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Abstract
DAVID L. MILLMAN: Degree-Driven Design of Geometric Algorithms for

Point Location, Proximity, and Volume Calculation
(Under the direction of Jack Snoeyink)

Correct implementation of published geometric algorithms is surprisingly difficult. Geomet-

ric algorithms are often designed for Real-RAM, a computational model that provides arbitrary

precision arithmetic operations at unit cost. Actual commodity hardware provides only finite pre-

cision and may result in arithmetic errors. While the errors may seem small, if ignored, they

may cause incorrect branching, which may cause an implementation to reach an undefined state,

produce erroneous output, or crash. In 1999 Liotta, Preparata and Tamassia proposed that in ad-

dition to considering the resources of time and space, an algorithm designer should also consider

the arithmetic precision necessary to guarantee a correct implementation. They called this design

technique degree-driven algorithm design. Designers who consider the time, space, and precision

for a problem up-front arrive at new solutions, gain further insight, and find simpler representa-

tions. In this thesis, I show that degree-driven design supports the development of new and robust

geometric algorithms.

I demonstrate this claim via several new algorithms. For n point sites on a U × U grid I

consider three problems. First, I show how to compute the nearest neighbor transform in O(U2)

expected time, O(U2) space, and double precision. Second, I show how to create a data structure

in O(n logUn) expected time, O(n) expected space, and triple precision that supports O(log n)

time and double precision post-office queries. Third, I show how to compute the Gabriel graph

in O(n2) time, O(n2) space and double precision. For computing volumes of CSG models, I

describe a framework that uses a minimal set of predicates that use at most five-fold precision.
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The framework is over 500x faster and two orders of magnitude more accurate than a Monte Carlo

volume calculation algorithm.
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Chapter 1

Introduction

The representation of numbers makes a difference in the ease of doing correct calculation. In The

Elements, Euclid spoke of numbers as geometric measures and observed that the
√

2, and other

numbers, could not be represented as a fractions of integer measures—that it was irrational. With

computers we face the opposite question: how to represent geometry with numbers. Rather than

using geometry to represent a number, we may, for example, want to calculate the intersection

point of two lines and store the coordinates in memory. We then need to know how many bits of

memory are sufficient to store the point accurately. Computers have brought new questions about

designing and analyzing algorithms for solving problems that can be stated geometrically; these

algorithms we call geometric algorithms.

The standard model of computation for analyzing geometric algorithms is the Real-RAM [109],

which supports constant-time arithmetic operations on real numbers stored in a memory that can

be indexed by integers. (Many bit operations or floor/ceiling are usually not supported directly,

but must be implemented in software and so take non-constant time.) The Real-RAM has three

unbounded quantities: the number of steps that an algorithm can take, the number of memory cells

that it can use, and the size of the set of numbers that can be represented in a given cell. Because of

increasing processor speeds, memory sizes, and bits to represent numbers it is appropriate to not

place arbitrary limits on the Real-RAM. To ensure algorithms designed for the Real-RAM model



are practical, researchers seek to minimize the asymptotic growth of processor time and memory

space as the problem sizes grow, and (with some famous exceptions) tacitly agree not to use the

power afforded by unbounded precision in each cell. In precision analysis the number of bits used

to represent numbers is analyzed and minimized as well. In this thesis I investigate designing

geometric algorithms by considering all three: time, space, and precision.

My main study is predicates, which are tests that control branching in geometric algorithms.

Segregating numerical computation on input coordinates into predicates not only enables preci-

sion analysis, but also increases the chances that an algorithm will be correctly implemented, since

predicates can be separately tested, debugged, and put into libraries for reuse. In this thesis, I

restrict my attention to predicates that test signs of polynomials in the input coordinates, and con-

structions that produce objects defined by rational polynomials in the input coordinates. Liotta,

Preparata, and Tamassia suggested that we can bound the precision required by a geometric algo-

rithm by analyzing the degree of predicates. Thus, the degree of my algorithms is the degree of

their highest degree predicate.

In most efficient geometric algorithms it is common for predicates to take many times the

precision of the input coordinates. To evaluate a degree 5 predicate on 32-bit input coordinates

would require approximately 160 bits (about five times the number of bits for representing the

input coordinates). As most machines only support 64-bit arithmetic, unless higher precision is

simulated in software, for some inputs the test will be wrong.

We can use precision as a guideline for designing geometric algorithms, which Liotta, Preparata,

and Tamassia call degree-driven algorithm design. Degree-driven algorithm design makes analysis

easy to carry out yet general enough to have an impact. One can design an algorithm, determine

how much precision it requires, implement the algorithm, and then specify a range of coordinate

values for which the implementation guarantees a correct result.

2



1.1 Thesis Statement and Contributions

In this thesis, I show that degree-driven analysis supports the development of new and robust

geometric algorithms. The contributions are summarized in the remainder of this section.

One of the early developments in computational geometry was the identification of predicates

for various geometric tests. The design and implementation of algorithms were based on a lim-

ited set of predicates, rather than on numerical coordinates. Thus, we consider representations of

primitives (such as points and lines) and predicates on these primitives. Chapter 3 describes how

precision will be analyzed in this thesis and Chapter 4 derives and upper bounds the precision of

many common predicates.

The easiest way to reduce the precision of a predicate is to factor its polynomial. It is often

claimed that the polynomials in common predicates cannot be factored but is rarely shown and

references are rarely provided. Chapter 5 shows that the polynomials from Chapter 4 cannot be

factored and identifies some helpful techniques for showing that a polynomial cannot be factored.

The next four chapters support the thesis statement by using degree-driven analysis to give new

and robust algorithms for the Gabriel graph, post-office queries, nearest neighbor transform and

volume calculation of CSG models. Let me briefly define these problems and state the main results.

Gabriel Graph. First, given a set S with n point sites, an edge (si, sj) with si, sj ∈ S is in the

Gabriel graph of S if the edge maintains the Gabriel property, that is, the closed disk with diameter

sisj contains no points of S besides si and sj . Testing if an edge has the Gabriel property can be

degree 2. Thus, there is a simple brute force degree 2 algorithm for computing the Gabriel graph:

construct all O(n2) edges, and for each edge e check all n sites to see if e has the Gabriel property.

The brute force algorithm is O(n3) and degree 2. Chapter 7 shows how to compute the Gabriel

graph in O(n2) time, O(n2) space, and degree 2. Along the way, we see that we can compute the

trapezoidation of the arrangement of n lines in O(n2) time, O(n2) space, and degree 2.

3



Post-Office Queries. Second, given a query point q and a set S with n point sites, a post-office

query returns the site of S closest to q. For si, sj ∈ S, testing if q is closer to si or sj is degree 2.

Thus, there is a simple brute force linear time degree 2 algorithm for queries, test q against all

sites. More efficient algorithms preprocess the point set to achieve O(log n) time queries. The

standard algorithm [31] computes the Voronoi diagram of S, which takes O(n log n) time and

degree at least 4; computes the trapezoid map of the Voronoi edges, which takes time O(n log n)

and degree 5; and queries the map, which naively takes O(log n) time and degree 6 (however, it is

easy to reduce such queries to degree 3). Chapter 7 presents a reduced precision Voronoi diagram

that for n sites on a U × U grid, can be computed in O(n logUn) expected time, O(n) expected

space, and degree 3. The reduced precision Voronoi diagram supports O(log n) time and degree 2

post-office queries. The chapter concludes with the description of a degree 2 Voronoi diagram that

can be constructed with degree 2 and supports O(log n) degree 2 post-office queries.

Nearest Neighbor Transform. Third, given a set of n sites S on a U × U grid of the pixels of

an image, the nearest neighbor transform assigns to each pixel the closest site of S. Testing if a

pixel is closer to si or sj , with si, sj ∈ S, is degree 2. Thus, there is a simple brute force O(nU2)

time degree 2 algorithm for queries, which tests each pixel against all sites. More sophisticated

algorithms have a running time independent of n. Chapter 8 shows how to compute the nearest

neighbor transform with a randomized algorithm in O(U2) expected time, O(U2) space, and de-

gree 2. A simpler O(U2 logU) time, O(U2) space, and degree 2 deterministic algorithm is also

presented. We compare prototype implementations of both algorithms with MATLAB’s [91] com-

piled implementation of an O(U2) time, O(U2) space, and degree 3 algorithm. The experiments

show that the clock time of the deterministic algorithm is about 3x faster than the randomized

algorithm and that the clock times of the randomized and deterministic algorithms are 5–7x and

15–23x faster than MATLAB’s.
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Volume Calcualtion of CSG Models. Fourth, not all problems have low degree solutions. We

should use degree-driven analysis to drive better decisions on selecting predicates, which informs

algorithm design. Chapter 9 uses degree-driven algorithm design to improve accuracy and speed

in computing the volumes of CSG models. For the types of models considered, testing if a point

is inside a model M is degree 3. Thus, a simple Monte Carlo algorithm takes as input N sample

points inB and the bounding box ofM . Let h be the number of samples falling inM . The standard

Monte Carlo algorithm approximates the volume as Vol(B)∗h/N . In practice, N needs to be very

large. For example, when B is a unit cube N must be over 1.4 billion samples for a 10−4 relative

error, which limits performance. Instead, one could intersect the surfaces defining the models, but

computing the curves resulting from surface intersections without sophisticated software libraries

is error prone and creates more structure than is necessary for calculating volumes. Chapter 9

describes a framework for computing volumes using a minimal set of predicates that are at most

degree 5. My framework computes only the intersection curves of surfaces and axis aligned planes

yet is over 500x faster and two orders of magnitude more accurate than the Monte Carlo algorithm.
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Chapter 2

Background

A computer supports a subset of the reals called floating point numbers. In Section 2.1, I de-

scribe the IEEE standard for representing floating point numbers. Since a computer cannot repre-

sent all reals, designers (and implementers) of geometric algorithms may have different definitions

of what it means for an algorithm to be correct (or have a correct implementation). In Section 2.2, I

describe the two main paradigms to correctness, Topology-Oriented Computation [127] and Exact

Geometric Computation [140]. One way to achieve the goals of exact geometric computation is to

reduce the amount of precision required by an algorithm. Liotta, Preparata, and Tamassia [89] sug-

gested a guideline called, degree-driven algorithm design for upper bounding the precision required

by an algorithm. In Section 2.3, I survey the previous work in degree-driven algorithm design.

2.1 Floating Point Representation

In the IEEE 754 standard for binary floating point format a number is represented as a sign s,

exponent e, and mantissa m1. The sign is 1 bit, and the exponent and mantissa are some fixed

number of bits (dependent on representation and precision). In a normalized floating point repre-

sentation, the highest order bit of the mantissa is assumed to be 1 and so it does not need to be

1The base is sometimes called the radix, the mantissa is sometimes called the significand and the exponent is
sometimes called the characteristic.



explicitly represented. Often a bias is added to the exponent to simplify comparisons. The value

of a normalized floating point number with bias E is (−1)s × 1.m× 2e−E .

This familiar representation was not always so common. In a 1998 interview[120], Kahan

recalls some of the peculiarities of early implementations of floating point arithmetic. For example,

two floating point values could test as not-equal, yet their difference could be zero. Kahan, along

with Coonen and Stone proposed the IEEE Standard 754-1985, which is the basis for the “float”

and “double” types in many high level programming languages such as C, C++, C#, and Java.

In these languages, “float” is implemented by the IEEE 754-2008 single precision floating point

format called binary32 (in IEEE 754-1985 it was called single) with 1 bit for the sign, 8 bits for

the exponent and 23 bits for the mantissa. In fact, binary32 specifies a floating point number as

(−1)s × (1 + Σ23
i=1bi2

−i)× 2e−127.

The set of binary32 numbers is finite, so only a subset of R can be represented exactly. The rest

of the numbers must be approximated. For example, even a simple rational such as 1/3 must be

rounded to a number near 0.3. For arithmetic operations, the result of a floating point operation on

floating point input is the same as the result of the true operation on the floating point input rounded

to one unit in the last place. IEEE standard allows for multiple rounding modes. Of particular

importance are “round up” and “round down”, which round toward positive and negative infinity

respectively. The two rounding modes are the basis for arithmetic filters, which are discussed

further in Chapter 10.

2.2 Definitions of Correctness

Computational geometry textbooks and papers usually prove that an algorithm is correct in the

Real-RAM model of computation [109]. In this model, arithmetic operations are exact and take

unit time. In implementations on current technology, however, arithmetic operations are not exact,

when too few arithmetic bits are available, numerical errors occur. Numerical errors can cause
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predicates to be evaluated incorrectly and cause implementations to fail [44, 63].

One could naively rely on machine precision and replace comparisons against zero with com-

parisons against an ε-tolerance. Kettner et al. [75] investigate the errors introduced with floating

point arithmetic using simple predicates, such as Orientation, and generate simple examples

where an incremental convex hull algorithm fails. Their numerical experiments show that the errors

of a floating point based orientation predicate have a complex and non-intuitive structure. Kettner

also points out that ε-tolerances do not fix the problems raised by their investigation; by rounding

non-zero values to zero, it only enlarges the complex error structure.

Instead, one could add steps to ensure correct results. Yap [141] calls the study of algorithms

with running time dependent on the precision of the input or output, numerical computational

geometry. Below I outline what I believe to be the two main paradigms of numerical computational

geometry, Topology-Oriented Computation and Exact Geometric Computation.

Topology-Oriented Computation (TOC). Geometric algorithms often aim to compute struc-

tures for which topological properties may hold even if the geometry is perturbed. For example,

the Voronoi diagram is a connected planar graph, that happens to have convex faces in its geometric

embedding. Suighara [127, 128, 131] proposes that algorithms be designed to guarantee chosen

topological properties (e.g., connectedness or planarity), even if the geometric embedding con-

tains perturbations or numerical error (e.g., self-intersections or non-convexities). His Topology-

Oriented Computation paradigm seeks to ensure that, at a minimum, geometric algorithms should

fail gracefully as they reach the limit of the available precision.

Suighara defines TOC more formally [128], let P be a geometric problem in which X is the

set of inputs to P and Y is the set of outputs. Let f be an algorithm for solving P and f̃ be an

implementation of f . If f̃ is implemented with finite precision arithmetic, for x ∈ X the output

f̃(x) may not be the same as f(x). Let fC(x) and fN(x) be the combinatorial and numerical

outputs of f , respectively. Similarly, f̃C(x) and f̃N(x) are the combinatorial and numerical outputs
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of the implementation f̃ .

For a concrete example, let P be the problem of computing the Voronoi diagram of sites with

double precision floating point coordinates in 2D. An input x is n distinct sites with double pre-

cision floating point coordinates. The output is the Voronoi diagram of the n sites. Let f be

Fortune’s algorithm [43] and f̃ be Brubeck’s [17] implementation of Fortune’s algorithm. For an

input x ∈ X , fC(x) is a planar graph, and fN(x) the coordinates of the graph’s vertices and the

directions of the infinite edges. Brubeck reports that his implementation does not terminate for

all input. But for all x for which f̃(x) terminates, f̃C(x) and f̃N(x) are the graph and the vertex

coordinates reported by f̃ , respectively.

Suighara [128] defines the implementation f̃ to be robust if f̃ is defined for any x ∈ X . That is,

for any x ∈ X , f̃(x) does not crash or go into an infinite loop. Note that the output f̃(x) may not

be in Y . The implementation f̃ is topologically consistent if for all x ∈ X , f̃C(x) ∈ fC(X). Note

that this does not mean that f̃C(x) = fC(x) or even that f̃C(x) is in the neighborhood of fC(x);

simply that there is some input y ∈ X such that f(y) = f̃(x).

Sugihara with others proposed robust and topologically-consistent algorithms for many prob-

lems including, solid modeling with planes [129], divide-and-conquer construction of Voronoi

diagrams of points in 2D and 3D[107, 65, 66], incremental construction of the Voronoi dia-

grams of polygons [64], and gift-wrapping and divide-and-conquer constructions of convex hull

in 3D [126, 102, 103]. TOC can create robust implementations. Sugihara and Iri [130] used TOC

to create an algorithm for building the first Voronoi diagram of over a million sites with single

precision arithmetic. (It should be noted that Isenburg et al. [67] used EGC, described in the

next section, to build the first Voronoi diagram of over a billion sites with single precision input.)

Held and Huber [56] used TOC to create the first floating point implementation for computing the

Voronoi diagram of circular arcs (without discretizing or approximating the arcs).

A weakness of the TOC is that even for topologically consistent algorithms the output may be
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in no way similar to the correct output. Consider the following topologically consistent algorithm

for computing the Voronoi diagram. As a preprocess, select a point set x, and by hand compute the

Voronoi vertices and edges for x. At run time, for any input y return the Voronoi vertices and edges

for x. Moreover, few of the classic geometric algorithms designed using the Real-RAM model are

robust, let alone topologically consistent. Thus, many of the classical geometric algorithms are not

correct under the definitions of TOC.

Exact Geometric Computation (EGC). Geometric computing is part combinatorial, for ex-

ample traversing an embedded graph, and part numeric, for example determining if two segments

intersect. Yap [140] observes that the interplay between the numerical and the combinatorial is

what causes geometric algorithms to be difficult to implement. His Exact Geometric Computation

paradigm dictates that an algorithm’s control flow should be independent of the machine on which

the implementation is run; in particular, it should be the same as if the algorithm was implemented

with real arithmetic.

The strength of EGC is that it cleanly separates the algorithm design process from the number

types used in an implementation. By abstracting the number type away from the programmer, de-

bugging and implementation become easier. Indeed, EGC’s strength can be seen in its acceptance

in software development. Well-known open-source software libraries CGAL [2] and LEDA [19]

both have geometric kernels that support EGC.

The weakness of EGC is pointed out originally by Yap [140] and revisited by Held and Mann [57].

The easiest way to implement EGC is to use software to simulate rational or real arithmetic. When

done blindly, simulating with software can be slow. Karasick et al. report that directly using ratio-

nal arithmetic caused a 10, 000x slowdown [72]. However, with the knowledge that the important

computation is the signs of polynomials and a bit of work, the slowdown can be reduced to below

10x. In Chapter 10, I outline the major techniques used for implementing EGC.

EGC does not specify how to output the coordinates of a construction, however, sometimes
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approximate coordinates are needed. Without care, the approximate results may introduce fatal

errors. For example, consider computing the convex hull of a set of segment intersection points

and outputting its polygonal boundary as a list of vertex coordinates. The rounded coordinates

may cause the boundary of the convex hull to be non-convex. Geometric rounding [32, 49, 51,

55, 58, 60] investigates how to round a construction’s coordinates while maintaining the important

geometric and topological properties.

Perhaps more seriously is that if number types are abstracted too early in the design process, an

algorithm may perform unnecessary constructions. Let’s see an example that takes a bit to explain.

A cascading construction is a phenomenon where constructions are used to create more construc-

tions2. A common industrial example of cascading constructions occurs in polyhedral modeling

systems. Consider a system (similar to Maya [1]) in which the polyhedra are represented by in-

tersecting a set of half-planes. A common operation is to output the boundary of the polyhedra.

Often the boundary is represented as: a set of vertices, defined by coordinates; a set of polygonal

faces, defined by an ordered list of pointers to vertices; and adjacencies between faces.

It is common to build the boundary incrementally. Assume that we have constructed the bound-

ary of Pi−1 defined by the first i− 1 planes. When adding plane pi, find all vertices outside of the

constraints implied by pi. Throw away all faces outside of pi and split all faces intersected by pi.

Splitting faces introduces new vertices, update the vertices and the topology of the polyhedra. Of-

ten, in implementation, due to numerical errors, the resulting set of vertices defining a polygon are

not coplanar as they would be in Real-RAM. Thus, a face may not have a clearly defined normal.

Suighara and Iri [129] observed that the cascading constructions are unnecessary, and are in

fact a source of error. They observed that vertices do not need to be represented by coordinates.

Instead, they can be represented by triples of planes defining them. Burnstein and Fussell [8] used

2The classic example of a cascading construction is the Pentagon problem, proposed by Dobkin and Silver [35],
where a smaller inverted pentagon is constructed by intersecting the pentagon’s diagonals.
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this observation and some additional predicate evaluation techniques to build a modeling system

that is faster than CGAL [2], which uses exact arithmetic, and is more stable than Maya, which

uses floating point arithmetic.

Burnstein and Fussell’s implementation is fast and stable because they avoid high precision

tests used by other implementations. In particular, they use low precision predicates to reduce

the need for simulating real arithmetic. Thus, when designing an algorithm (or implementing a

pre-existing algorithm) it is worth paying attention to how much precision is used.

This thesis explores Liotta, Preparata, and Tamassia’s proposed degree-driven algorithm de-

sign [89] guideline. This guideline seeks to optimize (and balance) running time, space, and preci-

sion simultaneously. Once we know how much precision is required by an algorithm, creating an

efficient implementation that follows EGC becomes easier. The EGC implementation techniques

described in Chapter 10 are still relevant. But degree-driven algorithm design allows a programmer

to make more informed decisions on when the techniques are needed.

2.3 Previous Results in Degree-Driven Algorithm Design

The most complete study of degree-driven design was carried out for segment intersection prob-

lems [10, 11, 21, 90]. Boissonnat and Preparata [10] describe three problems for a set of n line

segments defined by their endpoints with single precision coordinates:

P1 report all pairs of intersecting segments;

P2 construct the arrangement of the segments;

P3 construct the trapezoid graph of the segments.

They also describe variants in which the input segments are divided into two disjoint sets, and each

segment is colored with the set in which they belong. The colors are often red and blue, so the

colored variants are often called red-blue intersection problems.
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For n segments we can have Θ(n2) intersections. A trivial algorithm with worst-case optimal

running time is to check all pairs using a double precision segment intersection test. However, more

interesting algorithms consider the number of intersections k. Boissonnat and Preparata show that

a degree 3 variant of the degree 5, O((n+k) log n) time Bentley-Ottmann sweep line algorithm [7]

solves P1 in O((n + k) log n) time. They also show that P1 for red and blue segments with only

bichromatic intersections can be solved with degree 2.

Chan [21], and Boissonnat and Snoeyink [11], investigate degree-driven algorithm design by

using a restricted set of predicates and abstract the above/below test on curve segments (whose

degree is dependent on the complexity of the carrier of the curve). Boissonnat and Snoeyink con-

sider segment intersection problems on a set of pseudo-segments, which are x-monotone segments

such that any pair have at most one point in their intersection. They show that when limited to

the three tests: ordering of endpoints; checking if an endpoint, in the vertical slab defined by a

segment, is above or below the segment; and testing if two curves intersect; P1 is lower bounded

by Ω(n
√
k). They also show that for segments, Balaban’s [6] degree 3, O(n log n+ k), algorithm

can be modified to degree 2 with a slight loss of efficiency, running in O(n log2 n+ k log n) time3.

Finally, they show that even with restricted predicates, the red-blue intersection problem (with

pseudo-segments) can be solved in O(n log n+ k) time.

As touched upon in almost all the literature on degree-driven algorithms for segment inter-

sections, but most clearly stated by Mantler and Snoeyink [90], P2 requires four-fold precision,

and P3 requires five-fold precision. Mantler and Snoeyink consider P2 for red and blue segments.

They show that the topology of arrangement (but not the coordinates of the intersections) can be

computed using a sweep line algorithm that runs in optimal O(n log n+ k) time using O(n) space

and degree 2.

3Boissonnat and Snoeyink’s degree 2 version of Balaban’s algorithm appears to be the first example of a time-
precision trade off.
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Researchers also consider point location queries. Given a set of n point sites where the coor-

dinates of the sites and query points are b-bit integers. Let U = 2b, and the set of representable

points from which sites and queries are picked is a U ×U grid, sometimes referred to as a universe

of size U [25].

Liotta, Preparata and Tamassia [89] describe a degree 6 algorithm for rounding a trapezoidation

of the Voronoi diagram to a degree 1 data structure capable of reporting nearest neighbor queries

in O(log n) time with degree 2. Unfortunately, they still have to construct the trapezoidation. Mill-

man and Snoeyink [99] consider how to construct Liotta’s structure with a degree 3 randomized

algorithm in a size U universe in time O(n logUn). We will see this algorithm in Chapter 7. Using

a different approach, Millman and Snoeyink [100] describe a degree 2 construction of a degree 1

data structure supporting degree 2 logarithmic time point location queries. We further explore this

construction in Chapter 7.

To compute the nearest neighbor for all query points in a universe of size U with degree 2, we

could simply test all query points against all sites to achieve an O(nU2) algorithm. Millman et al.

[98] show how to compute all nearest neighbor queries using degree 2 predicates with an expected

time O(U2) algorithm, which we encounter in Chapter 8.

The additively weighted Voronoi diagram is a generalization off the Voronoi diagram in which

a site s is defined by a center c and a weight w and the distance between a point p in the plane and

s is ‖p − c‖ − w. Karavelas and Yvinec [73] proposed a degree 14 algorithm for computing the

additively weighted Voronoi diagram. In previous work [96], I showed that the predicates presented

by Karavelas and Yvinec could be simplified to degree 6. The new predicates, implemented in

CGAL [2], resulted in a 39–66% speed up in predicate evaluation and a 10-20% reduction in the

number of calls to software arithmetic for nearly degenerate inputs.

The Gabriel graph of a size n point set S is an embedded graph. The vertices are the points of S

and the edges ei have the property that the circle centered at the midpoint of ei with diameter length
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of ei contains no other points of S. We can compute the Gabriel graph in O(n3) time, and degree 2

by comparing all triples. The classic result of Matula and Sokal [92] shows how to construct the

Gabriel graph from the Delaunay triangulation in O(n) time using the observation that a Delaunay

edge is in the Gabriel graph if and only if it intersects the Voronoi edge to which it is the dual.

Liotta [88] shows that Matula and Sokal’s algorithm is degree 6, but provides a degree 2 algorithm

accomplishing the same result. However, Liotta’s algorithm must first use degree 4 to compute

the Delaunay triangulation. Millman and Verma [101] showed how to compute the Gabriel graph

directly, albeit slowly, in O(n2) time and degree 2. We will see this algorithm in Chapter 6.
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Chapter 3

Analyzing the Precision of Predicates,

Constructions and Algorithms

c = (1, 0)

d = (1, 2)

b = (0, 3)

q = ( 13 ,
8
3 )

a = (0, 4)

Figure 3.1: Two segments
with an intersection coordi-
nate that does not lend itself
to a floating point representa-
tion.

This thesis explores designing geometric algorithms and seeks

to optimize the running time, space and precision. Analysis of al-

gorithms in terms of time and space is commonly studied in a stan-

dard algorithms classes; see [30]. Analyzing the precision of an al-

gorithm, however, is not so well known. Thus, the purpose of this

chapter is to define terms that are central to the thesis and famil-

iarize the reader with guidelines for upper bounding the precision

required by an algorithm. I illustrate the important definitions and

analysis on the example problem:

DoSegsIntersect Given two, two-dimensional line-segments, ac

and bd, defined by their endpoints, determine if the interior

of the segments intersect. Assume that no three endpoints

are collinear.



We assume that no three points are collinear so that we may avoid unnecessary details that de-

tract from the purpose of this chapter. Full details for intersecting segments are given in Chapter 4

where we remove the assumption.

In this thesis, I assume that the inputs to a geometric algorithm are a set of numeric coordinates

scaled to b-bit integers and combinatorial relationships between the coordinates. Sometimes, I

refer to the precision of the input coordinates as degree 1 or single precision. In DoSegsIntersect,

the numerical coordinates are the x and y values of the segment endpoints, and the combinatorial

relationships are the pairing of values into points and the pairing of points into segments.

For U = 2b, it is sometimes helpful to consider the coordinates as integers in {0, . . . , U−1}. In

such a case, when the input are points are planar, we can imagine them as laying on a U×U integer

grid which we call U. We assume that the input is scaled to an integer grid because as Chan and

Pǎtraşcu [25] point out, the floating point plane is the union of integer grids with different scalings

around the origin. The problems in this thesis are translation independent. Thus, the ability to have

more precision for input near the origin is not particularly helpful.

A predicate is the sign of a multivariate polynomial with variables from the input coordinates.

A positive, negative, or zero result can be interpreted geometrically. Often, the interpretation is

used in algorithms to make branching decisions. Consider the predicate:

Orientation(a, b, c): Given single precision coordinate values of 2D points a, b, and c,

Orientation(a, b, c) = sign(bxcy − bxay − axcy − cxby + cxay + axby). (3.1)

The predicate’s positive, negative, or zero result has the geometric interpretation that the path

from a to b to cmakes a left turn, makes a right turn, or a, b and c are collinear, respectively. For the

segments shown in Figure 3.1, Orientation(a, c, d) is a left hand turn, Orientation(a, c, b)

is a right hand turn, and Orientation(a, c, q), with q not rounded, is collinear.
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The degree of a predicate is the degree of the polynomial. Thus, Orientation is degree 2.

