WACCO and LOKO : Strong Consistency at Global Scale

Darrell Bethea Michael K. Reiter
University of North Carolina University of North Carolina
djp@cs.unc.edu reiter@cs.unc.edu
Feng Qian Qiang Xu Z. Morley Mao
AT&T Labs — Research NEC Labs America University of Michigan
fenggian@research.att.com giangxu@nec-labs.com zmao@umich.edu
Abstract anomalies, for example. Because this information can

Motivated by a vision for future global-scale services change quickly — in some cases at the granularity of
supporting frequent updates and widespread concuiseconds or less — there is a need for infrastructure ser-
rent reads, we propose a scalable object-sharing sysices that support dynamic updates, strong consistency,
tem calledwAcco offering strong consistency seman- and global scalability. Even for existing uses to direct
tics. wACco propagates read responses on a tree-basetlients to servers or to exercise route control, today’s
topology to satisfy broad demand and migrates object®NS has limited ability to provide fine-grained control
dynamically to place them close to that demand. To(e.g., [30, 32]), and we expect this shortcoming to be-
demonstrat@/Acco, we use it to develop a service called come more acute in the future.

LOko that could roughly encompass the current duties |n this paper we describe a system calle@i#/Area

of the DNS and simultaneously support granular statugluster-@®nsistent ®jects (VACCO). WACCO manages
updates (e.g., currently preferred routes) in a future Inaccess to stateful, deterministibjectsthat support invo-
ternet. We evaluateoko, including the performance cations of arbitrary types, each of which is eithengm
impact of updates, migration, and fault tolerance, usingdatethat may modify object state oraadthat does not.

a trace of DNS queries served by Akamai. Objects are managed on a tree-based overlay network of
proxiesthat is arranged with respect to geography; i.e.,
1 Introduction neighbors in the tree tend to be close geographically or,

more to the point, enjoy low latency between them. Each

Today's Internet is served by infrastructures that, inclientis assigned to a nearby proxy to which it connects
general, scale remarkably well to the massive demand® access objects, and object access is managed through
placed on them. Both the Domain Name System (DNSY protocol that offers a novel type of consistency that we
and content-distribution networks (CDNs) are exampleglub cluster consistency Cluster consistency is strong:
of dramatic feats of engineering that facilitate global andit ensures sequential consistency [23] and alsochst
quick access to content. The power of these infrastructersof concurrentreads see the most recent preceding up-
tures, however, derives in part from the largely static na-date to the object on which the reads are performed. The
ture of the data they serve. DNS scales through cachinggsulting agreed-upon order and rapid visibility of up-
on the basis of time-to-live (TTL) values that are typi- dates facilitate a wide range of applications, e.g., networ
cally large enough to hide updates from parts of the nettroubleshooting, trajectory tracking of mobile nodes, and
work for minutes or hours. CDNs serve primarily static content-oriented network applications.
data or else data that, if updated, need not be viewed con- Scalability of services implemented usimgpcco is
sistently by different parts of the network. achieved through two strategies. Finstycco uses the

The viability of such approaches may be challengedtree structure of the overlay to aggregate read demand,
however, as the Internet evolves. Multiple visions for fu- permitting the responses to some reads to answer others.
ture Internet designs anticipate the need to support morAs such, under high read concurrency, the vast major-
dynamic information in the network (e.g., SCION'’s ad- ity of reads are not propagated to the location of the ob-
dress and path servers [41], NIRA's NRLS [39], or ren-ject; rather, most arpausedin the tree awaiting others
dezvous servers to support mobility in content-centricto complete, from which the return result can be “bor-
networking [21]), which may enable mobile network lo- rowed”. Secondwacco employs migration to dynam-
cation, dynamic route control, or diagnosis of networkically change where each object resides, permitting the

object to move closer to demand as it fluctuates, e.g., duthoritative object copy is consulted before returning a
to diurnal patterns. cached answer in order to enforce strong consistency. To

To demonstrate and evaluateacco, we use it to reduce the overheads and response latencies induced by
build a service called dw-Overhead Kyspace Ojects such polling,wacco employs two strategies. The first
(Loko). Loko permits clients to create, modify and is to leverage the tree structure to aggregate polling by
query keyspaceobjects. A keyspace is identified by a many concurrent reads into few messages along the tree.
public keypk, and the keyspace fak stores (or gener- This aggregation also allowsAcco to reduce polling
ates) mappings, each from a query strifgir to a value latency by using ongoing polling requests to accelerate
val and bearing a digital signature that can be verified byothers; this strategy has implications for the consistency
pk So, for example, querying the keyspace frfor offered bywacco, which we characterize precisely. The
the stringnytimes/publicKey might return the signed second strategy is to migrate the authoritative object copy
public key certificate that the owner gk believes to closer to where demand is largest, an option available
be fornytimes. Similarly, the querywww/bestRoute to WACCO because it manages the authoritative copy of
on the keyspace identified gk might return a signed each object itself, in contrast to web caches that do not.
mapping indicating the currently preferred route to reach Many wide-area caching, edge service, and storage de-
the web server representing the ownepgf By iterat- signs are also related to our work; space limitations pre-
ing queries to a “chain” of keyspaces, each referring theclude a comparison to all of them. That said, if a replica-
client to the next keyspace in the chain, a client couldtion (or caching) scheme is to prevent conflicting object
securely resolve a multipart pathname, much as is dongersions and to make updates available to reads immedi-
with DNSSEC [2]. In this respect,0ko could encom- ately, it must apply reads and updates at a set (quorum) of
pass one of the main duties of today’s DNS/DNSSEC replicas that intersects the quorum employed in another
while supporting more dynamic mappings due to theupdate [12, 17]. Different designs employ different quo-
consistency provided byacco. rum systems; e.g., in a read-one-update-all quorum sys-

In evaluatingLoko (and wAacco), we were handi- tem, every proxy (the update quorum) must be contacted
capped in not having a global workload for such a ser-on the critical path of an updataiacco employs a quo-
vice. So, we approximated a global workload using arum per object consisting of single authoritative copy,
trace of over 4.4 billion DNS requests served by Aka-uses a tree-based overlay to reach this copy, is optimized
mai servers over 36 hours to 83,448 clients in four getoward widespread concurrent read load and moderate
ographic regions across Asia, North America and Eu-concurrent update load, and, to our knowledge, offers a
rope. We used this trace to drive 76-proxy emulationsnew type of consistency achieved by a novel combination
of Loko with network delays induced to represent aof tree-based aggregation and migration.
LoKo deployment across these four regions. Our em- Some designs offer stronger consistency thagco.
ulations show thatoko provides good latency for oper- For example, Scatter [14] supports linearizability [18].
ations, e.g., with up to 89% of reads completing in underHowever, partly due to its use of distributed hash tables,
100ms. We also show that our implementation can susit does not offer the same benefits of request aggregation
tain the full per-proxy query rate represented by the Aka-and geographic proximity thatacco achieves through
mai trace, while guaranteeing cluster consistency. We ilits tree structure and migration. Spanner [9] also im-
lustrate the effectiveness of the components of our desigplements linearizability, though it does so in part by re-
using measurements from these emulations. lying on synchronized real-time clocks, whietncco

We begin by presenting related work in Sec. 2. Wedoes not, and again does not leverage request aggrega-
discuss our design goals in Sec. 3 and present the dgon. Other systems offer weaker consistency to improve
sign of wAacco in Sec. 4. Our evaluation (including a partition-tolerance: e.g., COPS [24] implements causal
description ofLoko) is in Sec. 5, and we conclude in consistency [1]. Here, we strive for stronger consistency
Sec. 6. The appendix presents the definition of clusteand necessarifypresume that partitions in future Internet
consistency and a proof that our protocol implements it. architectures will be negligibly rare (e.g., due to redun-

dant routing paths [38, 35, 28]).
2 Related Work As discussed in Sec. 1, our implementatior.oko
as a demonstration ofvacco is motivated by short-

The use of a tree-based topologywacco for object ~ comings of the current DNS for future Internet archi-
access is reminiscent of hierarchical caching, which hagectures or even for serving more dynamic data in sup-
been studied and deployed extensively for wide-area sys

) 1 - . N
tems such as the World-Wide Web (e.g., [7, 27, 34]). In.___ e proof by Gilbert and Lynch [13] shows that linearizapilis
impossible to achieve if all operations must return evennietitions

some rgspectstCC(_) can be viewed as _using_m)lling- occur. This proof applies equally to cluster consistenog, groperty
every-timecache validation strategy [6] in which the au- that WACCO provides.

