using a private key it holds. This latter strategy might be
appropriate for keyspace objects that generate responses
dynamically.

Generating dynamic responses is useful, e.g., to sup-
port CDNs by customizing the content-server address re-
turned in response to a read query. That is, a keyspace
for pk, when queried fornytimes/www/address, could
select the answerval from a set of candidate addresses
based on load conditions and the address of the client
who is asking. (This selection would be performed by
the proxy directly returning the response to the client.)
The response could carry either a previously stored sig-
nature or one that the keyspace object generates itself;
in the latter case, the keyspace object state would need
to include the private keysk corresponding topk. The
cluster consistency offered byLOKO would improve the
responsiveness of this mapping to changing conditions
over that provided by DNS today (cf., [30]). Of course,
keyspaces can also be used to store static mappings, e.g.,
to addresses or public keys, and several keyspaces could
be queried iteratively to resolve hierarchical names, anal-
ogous to DNS/DNSSEC today.

Any LOKO object can enforce its own access control
by checking a signature for each invocation — possibly
the same one that it will store and return in response to
read invocations later. But by virtue of it having a pub-
lic key, a keyspace enables the enforcement of coarse
access-control policy at the first proxy to receive a re-
quest for it, even if that proxy does not host the object.
That is, we could extendLOKO so that a proxy, upon re-
ceiving a read request for the keyspace identified bypk
from a client, confirms that the request is accompanied
by a delegation credential signed by the owner ofpk and
that authorizes the read. The proxy would do so prior
to acting on the read request, dropping it if the check
fails. This defense would hinder degradation-of-service
attempts to migrate the keyspace away from legitimate
demand by submitting unauthorized read requests (see
Sec. 4.4). We have not yet implemented this extension,
however.

5.2 Traces

The data we used in our evaluation ofLOKO (and hence
WACCO) are traces of domain-name queries received by
Akamai, collected from 6am, March 9, 2011 to 6pm,
March 10, 2011 (36 hours). In addition to serving DNS
queries for domain names of its own, Akamai serves
queries for the domain names of a number of customers,
as well. The dataset we obtained from Akamai includes
queries of both types and reportedly includes all queries
Akamai received during that period by 357 of these

7

(globally distributed) servers.
We emphasize that the goal of using Akamai traces

was not to evaluateLOKO as a DNS replacement per
se, but rather to stress our system with a workload that
exhibits typical global effects, e.g., diurnal patterns and
regional object affinities. As such, in using it to popu-
late objects and generate a workload for our evaluation
(see below), we strived primarily to preserve the object-
access and client distributions.

5.3 Experimental Setup

Hardware Our experiments consisted of emulations on
Emulab [36]. Each node (on which we ran multiple prox-
ies, see below) was of the “d820” variety; seehttps://

wiki.emulab.net/Emulab/wiki/UtahHardware for
its specifications. We performed our emulations with 76
proxies spread across 4 nodes, resulting in an average
of between 3 and 4 vCPUs per proxy. The only excep-
tions were our fault-tolerance experiments, in which each
proxy was accompanied by a backup, doubling the total
number of proxies on the same hardware.
Proxy placement Recall that the number of servers
that Akamai dedicates for the load that our traces rep-
resent (and to provide consistency falling short ofLOKO)
is 357, and so we needed to scale down the Akamai trace
to permit a realistic evaluation for 76 proxies. To do
this, we selected 4 geographic regions that accounted for
72/357= 20.2% of all queries in the original trace and
allocated 72 proxies to those regions proportionally to
the number of requests originating there.4 (The remain-
ing 4 of the 76 proxies in our experiments are described
below.) Clients at each region were then assigned to that
region’s proxies to yield a roughly balanced number of
queries at each proxy and, most importantly, in a manner
that was oblivious to the contents of those queries. The 4
selected regions included one in Asia, one in Europe, and
two in North America, and so we believe this method-
ology produced a reasonable approximation to a global
workload. While client requests drive our experiments,
clients themselves are not instantiated (or measured) in
our experiments. So, the latency between a client and
its proxy is not represented in our measurements, nor are
client computational costs.
Network latencies To generate the tree topology for
our experiments, we added an additionalhead proxy
per region and built a minimum spanning tree covering

4More precisely, we first geolocated the clients in the Akamaitraces
using the database from IP2Location (http://ip2location.com)
and truncated each one’s latitude and longitude to an integral value,
yielding its “region”. We allocated a number of proxies to each se-
lected region proportional to its queries; e.g., if one region originated
10% of the 20.2% of queries selected from the original trace, then it
was allocated 10%×72= 7 proxies.

the head proxies using geographical distance as our dis-
tance measure. Each region’s other proxies were then
organized in a balanced ternary tree underneath the re-
gion’s head. So, the total proxies in each experiment
was 72+ 4 = 76, of which only the 72 non-head prox-
ies accepted requests from clients directly. Once the tree
was fixed, we estimated latencies between neighboring
proxies as a linear function of the geographical distance
between them, where this function was calculated using
linear regression on real distance/latency pairs.5 We em-
ulated proxy-to-proxy latencies at user level, using the
method implemented in the EmuSockets toolkit [4].6 We
did not limit the bandwidth between proxies, because we
do not expectLOKO to even remotely tax the capacity of
future networks (or even today’s).
Keyspace objects The queries selected as described
above were used to populate keyspace objects as follows.
Every DNS query indicates a DNS zone, the requested
name in that zone, and a query type. The query type can
indicate an IPv4 host (A) record, an IPv6 (AAAA) record, a
name server (NS) record, etc. We created a keyspace ob-
ject per zone and initialized it with a field for each name
within that zone for which anA record was requested
(e.g., “www/A”), sinceA records overwhelmingly consti-
tute the most common form of query. The value assigned
to each such field was a random 16-byte value. We
made no effort to represent resource records in keyspaces
more explicitly, remembering that the goal of using the
Akamai traces is to induce a realistic global workload
on LOKO rather than to makeLOKO mimic DNS faith-
fully. Rather than signing each mapping individually, a
Merkle tree [26] was computed over the mappings and
the root signed by the private key corresponding to the
public key used to label the keyspace. The Merkle tree
was transient, i.e., only the signed root was sent when the
keyspace was copied (to support a read) or migrated; the
interior nodes were recomputed on demand.