Degree notation is a helpful bookkeeping device for analyzing the degree of polynomials where

we represent a degree k polynomial as k© . When it is clear from the context we may drop the

sign function. Thus, the predicate Orientation(a, c, b) = 2© .

Boissonnat and Preparata [10], define the degree of a predicate as the maximum degree of its ir-

reducible factors. Even though I show that most of the predicates used in this thesis are irreducible,

I omit the irreducibility condition. As we will see in Chapter 5, showing that a multivariate poly-

nomial is irreducible is cumbersome (and not necessary for proving upper bounds). I hope that by

omitting the irreducibility condition and simplifying precision analysis, degree-driven algorithm

design can become of interest to a larger audience.

By removing the irreducibility condition the difference in degree may be substantial. For ex-

ample, for variables X = {x1, . . . , xn}, the polynomial formed by expanding the determinant of

the Vandermonde matrix

V1(X) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x1 x21 . . . xn−11

1 x2 x22 . . . xn−12

...
...

... . . . ...

1 xn x2n . . . xn−1n

∣∣∣∣∣∣∣∣∣∣∣∣∣
has polynomial degree n(n − 1)/2. The polynomial can be rewritten as a product of linear fac-

tors [136], V2(X) =
∏

1≤i<j≤n(xj−xi). This factorization means that the predicate, sign(V2(X)),

is degree 1. If we didn’t know of the factorization, however, the predicate sign(V1(X)) would be

degree n(n− 1)/2.

The degree of a predicate serves as the basis for analyzing precision. Before proceeding, it is

worthwhile to discuss the relationship between the degree and precision. Consider evaluating a

predicate. The variables are from the input, thus they can be represented by b-bit integers. Since,
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in this thesis, the coefficients of monomials in a predicate are small constants (usually 2 or 4), a

monomial of degree k can be evaluated with bk+O(1) bits. Moreover, in this thesis, the number of

variables in a predicate is small, say s. For s variables, the number of monomials in a polynomial

is O(sk) and a polynomial of degree k can be evaluated with bk + O(1) + k log2 s bits. Thus, the

calculation of a predicate can be carried out in k(b + O(1)) bits. The degree k can be thought of

as the leading term, determining the required precision. Just as we ignore constants in time and

space analysis, we ignore carry bits from addition and coefficients in this analysis. In Chapter 10

we discuss implementation techniques that can sometimes be used to reduce the number of bits.

A construction is an operation that produces a new object from the coordinate values of the

input. Consider the construction producing the intersection point q of lines←→ac and
←→
bd .

Intersect(a, c, b, d) takes the single precision coordinate values of four two-dimensional points

a, c, b, and d and produces the coordinates of the intersection point of non-parallel lines←→ac

and
←→
bd . The construction returns the point q, whose coordinates are:

qx =

∣∣∣∣∣∣∣
axcy − cxay ax − cx
bxdy − dxby bx − dx

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
ax − cx ay − cy
bx − dx by − dy

∣∣∣∣∣∣∣
, qy =

∣∣∣∣∣∣∣
axcy − cxay ay − cy
bxdy − dxby by − dy

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
ax − cx ay − cy
bx − dx by − dy

∣∣∣∣∣∣∣
. (3.2)

The degree of a construction is the highest degree of the polynomials used to represent the

output of the construction. Thus, Intersect produces coordinates of degree 3 over 2, written

in degree notation as 3© / 2© . Note that the degree of the construction may be the ratio of two

degrees. We use degree to upper bound the number of bits required for evaluating predicates. If

a predicate compares the rational coordinates of a construction, for analysis, the numerator and

denominator must be kept separate so that we may clear fractions.
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We can extend degree notation to the operations {+,×}. Let f and g be polynomials with

coefficients in R. One can show that

deg(fg) = deg(f) + deg(g) and deg(f) + deg(g) ≤ max(deg(f), deg(g)).

The equality deg(f) + deg(g) = max(deg(f), deg(g)) holds when adding f and g does not cause

all highest degree monomials to cancel. In this thesis, degree notation may only be used with

operations when all highest degree monomials do not to cancel. Define the operations {+,×} for

a© , b© , c© , and d© as:

a© + b© =
�� ��max(a, b)

a© × b© =
�� ��a+ b

a©
b© +

c©
d© =

�� ��max(a+ d, c+ b)�� ��b+ d

a©
b© × c©

d© =

�� ��a+ c�� ��b+ d
.

Next, I present a typical solution for DoSegsIntersect reducing it to a previously solved prob-

lem. If precision is a concern then I would not suggest using this solution. It is, however, useful for

illustration purposes. In Algorithm 1, SegsIntByConstruction solves DoSegsIntersect by

constructing the intersection point q of the lines through our segments and testing properties of q.

The degree of an algorithm is the maximum degree of its predicates and constructions. Let’s

see an example of precision analysis carried out SegsIntByConstruction. The algorithm

tests if←→ac is parallel to
←→
bd , in line 1. As each slope is degree 1 over 1, by clearing fractions, we

check if the lines are parallel with degree 2. That is, we test if the predicate

sign ((ay − cy)(bx − dx)− (ax − cx)(by − dy)) = 2©
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Algorithm 1 SegsIntByConstruction(a, c, b, d): Determine if ac and bd intersect; if so
return INTERSECT, if not return NOINTERSECT

Require: no three points are collinear
1: if←→ac ‖ ←→bd then
2: return NOINTERSECT

3: end if
4: Point q = Intersect(a, c, b, d) /* See Equation 3.2 */
5: Real t1 = (qx − ax)/(cx − ax)
6: Real t2 = (qx − bx)/(dx − bx)
7: if t1 ∈ (0, 1) & t2 ∈ (0, 1) then
8: return INTERSECT

9: else
10: return NOINTERSECT

11: end if

is zero. The Intersect construction, in line 4, computes the Cartesian coordinates of q, which

we saw before are degree 3 over 2. Solving for t1 and t2, in lines 5 and 6 respectively, is degree 3

over 3. That is,

t1 =
qx − ax
cx − ax

=
3© / 2© − 1©

1© =
3© / 2© − 2© / 2©

1© =
( 3© − 2© )/ 2©

1© =
3© / 2©

1© =
3©
3© ,

and similarly for t2. Next, we see that t1 and t2 are in (0, 1), in line 7, with degree 3. Let t1 = n/d.

Both n and d are degree 3. We test if t1 ∈ (0, 1) by checking if:

(sign(n) < 0 and sign(d) < 0 and sign(n− d) > 0) or

(sign(n) > 0 and sign(d) > 0 and sign(n− d) < 0).

As n and d are degree 3, sign(n) = 3© , sign(d) = 3© , and sign(n − d) = 3© . Therefore,

checking if t1 ∈ (0, 1) is degree 3. Similarly, checking if t2 ∈ (0, 1) is degree 3. Since the highest

degree predicate of the algorithm is degree 3, SegsIntByConstruction is degree 3.
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In an implementation of the typical solution, the coordinates of q would often be represented

in floating point. Floating point values are a subset of R, thus most real values must be rounded

(see Section 2.1 for more on floating point representation) For a real value x, let fl(x) be its

floating point representation. For a geometric object o defined by coordinate values, fl(o) is the

geometric object induced by applying fl to the coordinate values of o. For example, the point

fl(q) has coordinate values (fl(1/3),fl(8/3)). Sometimes the difference between q and fl(q)

is negligible. In Figure 3.1, however, fl(q) does not lie on either segment.

Instead, consider an algorithm that avoids the possibly erroneous construction of an intersection

point. The algorithm uses the observation that ac intersects bd if and only if a and c are on opposite

sides of bd and b and d are on opposite sides of ac.

In Algorithm 2, SegsIntByOrientation, we use Orientation to determine if the two

segments intersect by checking if the endpoints of bd are on opposite sides of←→ac and the endpoints

of ac are on opposite sides of
←→
bd .

Algorithm 2 SegsIntByOrientation(a, c, b, d): Determine if ac and bd intersect; if so return
INTERSECT, if not return NOINTERSECT

Require: no three points are collinear
1: if Orientation(a, c, b) 6= Orientation(a, c, d)

and Orientation(b, d, a) 6= Orientation(b, d, c) then
2: return INTERSECT

3: else
4: return NOINTERSECT

5: end if

The SegsIntByOrientation algorithm avoids the construction of an intersection coordi-

nate and arrives at a simpler algorithm. It uses the predicate in Equation 3.1, which is degree 2.

The four Orientation predicates, in line 1, evaluate only Equation 3.1, so it too is degree 2.

Thus, SegsIntByOrientation is degree 2.

This discussion shows that we can solve DoSegsIntersect with a degree 3 or degree 2 algo-

rithm where both are constant time. Thus, from the stand point of precision I would suggest
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SegsIntByOrientation. Picking an algorithm to solve a problem is not always so straight-

forward. As we will see in the following chapters, there appears to be a trade off between time and

precision just as there is with time and space.
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Chapter 4

Degrees of Predicates and Constructions

Geometric primitives, such as lines and points, may be represented by numbers in the computer

in several ways. For example, a line can be specified as the coordinates of two points, as a slope

and intercept, or as three coefficients of a homogeneous equation ax + by + cw = 0. Even for

points there are choices of Cartesian, polar, or signed homogeneous coordinates [124, 125].

In this chapter, I define geometric predicates and constructions that are needed by the algo-

rithms throughout the thesis. I focus on representations of primitives for which the predicates and

constructions evaluate polynomials; in the next chapter, I show that the polynomials for the pred-

icates that are defined here are irreducible. This chapter concludes with a discussion of verifying

the preconditions for the predicates and construction. The results of both chapters, 4 and 5, are

summarized in Tables 4.1 to 4.3.

Table 4.1 names representations of points and lines that the algorithms use. Signed homogeneous

coordinates [124, 125] unify the representations. In short, a tuple (w, x, y) with w 6= 0

represents the Cartesian point (x/|w|, y/|w|) with a spin that is clockwise if w < 0 and

counter-clockwise if w > 0. A tuple with w = 0 represents the point at infinity in the

direction (x, y). We call two points (or lines) a and b distinct if there is no λ ∈ R \ {0} such

that a = λb. Unless stated otherwise, points of U have positive spin. We keep track of the

degrees of the elements of the tuple using degree notation, defined in Chapter 3, where we



denote a coordinate of degree k as k© .

For example, Cartesian point (x, y) has homogeneous representation (1, x, y), which we

write as ( 0© , 1© , 1© ) because we care primarily about the degrees of the input co-

efficients in our analysis. Similarly, an input line specified by the coefficients homoge-

neous equation (c, a, b) · (w, x, y)T = 0 is ( 1© , 1© , 1© ), while an input line specified in

slope/intercept form is ( 1© , 1© , 0© ).

Table 4.2 summarizes the degrees of constructions of points and lines that are named and derived

in the indicated sections of this chapter. For example, the first line in the table tells us

that the construction Line(a, b) takes as input two StdPoints a and b and produces a line

1© x + 1© y + 2© = 0 or in homogeneous form ( 2© , 1© , 1© ). The derivation for

Line is found in Section 4.1.1.

Table 4.3 summarizes the degrees of the predicates on points and lines. For example, the first

three rows in the table tells us that PointOrdering(a, b) for two StdPoints is degree 1,

for a StdPoint and a Voronoi vertex is degree 3 (regardless of whether the Voronoi vertex is

a or b), and for two Voronoi vertices is degree 5. The derivations are given in Section 4.2.1

and irreducibility is shown in Section 5.4.

4.1 Constructions

A geometric construction produces a new geometric object from the input. Here we consider the

degrees of some well-known and useful constructions that appear regularly throughout this thesis1.

1All constructions in this section have at least one precondition, such as the input points need to be distinct. When
input does not conform to preconditions, the implementer may want an assertion or an exception to identify errors
early; the user may prefer NaN , which propagates as specified by IEEE, so they know not to trust the results. From
my experience implementing degree-driven algorithms in which static analysis tells us that the predicates are exact, it
is better to throw an exception. Every time a construction in my prototype implementations experience a case where
the precondition was not met, it was because of a programming bug, or an invalid input into an algorithm.
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Table 4.1: Summary of point and line types that are input to predicates and constructions.

Name Description

StdPoint Point with degree 1 Cartesian coords or ( 0© , 1© , 1© ) homogeneous coords.
StdLine Line in std form with degree 1 coeffs. or ( 1© , 1© , 1© ) homogeneous coords.
StdSeg Segment defined by two StdPoints.
SlopeLine Line in slope intercept form or ( 1© , 1© , 0© ) in homogeneous coords.
VertLine Vertical line defined by a degree 1 coords.
Bisector Bisector constructed from two StdPoints.
LineInter Output point of the construction LineIntersection(StdLine, StdLine).
BisectorInter Output point of the construction LineIntersection(Bisector,Bisector).

Table 4.2: Summary of constructions of points and lines.

Name Input Output Derivation

Line(a, b) StdPoints Line: ( 2© , 1© , 1© ) 4.1.1
Plane(a, b, c) StdPoints Plane: ( 3© , 2© , 2© , 2© ) 4.1.2
Bisector(a, b) StdPoints Line: ( 2© , 1© , 1© ) 4.1.3
LineIntersection(`, h) StdLines Point: ( 2© , 2© , 2© ) 4.1.4

Bisectors Point: ( 2© , 3© , 3© )
SlopeLines Point: ( 1© , 1© , 2© )

VoronoiVertex(a, b, c) StdPoints Point: ( 2© , 3© , 3© ) 4.1.5
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Table 4.3: Summery of predicates.

Name Input Degree Derivation Irreducible

PointOrdering(a, b) StdPoints 1 4.2.1 5.4
StdPoint and VorVert 3
VorVerts 5

Orientation(a, b, q) 3 StdPoints 2 4.2.2 5.6
2 StdPoints and 1 VorVert 4
1 StdPoints and 2 VorVert 6
3 VorVert 8

Closer(a, b, q) StdPoints 2 4.2.3 5.7
SideOfABisector(Bab, q) Bisector and a StdPoint 2 4.2.4 5.7
OrderOnLine(Bab, Bcd, `) Bisectors and a VertLine 3 4.2.5 5.8
OrderOnLine(g, h, `) SlopeLines and a VertLine 2 4.2.6 5.9
InCircle(a, b, c, q) StdPoints 4 4.2.7 5.10
IntersectInterior(ac, bd) StdSegs 2 4.2.8 -

A construction is preformed on coordinates of the input. Recall that we assume that input

coordinates are degree 1, which are b-bit integers. For a universe of size U = 2b, we can think of

the set of all points with degree 1 Cartesian coordinates as lying on a U × U grid U.

4.1.1 Line(a, b)

a

b

`

Figure 4.1: Given a, b ∈ U in
red, construction Line(a, b)
produces the line ` in blue,
through a and b.

Often, the line defined though two distinct points a, b ∈ U, depicted

in Figure 4.1, is {ta + (1 − t)b | ∀t ∈ R}. When ax 6= bx, we

represent the line by algebraically expanding the equation y−ay
x−ax =

by−ay
bx−ax , arriving at the standard and slope-intercept forms,

standard form: 0 = (ay − by)x+ (bx − ax)y + (axby − aybx)

slope-intercept form: y =
by − ay
bx − ax

x+
(aybx − axby)
bx − ax

.

Writing just the degrees of the coefficients, the line in
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standard form is 0 = 1© x + 1© y + 2© and in slope-intercept form is y = 1© / 1© x +

2© / 1© . The fraction means that the slope of the line through two points is a rational polynomial

of degree 1 over 1 and the y-intercept is degree 2 over 1. This line representation, however, does

not support orientation.

When orientation matters, we use the definition of a line from oriented projective geome-

try [125, Chapter 5.1]. For two distinct points a and b, the line from a to b is defined by the

join a ∨ b (see [125, Chapter 5.4] for more on the join). The line from a to b can be written as a

determinant equation:

∣∣∣∣∣∣∣∣∣∣
aw ax ay

bw bx by

w x y

∣∣∣∣∣∣∣∣∣∣
= (axby − aybx)w − (awby − bway)x+ (awbx − bwax)y = 0

For a homogeneous coordinate q = (qw, qx, qy) let ¬q = (−qw, qx, qy), that is the spin of the

coordinate is reversed. One can derive two useful identities about oriented lines. First that a∨ b =

¬(b∨a), which is interpreted geometrically to mean that the line from a to b is the same as the line

from b to a with the opposite orientation. Second that a∨b = ¬b∨a = b∨¬a. (See [125, Chapters

3 and 5] for more on geometric interpretations and models of oriented projective geometry.)

4.1.2 Plane(a, b, c)

Figure 4.2: Given a, b, c ∈
U in red, the construction
Plane(a, b, c) produces the
plane, in blue, through a and
b and c.

Three distinct points a, b, c ∈ U define a plane, which for some

coefficients W , X , Y , and Z consists of all points {(x, y, z) ∈ R |

Xx + Y y + Zz + W = 0}. Construction Plane(a, b, c) returns

homogeneous coordinates (W,X, Y, Z) of the plane though a, b,

and c, depicted in Figure 4.2.
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The coefficients can be derived by solving the system of equations

axX + ayY + azZ = −W

bxX + byY + bzZ = −W

cxX + cyY + czZ = −W.

Let D =

∣∣∣∣∣∣∣∣∣∣
ax ay az

bx by bz

cx cy cz

∣∣∣∣∣∣∣∣∣∣
. When D 6= 0, we can use Cramer’s rule [135] to get

X =
−W
D

∣∣∣∣∣∣∣∣∣∣
1 ay az

1 by bz

1 cy cz

∣∣∣∣∣∣∣∣∣∣
Y =

−W
D

∣∣∣∣∣∣∣∣∣∣
ax 1 az

bx 1 bz

cx 1 cz

∣∣∣∣∣∣∣∣∣∣
Z =

−W
D

∣∣∣∣∣∣∣∣∣∣
ax ay 1

bx by 1

cx cy 1

∣∣∣∣∣∣∣∣∣∣
.

Setting W = D and applying elementary column operations, we find the coefficients,

W =

∣∣∣∣∣∣∣∣∣∣
ax ay az

bx by bz

cx cy cz

∣∣∣∣∣∣∣∣∣∣
X = −

∣∣∣∣∣∣∣∣∣∣
1 ay az

1 by bz

1 cy cz

∣∣∣∣∣∣∣∣∣∣
Y =

∣∣∣∣∣∣∣∣∣∣
1 ax az

1 bx bz

1 cx cz

∣∣∣∣∣∣∣∣∣∣
Z = −

∣∣∣∣∣∣∣∣∣∣
1 ax ay

1 bx by

1 cx cy

∣∣∣∣∣∣∣∣∣∣
.

When D = 0, the plane passes through the origin. Thus, W = 0 and X , Y , and Z are the normal

vector n of the plane, where n = (a− b)× (c− b).

Writing just the degree of the coefficients for input points in U is 2© x+ 2© y+ 2© z+ 3© =

0. The normal vector of the plane has degree ( 2© , 2© , 2© ). This representation does not

support orientation.

For when orientation matters, we use the definition from oriented projective geometry [125,

Chapter 5.2]. For three distinct points a, b and c the plane contains the line a ∨ b and the point c
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which is the plane a ∨ b ∨ c. The plane can be written as a determinant equation:

∣∣∣∣∣∣∣∣∣∣∣∣∣

aw ax ay az

bw bx by bz

cw cx cy cz

w x y z

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
ax ay az

bx by bz

cx cy cz

∣∣∣∣∣∣∣∣∣∣
w −

∣∣∣∣∣∣∣∣∣∣
aw ay az

bw by bz

cw cy cz

∣∣∣∣∣∣∣∣∣∣
x+

∣∣∣∣∣∣∣∣∣∣
aw ax az

bw bx bz

bw cx cz

∣∣∣∣∣∣∣∣∣∣
y −

∣∣∣∣∣∣∣∣∣∣
aw ax ay

bw bx by

cw cx cy

∣∣∣∣∣∣∣∣∣∣
z = 0

4.1.3 Bisector(a, b)

a

b

Bab

Figure 4.3: Given point sites
a, b ∈ U the construc-
tion Bisector(a, b) pro-
duces the perpendicular bi-
sector of ab.

The bisector of distinct point sites a, b ∈ U, depicted in Figure 4.3,

is the locus of points equidistant to a and b, and is the perpendicular

bisector of segment ab. We sometimes write the bisector as Bab.

When the two sites defining the bisector are subscripted, as in a1

and a2, we may abbreviate the bisector as B12.

We derive an expression for Bab by observing that it is the set

of points {q ∈ R2 | ‖q−a‖2 = ‖q−b‖2}. Expanding this equation,

we get the standard and slope-intercept forms of the equation for

Bab as

standard form: 0 = 2(ax − bx)x+ 2(ay − by)y + b2x + b2y − a2x − a2y

slope-intercept form: y =
(ax − bx)
(by − ay)

x+
1

2

b2x + b2y − a2x − a2y
(by − ay)

,

Observe that writing just the degree of the coefficients, the standard from of the bisector is 0 =

1© x+ 1© y + 2© and the y-intercept form is y =
1©
1© x+

2©
1© .
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4.1.4 LineIntersection(`, h)

`

h

q

Figure 4.4: Given two non-
parallel lines ` and h, in red,
LineIntersection(`, h)
constructs the coordinates of
q, in blue, the intersection
point of ` and h.

The construction LineIntersection(`, h) takes two distinct

lines ` and h and computes the homogeneous coordinates of their

intersection point q, as depicted in Figure 4.4. For Cartesian coor-

dinates the output may be “parallel” rather than a point.

We warm up with lines in slope intercept form and then con-

sider lines in standard form. Given lines ` : y = `mx + `b and

h : y = hmx + hb the coordinates of the intersection point q of `

and h are

q = (`m − hm, hb − `b, `mhb − `bhm)

When `m = hm the two lines are parallel, thus qw = 0. When the coefficients of ` and h are

degree 1, in Cartesian, the x-coordinate is degree 1 over 1 and the y-coordinate is degree 2 over 1,

or homogeneous coordinates, ( 1© , 1© , 2© ). Many geometric algorithms analyzed with the

Real-RAM model of computation have the property that processing left to right is the same as

processing from top to bottom. However, as we will see in Section 4.2.1, this property does not

always hold for lines in slope intercept form.

Next we consider lines ` and h, specified by homogeneous coordinates, i.e., ` = (`w, `x, `y).

The intersection point q of the lines ` and h is the solution to the linear equations

`xx+ `yy + `w = 0

hxx+ hyy + hw = 0.
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The solution gives us the homogeneous coordinates

q = (

∣∣∣∣∣∣∣
`x `y

hx hy

∣∣∣∣∣∣∣ ,−
∣∣∣∣∣∣∣
`w `y

hw hy

∣∣∣∣∣∣∣ ,
∣∣∣∣∣∣∣
`w `x

hw hx

∣∣∣∣∣∣∣) (4.1)

Next, we analyze the polynomials of the output points for three specific forms of input lines.

When ` and h are degree 1, the lines have the form 1© x + 1© y + 1© . Their intersection has

homogeneous coordinates of the form ( 2© , 2© , 2© ). When ` and h are defined by a pair of

points, Section 4.1.1 says that they have the form 1© x+ 1© y+ 2© . Their intersection has ho-

mogeneous coordinates of the form ( 2© , 3© , 3© ). When ` is a degree 1 line and a h is defined

by a pair of points their intersection has homogeneous coordinates of the form ( 2© , 3© , 3© ).

When ` and h are defined by two bisectors (described in Section 4.1.3) and the bisectors share a

common defining point, the intersection is particularly important. It is the same as computing a

vertex of the Voronoi diagram, which the topic of Chapter 7 and Chapter 8. Thus, we focus on

constructing a Voronoi vertex in the next section.

4.1.5 VoronoiVertex(a, b, c)

b
a

c

v

Bab

Bac

Figure 4.5: Given three non-
collinear points a, b, c ∈ U,
in red, the construction
VoronoiVertex(a, b, c),
constructs the coordinates
of the point v which is
equidistant to a, b, and c.

A Voronoi vertex v, constructed from distinct points a, b, c ∈ U, is

the point equidistant to a, b, and c, i.e., it is the center of the circle

through a, b and c. As depicted in Figure 4.5 we can compute

the coordinates of v by computing the intersection point of Bab

and Bac. We derive the degree of a Voronoi vertex by combining

the analysis on the degree of a bisector in Section 4.1.3 and line

intersections in Section 4.1.4.

Let ` = Bab and h = Bac and recall that in Section 4.1.3 we

saw that a bisectorB can be written in standard form as 0 = Bxx+
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Byy + Bw = 1© x + 1© y + 2© . Equation 4.1 gave the homogeneous coordinates of the

intersection point q, which, using degree notation, is

q = (

∣∣∣∣∣∣∣
1© 1©
1© 1©

∣∣∣∣∣∣∣ ,−
∣∣∣∣∣∣∣

2© 1©
2© 1©

∣∣∣∣∣∣∣ ,
∣∣∣∣∣∣∣

2© 1©
2© 1©

∣∣∣∣∣∣∣) = ( 2© , 3© , 3© )

Thus, each Cartesian coordinate of a Voronoi vertex is degree 3 over 2 or in homogeneous form

( 2© , 3© , 3© ).

4.2 Predicates and Simple Algorithms

Next we derive the degrees of common predicates and simple algorithms used throughout this the-

sis. We will no longer consider all possible point representations (e.g., point from U, intersection

point of two lines in standard form with degree 1 coordinates, etc.), but only those representations

relevant in this thesis.

During implementation it is often convenient to use a perturbation scheme [3, 39, 41, 42, 114,

119] so that predicates are only positive or negative. In this section, we derive predicates with-

out perturbation. Specific perturbation schemes are discussed in later sections in the context of

specific algorithms.

4.2.1 PointOrdering(a, b)

a

b

Figure 4.6: The point a pre-
cedes the point b.

We compare two distinct points a and b by lexicographic order of

their Cartesian coordinates. The point a ≺ b if and only if ax < bx

or (ax = bx and ay < by). In Figure 4.6 the point a precedes the

point b. Given a and b in homogeneous coordinates where a =

(aw, ax, ay) and b = (bw, bx, by) and a and b have the same spin
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(aw, bw > 0 or aw, bw < 0), we determine the ordering by clearing fractions and subtracting to

get the predicates OrderX(aw, ax, bw, bx) = sign(awbx − axbw) and OrderY(aw, ay, bw, by) =

sign(awby − aybw).

We can rewrite the degrees of Order and OrderY as

deg(OrderX(aw, ax, bw, bx)) = max{deg(aw) + deg(bx), deg(ax) + deg(bw)}

deg(OrderY(aw, ay, bw, by)) = max{deg(aw) + deg(by), deg(ay) + deg(bw)}.

We determine the degree for four cases by plugging coordinates into the equations above. First,

ordering two points in U is degree 1 since points of U have coordinates of degree ( 0© , 1© , 1© ).

Second, ordering the intersection points of two pairs of lines in standard form with degree 1 coeffi-

cients is degree 4 since the intersection points have coordinates of degree ( 2© , 2© , 2© ). Third,

ordering a point of U and a Voronoi vertex is degree 3 since Voronoi vertices have coordinates of

degree ( 2© , 3© , 3© ). Fourth, ordering two Voronoi vertices is degree 5.

Points described in the previous paragraph have the same degree for their x- and y-coordinates;

asymmetric points have Cartesian coordinates of different degrees. For example, the intersection of

two lines in slope-intercept form, y = 1© x + 1© , has coordinates of degree ( 1© , 1© , 2© ).

We can order the x-coordinate with degree 2, but the y-coordinate is degree 3. We will see in

Chapter 6 that asymmetric points may lead us to select one sweep direction over another or one

decomposition direction over another.

4.2.2 Orientation(a, b, q) q

ab

Figure 4.7: The path from a
to b to q forms a right turn
(clockwise orientation).

Given three distinct points a, b, q we determine if the straight line

path from a to b to q forms an orientation that is clockwise, counter

clockwise, or the three points are collinear. In Section 4.1.1, from
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two points a = (aw, ax, ay) and b = (bw, bx, by), we constructed an oriented line a ∨ b. Using the

line from a to b we can derive the predicate by plugging in the coordinates of q = (qw, qx, qy)

Orientation(a, b, q) = sign(

∣∣∣∣∣∣∣∣∣∣
aw ax ay

bw bx by

qw qx qy

∣∣∣∣∣∣∣∣∣∣
)

= sign
(
(axby − aybx)− (awby − bway)qx + (awbx − bwax)qy

)
.

When all three points have positive spin (aw, bw, qw > 0), we can interpret the positive, neg-

ative, and zero as path from a to b to q taking a left turn, right turn, and following a straight

line, respectively.