port of today’s mobility and content management (e.g., Despite the strength of sequential consistency, it alone
see [30, 32]). These shortcomings have led to numeroudoes not ensure rapid propagation of updates: in the
attempts to modify DNS usage (e.g., [37]), to enhancdimit, a client of a sequentially consistent (only) object
DNS operation (e.g., [8]), to replace it outright with al- store would be permitted to read the same value forever
ternative designs (e.g., [20, 10, 32]), and to understanéobr an object, even if other clients have updated that ob-
the tradeoffs between new designs and the current DN§ct. As such, our goals include an enforced rapid prop-
(e.g., [31]). CoDoNS [32] is a noteworthy design that, agation of updates, i.e., updates “take effect” (nearly)
like LOKO, decouples namespace (or keyspace) managémmediately. Linearizability [18] strengthens sequentia
ment from the location and ownership of name servergonsistency by mandating that an update be observed by
(in our parlance, proxies) and accelerates the propagany operation on the same object that begins after (in real
tion of updates to clients. It provides fast read respons¢ime) the update operation returns to its caller. However,
via a dynamic replication technique that ensures that dinearizability comes at considerable performance cost
large percentage of requests can be answered immedB, Ch. 9], and so we adopt a weaker requirement that
ately by the first proxy to receive the request. Howevernevertheless strengthens sequential consistency to make
as in the discussion of read-one-update-all quorum sysdpdates take effect quickly.

tems above, consistency then requires that all of these The middle ground we adopt is one in which read op-
replicas be updated (or invalidated) when an update ocerations on the same object can be partitioned chis-
curs, making updates more costlyoko is a different tersof concurrent read$so that all reads in each cluster
point in the design space that anticipates more frequentturn results based on the latest update preceding the
updates and so strikes a different balance between readuster in real time (or a more recent update, i.e., one
and update cost — one that still favors reads particularlyconcurrent with the cluster). The resulting consistency
when read load is high but that lessens the number oproperty, which we terncluster consistengyis weaker
proxies that updates must alter. than linearizability because a read may return results on
the basis of only updates that preceded the cluster con-
taining it, rather than all updates that precede the indi-
vidual read. (Updates to the same object are still ordered

We anticipate an object access workload that is generaccor_ding to their real-time order, however.) In exchan.ge
ally read-dominated — maybe by orders of magnitudefor this weaker property, we show that cluster consis-

— but that may nevertheless involve frequent and everl€ncy can be implemented scalably in wide-area settings

concurrent updates on a per-object basis. Updates to 4 Permitting a read to carry responses to other reads
object may be frequent due to the transient nature of thi! its cluster, thereby accelerating the response times of
information used to update an object (e.g., the currenth©Se reads and reducing load on the authoritative copy.
performance characteristics of a network link), and ob- Beyond applications to future Internet designs men-
ject updates may be concurrent due to contributions fronfioned in Sec. 1, we see cluster consistency as poten-
many parties (e.g., one per link, for an object that calcyially usefulin other, nearer-term applicationsmfcco,

lates preferred routes based on current characteristics 69 _

many links). Such workloads temper our willingness to ® Network troubleshooting Updates from network
trade update performance for read performance arbitrar- Sensors that publish wacco will appearin the same

ily, e.g., as in a typical read-one-update-all system (see Order, enabling consistent dlagn0.5|s an_d actuation of
Sec. 2). RathewAcco takes a more balanced approach the network by distributed analysis engines. For ex-

that favors read performance but that still limits updates mMPle, routing anomalies caused by MED oscilla-
to a single authoritative object copy. tion [15] and BGP policy divergence [16] in today’s

The consistency implemented wacco implies se- Internet require distributed monitoring to quickly de-
quential consistency [23] (and more, see below). Se- t€ctand react to an anomaly, e.g., by modifying lo-
quential consistency is a “strong” consistency model: it €@l routing policies to eliminate the divergent be-
implies that clients observe update operations to objects havior and so to minimize its impact on traffic. A
in the same total order (cf., [3, Ch. 9]). Sequential consis- ClUSter-consistent view of routing updates published
tency impliescausal consistendil]: updates related by to wacco will make it simpler for distributed mon-
potential causality [22] (e.g., a client reads an update and 1tors to concur on the anomaly and effect changes
then performs another) will be observed by any client 1N Policy at multlpl_e Iocatl_ons to rectify the prolblem.
in order of their potential causality. But unlike causal ~Another example is real-time response to routing pol-
C(.)nSISter.]Cy’ sequential consistency also implies that aft 2More specifically, in each cluster, the union of real-timeeinals
C“ents_ will Obse_rV? all updates that anet related by peginning with each read invocation and ending with itsmetis con-
potential causality in the same order. tiguous. See the appendix for details.

3 Design Considerations and Goals

lution, e.g., prefix hijacking [42]. Rapid update prop- proxy at a time, awaiting the completion of any opera-
agation and consistent event ordering (e.g., which nettions it issued to one proxy before switching to another.
works are polluted first) could help reveal the source The proxies provide clients with access to a collec-
of pollution and enable a faster reaction to the propation of objects. A client submits a read or update invo-
gation of polluted routes. cation for an object to its proxy and awaits a response
e Trajectory tracking of mobile nodes Predicting the from that same proxy. Updates (potentially) modify the
future location of a mobile endpoint (e.g., a train) for object state; reads do not. Our protocol description and
use in routing (e.g., [29]) would be greatly simpli- proof presume that a read simply returns the current ob-
fied with a cluster-consistent view of the endpoint’s ject state, though obviously a proxy can derive a cus-
trajectory. For example, if each network appends itstomized read result from that state before returning the
name to avACCO object representing the endpoint’s result to the client. An example of this behavior in the
trajectory when the endpoint attaches to the networkcontext ofLoko is described in Sec. 5.1.
cluster consistency implies that the trajectory will be
accurate. A weaker property like causal consistency .
might yield incomplete and even conflicting trajecto- 4.1 Basic Protocol

ries, since appends would not be causally related (iRyacco maintains a single authoritative copy of each ob-
the sense of Lamport [22]). o ject. At any point in time, the proxy at which this copy
» Content-oriented network applications In Some of the object resides is said twstthe object and, syn-
cont_ent-quented network appl_lcat|0ns such as On“neonymously, to be théocationof the object. Proxies im-
gaming, it can be at least as important for users segjement a protocol to route client invocations toward the
the same content as it is that the content they see igyrent location of the object over tree edges (see [33]).
the most up-to-date [11, 25]. Otherwise, the gamepnce performed on the object, an operation’s response is
may be unfair. Such applications can be simplified if .5 ;ted back along the tree to the client that invoked it.
built on objects that appear to all clients to be modi- \ypjle all update invocations are always routed to the
fied in the same order. o object itself, a read invocation will bgausedn the tree
~ As suggested in Sec. 2 and detailed in SEWACCO it the invocation, while being routed toward the object,
implements cluster consistency using a protocol in whichancounters a proxy that already forwarded a read request
each read cluster collectively polls an authoritative 0b+, the same object and has not yet received a response.
ject copy before returning responses for the reads it Conrpg paysed read will not be forwarded further in the tree;
tains. Prior work has generally found polling costlier ey, it will be held by the proxy until the response to
than cache invalidation (e.g., [6]), and in ongoing work ie jnyocation on which it paused is returned. When that
we are investigating scalable designs for implementingegponse arrives, it can serve as the response for any read
cluster consistency using cache |nvaI|d.at|ons.. That saidy ocation on the same object that was paused awaiting
polling serves dual purposes WACCO; in addition 10t and that meets certain conditions described below. In
consistency, polling messages carry load information tqy;g way, a single read invocation that reaches the ob-
the proxy holding the authoritative object copy, which it ject may, in fact, end up serving numerous read requests
uses to determine if the object should be migrated. Miyhat are paused on it elsewhere in the tree. This effect
gration enables an object to be placed closer to the preg ghown in Fig. 1, where the second and third reads are
dominant sources of demand and, as we will show, camaused waiting on the first (Fig. 1(a)) and then adopt the

significantly reduce response times for operations. response to the first read as their own (Fig. 1(b)).
Pausing read requests in this way offers at least two
4 WACCO Design benefits. First, it can reduce the latency of read requests
in comparison to forwarding each read request all the
The object-sharing protocol that underli@acco uti- way to the object, since the read request on which an-

lizes a logically tree-structured overlay network thatother is paused is farther along the path to the object (and
spans a collection oproxies This overlay network so should solicit a response sooner) than the paused read
should be assembled in a “geographically aware” manis. That s, in Fig. 1(a), the first read is at least as close
ner, i.e., so that geographically close (and so presumablto the object as the second or third read is when each is
well-connected) proxies are also close to one another ipaused, and a response may even already be traversing
the tree. The manner in which a client is paired with athe path back. Second, in comparison to forwarding ev-
proxy can be decoupled from the rest of our system deery read request to the object and returning each read re-
sign; our present design simply leverages a few widely-sponse individually, pausing reduces the bandwidth use
known proxies to refer each new client to a proxy near it.of the protocol, the routing costs to proxies, and the com-
We assume that each client interacts with only a singlgutational load on the proxy hosting the object.

read,
v, response

read,

response E]

) LT

Ll IS

\
\ read, — .
\ \ response % ' [\ d =2
\ . \ ; read, .
\ object object object
(a) Second and third reads are paused on thip) Return value for first read used to resumgc) Fourth read carries aggregated count of re-
first. (respond to) second and third reads. cently paused read invocations toward object.

