
Balancing Computation-Communication Tradeoffs in
Scaling Network-Wide Intrusion Detection Systems

Victor Heorhiadi
University of North Carolina

Chapel Hill, NC, USA

Michael K. Reiter
University of North Carolina

Chapel Hill, NC, USA

Vyas Sekar
Intel Labs

Berkeley, CA, USA

Abstract
As traffic volumes and the types of analysis grow, net-

work intrusion detection systems (NIDS) face a contin-
uous scaling challenge. However, management realities
limit NIDS upgrades typically to once every 3-5 years.
Given that traffic patterns can change dramatically, this
leaves a significant scaling challenge in the interim. This
motivates the need for solutions that can help administra-
tors better utilize their existing NIDS infrastructure. To
this end, we design a general architecture for a network-
wide NIDS deployment that leverages three scaling op-
portunities: on-path distribution to split responsibilities,
replicating traffic to NIDS clusters, and aggregating in-
termediate results to split expensive NIDS processing.
The challenge here is to balance both the compute load
across the network and the total communication cost in-
curred via replication and aggregation. We implement
a backwards-compatible mechanism to enable existing
NIDS infrastructure to leverage these benefits. Using
emulated and trace-driven evaluations on several real-
world network topologies, we show that our proposal
can substantially reduce the maximum computation load,
provide better resilience under traffic variability, and of-
fer improved detection coverage.

1 Introduction
Network intrusion detection systems play a critical role
in keeping network infrastructures safe from attacks. The
market for such appliances is estimated to be over one
billion dollars [7, 15] and expected to grow substan-
tially over the next few years [8]. The driving forces
for increased deployment include increasing regulatory
and policy requirements, new application traffic patterns
(e.g., cloud, mobile devices), and the ever-increasing
complexity of attacks themselves [7, 15, 8]. In conjunc-
tion with these forces, the rapid growth in traffic volumes
means that NIDS deployments face a continuous scaling
challenge to keep up with the increasing complexity of
processing and volume of traffic.

The traditional response in the NIDS community to
address this scaling challenge has been along three di-
mensions: efficient algorithms (e.g., [42, 41]); special-
ized hardware capabilities such as TCAMs (e.g., [53,
32]), FPGAs (e.g., [31, 33]), and graphics processors
(e.g. [50, 49]); and parallelism through the use of multi-
core or cluster-based solutions (e.g., [48, 44, 29, 51]).
These have been invaluable in advancing the state-of-the-
art in NIDS system design. However, there is a signifi-
cant delay before these advances are incorporated into
production systems. Furthermore, budget constraints and
management challenges mean that network administra-
tors upgrade their NIDS infrastructure over a 3-5 year
cycle [9]. Even though administrators try to provision the
hardware to account for projected growth, disruptive and
unforeseen patterns can increase traffic volumes: peer-
to-peer, cloud computing, and consumer devices such as
smartphones, to name a few. Consequently, it is critical
to complement the existing research in building better
NIDS systems with more immediately deployable solu-
tions for scaling NIDS deployments.

In this context, recent work in the network man-
agement literature demonstrates the benefits of using a
network-wide approach (e.g., [27, 19, 17, 39]). Specif-
ically, past work has shown that distributing responsi-
bilities across routers on an end-to-end path can offer
significant benefits for monitoring applications [18, 39].
Sekar, et al. also showed the benefits of on-path distri-
bution in the context of NIDS/NIPS systems [38]. This
class of approaches is promising because it provides a
way for administrators to handle higher traffic loads with
their existing NIDS deployment without requiring a fork-
lift upgrade to deploy new NIDS hardware.

Our premise is that these past proposals for distribut-
ing NIDS functions do not push the envelope far enough.
Consequently, this not only restricts the scaling opportu-
nities, but also constrains the detection capabilities that a
network-wide deployment can provide:
• First, this prior work focuses distributing responsibil-

1

ities strictly on-path. While such on-path process-
ing is viable [21, 4], there is an equally compelling
trend towards consolidating computing resources at
some locations. This is evidenced by the popularity of
“cloud” and datacenter deployments within and out-
side enterprise networks. Such deployments have nat-
ural management and multiplexing benefits that are
ideally suited to the compute-intensive and dynamic
nature of NIDS workloads.
• Second, this prior work assumes that the NIDS anal-

ysis occurring at a network node is self-contained.
That is, the NIDS elements act as standalone entities
and provide equivalent monitoring capabilities with-
out needing to interact with other nodes. This re-
striction on self-contained analysis means that certain
types of aggregated analysis are either infeasible or
topologically constrained. For example, in the case of
scan detection, Sekar, et al. constrain all traffic to be
processed at the ingress gateway for each host [38].
Our vision is a general NIDS architecture that can

not only exploit on-path distribution, but also allows
broader scaling opportunities via traffic replication and
analysis aggregation. In doing so, our work general-
izes prior work and allows administrators to consider
these proposals as specific points in this broader design
space. By incorporating replication, we avoid the need
for strictly on-path offloading, providing the freedom to
offload processing to lightly loaded nodes that might be
off-path. This also naturally accommodates technology
trends toward building consolidated compute clusters.
Furthermore, replication enables new detection function-
ality that would have been previously impossible. For
example, our framework enables stateful NIDS analysis
even when the two flows in a session (or two sessions as
part of a stepping stone attack) do not traverse a com-
mon node. At the same time, by allowing aggregation,
an expensive NIDS task can be split into smaller sub-
tasks that can be combined to provide equivalent analy-
sis capabilities. This enables more fine-grained scaling
opportunities for NIDS analyses that would otherwise be
topologically constrained (e.g., scan detection).

A key constraint here is to ensure that these new
opportunities do not impose significant communication
costs on the network. Thus, we need to assign process-
ing responsibilities to balance the tradeoff between the
communication cost imposed by replication and aggre-
gation vs. the reduction in computation load. To system-
atically capture these tradeoffs, we design formal linear
programming (LP) based optimization frameworks. We
envision a network-wide management module that as-
signs processing, aggregation, and replication responsi-
bilities across the network using these formulations. In
order to execute these management decisions without re-
quiring modifications to existing NIDS implementations,

we interpose a lightweight shim layer that runs on each
hardware platform.1

We evaluate our architecture and implementation us-
ing a combination of “live” emulation on Emulab [52]
and trace-driven simulations on a range of real-world
topologies. Our results show that a replication-enabled
NIDS architecture can reduce the maximum computa-
tion load by up to 10×; is significantly more robust to
variability in traffic patterns by reducing the peak load
more than 20×; and can lower the detection miss rate
from 90% to zero in some scenarios where routes may
not be symmetric. These benefits are achieved with lit-
tle overhead: computing the analysis and replication re-
sponsibilities takes < 1.6 seconds with off-the-shelf LP
solvers, and our shim layer imposes very low overhead.

Contributions and Roadmap: To summarize, the key
contributions of this paper are:
• Identifying previously unexploited replication and ag-

gregation opportunities for NIDS scaling (§2).
• Formal models for a general NIDS framework that

subsumes existing on-path models and systematically
balances compute-communication tradeoffs for repli-
cation and aggregation (§4, §5, §6).
• A backwards-compatible architecture (§3) and imple-

mentation (§7) to allow existing NIDS to benefit from
these opportunities.
• Extensive evaluation of the potential benefits over a

range of real-world network topologies (§8).
We discuss outstanding issues in §9 and related work

in §10, before concluding in §11.

2 Background and Motivation
In this section, we begin by describing the prior work for
on-path distribution [38]. Then, we discuss three moti-
vating scenarios that argue for a general NIDS architec-
ture that can incorporate traffic replication and analysis
aggregation.