Next, we analyze the polynomial for combinations of input points. When a, b, q ∈ U the

points have the coordinate degree ( 0© , 1© , 1© ), and the predicate is degree 2. When one point

is a Voronoi vertex, Section 4.1.5 says that it has coordinates degree ( 2© , 3© , 3© ), and the

predicate is degree 4. In fact, the degree goes up by 2 for each Voronoi vertex: it takes degree 6 to

determine the orientation of a point in U relative to a segment between two Voronoi vertices and

degree 8 to determine orientation for three arbitrary Voronoi vertices.

4.2.3 Closer(a, b, q)

Given three distinct points a, b, q ∈ U we can test if a query point q is closer to a or b with degree 2

by comparing squared distances of Cartesian coordinates,

sign(‖q − a‖2 − ‖q − b‖2) = sign(a2x + a2y − 2qxax − 2qyay − b2x − b2y + 2qxbx + 2qyby) = 2© .
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4.2.4 SideOfABisector(Bab, q)

q

a

b

Bab

Figure 4.8: The query point q
is on the same side of the Bab

as b.

Recall from Section 4.1.3 that the bisector of two distinct points

a, b ∈ U, written Bab, is the locus of points equidistant to a

and b. Bisector Bab partitions the points of U into points on the

same side as a, same side as b, and points on Bab. The predi-

cate SideOfABisector(Bab, q) returns the partition containing

a query point q. In Figure 4.8 the query point q is on the same side

of Bab as b.

Since the points on the same side as a are closer to a and on the

same side as b are closer to b, we can use the same predicate as Closer and reinterpret the sign.

Therefore, SideOfABisector is degree 2.

4.2.5 OrderOnLine(Bab, Bcd, `)

a

b

Bab

d c

Bcd

`

p

q

Figure 4.9: The bisector Bab

is above the bisector Bcd on
the line `.

Two non-vertical bisectors Bab and Bcd intersect the vertical line

` : x = l with Bab above, below or at the same point as Bcd on `.

In Figure 4.9, the line Bab is above the line Bcd on the vertical line

`. We determine the ordering of Bab and Bcd on ` by comparing

y-coordinates of the intersection of Bab and Bcd with `.

Let q be the intersection of Bab and `. By plugging l into the

slope-intercept form of Bab, derived in Section 4.1.3, we get that

qy =
a2x + a2y + 2lax − b2x − b2y − 2lbx

2(by − ay)
=

2©
1© .

Similarly, let p be the intersection of Bcd and `. Comparing qy and py, and clearing fractions gives

a degree 3 test.
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4.2.6 OrderOnLine(g, h, `)

g

h

`

q

p

Figure 4.10: The intersection
of g and ` is left of the inter-
section of h and `.

For three distinct lines in slope-intercept form g : y = gmx + gb

and h : y = hmx+hb, and ` : y = `mx+ `b such that gm 6= `m and

hm 6= `m, let q = g∩` and p = h∩`. We determine if q is to the left

of, right of or incident to p by comparing the x-coordinates of p and

q. In Figure 4.10, h ∩ ` is left of g ∩ `. Recall from Section 4.1.4

that px and qx are rational coordinates of degree 1 over 1. Thus,

the polynomial is degree 2. In Section 4.2.1, we saw ordering the

y-coordinates of degree 1 lines in slope-intercept form is degree 3,

thus, we avoid it.

4.2.7 InCircle(a, b, c, q)

q

a

b

c

Figure 4.11: The query point
q in inside the circumcircle of
a, b and c.

Given three non-collinear sites, a, b, c ∈ U and a query point q also

in U, InCircle determines whether q is inside the circumcircle

of a, b, c ∈ U. In Figure 4.11, the query point q is inside the cir-

cumcircle of a, b, and c. This could be done by comparing the

squared distances from VoronoiVertex(a, b, c) to a and to q,

which gives a degree 6 polynomial when you clear fractions, but

that polynomial factors to give the degree 4 determinant,

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 ax ay a2x + a2y

1 bx by b2x + b2y

1 cx cy c2x + c2y

1 qx qy q2x + q2y

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣

0© 1© 1© 2©
0© 1© 1© 2©
0© 1© 1© 2©
0© 1© 1© 2©

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 4© .
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One may wonder if this polynomial can in fact be factored further. We see in Section 5.10 that in

fact it cannot; it is irreducible.

Another way to arrive at this predicate is to consider the lifting map M : R2 → R3 with

M(x, y) = (x, y, x2 + y2). The three lifted points a′ = M(a), b′ = M(b) and c′ = M(c) lie on a

plane P in R3 that intersects the paraboloid Q : x2 + y2 − z = 0. The intersection curve of P and

Q projects down onto the xy-plane as the circle though a, b and c; the points inside the circle lift to

one side of P and the points outside lift to the other. Thus, an alternate way to derive this predicate

is to write P as described in Section 4.1.2. Plugging in the lifted point q′ into the equation of P

arrives at the same predicate.

4.2.8 IntersectInterior(ac, bd)

a

d

b

c

Figure 4.12: The interior of
segments ac and bd intersect.

In Chapter 3 we saw two algorithms for determining if segments

intersect, assuming that no three points were collinear. Here, I

describe a degree 2 algorithm for checking if the interior of the

segments intersect without the non-collinearity assumption.

Given segments ac and bd with endpoints in U, and a 6= c and

b 6= d, the intersection of the interiors of the segments is empty, a

point, or an open segment. Recall that when no three points defin-

ing segments are collinear we can determine if the interiors of two

segments intersect by checking if the endpoints of bd are on opposite sides of←→ac and the endpoints

of ac are on opposite sides of
←→
bd . The checks use Orientation, the degree 2 predicate from

Section 4.2.2.

To handle collinear points we one additional predicate. Given a segment rs and a query point

q with r, s and q collinear and r 6= s, On(rs, q) determines whether q is in the interior of rs. The
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dot product of the vectors (r − q) and (s− q) is negative when q is in the interior,

On(rs, q) = sign((rx − qx)(sx − qx) + (ry − qy)(sy − qy)) = 2© .

Now, we can give an algorithm for testing an intersection:

Algorithm 3 IntersectInterior(ac, bd): Determine if the interiors of ac and bd intersect; if
so return INTERSECT, if not return NOINTERSECT

1: orientACB = Orientation(a, c, b)
2: orientACD = Orientation(a, c.d)
3: orientBDA = Orientation(b, d, a)
4: orientBDC = Orientation(b, d, c)
5: allCollinear = orientACB == 0 & orientACD == 0 & orientBDA == 0 & orientBDC == 0
6: anyCollinear = orientACB == 0 | orientACD == 0 | orientBDA == 0 | orientBDC == 0
7: if allCollinear & ( On(ac, b)<0 | On(ac, d)<0 | On(bd, a)<0 | On(bd, c)<0) then
8: return INTERSECT

9: else if !anyCollinear & orientACB != orientACD & orientBDA != orientBDC then
10: return INTERSECT

11: else
12: return NOINTERSECT

13: end if

Algorithm 3 first does four orientation tests and checks if all and any of the points are collinear.

When all the points are collinear the intersection is either an open segment or empty. When no

points are collinear the orientation tests suffice.

Since the coordinates defining the input segments are in U, Section 4.2.2 tells us that the four

Orientation predicates are degree 2 and, as On is also degree 2, SegmentIntersect is

degree 2.

4.3 Checking Preconditions

In an implementation, it is a good idea to verify that the input satisfies the preconditions. In this

section, I describe how to detect when the preconditions, described in this chapter, fail.
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4.3.1 Equal Homogeneous Coordinates

Many of the preconditions are simply checking if two homogeneous coordinates are distinct, that is,

if one is a scaling of the other. Two homogeneous coordinates a = (aw, ax, ay) and b = (bw, bx, by)

are distinct when

sign(axbw − bxaw) 6= 0 or sign(aybw − byaw) 6= 0. (4.2)

4.3.2 Preconditions for Points

Many predicates and construction had the precondition that two points a and b are distinct. Below

are three cases for when a and b are points of U or Voronoi vertices.

When a, b ∈ U they have coordinate degrees ( 0© , 1© , 1© ). By Equation 4.2 testing if they

are distinct is degree 1.

When b is a Voronoi vertex, Section 4.1.5 says that b has coordinate degrees ( 2© , 3© , 3© ).

By Equation 4.2, testing if a and b are distinct is degree 3, but we can do better. The Voronoi vertex

b is equidistant to three non-collinear points c, d, e ∈ U. If ‖c− a‖2 = ‖d− a‖2 = ‖d− a‖2 then

a and b are not distinct. Since we are comparing squared distances of points in U only, testing if a

Voronoi vertex and a point of U are distinct is degree 2.

When both a and b are Voronoi vertices, by Equation 4.2, testing if a and b are distinct is

degree 5.

To summarize, we can determine if two points a and b are distinct:

• in degree 1, when a, b ∈ U

• in degree 2, when a ∈ U and b is a Voronoi vertex

• in degree 5, when a and b are a Voronoi vertices.
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4.3.3 Preconditions for Lines

Many predicates and constructions had the precondition that two lines ` and h are distinct. Below,

are three cases for when ` and h are defined by a standard form equation with degree 1 coefficients,

a pair of points in U, and slope-intercept form with degree 1 coefficients.

When ` and h are defined by a standard form equation with degree 1 coefficients they have

coordinate degrees ( 1© , 1© , 1© ). By Equation 4.2, testing if they are distinct is degree 2.

When ` and h are defined by pairs of points, Section 4.1.1 says that ` has coordinate degree

( 2© , 1© , 1© ). By Equation 4.2, testing if ` and h are distinct is degree 3, but we can do better.

The line h is defined by two points a, b ∈ U. If a and b lie on ` then ` and h are not distinct. Since

we can test if a is on ` by checking if sign(` · a) = 0, testing if two lines defined by points of U are

distinct is degree 2.

When ` and h are in slope-intercept form they have coordinate degrees y = 1© x + 1© . By

comparing slope and y-intercept, testing they are distinct is degree 1.

To summarize, we can determine if two lines ` and h are distinct:

• in degree 2, when lines are in standard form with degree 1 coefficients

• in degree 2, when lines are defined by pairs of points from U

• in degree 1, when lines are in slope-intercept form with degree 1 coefficients.

The OrderOnLine(Bab, Bcd, `) predicate has the precondition that bisectors Bab and Bcd are

non-vertical. We can check that Bab is non-vertical by checking if the y-coordinates of a and b

differ (similarly for Bcd). Since a, b ∈ U, testing if the bisectors are vertical is degree 1.
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Chapter 5

Irreducibility of Polynomials

In Chapter 4, we saw geometric predicates and constructions and analyzed their precision. A

natural question is, can any of the polynomials in the predicates be factored to produce a lower

degree predicate? Conversely, are they irreducible? In this chapter, I show that they are. Note that

unless otherwise specified, irreducibility is with respect to coefficients in R.

First, in Section 5.1, I extend the “circle” notation used for degree analysis. The extended

notation helps us discuss irreducibility, especially in some of the longer proofs (for example

InCircle in Section 5.10). There are not many general techniques for showing that a multi-

variate polynomial is irreducible; Section 5.2-5.3 highlights a few techniques and lemmas that I

found to be particularly helpful. In the rest of the sections, I show that the polynomials in the

predicates presented in Chapter 4 are irreducible.

5.1 Notation

First, I define some notation and terminology helpful for this chapter. I use the polynomial

P (x, y, z, w) = xw − yz as a running example. When the number of variables in a polyno-

mial is large it is convenient to abbreviate the set of variables as X . For example, we would write

X = {x, y, z, w}, and P (x, y, z, w) as P (X).

We have represented a degree k multivariate polynomial as k© , for example, P (X) = 2© .



We may be concerned with the degree of a polynomial with respect to some subset Y of its vari-

ables, that is, when we treat the variables not in Y as constants. If the degree of the polynomial is k

with respect to Y we may represent the polynomial as k©Y . For example, P (X) = 1©w − 0©w,

and if Y = {w, z} then P (X) = 1©Y − 1©Y .

5.2 Basket Weaving Technique for Proving Irreducibility

In general, it is difficult to show that an arbitrary multivariate polynomial is irreducible. Eisen-

stein’s criterion is commonly used to show that polynomials in one variable with integral coef-

ficients are irreducible over the rationals [36, 133]. One can show that a polynomial p(x) =

xn + an−1x
n−1 + . . . + a1x + a0 is irreducible by finding a prime q ∈ Z such that q divides ai,

for all i, but q2 does not divide a0. Applying the criterion is simple, however, there isn’t as nice a

criterion for multivariate polynomials that arise in geometric predicates.

Given a polynomial P (X) that we wish show is irreducible, if P has no squared terms the

following observation is often helpful:

Observation 1. For a set of variables X , when polynomial P (X) = f(X)g(X) does not contain

any squared terms, if a variable y of X is in f then the coefficient of any monomial with y in g

must be zero.

This follows from the fact that a polynomial with coefficients in R in any number of variables is

an integral domain [36, 133].

We use the observation and our main proof technique, which I call “basket weaving”, to show:

Example 2. The degree 2 polynomial P (x, y, z, w) = xw − yz is irreducible.

Proof. First, assume for contradiction that P has a factorization. Since P is degree 2 we have

P (x, y, z, w) = f(x, y, z, w)g(x, y, z, w) = 1© 1© .
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Next, without loss of generality, assume that x is a monomial with non-zero coefficient in f

and shuffle around terms. For A ∈ R \ {0} and polynomial f1, rewrite

P (x, y, z, w) = xw − yz = (Ax+ f1(y, z, w))g(x, y, z, w).

By Observation 1 we know that the coefficient of any monomial with x as a variable in g is

zero. Moreover, as P contains monomial xw, the coefficient of w in g must be non-zero (and zero

in f ). Thus, for B ∈ R \ {0} and polynomial g1. We rewrite P as,

P (x, y, z, w) = (Ax+ f1(y, z))(Bw + g1(y, z)).

Finally, we derive a contradiction. The coefficients of xy, xz, wy and wz in P are zero, and f1

and g1 are unit. This implies that the coefficient of yz is zero, which is a contradiction.

5.3 Polynomials from Determinants of Matrices with

Independent Variables

It is interesting to note that many of the polynomials in Chapter 4 are written as determinants.

Next, I prove a helpful lemma: a polynomial that can be written as the determinant of a matrix

of independent variables is irreducible over R. Note that this remains true when the matrix is

symmetric, although we will not have occasion to use that in this chapter. The 1907 textbook of

Bôcher [9] contains results on polynomials from determinants, but delays in obtaining this book

lead me to my own proofs (that differed from Bôcher’s), which I include here. Given a matrixM of

variables, we say that M is a matrix of independent variables if each entry of the matrix is unique.

Lemma 3. The polynomial obtained by expanding the N ×N determinant of a matrix of indepen-

dent variables is an irreducible polynomial of degree N .
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Proof. LetDN be theN×N dimensional matrix of independent variables xij , and P (DN) = |DN |

be the polynomial obtained by taking the determinant of DN , and let Dij
N be (N − 1) × (N − 1)

minor matrix obtained by deleting the i-th row and j-th column of DN . I show that P (DN) is

irreducible by induction.

I start with some detail on the base case to clarify what is meant by a matrix with independent

variables and to provide a simple example of the notation. Consider the 2× 2 dimensional matrix

with independent entries:

D2 =

x11 x12

x21 x22

 .

In words, no variable is repeated in this matrix. The polynomial P (DN) = x11x22 − x21x12 is

irreducible over R as we saw in Example 2.

Assume that the polynomial corresponding to the determinant of any (N − 1) × (N − 1) di-

mensional matrix with independent entries is irreducible and consider the rewriting of the Laplace

expansion of P (DN) along the first row of DN ,

P (DN) = x11P (D11
N ) +

N∑
j=2

(−1)1+jx1jP (D1j
N )

The entries of each D1i
N for i = 1, 2, . . . , N are independent, thus, each P (D1i

N) is irreducible.

As the entries of DN are independent, the degree of P (DN) with respect to x11 is 1. Thus, if

P (DN) has a nontrivial factorization, P (D11
N ) must divide each P (D1j

N ), for j = 2, 3, . . . , N ,

which is not the case. In P (D1j
N ), the coefficient of any monomial with xjj is zero, however, it is

non-zero in P (D11
N ), thus P (D11

N ) does not divide any of the P (D1j
N ), let alone all of them.
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5.4 PointOrdering(a, b) is Irreducible

We start off with a simple irreducibility argument that the polynomials described in Section 4.2.1

for the point orderings of two points a and b are irreducible. Consider the case where the x-

coordinates of a and b differ (the arguments for the y-coordinate when ax = bx are similar).

First, consider when points a and b are from U. The polynomial ax − bx = 1© cannot be

factored. Next, consider point a defined by the intersection of lines `(a) and h(a), and b defined

by `(b) and h(b). All the lines are distinct and in standard form with degree 1 coordinates, e.g.,

line `(a) is defined by points satisfying the equation `(a)x x + `
(a)
y y + `

(a)
w = 0. The points a and b

have homogeneous coordinates of the form ( 2© , 2© , 2© ) and the corresponding polynomial is

P (ax, aw, bx, bw) = sign(ax/aw − bx/bw) = sign(axbw − bxaw), which is degree 4. Next, I show

that P is irreducible.

As the lines defining a and b are unrelated, no cancellation will occur from multiplying axbw

or bxaw. Thus, the only way to achieve a sub-degree 4 test is if there is some cancellation between

ax and aw. Recall that

ax = −

∣∣∣∣∣∣∣
`w `y

hw hy

∣∣∣∣∣∣∣ and aw =

∣∣∣∣∣∣∣
`x `y

hx hy

∣∣∣∣∣∣∣ .
By Lemma 3 both ax and aw are irreducible. Moreover, there is no unit k such that ax = kaw.

Thus, ax and aw are relatively prime, and so P is irreducible and degree 4.

A similarly structured argument shows that PointOrdering for Voronoi vertices and seg-

ment intersections are irreducible and degree 5. The main difference is that it is more involved to

show that there is no cancellation when representing the input point in Cartesian coordinates; see

Section 5.5. We summarize the irreducibility results for point ordering, described in this section,

as follows:
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Lemma 4. For points a and b, the polynomial in PointOrdering(a,b) is irreducible and

• degree 1 when a, b ∈ U;

• degree 3 when a ∈ U and b is the intersection of two lines in standard form with degree 1

coefficients or a Voronoi vertex defined by three points of U;

• degree 4 when a and b are intersections of two lines in standard form with degree 1 coeffi-

cients;

• degree 5 when a and b are either Voronoi vertices, defined by three points of U, or the

intersection of segments with endpoints in U.

5.5 VoronoiVertex(a, b, c) Cannot be Simplified

Next, I show that the coordinates produced by the construction VoronoiVertex cannot be sim-

plified; that is, the numerator and denominator are both irreducible and relatively prime. Recall

that for three points a, b, c ∈ U with a, b, and c distinct, the construction VoronoiVertex(a, b, c)

produces the coordinates of the point q equidistant to a, b, and c. Point q has Cartesian coordinates

of degree 3 over 2, which we derived by intersecting the bisectors of a and b, and c and d:

qx =

∣∣∣∣∣∣∣
b2x + b2y − a2x − a2y 2(ax − bx)

d2x + d2y − c2x − c2y 2(cx − dx)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
2(ax − bx) 2(ay − by)

2(cx − dx) 2(cy − dy)

∣∣∣∣∣∣∣
and qy =

∣∣∣∣∣∣∣
b2x + b2y − a2x − a2y 2(ay − by)

d2x + d2y − c2x − c2y 2(cy − dy)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
2(ax − bx) 2(ay − by)

2(cx − dx) 2(cy − dy)

∣∣∣∣∣∣∣
.

I’ll sketch the proof that qx cannot be simplified, a similar argument can be applied to qy.

Consider the denominator of qx. Each entry is a difference of unrelated variables. Replace each

difference by a variables and apply Lemma 3 to show that the denominator is irreducible. Consider
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the numerator of qx. Let P be the polynomial obtained by expanding the numerator of qx/2, and

let X = {ax, ay, bx, by, cx, cy, dx, dy} be the set of variables in P . We can rewrite P as

P (X) = (cy − dy)(b2x + b2y − a2x − a2y)− (ay − by)(d2x + d2y − c2x − c2y)

= g2(cy, dy)f1(ax, ay, bx, by)− f2(ay, by)g1(cx, cy, dx, dy)

Expanding P results in no additive cancellation and f1 and g1 are irreducible. Thus, for P to factor,

f2 would need to divide f1 (and by the symmetry of the polynomial g2 would divide g1), which is

not the case. So, the numerator is irreducible.

Since the numerator and denominator are both irreducible, the only hope for cancellation is if

the denominator divides the numerator. However, this is not the case, as their degrees are relatively

prime. Thus,

Lemma 5. For points a, b, c ∈ U, the construction VoronoiVertex produces a point whose

Cartesian coordinates are degree 3 over 2 where the numerator and denominator are irreducible

and relatively prime.

5.6 Orientation(a, b, q) is Irreducible

Recall that the polynomial corresponding to the Orientation predicate for point in U described

in Section 4.2.2,

P (ax, ay, bx, by, qx, qy) =

∣∣∣∣∣∣∣∣∣∣
1 ax ay

1 bx by

1 qx qy

∣∣∣∣∣∣∣∣∣∣
= bxqy − bxay − axqy − qxby + qxay + axby

Next, I use a basket weaving argument to show that P is irreducible by contradiction. Assume that

P can be written as the product of two degree 1 polynomials f and g, and rewrite these polynomials

48



until we arrive at a contradiction. Similar to the proof of Example 2, I often use Observation 1.

Assume for the sake of deriving a contradiction that P can be factored into two polynomials f

and g both of degree 1. Without loss of generality, let bx be a monomial of f . For A ∈ R \ {0} and

polynomial f1 of degree 1, we can rewrite,

P (ax, ay, bx, by, qx, qy) = bxqy − bxay − axqy − qxby + qxay + axby

= f(ax, ay, bx, by, qx, qy)g(ax, ay, bx, by, qx, qy)

= (Abx + f1(ax, ay, by, qx, qy))g(ax, ay, bx, by, qx, qy).

By Observation 1, the coefficient of bx in g is zero. Moreover, as P contains monomials bxqy and

bxay, the coefficients of qy and ay in g must be non-zero. Thus, for B,C ∈ R\{0} and polynomial

g1 of degree 1, we can again rewrite

P (ax, ay, bx, by, qx, qy) = (Abx + f1(ax, ay, by, qx, qy))(Bqy + Cay + g1(ax, by, qx)).

By applying Observation 1 again, we see that the coefficients of qy and ay in f1 are zero, and as

qxay is a monomial of P the coefficient of qx in f1 must be non-zero. By applying Observation 1

one last time, we see that the coefficient of qx in g1 must be zero. Thus, forD ∈ R and polynomials

f2 and g2 of degree 1, we can rewrite

P (ax, ay, bx, by, qx, qy) = (Abx +Dqx + f2(ax, by))(Bqy + Cay + g2(ax, by))

= DBqxqy + h(ax, ay, bx, by, qx, qy),

with h a polynomial of degree 2 without monomial qxqy. However, as both D and B are non-

zero, the right hand side of the equation has monomial qxqy with non-zero coefficient DB, which

is absent from the left hand side, providing a contradiction. This implies that the polynomial in
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Orientation for point of U is an irreducible polynomial of degree 2.

In Section 4.2.2 we also saw that for homogeneous coordinates a, b, and q, we have the poly-

nomial obtained by expanding the determinant

Q(aw, ax, ay, bw, bx, by, qw, qx, qy) =

∣∣∣∣∣∣∣∣∣∣
aw ax ay

bw bx by

qw qx qy

∣∣∣∣∣∣∣∣∣∣
.

When the coordinates of a, b, and q are degree 1, by Lemma 3 the polynomial is irreducible.

Provided that there is no cancellation within the homogeneous coordinate (for example, a Voronoi

vertex), by slightly modifying the irreducibility argument (dependent on the form of the variables),

we get that these polynomials are irreducible as well.

We summarize the above discussion with the following lemma:

Lemma 6. For points a, b and q, the polynomial in Orientation is irreducible and:

• degree 2 when a, b, q ∈ U,

• degree 4 when a is a Voronoi vertex defined by three points of U and b, q ∈ U,

• degree 6 when a and b are Voronoi vertices defined by points of U and q ∈ U,

• degree 8 when a, b, q are Voronoi vertices defined by points of U.
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5.7 SideOfABisector(Bab, q) and Closer(a, b, q)

are Irreducible

Recall from Section 4.2.4 that for three points a, b, q ∈ U, predicates SideOfABisector(Bab, q)

and Closer(a, b, q) are based off a degree 2 squared distance comparison,

sign(‖q − a‖2 − ‖q − b‖2) = sign(a2x + a2y − 2qxax − 2qyay − b2x − b2y + 2qxbx + 2qyby)

Let X = {ax, ay, bx, by} and Q = {qx, qy}, we can rewrite the polynomial of the above

predicate as

P (X,Q) = 2(bx − ax)qx + 2(by − ay)qy + a2x + a2y − b2x − b2y.

Assume for the sake of deriving a contradiction that P can be factored as P (X,Q) = 1© 1© .

As P is linear with respect to qx and qy and R[x] is an integral domain, P (X,Q) = 1©Q 0©Q. Let

f and g be polynomials such that P (X,Q) = f(X,Q)g(X).

The degree of g with respect to ay is 0 or 1. If the degree were 0 then the non-zero coefficient

of a2y would cause the degree of f to be 2, thus, it is 1. We can apply the same analysis to ax, bx,

and by to show that P (X,Q) = f(X,Q)g(X) where the degree of ax, bx and by in f and g is one.

However, this factorization implies that the coefficient of monomial qxay in P is non-zero, which

is a contradiction. Thus, P is irreducible, and therefore:

Lemma 7. For points a, b and q, the polynomial in SideOfABisector and Closer is irre-

ducible and degree 2.
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5.8 OrderOnLine(Bab, Bcd, `) is Irreducible

Recall from Section 4.2.5 that the for four points a, b, c, d ∈ U and a vertical line ` defined by

a degree 1 coordinate l, the OrderOnLine test compares the degree 2 over 1, y-coordinates of

Bab ∩ ` and Bcd ∩ `, which has the form

Bab ∩ ` =
2(bx − ax)l + a2x + a2y − b2x − b2y

2(ay − by)
=
g(ax, ay, bx, by, l)

f(ay, by)
=
g1
f1

Bcd ∩ ` =
2(dx − cx)l + c2x + c2y − d2x − d2y

2(cy − dy)
=
g(cx, cy, dx, dy, l)

f(cy, dy)
=
g2
f2

I show that OrderOnLine for bisectors is irreducible and degree 3 by showing that the polyno-

mial, P = g1f2 − g2f1 is irreducible.

First consider P when one point is shared between the two bisectors. Let p, q and r be these

three points with p shared, and call this polynomial P̂ . If we show that P̂ is an irreducible polyno-

mial of degree 3, then, we get that P is irreducible, because if not, P̂ would factor.

Note that P (px, py, qx, qy, px, py, rx, ry, l) can be interpreted geometrically as testing if v =

VoronoiVertex(p, q, r) lies to the right or left of a vertical line `. Recall that Lemma 5 tells

us that the Cartesian coordinates of a Voronoi vertex are rational degree 3 over 2, the numerator

and denominator are irreducible and relatively prime. Thus, we can rewrite P̂ = vx − vwl =

3© − 2© 1© . As vx and vw are relatively prime and irreducible, and l is different from the set

of variables that define vx and vw, P̂ is irreducible. Therefore:

Lemma 8. For two bisectors defined by three or four points of U the polynomial in OrderOnLine

is irreducible and degree 3.
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5.9 OrderOnLine(l, h, `) is Irreducible

Recall from Section 4.2.6 that for three lines, l, h, and `, in slope intercept form, defined by

degree 1 coefficients, we determine if p = l ∩ ` is left, right or incident to q = h ∩ ` with a

degree 2 test that compares coordinates of a point with homogeneous coordinates of the form

( 1© , 1© , 2© ). The degree 2 follows from the comparison of the x-coordinates of the intersec-

tion points in Cartesian form.

Furthermore, recall from Section 4.1.4 that:

px =
lb − `b
`m − lm

and qx =
hb − `b
`m − hm

and for X = {lm, lb, hm, hb, `m, `b}, the polynomial in OrderOnLine for X-intersections is

P (X) = (lb − `b)(`m − hm)− (`m − lm)(hb − `b) =

∣∣∣∣∣∣∣
(lb − `b) (`m − lm)

(hb − `b) (`m − hm)

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣
1 `b −`m
1 lb −lm
1 hb −hm

∣∣∣∣∣∣∣∣∣∣
.