Figure 1: Example of pausing some reads and resuming them lat

There are also challenges that arise from pausingthat version numbekvAcco uses these version numbers
First, a paused read constitutes state that a proxy musb optimize the protocol above as follows.
store until the response for the read on which itis paused Each proxy maintains a cache holding at most one
returns, possibly opening the door to resource exhauszached state per object. A proxy can unilaterally delete
tion. That said, aside from read invocations submitted tcstates from this cache and manage it using policies inde-
a proxy directly by clients, the number of paused readpendent of those of other proxies. Each read request is
for an object that a proxy must maintain simultaneouslyaugmented to carry a version number. If upon receiving a
is limited by the number of its neighbors. Reads submit-read request with version numbegor if upon receiving
ted to a proxy directly by clients (and that are paused)a read request from a client, in which casdefaults to
still pose a denial-of-service risk, but it can be managed-1), a proxy has a version > v of the relevant object in
using any of several techniques (e.g., [19]), and moreeache, then the proxy can increase the read request’s ver-
over, dropping these read requests as needed can newon number to/ when forwarding it. If it does so, the
interfere with other reads (since none are paused on thegeoxy is said to havéaken responsibilityor the request
reads). Resource exhaustion will be discussed further iand is obligated to retain the cached object state until it
Sec. 4.4. has responded to this request. (Our current proxy imple-

Second, pausing erodes the consistency of the pranentation defaults toward taking responsibility; others
tocol, and, indeed, to achieve cluster consistency—andould do so more selectively.)
specifically to achieve the sequential consistency that When responding to a read request, the proxy host-
implies—we must place restrictions on which read re-ing the authoritative copy sends the object state (as in
sponses can be used to respond to paused reads. InBec. 4.1) if the current object version is larger than the
itively, implementing cluster consistency requires that aversion number in the read request, and sesds oth-
paused read is not answered by an incoming respons&wise. Upon receiving a response to a read for which
that is too outdated. Specifically, as we prove in thea proxy took responsibility, the proxy identifies the lat-
appendix, the following conditions suffice to implement est object version it now has—either the object state in
cluster consistency: Each read request from a client cathe response or, if the response wase, the version in
ries the largest Lamport time [22] at which any updateits cache—and responds to paused reads similarly (sub-
that the client has observed was applied, and each regdct also to the constraints of Sec. 4.1 on Lamport times-
response carries the Lamport time at which the responsamps). That is, it returnsame to paused reads bearing
was emitted from the authoritative object. A read re-the version number of the proxy’s latest object version,
sponse that returns to a proxy can be used to satisfy and it responds with the latest object state to the rest.
read request paused at that proxy only if the response’s A proxy that forwards a read request but that does
timestamp exceeds the request’s timestamp. If any readwot take responsibility for it might receive same re-
paused at the proxy remain unsatisfied due to this response, at which point it may not have the latest ob-
quirement, then the proxy unpauses one and forwards ject version and so would be unable to respond to any

along toward the object. read it paused bearing an older object version number.
These paused reads therefore remain paused while one
4.2 Caching is unpaused and forwarded toward the authoritative ob-

ject, as discussed in Sec. 4.1. Note that forwarding any
Each object state hasva&rsion numbe(an integer, ini- read request bearing an old object version number guar-
tially zero). Applying an update to the object incrementsantees that the response will contain an object state, and

so when the proxy selects one to unpause and forwargyroxy wherereads was formerly paused and then 20

it gives preference to those with smaller object versionas it travels through the proxy at whiatead, was for-
numbers. merly paused. In this way, a count of paused reads trick-
les toward the object at all times, which the proxy hold-
ing the object can similarly incorporate into per-object,
per-neighbor counts of paused invocatiéns.

A component ofwacco is migration, by which an ob- As described so far, this approach for conveying the
ject is migrated from one proxy to another in responsglumbers of paused reads to the proxy holding the object
to demand. For example, a proxy currently holding andoes not adjust these counters for the passage of time,
object can migrate the object toward its neighbor fromPut intuitively such adjustment is necessary. After all,
which a majority of the invocations on the object arrive, "€2ds paused ten minutes ago should presumably have
or a proxy can migrate an object away if the proxy is be-€ss bearing on whether to migrate the object than reads
coming too heavily loaded. In this way, migration can Paused within the last few seconds. For this reason, each
be used to reduce load by moving objects closer to arWACCO proxy decaysts per-object, per-neighbor coun-
eas of greater interest and to otherwise reposition load 2§rS to account for the passage of time, before incorpo-
needed to deal with hotspots. The former use of migraf@ting them into an invocation message that the proxy
tion is particularly beneficial foroko (see Sec. 5), since forwards toward the object (or, in the case of the proxy
migration can be used to position objects to best accombolding the object, before calculating whether to migrate
modate the time zones that are most active at a particuldR€ object). In our present implementation, the proxy de-
time of day. Moreover, many entities will be accessedCays these counters linearly as a function of the time that
with a clear geographic preference — e.g., websites iPassed since last unpausing (and returning values for)
Chinese will presumably be accessed most often fromi€ads for that object, i.e., the interval between the proxy
China — and so migration makes sense for positioningseeing _the last object response and the subsequent object
such an object near where it is accessed most. Invocation.

WACCO is not closely tied to the mechanics of migra- ~ Finally, this brings us to the question of how a proxy
tion; all thatwacco requires is that it be able to migrate Nnolding an object determines whether to migrate an ob-
an object from one proxy to a neighbor in between objeci€ct and if so, to which of its neighbors. In our imple-
invocations. So whilavacco uses the migration mech- Mentation, the proxy hosting an object periodically sums
anism in Quiver [33], it would presumably work using itS Per-neighbor counters for that object and, if one such
other migration mechanisms, as well. That said, in or-counter accounts for more than a fractiorof this sum
der for migration to work effectively, two issues must be (for a fixed thresholdn), then the proxy asks the neigh-
resolved. The firstis how to determine from where an obP0ring proxy corresponding to that counter to migrate the
ject is currently experiencing the most load; because ofPjecttoit. That neighboring proxy mightnotdo so, e.g.,
pausing reads, no single proxy observes the entire loaB€cause it is already hosting too many other objects. If
on an object. Given an answer to this issue, we then neel decides to do so, however, then it initiates the object
to determine the specific conditions under which an obJmigration. Note that the threshotdvalue can be differ-
ject should be migrated. ent per object, though in our present implementation we

The first question is resolved imacco by amending ~ SIMPly setmthe same for all objects.
each message carrying an object invocation to also in-
clude the number of read invocations for that same objec 4 Resilience
that wererecentlypaused along the path the message has
traveled. If this invocation is paused, the proxy that doeg-ault tolerance In WACco as described so far, a proxy
so accumulates the message’s count into a per-objediilure would disconnect the tree until the proxy recov-
per-neighbor counter that the proxy maintains (i.e., forers. A generic approach to tolerate proxy failure is to
the object to which the invocation pertains and the neighlocally replicate each proxy; e.g., in our implementa-
bor from which the proxy received the invocation) andtion, each proxy can optionally have a backup to which
then further increments this counter by one (for the in-it commits any meaningful change in internal state [5,
vocation that was just paused). Otherwise, the proxy ac§8.2.1] before acting on it. I'wAcco, such changes
cumulates its counters for this object and & of its include changes to an object (due to update operations)
neighbors into the field on the invocation message an@nd changes to internal Quiver routing tables [33] (e.g.,
forwards the message along toward the object, subse : _
quently setting each of these counters to zero. Fig. 1(c) Though an update invocation cannot be paused, the proxy hold

. .*Ing the object incorporates each update invocation int® ¢bunt, as
shows an example where the field of a fourth read in<ye, so that updates are reflected in the load from that ibeigfor the
vocation, initially with value0, is updated tot at the object.