The 20.2% of the original trace that we used in-
cluded 4,460,838,100 queries spanning 1,009,689 do-
main names and 83,448 clients. Fig. 2(a) shows that
when used to construct keyspace objects as described

5We took round-trip latencies (ms) from AT&T (see
http://ipnetwork.bgtmo.ip.att.net/pws/current_

network_performance.shtml) on 9 Oct 2011 from Kansas
City to 24 other cities in the continental US, as well as from San
Francisco to Hong Kong, New York to London, and Washington to
Frankfurt. We then obtained distance estimates (miles) forthese
city pairs. Using simple linear regression, the best fit lineto these
distance/latency points wasy = 0.019732193x + 8.712212072 with
an R2 of 0.96820894, indicating a strong goodness of fit. Our use of
distance-based latencies from within a single provider’s network is
reasonable, we believe, since our service may well be implemented by
a major global service provider.

6This design is an artifact of our trying out several different plat-
forms for our emulations, including some where we were restricted to
user-level modifications only.

8

% of total queries

%
 o

f k
ey

sp
ac

es

0 5 10 15

98
99

10
0

(a) CDF of queries per keyspace.
A few keyspaces comprise a large
portion of requests.

Keyspace size (fields)

P
er

ce
nt

ag
e

1 100 104 106

80
90

10
0

(b) CDF of keyspace size. Note
the x-axis is log-scale. Most
keyspaces are small, but some are
quite large.

Non−Dominant

D
om

in
an

t

1 104 108

1
10

2
10

4
10

6

(c) Dominant vs. non-dominant
proxy queries (one × per
keyspace). These query types are
strongly correlated.

Keyspace size (fields)

K
ey

sp
ac

e
qu

er
ie

s

1 102 104 106

1
10

4
10

8

(d) Keyspace size versus queries
to that keyspace (one× per
keyspace). The larger keyspaces
tend to be accessed more fre-
quently.

Figure 2: Keyspace query and size distributions

above, there were a few keyspaces which dominated the
queries, in that requests for those keyspaces were a sig-
nificant portion of the total requests. The most frequently
queried keyspace object comprised over 14% of the total,
and the 5 most frequently queried keyspace objects com-
prised over one third of all requests. The distribution of
keyspace sizes was also far from uniform, as shown in
Fig. 2(b). While over 88% of all keyspaces contained
less than 10 keys, some contained over one million.

Prior to each measurement run ofLOKO, we deter-
mined the starting location of each object by executing
a warmup. The warmup migrated each keyspace object
to its dominant proxy, i.e., the proxy that will make the
most requests of it during the run. This warmup thus
implements an optimalstaticplacement of keyspace ob-
jects for the run. Nevertheless, as shown in Fig. 2(c),
the request rate by the dominant proxy for a keyspace is
strongly correlated with the request rate by other, non-
dominant proxies for that keyspace, implying that opera-
tion workloads will be dominated by nonlocal operations
in any static placement of keyspaces.
Update operations We introduced updates into our ex-
periments, but since the Akamai traces include no up-
dates, we did so artificially. Specifically, for a param-
eteru ∈ [0,1], each read operation for a keyspace sub-
mitted to its dominant proxy was converted to an update
operation with probabilityu. Because the rates of re-

quests to keyspace objects from their dominant proxies
were highly skewed (see Fig. 2(c)), these update oper-
ations were not uniformly spread across keyspace ob-
jects but instead were concentrated in those that were
also read most often, including read most often from
non-dominant proxies (again, see Fig. 2(c)). So, these
updates caused many caches to become invalid and thus
many object sends, and, because the keyspaces accessed
the most often tended to be larger (Fig. 2(d)), these sent
objects also tended to be large.

If a query was chosen to become an update, an up-
date was generated in its place for the relevant keyspace
object, consisting of the relevant query name and query-
type string (e.g., “www/CNAME”), a 16-byte value, and a
128-byte digital signature on the root of that keyspace’s
new Merkle tree (i.e., the previous Merkle tree updated
to reflect the newly added or modified field). The proxy
to which this update was introduced verified the signa-
ture using the public key of the keyspace. Since client
costs are not included in our measurements (see above),
signature generation for update operations or signature
verification after a read were omitted.
Time scaling Recall that our Akamai trace was 36 hours
in length. Due to the number of experiments we wished
to perform with this trace, it was not possible to dedi-
cate a full 36 hours per experiment. Simply truncating
the trace would hide important trace characteristics, no-
tably any diurnal pattern that it exhibits. As such, we
employed the following methodology to “compact” the
trace while retaining its characteristics. Each experiment
was parameterized by asampling rate s∈ (0,1] and an
acceleration a≥ 1. Each query in the trace was then re-
played in the experiment independently with probability
s, and the trace was accelerated by a factor ofa. So,
in a period in which the rate of requests in the original
trace wasq requests per second, sampling reduced this
rate tosq requests per second in expectation, and accel-
eration increased this tosqrequests per 1/asecond in ex-
pectation. This method shortens the trace replay to 1/a
times the original, thereby expediting our tests; in our
tests we fixeda= 48 so that each test required 45 min-
utes. However, we sometimes varied the sampling rate
s between experiments. It is convenient to describe an
experiment in terms of the productsa, which we will call
its load factor. For example, an experiment with load
factor sa= 0.1 has an expected request rate of 10% of
the original Akamai trace’s rate.