This familiar form was encountered in the polynomial in the Orientation predicate for

points from U (the only difference is now, the third column is negative). In Section 5.6 we showed

that this polynomial is irreducible. We can use a similar argument here, thus,

Lemma 9. For three lines in slope intercept form with degree 1 coefficients, the polynomial in

OrderOnLine for x-intersections is irreducible and degree 1.

5.10 InCircle(a, b, c, q) is Irreducible

Recall that the polynomial corresponding to the InCircle predicate, described in Section 4.2.7.

Next, I show that this polynomial is irreducible.
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Let X = {ax, ay, bx, by, cx, cy} and Q = {qx, qy}. We can write the polynomial as,

P (X,Q) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 ax ay a2x + a2y

1 bx by b2x + b2y

1 cx cy c2x + c2y

1 qx qy q2x + q2y

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

We proceed by showing that if P can be factored, it must reduce to two polynomials of the form

P (X,Q) = f(Q)g(X), i.e., the coefficient of any monomial of g with qx or qy as a variable is zero

and similarly for the coefficients of X in f . Then I show that such a factoring does not exist. I

begin by expanding P by minors in the last row,

P (X,Q) =

∣∣∣∣∣∣∣∣∣∣
ax ay a2x + a2y

bx qy q2x + q2y

cx cy c2x + c2y

∣∣∣∣∣∣∣∣∣∣
−

∣∣∣∣∣∣∣∣∣∣
1 ay a2x + a2y

1 by q2x + q2y

1 cy c2x + c2y

∣∣∣∣∣∣∣∣∣∣
qx +

∣∣∣∣∣∣∣∣∣∣
1 ax a2x + a2y

1 bx q2x + q2y

1 cx c2x + c2y

∣∣∣∣∣∣∣∣∣∣
qy −

∣∣∣∣∣∣∣∣∣∣
1 ax ay

1 bx qy

1 cx cy

∣∣∣∣∣∣∣∣∣∣
(q2x + q2y)

(5.1)

Observe that the degree of P with respect to Q is 2, so we can write P as PX(Q) = 2©Q. The

polynomial has two factorizations with respect to Q, PX(Q) = 2©Q 0©Q or PX(Q) = 1©Q 1©Q.

Notice that if PQ is two linear factors in Q, then the zero set of PX is interpreted geometrically

as a pair of lines. However, the set of points in which InCircle evaluates to zero is a circle.

Therefore, if PX factors, it does so into degree 2 and degree 0 polynomials with variables of Q.

Assume for the sake of deriving a contradiction that P factors. Then, by the previous discus-

sion, P (X,Q) = f(X,Q)g(Q), with neither f nor g a unit. Next, I show that if P factors then the

coefficients of X in f are zero in three steps: (s1) show that f and g are degree 2 or 0 with respect

to any single coefficient; (s2) show that all the coefficients of X must be in the same polynomial;

and (s3) show that polynomial must be g.
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First, let Y = X \ {ay}, and consider the degree of f and g with respect to ay. Since the power

of any variable in P is at most 2, we have the degree of g with respect to ay is 0, 1 or 2. Consider

the monomials of P with ayqx to any power. They can be written as α1(Y )a2yqx, α2(Y )ayqx, and

α3(Y )ayq
2
x. If the f = 1©ay

then g = 1© (ay), which erroneously implies that qyay is a monomial

of P . Apply this same argument to each monomial of X and get (s1).

Second, let O(X) be the coefficient of q2x in Equation 5.1. Notice that O is the irreducible

polynomial from Lemma 6. Thus, the variables of X must appear in the same polynomial. The

preceding statement combined with (s1) gives (s2).

Third, if the coefficients of X are non-zero in f then we have that P (X,Q) = f(X,Q)g().

However, this implies that g is a unit, which violates our initial assumption. Therefore, we have

(s3); that is, P = f(Q)g(X). However, this implies that O(X) must divide every coefficient of

Q in Equation 5.1. In particular, it must divide α(X), the coefficient of qx in P . But, consider

the monomial aybx, it has a non-zero coefficient in O(X) and a zero coefficient in α(X). Thus, as

R[X] is an integral domain and O(X) does not divide α(X), we have a contradiction. Therefore:

Lemma 10. The polynomial in InCircle is irreducible and degree 4.
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Chapter 6

Gabriel Graph

In this chapter I give an example of how adding the requirement that the degree of an algorithm

be low can lead us to redesigning algorithms and data structures. I describe an algorithm for

computing the Gabriel graph in double precision, designed with Vishal Verma [101]. We cannot

achieve the efficiency of the usual approach that obtains the Gabriel graph as a subset of the Voronoi

diagram, since computing that requires degree at least 4, but we are able to achieve degree 2 with

better than the brute force running time.

6.1 Introduction

Given a finite set of sites S, an edge (si, sj) with si, sj ∈ S is in the Gabriel graph of S if the edge

maintains the Gabriel property, that is, the closed disk with diameter sisj contains no points of S

besides si and sj . In Figure 6.1 the left image depicts the Gabriel graph of seven sites. In the right

image, edge (a, b) is in the Gabriel graph because only a and b are in the closed disk with diameter

ab. The edge (e, f) is not in the Gabriel graph because the closed disk with diameter ef contains

g. It is know that the Gabriel graph [48] is a subgraph of the Delaunay triangulation. Matula and

Sokal [92] showed how to compute the Gabriel graph directly from the Delaunay triangulation in

time proportionate to the number of sites in S.
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Figure 6.1: Left: The Gabriel graph of seven sites S. Right: The closed disk with diameter ab, with
boundary depicted in blue, contains no sites of S \ {a, b} so edge (a, b) is in the Gabriel graph.
The closed disks with diameter ac and ef , with boundaries depicted in red, contain sites d and g,
respectively, thus edges (a, c) and (e, f) are not in the Gabriel graph.

Computing the Delaunay triangulation requires four times the precision of the input coordi-

nates, and Matula and Sokal’s Gabriel graph algorithm uses six-fold precision. Liotta [88] showed

how to implement Matula and Sokal’s algorithm using only double (two-fold) precision, however,

it still requires four-fold precision for computing the Delaunay triangulation. A natural question

that follows is, can we compute the Gabriel graph with only double precision?

The answer is yes! In Section 6.3 we show that we can compute the Gabriel graph with double

precision (albeit rather slowly). In the next section we describe how to compute the arrangement

of lines that are the duals of points in double precision, which will be important for the Gabriel

graph construction.

6.2 Arrangements of Dual Lines

Recall the point/line duality [31] that maps a point p = (px, py) to a line p∗ := (y = pxx− py) and

a line l := y = mx+ b to a point l∗ := (m,−b). The set S∗ is the set of lines dual to the set of sites

of S. We notate the arrangement of the lines in S∗ as A(S∗) and the Gabriel graph of S as G(S).

It is known that for a set of line segments defined by their endpoints, computing an arrangement

requires four times the input precision and computing its trapezoidation requires five times the
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input precision [90]. In this section, we show that for a set of lines defined as duals of points

double precision suffices for computing an arrangement and its trapezoidation.

We begin by observing that for non-parallel lines p∗ and q∗, the x-coordinate of the point

`∗ = p∗ ∩ q∗ is the slope of line ` =←→pq , which is (py − qy)/(px − qx).

Observation 11. The x-coordinate of the intersection of two dual lines is represented by a rational

polynomial of degree 1 over 1.

For three dual lines, p∗, q∗, and r∗, where p∗ and q∗ intersect r∗, by Observation 11 and clearing

fractions, we compare the x-ordering of the intersection points with degree 2. We call this the

OrderOnALine(p∗, q∗, r∗) predicate.

By using the OrderOnALine predicate in an incremental construction of an arrangement

(such as [31, Chapter 8.3]) we achieve a degree 2 construction. Furthermore, we can use the

OrderOnALine predicate to add the verticals into the arrangement and get its trapezoidation.

Lemma 12. For n dual lines S∗, we can compute the arrangement of S∗ and its trapezoidation in

O(n2) time and degree 2.

6.3 Algorithm Description

Next, I describe how to construct the Gabriel graph in O(n2) using degree 2. I begin by defining

the predicates used in our construction. Let D(p, q) be the closed disk with pq as the diameter. A

site s, distinct from p and q, kills the edge (p, q) if s lies in D(p, q). Let m be the midpoint of pq.

The degree 2 predicate IsKiller(p, q, s) compares the squared distances between m and s and

m and p to determine if s kills edge (p, q).

Given the arrangement A(S∗) and a site si ∈ S we compute the circular orderings of the sites

in S \ {si} around si so that we may efficiently determine the edges of the Gabriel graph incident

to si. Consider the line s∗i , each vertex vj ∈ A(S∗) that lies on s∗i corresponds to a line through si
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and some other site sj ∈ S. As mentioned in Section 6.2, the slope of←→sisj is the x-coordinate of

vj , thus, by walking along s∗i in A(S∗) we find a set of lines, through si ordered by slope, which

gives the circular ordering of the sites of S \ {si} around si.

Constructing a circular ordering for a site is a purely topological operation on the arrangement

A(S∗) and uses degree 0. For each site s, computing the circular ordering takes time proportional

to the number of vertices that lie on s∗, which is O(n).

Lemma 13. Given A(S∗), for site s ∈ S, we can compute the circular ordering of the sites in

S \ {s} around s in O(n) time and degree 0.

Once we have computed a circular ordering of S \{s} around each s ∈ S, in O(n) time we can

compute the Gabriel edges incident at s. The key idea behind this step is captured in Lemma 14.

We number the circularly ordered sites in S \ {s} in a counter clockwise manner starting with

any s0 ∈ S \ {s}, i.e., ~ssi+1 is the first ray counter clockwise from ~ssi at s. Let Dl(s, si) denote

the closed semicircular disk that has ssi as the diameter and lies to the left of ~ssi. The site sj kills

the edge (s, si) from the left if and only if sj lies in Dl(s, si). Then,

Lemma 14. If sj lies in Dl(s, si) and ∀k ∈ {i, i + 1, . . . , j − 1}, sk /∈ Dl(s, si), then sj also lies

in Dl(s, sk), ∀k ∈ {i, i+ 1, . . . , j − 1}

s

si
sk

sj

uk

Figure 6.2: The site sj lies in the part of
Dl(s, si) that is to the left of ~ssk. This
part ofDl(s, si) is a subset ofDl(s, uk),
which itself is a subset of Dl(s, sk).

Intuitively, the lemma says that if sj is the first site

(in a counter clockwise sense) that kills (s, si) from the

left, then sj kills all (s, sk), i ≤ k ≤ j − 1, from the left.

Figure 6.2 gives a brief idea of the lemma and the proof.

Proof. Since i ≤ k ≤ j − 1 and sk /∈ Dl(s, si), the

segment ssk intersects the circular part of the boundary of

Dl(s, si) at some point uk. For every point p ∈ Dl(s, uk),

angle ∠spsk ≥ ∠spuk > π/2. Thus p also lies in Dl(s, sk). Hence Dl(s, uk) ⊂ Dl(s, sk).
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LetH be the closed half plane that lies on left of the line ~suk. For every point p ∈ Dl(s, si)∩H ,

angle ∠spuk ≥ ∠spsi > π/2. Thus (Dl(s, si)∩H) ⊂ Dl(s, uk). Using this with the subset relation

from the previous paragraph we have (Dl(s, si)∩H) ⊂ Dl(s, sk). Since sj lies in (Dl(s, si)∩H)

it also lies in Dl(s, sk).

Let L be the circularly doubly linked list of sites of S\{s} ordered counter clockwise around s.

Algorithm 4 efficiently identifies sites s′ ∈ L such that the edge (s, s′) is killed from the left by

some site in L. Such edges are marked dead by the algorithm. A similar algorithm is used to

identify the sites s′′ such that the edge (s, s′′) is killed from the right. The edges that are killed

neither from left nor right belong to the Gabriel graph.

We now give a brief overview of Algorithm 4. Given a site u ∈ L, define left_victims(u)

as a subset of S \ {s} such that for each site v ∈ left_victims(u), u is the first (when

walking left along the list L) site to kill the edge (s, v) from left. Lemma 14 says that the set

left_victims(u) is contained in a continuous sublist of L that starts on the right of u and only

contains sites w such that (s, w) is killed from left by u. The lemma is used in the inner while

loop of Algorithm 4 to find a sublist Lu such that: (a) each site in Lu has a killer in (u ∪ Lu); and

(b) the union of the left_victims of the sites in (u ∪ Lu) is a subset of Lu. Due to (a), we

know that the sites in Lu can be killed from left and hence they are marked dead. Due to (b), for

any remaining site v ∈ L \ Lu, if the edge (s, v) is killed from the left then v belongs to the set

of left_victims of some site in L \ Lu. Thus, to find the remaining left_victims, we

process the smaller list L \ Lu.

Testing if killer ∈ Dl(s, current) uses degree 2 predicates isKiller and Orientation,

thus, the above algorithm runs in O(|L|) time and is degree 2.

Lemma 15. Given the circular ordering of S \ {s} around s, in O(n) time and degree 2, we can

find the Gabriel edges incident at s.

For completeness, we describe the three steps for constructing the Gabriel graph of a set of n
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Algorithm 4 KillFromLeft(L, s): Give a set of sites L circularly ordered around s Delete the
sites of L that are killed from the left.

1: Initialize the unseen values of each site in L to true
2: Initialize the dead values of each site in L to false
3: u = any site in L
4: // Invar: Any site in L killed from left is in the set of left_victims of another site in L.
5: while u→unseen do
6: u→unseen = false
7: killer = u
8: current = u→ right
9: // The while loop computes Lu

10: // Invar: Sites right of u & left of cur are killed from left by u or a site between u and cur.
11: // Invar: All left_victims of sites between u and killer are found.
12: while killer6=current do
13: if killer ∈ Dl(s, current) then
14: current→dead = true
15: current = current→ right
16: else
17: killer = killer → right
18: end if
19: end while
20: Lu = the sublist of L, that is to the right of u and left of current
21: Delete Lu from L
22: u = u→left
23: end while
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sites S with degree 2. First, compute A(S∗), which by Lemma 12 takes O(n2) time and degree 2.

Second, for each site si ∈ S compute the circular ordering of the sites of S \ {si}, which in total,

by Lemma 13, takes O(n2) and degree 0. Third, for each site si ∈ S, use the circular orderings

to compute the set of Gabriel edges in which si is a member, which in total, by Lemma 15, takes

O(n2) and degree 2.

Corollary 16. We can compute the Gabriel graph in O(n2) time using degree 2.

6.4 Conclusion

In this chapter, we showed how to construct the Gabriel graph of n sites inO(n2) time and degree 2.

Even though an O(n2) construction for the Gabriel graph is too slow for practical applications,

Corollary 16 tells us that we can at least compute the Gabriel graph with degree 2 and do better

than brute force. In contrast, we simply cannot compute the Delaunay triangulation with degree 2.

A natural next question (not addressed here) is can we compute the Gabriel graph in sub-quadratic

time with degree 2?
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Chapter 7

Point Location

This chapter follows Liotta, Preparata, and Tamassia in modifying point location structures for

proximity queries so that they correctly perform queries from the grid U in degree 2. Queries from

off the grid need not be answered correctly. Liotta, Preparata, and Tamassia built their structure

by rounding the results of a degree 5 computation of a Voronoi diagram; I give two new structures

that can be built more directly by incremental construction of degree 3 and of degree 2. The

degree 3 construction is efficient as a randomized incremental construction (RIC). The degree 2

construction, despite our earlier claim [100] to the contrary, does not fit the usual RIC analysis,

because we cannot give a constant bound on the number of sites to define a rightmost grid point of

a cell. We conjecture that it is Θ(logU).

7.1 Introduction

Computing the topological structure of the Voronoi diagram of n sites requires degree 4. We saw

in Chapter 4 that Voronoi vertices of sites with integer coordinates have rational coordinates of

degree 3 over 2, and that testing whether a query point is above or below a segment joining two

Voronoi vertices is degree 6.

Liotta et al. [89] developed an implicit Voronoi diagram to answer Post Office queries for n



sites on aU×U grid – finding the closest site to a query inO(log n) time andO(n) space using only

degree 2. Unfortunately, their algorithm must compute the entire Voronoi diagram before rounding

it to their structure. They also sort oronoi vertices by y coordinate, which requires degree 5.

In this section we introduce the Reduced Precision Voronoi diagram, or RP-Voronoi for short,

that supports proximity queries, but is computed incrementally using at most triple precision in

O(n log(nU)) expected time. From our structure we can obtain the structure of Liotta et al. in

linear time. A natural next question is, can we use only degree 2 to build a point location query

structure? We show that it can be done by introducing a structure, called the D2-Voronoi, and

provide an algorithm for its construction. We conjecture the time and space bounds for the con-

struction. It seems unlikely that one could obtain Liotta et al.’s structure with only degree 2.

To appreciate the challenge in reducing the construction to triple and double precision, note that

most algorithms compute Voronoi diagrams by computing the Delaunay triangulation, which uses

the degree 4 InCircle test to verify that three points define an empty circle [53]. Our algorithms

compute the closest sites only at grid points, which is not enough information to obtain the dual

Delaunay triangulation.

Fortune’s sweep algorithm [43], computes the Voronoi directly, but uses a degree 6 predi-

cate that orders two circumcircles by their extreme points. The notion of abstract Voronoi di-

agrams [82] reduces Voronoi computation to ordering bisectors around Voronoi vertices, which

again uses InCircle. With degree 3, however, we can still order bisectors around a grid cell,

which is essential to our construction. With degree 2 we cannot even determine this order. In

fact, we cannot even determine if two Voronoi cells are adjacent, which we see in Section 7.4 adds

complexity to a degree 2 construction.
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7.2 Definitions and Notation

The Voronoi diagram is well known in computational geometry and many optimal algorithms have

been proposed [31, 43, 54, 121]. Most are designed for a RealRAM or another computational

model in which coordinate computations may be carried out to arbitrary precision, allowing the

computer to work with exact Euclidean geometry. As we are concerned with the precision of

input, we start with a restricted definition of the Voronoi diagram and remind the reader of some

of its properties.

7.2.1 The Voronoi Diagram and Grids

Assume that we are given a set of n sites, S = {s1, s2, . . . , sn} ⊂ U. By assumption, S lay in a

bounded rectangle in the integer grid. The distance metric is Euclidean.

The Voronoi diagram, VoD(S), is the partition of our bounded rectangle into maximally con-

nected regions with the same set of closest sites. Regions with one closest site are called Voronoi

regions, regions with two closest sites are called Voronoi edges, and regions with three or more

closest sites are called Voronoi vertices. The Voronoi cell VRS(si) is the closure of the region of

si; that is, VRS(si) = {x ∈ R2 | ‖x− si‖ ≤ ‖x− sj‖, ∀sj ∈ S}. Note that we suppress the S and

write VR(si) when S is clear from the context.

Let Bij denote the locus of points equidistant to si and sj , the perpendicular bisector of the

segment sisj . Note that as we are interested in a particular region, we can clip bisectors and Voronoi

edges to finite segments. Building a point location structure on top of the Voronoi diagram gives

the classical solution to the Post office problem; after preprocessing the sites, you can determine

the closest site to a query point, q, in O(log n) time.

Note that a line bisecting two grid points might not hit any points of the grid U. In building our

structures, it is convenient to use the half-integer grid U2 = 1
2
[2U + 1]2 and the continuous square

U = [1/2, U + 1/2]2 ⊂ R2. That way, at least the midpoint between two sites (si + sj)/2 is on
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the half-integer grid. In this section, we abuse definitions and say that a point is single precision to

mean that it is on the grid U2.

In Chapter 4 we derived the degree of many constructions and predicates. Here, we recall one

basic construction and four predicates for Voronoi diagrams.

VoronoiVertex(a, b, c): A Voronoi vertex constructed from grid point sites a, b, c ∈ U has

coordinates of degree 3 over degree 2.

PointOrdering(a, b): Compare points by lexicographic order, so that a precedes b if and only

if ax < bx or (ax = bx and ay < by). Comparing grid points a, b ∈ U2 is degree 1, com-

paring a grid point with a Voronoi vertex is degree 3, and comparing two Voronoi vertices is

degree 5. When a precedes b we may write a ≺ b.

Closer(si, sj, q) or SideOfABisector(Bij, q): A bisector Bij = {p ∈ R2 : ‖p − si‖ =

‖p − sj‖} is the line equidistant to two sites. Determining if a point q is on a bisector, or

determining the closer of the two sites, is degree two—simply compare squared distances.

InCircle(a, b, c, q): The basic predicate for Voronoi computation [31], InCircle determines

whether q is inside the circumcircle of a, b, c ∈ U. This could be done by comparing the

squared distances from VoronoiVertex(a, b, c) to a and to q, which gives a degree 6

polynomial when you clear fractions, but that polynomial can factor to give the InCircle

predicate, which is degree 4.

Orientation(a, b, c): The orientation predicate, which reports if the path a, b, c makes a right

turn, left turn, or goes straight, is a determinant on the homogeneous coordinates of the

inputs. It is a degree 2 test on grid points, which is the only way we will use it. Degree goes

up by 2 for each Voronoi vertex: it takes degree 8 to determine orientation for three arbitrary

Voronoi vertices, and degree-6 to determine the orientation of a grid point relative to an edge

of a triangulation of a Voronoi diagram.

Aurenhammer [4] surveys properties of the Voronoi diagram under the Euclidean metric. We
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use the following:

• Bisectors are straight lines.

• A Voronoi edge on a cell boundary VR(si) and VR(sj) lies on the bisector of si and sj.

• A Voronoi cell is the intersection of closed half planes; thus, Voronoi cells are convex.

• A site si is contained in its cell, si ∈ VR(si).

The following properties of the Voronoi diagram are also known, but we state them in a form

that will be helpful for our constructions.

Lemma 17. The order in which Voronoi cells intersect a line ` is the same as the order of the

corresponding sites orthogonal projection onto `.

For our degree 3 incremental construction we will need to decide if a new cell intersects a

horizontal or a vertical segment. A corollary of Lemma 17 will give us a convenient way of

making this decision.

Corollary 18. Without loss of generality, consider a horizontal segment σ and the set of sites

S whose Voronoi cells intersect σ. Let q be a new site, and let si, sj be the sites of S whose

projections onto σ form the smallest interval containing the projection of q; site si or sj can be

taken as infinite if no finite interval exists. To determine if VRS(q) intersects σ, it suffices to test

if an endpoint of σ or the intersection of σ ∩Bij is closer to q than to both si and sj.

Proof. Assume that q is above σ and that we would like to determine if VRS(q) appears below σ.

Let xi < xj , and ci, cj ∈ σ be points in the cells of si and sj respectively. Consider the point q′ that

has the same x coordinate as q, but is raised to infinity. Now, lower q′ continuously, computing the

Voronoi diagram of σ ∪ {q′} until the cell of q′ intersects σ, and let cq′ be this intersection point.

Lemma 17 tells us that ci < cq′ < cj . In addition, cq′ must be on Bij , otherwise cq′ would be in the

middle of the cell of si or sj , causing the cell to be non-convex. In fact, cq′ is the point equidistant

67



to si, q′ and sj . Now, if q′ is above q then the point equidistant to si, q and sj must be below cq′ so

the cell of q must intersect σ. Alternatively, if q′ is below q then the point equidistant to si, q and

sj is above cq′ so the cell of q is completely above σ and therefore, their intersection is empty.

Next, we see that a Voronoi diagram intersected with a convex region free of sites is a collection

of trees.

Lemma 19. Given a set of sites S and a convex region R containing no sites of S; the edges and

vertices of the VoD(S) in R form a forest.

Proof. If R∩VoD(S) contained a cycle then R would contain a Voronoi cell, and therefore a site.

Since R contains no sites, we conclude that R ∩ VoD(S) does not contain a cycle.

7.2.2 Trapezoidation and Point Location

τ1

τ2
τ3

τ4
τ5

τ6

τ7

≺VorVtx(a, c, d)

≺VorVtx(c, d, f)

≺VorVtx(a, d, b)
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bcd.side bdf .side

bcf .side

≺ bcf ∩ BBox
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τ3 τ7
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d e
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Figure 7.1: Trapezoidation of a small Voronoi diagram, and a piece of the trapezoid graph for the
strip with labeled faces, τ1, . . . , τ7.

Any planar subdivision with line segments can be decomposed into trapezoids by making ver-

tical cuts at the endpoints of each segment that extend until reaching another segment. We define

three different, but related, trapezoidations in Section 7.4.1. Each trapezoid τ will have top and

bottom lines, and a left and right point, with τ.left ≺ τ.right and both points on or between the
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top and bottom lines. Each trapezoid may have up to four neighbors, reached by crossing the

vertical lines above or below τ.left and τ.right , although if the subdivision is into monotone re-

gions, as in Figure 7.1, then each trapezoid has at most two neighbors. When τ.left and τ.right

have the same x coordinate, we can still think of τ as a trapezoid since the lexicographic order on

points used by ≺ is consistent with skewing the points slightly, or rotating the vertical direction

counter-clockwise. For example, the bisector of d and e in Figure 7.1 is the bottom edge for an

infinitesimally thin trapezoid in the Voronoi cell of d and the top edge for an infinitesimally thin

trapezoid in the Voronoi cell of e.

Trapezoid graphs [31, ch. 6] support point location queries, which identify the trapezoid con-

taining a query point q. The trapezoid graph is a directed acyclic graph (DAG) with three types

of nodes:

x-node: Stores a point v; Uses PointOrdering to check if a query q ≺ v. If both q and v are

grid points on U2, this test is degree 1; if v is a Voronoi vertex, this test is degree 3.

y-node: Given a query point q and a line `, determine if q is above, below, or on `. If ` is a bisector

of two sites, or if ` is defined by two grid points on U, then this test is degree 2. On the other

hand, if ` is defined by two arbitrary Voronoi vertices, this test is degree 6.

leaf node: Leaf nodes represent trapezoids, for which the containing region is known.

Figure 7.1 shows a portion of the trapezoid graph for seven trapezoids in a small Voronoi diagram.

Liotta, Preparata, and Tamassia [89] achieved a degree-two post-office query by building, what

they called the implicit Voronoi diagram. The implicit Voronoi diagram is a rounded trapezoid

graph for the Voronoi diagram. They build the trapezoid graph in the straightforward way, depicted

in Figure 7.1, which is to use Voronoi vertices (and intersections of bisectors with the bounding

box) at x-nodes and bisectors at y nodes. Liotta et al. improve this by two simple observation: first,

since a Voronoi edge between VR(si) and VR(sj) lay on Bij one can use SideOfABisector

to get a degree 2 y-node test. Second, since the queries are grid points, rounding non-integer x
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nodes to half-integers reduces the degree of that test from 3 to 1 without changing any test results.

They still used a degree 5 algorithm to compute the Voronoi diagram and compare y-coordinates

of Voronoi vertices when building the trapezoidation.

7.3 Computing Point Location Structures with Triple Precision

In the following sections we define and show how to construct the reduced precision Voronoi

diagram using degree 3. Before going into the details, we will need one more construction based

on the OrderOnLine predicate, defined in Chapter 4:

OrderOnLine(B12, B34, `): determines whether two non-vertical bisectors B12 and B34 inter-

sect a vertical line ` with B12 above, below or at the same point as B34 on ` and is degree 3.

We use the OrderOnLine predicate in a construction that allows us to identify the grid cells

containing a Voronoi vertex. Observe that given bisector B12 and a non-vertical segment σ ⊂ B34

with left and right endpoints on horizontal gridlines, `l and `r, we can determine if σ intersects

B12. The order of B12 and B34 on `l and `r is different if and only if B12 intersects σ. Thus, two

calls to OrderOnLine suffice. Given that B12 and σ intersect, we can binary search for the grid

cell containing the intersection in O(logU) and degree 3. This construction is important so let’s

name it:

Lemma 20. Given two bisectors B12 and B34 of sites from U and two grid lines `l and `r, the

construction GridCell(B12, B34, `l, `r) returns if B12 and B34 intersects between `l and `r in

constant time and degree 3. When they do intersect between `l and `r, the construction returns the

grid cell containing the intersection O(logU) time and degree 3.

70



7.3.1 The Reduced-Precision Voronoi Diagram

Given a set of n sites S = {s1, s2, . . . , sn}with degree 1 coordinates, we define a reduced-precision

Voronoi diagram, or rp-Voronoi for short, that is intermediate between the true Voronoi diagram

VoD(S) and the implicit diagram of Liotta et al. [89]. Because we use predicates of at most degree

three, we cannot know exactly how bisectors intersect inside of a grid cell. The predicates of the

previous section, however, do provide full information at the grid cell borders. This low level of

information inside of a grid cell gives us a “fuzzy” picture of Voronoi vertices that we contract to

rp-vertices. Since we do, however, know precise information at the grid boundaries we maintain

rp-edges that keep the same edge ordering as Voronoi edges entering the grid cell. In this way we

keep enough control of the Voronoi vertices to perform constructions efficiently; in contrast, the

implicit diagram rounds Voronoi vertices off their defining edges.