4.3 Migration

due to migration). In a straightforward implementa- be inserted into the keyspace object through an update in-
tion, this primary-backup configuration would double the vocation, or the object could produce the signature itself
hardware needed for the service. In practice, we exusing a private key it holds. This latter strategy might be
pect clusters of proxies to reside in datacenters in majoappropriate for keyspace objects that generate responses
metropolitan areas, in which case these proxies can pradynamically.
vide backup service for others in the same datacenter. Generating dynamic responses is useful, e.g., to sup-
Denial-of-service defense The most acute threat of port CDNs by customizing the content-server address re-
denial-of-service attacks is interfering with proxy-to- turned in response to a read query. That is, a keyspace
proxy communication. Multi-path routing (e.g., [38, 35, for pk, when queried fonytimes/www/address, could
28]), using private leased lines, or other suitable defenseselect the answeral from a set of candidate addresses
(e.g., [40]) can mitigate the threat of link overload. In based on load conditions and the address of the client
addition, each proxy should ensure that it reserves adexho is asking. (This selection would be performed by
guate resources to retain communication with its neighthe proxy directly returning the response to the client.)
bor proxies. For example, each proxy can utilize two net-The response could carry either a previously stored sig-
work interfaces, one dedicated to proxy-to-proxy com-nature or one that the keyspace object generates itself;
munication and the other for serving clients that con-in the latter case, the keyspace object state would need
tact it directly. Moreover, proxies can prioritize tasks fo to include the private kegk corresponding tgpk. The
managing inter-proxy activities ahead of those respondeluster consistency offered hypko would improve the
ing to clients, for example, and can terminate (or refuseyesponsiveness of this mapping to changing conditions
client requests in favor of retaining communication with over that provided by DNS today (cf., [30]). Of course,
neighbor proxies. keyspaces can also be used to store static mappings, e.g.,
Migration opens the possibility of a degradation of ser-to addresses or public keys, and several keyspaces could
vice if, e.g., a flood of read requests can cause an objedte queried iteratively to resolve hierarchical names,-anal
to be migrated (see Sec. 4.3) to a region of the networlogous to DNS/DNSSEC today.
far from legitimate demand. This risk can be mitigated Any LOKO object can enforce its own access control
by each object expressing Wacco its preferences or by checking a signature for each invocation — possibly
requirements for where it can be hosted, if the region ofthe same one that it will store and return in response to
legitimate demand is known in advance. (This mecha+ead invocations later. But by virtue of it having a pub-
nism is also useful to enforce regulatory constraints orlic key, a keyspace enables the enforcement of coarse
where data can be hosted, for example.) In other casesccess-control policy at the first proxy to receive a re-
allowing only authorizedreads to influence migration quest for it, even if that proxy does not host the object.
can mitigate this risk. One method for doing this is de-That is, we could extendoko so that a proxy, upon re-
scribed in Sec. 5.1 in the contextiobko. ceiving a read request for the keyspace identifieghby
from a client, confirms that the request is accompanied
) by a delegation credential signed by the owneploand
5 WACCO Evaluation that authorizes the read. The proxy would do so prior
to acting on the read request, dropping it if the check
We have implemented/Acco in Java. Our implemen- fails. This defense would hinder degradation-of-service
tation consists of roughly 11,500 physical source linesattempts to migrate the keyspace away from legitimate
of code. To evaluat&vacco, we used it to construct a demand by submitting unauthorized read requests (see
service called oko, which we describe in Sec. 5.1. We Sec. 4.4). We have not yet implemented this extension,
then describe the traces that we use to induce a realigrowever,
tic workload on this service in Sec. 5.2. We describe our

experimental setup in Sec. 5.3 and our results in Sec. 5.4.
5.2 Traces

51 LOKO The data we used in our evaluationwaiko (and hence
WACCO) are traces of domain-name queries received by
As discussed in Sec. 1, we have usescco to imple- Akamai, collected from 6am, March 9, 2011 to 6pm,
ment a service calledoko that supportkeyspaceb- March 10, 2011 (36 hours). In addition to serving DNS
jects. A keyspace is identified by a public kplgand queries for domain names of its own, Akamai serves
stores (or generates) mappings, each from a query stringueries for the domain names of a number of customers,
gstrto a valueval. When responding to a queggtr, the as well. The dataset we obtained from Akamai includes
keyspace sendsl, along with a digital signature on the queries of both types and reportedly includes all queries
mapping that can be verified Ipk. The signature could Akamai received during that period by 357 of these

(globally distributed) servers. the head proxies using geographical distance as our dis-
We emphasize that the goal of using Akamai tracegance measure. Each region’s other proxies were then

was not to evaluateLoko as a DNS replacement per organized in a balanced ternary tree underneath the re-
se, but rather to stress our system with a workload thagion’s head. So, the total proxies in each experiment
exhibits typical global effects, e.g., diurnal patternslan was 72+ 4 = 76, of which only the 72 non-head prox-
regional object affinities. As such, in using it to popu- ies accepted requests from clients directly. Once the tree
late objects and generate a workload for our evaluationvas fixed, we estimated latencies between neighboring
(see below), we strived primarily to preserve the object-proxies as a linear function of the geographical distance
access and client distributions. between them, where this function was calculated using

linear regression on real distance/latency paWge em-

ulated proxy-to-proxy latencies at user level, using the
5.3 Experimental Setup method implemented in the EmuSockets toolkitf4je

. . , did not limit the bandwidth between proxies, because we
Hardware Our experiments consisted of emulations ON G40 not expect OKO to even remotely tax the capacity of
Emulab [36]. Each node (on which we ran multiple prox- ¢ e networks (or even today’s)

les, see below) was of the "d820" variety; seeps: // Keyspace objects The queries selected as described

iki.emulab.net/Emulab/wiki/UtahHard for .
wiki.emulab.net/Emulab/wiki/ ardware above were used to populate keyspace objects as follows.

its specifications. We performed our emulations with 76Every DNS query indicates a DNS zone, the requested
proxies spread across 4 nodes, resulting in an avera%eame in that zone, and a query type Thé query type can
of between 3 and 4 vCPUs per proxy. The only excep- ' '

. . . : indicate an IPv4 host] record, an IPv6AAAA) record, a
tions were our fault-tolerance experiments, in which each

proxy was accompanied by a backup, doubling the totapame serveis) re.C(.)rd’. etc. _We_ creaFed a keyspace ob-
number of proxies on the same hardware. Jject per zone and initialized it with a field for each name

within that zone for which ark record was requested
Proxy placement Recall that the number of servers

. ; (e.g., ‘www/A"), sinceA records overwhelmingly consti-
that Akamai ded|c§tes for _the load that our traces repy ie the most common form of query. The value assigned
resent (and to provide consistency falling short 0ko)

to each such field was a random 16-byte value. We
fhade no effort to represent resource records in keyspaces
more explicitly, remembering that the goal of using the
%Akamai traces is to induce a realistic global workload

to permit a realistic evaluation for 76 proxies. To do
this, we selected 4 geographic regions that accounted f

72/357= 20.2% of all queries in the original trace and on LOKO rather than to makeoko mimic DNS faith-
allocated 72 proxies to those regions proportionally tofully. Rather than signing each mapping individually, a

the number of requests originating thér€The remain- erkle tree [26] was computed over the mappings and
ing 4 of the 76 proxies in our experiments are describet{vlhe root signed by the private key corresponding to the
below.) Clients at each region were then assigned to thaﬁublic key used to label the keyspace. The Merkle tree
regiqn’s proxies to yield a rough_ly balanced_number c)fwas transient, i.e., only the signed root was sent when the
queries at e‘?‘c.h proxy and, most importantly, in a manne&eyspace was copied (to support a read) or migrated; the
that was oblivious to the contents of those queries. The faterior nodes were recomputed on demand.

selected regions included one in Asia, one in Europe, an The 202% of the original trace that we used. in-
two in North America, and so we believe this method- 9

L luded 4,460,838,100 queries spanning 1,009,689 do-
ology produced a reasonable approximation to a globa‘f X .)
workload. While client requests drive our experiments,maln hames and 83,448 clients. Fig. 2(a) shows that

clients themselves are not instantiated (or measured) iWhe” used to construct keyspace objects as described

our experiments. So, the latency between a client and

. . . took round-trip latencies (ms) from AT&T (see
ItS proxy Is not represented In our measurements, nor ar}?ttp://ipnetwork.bgtmo. ip.att.net/pws/current._

client computational costs. network_performance.shtml) on 9 Oct 2011 from Kansas
Network latencies To generate the tree topology for City to 24 other cities in the continental US, as well as froanS

; m Francisco to Hong Kong, New York to London, and Washington to
our experiments, we added an additioheiad proxy Frankfurt. We then obtained distance estimates (miles) tHese

per region and built a minimum spanning tree coveringgity pairs. Using simple linear regression, the best fit liagthese
distance/latency points was= 0.019732198 + 8.712212072 with
4More precisely, we first geolocated the clients in the Akairsaies an R? of 0.96820894, indicating a strong goodness of fit. Our use of

5

using the database from IP2Locationt{p://ip2location.com) distance-based latencies from within a single providegswvork is
and truncated each one’s latitude and longitude to an iategilue, reasonable, we believe, since our service may well be imgriéea by
yielding its “region”. We allocated a number of proxies tclease- a major global service provider.

lected region proportional to its queries; e.g., if one eagdriginated 6This design is an artifact of our trying out several differptat-
10% of the 2% of queries selected from the original trace, then it forms for our emulations, including some where we were icett to
was allocated 10% 72 = 7 proxies. user-level modifications only.