2.1 Proposed on-path distribution

N1 N3 N2

N5 N4
P3: N1à N5

P1: N1à N3

P2: N1à N4

Signature	
 (P1,	
 P2,	
 P3)	

Scan	
 (H1,	
 H2)	

H1

H2

Signature	
 (All	
 N3à	
 N*)	

Signature	
 (All	
 N4à	
 N*)	
 Signature	
 (All	
 N5à	
 N*)	

Scan	
 (Hosts	
 at	
 N5)	
 Scan	
 (Hosts	
 at	
 N4)	

Scan	
 (Hosts	
 at	
 N3)	

Figure 1: NIDS deployments today are single-vantage-
point solutions where the ingress gateway is responsible
for monitoring all traffic

1This shim functionality can also run at an upstream router to which
the NIDS is attached.

2

Suppose there are two types of NIDS analysis:
Signature for detecting malicious payloads and
Scan for flagging hosts that contact many destination
addresses. Figure 1 shows how today’s NIDS deploy-
ments operate, wherein all types of analysis occur only
at the gateway node. That is, node N1 runs Scan and
Signature detection for all traffic to/from hosts H1-
H2 on paths P1–P3 and other nodes run the analysis on
hosts for which they are the gateway nodes. A natural
limitation with this architecture is that if the load exceeds
the provisioned capacity on a node, then that node has
to either drop some functionality (e.g., disable expensive
modules) or drop packets.

N1 N3 N2

N5 N4
P3: N1à N5

P1: N1à N3

P2: N1à N4

SignatureOnPath(P1,	
 P2,	
 P3)	

Scan	
 (H1,	
 H2)	

H1

H2

SignatureOnPath(P1)	

SignatureOnPath(P2)	
 SignatureOnPath(P3)	

SignatureOnPath	
 	

(P1,P2,P3)	

Figure 2: NIDS with on-path distribution [38]: Any node
on the path can run Signature detection; Scan de-
tection cannot be distributed.

One way to extend this is to leverage spare resources
elsewhere in the network. For example, even though N1
may be overloaded, nodes N2–N5 may have some spare
compute capacity. Building on this insight, Sekar, et al.
describe an architecture in which any node on the end-to-
end path can run the NIDS analysis if it can perform the
analysis in a self-contained fashion without needing any
post-processing [38]. For example, NIDS analysis such
as Signature detection occur at a per-session granu-
larity. Thus, the signature detection responsibilities can
be split across the nodes on each end-to-end path by as-
signing each session to some node on that path, as shown
in Figure 2. In the above example, the Signature
analysis on path P1 is split between N1, N2, and N3;
on path P2 between N1, N2, and N4; and between N1,
N2, and N5 on P3. This can reduce the load on node N1
by leveraging spare compute resources on N2–N5. Note,
however, that the Scan module cannot be distributed.
Scan detection involves counting the number of unique
destinations a source contacts which requires a complete
view of all traffic to/from a given host. Thus, the ingress
node alone is capable of running the analysis in a self-
contained manner.

2.2 New Opportunities
Relaxing the on-path requirement: Now, the traffic
on P1 might overload all nodes N1–N3 on the path. In
this case, it is necessary to look for spare resources that
are off-path. For example, nodes could locally offload

N1 N3 N2

N5 N4

P3: N1à N5

P1: N1à N3
P2: N1à N4

OnPath	

(P1,	
 P2,	
 P3)	

OnPath(P1)	

OnPath(P2)	
 OnPath(P3)	

OnPath	
 	

(P1,P2,P3)	

Replicated	

(P1,P2,P3)	

{P1}

{P2}

{P1,P2,P3}

Replicate traffic to the cluster

Figure 3: Redirecting traffic to a compute cluster. With
just on-path, the cluster at N3 cannot be used to handle
traffic on P2 and P3.

some analysis to one-hop neighbors. Additionally, ad-
ministrators may want to exploit compute clusters else-
where in the network rather than upgrade every NIDS
device. Such consolidated clusters or datacenters are ap-
pealing because they amortize deployment and manage-
ment costs.

Consider the scenario in Figure 3. The network has a
compute cluster located at node N3. When the process-
ing load on the paths P2 and P3 exceed the provisioned
capacity of their on-path nodes, we can potentially repli-
cate (or reroute) traffic from node N2 to node N3 and
perform the required analysis using the cluster. This as-
sumes that: (1) there is sufficient network bandwidth to
replicate this traffic and (2) the logic to do such replica-
tion has low overhead. For (1), we note that the primary
bottleneck for many NIDS deployments is typically the
number of active connections and the complexity of anal-
ysis, and not volume (in bytes) of traffic [22]. As we will
show in §7, we can implement a lightweight shim layer
to implement (2).

N3

N2

N5 N4

Flow 1

Flow 2

N1 Combined	

Flow	
 1,2	

Figure 4: The analysis needs to combine Flow 1 and
Flow 2 (e.g., two directions of a session or two con-
nections in a stepping stone), but they traverse non-
intersecting paths. In this case, replication is inherently
necessary to avoid detection misses

N1 N3 N2

N5 N4
P3: N1à N5

P1: N1à N3

P2: N1à N4

ScanSplit(H1,	
 H2)	

H1

H2

Intermediate scan report

ScanSplit(H1,	
 H2)	

ScanSplit(H1,	
 H2)	

ScanAggregate(H1,	
 H2)	

Figure 5: Aggregating intermediate results lets us dis-
tribute analyses that might be topologically constrained.

3

Network-wide views: Certain kinds of scenarios and
analysis may need to combine traffic from different
nodes. For example, “hot-potato” effects may cause the
forward and reverse flows for an end-to-end session to
traverse non-intersecting routing paths [46]. Thus, state-
ful NIDS analysis that needs to observe both sides of a
session is impossible. A similar scenario occurs for step-
ping stone detection [54], if the two stages in the step-
ping stone do not encounter a common NIDS node. In
Figure 4, traffic flows Flow 1 and Flow 2 need to be
combined, but no single node can observe both flows.
Thus, we need to replicate this traffic to a common lo-
cation to analyze this traffic. Similarly, certain types of
anomaly detection [16, 30] inherently require a network-
wide view that no single node can provide.

Aggregation for fine-grained splitting: As we saw ear-
lier, prior work requires each type of NIDS analysis to
be self-contained. Consequently, analysis such as Scan
detection are topologically constrained. Allowing the
NIDS to communicate intermediate results provides fur-
ther opportunities for distributing the load. Consider the
setup in Figure 5. Each node on the path runs a subset
of the Scan analysis. The nodes send their intermedi-
ate results—a table mapping a src IP to the set/number
of destinations the node observed it contact—to an ag-
gregation node that eventually generates alerts. (In this
example, the aggregation happens at the ingress, but that
is not strictly necessary.) Of course, we need to ensure
that the result generated after aggregation is semantically
equivalent. We defer to §6 on how we achieve this in
practice.

The above scenarios highlight the need to look beyond
pure on-path opportunities for distributing NIDS respon-
sibilities in a network. In the next section, we begin with
a high-level system overview before delving into the spe-
cific formulations for incorporating replication and ag-
gregation opportunities in subsequent sections.

3 System Overview
Our goal is to optimally assign processing, aggregation,
and replication responsibilities across the network. Opti-
mality here involves a tradeoff between the compute load
on the NIDS elements and the communication costs in-
curred. Next, we give an overview of the key entities and
parameters involved in our framework (Figure 6).