5.4 Experimental Results

All performance numbers in this section were produced
using the Java Runtime Environment (JRE) distributed
with Java SE 7. We configured the HotSpot Server Java
virtual machine to use the Concurrent Mark and Sweep

9

Latency (ms)

%
 o

f O
pe

ra
tio

ns

u=0.0
u=0.005
u=0.01

0 500 1000

50
75

10
0

(a) Reads

Latency (ms)

%
 o

f O
pe

ra
tio

ns

u=0.005
u=0.01

0 500 1000

50
75

10
0

(b) Updates

Figure 3: CDFs of latencies (ms) asu varies.

garbage collector to maintain responsiveness. Except
when evaluating the impact of the migration threshold
m below, we setm= 0.75, and except when evaluating
throughput below, we set the load factor to 0.1.
Updates We first explore request latencies and, in par-
ticular, the impact of varying the fraction of updates in
the execution on those latencies. Fig. 3 shows CDFs of
operation latencies in experiments for update probabili-
tiesu∈ {0.0, 0.005, 0.01}, whereu= 0.0 implies no up-
dates. In Fig. 3(a), we see that as updates become more
common, latency tends to increase for reads, because up-
dates cause caches to become invalidated, creating the
need for more network traffic. Moreover, as discussed in
Sec. 5.3, these cache invalidations tend to be focused on
the larger and more frequently accessed objects, ampli-
fying the performance impact of updates.

Despite these effects, read latency stays low, with
89.5%, 86.7% and 84.7% of reads completing in under
100ms foru = 0.0, 0.005, and 0.01, respectively. La-
tencies for the updates themselves appear in Fig. 3(b).
These too perform well, with 67.7% and 66.0% complet-
ing in under 100ms foru= 0.005 and 0.01, respectively.
This low latency is partially an artifact of our warmup
method, which initially places objects at the proxy which
will request them most, making many updates local (ex-
cept when the object has been migrated away). Note,
though, that this behavior is part of our design — mi-
gration will tend to move an object toward the proxies
requesting it most.
Migration We illustrate the impact of object migra-
tion on operation latency in Fig. 4. Recall thatm repre-
sents the fraction of the total load for which a neighbor
must account in order for migration in the direction of
that neighbor to begin. Thus,m> 1 is impossible to sat-
isfy and allows no migration at all. We ran experiments
with various migration thresholds:m= 0.55 to 0.95 in
increments of 0.1, as well asm> 1.

Fig. 4(a) shows the total number of migrations for
each setting ofm, and Fig. 4(b) shows the impact of
these migrations on operation latencies. Without mi-
gration, 85% of operations finished in less than 120ms.

Threshold

M
ig

ra
tio

ns
 (

th
ou

sa
nd

s)

.55 .75 .95

10
0

15
0

20
0

(a) Migration count

Latency (ms)

P
er

ce
nt

m=0.75
m=0.95
m>1

0 100 200

50
75

10
0

50
10

0

(b) Latency

Figure 4: Impact of varyingm, with u = 0.0. Lines for
some values ofmare omitted from Fig. 4(b) for clarity.

But even with migration enabled at a very conservative
threshold (m= 0.95), that figure was reduced by 17%
to 100ms. Migration at that level also reduced the to-
tal number of proxy-to-proxy messages by 19%. Ob-
jects migrated within the tree in response to demand over
110,000 times, resulting in faster response times as well
as fewer and smaller network messages sent.

Reducingm further increases performance. For exam-
ple, at a very liberal threshold,m= 0.55, 85% of oper-
ations finished in less than 95ms. In general, the per-
formance differences resulting from different values of
the migration threshold (e.g.,m= 0.55 vs.m= 0.95) are
much smaller than the differences between runs with mi-
gration and those without it (e.g.,m= 0.95 vs.m> 1).

The reason for this disparity is that even a high migra-
tion threshold allows objects to move quite close to their
areas of demand. If an object is far (in the tree) from the
part of the tree where demand for the object is high, then
the proxy hosting that object will see that nearly 100%
of the load for that object is coming to it from whatever
neighbor is in the direction of the load; the host will thus
try to migrate the object to that neighbor (see Sec. 4.3).
In this way, almost any migration threshold will allow
migration of sufficiently out-of-place objects toward the
parts of the tree where they are in the most demand. The
exact value ofm only becomes relevant once the object
is near enough to its demand that significant fractions of
demand for it come from different neighbors. But by that
point, objects are already fairly close to the demand, and
performance has already improved substantially.
Fault tolerance We measured the effect of fault toler-
ance on operation latencies when usingLOKO, i.e., with a
backup per proxy (see Sec. 4.4), foru= 0.01. The results
appear in Fig. 5. As expected, the overhead of fault tol-
erance is much more evident for update operations, since
communication with the backup is on the critical path of
each update operation. One possible cause of the added
read latency may be that we allocated no additional hard-
ware to host backups, nor did we reduce the number of
primary proxies to make room for their backups. In-

10

Latency (ms)

%
 o

f O
pe

ra
tio

ns

No backups
With backups

0 500 1000

0
50

10
0

(a) Reads

Latency (ms)

%
 o

f O
pe

ra
tio

ns

No backups
With backups

0 500 1000

0
50

10
0

(b) Updates

Figure 5: CDFs of latencies (ms) when using backups,
with u= 0.01.