= = quests to keyspace objects from their dominant proxies
g o were highly skewed (see Fig. 2(c)), these update oper-
a g ations were not uniformly spread across keyspace ob-
533 ém jects but instead were concentrated in those that were
“\E &o also read most often, including read most often from
S ©

98

non-dominant proxies (again, see Fig. 2(c)). So, these

o 5 10 15 1 100 10° 10° updates caused many caches to become invalid and thus

% of total queries Keyspace size (fields) .
(a) CDF of queries per keyspace. (b) CDF of keyspace size. Note many object sends, and, because the_ keyspaces accessed
Afew keyspaces comprise alargethe x-axis is log-scale. Most the most often tended to be larger (Fig. 2(d)), these sent
portion of requests. keyspaces are small, but some arepbjects also tended to be large.
quite large. If a query was chosen to become an update, an up-

date was generated in its place for the relevant keyspace
object, consisting of the relevant query name and query-
type string (e.g., www/CNAME"), a 16-byte value, and a
128-byte digital signature on the root of that keyspace’s
XX X new Merkle tree (i.e., the previous Merkle tree updated
% to reflect the newly added or modified field). The proxy
to which this update was introduced verified the signa-
ture using the public key of the keyspace. Since client

108

X

Dominant
1 10% 10* 10°
X

Keyspace queries
10*

1

1 100 10 10

Non-Dominant Keyspace size (fields)
(c) Dominant vs. non-dominant (d) Keyspace size versus queriesCOStS are not included in our measurements (see above),
proxy queries (one x per to that keyspace (onex per signature generation for update operations or signature
keyspace). These query types arekeyspace). The larger keyspacesyarification after a read were omitted.

1 10* 108

strongly correlated. tend to be accessed more fre-

quently. Time scaling Recall that our Akamai trace was 36 hours

in length. Due to the number of experiments we wished
to perform with this trace, it was not possible to dedi-
cate a full 36 hours per experiment. Simply truncating
the trace would hide important trace characteristics, no-
above, there were a few keyspaces which dominated thébly any diurnal pattern that it exhibits. As such, we
queries, in that requests for those keyspaces were a si§mployed the following methodology to “compact” the
nificant portion of the total requests. The most frequentlytrace while retaining its characteristics. Each experimen
queried keyspace object comprised over 14% of the totalvas parameterized by sampling rate s (0,1] and an
and the 5 most frequently queried keyspace objects comcceleration & 1. Each query in the trace was then re-
prised over one third of all requests. The distribution ofplayed in the experiment independently with probability
keyspace sizes was also far from uniform, as shown irs, and the trace was accelerated by a factoe.ofSo,
Fig. 2(b). While over 88% of all keyspaces containedin @ period in which the rate of requests in the original
less than 10 keys, some contained over one million. trace wasj requests per second, sampling reduced this
Prior to each measurement run obko, we deter- rate tosqrequests per second in expectation, and accel-
mined the starting location of each object by executingeration increased this sgrequests per/asecond in ex-
a warmup. The warmup migrated each keyspace objedqectation. This method shortens the trace replay/to 1
to its dominant proxyi.e., the proxy that will make the times the original, thereby expediting our tests; in our
most requests of it during the run. This warmup thustests we fixeca = 48 so that each test required 45 min-
imp'ements an 0pt|m$tat|c p|acement of keyspace ob- utes. HOWeVer, we Sometimes Varied the Sampling rate
jects for the run. Nevertheless, as shown in Fig. 2(c)$ between experiments. It is convenient to describe an
the request rate by the dominant proxy for a keyspace i§Xperimentin terms of the produsa, which we will call
strongly correlated with the request rate by other, nonits load factor For example, an experiment with load
dominant proxies for that keyspace, implying that operafactorsa= 0.1 has an expected request rate of 10% of
tion workloads will be dominated by nonlocal operationsthe original Akamai trace’s rate.
in any static placement of keyspaces.
qulate operatior?s We introducegl update_s into ourex- g 4 Experimental Results
periments, but since the Akamai traces include no up-
dates, we did so artificially. Specifically, for a param- All performance numbers in this section were produced
eteru € [0,1], each read operation for a keyspace sub-using the Java Runtime Environment (JRE) distributed
mitted to its dominant proxy was converted to an updatewith Java SE 7. We configured the HotSpot Server Java
operation with probabilityu. Because the rates of re- virtual machine to use the Concurrent Mark and Sweep

Figure 2: Keyspace query and size distributions

o o i o
O A O ko] O
n n P e c -
c c Pt] o
o k=l “ 3 S
8 8 ! o« =
O 0 | O o | f = Yo |
8 N~ 8 N~ / * 8 i ’CT) N~
> — u=0.0 et " s - Q
o - - u=0005| O : - - u=0.005 =
g Su=001 | X |y - u=0.01 S °
Yo} a T T T T T Yo} a T - T T T T 5 — T T T Yo} L T i T T
0 500 1000 0 500 1000 .55 .75 .95 0 100 200
Latency (ms) Latency (ms) Threshold Latency (ms)
(a) Reads (b) Updates (a) Migration count (b) Latency
Figure 3: CDFs of latencies (ms) avaries. Figure 4. Impact of varyingn, with u= 0.0. Lines for

some values aof are omitted from Fig. 4(b) for clarity.

garbage collector to maintain responsiveness. Except
when evaluating the impact of the migration thresholdBut even with migration enabled at a very conservative
m below, we setn = 0.75, and except when evaluating threshold (= 0.95), that figure was reduced by 17%
throughput below, we set the load factor td.0 to 100ms. Migration at that level also reduced the to-
Updates We first explore request latencies and, in par-fal number of proxy-to-proxy messages by 19%. Ob-
ticular, the impact of varying the fraction of updates in J€Cts migrated within the tree in response to demand over
the execution on those latencies. Fig. 3 shows CDFs 0$10,000 times, resulting in faster response times as well
operation latencies in experiments for update probabili&s fewer and smaller network messages sent.
tiesu € {0.0, 0.005, Q01}, whereu = 0.0 implies no up- Reducingmfurther increases performance. For exam-
dates. In Fig. 3(a), we see that as updates become mopée, at a very liberal thresholdy = 0.55, 85% of oper-
common, latency tends to increase for reads, because uptions finished in less than 95ms. In general, the per-
dates cause caches to become invalidated, creating tfiermance differences resulting from different values of
need for more network traffic. Moreover, as discussed irthe migration threshold (e.gn= 0.55 vs.m= 0.95) are
Sec. 5.3, these cache invalidations tend to be focused giuch smaller than the differences between runs with mi-
the larger and more frequently accessed objects, amplgration and those without it (e.gn= 0.95 vs.m> 1).
fying the performance impact of updates. The reason for this disparity is that even a high migra-
Despite these effects, read latency stays low, withtion threshold allows objects to move quite close to their
89.5%, 867% and 847% of reads completing in under areas of demand. If an object is far (in the tree) from the
100ms foru = 0.0, 0.005, and M1, respectively. La- part of the tree where demand for the object is high, then
tencies for the updates themselves appear in Fig. 3(bjhe proxy hosting that object will see that nearly 100%
These too perform well, with 67% and 660% complet- of the load for that object is coming to it from whatever
ing in under 100ms fou = 0.005 and 01, respectively. neighbor is in the direction of the load; the host will thus
This low latency is partially an artifact of our warmup try to migrate the object to that neighbor (see Sec. 4.3).
method, which initially places objects at the proxy which In this way, almost any migration threshold will allow
will request them most, making many updates local (ex-migration of sufficiently out-of-place objects toward the
cept when the object has been migrated away). Noteparts of the tree where they are in the most demand. The
though, that this behavior is part of our design — mi- exact value oim only becomes relevant once the object
gration will tend to move an object toward the proxiesis near enough to its demand that significant fractions of
requesting it most. demand for it come from different neighbors. But by that
Migration ~ We illustrate the impact of object migra- point, objects are already fairly close to the demand, and
tion on operation latency in Fig. 4. Recall tmatrepre- performance has already improved substantially.
sents the fraction of the total load for which a neighborFault tolerance We measured the effect of fault toler-
must account in order for migration in the direction of ance on operation latencies when usiago, i.e., with a
that neighbor to begin. Thus) > 1 is impossible to sat- backup per proxy (see Sec. 4.4), o 0.01. The results
isfy and allows no migration at all. We ran experimentsappear in Fig. 5. As expected, the overhead of fault tol-
with various migration thresholdsn= 0.55 to Q95 in erance is much more evident for update operations, since
increments of A, as well asn> 1. communication with the backup is on the critical path of
Fig. 4(a) shows the total number of migrations for each update operation. One possible cause of the added
each setting ofn, and Fig. 4(b) shows the impact of read latency may be that we allocated no additional hard-
these migrations on operation latencies. Without mi-ware to host backups, nor did we reduce the number of
gration, 85% of operations finished in less than 120msprimary proxies to make room for their backups. In-