Let us consider the integer grid U as a partition into grid cells of the form [i, i+1)×[j, j+1) for

integers i, j. The rp-Voronoi V̂(S) is the graph with rp-vertices and rp-edges defined by contracting

every edge of the Voronoi diagram VoD(S) that lies entirely inside some grid cell.

Figure 7.2(a) depicts and example grid cell G ∈ U and shows the intersection G ∩ VoD(S),

which by Lemma 19 is a forest. In the graph structure of the rp-Voronoi, V̂(S), we therefore con-

tract each tree of the forest to an rp-vertex. Edges that leave the grid cell are preserved as rp-edges.

Notice that the planar embedding of the Voronoi VoD(S) gives a natural planar embedding of V̂(S)

in which the ordering of edges entering a grid cell is preserved as the ordering of edges around the

rp-vertex. We find it useful to depict these rp-vertices as the convex hulls of the intersections of

rp-edges, as in Figure 7.2(b). Although we never actually compute these convex hulls they bound

the locations where the tree of VoD(S) can lie.

Each rp-vertex v maintains the grid cell Gv containing v, and a list of its incident rp-edges

in counter-clockwise order by their entry to Gv. Each rp-edge e stores the generator sites s1 and

s2 of the corresponding Voronoi diagram edge, and pointers to its location in the lists of its two
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(a) Voronoi diagram (b) rp-Voronoi diagram

Figure 7.2: The Voronoi vertices in a grid cell on the left contract to two rp-vertices, depicted as
gray convex polygons on the right. The ordering of the edges entering the grid cell is maintained
in both diagrams.

rp-vertices. Standard data structures, like the doubly-connected edge list [31] or quad-edge [53],

allow us to maintain the order in the planar subdivision represented by V̂(S).

Finally we define the boundary of the rp-region of s to be the alternating sequence of rp-edges

storing site s and the connecting rp-vertices that form a cycle. We call the rp-region all the points

enclosed in this cycle, and the rp-cell the union of the rp-region with its boundary.

Observation 21. The number of rp-vertices and rp-edges in the rp-Voronoi diagram of S is less

than or equal to the number of Voronoi vertices and Voronoi edges in the Voronoi diagram of

S respectively.

As we will show in Section 7.3.2, we can retrieve the implicit Voronoi diagram once we have

constructed the rp-Voronoi.

7.3.2 Constructing the Reduced-Precision Voronoi Diagram

Next we describe how to construct the rp-Voronoi, analyze the expected time and space, describe

how to use the rp-Voronoi for point location and show how to convert the rp-Voronoi to the implicit

Voronoi diagram.
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(a) Voronoi diagram
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(b) rp-Voronoi diagram

Figure 7.3: The cell for the new dark gray site sk is “carved” out of the diagram of light gray sites.
The traced bisectors are emphasized with dotted lines, and the tree walk is shown with gray arrows.

We create the rp-Voronoi by a randomized incremental construction [31] that parallels Sugihara

and Iri’s algorithm [130]: inserting a new site by “carving” out the new cell from the previous

diagram. Inserting a new site invalidates a sub-graph of the Voronoi diagram, referred to as the

conflict region. Sugihara and Iri made the observation that the conflict region is a tree, and that by

walking the tree we identify the invalid sub-graph.

Specifically, their method constructs a Voronoi diagram of the first k − 1 sites and then inserts

site sk. To start carving, the site si closest to sk is identified and the bisector Bik is traced until

it enters the neighboring Voronoi cell, VR(sj). The bisector Bjk is then traced, and the process

continues until it returns back to VR(si). The tracing process requires the identification of the next

bisector intersection with a Voronoi edge. Sugihara and Iri do this by walking around the cell of sj

on the side of the new site sk until the next intersection is found (see Figure 7.3a).

Our method does the same computation, but since we restrict ourselves to degree three, it is too

costly to compute and compare coordinates of bisector intersections.
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Incremental Construction

We initialize the rp-Voronoi diagram with two sites s1 and s2, and use their bisector B12 to split

the initial region of interest (the grid) by using a binary search.

Now, assume that we have already constructed the rp-Voronoi of k − 1 sites Sk−1 and that we

would like to insert site sk. The rp-Voronoi Update Procedure takes as input the rp-Voronoi of

Sk−1 and a new input site sk and returns the rp-Voronoi of Sk−1 ∪ {sk}.

rp-Voronoi Update Procedure: We sketch the procedure in this paragraph and then fill in the

details in the remainder of the section. We first locate the site si ∈ Sk−1 closest to sk, and proceed

in two steps. We find the subgraph T that consists of the set of rp-vertices and rp-edges that are no

longer part of the rp-Voronoi of Sk−1 ∪ {sk}. In the Voronoi diagram, the conflict region is a tree

and the sum of all conflict region sizes is linear in expectation. In the rp-Voronoi we walk a subset

T of the edges of this tree, and their vertices; once we have identified this subset, we maintain our

data structure in time proportional to its size, which is therefore also linear (see Figure 7.3b).

To identify T we start by tracing out the si, sk bisector Bik. We walk around the boundary of

the region of si until we find the grid cell G containing the intersection of Bik and the boundary of

the rp-region of si. As in Sugihara and Iri’s algorithm, we would like to pick the next bisector to

trace, thus, allowing us to continue our tree walk. To pick the next bisector for the rp-Voronoi with

limited precision there are two cases: one simple and the other interesting.

In the simple case, Bik intersects the rp-edge e that stores sites si and sj . This intersection is

determined by applying the GridCell construction. We switch to the sk, sj bisector and continue

building T by walking around the boundary of the region of sj on the side of sk.

In the more interesting case, Bik intersects an rp-vertex v. The intersection is determined by

first checking if Bik passes through the grid cell containing v. If it does, we compare the order of

Bik and the two bisectors defining the edges incident on v of the rp-cell of sk.
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Figure 7.5: Grid cell G with grid walls Gx and Gy as west and north walls respectively. A bisector
enters G through the south wall by tracing the si, sk bisector Bik, in dashed gray. In alternating
dashed and dotted gray are the four cases per wall for bisector tracing.

Let GN , GE, GS and GW be the north, east, south and west grid walls, respectively, of G, and

without loss of generality, assume that we have entered G from the south, with si below the Bik

bisector (see Figure 7.4).

VR(si)

VR(sk)

bik

GVR(sr)

VR(sp)

Figure 7.4: We enter grid cell G from the
south while walking the tree of the new site
sk along the si, sk bisector Bik in dashed
gray. The projections of sites sp and sr onto
the west grid line are directly above and be-
low the projection of sk onto the west grid
line respectively.

Since Voronoi cells are convex, the new cell of

sk can intersect each of the grid cell boundary walls

at most twice. This gives us four cases for how the

traced bisectors of the new Voronoi cell enter and

exit a grid wall Gx of G (see Figure 7.5). Traced

bisectors of the new Voronoi cell,

(c1) do not exit through Gx.

(c2) exit through Gx and do not return to G.

(c3) exit through Gx and return through Gx.

(c4) exit through Gx and return through a different grid wall Gy.

First, we determine if the Voronoi cell VR(si) pokes out of the GW grid wall. We find the two

sites sp and sr whose Voronoi cells intersect GW and whose y coordinate is directly above and
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below the y coordinate of sk, respectively. We then determine if VR(si) pokes out by applying

Corollary 18.

If VR(sk) does not poke out of GW (case 1) we repeat the process with GN , followed by GE .

If VR(sk) does poke out then there are some points in the VR(sr) that are now in the VR(sk).

Since no site has an empty cell there must be a Voronoi edge e ∈ VR(sk) that is a subset of the

sr, sk bisector. We trace Brk, following the tree, towards Bik until we return back to G. Now, we

have identified the next bisector to trace for our tree walk. In addition, we just walked backwards

through a subtree of T , and we continue the procedure by tracing Brk in the opposite direction

as before.

The other three cases are determined by continuing the walk. Case 3 corresponds to the walk

returning back to the grid cell through the same cell wall it exited. Case 4 occurs when the walk

returns back to the grid cell, but through a different grid wall. This allows us to determine cases 3

and 4 that can cause multiple rp-vertices to occur in one grid cell.

We continue this process until we have completed the cycle, identified T and the new rp-

vertices and rp-edges. We update the rp-Voronoi of Sk−1 to get the rp-Voronoi of Sk−1 ∪ {sk}.

Note that if a Voronoi vertex v is outside our region of interest we do not need to identify the

grid cell containing v since it will not be used for proximity queries. However, to continue with our

tree walk we can apply Corollary 18 similar to the case where a bisector intersects an rp-vertex.

Analysis

Point location is accomplished by the standard method of maintaining the construction history [54]

allowing for point location in expected O(log n) time. To achieve a degree two algorithm we

use grid cells in x-nodes and SideOfABisector for y-nodes, much like the structure in [89].

The incremental construction described above relies on SideOfABisector, which we saw in

Section 7.2 was degree 2, and GridCell, which we saw in Lemma 20 was degree 3.
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As explained by Observation 21, the rp-Voronoi and Voronoi diagram have the same combina-

torial complexity. The update procedure creates at most as many rp-vertices as Voronoi vertices.

As shown by [31, 54] the number of Voronoi vertices created is expected linear throughout the

algorithm. Furthermore, the tree walk touches only edges that are modified, and the number of

modified edges is constant in expectation [54].

However, we must pay two additional charges in each update. First there is an extra O(logU)

charge for finding bisector segment intersections. Secondly, we must pay an O(log n) to find the

upper and lower neighbors when a bisector intersects an rp-vertex. So we have shown the expected

time to insert a new site into the reduced-precision Voronoi diagram of size n is O(log n + logU)

and that this insertion can be done with degree 3. We conclude:

Theorem 22. We can construct a reduced-precision Voronoi diagram of n sites laying on a U ×U

grid with a degree three algorithm in expected O(n log(Un)) time.

Reduced-precision Voronoi to Implicit Voronoi

Next we describe how to convert the reduced-precision Voronoi to the implicit Voronoi of [89],

described in Section 7.3.1. An rp-vertex corresponds to a tree T , of Voronoi vertices and Voronoi

edges. Some of the Voronoi vertices of T may be on grid lines and the implicit Voronoi would

assign these vertices integer coordinates. To create the implicit Voronoi we must separate these

vertices from an rp-vertex.

Theorem 23. We can convert the reduced-precision Voronoi diagram to the implicit Voronoi dia-

gram in O(n) time with degree three.

Proof. We say that rp-edges e12 and e34 separating the s1, s2 and s3, s4 rp-regions respectively,

have a common intersection if e12 and e34 intersect `, and B12, B34 and ` all pass through the same

point. For each rp-vertex v we perform the following procedure. First, we retrieve the grid cell G

containing v. Next, we walk around the rp-edges Ev = {e1, e2, . . . , ek} incident on v and group
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the edges of Ev that have a common intersection. Each group is labeled Ei where i is the lowest

number of the edge set. Without loss of generality assume that no Ei contains e1 and ek unless it

contains {e1, . . . , ek}. Since only adjacent rp-edges can intersect on grid lines if there are m edges

in Ei then Ei = {ei, . . . , ei+m−1}.

Next, we remove each edge set Ei from v and attach them to a new vertex v′i. This creates a

“gap” in v. We create edge e = (v′i, v) and insert e between the first and last edge of Ei for v′i, and

in the “gap” of v. We finalize the construction of e by storing its generator sites.

Now, we assign geometric information to v′i where the integral component of v′i is computed

similar to the OrderOnLine, and we snap non-integral component to the half grid point. Once

this process is complete all Voronoi vertices of T that are on grid lines are separated and assigned

the same geometric information as the implicit Voronoi diagram. Finally we set the geometric

information of v by snapping both components of v to the half grid point contained in G.

Since the number of vertices is linear in n for the Voronoi, the rp-Voronoi, and the implicit

Voronoi diagrams, and each edge is considered a constant number of times to compute a single

intersection with a grid line, this process takes O(n) time. Furthermore, each of the computa-

tions of the procedure are derived from the OrderOnLine predicate. Thus, this algorithm is

degree three.

From Theorem 22 and 23 we conclude,

Corollary 24. The implicit Voronoi diagram of n sites can be constructed in expectedO(n log(Un))

time with degree three.
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7.4 Computing Point Location Structures with

Double Precision

In the previous section we saw how to build a point location structure using degree 3. In this

section, we define a point location query data structure that can be computed with degree 2. The

section concludes with some conjectures on the time and space complexity of the construction.

Despite our earlier claim [100], the construction does not fit the usual RIC analysis, because we

cannot give a constant bound on the number of sites to define a rightmost grid point of a cell. We

conjecture that it is Θ(logU). Without the bound, however, the construction is O(n2 logU).

To appreciate the challenge in reducing the construction to degree 2 note that both Sugihara and

Iri’s incremental construction [130], which avoids geometric tests in favor of topological inference

(but still relies on the degree 4 InCircle predicate) and our RP-Voronoi construction, from the

previous section (which uses degree 3), are built incrementally. Both algorithms must walk through

the current diagram. Walking does not seem to work without a notion of adjacency of cells, which

seems difficult to achieve with only degree 2.

Moreover, with degree 2 we cannot even determine the grid cell containing a Voronoi vertex.

For the RP-Voronoi we determined the grid cell containing a Voronoi vertex by identifying the

grid cell in which bisectors changed order. Unfortunately, ordering bisectors along vertical and

horizontal grid lines is degree 3. Figure 7.6 depicts three view of the intersection of two bisectors

in Real-RAM, and when limited to degree 3 and degree 2 predicates.

In this section, we define a trapezoidation of approximate Voronoi cells that is suitable for

incremental construction and use a history DAG (directed acyclic graph) rather than a walk to

find which trapezoids need to be updated when a new site is inserted. We develop a new implicit

Voronoi diagram structure that we are able to compute by an incremental construction using only

double precision.
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Figure 7.6: Three views of the intersection of two bisectors ` and h. Left: Depicts the intersection
of ` and h in Real-RAM. We can think of the intersection point as the red marker on ` and h.
Middle: Depicts the intersection of ` and h when restricted to degree 3. We can determine the grid
cell G containing the intersection and bisector orderings around the grid cell. We can think of the
intersection of ` and h as somewhere in the gray polygon in G. Right: Depicts the intersection of
` and h when restricted to degree 2. We can determine which side of a bisector a grid point lies
and the set of grid cells that a bisector passes though. That tells us that ` is above (and h is below)
grid point gl, that ` is below (and h is above) grid point gr, and that the intersection is somewhere
in between gl and gr. We can think of the intersection of ` and h as somewhere in union of the
grey boxes.

7.4.1 Definitions and Notation

Next we described the basic primitives for computing a degree 2 Voronoi diagram and three sepa-

rate but related trapezoidations that will be helpful in the construction.

Voronoi Polygons on the Grid and Proxy Trapezoidation

Define the Voronoi polygon CS(si) to be the convex hull of the grid points of U2 in the Voronoi

cell of site si ∈ S. We omit the subscript S when the set of sites is understood. Voronoi polygon

C(si) is contained in the Voronoi cell of si, and the containment may be proper. As illustrated in

Figure 7.7, the set of all Voronoi polygons may leave gaps in U , even though they cover all the

grid points.

Define the cell proxy of si, denoted PS(si), to be the line segment from the minimum to the

maximum point of CS(si), as illustrated in the middle of Figure 7.7. Because the n Voronoi
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Figure 7.7: Left: Voronoi polygons of sites on a grid may leave gaps. Middle: Proxy trapezoidation
of proxy segments, which connect the maximal and minimal points in a Voronoi polygon. The
lexicographic order for points implies that grid points that appear on the vertical segments are
actually in trapezoids to the left or right, unless they are proxy segment endpoints. Thus, f is in the
trapezoid that contains d, a is in the trapezoid above the proxy for d, and there is an infinitesimally
thin trapezoid between the endpoints of the proxies for c and d. Right: Splitting trapezoids of the
proxy trapezoidation by bisectors gives the Voronoi trapezoidation.

polygons can actually have a total of Θ(n logU) sides, we will often prefer to work with the n

proxy segments instead. Define the proxy trapezoidation to be the vertical visibility map of all cell

proxies, as shown in the same figure. Note that the proxy trapezoidation for a set of n sites S has

at most 3n+ 1 trapezoids, and is canonical—it is completely determined by the sites.

In [24], we observed that if we can compute a proxy trapezoidation, then we can use it to

answer post office queries using degree 2, because only the sites contributing the top and bottom

proxies are candidates for the closest sites to the grid points inside a proxy trapezoid. (Note that the

only grid point actually on a vertical side is the endpoint of a proxy segment that defines the side,

and we already know the neighbor of a proxy – the lexicographic ordering used by ≺ implicitly

perturbs grid points directly above a defining endpoint into the trapezoid to the right, and directly

below a defining endpoint into the trapezoid on the left.)

Lemma 25. If q ∈ U is a query point in a trapezoid τ with τ.top = P (si) and τ.bottom = P (sj)

then q is in C(si) or C(sj).

Proof. Suppose that some grid point q ∈ τ belongs in a different Voronoi polygon C(sk). Since

the Voronoi polygons are convex and non-overlapping, the cell proxy P (sk) must pass through
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trapezoid τ , which is a contradiction.

Corollary 26. Given cell proxies PS(si) for all si ∈ S, one can build a point location structure

that answers post office queries in O(log n) expected time and linear expected space.

Proof. We use the randomized incremental construction of the trapezoid graph of the proxy trape-

zoidation, as in [31, ch. 6]. A query determines the trapezoid τ that contains the query point q using

degree 1 tests at x-nodes and degree 2 test at y-nodes. We can then use the degree 2 Closer(Bij, q)

test to decide which of the two candidate sites is closer.

Chapter 8 describes an algorithm for labeling each grid point with its closest site in O(U2)

expected time, O(U2) space and degree 2. By slightly modifying the algorithm, one can produce

all proxies in O(U2) expected time, O(n) space and degree 2. Thus,

Theorem 27. There exists a degree 2 algorithm that produces a data structure supporting O(log n)

time and degree 2 point location queries.

While Theorem 27 tells us that we can build the proxy trapezoidation with degree 2, it is slow.

Perhaps the proxy trapezoidation could be built more quickly with a direct construction. In the

remainder of the section, we describe a incremental construction and conjecture on running time

of the construction.

Voronoi Trapezoidation and Conflicts

A few additional concepts will help us describe an incremental construction of the proxy trapezoi-

dation. First, if we split each trapezoid of the proxy trapezoidation with the bisector of sites donat-

ing the proxies at top and bottom, then we obtain the Voronoi trapezoidation depicted at the right of

Figure 7.7. This trapezoidation is also canonical, since it is derived from the proxy trapezoidation.

It is important to note that we don’t actually compute y-coordinates of bisectors; the top and

bottom pointers just point to line equations for proxies, bounding box sides, or bisectors, each of
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which can be represented as a degree 2 polynomial. All left and right points are proxy endpoints

or bounding box corners, and all are from U2. Thus, we observe:

Lemma 28. One can test if a grid point q is inside a given trapezoid τ of a Voronoi trapezoidation

in constant time using degree 2.

In the Voronoi trapezoidation every trapezoid τ intersects some proxy P (si) and either a bisec-

tor bij or a bounding box side; we set site(τ) = si and bisector(τ) = bij (or the bounding

box side in the latter case).

The trapezoids with site(τ) = si cover the Voronoi polygon C(si) and therefore contain all

grid points in the Voronoi cell of si. We can’t really say how the covering trapezoids relate to the

true Voronoi cell of si. They may miss portions of the cell on the left and right ends, because they

all use the proxy P (si) as top or bottom. As the striped trapezoids in Figure 7.7 show, they don’t

necessarily form a convex region and may contain more or less than the true Voronoi cell – all

we guarantee is that they contain the grid points of C(si). This means that it would be difficult to

bound the work necessary to insert a new site s by walking through the Voronoi trapezoidation of

existing sites.

Consider a subset of sites R ⊆ S. We say a site sk 6∈ R is in conflict with trapezoid τ of

the Voronoi trapezoidation of R if and only if there exists a g ∈ τ ∩ U2 such that ‖g − sk‖ <

‖g−site(τ)‖, i.e., if some grid point in τ is closer to sk than to site(τ). We extend the conflict

to the proxy trapezoid whose split produced τ , as well. We call g a witness to the conflict.

In the next section we will give a detailed description of how to maintain the proxy/Voronoi

trapezoidations as sites are inserted. As in many randomized incremental constructions, we will

find it useful to keep the history DAG of the proxy trapezoidation: as a new site is added, some old

trapezoids will be deleted and their area filled with new trapezoids – the parents of a new trapezoid

will be the minimal set of old trapezoids that cover all the grid points that it contains. This implies

that we can trace conflicts through history:
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Lemma 29. If site s ∈ S is in conflict with a trapezoid τ of the history DAG, then it is in conflict

with at least one parent of τ .

For sites S, let D2-Voronoi(S) denote the proxy trapezoidation with its history represented in

a history DAG and the Voronoi trapezoidation implied by introducing bisectors in each trapezoid.

7.4.2 Constructing the D2-Voronoi Diagram

In this section we give the details of our degree 2 incremental construction. We assume that we are

given a set of n sites S; let Si = {s1, s2, . . . , si}. We further assume that we have built the proxy

trapezoidation and its history that constitute D2-Voronoi(Si−1) and want to obtain D2-Voronoi(Si)

by inserting si.

After observing how incremental construction affects the Voronoi polygons and proxy seg-

ments, as defined in Section 7.4.1, we introduce a few more predicates and constructions for grid

points in trapezoids. Finally, we describe the updates to the trapezoidation, and analyze the time

and space.

Lemma 30. In an incremental construction, a Voronoi polygon on the grid can only shrink:

∀s ∈ Si−1, CSi
(s) ⊆ CSi−1

(s),

and a proxy segment changes if and only if the new site si conflicts with at least one of its endpoints:

∀s ∈ Si−1, PSi
(s) 6= PSi−1

(s) ⇐⇒ si conflicts with an endpoint of PSi−1
(s).

Predicates and Constructions

We will continue to use a model of computation in which arithmetic operations are constant-time.

Computations do not use floor or integer division unless otherwise stated.
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Lemma 31. (i) Determining if bisector Bij intersects the vertical segment rt with r, t ∈ U2 takes

degree 2 and constant time. (ii) Determining the shortest subsegment ab ⊂ rt with a, b ∈ U2 that

intersects Bij takes degree 2 and log ‖r − t‖ time, or constant time if floor is allowed.

Proof. For (i), compare the result of SideOfABisector for Bij with the two endpoints of rt.

(ii) can use floor, or can binary search with SideOfABisector and Bij .

Lemma 32. There is a degree 2 procedure HullVertices, takingO(logU) time, that computes

the convex hull of the grid points, if any, that lie in a region bounded by a constant number of

bisectors or lines defined by two grid points.

o

v

Figure 7.8: Each darker triangle’s hypotenuse at left is an increasingly accurate rational represen-
tation of the slope of segment ov; the GCD walk reuses these at right to compute the convex hull
of the grid points below ov.

Proof. Euclid’s GCD algorithm, interpreted geometrically, gives the sequence of best rational ap-

proximations to an arbitrary slope, ordered by increasing denominator. Kahan and Snoeyink [68,

Lemma 4.6] turned this into a procedure HullVertices(o, v) that takes the origin, an arbitrary

point v, and computes the convex hull of the grid points in the bounding box of ov that are on

or below ov. Their procedure runs in Θ(log(‖o − v‖)) time and is degree 2; the highest degree

predicate is the orientation test on grid points. The lower bound applies because the convex hull of

grid points in the intersection of O(1) half-planes may have this many vertices.
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With a small modification, their procedure can start from a unit segment between grid points,

from Lemma 31(ii), and follow a bisector within a region. We call this operation the GCD walk.

In each step we evaluate the degree 2 predicates, SideOfABisector and Orientation for

grid points. The walk takes time proportional to the log of the maximum side of the bounding box

of the region in which it runs. This remains bounded by O(logU).

This has two useful corollaries.

Corollary 33. Procedure InConflict(τ, si) determines if si is in conflict with trapezoid τ of

the Voronoi trapezoidation in O(logU) time and degree 2.

Proof. Suppose that su = site(τ), as in Figure 7.9. We can use the GCD walk to determine the

convex hull of grid points that are in τ between τ.left and τ.right and bounded by bisector(τ)

and bui, taking O(logU) time and degree 2.

For the next corollary, and as shown with a dash-dotted line in Figure 7.9, the proxy of any con-

vex hull of grid points is the line segment from the minimum to the maximum under lexicographic

order (≺).

Corollary 34. Given a site si in conflict with a trapezoid τ of the Voronoi trapezoidation, the

operation findProxies(si, τ) constructs, in O(logU) time and degree 2, the proxies for two

convex hulls of the grid points in trapezoid τ of the Voronoi trapezoidation—those that are closer

to site(τ), and those that are closer to si.

Incremental construction

Now, suppose that we have constructed D2-Voronoi(Si−1). We update the proxy trapezoidation

and its history as we insert the new site si using three steps. The first step, Find Conflict, identifies

the set of trapezoids of D2-Voronoi(Si−1) that are in conflict with si. The second step, Proxy
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τ

PSi−1
(su)

bui

bisector(τ)

e

Figure 7.9: Suppose that new site si is in conflict with a Voronoi trapezoid τ , with su = site(τ).
As drawn, τ.top is proxy PSi−1

(su) and τ.bottom = bisector(τ). The new bisector bui cuts the
shaded area from τ , which is the convex hull of the grid points that witness the conflict by being
closer to si than su. The dash-dotted line depicts the proxy of si in τ .

Update, finds the new proxy PSi
(si) and updates all other proxies that changed on the insertion

of si. The third step, Trapezoidation Update splits and merges proxy trapezoids to reflect these

proxy changes, and updates the history, producing D2-Voronoi(Si).

Find Conflict: We collect the trapezoids of the D2-Voronoi(Si−1) that are in conflict with si by

traversing the history DAG. Starting at the root, we visit only those trapezoids that are in conflict

with si, or whose parent was in conflict with si. At each trapezoid, we test for conflict by Corol-

lary 33, spending O(logU) time and degree 2. By Lemma 29, if there is a conflict, it persists all

the way to the root, so we will find it.

Proxy Update: Adding si to Si−1 creates a new proxy PSi
(si) for si, and usually forces some

old proxies to be updated, for example, proxy PSi−1
(su) in Figure 7.9. Thanks to Lemma 30, we

can identify which proxies must be updated by testing their endpoints: In Figure 7.9, trapezoid τ is

defined in part by endpoint e of proxy PSi−1
(su). Testing Closer(si, su, e) identifies, in constant

time and degree 2, whether this proxy must be updated. Moreover, we can find all proxies to update

by testing only those that define trapezoids in conflict with si, since an endpoint that witnesses the

need to update the proxy is also a grid point that witnesses a conflict with si.
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For each Voronoi trapezoid τ in conflict with si, we can apply Corollary 34 to find the min and

max grid points in the regions that we obtain if we split τ by the bisector of site(τ) and si. The

min and max grid points identified from regions on the si side of the bisector become the endpoints

of the new proxy PSi
(si). Similarly, for any proxy that is updated, we take the min and/or max

points identified from the regions closer to the corresponding site. Thus, we spend O(logU) time

and degree 2 on each trapezoid in conflict with si.

Trapezoidation Update: Having identified the updates to proxies, we must now update the

trapezoidation and the history. We do this in four substeps.

First, we add all new proxy endpoints splitting the trapezoids that contain them. In the history,

old trapezoids point to two new trapezoids that are leaves of the history DAG.

Second, we add the segment for the new proxy PSi
(si) by walking through the trapezoidation,

splitting and merging trapezoids as needed. To update the history, briefly, if k trapezoids are

crossed by the proxy, then for each trapezoid we create two leaf trapezoids. (Note that some of the

trapezoids crossed may not have been found in the history since they may not contain a witnesses

to a conflict. They did, however, have witnessed conflicts on both ends. This is important, because

for an efficient algorithm we cannot afford to walk through all trapezoids looking for possible grid

points to include in the Voronoi polygon CSi
(si).)