Load factor

10
3 O

ps
 /

S
ec

on
d

0 0.5 1

0
20

40

(a) Throughput
Load factor

M
es

sa
ge

s
/ O

p

0 0.5 1

0
2

4
6

(b) Message cost
Load factor

H
op

s
pe

r
R

ea
d

0 0.5 1

0
1

2

(c) Read hops

Figure 6: Throughput and messaging overhead as load
factor varies, withu= 0.01.

stead, the primaries and their backups shared the same
resources that, in other experiments, were available ex-
clusively to the primaries. Despite the more thinly spread
resources and the synchronization costs of the primary-
backup protocol, operation latencies with backups were
still reasonably close to those without.
Throughput We next present experiments that offer in-
sights into the achievable throughput of our system. In
these tests, we increased the sampling rates and so the
load factor, up to a load factor of 1.0, i.e., the same query
rate per proxy as Akamai supported in the original trace.
Fig. 6(a) shows the achieved throughput in operations per
second withu= 0.01. This figure shows that ourLOKO

implementation absorbs the full per-proxy query rate of
the Akamai trace. Fig. 6(b) illustrates one reason be-
hind this throughput, namely that as the operation rate in-
creases, the effectiveness of read pausing also increases,
since more reads are concurrent. This increase in read
pausing then results in a reduced number of messages
needed per operation, on average (Fig. 6(b)). Finally,
Fig. 6(c) shows that the average number of hops a given
read request must travel before it is paused or reaches the
object is stable, even as the load factor increases. When
the load factor reaches 1.0, each read request travels less
than 1.1 hops on average.

5.5 Limitations

The Akamai data that we employed in our experiments is
the best data we have found for a realistic, global work-

load. That said, it is important to recognize that this
dataset has limitations for the purposes it is used here.
First, Akamai customers tend to be large organizations
for which domain-name query activity might be heav-
ier and more widespread than most domain names not
served by Akamai or than other objects that one might
envision in a future application (e.g., a mobile device’s
location). This tendency might yield an overly opti-
mistic evaluation ofLOKO, since it makes more oppor-
tunities to aggregate (i.e., pause) reads in the tree, but it
also might yield an overly conservative evaluation, since
global demand reduces the ability to improve access la-
tencies through migration. Second, as already noted, the
Akamai dataset contains no update operations, and so it
was necessary to fabricate them.

6 Conclusion

This paper describes the design and evaluation of
WACCO, a system for implementing object-based ser-
vices that need to support both frequent updates and
widespread, massive read demand with strong consis-
tency. A contribution of our work is a novel type of
strong consistency dubbedcluster consistency, which
implies both sequential consistency and rapid update
propagation and, we argue, can be useful in a range of
future networked applications. We usedWACCO to im-
plement a service calledLOKO that supports keyspace
objects and, in one style of usage, could roughly encom-
pass the current duties of DNSSEC. Our evaluation using
an emulated global topology and trace of DNS queries to
Akamai shows thatLOKO provides good responsiveness
and can scale to large demand. Through our evaluation,
we also documented the importance of object migration
and read pausing (and hence cluster consistency) to the
performanceLOKO achieves.

References

[1] M. Ahamad, G. Neiger, J. E. Burns, P. Kohli, and
P. W. Hutto. Causal memory: Definitions, imple-
mentation, and programming.Distributed Comput-
ing, 9(1), 1995.

[2] R. Arends, R. Austein, M. Larson, D. Massey, and
S. Rose. DNS security introduction and require-
ments. RFC 4033, March 2005.

[3] H. Attiya and J. Welch. Distributed Computing:
Fundamentals, Simulations and Advanced Topics.
John Wiley & Sons, Inc., second edition, 2004.

[4] M. Avvenuti and A. Vecchio. Application-level net-
work emulation: The EmuSocket toolkit.J. Netw.
Comp. Appl., 29(4), 2006.

11

[5] N. Budhiraja, K. Marzullo, F. B. Schneider, and
S. Toueg. The primary-backup approach. In
S. Mullender, editor,Distributed Systems, 2nd edi-
tion, pages 199–216. Addison-Wesley, 1993.

[6] P. Cao and C. Liu. Maintaining strong cache con-
sistency in the World Wide Web.IEEE Trans. Com-
puters, 47(4), 1998.

[7] A. Chankhunthod, P. Danzig, C. Neerdaels, M. F.
Schwartz, and K. J. Worrell. A hierarchical Internet
object cache. InUSENIX ATC, 1996.

[8] X. Chen, H. Wang, S. Ren, and X. Zhang. Main-
taining strong cache consistency for the Domain
Name System.IEEE Trans. Knowledge and Data
Engineering, 19(8), 2007.

[9] J. C. Corbett, J. Dean, M. Epstein, A. Fikes,
C. Frost, J. Furman, S. Ghemawat, A. Gubarev,
C. Heiser, P. Hochschild, W. Hsieh, S. Kanthak,
E. Kogan, H. Li, A. Lloyd, S. Melnik, D. Mwaura,
D. Nagle, S. Quinlan, R. Rao, L. Rolig, Y. Saito,
M. Szymaniak, C. Taylor, R. Wang, and D. Wood-
ford. Spanner: Google’s globally distributed
database. In10th USENIX OSDI, 2012.