10

load. That said, it is important to recognize that this
dataset has limitations for the purposes it is used here.
First, Akamai customers tend to be large organizations
for which domain-name query activity might be heav-

100
100

% of Operations
50

% of Operations
50

1| — No backups 1F — Nobackups ier and more W|d§spread than mo;t domain names not
o 1| == Wwith backups o 1} == with backups served by Akamai or than other objects that one might
5 500 1000 0 500 | 1000 envision in a future application (e.g., a mobile device’s

location). This tendency might yield an overly opti-
mistic evaluation of.oko, since it makes more oppor-
tunities to aggregate (i.e., pause) reads in the tree, but it
also might yield an overly conservative evaluation, since
ylobal demand reduces the ability to improve access la-

Latency (ms) Latency (ms)

(a) Reads (b) Updates

Figure 5: CDFs of latencies (ms) when using backups

with u=0.01.) S
tencies through migration. Second, as already noted, the
294 ge =N Akamai dataset contains no update operations, and so it
§ 1 s & | was necessary to fabricate them.
-~ S (o g W_e—e
0 S o
S n g 6 Conclusi
o | o] =] onclusion
S°6 o5 1 °-C0 " 05 1 T°0 05
Load factor Load factor Load factor

This paper describes the design and evaluation of
WACCO, a system for implementing object-based ser-
Figure 6: Throughput and messaging overhead as loa#ices that need to support both frequent updates and
factor varies, withu = 0.01. widespread, massive read demand with strong consis-
tency. A contribution of our work is a novel type of
strong consistency dubberluster consistengywhich
stead, the primaries and their backups shared the sanm@plies both sequential consistency and rapid update
resources that, in other experiments, were available expropagation and, we argue, can be useful in a range of
clusively to the primaries. Despite the more thinly spreadfuture networked applications. We use@cco to im-
resources and the synchronization costs of the primaryplement a service calledoko that supports keyspace
backup protocol, operation latencies with backups werebjects and, in one style of usage, could roughly encom-
still reasonably close to those without. pass the current duties of DNSSEC. Our evaluation using
Throughput We next present experiments that offer in- an emulated global topology and trace of DNS queries to
sights into the achievable throughput of our system. InAkamai shows thatoko provides good responsiveness
these tests, we increased the sampling saad so the and can scale to large demand. Through our evaluation,
load factor, up to a load factor of@, i.e., the same query we also documented the importance of object migration
rate per proxy as Akamai supported in the original traceand read pausing (and hence cluster consistency) to the
Fig. 6(a) shows the achieved throughputin operations peperformance oko achieves.
second withu = 0.01. This figure shows that owoko
implementation absorbs the full per-proxy query rate of
the Akamai trace. Fig. 6(b) illustrates one reason be-ReferenceS

hind this throughput, namely that as the operation rate in- 1] M. Ahamad, G. Neiger, J. E. Burns, P. Kohli, and

(a) Throughput (b) Message cost (c) Read hops

creases, the effectiveness of read pausing also increases,
since more reads are concurrent. This increase in read
pausing then results in a reduced number of messages
needed per operation, on average (Fig. 6(b)). Finally,

Fig. 6(c) shows that the average number of hops a given[2]

read request must travel before it is paused or reaches the
object is stable, even as the load factor increases. When

the load factor reaches 1.0, each read request travels Ies&]

than 1.1 hops on average.

5.5 Limitations

(4]

The Akamai data that we employed in our experiments is
the best data we have found for a realistic, global work-

11

P. W. Hutto. Causal memory: Definitions, imple-
mentation, and programminBistributed Comput-
ing, 9(1), 1995.

R. Arends, R. Austein, M. Larson, D. Massey, and
S. Rose. DNS security introduction and require-
ments. RFC 4033, March 2005.

H. Attiya and J. Welch. Distributed Computing:
Fundamentals, Simulations and Advanced Tapics
John Wiley & Sons, Inc., second edition, 2004.

M. Avvenuti and A. Vecchio. Application-level net-
work emulation: The EmuSocket toolkifl. Netw.
Comp. Appl.29(4), 2006.

[5] N. Budhiraja, K. Marzullo, F. B. Schneider, and [18] M. P. Herlihy and J. M. Wing. Linearizability: A
S. Toueg. The primary-backup approach. In correctness condition for concurrent obje A<M
S. Mullender, editorDistributed Systems, 2nd edi- TOPLAS12(3), 1990.

tion, pages 199-216. Addison-Wesley, 1993.))
[19] A. Juels and J. Brainard. Client puzzle: A cryp-

[6] P. Cao and C. Liu. Maintaining strong cache con- tographic defense against connection depletion at-
sistency in the World Wide WebbEEE Trans. Com- tacks. In5th ISOC NDSS1999.

puters 47(4), 1998.) . _
[20] J. Kangasharju and K. W. Ross. A replicated archi-

[7] A. Chankhunthod, P. Danzig, C. Neerdaels, M. F. tecture for the Domain Name System.119th IEEE
Schwartz, and K. J. Worrell. A hierarchical Internet INFOCOM, 2000.

object cache. INSENIX ATC 1996.)))
[21] D. Kim, J. Kim, Y. Kim, H. Yoon, and I. Yeom.

[8] X. Chen, H. Wang, S. Ren, and X. Zhang. Main- Mobility support in content centric networks. In
taining strong cache consistency for the Domain ~ 2nd Wkshp. Inform.-Centric Net\2012.
Name System.IEEE Trans. Knowledge and Data . .
Engineering19(8), 2007. [22] L. Lamport. Time, clocks, and the ordering of

events in a distributed systel/@ACM, 21, 1978.

[9] J. C. Corbett, J. Dean, M. Epstein, A. Fikes,
C. Frost, J. Furman, S. Ghemawat, A. Gubarev,
C. Heiser, P. Hochschild, W. Hsieh, S. Kanthak,
E. Kogan, H. Li, A. Lloyd, S. Melnik, D. Mwaura,

D. Nagle, S. Quinlan, R. Rao, L. Rolig, Y. Saito, [24] W. Lloyd, M. J. Freedman, M. Kaminsky, and

[23] L. Lamport. How to make a multiprocessor
computer that correctly executes multiprocess pro-
grams.|IEEE Trans. Computer<-28(9), 1979.

M. Szymaniak, C. Taylor, R. Wang, and D. Wood- D. G. Andersen. Don't settle for eventual: Scal-
ford. Spanner: Google's globally distributed able causal consistency for wide-area storage with
database. 110th USENIX OSDI2012. COPS. In23rd ACM SOSP2011.

[10] R. Cox, A. Muthitacharoen, and R. T. Morris. Serv- [25] M. Mauve, J. Vogel, V. Hilt, and W. Effelsberg.
ing DNS using a peer-to-peer lookup servicelét Local-lag and timewarp: Providing consistency for
Intern. Wkshp. Peer-to-Peer Syg002. replicated continuous applicationslEEE Trans.

. .) Multimedia 6(1), 2004.
[11] E. Cronin, B. Filstrup, A. B. Kurc, and S. Jamin. An

efficient synchronization mechanism for mirrored [26] R. C. Merkle. Secrecy, authentication, and public
game architectures. Ihst Wkshp. Netw. Syst. Sup- key systemsPhD thesis, Department of Electrical
port for Games2002. Engineering, Stanford University, 1979.

[12] D. K. Gifford. Weighted voting for replicated data. [27] S. Michel, K. Nguyen, A. Rosenstein, L. Zhang,
In 7th ACM SOSP1979. S. Floyd, and V. Jacobson. Adaptive web caching:

)) Towards a new global caching architectu@omp.
[13] S. Gilbert and N. Lynch. Brewer’'s conjecture Netw. and ISDN Syst30, 1998.

and the feasibility of consistent, available, and
partition-tolerant web services. ACM SIGACT [28] M. Motiwala, M. ElImore, N. Feamster, and S. Vem-

News 33(2), 2002. pala. Path splicing. IACM SIGCOMM 2008.

[14] L. Glendenning, |. Beschastnikh, A. Krishna- [29] J. Paek, K. Kim, J. P. Singh, and R. Govindan.
murthy, and T. Anderson. Scalable consistency in Energy-efficient positioning for smartphone appli-
Scatter. Il23rd ACM SOSP2011. cations using cell-ID sequence matching. 9ihn

MobiSys2011.