We assume a logically centralized management mod-
ule that configures the NIDS elements [27, 19, 17, 39].
This module periodically collects information about the
current traffic patterns and routing policies. Such data
feeds are routinely collected for other network manage-
ment tasks [24]. Based on these inputs, the module runs
the optimization procedures presented in the following
sections to assign NIDS responsibilities. This optimiza-
tion may be run periodically (say every 5 minutes) or

Network-­‐wide	
 NIDS	
 Op1miza1on	

Traffic	

Pa(erns	

NIDS	
 resource	

Footprints	

NIDS	
 Hardware	

configura;on	

Rou;ng	

Policies	

How much
to process?

What/How
to offload?

Figure 6: Network-wide framework for assigning NIDS
processing and replicating responsibilities

triggered by routing or traffic changes (e.g., a specific
route’s volume increases). This periodic or triggered re-
computation allows the system to dynamically adapt to
changing traffic patterns. Note that the network admin-
istrators need not be bothered with the mathematical for-
mulations. They need to specify high-level policy objec-
tives (e.g., how much link capacity to allow for replica-
tion) and set up the optimization module to receive the
relevant data feeds. Given these inputs, the configuration
is completely automated and needs little or no manual
intervention.

As Figure 6 shows, there are four inputs:
1. Traffic patterns: This categorizes the traffic along two

axes: (1) the type or class of traffic (e.g., HTTP, IRC)
and (2) the end-to-end ingress-egress pair to which
the traffic belongs. (Ingress-egress pairs are a natural
unit of traffic segmentation for many network man-
agement tasks [30].) Let Ti denote the set of end-to-
end sessions of the traffic class i. Let k denote a spe-
cific ingress-egress pair and Tik denote the sessions
of class i whose ingress-egress combination is k. |Tik|
denotes the volume of traffic in terms of the number
of sessions.

2. Resource footprints: Each class i may be subjected to
different types of NIDS analyses. For example, HTTP
sessions may be analyzed by a basic payload signature
engine and through application-specific rules, while
all traffic (itself a class) might be subjected to Scan
analysis. We model the cost of running the NIDS for
each class on a specific resource r (e.g., CPU cycles,
resident memory) in terms of the expected per-session
resource footprint Reqr

i (in units suitable for that re-
source). For a given class i we consider the aggregate
effect of running all the NIDS modules relevant to it.
We expect these values to be relatively stable over the
timescales of few days and can be obtained either via
NIDS vendors’ datasheets or estimated using offline
benchmarks [22]. Our optimization can provide sig-
nificant benefits even with an approximate estimate of
the Reqr

i values.
3. NIDS hardware: Each NIDS hardware device Rj is

4

characterized by its resource capacity Capr
j in units

suitable for that resource. In the general case, we
assume that hardware capabilities may be different
across the network, e.g., because of upgraded hard-
ware running alongside legacy equipment.

4. Routing: We start by assuming that each class and
ingress-egress combination has a unique symmetric
routing path Pik, and then subsequently relax this as-
sumption. We use the notation Rj ∈ Pik to denote that
this NIDS node is on the routing path for Pik. Note
that some nodes (e.g., a dedicated cluster) could be
completely off-path; i.e., it does not observe traffic on
any end-to-end routing path unless some other node
explicitly forwards traffic to it.

Communication Costs: We model communication
costs in two ways. First, in the case of replication, we
ensure that the additional link load imposed by the inter-
NIDS communication is bounded. (This ensures that
we do not overload network links and thus avoid packet
losses.) Similar to the notion of a router being on the
path, we use the notation Linkl ∈ Pik to denote that the
network link l is on the path Pik. Second, for aggrega-
tion, we count the total network footprint imposed by
the inter-NIDS communication, measured in byte-hops.
For example, if NIDS R1 needs to send a 10KB report
to NIDS R2 four hops away, then the total footprint is
10×4 = 40 KB-hops.

Given this setup, we describe the formal optimization
frameworks in the following sections.

4 NIDS with replication
As we saw in Figure 3, we can reduce the NIDS load
by replicating the traffic to nodes that are off-path if they
have spare resources. In this section, we provide a gen-
eral framework for combining on-path distribution with
off-path replication. For the current discussion, we as-
sume that the NIDS analyses run at a session-level gran-
ularity. This is typical of most common types of NIDS
analyses in use today [1, 34]. We also assume that each
ingress-egress pair has a single symmetric routing path.
Figure 7 shows the LP formulation for our framework, to
which we refer throughout this section.

For each NIDS node, Rj, we introduce the notion of
a mirror set MirrorSetj ⊆ {R1 . . .RN} that represents a
candidate set of nodes to which Rj can offload some
processing. This allows us to flexibly capture different
replication strategies. For example, in the most gen-
eral case all nodes can be candidates for replication, i.e.,
∀j : MirrorSetj = {R1 . . .RN} \ {Rj}. In case of a single
datacenter or a specialized NIDS cluster, we can sim-
ply set ∀j : MirrorSetj = {Rd} where Rd is that datacen-
ter/cluster. Alternatively, we can also consider local of-
fload policies and set MirrorSetj to be Rj’s one- or two-

Minimize max
r,j
{ResLoadr

j} subject to

∀i,k : ∑
j:Rj∈Pik

dikj + ∑
j′:Rj′∈MirrorSetj

Rj′ /∈Pik

cikjj′

= 1 (1)

∀r, j : ResLoadr
j =

1
Capr

j
∑
i,k:

Rj∈Pik

Reqr
i ×|Tik|×dikj

+
1

Capr
j

∑
j′,i,k:

Rj∈MirrorSetj′
Rj /∈Pik

Reqr
i ×|Tik|× cikj′j (2)

∀l : LinkLoadl = Backgroundl

+ ∑
i,k,j,j′:

Linkl∈Pathjj′
Rj′∈MirrorSetj

|Tik|× cikjj′ ×Sizei

LinkCapl
(3)

∀l : LinkLoadl ≤
max{MaxLinkLoad,Backgroundl} (4)

∀i,k, j : 0≤ dikj ≤ 1 (5)
∀i,k, j, j′ : 0≤ cikjj′ ≤ 1 (6)

Figure 7: LP formulation for replication

hop neighbors. Let Pathjj′ denote the routing path be-
tween Rj and the mirror node Rj′ .

At a high-level, we need to decide if a given NIDS
node is going to process a given session or replicate that
traffic to one of its candidate mirror nodes (or neither).
We capture these determinations with two control vari-
ables. First, dikj specifies the fraction of traffic on the
path k of class i that the node Rj processes locally. To
capture offloading via replication, we have an additional
control variable: cikjj′ which represents the fraction of
traffic belonging to Pik that Rj offloads to its “mirror”
node Rj′ . Note that there is no need to replicate traffic to
elements that are already on-path; formally, if Rj′ ∈ Pik
then the variables cikjj′ will not appear in the formulation.
The bounds on the variables in Eq (5) and (6) ensure that
these can only take fractional values between zero and
one.

Recall that our objective is to assign processing and
offloading responsibilities across the network to balance
the tradeoff between the computation load and the com-
munication cost. Here, we focus on the communication
cost as a given constraint on the maximum allowed link
load MaxLinkLoad imposed by the replicated traffic. For
example, network administrators typically want to keep
links at around 30–50% utilization in order to absorb
sudden bursts of traffic [25].

5

Our main constraint is a coverage requirement; we
want to ensure that for each class of traffic and for each
ingress-egress pair, the traffic is processed by some node
either on- or off-path. Eq (1) captures this constraint by
considering the sum of the locally processed fractions dikj
and the offloaded fractions cikjj′ and setting it to 1 for full
coverage.