[10] R. Cox, A. Muthitacharoen, and R. T. Morris. Serv-
ing DNS using a peer-to-peer lookup service. In1st
Intern. Wkshp. Peer-to-Peer Syst., 2002.

[11] E. Cronin, B. Filstrup, A. B. Kurc, and S. Jamin. An
efficient synchronization mechanism for mirrored
game architectures. In1st Wkshp. Netw. Syst. Sup-
port for Games, 2002.

[12] D. K. Gifford. Weighted voting for replicated data.
In 7th ACM SOSP, 1979.

[13] S. Gilbert and N. Lynch. Brewer’s conjecture
and the feasibility of consistent, available, and
partition-tolerant web services. ACM SIGACT
News, 33(2), 2002.

[14] L. Glendenning, I. Beschastnikh, A. Krishna-
murthy, and T. Anderson. Scalable consistency in
Scatter. In23rd ACM SOSP, 2011.

[15] T. Griffin and G. Wilfong. Analysis of the MED
oscillation problem in BGP. InIEEE ICNP, 2002.

[16] T. G. Griffin and G. Wilfong. An analysis of BGP
convergence properties. InACM SIGCOMM, 2009.

[17] M. P. Herlihy. A quorum-consensus replication
method for abstract data types.ACM TOCS, 4(1),
1986.

[18] M. P. Herlihy and J. M. Wing. Linearizability: A
correctness condition for concurrent objects.ACM
TOPLAS, 12(3), 1990.

[19] A. Juels and J. Brainard. Client puzzle: A cryp-
tographic defense against connection depletion at-
tacks. In5th ISOC NDSS, 1999.

[20] J. Kangasharju and K. W. Ross. A replicated archi-
tecture for the Domain Name System. In19th IEEE
INFOCOM, 2000.

[21] D. Kim, J. Kim, Y. Kim, H. Yoon, and I. Yeom.
Mobility support in content centric networks. In
2nd Wkshp. Inform.-Centric Netw., 2012.

[22] L. Lamport. Time, clocks, and the ordering of
events in a distributed system.CACM, 21, 1978.

[23] L. Lamport. How to make a multiprocessor
computer that correctly executes multiprocess pro-
grams.IEEE Trans. Computers, C-28(9), 1979.

[24] W. Lloyd, M. J. Freedman, M. Kaminsky, and
D. G. Andersen. Don’t settle for eventual: Scal-
able causal consistency for wide-area storage with
COPS. In23rd ACM SOSP, 2011.

[25] M. Mauve, J. Vogel, V. Hilt, and W. Effelsberg.
Local-lag and timewarp: Providing consistency for
replicated continuous applications.IEEE Trans.
Multimedia, 6(1), 2004.

[26] R. C. Merkle. Secrecy, authentication, and public
key systems. PhD thesis, Department of Electrical
Engineering, Stanford University, 1979.

[27] S. Michel, K. Nguyen, A. Rosenstein, L. Zhang,
S. Floyd, and V. Jacobson. Adaptive web caching:
Towards a new global caching architecture.Comp.
Netw. and ISDN Syst., 30, 1998.

[28] M. Motiwala, M. Elmore, N. Feamster, and S. Vem-
pala. Path splicing. InACM SIGCOMM, 2008.

[29] J. Paek, K. Kim, J. P. Singh, and R. Govindan.
Energy-efficient positioning for smartphone appli-
cations using cell-ID sequence matching. In9th
MobiSys, 2011.

[30] J. Pang, A. Akella, A. Shaikhy, B. Krishnamurthyz,
and S. Seshan. On the responsiveness of DNS-
based network control. InInternet Measurement
Conf., 2004.

[31] V. Pappas, D. Massey, A. Terzis, and L. Zhang. A
comparative study of the DNS design with DHT-
based alternatives. In25th IEEE INFOCOM, 2006.

12

[32] V. Ramasubramanian and E. G. Sirer. The design
and implementation of a next generation name ser-
vice for the Internet. InACM SIGCOMM, 2004.

[33] M. K. Reiter and A. Samar. Quiver: Consistent ob-
ject sharing for edge services.IEEE TPDS, 19(7),
2008.

[34] P. Rodriguez, C. Spanner, and E. W. Biersack.
Analysis of web caching architectures: Hierarchi-
cal and distributed caching. IEEE/ACM Trans.
Netw., 9(4), 2001.

[35] X. Wang and D. Wetherall. Source selectable path
diversity via routing deflections. InACM SIG-
COMM, 2006.

[36] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Gu-
ruprasad, M. Newbold, M. Hibler, C. Barb, and
A. Joglekar. An integrated experimental environ-
ment for distributed systems and networks. In5th
USENIX OSDI, 2002.

[37] Y. Wu, J. Tuononen, and M. Latvala. Performance
analysis of DNS with TTL value 0 as location
repository in mobile Internet. InIEEE Wireless
Comm. and Netw. Conf., 2007.

[38] W. Xu and J. Rexford. MIRO: Multi-path Interdo-
main ROuting. InACM SIGCOMM, 2006.

[39] X. Yang, D. Clark, and A. W. Berger. NIRA: A
new inter-domain routing architecture.IEEE/ACM
Trans. Netw., 15(4), 2007.

[40] X. Yang, D. Wetherall, and T. Anderson. TVA:
A DoS-limiting network architecture.IEEE/ACM
Trans. Netw., 16(6), 2008.