Third, we shorten the old proxies that need to be updated. Notice that trapezoids that simply

replace PSi−1
(s) with a shorter PSi

(s) as the top or bottom change geometrically, but do not need

to change their representations. Thus, this operation is like the inverse of adding a proxy in step

two: we erase PSi−1
(s) from those trapezoids that do not intersect PSi

(s), merging and splitting

and updating the history as needed.

Fourth, we merge any adjacent trapezoids whose left and right boundaries are defined by grid

points that were proxy endpoints but are no longer. In the history this just redirects pointers to

corresponding leaves.
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Lemma 35. The leaves of the trapezoid graph corresponding to new trapezoids in the proxy trape-

zoidation of Si are O(1) deeper than the leaves for their parent trapezoids in the proxy trapezoida-

tion of Si−1.

Proof. Each update in substeps 1–3 adds a single level to the history DAG, and each trapezoid of

the proxy trapezoidation can be involved in at most 4 updates (to top, bottom, left, and right).

Analysis

In [100] we proposed a randomized incremental construction and attempted to use Mulmuley’s

general framework of stoppers and triggers (or definers and killers, as described in [31, ch. 9.3])

to show one can compute the D2-Voronoi using O(n log n logU) time and O(n) expected space.

To get the bounds using the frameworks one needs to show that the number of sites defining a

trapezoid is O(1). While a trapezoid is defined by at most 4 proxy segments, it is not clear how

one bounds the number of sites needed to define a proxy segment.

A more focused problem is to bound δ, the maximum number of sites needed to define the right-

most point of a Voronoi polygon. An upper bound (that is far too loose to be useful) is δ < 4U . If

a grid point p were to be a right-most point, for each column there is at most one site above and

below, for each row there is at most one site left and right. This would tell us that building the D2-

Voronoi would take O(Un log n logU) expected time. We conjecture that δ < logU which would

produce an expected running time of the form O(n log n logα U) expected time for some α ≥ 1.

In the worst case, an insertion can create O(n) new trapezoids. While it seems too pessimistic,

without better analysis, building the D2-Voronoi takes O(n2 logU) time and degree 2.
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7.5 Conclusion

In this chapter, we showed how to construct for n sites the rp-Voronoi diagram in O(n log(Un))

expected time and degree 3, and the D2-Voronoi in degree 2. Moreover, we saw how to use the

rp-Voronoi and D2-Voronoi to execute point location queries in O(log n) and degree 2 and how to

convert rp-Voronoi to the implicit Voronoi diagram in O(n) and degree 3.

The rp-Voronoi and D2-Voronoi diagrams answer point location queries even though they do

not even use sufficient precision to determine a Delaunay triangulation. Since we cannot compute

the Delaunay triangulation with degree 2 or 3, can we compute a triangulation that is in some sense

close to Delaunay? With degree 2 we can compute the convex hull and Gabriel graph, but which

edges should we add to complete the triangulation? The dual of the rp-Voronoi diagram captures

any bisector of the Voronoi diagram that intersects a grid line, and thus its dual captures corre-

sponding Delaunay edges. Still, we would be left with polygonal holes in the induced subdivision,

which could be triangulated, however, the properties of this triangulation are unknown.

Finally, and perhaps most importantly, can the analysis of the D2-Voronoi diagram be tightened

to sub-quadratic time and degree 2.
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Chapter 8

Nearest Neighbor Transform

The nearest neighbor transform of a black and white U×U image assigns to every pixel the in-

dex of the closest black pixel under the Euclidean metric; it is a discretized Voronoi diagram of the

black pixels [13]. The closely related distance transform assigns to each pixel the distance to the

closest black pixel. Both transforms have a long history of application in image processing [108].

Both can be computed in a straightforward manner, for each pixel, measure the distance to ev-

ery black pixel and take the minimum. Similar algorithms are often used to generate discrete

approximations to the continuous Voronoi diagram, especially with the assistance of graphics

hardware [61]. It is a challenge, however, to compute the nearest neighbor transform in time

that is bounded by the image size O(U2) only, and not by the number of black pixels; the algo-

rithms that do this are based on computing the continuous Voronoi diagram and discretizing to a

grid [13, 23, 93]. Computing the continuous Voronoi diagram, however, requires four times the in-

put precision to guarantee correct, consistent output, and this is usually ignored in work on efficient

geometric algorithms.

We observed [24] that it would be possible to apply Liotta et al.’s “degree-driven analysis

of algorithms” [89] to derive an algorithm to compute the nearest neighbor transform in double

precision. Here, we provide the full algorithm and show that our degree 2 algorithm takes ex-

pected O(U2) time and O(U2) space. We also describe a simpler degree 2 algorithm that takes



O(U2 logU) time and O(U2) space but is faster for inputs of reasonable sized (from 256× 256 to

at least 8192× 8192). In addition, we report on experiments with our prototype implementation.

In the next section, we survey previous work and precisely define our task. Then, after ex-

ploring predicates in Section 8.1.4, we give algorithm details in Section 8.2, and experiments in

Section 8.3.

8.1 Preliminaries

We begin by reviewing the previous work on the nearest neighbor transform, defining some nota-

tion, and transforming the problem to that of computing an envelope of lines.

8.1.1 Previous work

Many researchers have developed algorithms for computing the nearest neighbor transform on

various architectures, including serial and parallel CPUs and GPUs. However, the arithmetic pre-

cision of the algorithms are often overlooked, even though all algorithms need exact arithmetic to

guarantee a correct output.

Breu et al. [13] proposed the first linear time algorithm, which uses divide and conquer to com-

pute and discretize a 2D Voronoi diagram computation. If you analyze the arithmetic calculations

of their geometric predicates, you find that their algorithm requires five times the input precision.

They also presented a second algorithm that uses three times the input precision.

Both Chan and Maurer et al. proposed dimension reduction algorithms [22, 23, 93] that com-

pute the nearest neighbor transform from one-dimensional Voronoi diagrams for each column and

one-dimensional weighted Voronoi diagrams for each row. Their calculations can be modified to

require only three times the input precision. By changing parts of the algorithm, we will see how

to reduce that to double precision without affecting the asymptotic O(U2) bound on the expected

running time.
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Hoff and others [61] presented the earliest work on using the GPU to compute the nearest

neighbor transform. Their algorithm is dependent on the number of black pixels in addition to

the size of the image, and precision is determined by the resolution of the Z-buffer. Approxi-

mate GPU algorithms have been proposed [112, 113, 117], but these cannot guarantee an exact

result. Cao et al. [20] adapted Maurer’s algorithm to the GPU, focusing on efficient data structures

that take advantage of the memory and the multi-threaded processing power of the GPU. Cao’s

implementation used triple precision, just like Maurer’s.

8.1.2 Definitions

We assume that we are given the coordinates of n black pixels, or sites from a U × U grid, U.

Denote the sites S = {s1, ..., sn}, where each si = (xi, yi) with 1 ≤ xi, yi ≤ U . We will be a little

lazy in notation, denoting the coordinates of other pixels p ∈ U as p = (xp, yp).

In this chapter, we assume that the n sites S are listed in order of increasing x-coordinates,

with ties broken by y-coordinates. That is, for all i < j, either xi < xj or (xi = xj and yi < yj).

Note that this also forbids duplication of sites. We can create this ordered list easily from pixels

in a given image in O(U2) time and O(n) additional space, or from an unordered list by counting

sort in O(n+ U) time and space.

We can formally define the problem of computing the nearest neighbor transform as follows:

Problem 36 (NNTrans-min). For each pixel q ∈ U2, find the site si ∈ S such that, for all j < i,

the distance ‖q − si‖ < ‖q − sj‖, and for all j > i, the distance ‖q − si‖ ≤ ‖q − sj‖.

That is to say, for each pixel, we wish to finds the closest site, breaking ties by selecting the site

with the lowest index.
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8.1.3 Problem transformations

We can use common transformations [16, 40] to turn the NNTrans-min problem into a series of

problems on lines. First, we can work with squared distances when comparing distances from q to

sites si and sj , using any of the following equivalent inequalities for j < i: (For i < j, replace all

strict inequalities, so > becomes ≥ in the third line below.)

‖q − si‖2 < ‖q − sj‖2

q · q − 2q · si + si · si < q · q − 2q · sj + sj · sj

2xixq + 2yiyq − x2i − y2i > 2xjxq + 2yjyq − x2j − y2j .

Thus, we can convert the NNTrans-min problem to an equivalent:

Problem 37 (NNTrans-max). For each pixel q, find the site with lowest index si ∈ S that achieves

the maximum of 2xixq + 2yiyq − x2i − y2i .

NNTrans-max can be solved one row at a time, by fixing the y-coordinate the equation that

we wish to maximize looks like a line. For the given Y : Let LY (si) map the site si to the line

`Yi : y = aix+ bi where the slope ai = 2xi = 1© and the intercept bi = 2yiY − x2i − y2i = 2© .

Let LY = LY (S) denote the set of all lines obtained from sites S. Note that since S is sorted by x

with ties broken by y, LY is sorted by slope, with ties broken by y-intercept.

Along a fixed row y = Y of the grid, we can phrase the NNTtrans-max problem as determining

the highest line at each pixel – the discrete upper envelope (DUE) of the lines.

Problem 38 (DUE-Y). For a fixed 1 ≤ Y ≤ U , and for each 1 ≤ X ≤ U , find the smallest index

of a line of LY with maximum y coordinate at x = X .
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s1

s2

s3

s4

`71

`73

`72

`74
Y = 7

Figure 8.1: Example transformation from S to LY (S)
for Y = 7. Left: sites s1 through s4 are shown. Right:
Each site si is transformed to the line `7i . Observe that
when `7i is the highest line at x = X , site si is the site
with minimal distance to pixel at (X, 7)

The key to computing the Nearest

Neighbor transform in O(U2) time and

degree 2 will be solving DUE-Y in O(U)

time and degree 2. As shown in Fig-

ure 8.1, when `Yi is the highest line at

x = X , site si is the site with minimal dis-

tance to pixel at (X, Y ). Observe that each

line in LY has the form y = 1© x+ 2© .

In Section 8.1.4 we show how to compute

the discrete upper envelope in O(U) ex-

pected time with degree 2 and in Section 8.2 we use this construction to solve NNTrans-max in

O(U2) expected time and degree 2.

8.1.4 Geometric primitives

Before diving into algorithms, we present some geometric primitives (predicates and constructions)

and their precision. Most of these primitives are part of our algorithm; the few that are not are

tempting options that we avoid because of their high precision requirement. Recall from Chapter 4

Observation 39. Given two sites, si and sj and a query point q with si, sj, q ∈ U, the predicate

Closer(si, sj, q) is degree 2.

In special geometric configurations this may simplify further. For example, if the sites are on

the same vertical line so xi = xj , then there is a factor of (yi − yj), so the computation need only

determine the signs of two linear terms. In general, however, it is irreducible of degree 2 as we saw

in Chapter 5.

Observation 40. Given two sites si and sj on the same vertical line and a query point q with

si, sj, q ∈ U the predicate Closer1D(si, sj, q) is degree 1.
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A common test in geometric algorithms is determining the orientation of three points, a, b,

and c, by evaluating the sign of a determinate whose entries are the homogeneous coordinates of

the points. The Orientation(a, b, c) predicate is degree 2 on points with degree 1 coordinates.

When the points have coordinate values of ( 1© , 2© ) (which is the form our points will take after

transformations), the predicate has higher degree:

∣∣∣∣∣∣∣∣∣∣
1 ax ay

1 bx cy

1 cx cy

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
0© 1© 2©
0© 1© 2©
0© 1© 2©

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
1© − 1© 2© − 2©
1© − 1© 2© − 2©

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
1© 2©
1© 2©

∣∣∣∣∣∣∣ = 1© 2© − 1© 2© = 3©

Observation 41. Given three points a, b, and c with coordinate precision ( 1© , 2© ) the predicate

Orientation(a, b, c) is degree 3.

Consider two lines, ` : y = `mx + `b and h : y = hmx + hb, each with degree 1 slope

and degree 2 y-intercept, i.e., y = 1© x + 2© . The construction Intersect(`, h) returns the

coordinates of the intersection of the two lines q, which are:

qx =
hb − `b
`m − hm

=
2© − 2©
1© − 1© =

2©
1©

qy =
`mhb − `bhm
`m − hm

=
2© 1© − 1© 2©

1© − 1© =
3©
1©

Observation 42. Given two lines ` and h of the form y = 1© x + 2© , the Intersect(`, h)

construction produces a point with rational x- and y-coordinates of ( 2© / 1© , 3© / 1© ).

As our goal is a degree 2 algorithm, the high degree primitives of Observations 41 and 42 are

undesirable. Next, we describe the predicates that provide just enough information to compute a

nearest neighbor transform with degree 2.
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Given two points a, b ∈ U, the predicate Before(a, b) returns true if a is lexicographically

before b. That is, if ax < bx (or ax = bx and ay < by). This test compares degree 1 values only,

therefore the predicate is degree 1.

Observation 43. Given two points a, b ∈ U, the predicate Before(a, b) is degree 1.

Given two lines, `1 and `2, of the form y = 1© x+ 2© , and a degree 1 vertical line h defined

by points satisfying the equation x − x0 = 0, the predicate Above(`1, `2, h) returns true if `1 is

above `2 on the line h. We evaluate this predicate by plugging x0 into the slope intercept form of

the lines and comparing the result. Thus, we compare the evaluation of two degree 2 polynomials.

Observation 44. Given two lines `1 and `2 of the form y = 1© x + 2© and a degree 1 vertical

line h, the predicate Above(`1, `2, h) is degree 2.

We can use the Above predicate in a binary search for the vertical slab in which the ordering

of two lines swap. When the vertical slab is a column width, we can return the column containing

the lines intersection. Thus,

Lemma 45. Given two lines `1 and `2 of the form y = 1© x+ 2© , the construction

IntersectCol(`1, `2) returns the column containing the intersection of the two lines inO(logU)

time and degree 2.

8.2 Algorithm Description

We show first how to compute the discrete upper envelope of lines with double precision, then how

to use this to compute the nearest neighbor transform.

8.2.1 Discrete Upper Envelope

Consider the discrete upper envelope (DUE) of a set of lines, which we represent as a minimal

length sequence of tuples (s, i, j) where s is the highest line at x for all integers between i and j,
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Ci Ci+1

B list

C3 C4C2 C2 C3

λ list

C1 C5

λ list`1 `2

`3

ˆ̀

s

Figure 8.2: A DUE of m lines L is created by adding a random sample R of m/2 lines to the DUE
of L \R. Left: The DUE contains cells C1 through C5 defined by lines shown in gray. Each cell is
defined by (s, i, j), and can be visualized as the trapezoidal area above line s, between x = i, and
x = j. Sometimes boundaries do not match up and we get a gap between two cells, for example,
the gray gap between C2 and C3. Center: Three examples of identifying the first cell intersected
by identically sloped lines `i. Thanks to the slope ordering of an upper envelope, each `i would
intersect cells C2 or C3 if it intersects any cells. Since we are computing the DUE, cells that would
be completely inside a grid column, for example a cell formed by `2, are dropped. As `3 intersects
C2 and C3 we test cells to the left until finding the leftmost intersected cell. That cell then adds
`3 to its B list. Right: Each cell Ci maintains three lists of lines: s, colored magenta, defines Ci;
B, colored blue, are the lines intersecting Ci from the bottom; and λ, colored green, are the lines
intersecting Ci from the left. We find cell Ci+1’s λ list by throwing away any line of ` ∈ λ∪B that
is below the defining line of Ci+1 at its leftmost grid point, for example ˆ̀.

and ties in ‘highest’ are broken by lowest index. Each tuple (s, i, j) determines a cell consisting of

all the points on or above s at i ≤ x ≤ j.

For any set of lines with the same slope, only the line with largest y-intercept appears on the

upper envelope. Thus, in O(n) time we can throw away any line that shares a slope but has smaller

y-intercept value. We are left with a set L of m = O(U) lines; for the remainder, we compute the

discrete upper envelope of these lines.

We briefly sketch three algorithms for computing discrete upper envelopes, which, in increasing

implementation complexity, are: D3-DUE is an O(U) algorithm using a degree 3 Orientation

predicate; UlgU-DUE replaces the predicate with IntersectCol to reduce to degree 2 at the

cost of logU time for binary search; U-DUE achieves O(U) expected time and degree 2 by ran-

domization. We test all three algorithms in our experiments.
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First, we sketch the D3-DUE procedure, which takes L and produces the upper envelope of

L. It is known that computing the upper envelope of a set of lines is equivalent to computing the

lower hull of a set of points sorted by x under a transformation that maps each line y = ax + b to

point (a,−b) [74] . Linear time algorithms for computing the lower hull of a set of points sorted

by x use the Orientation predicate [94]. For our input, the coefficients a and b are degree 1

and 2, respectively, so Orientation is degree 3 by Observation 41; any procedure that uses

Orientation is at least degree 3. Thus, D3-DUE takes O(U) time and degree 3.

Second, the UlgU-DUE procedure also takes L = {`1, . . . , `m}, sorted by slope, and produces

the discrete upper envelope directly from the lines. Even here we have an obstacle; in Observa-

tion 42 we saw that computing intersection points requires too much precision. Fortunately, for

the discrete upper envelope it is enough to identify the grid column containing the intersection of

a pair of lines, which is degree 2 and O(logU) time by Lemma 45. We use this as follows.

We maintain a stack to represent the prefix of the DUE computed so far, much like a convex

hull algorithm. Instead of using an orientation test to decide to pop the stack on the insertion of

a new line `k, we use the Above test to pop all cells (s, i, j) where `k is above s at i and at j.

Let line ` be the line defining the last cell of the DUE, we find the beginning column of the cell

for `k with IntersectCol(`k, `). The procedure UlgU-DUE uses only the degree 2 predicates

Above and IntersectCol and takes O(U logU) time.

Third, the U-DUE procedure solves the DUE-Y problem in expected O(U) time and degree 2

by random sampling and one-sided recursion. We use a stable random partitioning of the set L of

m lines to create a set R of m/2 lines that maintains slope ordering. In order to find the DUE of

all m lines, we (recursively) find Q, the DUE of the lines not in R, and then ‘add’ the lines of R

into Q.

Here is an overview of the input, output, and invariants for the ‘adding’ procedure in U-DUE,

depicted in Figure 8.2:
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Input: The sampled lines R, ordered by slope with no duplicate slopes, and Q, the DUE of rest

of the lines, represented as an array of cells in order of increasing x. Each cell stores its

defining line and leftmost grid point, the sentinel leftmost cell has left end at −∞.

Output: The DUE of all the lines, in the same representation as an array of cells as the input.

Data Structure: Each cell is given the head of a slope-sorted linked list of lines that “start in the

cell;” each line of R is put in the list for the first cell it intersects (by increasing x).

Processing: The new DUE is built by processing the old cells in increasing x, i.e., from left

to right.

Invariant A: Three slope-sorted lists of lines contribute to the DUE inside a cell: s, the single

line defining the cell; B, the list of lines that start in the cell; and λ, the list of lines that cross

over from the previous cell.

Invariant B: The algorithm uses a stack to maintain the output DUE of the set of lines from the

lists of Invariant A up to a chosen slope.

We initialize and maintain invariants as follows:

First, we identify, for each line ` of R, the cell that ` starts in. We do so in two sub-steps: first

we identify a cell intersected by ` (if one should exist). Since R and the lines of an upper envelope

are ordered by slope, we can do this by merging Q and R in O(m) time. Next, we walk through

cells to the left to find the first cell intersected by each line `. We bound the expected time of this

operation later. We do these sub-steps for the lines of R in reverse order, inserting lines at the head

of the linked list associated with the cell, so that the lines starting in each cell remain in order of

increasing slope.

Next, we process cells from left to right. To begin, any lines that start in the sentinel are checked

to see if they continue into the first finite cell. Those that do not are discarded. This gives the three

lists for the first cell.
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In processing a cell, we maintain a stack to represent the DUE, as in UlgU-DUE. The only

difference is that the binary searches of IntersectCol is over the boundary of the cell (not the

entire grid).

Lemma 46. Given a set S of n lines sorted by slope of the form y = 1© x+ 2© , we can compute

the discrete upper envelope of S in O(U + n) expected time.

Proof. As mentioned above, in O(n) we produce L of size m, where each line has a unique

slope. We upper bound the processing for a cell of width Ui intersected by mi lines as cmi logUi,

where c is a constant. Clarkson and Shor’s results on random sampling [28, Theorem 3.7] say that

E[
∑

im
2
i ] = O(m), so each cell intersects not too many lines on average. By the Cauchy-Schwartz

inequality, and as
∑

i Ui ≤ U , we upper bound the total cost of processing all cells:

E

[∑
i

cmi logUi

]
≤ c

√√√√E

[∑
i

m2
i

]
·
∑
i

log2 Ui

≤ c

√
O (m) ·m log2 U

m

= O

(
m log

U

m

)
.

We build DUEs recursively on random samples of half the lines, so the total expected time is

bounded by the following recurrence:

T (m,U) = T
(m

2
, U
)

+O (m) +O

(
E

[∑
i

mi logUi

])

= T
(m

2
, U
)

+O

(
m log

(
U

m

))
=⇒

T (m,U) = O

(
m log

(
U

m

))

Since m ≤ U , we have T (m,U) = O(U). Thus, in total it takes O(n + U) time in expectation to

compute the discrete upper envelope.
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Figure 8.3: Left: Ovals drawn around sites touch the pixels in the column that are nearest neighbors
in the 1D Voronoi diagram. The Voronoi diagram of sites in the same column SX are horizontal
lines. Thus, if we restrict attention to sites in SX , all pixels a row have the same closest site. So,
only one site per column can ever be the nearest neighbor to a pixel, and vertical comparisons
suffice to find out which one is nearestX(Y ), leaving us with only O(U) sites to consider for
each row. Right: Illustration of possible lists and their generation. Ovals show vertical nearest
neighbors. After determining which sites are the highest in their column, (s3, s4, s6, and s7), we
only need to perform a few tests for each site si ∈ Pi to generate Pi+1. Each site si exhibits one of
three cases. Case 1: si is the highest in its column, so it is in Pi+1. Case 2: si is still nearestX(Y ).
Case 3: si+1 is now nearestX(Y ) so it replaces si in Pi+1.

8.2.2 NNTrans Algorithm

Assume that we are given a set of n sites S = {s1, . . . , sn} on a U × U pixel grid. We compute

the Nearest Neighbor transform of S by using DUE-Y in each row in order, which takes in O(U2)

expected time, O(U2) space and degree 2. Our algorithm has the following three steps.

In the first step, if S is not already sorted, then we sort the sites by increasing x-coordinate

(breaking ties by y-coordinate) using counting sort by y and then by x. For convenience, we

assume that the sites of S are labeled in their sorted order.

Let SX denote the set of sites of S with given x-coordinate value X – sites in a given grid

column, as seen in Figure 8.3. Each SX is a contiguous sublist of S, thanks to the sorting. The

Voronoi diagram of just the sites in SX is formed by the horizontal lines bisecting adjacent sites

in SX .

If we now consider a given grid row y = Y , then from each non-empty SX at most one

site can possibly contribute to the Voronoi diagram – for each SX , let nearestX(Y ) = the site of

102



s3

s4

s6

s7

Y = 7

`73

`76

`74

`77
s3

s4

s7s2

s1

Y = 7s6

s5

Figure 8.4: The three steps of the NNTrans algorithm: (Steps one and two show the Voronoi
diagram of the sites to illustrate that it does not change along Y when sites are removed.) Step one:
Sites are sorted by x-coordinate breaking ties by y-coordinate. Step two: For each row Y , sites are
reduced to the possible list PY . Step three: Each site si ∈ PY is transformed to the line `Yi and we
compute the DUE of the lines.

SX nearest to (X, Y ), breaking ties by lowest index (and ∅ when SX = ∅). The possible list,

PY = {nearestX(Y ) | ∀1 ≤ x ≤ U}, contains the at most U sites that can be nearest neighbors of

a pixel in row y = Y .

In the second step, depicted in Figure 8.3, we produce a data structure, which we call the

possible list generator, that iterates from Y = 1, . . . , U producing each PY . This data structure

simply maintains a pointer to the last site used in each ordered list SX . These pointers advance as

Y crosses the bisector between adjacent elements in each list SX , generating all possible lists PY

in sequence.

In the third step, we transform each possible list into lines, and compute the discrete upper

envelope of the lines LY (PY ) from Problem 38 by Lemma 46. Each DUE-Y constructs one row of

the Nearest Neighbor transform.

Theorem 47. Given n sites on a U×U pixel grid, we can compute the Nearest Neighbor transform

of the sites in O(U2) expected time, O(U2) space, and degree 2.

Proof. The procedure to compute the Nearest Neighbor transform of the sites has three steps,

shown in Figure 8.4.
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The first step sorts the n sites with two counting sort in two passes over S and makes degree 1

comparisons of coordinates. Thus, the step uses O(U) space, O(n) time and degree 1.

The second step constructs the possible list generator. Each possible list contains at most

U sites. Thus, the size of the data structure is O(U). Since S is sorted we can initialize P1

in O(U) time by identifying adjacent sites with different x-coordinates, which is degree 1. To

update from PY to PY+1, we perform at most U evaluations of the Closer1D predicate, which

by Observation 40 is degree 1. Thus, initializing the possible list generator takes O(U) time, O(U)

space and degree 1 and generating PY+1 from PY takes O(U) time and degree 1.

The third step generates the possible list PY for each Y = 1, . . . U . The sites are transformed

into lines LY (PY ) sorted by slope. Each line in LY has the form 1© x+ 2© and we compute the

discrete upper envelope of LY . Since LY has at most U lines, by Lemma 46, processing each Y

takes O(U) expected time, O(U) space and degree 2. Therefore, processing all possible sites takes

O(U2) expected time, O(U2) space and degree 2.

In the proof above we use the procedure U-DUE to compute the nearest neighbor transform

in O(U2) time and degree 2. However, we could have instead used UlogU-DUE to get an

O(U2 logU) degree 2 algorithm or Deg3-DUE to get an O(U2) degree 3 algorithm. In the next

section we will compare the experimental running times of implementations of the three algorithms

and MATLAB’s [91] implementation of Maurer’s algorithm.

8.3 Experiments

In this section we investigate robustness and timings of four implementations of algorithms that

compute the nearest neighbor transform of an image. We will see that the theoretical advantage of

removing a logU factor is outweighed by the cost of generating and maintaining random samples.

On the positive side, however, our degree 2 algorithms, which are guaranteed correct in double
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precision, are notably faster than the implementation of Maurer’s algorithm used to perform MAT-

LAB’s bwdist function.

Here are the four implementations:

Usq is our implementation of the expected O(U2) time and degree 2 algorithm, discussed in

Section 8.2.2;

UsqLgU is our implementation of the O(U2 logU) time and degree 2 algorithm, discussed at the

end of Section 8.2.2;

Deg3 is our implementation of the (U2) and degree 3 algorithm, also discussed at the end of

Section 8.2.2; and

Maurer is the MATLAB bwdist function, which is a compiled implementation of Maurer’s

algorithm (after version of 2009a).

Recall that Usq and UsqLgU are degree 2 and Deg3 and Maurer’s algorithm are degree 3.

Timings were taken on a 3.2GHz Intel Xeon processor with 12GB RAM running Ubuntu 10.04.

Our implementations were written in C++, compiled with gcc toolchain and bwdist was run

using MATLAB 7.0.10 (R2010a) [91].

In our timing experiments we run the four implementations on varying grid sizes and site

densities. The tuple of an algorithm A, grid size U , and density δ form a run. For each run, we

generate a set of sites S by selecting if a pixel contains a site uniformly at random with probability

δ, then we execute A on input S for enough iterations so that it takes over one second and report

the average run length of an iteration of the time of the run. For runs on algorithm Usq, the random

number generator is reset to a fixed seed before each iteration to maintain the same execution path.

Our first experiment investigates timings and variance of Usq. The implementation was run on

increasing grid sizes {265, 512, . . . , 8192}, and densities {.01, .02, . . . , .05}, and {.1, .2 . . . , .5}.

In Figure 8.5, we see a box and whiskers plot of the time-per-pixel for 100 runs of different seeds
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and the medians of runs on the same grid size are connected with lines. We plot time-per-pixel as

it allow detail to be seen at both small and large grid sizes.

Figure 8.5: Time-per-pixel box plots of 100 runs of Usq
on densities between .01 and .5 and grid sizes between 256
and 8192.

The first observation about Fig-

ure 8.5 is that the boxes are small,

about 2 microsecond width on aver-

age, indicating that Usq’s expected

O(U2) running time comes with a

small variance. This is not surpris-

ing. The algorithm Usq makes U

calls to a randomized algorithm with

expected O(U) time, which smooths

out the variance.