[15] T. Griffin and G. Wilfong. Analysis of the MED _ _
oscillation problem in BGP. fEEE ICNP, 2002. [30] J. Pang, A. Akella, A. Shaikhy, B. Krishnamurthyz,
and S. Seshan. On the responsiveness of DNS-

[16] T. G. Griffin and G. Wilfong. An analysis of BGP based network control. linternet Measurement
convergence properties. ACM SIGCOMM 2009. Conf, 2004.

[17] M. P. Herlihy. A quorum-consensus replication [31] V. Pappas, D. Massey, A. Terzis, and L. Zhang. A
method for abstract data typeACM TOCS 4(1), comparative study of the DNS design with DHT-
1986. based alternatives. @bth IEEE INFOCOM?2006.

12

[32] V. Ramasubramanian and E. G. Sirer. The design To denote a read or update operation specifically, we
and implementation of a next generation name serwill often user-op or u-op, respectively, though we will
vice for the Internet. IIACM SIGCOMM 2004. also useop to denote an operation generically. For any

] o) operationop, its invocation occurs at a distinct real time
[33] M. K. Reiter and A. Samar. Quiver: Consistent ob- op.inv and is followed by a matching response at a dis-

ject sharing for edge servicet=EE TPDS 19(7), inct real timeop.res > op.inv. A history H is a set
2008. of operations and an induced partial ordey defined

[34] P. Rodriguez, C. Spanner, and E. W. Biersack.2S OP1 <H 0P, <= Op,.res < Op,.inv. The interval
Analysis of web caching architectures: Hierarchi- (OP-inV:OP.res] is denotedop.interval. H is sequential

cal and distributed caching.IEEE/ACM Trans. | <H is a total order. For an objecbyj, the setH|obj
Netw, 9(4), 2001 includes only those operations fh that are invoked on

obj, and for a client, the setH|c includes only those

[35] X. Wang and D. Wetherall. Source selectable pathoperations irH that are invoked by. By convention,
diversity via routing deflections. IMCM SIG- we assume thatl|c is sequential for each cliert (In
COMM, 2006. practice, each “client” is a clierthread) A serialization

Sof H is the seH totally ordered by a relatior:s.
[36] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Gu-

ruprasad, M. Newbold, M. Hibler, C. Barb, and Definition 1 (Sequential consistency [23]A history H
A. Joglekar. An integrated experimental environ- is sequentially consistent if there exists a serializatfon
ment for distributed systems and networks.5th of H such that the following properties hold: ({egal-
USENIX OSDJ|2002. ity: For each object obj, ®bj is legal (i.e., is in the se-
quential specification of obj). (iiLocal-Order If op,

[37] Y. Wu, J. Tuononen, and M. Latvala. Performancegng op are executed by the same client and e op,,
analysis of DNS with TTL value O as location tnen OR <s0pP,.

repository in mobile Internet. IMEEE Wireless
Comm. and Netw. ConR007. The consistency implementedwncco, calledclus-
_ ter consistengyimplies sequential consistency. As such,
[38] W. Xu and J. Rexford. MIRO: Multi-path Interdo- there is a well-defined order in which updates are applied
main ROuting. IPACM SIGCOMM 2006. to each object, and each update operation produces a new

[39] X. Yang, D. Clark, and A. W. Berger. NIRA: A version of the object on which it operates. The version

new inter-domain routing architecturEEE/ACM number of the new object instance is one greater than
Trans. Netw. 15(4), 2007 that of the object instance to which the update was ap-

plied. Letu-op.ver be the version number of the object
[40] X. Yang, D. Wetherall, and T. Anderson. TVA: instance produced hy-op.

A DoS-limiting network architecturelEEE/ACM Definition 2 (Read cl A d ol C i
Trans. Netw.16(6), 2008. efinition 2 (Read cluster) A read cluster is a

nonempty set of read operations (i) that return the

[41] X. Zhang, H.-C. Hsiao, G. Hasker, H. Chan, A. Per- same (object and) object version, and (ii) for which

rig, and D. Andersen. SCION: Scalability, control, Ugpec OP-interval is a contiguous interval of time. For

and isolation on next-generation networksIBEE ~ aread cluster C, we define

Symp. Security & Privagy2011.

C.inv = minop.inv C.res= minop.res

[42] Z. Zhang, Y. Zhang, Y. C. Hu, and Z. M. Mao. opeC op<C

iISPY: Detecting IP prefix hijacking on my own. In

It is convenient to also permit a single update oper-
ACM SIGCOMM 2008.

ation u-op to constitute its owrupdate cluster C We
stress, however, that an update cluster contains only
A Cluster Consistency a single update and no reads. For an update cluster
C = {u-op}, the definitions forC.inv andC.res above
Definition Here we definecluster consistency An simplify to C.inv = u-op.inv, C.res = u-op.res. Given
objectconsists of state and a setmkthodghat can be these definitions, we abuse notation by ustig<y Cy
invoked Each invocation returnsm@sponseand an in- (whereC; andC, are read or update clusters) to mean
vocation/response pair is called aperation Correct Cj.res < Cy.inv. We also assign a version number to each
behavior of the object is defined by gequential speci- cluster, as follows. IC is a read cluster, theD.ver is the
fication, which specifies the return results of operationsversion of the object read by the read requestS.inf
invoked sequentially on the object. C = {u-op} is an update cluster, thé&ver = u-op.ver.

13

Definition 3 (Cluster consistency)A set of operations is op denote any other operation on that object such
cluster-consistent if it is sequentially consistentanti sa that y-op, ™ op. If the object version on which
isfiesCluster-OrderThere exists a partition of the oper- u-op, is applied is larger than the object version on

ations into clusters so that ifCC, are performed on the which u-op, is applied (-op;.ver > u-op,.ver), then

same object and Cres < C,.inv, then G.ver < Cy.ver. u-op, A u-op, and otherwispi u-op,.

. . . . c,rf rf
Fig. 7(a) gives an example execution that is sequenWe use natural shorthands such-as = SUD. We

tially consistent but not cluster-consistent, and so elust also use—, to denote the irreflexive transitive closure
. . . C .
consistency is strictly stronger. However, cluster con-of =, and similarly for other orders.

sistency is weaker than linearizability [18], which re- S gng ™t naturally capture the temporal and data-
quires that for anpp; andop,, if op;.res <opy.invthen fioy relationships between operations that need to be re-
opy.ver < Opy.ver; i.e., history precedence must be re- gnecie in serializingl. The purpose of, moreover,

spected at the level of all operations and not only betweer 1, onstrain any serialization to respect the object ver-

clusters on the same object. Fig. 7(b) shows a clustergjong ghserved by operations. More precisely, to prove

the sequential consistency ldf we first argue thati is
acyclic (Lemma 6) and then that this implies that there
| is a serialization oH respectingLegality and Local-
0 « read() Order (Corollary 1). We will then separately argue in
Lemma 7 that there must exist some such serialization
that also demonstrat&duster-Order
(a) A history that is sequentially consistent but not Below we prove several lemmas which we will use
cluster-consistent. For cluster consistency, the sec- in order to prove (in Lemma 6) th&ty is acyclic. Our
ond read must return 1 since its read cluster (itself proofs below involve the following additional notation.
only) occurs after the write of 1.
To each operationp is associated a logical (Lamport)

consistent execution may not be linearizable.

Iwrite (0)I Iwrite (1)

0 « read()

write(0) write (1) time [22] op.linv at which the client invoked it and an-
b i 1 other logical timeop.lres at which it returned its result
0 < read() | at that client. In addition, each update operatipaop

' ' has a(logical) effective timeof u-op.leff, which is the
Lamport clock value assigned to the event applyirap
(b) A history that is cluster-consistent, since both to the object at the proxy hosting the object. For a read
read operations form a read cluster, but not lineariz- operatiorr—op, r-op.leff is the Iogical time at which a re-
able. For linearizability, the second read must re-] ;] .

sponse for this read operation was issued, either by the

turn 1 since it occurs after the write of 1.)
last proxy to pause-op or, if r-op traveled all the way
Figure 7: Execution histories. Time increases left-to-0 the object, by the proxy hosting the object. Note that
right. Each row denotes one client. All operations are@P-linv < op.leff < op.lres for all operations.
on the same object.