Eq (2) captures the stress on each resource for each
node. There are two sources of load on each node: the
traffic it needs to process locally from on-path responsi-
bilities (i.e., via dikjs) and the total traffic it processes as
a consequence of other nodes offloading traffic (i.e., via
cikj′js) to it. The inversion in the indices for the c con-
tribution is because the load on Rj is a function of what
other Rj′s offload to it.

Then, Eq (3) models the link load on the link l im-
posed by the traffic between every pair of Rj and its mir-
ror nodes. Because |Tik| only captures the number of
sessions, we introduce an extra multiplicative factor Sizei
to capture the average size (in bytes) of each session of
class i. We also have an additive term Backgroundl to
capture the current load on the link due to the normal
traffic traversing it (i.e., not induced by our replication).
These additive terms can be directly computed given the
traffic patterns and routing policy, and as such we treat at
as a constant input in the formulation.

As discussed earlier, we bound the communication
cost in terms of the maximum link load in Eq (4). The
max is needed because the background load may itself
exceed the given constraint MaxLinkLoad; in this case,
the only thing we can ensure that no new traffic is in-
duced on such overloaded links.

Given these constraints, we focus on a specific load
balancing objective to minimize the maximum load
across all node-resource pairs. We use standard LP
solvers to obtain the optimal dikj and cikjj′ settings which
we convert into per-node processing configurations (§7).

Extensions: Even though we present only one objec-
tive function, our framework is general to allow admin-
istrators to specify other policies. For example, link load
costs can be captured using piecewise-linear functions
that penalize higher values rather than just focus on the
maximum value [25]. Similarly, we can ensure that the
compute load never exceeds the capacity or model other
load balancing goals beyond the min-max objective.

5 Split traffic analysis
Next, we focus on the scenario from Figure 4 in which
we need to replicate traffic because the forward and re-
verse paths are asymmetric. For simplicity, we assume
that there is only one data center node, rather than gen-
eralized mirror sets. Thus, we use cikj instead of cikjj′ ,
implicitly fixing a single mirror node Rj′ for all Rj.

To model this scenario, we modify how the routing
paths for each ingress-egress pair Tik are specified. In
the previous section, we assumed that the forward and re-
verse paths are symmetric and thus each Tik has a unique
path Pik. In the case where these paths are asymmetric or
non-overlapping, instead of defining a single set of eligi-
ble NIDS nodes Pik, we define three types of nodes:
1. Pfwd

ik that can observe the “forward” direction.2

2. Prev
ik that can observe the “reverse” direction.

3. Pcommon
ik , the set of nodes in the (possibly null) inter-

section of the forward and reverse directions.
We assume here that these types of nodes can be iden-

tified from the network’s routing policy [40] or inferred
from well-known measurement techniques [23]. Having
identified these common, forward, and reverse nodes, we
split the coverage constraint in Eq (1) into two separate
equations as follows:

∀i,k : coveragefwd
ik = ∑

j:Rj∈Pcommon
ik

dikj + ∑
j:Rj∈Pfwd

ik

cfwd
ikj (7)

∀i,k : coveragerev
ik = ∑

j:Rj∈Pcommon
ik

dikj + ∑
j:Rj∈Prev

ik

crev
ikj (8)

Now, for stateful analysis, the notion of coverage is
meaningful only if both sides of the session have been
monitored. Thus, we model the effective coverage as the
minimum of the forward and reverse coverages:

∀i,k : coverageik = min{coveragefwd
ik ,coveragerev

ik ,1}
(9)

We make three observations with respect to the above
equations. First, the dikj only appear for the nodes in
Pcommon

ik . Second, we need to separately specify the cov-
erage guarantee for the forward and reverse directions
for each Tik and cap the effective coverage at 1. Third,
we also allow the nodes in Pcommon

ik the flexibility to of-
fload processing to the datacenter. (Because the nodes in
Pcommon

ik also appear Pfwd
ik and Prev

ik , they have the corre-
sponding cfwd

ikj and crev
ikj variables.)

Now, it may not always be possible to ensure complete
coverage for some deployment scenarios. That is, for a
particular combination of forward-reverse paths, and a
given constraint on the maximum allowable link load,
we may not have a feasible solution to ensure that each
coverageik = 1. Our goal then is to maximize the traffic
coverage or minimize detection misses. To this end, we
introduce an additional term in the minimization objec-
tive to model the fraction of traffic that suffer detection
misses because we cannot monitor both sides of the con-
nection. That is,

MissRate =
∑i,k(1− coverageik)×|Tik|

∑i,k |Tik|
(10)

2We assume a well-defined notion of forward and reverse direc-
tions, say based on the values of the IP address.

6

Given the MissRate, we update the objective to be:

Minimize: LoadCost+ γMissRate

with γ set to a large value to have a very low miss rate.
In summary, the formulation to handle such split traf-

fic is as follows. We retain the same structure for the
compute load and link load equations as in Eq (2) and
Eq (3) respectively. (There are small changes to incor-
porate the notion of cfwd

ikj and cfwd
ikj . We do not show these

for brevity.) We replace the single coverage equation in
Eq (1) with the new coverage models in Eqs (7), (8),
and (9). Rather than force each coverage value to be 1
which could be infeasible to achieve, we focus instead
on minimizing the effective miss rate by changing the
objective function.

Extensions: We can extend the model to quantify
MissRate in terms of the i,k combination with the largest
fraction of detection misses (i.e., MissRate = maxi,k(1−
coverageik)), or consider a general weighted combina-
tion of these coverage values to indicate higher priority
for some types of traffic.

6 NIDS with aggregation
Next, we proceed to the third opportunity for scaling via
aggregation. The high-level idea is to split a NIDS task
into multiple sub-tasks that can be distributed across dif-
ferent locations. Each NIDS node generates intermediate
reports that are sent to an aggregation point to generate
the final analysis. As a concrete example, we focus on
the Scan detection module that counts the number of
distinct destination IP addresses to which a given source
has initiated a connection in the previous measurement
epoch. For clarity, we focus on using aggregation with-
out replication and assume a single symmetric path for
each ingress-egress pair. This means that we just need to
assign the local processing responsibilities captured by
the dikj variables.

Because the choice of intermediate reports and aggre-
gation points may vary across different detection tasks,
we use a general notion of network distance between
node Rj and the location to which these reports are sent.
This is captured by Commikj; the indices indicate that the
location may depend on the specific class i and path k.
For example, in Scan detection, we may choose to send
the reports back to the ingress for the host because it is
in the best position to decide if an alert should be raised,
e.g., based on past behavior.

We do, however, need to be careful in choosing the
granularity at which we distribute the work across nodes.
Consider the Scan detection example in Figure 8 where
our goal is to count the number of destinations that each
source contacts. Suppose there are two sources S1,S2
contacting four destinations D1−4 as shown and there are

R1

R2 R3

R4 R5

D1
D2

16 flows: 2 for each Si to Dj

D3
D4

S1
S2

S1 : 2
S2 : 2

S1 : 2
S2 : 2

S1 : 2
S2 : 2

S1 : 2
S2 : 2

Double counting,
Or need “set” not just counters

S1 à D1 ?
S2 à D1 ?

Split by destinations per-path
S1 à D2 ?
S2 à D2 ?

S1 à D3 ?
S2 à D3 ?

S1 à D4 ?
S2 à D4 ?