[41] X. Zhang, H.-C. Hsiao, G. Hasker, H. Chan, A. Per-
rig, and D. Andersen. SCION: Scalability, control,
and isolation on next-generation networks. InIEEE
Symp. Security & Privacy, 2011.

[42] Z. Zhang, Y. Zhang, Y. C. Hu, and Z. M. Mao.
iSPY: Detecting IP prefix hijacking on my own. In
ACM SIGCOMM, 2008.

A Cluster Consistency

Definition Here we definecluster consistency. An
objectconsists of state and a set ofmethodsthat can be
invoked. Each invocation returns aresponse, and an in-
vocation/response pair is called anoperation. Correct
behavior of the object is defined by itssequential speci-
fication, which specifies the return results of operations
invoked sequentially on the object.

To denote a read or update operation specifically, we
will often user-op or u-op, respectively, though we will
also useop to denote an operation generically. For any
operationop, its invocation occurs at a distinct real time
op.inv and is followed by a matching response at a dis-
tinct real timeop.res > op.inv. A history H is a set
of operations and an induced partial order≺H defined
as op1 ≺H op2 ⇐⇒ op1.res < op2.inv. The interval
[op.inv,op.res] is denotedop.interval. H is sequential
if ≺H is a total order. For an objectobj, the setH|obj
includes only those operations inH that are invoked on
obj, and for a clientc, the setH|c includes only those
operations inH that are invoked byc. By convention,
we assume thatH|c is sequential for each clientc. (In
practice, each “client” is a clientthread.) A serialization
Sof H is the setH totally ordered by a relation≺S.

Definition 1 (Sequential consistency [23]). A history H
is sequentially consistent if there exists a serializationS
of H such that the following properties hold: (i)Legal-
ity: For each object obj, S|obj is legal (i.e., is in the se-
quential specification of obj). (ii)Local-Order: If op1
and op2 are executed by the same client and op1 ≺H op2,
then op1 ≺S op2.

The consistency implemented inWACCO, calledclus-
ter consistency, implies sequential consistency. As such,
there is a well-defined order in which updates are applied
to each object, and each update operation produces a new
version of the object on which it operates. The version
number of the new object instance is one greater than
that of the object instance to which the update was ap-
plied. Letu-op.ver be the version number of the object
instance produced byu-op.

Definition 2 (Read cluster). A read cluster C is a
nonempty set of read operations (i) that return the
same (object and) object version, and (ii) for which
⋃

op∈C op.interval is a contiguous interval of time. For
a read cluster C, we define

C.inv = min
op∈C

op.inv C.res= min
op∈C

op.res

It is convenient to also permit a single update oper-
ation u-op to constitute its ownupdate cluster C. We
stress, however, that an update cluster contains only
a single update and no reads. For an update cluster
C = {u-op}, the definitions forC.inv andC.res above
simplify to C.inv = u-op.inv, C.res = u-op.res. Given
these definitions, we abuse notation by usingC1 ≺H C2

(whereC1 andC2 are read or update clusters) to mean
C1.res<C2.inv. We also assign a version number to each
cluster, as follows. IfC is a read cluster, thenC.ver is the
version of the object read by the read requests inC. If
C= {u-op} is an update cluster, thenC.ver = u-op.ver.

13

Definition 3 (Cluster consistency). A set of operations is
cluster-consistent if it is sequentially consistent and sat-
isfiesCluster-Order: There exists a partition of the oper-
ations into clusters so that if C1, C2 are performed on the
same object and C1.res<C2.inv, then C1.ver ≤C2.ver.

Fig. 7(a) gives an example execution that is sequen-
tially consistent but not cluster-consistent, and so cluster
consistency is strictly stronger. However, cluster con-
sistency is weaker than linearizability [18], which re-
quires that for anyop1 andop2, if op1.res< op2.inv then
op1.ver ≤ op2.ver; i.e., history precedence must be re-
spected at the level of all operations and not only between
clusters on the same object. Fig. 7(b) shows a cluster-
consistent execution may not be linearizable.

write(0) write(1)

0 ← read()

0 ← read()

(a) A history that is sequentially consistent but not
cluster-consistent. For cluster consistency, the sec-
ond read must return 1 since its read cluster (itself
only) occurs after the write of 1.

write(0) write(1)

0 ← read()

0 ← read()

(b) A history that is cluster-consistent, since both
read operations form a read cluster, but not lineariz-
able. For linearizability, the second read must re-
turn 1 since it occurs after the write of 1.

Figure 7: Execution histories. Time increases left-to-
right. Each row denotes one client. All operations are
on the same object.

Proof of Cluster Consistency We now prove that the
protocol described in Sec. 4.1 implements cluster con-
sistency. We do not explicitly treat caching (Sec. 4.2),
migration (Sec. 4.3) or proxy backups (Sec. 4.4) in the
proof, as these are done in a way that does not alter the
semantics of the protocol (though they do optimize it or
make it more resilient). Given a historyH, consider a
directed graphGH with nodes the operations inH and
edges of three types:
• Client order (

c
→): if op1 andop2 are performed by

the same client and ifop1 ≺H op2, thenop1
c
→ op2.

• Reads-from order (
rf
→): if u-op is an update that re-

sults in an object state on whichop is applied, then

u-op
rf
→ op.

• Version order (
v
→): Let u-op1 andu-op2 denote dis-

tinct update operations on the same object, and let

op denote any other operation on that object such

that u-op1
rf
→ op. If the object version on which

u-op1 is applied is larger than the object version on
which u-op2 is applied (u-op1.ver > u-op2.ver), then
u-op2

v
→ u-op1 and otherwiseop

v
→ u-op2.