0 « read()

Lemma 1. The subgraph ofi4 consisting of only edges
. crf . .
Proof of Cluster Consistency We now prove that the "~ iS acyclic.
protocol described in Sec. 4.1 implements cluster cons . c Lo .
sistency. We do not explicitly treat caching (Sec. 4.2)’Pr00tfr.] ilncecopl _> Oplz_ |mpI|e|sf(;p1.Ires Tf?pé.lmyl' v:/e
migration (Sec. 4.3) or proxy backups (Sec. 4.4) in the_See abp, = Ok, |mr[f3 |esopl. e_ < ORy-lett. simiiarly,
proof, as these are done in a way that does not alter thié must be thatop, = op, implies op; .leff < op;.leff,
semantics of the protocol (though they do optimize it orsince an update must have been written before it can
make it more resilient). Given a history, consider a be read from. Therefore, each edge’ represents
directed graph4y with nodes the operations iH and an increase irop.leff, meaningop, c,_>rf+ op, implies
edges of three types: opy.leff < op,.leff
. C. : . . .
o Client order (=): if op, andop, are perf(():rmed by " Assume for a contradiction, then, that there is a cy-
the same client and dp, < op,, thenop; — op,.

e Reads-from order(i): if u-opis an update that re-
sults in an object state on whidp is applied, then
u-op LA op.

e Version order (-5): Let u-op; andu-op, denote dis- Lemma 2. If there is a cycle in44, then there is a cy-
tinct update operations on the same object, and letle in %4 in which everyl> edge appears in an edge

cle consisting only of edges 7. That means that

op C;>rf+ op. Therefore, we havep.leff < op.leff, a con-
tradiction. O

14

sequence of the form u-pp’ .. r-op, % u-op;. Each read cluster has exactly one read operation that

reads from the authoritative object itself. For a read clus-
Proof. We prove the result by first showing that for any ter C, we call this the “representative” read operation
cycle in %y, anyl> edge not already in an edge se- C.rep.

quence of the fornop; C’—>rf+ r-op, — U-0p; can be re- . 4 ifthere i q Ay
placed by edges not il to produce a new cycle in LommMa 4. Ifthere s an edge sequence wop-.. r-op

%4. Since-» edges must point to an update, we must " “°P in% where u-opleff < u-of leff, then r-op.leff
consider-% edges of only the forms-op - u-(;p and < u-of.leff where C is the read cluster containing r-op

v . . v) and r-og = C.rep.
u-op — u-op. In the first case, sincep — r-op is
impossible (again. edges point to updates), an edge Proof. Assume for a contradiction that-op.leff <
r-op — u-op already occurs within an edge sequence ofr-op.leff. Then, we haveu-op.leff < u-op.leff <

the formop, Ca_>rf+ r-op, % u-op; on the cycle. In the r-op.leff. Sincer-op read from the object itself and

second case, because updates on each object are applts@P-leff < r-op'leff, r-op’ must have read the value
sequentiallyu-op is applied before-op, and so there is Written by u-op (or possibly a later value) and seop

. f .
a chain of updates to the object such thaty Lf>+ u-op. must havve, as well. That is;op L>+ r-op, contradict-
Replacing the edge-op % u-op with this chain pro- N9 -0p — u-0p. .
duces a cycle not containingop — u-op.

To complete the proof, we now must argue that for L€mmas 1-4 show that fory to have a cycle, a

crf v necessary condition is an edge sequence of the form
any edge sequence of the folop, = r-op, — u-op;

c,rf Vv . . .
on the cycle, there is a corresponding edge sequend&®P —+ F-0p = U-op wherer-op is contained in a
read cluste€ whose representativeop = C.rep is too

c,rf Y, .
U-0py —. I-0p, = U-0p 0N the cycle. lfop, is an up- outdated, i.e.r-op.leff < u-op.leff. It is for this rea-

date, then setting-op; = op; completes the argument.

Otherwi ' IKing th le backward al son thatwacco is designed to prevent this possibility.
't erwise, consider walking the cycle backwar aor'gSpecificaIIy, each returning response to a read opera-

C . . v
— and = vedges fromop,, terminating at a— edge. tjon r-op carries with it the effective time of represen-
Since this— edge must point to an update, this updatetative r-op’ of the cluster containing-op and the effec-
suffices foru-opy. O tive time of the update from which-op’ and thusr-op

are reading, called-op.lueff. That is, ifu-opi r-op,

If there is a cycle iy, then Lemma 2 guarantees the thenr-op.lueff = u-op.leff. Responses to updates can
existence of a cycle in which a¥s edges occur within also carry the effective time back to the requester, so that
edge sequences of a certain form. Below we refer to such-op.lueff = u-op.leff.

a cycle agonstrained Each clientc tracks the largesbp.lueff for all oper-
ationsop it has issued, denotedafter; i.e., c.after =
Lemma 3. If there is a cycle in%y, then within @ max,,{op.lueff} where the maximum is taken over all
constrained cycle, there must be at least one edge seyperations issued by. For each read requesbp, the
quence u-opc’_>rf+ r-op, AN u-opy such that u-op.leff < outbound request-op carries with it the current value
u-opy .leff. of c.after, calledr-op.after. As r-op reaches proxies
along its outbound path, the proxies are allowed to pause
Proof. Consider an alternative gragii thatincludesall it, as usual. When a response arrives at the proxy, the
of the edges of¢4 and additionally the edga-op; S, response carries with it the effective time of the read
operationr-op' that reached the authoritative object to
elicit this response. The proxy will use this read re-
crfs _ . sponse to answer a paused read operatiop only if
cle op =", op in ¢ by replacing edge sequences r_og |eff > r-op.after; in this caser-op is added to the
u-op, °i>f+ r-op, Y, u-op; on the constrained cycle with cluster for whichr-op’ serves as the representative and

able in the incoming read response. Any reaa® that

c,rf . .
Lemma 1 t_hatop(=+ 0p implies op'.leff < op.leff. were not answered by this read response (i.e., because
Moreover, if Lemma 3 were Sfalse, thamopl.leff < r-op .leff < r-op.after) must still be addressed, and now
u-op;.leff for every edges-op, — u-op; used in the cy- g response is expected inbound. Therefore, the proxy
clein¥. So, from the cyclep Cﬂﬁ'i opwe could infer chooses any remainingop to forward along to elicit an-
op.leff < op.leff, a contradiction. 0 otherresponse.

c.rf
u-op; wheneveru-op; =5, r-op, — u-op;. From
any constrained cycle iy we can construct a cy-

15

Lemma 5. There is no edge sequence u-oc.‘pr:+ r-op Proof. Consider two CIUSteI'@]_,CQ CH ‘Ob] as defined

A u-op in%; such that u-opeff < u-op.leff. at_)ove, such that; <H _Cz. T_herefore,Cl.rep was ap-
plied to the authoritative object befof&.rep (in real
Proof. By Lemma 4, the existence of edge sequencdime), and s&;.ver < Cy.ver. O

uop ¥, r-op % u-opin % such thatu-op.leff <
u-op.leff implies thatr-op.leff < u-op.leff whereC is

the read cluster containingop andr-op’ = C.rep. By
constructionr-op can be answered by a read response
only if the effective time of the read operatiomop that
reached the authoritative object to elicit this response sa
isfiesr-op'.leff > r-op.after. So, to prove the lemma, it
suffices to show that-op'.leff < r-op.after.

. c,rf Y

Consider the edge sequenec®p =, r-op — u-op
and letu-op’ be the update operation on this sequence
that precedes and is closestrtop; i.e., there is no up-
date operation betwearop’ andr-op along this edge
sequence. Eithew-op” = u-op and sou-op.leff =
u-op”.leff, or u-og C’—>rf+ u-op” and sou-op.leff <
u-op’.leff. It thus suffices to prove that-op’.leff <

: if .
r-op.after. If the chainu-op’ <%, r-op includes no

LN edges, then the client issuimepp is the same as the
client issuingu-op’, and sou-op”.leff = u-op’.lueff <
r-op.after because-op.after is constructed as the max-
imum op.lueff for all operationsop that this client has
issued so far (including-op’ itself). If the chainu-op’

C‘l>f+ r-op includes one’s edge, it must be the first
edge. Thatis, we haueop” LA r-op’ %, r-op-% u-op.
Then, the client issuing-op also issued-op’, and so
u-op”.leff = r-op’.lueff < r-op.after, again due to the
construction of-op.after. O

Lemma 6. ¢ is acyclic.

Proof. Assume for a contradiction that there is a cycle
in 94. Lemma 3 shows that the cycle contains a se-
quenceu-op; Ci>f+ r-op, — U-0p; such thau-ops.leff <
u-op, .leff. But Lemma 5 shows that this cannot happen,
giving a contradiction. O

Corollary 1. The protocol of Sec. 4.1 is sequentially
consistent.

Proof. Consider any topological sort éf4. Due to the
5 edges, it satisfiesocal-Order Moreover, every read
and update operation appears in this serialization after
the update producing the object state to which it is ap-
plied (due o edges) and before any subsequent up-

date (due to% edges). Consequentlyegality is satis-
fied. O

Lemma 7. The protocol of Sec. 4.1 satisfi€duster-
Order

16