Communication Cost:
2* (2*1) + 2* (2*2) = 12

S1: 2

Split by sources per-path

S2 : 2

Communication Cost:
2* (1*1) + 2* (1*2) = 6

S1: 2 S2 : 2

Today: All processing at R1 Split by flows

Figure 8: Different options for splitting the Scan detec-
tion responsibilities

Minimize LoadCost+β ×CommCost subject to
LoadCost = max

r,j
{ResLoadr

j} (11)

CommCost =

∑
i,k,j

(|Tik|×dikj)×Reci×Commikj (12)

∀i,k : ∑
j:Rj∈Pik

dikj = 1 (13)

∀r, j : ResLoadr
j =

1
Capr

j
∑
i,k:

Rj∈Pik

Reqr
i ×|Tik|×dikj (14)

∀i,k, j : 0≤ dikj ≤ 1 (15)

Figure 9: LP formulation for aggregation

two flows for every src-dst pair. The high-level idea here
is that each NIDS runs a per-src Scan counting module
on its assigned subset of the traffic. Then in the second
step, each node sends these local per-src counters to the
aggregation point, which outputs the final result of sus-
picious sources. Now, we could choose three different
strategies to split the monitoring responsibilities:
1. Flow-level: The nodes on a path split the traffic

traversing that path on a per-flow basis, run a local
Scan detection module on the set of observed flows
and send intermediate reports back to the ingress.

2. Destination-level: Instead of splitting the traffic on a
path by flows, we do a split based on destinations for
each path. In the example, node R2 checks if each
source contacted D1, node R3 for D2, and so on.

3. Source-level: The other alternative is for each node to
focus on a subset of the sources on each path; e.g., R2
and R3 monitor S1 and S2, respectively.
Notice that with a flow-based split, if we only re-

port per-src counters, then we could end up overesti-
mating the number of destinations if a particular source-

7

destination pair has multiple flows. In this case, each
node must report the full set of 〈src,dst〉 tuples, thus
incurring a larger communication cost. The aggregator
then has to compute the logical union of the sets of des-
tinations reported for each source. With a destination-
based split, we do not have this double counting problem.
The aggregator simply adds up the number of destina-
tions reported from each node on each path. However, in
the worst case, the number of entries each node reports
will be equal to the number of sources. Thus, the total
communication cost could be 12 units, assuming aggre-
gation is done at R1: each node sends a 2-row report
(one row per-src), the report from R2, R4 traverses one
hop and those from R3, R5 take two hops. The third
option of splitting based on the sources provides both
a correct result without over counting and also a lower
communication cost of 6 units. Each node sends a report
consisting of the number of destinations each source con-
tacts and the aggregator can simply add up the number of
destinations reported across the different paths for each
source. Thus, we choose the source-level split strategy.

Based on such analysis-specific insights, we can de-
termine a suitable reporting and aggregation strategy. In
practice, there are a few natural cases that cover most
common NIDS modules that can benefit from such ag-
gregation (e.g., per-src, per-destination). Having chosen
a suitable granularity of intermediate reports, we need as
input the per-report size Reci (in bytes) for class i.3

As in the previous section, we want to balance the
tradeoff between the computation cost and the commu-
nication cost. Because the size of the reports (at most a
few MB) is unlikely to impact the link load adversely, we
drop the MaxLinkLoad constraint (Eqs (3), (4)). Instead,
we introduce a new communication cost term CommCost
in the objective, with a weight factor β , which is scaled
appropriately to ensure that the load and communication
cost terms are comparable. We have the familiar cover-
age constraint in Eq (13), and the resource load model
in Eq (14). (Because there is no traffic replication, the
c variables do not appear here.) The additional equation
required here is to model the total communication cost
CommCost in Eq (12). For each entry, this is simply the
product of the volume of traffic, the per-unit record size,
and the network distance as shown.

7 Implementation
We start by describing how the management engine
translates the output of the LP optimizations into device
configurations. Then, we describe how we implement
these management decisions using a shim layer that al-
lows us to run off-the-shelf NIDS software.

3This also depends on how these reports are encoded, e.g., key-
value pairs for a source-split.

7.1 Optimization and configurations
We solve the LP formulations described in the previous
sections using off-the-shelf LP solvers such as CPLEX.
Given the solution to the optimization, we run a simple
procedure to convert the solution into a configuration for
each shim instance. (For completeness, we provide the
pseudocode in Figure 21 in Appendix A.) The key idea is
to map the decision variables — i.e., dikj and cikjj′ values
— into a set of non-overlapping hash ranges [39]. For
each i,k combination, we first run a loop over the dikj
values, mapping each to a hash-range, and extending the
range as we move to the next j. We then run a similar
loop for the cikjj′ . (The specific order of the NIDS indices
for each path do not matter; we just need some order
to ensure the ranges are non-overlapping.) Because the
optimization frameworks ensure that these dikj and cikjj′

add up to 1 for each i,k pair, we are guaranteed that the
union of these hash ranges covers the entire range [0,1].

7.2 Shim layer
To allow network operators to run their existing NIDS
software without needing significant changes, we inter-
pose a lightweight shim between the network and the
NIDS. We implement this using the Click modular soft-
ware router [28] with a combination of default modules
and a custom module (255 lines of C++ code). The shim
maintains persistent TCP tunnels with its mirror node(s)
to replicate the traffic and uses a virtual TUN/TAP inter-
face [14] to the local NIDS process. This requires a mi-
nor change to the way the NIDS process is launched so
that it reads from the virtual interface rather than a phys-
ical interface. Most NIDS software provide the interface
as an input argument and thus this change is minimal and
requires no changes to the NIDS internals. We tested two
popular NIDS: Bro [34] and Snort [1]; both had no diffi-
culties running on top of the shim layer.

The shim takes as input the configuration output from
the procedure described above, which specifies for each
class and ingress-egress pair the hash range that needs to
be processed locally and what needs to offloaded to the
mirror node(s). As a packet arrives, the shim computes a
lightweight hash [3] of the IP 5-tuple (src/dst IPs, src/dst
ports, and protocol). It looks up the corresponding class
and ingress-egress combination (e.g., based on the port
numbers and src/dst IPs) to infer the assigned hash range
and decides whether to send this packet to the local NIDS
process, replicate it to a mirror node, or neither. One
subtle issue here is how this hash is computed. In the
case of session-level analysis, we need to ensure that this
hash is bidirectional [48]. For aggregation, the hash is
over the appropriate field used for splitting the analysis.

7.3 Aggregation scripts
Aggregation requires two simple scripts: (1) one at each
NIDS that periodically sends reports to the aggregator

8

and (2) one at the aggregator to post-process these re-
ports. For Scan detection, we want to report sources
that contact > D destinations. Now, an individual NIDS’
observation may not exceed D, but the aggregate might.
To this end, we apply the threshold D only at the ag-
gregator and configure each individual NIDS to have a
reporting threshold of D = 0, to retain the same detec-
tion semantics as running the scan detector at the ingress
node.

8 Evaluation
We begin by evaluating the performance of the individual
components of our system implementation and an end-
to-end “live” emulation in §8.1. We then use simulations
to evaluate the sensitivity of our system to various pa-
rameters with respect to replication in §8.2, split traffic
in §8.3, and aggregation in §8.4.

We use real network topologies from educational
backbones (Internet2, Geant) and inferred PoP-level
topologies from Rocketfuel [45]. For each topology,
we construct a traffic matrix for every pair of ingress-
egress PoPs using a gravity model based on city pop-
ulations [35], with shortest-path routing based on hop
counts. For ease of presentation, we consider a single
aggregate traffic class; i.e., we do not partition the traffic
based on port numbers.

8.1 System evaluation
Computation time: Table 1 shows the time to com-
pute the optimal solution for different PoP-level topolo-
gies using an off-the-shelf LP solver (CPLEX). This re-
sult shows that the time to recompute optimal solutions
is well within the timescales of network reconfigurations
(typically on the order of few minutes).