We use natural shorthands such as
c,rf
→ =

c
→∪

rf
→. We

also use
c
→+ to denote the irreflexive transitive closure

of
c
→, and similarly for other orders.
c
→ and

rf
→ naturally capture the temporal and data-

flow relationships between operations that need to be re-
spected in serializingH. The purpose of

v
→, moreover,

is to constrain any serialization to respect the object ver-
sions observed by operations. More precisely, to prove
the sequential consistency ofH, we first argue thatGH is
acyclic (Lemma 6) and then that this implies that there
is a serialization ofH respectingLegality and Local-
Order (Corollary 1). We will then separately argue in
Lemma 7 that there must exist some such serialization
that also demonstratesCluster-Order.

Below we prove several lemmas which we will use
in order to prove (in Lemma 6) thatGH is acyclic. Our
proofs below involve the following additional notation.
To each operationop is associated a logical (Lamport)
time [22] op.linv at which the client invoked it and an-
other logical timeop.lres at which it returned its result
at that client. In addition, each update operationu-op
has a(logical) effective timeof u-op.leff, which is the
Lamport clock value assigned to the event applyingu-op
to the object at the proxy hosting the object. For a read
operationr-op, r-op.leff is the logical time at which a re-
sponse for this read operation was issued, either by the
last proxy to pauser-op or, if r-op traveled all the way
to the object, by the proxy hosting the object. Note that
op.linv < op.leff < op.lres for all operations.

Lemma 1. The subgraph ofGH consisting of only edges

in
c,rf
→ is acyclic.

Proof. Sinceop1
c
→ op2 impliesop1.lres < op2.linv, we

see thatop1
c
→ op2 impliesop1.leff < op2.leff. Similarly,

it must be thatop1
rf
→ op2 implies op1.leff < op2.leff,

since an update must have been written before it can

be read from. Therefore, each edge in
c,rf
→ represents

an increase inop.leff, meaningop1
c,rf
→+ op2 implies

op1.leff < op2.leff.
Assume for a contradiction, then, that there is a cy-

cle consisting only of edges in
c,rf
→. That means that

op
c,rf
→+ op. Therefore, we haveop.leff < op.leff, a con-

tradiction.

Lemma 2. If there is a cycle inGH , then there is a cy-
cle in GH in which every

v
→ edge appears in an edge

14

sequence of the form u-op1
c,rf
→+ r-op2

v
→ u-op3.

Proof. We prove the result by first showing that for any
cycle in GH , any

v
→ edge not already in an edge se-

quence of the formop1
c,rf
→+ r-op2

v
→ u-op3 can be re-

placed by edges not in
v
→ to produce a new cycle in

GH . Since
v
→ edges must point to an update, we must

consider
v
→ edges of only the formsr-op

v
→ u-op and

u-op′
v
→ u-op. In the first case, sinceop

v
→ r-op is

impossible (again,
v
→ edges point to updates), an edge

r-op
v
→ u-op already occurs within an edge sequence of

the form op1
c,rf
→+ r-op2

v
→ u-op3 on the cycle. In the

second case, because updates on each object are applied
sequentially,u-op′ is applied beforeu-op, and so there is

a chain of updates to the object such thatu-op′
rf
→+ u-op.

Replacing the edgeu-op′
v
→ u-op with this chain pro-

duces a cycle not containingu-op′
v
→ u-op.

To complete the proof, we now must argue that for

any edge sequence of the formop1
c,rf
→+ r-op2

v
→ u-op3

on the cycle, there is a corresponding edge sequence

u-op1
c,rf
→+ r-op2

v
→ u-op3 on the cycle. Ifop1 is an up-

date, then settingu-op1 = op1 completes the argument.
Otherwise, consider walking the cycle backward along
rf
→ and

c
→ edges fromop1, terminating at a

v
→ edge.

Since this
v
→ edge must point to an update, this update

suffices foru-op1.

If there is a cycle inGH , then Lemma 2 guarantees the
existence of a cycle in which all

v
→ edges occur within

edge sequences of a certain form. Below we refer to such
a cycle asconstrained.

Lemma 3. If there is a cycle inGH , then within a
constrained cycle, there must be at least one edge se-

quence u-op1
c,rf
→+ r-op2

v
→ u-op3 such that u-op3.leff ≤

u-op1.leff.

Proof. Consider an alternative graphG ′
H that includes all

of the edges ofGH and additionally the edgeu-op1
s
→

u-op3 whenever u-op1
c,rf
→+ r-op2

v
→ u-op3. From

any constrained cycle inGH we can construct a cy-

cle op
c,rf,s
→ + op in G ′

H by replacing edge sequences

u-op1
c,rf
→+ r-op2

v
→ u-op3 on the constrained cycle with

the edgeu-op1
s
→ u-op3. Recall from the proof of

Lemma 1 thatop′
c,rf
→+ op implies op′.leff < op.leff.

Moreover, if Lemma 3 were false, thenu-op1.leff <

u-op3.leff for every edgeu-op1
s
→ u-op3 used in the cy-

cle inG ′
H . So, from the cycleop

c,rf,s
→ + op we could infer

op.leff < op.leff, a contradiction.

Each read cluster has exactly one read operation that
reads from the authoritative object itself. For a read clus-
ter C, we call this the “representative” read operation
C.rep.