One might expect that since Usq

has an expected O(U2) running time,

the time-per-pixel should be constant across varying grid sizes and densities. In fact, one would

expect higher per-pixel-times for smaller grids since overheads are amortized over fewer pixels.

First, to explain why the per-pixel times increase with the grid size, we fixed the density, varied

the grid size, and used Valgrind [106] to capture the number of calls to each line. The per-pixel

line counts were equal (or slightly higher for smaller grid sizes, as expected). Thus, we believe that

the time increase on larger problems can be attributed to different memory usage patterns, e.g., at

data sizes that no longer fit into L1 or L2 cache.

Second, to explain why per-pixel times increase with higher densities, recall that each discrete

upper envelope calculation produces a run length encoding of the nearest neighbor transform along

each horizontal line and that the sites are uniformly distributed. At density δ, we would expect that

a row would intersect
√
δU2 Voronoi cells, for a total output size of δ

1
2U2. The experimental times
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are consistent with a large fraction of the running time being proportional to the output size.

Maurer

Usq

UsqLgU

Deg3

Figure 8.6: Time-per-pixel on a logarithmic scale for four
implementations on grid sizes ranging from 512 to 8192
with densities ranging from .1 to .5.

Our second experiment compares

the per-pixel time of the four imple-

mentations on the three grid sizes,

{512, 2048, 8192} and the five den-

sities {0.1, . . . , 0.5}. In Figure 8.6,

we see a plot of density verses time-

per-pixel. Each algorithm is shown

as a different line style and the mark-

ers correspond to grid size. For

every run, Maurer is the slowest

followed by Usq (5–7x faster than

Maurer), UsqLgU(15–23x faster

than Maurer), and Deg3 (20–33x faster than Maurer). First, notice that even though the compu-

tational complexity of Usq is less than UsqLgU, the clock time of UsqLgU is faster than Usq (by

about 3x). The unexpected speed difference is because logU is not large, and UsqLgU maintains

almost no data structure while Usq keeps track of a lot of data structures, and random number

generation is slow. Next it is interesting to note that even though Maurer is degree 3 it is still

slower than the degree 2 algorithms in Usq and UsqLgU. Finally, while the Deg3 is the fastest

implementation (at about 1.5x faster than UsqLgU) it uses degree 3.

From the second experiment, we can conclude that the degree of an algorithm may not corre-

spond to the clock time. Both degree 2 algorithms are faster than a degree 3 algorithm and slower

than a degree 3 algorithm. Thus, similar to asymptotic running time, degree can supply additional

information when selecting an algorithm for solving a problem.
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UsqLgUUsq

Time per pixel

Figure 8.7: Time-per-pixel on a logarithmic scale for four
implementations on boundaries extracted from 120 images
from the MPEG7 data set.

Our third experiment compares

per-pixel time of the four imple-

mentations on 120 extracted bound-

aries of images from the MPEG7 CE

Shape-1 Part B data set. We used

the first 20 images from the fish,

frog, lizard, lmfish, octopus, and tur-

tle sets, ranging in size from 1742

to 7742 pixels. Since the extracted

boundaries are closed curves or a

small number closed curves, an im-

age of U2 pixels has O(U) sites. In Figure 8.7, we see a scatter plot of image size verses time-per-

pixel. Each algorithm is depicted with a different marker. As is expected, the per-pixel times of the

all four algorithms are similar to the previous experiment, even though the grid sizes are smaller

and site densities are substantially reduced.

8.4 Conclusions

We presented aO(U2) expected time degree 2 algorithm for computing the Nearest Neighbor trans-

form of a U×U pixel image. The key step was in computing the discrete upper envelope of at most

U lines in O(U) expected time and degree 2. It seems possible that the discrete upper envelope

could be computed deterministically by divide-and-conquer with more programming complexity,

however, any non-randomized degree 2 algorithm that we attempted had an extra logU factor. Can

the logU factor be removed, while still using degree 2, without randomization?

The algorithms presented generalize to higher dimensions, but what about other norms? L1

and L∞ are particularly interesting, as they each have a degree 1 distance comparison.
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Chapter 9

Volume Calculation

Constructive solid geometry (CSG) can produce a high fidelity representation of a geometric

model. However, the model is often discretized, converting it to a surface or volumetric mesh in

order to enable a physical simulation where the model is the domain. Once discretized, properties

such as volume or adjacency are much easier to compute. Discretizing, however, is not a trivial

task, moreover, sometimes, it is not even necessary.

Monte Carlo (MC) methods for solving the neutron transport equation use CSG to represent

the domain exactly without the need for spatial discretization. The high level of geometric detail

is frequently desired when dealing with complex models for criticality safety and reactor analysis

applications, and, as a result, the CSG representation has been used in several major MC trans-

port solvers, such as MC21 [132], MCNP [139] and KENO-VI [12], which are popular in the

MC community.

Previously, the MC particle transport community calculated volumes primarily to verify the

quality of a model. Volumes did not directly influence the radiation transport calculation. However,

recent efforts to include in-line feedback effects (e.g., depletion, thermal feedback, xenon feedback,

etc.) in MC reactor calculations called for MC solvers to calculate volumes with a high degree of

accuracy[52]. While some popular MC codes, such as MCNP [139], calculate the volumes of

simple objects, no MC code available today is able to guarantee an accurate volume calculation for



all inputs when the modeling primitives have curved surfaces.

When codes cannot calculate component volumes analytically, users are typically required

to input volumes, which are obtained from external calculations or a priori information. Many

communities of computer science have investigated algorithmic volume calculations from various

perspectives. For the time being, we can think of the volume calculation problem faced in MC

community as finding the volume of a region described by the intersection of a finite number of

algebraic inequalities, sometimes called a semi-algebraic set.

The computer science theory community studied volume calculation in arbitrary dimension by

sampling points, and observed that computing volume, even for convex sets, is hard. Given p ∈ Qd

and K ⊂ Rd with K convex, a well-guaranteed oracle reports balls of radius R > r > 0 such

that B(p,R) ⊃ K ⊃ B(p, r). Füredi and Bàràny [47] showed that any deterministic, polynomial-

time algorithm using a well-guaranteed oracle to give an upper bound V and lower bound v on the

volume of a convex set in Rd must have error exponential in d. (Luckily, we are interested in a

fixed d.) Dyer, Frieze and Kannan [38] showed that a probabilistic algorithm can do better using a

membership oracle, with reports true if p ∈ K. Given K, a relative error ε > 0, and a membership

oracle, Dyer et al.’s algorithm finds with probability at least 3/4 the volume of K with relative

error less than ε in time polynomial in ε−1 and d.

More applied research in graphics, computational geometry and computer aided design inves-

tigates volume calculation in 3D, where the problem is tractable. For the 3D setting, Lee and

Requicha [85] survey volume calculation techniques in which they give an overview of different

domain representations and for each representation provide a technique for computing its volume.

Perhaps the most natural approach is to compute the volume by constructing the boundary

of the semi-algebraic set. To do so, one would have to compute the arrangement of the poly-

nomial boundaries. Collin [29] was the earliest to build an arrangement for semi-algebraic sets

in arbitrary dimensions, his algorithm is know as Collins decomposition. Collins decomposition
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is implemented in computer algebra systems such as Mathematica [138], which use exact arith-

metic. Collins algorithm is doubly exponential in the dimension d; this, combined with the dif-

ficulty of computing with algebraic numbers makes computing a decomposition time consuming.

Schömer and Wolpert [118] used a Collins like algorithm to compute a cell in an arrangement

of quadrics. Mourrain et al. [104] describe a sweep algorithm to produce a Collins decomposi-

tion. Many other papers extend Collins’ result, both in theory (Chazelle et al. [26] reduced the

combinatorial complexity of Collins’ algorithm to singly exponential in d, although the algebraic

complexity remains doubly exponential) and practice (Saunders et al. [116] implemented a parallel

Collins decomposition).

A key step in computing a boundary representation of quadrics is intersecting quadrics. Hoff-

man [62] describes a numerical algorithm for tracing the intersection of two quadrics that intersect

non-tangentially. Levin [87] gave an efficient algorithm to derive a parametric form of the in-

tersection of quadrics. Other researches considered quadric intersections by extending Levin’s

work [134], finding near-optimal parameterizations [37] and implementing exact algorithms [84].

Some researchers identify the class of natural quadrics—spheres, cones, and circular cylinders,

which occur frequently in computer-aided design—and develop faster geometric techniques to in-

tersect them [95, 122]. In a series of papers and his Ph.D. thesis, Keyser[76, 77, 78, 79, 81, 80] used

exact computation to convert CSG models with “low-degree” curved solids (e.g., cones, ellipses,

tori, etc.) to boundary representation.

Alternatively, one could avoid computing intersections as much as possible by using subdivi-

sion techniques. Lee and Requicha [86] describes two techniques for decomposing a CSG rep-

resentation into cubes or boxes to compute the volume (or other integral properties) of an object

in CSG representation. Similar to Lee and Requicha’s, we use a decomposition, however, we

use different tests and in some cases (i.e., when it can be done quickly) we compute a boundary

representation restricted to a box.
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We describe a framework for computing a model’s volume that decomposes the model into

regions, simplifying the model’s representation in each region until a volume calculation routine,

called an integrator, can take over. In addition, we present specific examples of using repre-

sentative integrators designed to handle the size, and potential complexity, seen in MC radiation

transport models. Through a series of controlled numerical experiments we demonstrate that the

new algorithm can produce accurate volume estimates within specified accuracy and confidence

bounds. Furthermore, the results from these experiments indicate that the new method can produce

these volume estimates up to several hundred times faster than the traditional sampling methods.

Section 9.1 provides a theoretical foundation for the CSG representations used in Monte Carlo

transport codes. In particular, we give precise mathematical definitions for the primitives. The

primitives are used to build components, which are nested to form the geometric model. Sec-

tion 9.2 describes a robust domain decomposition algorithm that can be used to subdivide a given

component into a set of simpler objects. The section also defines and analyzes the precision of

a set of efficient tests for determining when an intersection can occur between a component and

an axis-aligned box. These tests are used to classify regions and drive the partition process. Sec-

tion 9.3 describes a set of volume integration routines that were optimized for the common base

cases, which were observed using a separate tool built using the framework. As we anticipate a

larger corpus of test models presenting other common base cases, adding base cases has been made

quite easy.

The novelty of this framework is that we aim for a minimal set of tests on surfaces, which

not only ensures robustness by limiting numerical computation to within surfaces, but also facil-

itates speed and accuracy improvements by specially coding common cases, as we demonstrate

through experiments reported in Section 9.4. In addition, this work is a first step towards applying

techniques from computational geometry to MC radiation transport solvers. It is our hope that

this introduction will promote additional collaboration and flow of information between the two
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technical communities. Finally, we note that here, we analyze the degree of the tests used in our

framework, originally presented in [97]. The insights gained from the analysis led us to different

predicates than we originally suggested. The new predicates require less arithmetic precision and

are simpler to implement.

9.1 Model Representation

Many Monte Carlo codes that solve the neutron transport equation, such as MC21 [132] and

MCNP [139], use a constructive solid geometry (CSG) (which is sometimes also referred to as

combinatorial geometry representation) to define regions of space. A combinatorial geometry

model combines basic spatial primitives, bounded by surfaces (planes, cylinders, spheres, ellip-

soids, etc.), using Boolean operations (union, intersection, complement, difference). A model

consists of one or more interior disjoint, closed regions, called components, which may be orga-

nized in a parent/child hierarchy to reduce memory overhead and to accelerate particle tracking

(which is one of the time consuming steps when solving the transport equation with a Monte Carlo

solver). We give concrete details for the surfaces, Boolean formulae, and components, as well as

the interface that these objects should provide.

9.1.1 Primitives: Signed Quadric Surfaces

The modeling primitives are signed surfaces representing points in one of the regions that it bounds.

A signed surface S consists of a quadratic polynomial s(x, y, z) (sometimes called a quadric) and

a sign bit. The zero set of this polynomial is the points on the surface S. The set {(x, y, z) |

s(x, y, z) < 0} ⊆ R3 is the negative half-space of S, and {(x, y, z) | s(x, y, z) > 0} is the positive

half-space. A point p ∈ R3 has a negative sense with respect to S if p is in the negative half-space

of S, and a positive sense if p is in the positive half-space. The sign bit for S indicates which

half-space is the inside of the signed surface.
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A signed surface S is traditionally stored as the ten coefficients of the polynomial

s(x, y, z) = A1x
2 + A2y

2 + A3z
2 + A4xy + A5xz + A6yz + A7x+ A8y + A9z + A10. (9.1)

Positive scalar multiples give the same surface; negative multiples reverse the positive and nega-

tive senses. Many “natural quadrics” have more compact representations, which can be used to

accelerate and simplify computations. For the sake of brevity, for the remainder we will refer to

a signed surface simply as a surface. In addition, when analyzing precision, we assuming that the

coefficients of s(x, y, z) are degree 1.

As an abstract data type, a surface must provide two tests described below. First, a surface

must provide the Inside(S, q) tests, which returns true when a query point q is inside surface

S. That is, when p has the same sense as the sign of S. In addition the surface must also provide

the classify(S, b) test, which reports whether the points of an axis-aligned box b have the same

sense, opposite sense, or both senses, with respect to the surface. In addition, the surface can

optionally provide an integrator that calculates the volume of the primitive intersected with a box.

Planes and axis-aligned cylinders are common modeling primitives and have a greatly simpli-

fied Inside and Classify tests. As such, we found it worthwhile to implement them special

cases in addition to general quadrics. In Section 9.2.1 we discuss an implementation and analyze

the precision of both tests for general quadrics only, the special cases are more straightforward.

9.1.2 Component Hierarchy: Boolean Formulae

In many modeling tools, primitives are combined by Boolean operations1 (union, intersection,

difference, and complement) to describe more complicated regions. A multi-component model

is described as a tree hierarchy in which each node represents a component defined by Boolean

1Often by regularized operations [111], which follow the operation by taking the boundary of the interior. Regu-
larization does not change volume, but does remove lower dimensional features from an object.
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Figure 9.1: Hierarchy Np-N -Nc, with comp. C(N) striped purple and blue.

operations that is contained in its parent, disjoint from its siblings, and containing its children.

To be precise, there are three types of components described by an object represented as a node

N in the hierarchy tree. A simple example is illustrated in Figure 9.1.

The basic component B(N) is a region defined as a DNF (Disjunctive Normal Form, i.e., a union

of intersections) formula of primitives that are bounded by quadric surfaces. B(N) is a blue

rectangle in the figure.

The restricted component R(N), drawn as a purple-striped rectangle, is the intersection of B(N)

with the restricted component of its parent. Thus, restricted components nest, with the one

at the root, N0, always containing the entire model. The interiors of restricted components

of siblings of N are assumed to be disjoint from that of N ; it is the modeler’s responsibility

to enforce this. If we explicitly include the intersection of ancestors, a restricted component

has a 3-level formula (i.e., an intersection of unions of intersections).

The hierarchical component C(N), striped purple and blue, is the restricted component R(N)

minus the restricted components of the children of N . We seek to compute the volumes of

all hierarchical components in the tree.

As an abstract data type, the Boolean formulae and hierarchy tree F must provide the fol-

lowing interface. The PointLocation(F, q) construction returns the hierarchical component

containing a query point q. The Restriction(F,R, b) construction takes a boolean formula
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F , a box b, and the results R of the box classification test for all primitives and returns simplified

formulae and tree by replacing primitives that are entirely outside or containing the box with false

or true, respectively, and applying logical rules to obtain a equivalent formula without these log-

ical constants. Note that these operations are entirely logic and data structure manipulation. As

all the numeric evaluations are performed in the surfaces, these operations cannot introduce any

numerical errors.

9.1.3 Problem Statement

The tree also drives the process of volume computation for the components, and we ask it to

provide the volume of each restricted component. The volumes of the hierarchical components are

then computed by having each parent subtract the volumes of its children.

To obtain these volumes, we extend the notion of an integrator from a surface to the entire hier-

archy of components: an integrator is supposed to provide the volumes of a given box intersected

with each restricted component in a hierarchy tree. Since it will do so by creating a spatial subdi-

vision, which is a third hierarchical structure, we find the following sections clearer if we consider

the problem of a single restricted component, so we have only a 3-level Boolean formula and an

octree to distinguish between. Thus, in the following sections we focus on Problem 48. In fact, we

evaluate all restricted components in the hierarchy tree together, which is important to prevent the

subtractions from compounding errors.

Problem 48. Given an axis-aligned bounding box BB and a restricted component R, defined

as a 3-level formula on signed surfaces {S1, . . . , Sn}, compute the volume of their intersection,

BB ∩R, to specified precision.
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9.2 Divide and Conquer Using Predicates

Here is a brief top-down description of the divide and conquer integrator for computing the volume

of a restricted component (actually, the entire component hierarchy, as suggested in Section 9.1)

using predicates mentioned in the previous section, and described in detail below.

The input is the Boolean formula on a set of surfaces defining primitives, and an initial axis-

aligned bounding box. The procedure depends on a set of integrators for base cases, such as

boxes that intersect a couple of surfaces; these are described in Section 9.3. The formula is first

simplified by restriction to the box, which involves applying box classification for all surfaces;

these predicates are detailed in the remainder of this section. If it is then simple enough, or the box

is small enough, to apply a base case integrator, then this completes the computation. Otherwise the

box is subdivided, and copies of the formula are given to each box; we use a subdivision into eight

boxes, forming an octree [115] for our implementation and experiments. Evaluation on smaller

boxes can be performed in parallel, as the only dependency is the summation of return values.

9.2.1 Surface/Axis-Aligned Box Classification

Figure 9.2: Intersection of a quadric with an axis-
aligned plane.

Before going into the details of the box clas-

sification test, we describe a predicate for de-

termining if a conical curve is an ellipse and a

construction for sampling a point inside an el-

lipse or ellipsoid.

Classify Conic

Recall that the intersection of a quadric and a

plane is represented by the zero set of a conic.

When the plane is orthogonal to a basis vector of the standard basis (as in Figure 9.2), computing
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the resulting conic is easy. for example, the intersection of the plane z = Z with a quadric is:

s(x, y, Z) = A1x
2 + A2y

2 + A3Z
2 + A4xy + A5Zx+ A6Zy + A7x+ A8y + A9Z + A10

= A1x
2 + A2y

2 + A4xy + (A5Z + A7)x+ (A6Z + A8)y + (A3Z
2 + A9Z + A10)

= 1© x2 + 1© y2 + 1© xy + 2© x+ 2© y + 3© .

This gives us a conic on the plane z = Z, which we can rewrite as a polynomial of degree 2 over

two variables:

c(x, y) = B1x
2 +B2x

2 +B3xy +B4x+B5y +B6 =

(
x y 1

)
B1

B3

2
B4

2

B3

2
B2

B5

2

B4

2
B5

2
B6



x

y

1

 = 0.

The coefficients B1, B2, and B3 are degree 1, B4 and B5 are degree 2, and B6 is degree 3. The

polynomial can be written more conveniently as

c(x, y) =

(
x y 1

)
1© 1© 2©
1© 1© 2©
2© 2© 3©



x

y

1

 = 0. (9.2)

Conics represent ellipses, hyperbolas, parabolas, lines, etc. Levin [87] describes how to classify a

conic by properties of its discriminant, the 3× 3 symmetric matrix in the Equation 9.2. However,

the classification requires high precision when computing eigenvalues of the discriminant.

For our purposes, we need only to determine if a conic is an ellipse. This observation greatly

simplifies calculations. We define the Ellipse(c) test in the following lemma:

Lemma 49. Given a conic of form c(x, y) = 1© x2 + 1© y2 + 1© xy + 2© x + 2© y + 3© ,

Ellipse(c) returns true when c is a polynomial representing an ellipse using degree 5.
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Proof. Let Q be the discriminant of c and Qu be the upper left 2 × 2 matrix. Using Lawrence’s

conic classification [83], one can determine if a conic is an ellipse by verifying three criterion:

(a1) |Q| 6= 0

(a2) |Qu| > 0

(a3) B2 ∗ |Qu| < 0.

As |Q| = 5© and |Qu| = 2© , (a1) is degree 5 and (a2) is degree 2. Step (a3) tests the sign

of 1© * 2© , by first computing the signs of the two polynomials and comparing the signs we get

that (a3) is degree 2.

It follows from the above discussion that

Corollary 50. Given a surface S defined by degree 1 coefficients and a plane P orthogonal to a

standard basis vector defined by a degree 1 coordinate, Ellipse(S, P ) returns true when S ∩ P

is a real ellipse using degree 5.

In our previous work [97] we did not consider or analyze the precision of our predicates and

used Levin’s classification directly.

Sample Point in an Ellipse And Ellipsoid

Next we describe how one can sample a point on the interior of an ellipse and an ellipsoid.

Lemma 51. Given an ellipseE formed by the intersection of a quadric S and an axis-aligned plane

P , both with degree 1 coefficients, the Sample(S, P ) construction returns a point in the interior

of E with homogeneous coordinates of the form ( 2© , 3© , 3© ) on the plane P
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Proof. Recall that E is, a conic of the form

c(x, y) = B1x
2 +B2y

2 +B3xy +B4x+B5y +B6

= 1© x2 + 1© x2 + 1© xy + 2© x+ 2© y + 3© .

The line `y := d
dy
c(x, y) = 0 passes thought the left and right most points of E and line `x :=

d
dx
c(x, y) = 0 passes though the top and bottom most points of E. Thus, the intersection point q of

`x and `y is inside E. We compute q by solving the following linear system

2B1 B3

B3 2B2


qx
qy

 =

−B4

−B5

 ,

which gives us that

qx =
B3B5 − 2B2B4

4B1B2 −B2
3

=
1© 2© − 1© 2©
1© 1© − 2© =

3©
2© qy =

B3B4 − 2B1B5

4B1B2 −B2
3

=
3©
2© .

Thus, q has homogeneous coordinates of the form ( 2© , 3© , 3© ).

We use a similar technique as above to sample a point on the interior of an ellipsoid.

Lemma 52. Given an ellipsoid E defined by degree 1 coefficients, Sample(E) samples a point

in the interior of E with homogeneous coordinates of the form ( 3© , 3© , 3© , 3© ).

Proof. The proof is similar as above. The lines d
dx
c(x, y) = 0, d

dy
c(x, y) = 0, and d

dz
c(x, y) = 0
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intersect at q inside the ellipse. As before, we compute q by solving the following linear system.


2A1 A4 A5

A4 2A2 A6

A5 A6 2A3



qx

qy

qz

 =


−A7

−A8

−A9


All entries of the matrix are degree 1, thus the determinant, which is the homogeneous coordinate,

is degree 3. As each entry in the cofactor matrix is degree 2, we get


qx

qy

qz

 =
1

3©


2© 2© 2©
2© 2© 2©
2© 2© 2©




1©
1©
1©

 =
1

3©


3©
3©
3©

 .

Thus, q has homogeneous coordinates of the form ( 3© , 3© , 3© , 3© )

In our previous work [97], we suggested computing a sample point on the inside of an ellipse by

taking the midpoint of the segment connecting the left and right most points. Also, we suggested

computing a sample point in an ellipsoid by computing its silhouette curve in the z direction and

projecting the curve down to the xy-plane. As the silhouette curve of an ellipsoid is an ellipse,

we used the ellipse sampling procedure above to sampled a point p. We then computed the two

intersection points of the line through p orthogonal to the xy-plane and took the sample point to be

the midpoint of segment p1p2.

The above discussion illustrates that sometimes examining predicates and considering preci-

sion as a resource results in simpler and more accurate primitives.

The Box Classification Test

Below we summarize the Classify test for a general quadric. Before proceeding, we will need

one additional lemma about the Inside test.
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Lemma 53. Given a surface S defined by degree 1 coefficients and a point q defined by degree 1

coordinates, Inside(S, q) returns if q is inside of S in constant time and degree 3.

Proof. Surface S is defined by a quadric (as in Equation 9.1). We can determine if q is inside

S by taking the sign of s(qx, qy, qz), which is degree 3 as a polynomial in qx, qy, qz and Ai for

i = 1, . . . , 10.

Given an axis-aligned box b and a surface S, Classify(S, b) labels box b as Inside if all

its points have the same sense as S, Outside if all its points have the opposite sense as S, or

Intersecting if it contains points of both senses.

Lemma 54. Given a surface S defined by degree 1 coefficients and an axis aligned box with

degree 1 corners, Classify(S, b) returns the classification of the sense of the box with respect

to S in degree 5.

Proof. For a general quadric, degree 4 edge tests assign values from box corners to pairs of vari-

ables in a quadric, and evaluate the discriminant of the third variable. This algebra computes the

vertex tests along the way. If these tests identify the box as Intersecting, we return that label, other-

wise we must continue to test faces and containment since, for example, a cylinder or sphere could

intersect a box boundary only at faces.

To test if a face f intersects surface S, First we use Ellipse(S, P ) to check if the intersection

of S and the plane P containing f (as in Figure 9.2) is an ellipse.

If S ∩ P is not an ellipse, it is unbounded. Since we already know that vertices and edges

around f do not intersect S, the face also does not intersect S. If S ∩ P is an ellipse then we use

Sample(S, P ) to sample a point q on P and in the interior of the ellipse to detect intersection with

face f . Detecting the intersection involves degree 4 comparisons of p and the corners of b. Again,

if we detect Intersecting, we return that label.

Finally, if S is an ellipsoid, using degree 4, test if Sample(S) is inside b to ensure it has the

same sense as all corners, and report the final classification label for b.
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The highest degree predicate above is the degree 5 Ellipse test. Thus, Classify(S, b) is

degree 5.

9.2.2 Component/Box Classification and Restriction

Extending the classification of a box b from surfaces to components is a purely logical operation,

and the restriction of the 3-level formula to b is just data structuring. We summarize this observa-

tion in the theorem

Theorem 55. Given a box b with degree 1 corners, we can (conservatively) determine if a box b is

inside, outside or straddling a component with degree 5.

Proof. Recall that Restriction(F,R, b) takes a 3-level formula, a box b, the results R of the

box classification test for all primitives. We can apply the formula to conservatively combine the

labels of b by the following rules, where we have abbreviated X: Intersecting, I: Inside, and O:

Outside, and α: any.

complement X = X , I = O, and I = O.

union X ∪X = X , O ∪ α = α, and I ∪ α = I .

intersection X ∩X = X , O ∩ α = O, and I ∩ α = α.

This is a conservative extension because the union of two objects that intersect box b may actually

completely cover b, or their intersection within b may be empty. By classifying all such cases as

Intersecting, however, the octree will simply refine the box and retest. Thus, the result can be

guaranteed correct to the level of refinement.

To avoid classifying every child box for every surface, we need to simplify formula F by

restriction to box b. We describe how this can be done recursively, while exploring the octree in

depth-first order. At any step we have a box b and the 3-level formula for b ∩ F that uses only

surfaces that were deemed Intersecting the parent of b.
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Initially we begin with a bounding box and the entire formula, represented as a tree of height

three. (Recall that F is intersections of unions of intersections of surface primitives; each operator

is represented by a list of pointers to the formulae or variables that it operates on.) We evaluate

b with respect to each surface remaining in the formula. If b is Inside or Outside any surface,

apply the above union/intersection operations (with commutativity and associativity) to simplify

the formula. If the formula simplifies to Inside or Outside, or if we decide for some other reason to

stop traversing at box b, then we are done. Otherwise, we refine box b, pass the simplified formula

to each child, and recursively evaluate each child.

In this recursive algorithm it is imperative that any surface that intersects a box b must be de-

tected as intersecting the parent of b. For example, if faces were not tested in the box classification

test and a cylinder was missed because it pierced only a face of b, then it would be simplified away,

and not be evaluated in any children of b.

9.3 Volume Estimators

An integrator determines if the geometry inside a box is sufficiently simple that it can evaluate the

volumes in a component hierarchy; integrators serve as the base cases for the recursive divide &

conquer algorithm.

Each integrator receives as input a box, an error interval and confidence value expressed either

in absolute terms or relative to the volume of the box, and a component hierarchy. It can look at

the size of the box, the number and kind of surfaces in the hierarchy, and its task is to evaluate the

volumes of the relative components in the box to within the error interval with given confidence.

We first describe several possible integrators, then return to the analysis of error intervals. As

almost all integrators produce an approximate to an exact volume we do not analyze integrators in

terms of their degree.

The Box Integrator The simplest integrator assigns a user-specified fraction of box volume
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to each component that can intersect a box in the spatial hierarchy. This is exact when no surface

passes through a box, since then the box is entirely inside one component. Otherwise the confi-

dence is directly proportional to the volume of the box, so this can always be a fallback integrator

when boxes become small.