Topology # PoPs Time (s)
Replication Aggregation

Internet2 11 0.05 0.02
Geant 22 0.10 0.02

TiNet (AS3257) 41 0.29 0.02
Telstra (AS1221) 44 0.40 0.03
Sprint (AS1239) 52 1.30 0.05
Level3 (AS3356) 63 1.19 0.04
NTT (AS2914) 70 1.59 0.11

Table 1: Time to compute the optimal solution for the
replication and aggregation formulation.
Shim overhead: The additional hash computations and
lookups impose little overhead over the packet capture
that the NIDS has to run natively as well. In our mi-
crobenchmarks, the shim implementation does not intro-
duce any (additional) packet drops up to an offered load
of 1 Gbps for a single-threaded Bro or Snort process run-
ning on a Intel Core i5 2.5GHz machine.
Live emulation in Emulab: To investigate the bene-
fits of off-path replication, we evaluate our system un-

 0

 5

 10

 15

 20

 25

 30

 1 2 3 4 5 6 7 8 9 10 11 DC

To
ta

l C
P

U
 in

st
ru

ct
io

ns
 x

10
8

Node ID

Path, no replicate
Path, replicate

Figure 10: Maximum absolute CPU usage of each NIDS
node in our Emulab experiment

der realistic network conditions using Emulab [52] with
an emulated Internet2 topology with 11 nodes. We im-
plemented a realistic traffic generator in Python using
Scapy [13] that takes as input the topology, traffic ma-
trix, and template traces, and that generates traffic ac-
cording to these. We used real full-payload packet traces
captured from a small enterprise network as the “seed”
templates for our generator [6]. One subtle issue is the
need to faithfully emulate the ordering of packets within
a logical session. To this end, we introduced a state-
ful “supernode” that is logically connected to every net-
work ingress and that injects packets within each ses-
sion in order and at the appropriate ingress. We used
the BitTwist tool for trace injection [2]. Each NIDS
node runs on a Pentium III 850 Mhz node with 512 MB
of RAM4 running Snort (version 2.9.1) using the default
configuration of rules and signatures.

Figure 10 shows the total number of CPU instructions
used by the Snort process (measured using the PAPI
performance instrumentation library [10]) on each NIDS
node for the emulated Internet2 topology with 11 nodes.
The result shows the configurations for two NIDS archi-
tectures: Path, No replicate which emulates the work of
Sekar, et al. [38] and Path, Replicate which represents
our framework from §4. For our setup, we ran the formu-
lation with a single data center (DC) with 8× the capacity
of the other NIDS nodes and assuming MaxLinkLoad =
0.4. (We did not explicitly create a datacenter node in our
Emulab setup due to constraints in exactly emulating a
8× larger node.) Figure 10 confirms that replication pro-
vides 2× reduction in resource usage on the maximally
loaded node (excepting the DC). This result is identical
to that obtained using trace-driven simulations, as will
be shown in Fig. 14, allowing us to conclude that sensi-
tivity analysis performed in §8.2 is representative of live
performance.

4The choice of low-end nodes is not an implementation artifact. We
did so to ensure repeatability as it is hard to obtain a large number of
high-end nodes for extended periods of time on Emulab.

9

8.2 Replication: Sensitivity analysis
In this section we study the effect of varying a number
of parameters on the performance of our system. Due
to the difficulty of scaling our Emulab setup for larger
topologies and such sensitivity analysis, we use trace-
driven analysis for these evaluations.

Setup: To model the total traffic volume, we start with
a baseline of 8 million sessions for the Internet2 net-
work with 11 PoPs, and then scale the total volume for
other topologies linearly proportional to the number of
PoPs. We model the link capacities LinkCapl as fol-
lows. We compute the traffic volume traversing the max-
imum congested link (assuming the above shortest path
routes). Then, we set the link capacity of each to be 3×
this traffic load on the most congested link. As such,
maxl{Backgroundl} = 0.3; this reflects typical link uti-
lization levels in networks today [25]. To model the node
capacities Capr

j , we emulate the Ingress deployment and
find the maximum resource requirement across the net-
work, and provision each node with this inferred capac-
ity. Thus, by construction the Ingress deployment has a
maximum compute load of one. We model a single data
center with α× the capacity of the other NIDS nodes.

In this discussion, we examine the effects of vary-
ing the location and capacity of the data center node
(Capr

d), the maximum allowed link load with replica-
tion (MaxLinkLoad), alternative local replication archi-
tectures, and the impact of traffic variability.

Choice of datacenter location: The first parameter of
interest is the placement of the datacenter. Here, we fix
the datacenter capacity to be 10× the single NIDS capac-
ity, but choose different locations based on four natural
strategies that network administrators can try:

1. Max Vol Source: at the PoP from which most traffic
originates.

2. Max Vol Obs: at the PoP that observes the most traffic,
including traffic for which this is a transit PoP.

3. Max Paths: the PoP which lies on the most end-to-end
shortest paths.

4. Min Avg Distance: the PoP which has the smallest
average distance to every other PoP (the medoid).

In general, the chosen location depends on the topol-
ogy and traffic matrix; in some cases we observe that the
strategies result in the same choice of locating the data-
center.

Figure 11 shows the maximum compute load in the
network across the topologies for the different choices
of datacenter location. The result shows that for most
topologies the gap between the different placement
strategies is very small and in practice the Max Vol Obs
strategy works well across all topologies. Thus for the
rest of the evaluation, we choose this placement strategy.

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

Internet2
Geant

TiNet TelstraSprint Level3NTT

M
ax

im
um

 c
om

pu
te

 lo
ad

Max Vol Source
Max Vol Obs

Max Paths
Min Avg Distance

Figure 11: Exploring strategies for datacenter placement
with MaxLinkLoad = 0.4.

Effect of increasing allowed link load: Next, we fix
the placement of the datacenter to Max Vol Obs and
the capacity to 10×, and study the impact of increasing
MaxLinkLoad in Figure 12. For most topologies, we ob-
serve diminishing returns beyond MaxLinkLoad = 0.4,
since at that value, the compute load on the datacenter is
close to the load on the maximum NIDS node as well.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.2 0.4 0.6 0.8 1

M
ax

im
um

 c
om

pu
te

 lo
ad

Maximum allowed link load

Internet2
Geant
TiNet

Telstra
Sprint

Level3
NTT

Figure 12: Varying MaxLinkLoad with datacenter ca-
pacity of 10× located with the Max Vol Obs strategy.

Increasing the data center capacity: A natural ques-
tion then is how much to provision the datacenter. To
address this, we studied the impact of varying the dat-
acenter capacity. Most topologies show a natural di-
minishing property as we increase the capacity, with
the “knee” of the curve occurring earlier with lower
link load. This is expected; with lower MaxLinkLoad,
there are fewer opportunities for replicating traffic to
the datacenter and thus increasing the datacenter capac-
ity beyond 8–10×does not really help (Figure 23, Ap-
pendix B).

Visualizing maximum loads: To better understand the
previous effects, we visualize a high-level summary of
how the optimization allocates the compute and offload
responsibilities throughout the network. We consider
four configurations here: MaxLinkLoad ∈ {0.1,0.4} and
a datacenter capacity Capr

d of 2× and 10×. Figure 13
shows the difference between the compute load on the
datacenter node (DCLoad) and the maximum compute
load on internal NIDS nodes (MaxNIDSLoad) for the dif-
ferent topologies. We see that at low link load and high
data center capacity (MaxLinkLoad = 0.1 and DC=10×),

10

the datacenter is underutilized. With larger link loads or
lower link capacity, we find that the load stress on the
datacenter is the same as the maximum load across the
network (i.e., the gap is zero).