Lemma 4. If there is an edge sequence u-op′ c,rf
→+ r-op

v
→ u-op inGH where u-op.leff ≤ u-op′.leff, then r-op′.leff
≤ u-op′.leff where C is the read cluster containing r-op
and r-op′ =C.rep.

Proof. Assume for a contradiction thatu-op′.leff <
r-op′.leff. Then, we haveu-op.leff ≤ u-op′.leff <
r-op′.leff. Since r-op′ read from the object itself and
u-op.leff < r-op′.leff, r-op′ must have read the value
written by u-op (or possibly a later value) and sor-op

must have, as well. That is,u-op
rf
→+ r-op, contradict-

ing r-op
v
→ u-op.

Lemmas 1–4 show that forGH to have a cycle, a
necessary condition is an edge sequence of the form

u-op′
c,rf
→+ r-op

v
→ u-op where r-op is contained in a

read clusterC whose representativer-op′ = C.rep is too
outdated, i.e.,r-op′.leff ≤ u-op′.leff. It is for this rea-
son thatWACCO is designed to prevent this possibility.
Specifically, each returning response to a read opera-
tion r-op carries with it the effective time of represen-
tative r-op′ of the cluster containingr-op and the effec-
tive time of the update from whichr-op′ and thusr-op

are reading, calledr-op.lueff. That is, if u-op
rf
→ r-op,

then r-op.lueff = u-op.leff. Responses to updates can
also carry the effective time back to the requester, so that
u-op.lueff = u-op.leff.

Each clientc tracks the largestop.lueff for all oper-
ationsop it has issued, denotedc.after; i.e., c.after =
maxop{op.lueff} where the maximum is taken over all
operations issued byc. For each read requestr-op, the
outbound requestr-op carries with it the current value
of c.after, called r-op.after. As r-op reaches proxies
along its outbound path, the proxies are allowed to pause
it, as usual. When a response arrives at the proxy, the
response carries with it the effective time of the read
operationr-op′ that reached the authoritative object to
elicit this response. The proxy will use this read re-
sponse to answer a paused read operationr-op only if
r-op′.leff > r-op.after; in this case,r-op is added to the
cluster for whichr-op′ serves as the representative and
sor-op.lueff is assigned to ber-op′.lueff, which is avail-
able in the incoming read response. Any readsr-op that
were not answered by this read response (i.e., because
r-op′.leff ≤ r-op.after) must still be addressed, and now
no response is expected inbound. Therefore, the proxy
chooses any remainingr-op to forward along to elicit an-
other response.

15

Lemma 5. There is no edge sequence u-op′ c,rf
→+ r-op

v
→ u-op inGH such that u-op.leff ≤ u-op′.leff.

Proof. By Lemma 4, the existence of edge sequence

u-op′
c,rf
→+ r-op

v
→ u-op in GH such thatu-op.leff ≤

u-op′.leff implies thatr-op′.leff ≤ u-op′.leff whereC is
the read cluster containingr-op andr-op′ = C.rep. By
construction,r-op can be answered by a read response
only if the effective time of the read operationr-op′ that
reached the authoritative object to elicit this response sat-
isfiesr-op′.leff > r-op.after. So, to prove the lemma, it
suffices to show thatu-op′.leff ≤ r-op.after.

Consider the edge sequenceu-op′
c,rf
→+ r-op

v
→ u-op

and letu-op′′ be the update operation on this sequence
that precedes and is closest tor-op; i.e., there is no up-
date operation betweenu-op′′ and r-op along this edge
sequence. Eitheru-op′′ = u-op′ and sou-op′.leff =

u-op′′.leff, or u-op′
c,rf
→+ u-op′′ and sou-op′.leff <

u-op′′.leff. It thus suffices to prove thatu-op′′.leff ≤

r-op.after. If the chainu-op′′
c,rf
→+ r-op includes no

rf
→ edges, then the client issuingr-op is the same as the
client issuingu-op′′, and sou-op′′.leff = u-op′′.lueff ≤
r-op.after becauser-op.after is constructed as the max-
imum op.lueff for all operationsop that this client has
issued so far (includingu-op′′ itself). If the chainu-op′′
c,rf
→+ r-op includes one

rf
→ edge, it must be the first

edge. That is, we haveu-op′′
rf
→ r-op′′

c
→+ r-op

v
→ u-op.

Then, the client issuingr-op also issuedr-op′′, and so
u-op′′.leff = r-op′′.lueff ≤ r-op.after, again due to the
construction ofr-op.after.

Lemma 6. GH is acyclic.

Proof. Assume for a contradiction that there is a cycle
in GH . Lemma 3 shows that the cycle contains a se-

quenceu-op1
c,rf
→+ r-op2

v
→ u-op3 such thatu-op3.leff ≤

u-op1.leff. But Lemma 5 shows that this cannot happen,
giving a contradiction.

Corollary 1. The protocol of Sec. 4.1 is sequentially
consistent.

Proof. Consider any topological sort ofGH . Due to the
c
→ edges, it satisfiesLocal-Order. Moreover, every read
and update operation appears in this serialization after
the update producing the object state to which it is ap-

plied (due to
rf
→ edges) and before any subsequent up-

date (due to
v
→ edges). Consequently,Legality is satis-

fied.

Lemma 7. The protocol of Sec. 4.1 satisfiesCluster-
Order.

Proof. Consider two clustersC1,C2 ⊆ H|obj as defined
above, such thatC1 ≺H C2. Therefore,C1.rep was ap-
plied to the authoritative object beforeC2.rep (in real
time), and soC1.ver ≤C2.ver.

16