The General Integrator: Monte Carlo A Monte Carlo integrator simply performs point-in-

component tests. We obtain confidence bounds using the Wilson test [137], which, at the 95%

confidence level suggests that the volume v of a component that receives x out of n samples is in

the confidence interval

x+ 2

n+ 4
± 2

√
x(1− x)/n+ 1

n+ 4

We estimate the volume as v = x/n so that the total volume within the box is conserved.

Single Plane Integrator When a single surface defines the portion of a component in an

axis aligned box, by some case analysis (often a nontrivial amount) we can derive the domains

of integration for the component’s volume, which we can then evaluate numerically or analyt-

ically. Single planes are the easiest and most frequent case, and their implementation shows

benefits immediately.

Pairs of Planes Integrator Extending the single quadric integrator to a pair is also possible.

Again, the biggest payoff for the effort comes from handling pairs of planes – by implementing a

special integrator for this case, any box that contains two planes becomes a base case and needs

not be further subdivided.

Capped Cylinder Integrator As elliptic cylinders are infinite in one direction, they are often

truncated by some other quadric (usually a plane). We found implementing a special integrator for

an axis-aligned cylinder truncated by a plane orthogonal to its axis showed benefits. Untruncated

axis aligned cylinders are also handled by this integrator.
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Bundle of Cylinders Integrator Because bundles of axis-aligned pins and cylindrical contain-

ment vessels are so common in models, we found it worthwhile to implement a special integrator

for pairwise-disjoint collections of axis-aligned cylinders (capped and uncapped) with circular

cross sections. Intersecting cylinders are reduced to this case by subdivision.

9.3.1 Error bounds

One concern that arises with the spatial subdivision of the problem is how to combine error bounds

from individual boxes. In the worst case, bounds on the errors from each box would have to sum:

an error of ±δ from K boxes would become an error of ±δK. This worst case occurs if all errors

are not independent and occur in the same direction, perhaps by a rounding problem in an iterator.

Careful coding is needed to avoid accumulation of such error.

We get an average case if the errors are independent; the error bound from a combination would

grow more like±δ
√
K. The easiest illustration of this is to imagine a Monte Carlo volume estimate

that chooses random points in each box and decides if they are inside or outside the volume, giving

independent Bernoulli trials. It could instead choose points from the union of all boxes with the

variance going from np(1−p) for each ofK boxes toKnp(1−p) overall, so the standard deviation

increases by
√
K.

The best case is also relevant – dependent errors can cancel if they are made in opposite di-

rections, and we actually benefit from that by evaluating the entire component hierarchy at once.

Consider Monte Carlo estimates again: if we determine which component contains a trial point,

then the estimates to volume will at least add up to the volume of the box (up to machine preci-

sion) so that volume lost by one component will be gained by another and the total volume will

be conserved.
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Figure 9.3: Left: Cube is≈ 0.125 volume cube with a random rotation. Center: DrillCyl is a union
of two intersections of a dozen cylinders and planes. Right: cPiped12 shown is a wedge-shaped
block minus a 3 × 4 bundle of L-shaped pipes; we also test a 10 × 10 bundle of L-pipes in the
model cPiped100 and a 100× 100 bundle of L-pipes in the model cPiped10000.

9.4 Experiments

In this section we demonstrate how adding integrators in our framework can reduce the running

time and/or increase the accuracy of volume computation on a set of models shown in Figure 9.3.

Timings are from a 3.2GHz Intel Xeon processor with 12GB RAM running Ubuntu 10.04.

We ran several experiments on each of five models, three of which are shown in Figure 9.3

(images of the fourth and fifth models are omitted as they are visually similar to the right-most

image). Each model is inside a cube of unit volume and tolerances refer to this volume. Cube is a

randomly rotated 0.5 × 0.5 × 0.5 cube, with volume approximately 0.125 (randomly rotating the

cube induces a small error, reducing the volume by approximately 1e-07). We use this example to

assess the accuracy of combinations of plane and Monte Carlo integrators. DrillCyl is a union of

intersections of capped cylinders with drilled holes. We use this example to assess the performance

of combinations of integrators on models with curved primitives. cPiped12 is a wedge with twelve

L-shaped pipes of radius .035 removed, defined by 55 surfaces and 31 unions of intersections; we

also do a larger models, cPiped100, with 100 L-shaped pipes of radius .01, defined by over 475

surfaces and 200 unions of intersections, and cPiped10000, with 10,000 L-shaped pipes of radius
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Table 9.1: Numbers of boxes evaluated by different integrators for different models and tolerances,
with volume & timing. Cube has no cylinders so we omit +Cyl; the other models have few planes,
so we omit the +1 Plane line.

Model Alg Total Integrators (% of total boxes) Total Time
Name Boxes Box MC 1pl 2pl Cyl Bun Volume sec

Cube MC 1 - 100.0 - - - - 0.1245446 0.09
tol: ±2.2e-03 +octree 20,280 57.4 42.6 - - - - 0.1251001 0.02
vol: 0.1249998 +1 Plane 4,768 58.6 15.4 26.0 - - - 0.1249996 <.01

+2 Plane 610 64.3 3.0 9.8 23.0 - - 0.1250019 <.01
Cube MC 1 - 100.0 - - - - 0.1249980 131.12

tol: ±1.1e-04 +octree 2,060,7294 57.1 42.9 - - - - 0.1250000 18.16
vol: 0.1249998 +1 Plane 168,428 57.3 14.3 28.4 - - - 0.1249998 0.37

+2 Plane 1,380 66.5 1.2 10.0 22.3 - - 0.1249998 <.01
DrillCyl MC 1 - 100.0 - - - - 0.3867179 0.20

tol: ±2.2e-03 +octree 73,200 55.3 44.7 - - - - 0.3866701 0.08
vol: 0.3866281 +2 Plane 66,144 55.1 43.2 1.3 0.4 - - 0.3868198 0.08

+Cyl 10,872 48.2 15.5 1.5 2.2 32.7 - 0.3866121 0.02
DrillCyl MC 1 - 100.0 - - - - 0.3866408 286.00

tol: ±1.1e-04 +octree 78,737,968 57.1 42.9 - - - - 0.3866279 73.62
vol: 0.3866281 +2 Plane 67,367,700 57.1 42.8 <0.1 <0.1 - - 0.3866278 62.73

+Cyl 378,512 54.2 14.1 1.3 2.7 27.6 - 0.3866278 0.65
cPiped12 MC 1 - 100.0 - - - - 0.0660653 0.13

tol: ±2.2e-03 +octree 24,753 48.6 51.4 - - - - 0.0655403 0.03
vol: 0.0657512 +2 Plane 13,784 43.1 53.4 1.9 1.5 - - 0.0658770 0.03

+Cyl 8,667 39.3 32.7 2.5 2.4 23.1 - 0.0657460 0.02
+Bun 3,322 44.5 22.3 6.3 6.2 12.9 8.1 0.0657594 0.02

cPiped12 MC 1 - 100.0 - - - - 0.0657498 192.75
tol: ±1.1e-04 +octree 34,070,947 56.6 43.4 - - - - 0.0657512 32.73
vol: 0.0657512 +2 Plane 20,543,405 56.2 43.7 <0.1 <0.1 - - 0.0657509 20.05

+Cyl 1,296,975 39.4 23.1 0.9 1.0 35.7 - 0.0657511 2.36
+Bun 198,090 52.0 15.1 5.9 6.6 19.4 1.0 0.0657512 0.56

cPiped100 MC 1 - 100.0 - - - - 0.0731463 0.60
tol: ±2.2e-03 +octree 23,003 37.6 62.4 - - - - 0.0731258 0.07
vol: 0.0731920 +2 Plane 11,936 21.0 75.6 2.6 0.8 - - 0.0733605 0.06

+Cyl 11,887 20.7 68.2 2.6 0.8 7.6 - 0.0732219 0.06
+Bun 3,228 34.8 28.7 7.8 3.1 2.3 24.0 0.0732155 0.03

cPiped100 MC 1 - 100.0 - - - - 0.0731951 790.28
tol: ±1.1e-04 +octree 62,392,744 54.8 45.2 - - - - 0.0731921 63.96
vol: 0.0731920 +2 Plane 48,958,575 54.2 45.6 <0.1 <0.1 - - 0.0731919 51.32

+Cyl 8,527,009 38.4 25.2 0.3 0.4 35.7 - 0.0731919 14.58
+Bun 482,756 49.6 16.8 4.8 7.0 18.5 3.3 0.0731919 1.41

cPiped10000 MC 1 - 100.0 - - - - 0.0768654 183.04
tol: ±2.2e-03 +octree 23,003 43.6 56.4 - - - - 0.0767527 2.40
vol: 0.0767715 +2 Plane 11,936 32.4 63.4 3.3 0.8 - - 0.0768464 2.33

+Cyl 11,887 32.2 63.6 3.3 0.8 <0.1 - 0.0768258 2.34
+Bun 3,228 39.5 25.0 9.6 3.1 0.3 23.1 0.0767881 2.36

cPiped10000 MC - - - - - - - - NAa

tol: ±1.1e-04 +octree 208,125,506 33.0 67.0 - - - - 0.0767697 358.09
vol: 0.0767715 +2 Plane 195,211,080 31.4 68.6 <0.1 <0.1 - - 0.0767696 348.25

+Cyl 162,382,473 23.1 43.7 <0.1 <0.1 33.2 - 0.0767696 346.37
+Bun 1,539,063 30.6 30.3 0.3 4.9 13.0 20.9 0.0767691 9.43

aHalted after 12 hours. Extrapolating from cPiped10000 with tolerance ±2.2e-03, time will be about 76 hours.
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.001 defined by over 40,800 surfaces and 20,400 unions of intersections.

For each model we evaluated volumes with tolerances of ± 2.2e-03 and ± 1.1e-04. In our cur-

rent implementation, tolerance is used primarily to determine the number of Monte Carlo samples

needed over the unit volume, which in turn determines the maximum depth of our octree, since the

number of samples in a box is proportional to its volume, and we require at least eight points in a

box to subdivide it. Thus with tolerance 2.2e-03 we stop at depth 6, and with 1.1e-4 at depth 11.

Descending further can change which integrators run. For example, in cPiped100 with tolerance

± 2.2e-03 Cyl integrates 7.6% of the boxes in volume calculation. However, when we explore

the tree further with tolerance ±1.1e-04, we find that Cyl integrates about 35.7% of the boxes.

Because Cyl only integrates capped and uncapped single cylinders we need to travel further down

the tree before we isolate a cylinder.

Each line of the table reports statistics of a run using all the integrators above that line, which

explains the triangular pattern of numbers (e.g., the last line for each model uses all integrators).

Table 9.1 reports the number of boxes on which integrators are run, and reports, for each type

of integrator, the percentage of boxes that it evaluated. The number of boxes has a big effect on

running time, but is not the whole story. Table 9.2 shows the drastic decrease in the number of

samples required by the Monte Carlo integrator as some of its boxes are given to other integrators

(the number of samples is directly proportional to the volume of the boxes in which MC integration

is performed). Adding other integrators decreases the number of boxes for the MC integrator

by a factor of 2, but the volume of boxes integrated by MC decrease by factors of more than

10. An integrator that is added but not used in many boxes can still reduce the number of boxes

dramatically by serving as an early base case.

We observe that in all cases, the volume calculated with additional integrators is within the

error tolerance, but between 1 and 5 orders of magnitude faster than MC. We attribute the speedup

129



mainly to the reduced number of MC samples, thus, even for course volume estimates with toler-

ance 2.2e-03, we see the benefit of additional integrators.

9.5 Conclusions

We described a divide and conquer framework for computing volumes of CSG models that sup-

ports adding special integrators for handling common or simple subproblems to decrease time

and increase accuracy. The application to volume computation is just one of many possible; it is

easy from our current structure to label boxes of the octree with components of the hierarchy that

straddle them; such a data structure may more quickly locate and track particles while solving the

transport equation.

Our exploration of error bounds and their propagation is rudimentary at this point, and much

more can be said about decisions that affect the error from the various integrators. For example, if

we start off with a bounding box whose minimal point’s coordinates and side lengths are powers of

two, each octree cell could have an exact representation. Thus, the volume of outside boxes would

be exactly zero, and inside would be at most 3ulp away from the true box volumes. Tight error

bounds for the other integrators is not so easy. Perhaps by keeping tight bounds on the numerical

errors introduced by an integrator we may make a more informed traversal of the octree.
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Table 9.2: Percentages of the unit volumes integrated by the different integrators; the decrease in
Monte Carlo volume is directly related to the number of samples and running time.

Model Alg Integrators (% of total volume) Total Total
Name Box MC 1pl 2pl Cyl Bun Samples sec

Cube MC - 100.0 - - - - 999,995 0.09
tol: ±2.2e-03 +octree 96.7 3.3 - - - - 34,528 0.02
vol: 0.1249998 +1 Plane 80.7 0.3 19.0 - - - 2,928 <.01

+2 Plane 61.1 <0.1 9.3 29.6 - - 72 <.01
Cube MC - 100.0 - - - - 1,410,065,909 131.12

tol: ±1.1e-04 +octree 99.9 0.1 - - - - 17,663,096 18.16
vol: 0.1249998 +1 Plane 80.9 <0.1 19.1 - - - 48,176 0.37

+2 Plane 61.1 <0.1 9.3 29.6 - - 32 <.01
DrillCyl MC - 100.0 - - - - 999,995 0.20

tol: ±2.2e-03 +octree 87.5 12.5 - - - - 130,784 0.08
vol: 0.3866281 +2 Plane 83.7 10.9 4.6 0.8 - - 114,256 0.08

+Cyl 36.1 0.6 2.5 0.8 60.0 - 6,720 0.02
DrillCyl MC - 100.0 - - - - 1,410,065,909 286.00

tol: ±1.1e-04 +octree 99.6 0.4 - - - - 67,494,688 73.62
vol: 0.3866281 +2 Plane 94.2 0.3 4.7 0.8 - - 57,664,680 62.73

+Cyl 36.5 <0.1 2.5 0.8 60.2 - 106,576 0.65
cPiped12 MC - 100.0 - - - - 999,995 0.13

tol: ±2.2e-03 +octree 95.1 4.9 - - - - 50,932 0.03
vol: 0.0657512 +2 Plane 70.4 2.8 6.2 20.6 - - 29,468 0.03

+Cyl 69.2 1.1 6.2 20.6 2.9 - 11,332 0.02
+Bun 68.3 0.3 6.2 20.6 0.9 3.8 2,964 0.02

cPiped12 MC - 100.0 - - - - 1,410,065,909 192.75
tol: ±1.1e-04 +octree 99.8 0.2 - - - - 29,604,860 32.73
vol: 0.0657512 +2 Plane 73.0 0.1 6.2 20.6 - - 17,953,588 20.05

+Cyl 69.8 <0.1 6.2 20.6 3.4 - 598,522 2.36
+Bun 68.5 <0.1 6.2 20.6 1.0 3.8 59,964 0.56

cPiped100 MC - 100.0 - - - - 999,995 0.60
tol: ±2.2e-03 +octree 94.5 5.5 - - - - 57,392 0.07
vol: 0.0731920 +2 Plane 72.2 3.4 6.8 17.6 - - 36,100 0.06

+Cyl 72.2 3.1 6.8 17.6 0.4 - 32,440 0.06
+Bun 70.4 0.4 6.7 17.6 <0.1 4.9 3,700 0.03

cPiped100 MC - 100.0 - - - - 1,410,065,909 790.28
tol: ±1.1e-04 +octree 99.7 0.3 - - - - 56,352,288 63.96
vol: 0.0731920 +2 Plane 75.3 0.3 6.8 17.6 - - 44,694,892 51.32

+Cyl 73.7 <0.1 6.8 17.6 1.9 - 4,295,224 14.58
+Bun 70.5 <0.1 6.7 17.6 0.1 5.0 162,002 1.41

cPiped10000 MC - 100.0 - - - - 999,995 183.04
tol: ±2.2e-03 +octree 95.0 5.0 - - - - 51,920 2.40
vol: 0.0767715 +2 Plane 72.7 2.9 6.8 17.6 - - 30,280 2.33

+Cyl 72.7 2.9 6.8 17.6 <0.1 - 30,220 2.34
+Bun 70.4 0.3 6.7 17.6 <0.1 4.9 3,232 2.36

cPiped10000 MC - - - - - - - NA a

tol: ±1.1e-04 +octree 98.4 1.6 - - - - 279,088,846 358.09
vol: 0.0767715 +2 Plane 74.0 1.6 6.8 17.6 - - 267,848,220 348.25

+Cyl 73.7 0.8 6.8 17.6 1.1 - 141,769,844 346.37
+Bun 70.5 <0.1 6.7 17.6 <0.1 5.1 931,534 9.43

aHalted after 12 hours. Extrapolating from cPiped10000 with tolerance ±2.2e-03, time will be about 76 hours.
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Chapter 10

Using Degree-driven Algorithm Design to

Achieve EGC

Recall from Chapter 2 that the Exact Geometric Computation (EGC) paradigm dictates that

an algorithm’s control flow should be independent of the machine on which the implementation is

run; in particular, it should be the same as if the algorithm was implemented with real arithmetic.

EGC’s strength can be seen in its acceptance in software development. Well-known open-source

software libraries CGAL [2] and LEDA [19] both have geometric kernels supporting EGC. Thus,

it is worthwhile to conclude this thesis with a discussion of how degree-driven geometric algorithm

design fits in with the most popular techniques for achieving the goals of EGC.

This thesis investigated the degrees of geometric primitives, predicates, constructions, and al-

gorithms. By taking the degree of predicates and constructions into account at design time, we

can reveal if we can implement an algorithm on native hardware, even when we cannot, we know

what precision is sufficient. When we need more than native precision, the degrees of polynomials

can help to select the appropriate techniques from the EGC literature. For the remainder of the

chapter, I summarize the four most popular techniques for achieving the goals of EGC and discuss

how degree analysis supports each technique to correctly evaluate the sign of a given polynomial

corresponding to a predicate.



10.1 EGC Technique 1: Static Analysis

Given a polynomial corresponding to a predicate a programmer can carry out static analysis to

determine the number of bits needed to correctly evaluate the sign. From the number of bits, the

programmer can determine how large the coordinates of the input can be.

Recall from Chapter 3 how we can use degree to upper bound the required precision. We

defined predicates as signs of multivariate polynomials with variables from the input. In this thesis,

the coefficients of the monomials in the predicates are small constants with absolute value≤ 8 (this

is often the case for geometric predicates). Assume that the input coordinates are represented by

b-bit integers. A degree k monomial with coefficient 1 can be represented with bk bits. Let δ

be the number of bits needed to represent the coefficients. The monomials of a predicate can be

represented with bk + δ bits. Let the number of variables in a predicate be s. The number of

monomials is O(sk) and a polynomial of degree k can be evaluated with bk+ δ+ k log2 s bits. For

predicates, we are only interested in the sign. In Appendix A we see how the sign can be computed

exactly with only (bk + δ) bits.

With an upper bound on the number of arithmetic bits needed to evaluate a predicate we can

determine the maximum number of bits b that can be used to represent the coordinates of the

input. Assume that our machine supports w-bit arithmetic. We compute b = b(w − δ)/kc.

For example on a machine supporting 64-bit arithmetic, the degree 2 and degree 3 algorithms

in Chapters 6-8 support reasonably sized input coordinates – approximately 30-bit and 20-bit

coordinates, respectively.

10.2 EGC Technique 2: Software Implementations

Given a polynomial corresponding to a predicate a software implementation evaluates predicates

using software libraries to simulate arbitrary precision arithmetic. The libraries vary in the number
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types that they support. Some of the more popular libraries are listed below. GMP [50] supports

arbitrary precision arithmetic for signed integers, rationals and floating point numbers. MPFR [46]

is based on GMP and supports multiple-precision floating-point and has rounding semantics similar

to that of IEEE-754. CORE [71] and LEDA [19] support arbitrary precision rational, floating point

and algebraic numbers.

To the programmer, the benefits of software implementations are that they abstract the number

types. The abstraction can reduce debugging and ease implementation. The programmer must be

careful though. Karasick et al.[72] pointed out and Held and Mann [57] demonstrated that simply

plugging in a library without care can cause slowdowns of over 10, 000x over hardware arithmetic.

Yap [140] pointed out that with some tuning, often the predicate evaluation can be reduced to less

than 10x slowdown. (Assuming that an algorithm spends 25% of the time evaluating predicates,

a 10x slowdown causes the implementation to run three times longer.) Degree-driven algorithm

design can help with tuning by bounding the number of bits computed in software.

In software implementations, precision is bounded only by memory. For very large memory

bound problems, one must decide to trade memory for precision. As degree-driven algorithm

design can be used to bound the number of bits for a predicate evaluation, it provides additional

data for making the decision.

10.3 EGC Technique 3: Arithmetic Filters

Given a polynomial corresponding to a predicate an arithmetic filter computes an error bound on

the polynomial’s value and uses the error bound and value to determine if the sign is positive,

negative, or failure. Failure is returned when the value is smaller than the error bound. Arithmetic

filters are studied in theory [33, 34] and in practice[14, 18, 45].

Filters benefit programmers by allowing some control when an input is “close” to degenerate.

For example, in a personal communication, Gary Miller reported using filters in programs for
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physical simulation and meshing where the program selects query points. If the query caused a

filter to fail, the program selects a different query point. The downside of filters is that unless error

can be tightened to zero the filter cannot determine if a predicate is zero.

Brönnimann et al.[14] classified filters into three types: fully-static, semi-static, and dynamic.

The differences are the values that the variables can take, the allowed arithmetic operations, and

the approach to bounding error. Filter types are listed in order of increasing runtime overhead

(decreasing speed), and trade speed for flexibility. For a fully-static filter [45], the variables are

a bounded interval of integers, the operations are {+,−,×}, and error bounds are precomputed

at compile time. For a semi-static filter [18], the variables are an unspecified interval of floating

point values, the operations are {+,−,×,÷,√}, and error bounds are computed at runtime via

a formula constructed at compile time. For a dynamic filter [14], the variables are an unspecified

interval of floating point values, the operations are any operation that can produce an upper and

lower bound, and error bounds are computed at run time using interval arithmetic.

To use static filters, code must have a clean separation between predicates and algorithms.

Degree-driven algorithm design forces the designer to flesh out the separation at design time. For

semi-static filters, the separation simplifies working out the error bounding formulas. For fully-

static filters, error bounds follow directly from the degree analysis. Dynamic filters are the only

type of filter supporting cascading constructions. While cascading constructions are sometimes

necessary, the fact remains that they should be avoided when possible; degree-driven algorithm

design reminds us of this fact.

10.4 EGC Technique 4: Adaptive Evaluation

Given a predicate, an adaptive evaluation attempts to reduce the number of bits used for computing

the sign while guaranteeing that the sign is the same as in Real-RAM. Adaptive evaluations were

considered for specific predicates [8, 123] (such as InCircle), predicates that can be expressed
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as the signs of determinants [5, 27], and as signs of polynomials [15, 105].

Recall from earlier in the chapter that a degree k polynomial, of s variables of b bits, whose

coefficients can be represented with δ bits can be evaluated with bk+δ+k log2 s bits. Clarkson [27]

uses orthogonalization and approximate arithmetic to compute the sign of a d×d determinant with

b-bit integer entries using (2b + 1.5d) bits. Avnaim et al. [5] describe how to compute the sign

of 2 × 2 and 3 × 3 determinants with b-bit integer entries with b and b + 1 bits respectively in

O(b) time. Brönnimann et al. [15] use modular arithmetic to compute the sign of multivariate

polynomials using floating point computations and single precision arithmetic.

The most famous adaptive evaluations are described by Shewchuk [123] for the InCircle

and Orientation predicates. The algorithms used for addition and multiplication in the eval-

uation borrows heavily from Priest [110]. Shewchuk extended and sped up Priest’s work by

considering a smaller set of architectures and rounding modes. More recently, Bernstein and

Fussell [8] used ideas that paralleled Shewchuk’s to implement the predicates in their modeling

system. Nanevski, Blelloch, and Harper [105] pointed out that extending Shewchuk’s work can

be cumbersome and error prone. For example, the evaluator for InSphere, which is sign of a

4 × 4 matrix, is about 580 lines of C code. Moreover, the programmer needs to analyze the error

for every polynomial. Nanevski, Blelloch, and Harper describe a system that automatically gener-

ates adaptive predicates for an arbitrary polynomial expressions consisting of addition, subtraction,

multiplication, and squaring.

Like software implementations, adaptive evaluations can determine if a predicate is zero. In

addition, adaptive evaluations can sometimes avoid higher precision calculations. Unlike filters,

adaptive evaluations always returns the same result as Real-RAM. Perhaps the only negative to

adaptive evaluations is that the set of arithmetic operations is more limited than dynamic filters

and software implementations. For the predicates in this thesis, however, the limitation is not

an issue.
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As was the case with filters, to use adaptive evaluations the code must have a clean separation

between predicates and algorithms. Degree-driven algorithm design forces the designer to flesh

out the separation at design time, easing the development of adaptive evaluations.

10.5 Conclusion

This chapter described the four most popular techniques for implementing EGC. The techniques

can be very efficient when used together. For example, the filtered kernel in CGAL [2] by default

uses semi-static and dynamic filters. For the most critical predicates, static filters are also available.

When all filters fail, EGC is achieved by resorting to software implementations.

The predicates in this thesis are signs of polynomials. Since we use only the operations plus,

minus, times, and squaring and avoid cascading constructions, we do not need the extra flexibility

provided by dynamic filters. For implementing the predicates in this thesis, I would suggest using

static analysis. If not enough bits are available, a good second choice is automatically generated

adaptive predicates or static/semi-static filters with software implementations. The libraries GMP,

MPFR, CORE, and LEDA all provide the operations we require, however, since we do not need to

represent algebraic numbers GMP and MPRF are sufficient.
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Appendix A

Sign of a Sum

Given a set of n signed β-bit integers A = {a1, . . . , an}. We can compute sign(
∑

i ai) by first

summing all ai and taking the sign, however, that may require β + log2 n bits. In this section, I

describe a simple algorithm for computing the sign of the sum exactly with β bits.

Kaltofen and Villard [70] survey methods for computing the sign of the determinant of an inte-

ger matrix and observe that computing the sign is at most as hard as computing the value. The same

observation holds for computing the sign of the sum of a set of integers. The observation leads to

a simple algorithm that removes log2 n bits used for summing. It is based on numerical summa-

tion algorithms, which avoid rounding and truncation errors for summing a set of numbers. Some

languages provide numerical summation algorithms, such as fsum in Python. Unfortunately, the

are not standard in all languages and they do more work than is necessary to compute signs. Al-

gorithms such as compensated sum [69], storing partial sums [123], or recursive summation [59],

could be considered. However, as we are interested only in the sign of the sum, we can use an even

simpler summation algorithm that produces an exact sign of a set of n signed β-bit integers A.

Think of the non-zero elements of A as if they were in two lists: P , the positives, and N , the

negatives. Initialize summation variable r = 0, the sum of all numbers of A, not in N or P . We

ensure a correct sign evaluation by maintaining the invariant that r ∈ [min(N),max(P )]. When

r is non-negative we set r to be r plus the next value from N , and when r is non-positive we set

r to be r plus the next value from P . We stop the sum once the sign can be determined, that is,

when r is non-positive and values of P are exhausted or r is non-negative and all values of N are

exhausted. Note that all the values of A are summed only when sign(A) = 0, which is necessary
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if we wish to find the sign using only β bits. I flesh out the details in the two algorithms below.

First, define an algorithm Scan(A, i, sign), in Algorithm 5, that takes an array of signed inte-

gers A, an index i and a sign s ∈ {−1, 1}, and returns the index j ≥ i with sign of A[j] matching

s or return j = A.length if no sign matches. (Zeros in A will never match s.)

Algorithm 5 Scan(A, i, s)

1: j = i
2: while j < A.length and s ∗ A[j] < 1 do
3: j = j + 1
4: end while
5: return j

Second, define an algorithm SignOfSum(A), in Algorithm 6, that iterates over N and P (in

place) selecting elements from N and P as appropriate and summing to update r.

Algorithm 6 SignOfSum(A): return the sign of the sum of the elements of array A where each
element is represented by β bits, using β bits.

1: r = A[0]
2: n = Scan(A, 1,−1)
3: p = Scan(A, 1,+1)
4: while (r ≤ 0 and p < A.length) or (r ≥ 0 and n < A.length) do
5: if r < 0 then
6: r = r + A[p]
7: p = Scan(A, p+ 1,+1)
8: else
9: r = r + A[n]

10: n = Scan(A, n+ 1,−1)
11: end if
12: end while
13: return sign(r)

We summarize in the following lemma:

Lemma 56. Given a set of n signed β-bit integers, we can compute the sign of the sum of the set

in O(n) time, constant space, and β bits.
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