-0.5

-0.4

-0.3

-0.2

-0.1

 0

Internet2
Geant

TiNet Telstra Sprint Level3 NTT

D
C

Lo
ad

 -
M

ax
N

ID
S

Lo
ad

MaxLinkLoad = 0.1, DC = 2x
MaxLinkLoad = 0.1, DC = 10x
MaxLinkLoad = 0.4, DC = 2x
MaxLinkLoad = 0.4, DC = 10x

Figure 13: Comparing the compute load on the datacen-
ter vs. maximum load on interior NIDS nodes.

Comparison to alternatives: Using the previous results
as guidelines, we pick a configuration with the datacenter
capacity fixed at 10× the single NIDS capacity located
at the Max Vol Obs PoP, with MaxLinkLoad = 0.4. Fig-
ure 14 compares this configuration (labeled Path, Repli-
cate) against two alternatives: (1) today’s Ingress-only
deployment where NIDS functions run at the ingress of
a path; and (2) Path, No Replicate, the strictly on-path
NIDS distribution proposed by Sekar, et al. [38]. One
concern is that our datacenter setup has more aggregate
capacity. Thus, we also consider a Path, Augmented ap-
proach where each of the N NIDS nodes gets a 1

N share
of the 10× additional resources. The fact that we can
consider these alternative designs within our framework
further confirms the generality of our approach.

 0

 0.2

 0.4

 0.6

 0.8

 1

Internet2
Geant

TiNet TelstraSprint Level3 NTT

M
ax

im
um

 c
om

pu
te

 lo
ad

Ingress
Path,No Replicate

Path,Augmented
Path,Replicate

Figure 14: Maximum compute load across topologies
with different NIDS architectures.

Recall that the current deployments of Ingress-only
have a maximum compute load of one by construction.
The result shows that the datacenter setup has the best
overall performance; it can reduce the MaxLoad 10×
compared to today’s deployments and up to 3× com-
pared to the proposed on-path distribution schemes.
Local offload: The above results consider a setup where
the network administrator has added a new datacenter.
Alternatively, they can use the existing NIDS infras-
tructure with local replication strategies. Specifically,
we consider the MirrorSet consisting of 1-hop or 2-hop

 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0.55

Internet2
Geant

TiNet TelstraSprint Level3NTT

M
ax

im
um

 c
om

pu
te

 lo
ad

 Path, No replicate
One-hop
Two-hop

Figure 15: Local one- and two-hop replication.

neighbors in addition to the existing on-path distribution.
Figure 15 compares the maximum compute load vs. a
pure on-path distribution again setting MaxLinkLoad =
0.4. Across all topologies, allowing replication within a
one-hop radius provides up to 5× reduction in the max-
imum load. We also see that going to two hops does not
add significant value beyond one-hop offload. This sug-
gests a replication-enhanced NIDS architecture can offer
significant benefits even without needing to augment the
network with additional compute resources.

Performance under traffic variability: The results so
far consider a static view with a single traffic matrix.
Next, we evaluate the effect of traffic variability. To ob-
tain realistic temporal variability patterns, we use traffic
matrices for Internet2 [5]. From this, we compute empir-
ical CDFs of how each element in a traffic matrix varies
(e.g., probability that the volume is between 0.6× and
0.8× the mean). Then, using these empirical distribu-
tions we generate 100 time-varying traffic matrices using
the gravity model for the mean volume.

 0

 1

 2

 3

 4

 5

 6

Internet2
Geant

TiNet Telstra Sprint Level3 NTT

M
ax

im
um

 c
om

pu
te

 lo
ad

Ingress
Path, No Replicate

DC Only
DC + One-hop

Figure 16: Comparison between NIDS architectures in
the presence of traffic variability.

Figure 16 summarizes the distribution of the peak
load across these 100 runs using a box-and-whiskers plot
showing the minimum, 25th %ile, median, 75th %ile,
and the maximum observed load. We consider four
NIDS architectures: the Ingress, the Path No replicate,
the Path, replicate with a datacenter node 10× capacity
(labeled DC Only), and Path, replicate with the flexi-
bility to offload responsibilities to either a datacenter and
within a 1-hop radius (labeled DC + One-hop). We
find that the replication-enabled NIDS architectures out-
perform the non-replication strategies significantly, with
the median values roughly mirroring our earlier results.

11

The worst-case performance of the no-replication archi-
tectures can be quite poor; e.g., for Telstra the worst-
case compute load is 5.8 which significantly exceeds
the provisioned capacity. (Ideally, we want the maxi-
mum compute load to be less than 1.) We also analyzed
how the augmentation strategy from Figure 14 performs;
the worst-case load with the Path, Augmented case is
4× more than the replication enabled architecture (not
shown).

8.3 Performance with routing asymmetry
Next, we evaluate the benefits of replication in enabling
new analysis capabilities for scenarios where the forward
and reverse flows may not traverse the same route as we
saw in §2.

We emulate routing asymmetry as follows. For each
ingress-egress pair k, we assume the forward traffic tra-
verses the expected shortest path from the ingress to the
egress; i.e., Pfwd

ik is the shortest-path route. However, we
set the reverse path Prev

ik such that the expected overlap
(over all ingress-egress pairs) between the forward and
reverse paths reaches a target overlap ratio θ . Here, we
measure the overlap between two paths P1 and P2 in
terms of the Jaccard similarity index: P1∩P2

P1∪P2
, which is

maximum (= 1) when they are identical and lowest (= 0)
if there is no overlap. For each end-to-end path, we pre-
compute its overlap metric with every other path. Then,
given a value of θ ′ (drawn from a Gaussian distribution
with mean = θ and standard deviation = θ

5), we find a
path from this precomputed set that is closest to this tar-
get value.5 For each target θ , we generate 50 random
configurations. For each configuration, we run the ex-
tended formulation from §5 for the Ingress-only archi-
tecture, the Path, no replicate architecture, and our pro-
posed framework with a datacenter (with Max Vol Obs).
We report the median across the 50 runs for two metrics:
the detection miss rate —the total fraction of traffic that
could not be analyzed effectively by any NIDS node, and
the compute load as in the previous evaluations.

Figure 17 shows the median miss rate as a function of
the overlap factor for the different configurations. We see
that the miss rate with an Ingress-only setup is greater
than 85% even for high values of the overlap metric.
The MaxLoad curve in Figure 18 is interesting because
Ingress is lower than the other configurations. The rea-
son is that there is little useful work being done here–
It ignores more than 90% of the traffic! Another curi-
ous feature is that MaxLoad for the replication architec-
ture first increases and then decreases. In this setup with
low overlap, the datacenter is the most loaded node. At
low θ , however, the MaxLinkLoad constraint limits the

5The exact details of how these paths are chosen or the distribution
of the θ values are not the key focus of this evaluation. We just need
some mechanism to generate paths with a target overlap ratio.

amount of traffic that can be offloaded and thus the data-
center load is low.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M
is

s
ra

te

Expected overlap factor

Ingress
Path, No Replicate

Path, Replicate

Figure 17: Detection miss rate vs. degree of overlap

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

 0.5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M
ax

im
um

 c
om

pu
te

 lo
ad

Expected overlap factor

Ingress
Path, No Replicate

Path, Replicate

Figure 18: Maximum load vs. degree of overlap

8.4 NIDS with aggregation
In this section, we highlight the benefits of aggregation
using the framework from §6. As discussed earlier, we
focus on Scan detection.

Figure 19 shows how varying β trades off the commu-
nication cost (CommCost) and compute cost (LoadCost)
in the resulting solution, for the different topologies. Be-
cause different topologies differ in size and structure,
we normalize the x- and y-axes using the maximum ob-
served LoadCost and CommCost respectively over the
range of β for each topology. As such, the point clos-
est to the origin can be viewed as the best choice of β

for the corresponding topology. This figure shows that
for many topologies, there are choices of β that yield
relatively low CommCost and LoadCost simultaneously,
e.g., both being less than 40% of their maximums.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

N
or

m
al

iz
ed

 c
om

m
un

ic
at

io
n

co
st

Normalized maximum compute load

Internet2
Geant
TiNet

Telstra
Sprint

Level3
NTT

Figure 19: Tradeoff between the compute load and com-
munication cost with aggregation as we vary βTo illustrate the load balancing benefits of aggrega-
tion, Figure 20 shows the ratio of the compute load of

12

 1

 2

 3

 4

 5

 6

 7

 8

 9

Internet2
Geant

TiNet Telstra Sprint Level3 NTT

M
ax

/A
ve

ra
ge

 c
om

pu
te

 lo
ad No Aggregation

With Aggregation

Figure 20: Ratio between maximum and average com-
pute load with and without aggregation.

the most loaded node to the average compute load. Here,
for each topology, we pick the value of β that yields the
point closest to the origin in Figure 19. A higher num-
ber represents a larger variance or imbalance in the load.
Figure 20 compares this ratio to the same ratio when no
aggregation is used. As we can see, aggregation reduces
the load imbalance substantially (up to 2.7×) for many
topologies.

9 Discussion

Extending to NIPS: Our framework can be extended to
the case of intrusion prevention systems (NIPS) as well.
Unlike NIDS, however, NIPS are on the critical forward-
ing path which raises two additional issues that we need
to handle. These arise from the fact that we are not actu-
ally replicating traffic in this case; rather, we are rerout-
ing it. First, we can no longer treat the Backgroundl as
a constant in the formulation. Second, we need to en-
sure that the latency penalty for legitimate traffic due to
rerouting is low. This introduces a new dimension to the
optimization to minimize the latency. In practice, the la-
tency impact can be reduced by a more careful choice of
the number (e.g., more than 1) and placement (e.g., Min
Avg Distance may be a better choice) of datacenters.

Shim scalability: Our current shim implementation im-
poses close to zero overhead for a single-threaded NIDS
running on a single core machine for traffic up to 1 Gbps.
We plan to extend our implementation using recent ad-
vances that further improve packet capture speeds [12]
and extend to multi-core architectures [11].

Combining aggregation and replication: Our results
show that replication and aggregation independently of-
fer substantial benefits. As future work we plan to ex-
plore if a unified formulation that combines both op-
portunities offers further improvements. For example,
we might be able to leverage the existing replication to
reduce the communication cost needed for aggregation.
One issue, however, is that the analyses benefiting from
aggregation may need to split the traffic at a different
granularity (e.g., per-src or per-destination) vs. those ex-
ploiting replication (e.g., stateful signature matching on

a per-session basis). Thus, we need a more careful shim
design to avoid duplicating the effort in packet capture
across different nodes in order to combine these ideas.

10 Related Work
Scaling NIDS hardware: NIDS involve complex pro-
cessing and computational intensive tasks (e.g., string
and regular-expression matching). There are many pro-
posals for better algorithms for such tasks (e.g. [42]), us-
ing specialized hardware such as TCAMs (e.g., [53, 32]),
FPGAs (e.g., [31, 33]), or GPUs (e.g., [50, 49]). The
dependence on specialized hardware increases deploy-
ment costs. To address this cost challenge, there are
ongoing efforts to build scalable NIDS on commodity
hardware to exploit data-level parallelism in NIDS work-
loads (e.g., [26, 48, 36, 44, 29, 51]). These efforts focus
on scaling single-vantage-point implementations and are
thus complementary to our work. Our framework allows
administrators to optimally use their existing hardware
or selectively add NIDS clusters.
Network-wide management: Our use of centralized
optimization to assign NIDS responsibilities follows in
the spirit of recent work in the networking community
(e.g., [27, 19]). The use of hash-based sampling to
coordinate monitoring was proposed in previous work
(e.g., [23, 39]). The work closest to ours is by Sekar,
et al. [38]. While we share their motivation for looking
beyond single-vantage-point scaling, our work differs in
three key aspects. First, we generalize the on-path dis-
tribution to include opportunities for replication and ag-
gregation. Second, their framework cannot handle the
types of split-traffic analysis with asymmetric routes as
we showed in Figure 17. Third, on a practical note, their
approach requires detailed source-level modifications to
the NIDS software. By interposing a lightweight shim
we allow administrators to run off-the-shelf NIDS soft-
ware even without access to the source code.
Distributed NIDS: Prior work makes the case for
network-wide visibility and distributed views in detect-
ing anomalous behaviors (e.g., [47, 43, 20, 16, 30]).
These focus primarily on algorithms for combining
observations from multiple vantage points. Further-
more, specific attacks (e.g., DDoS attacks [37], stepping
stones [54]) and network scenarios (e.g., the asymmetric
routing as in §2) inherently require an aggregate view.
Our focus is not on the specific algorithms for combin-
ing observations from multiple vantage points. Rather,
we build a framework for balancing the computation and
communication tradeoffs in enabling such aggregated
analysis.

11 Conclusions
While there are many advances in building better NIDS
hardware, there is a substantial window before networks

13

can benefit from these in practice. This paper was mo-
tivated by the need to complement the work on scaling
NIDS hardware with techniques to help network man-
agers better utilize their existing NIDS deployments.

To this end, we propose a general NIDS architecture
to leverage three scaling opportunities: on-path distribu-
tion to offload processing to other nodes on a packet’s
routing path, traffic replication to off-path nodes (e.g., to
NIDS clusters), and aggregation to split expensive NIDS
tasks. We implemented a lightweight shim that allows
networks to realize these benefits without any modifica-
tions to existing NIDS software beyond simple configu-
ration tweaks. Our results on many real-world topologies
shows that this architecture reduces the maximum com-
pute load significantly, provides better resilience under
traffic variability, and offers improved detection cover-
age for scenarios needing network-wide views.

Acknowledgements

This work was supported in part by ONR grant
N000141010155, NSF grants 0831245 and 1040626,
and the Intel Science and Technology Center for Secure
Computing.

References
[1] http://www.snort.org.
[2] http://bittwist.sourceforge.net.
[3] Bob hash. http://burtleburtle.net/bob/hash/

doobs.html.
[4] Cisco blade servers. http://www.cisco.com/en/US/

products/ps10280/index.html.
[5] Internet2 trafficx matrices. http://www.cs.utexas.edu/

˜yzhang/research/AbileneTM.
[6] M57 packet traces. https://domex.nps.edu/corp/

scenarios/2009-m57/net/.
[7] Magic quadrant for network intrusion prevention systems.

www.stonesoft.com/export/download/pdf/IPS_
MQ_2010_208628.pdf.

[8] Network security spending to soar in the next 5 year.
http://www.v3.co.uk/v3-uk/news/1998293/
network-security-spending-soar.

[9] One-stop security. http://www.pcmag.com/article2/
0,2817,1829582,00.asp#fbid=eHC0T1KbMJp.

[10] PAPI: Performance Application Programming Interface. http:
//icl.cs.utk.edu/papi/.

[11] Pfq homepage. http://netserv.iet.unipi.it/
software/pfq/.

[12] Pf ring. http://www.ntop.org/products/pf_ring/.
[13] Scapy packet manipulation toolkit.

http://www.secdev.org/projects/scapy/.
[14] Tun/tap. http://www.kernel.org/doc/

Documentation/networking/tuntap.txt.
[15] World intrusion detection and prevention markets. http:

//www-935.ibm.com/services/us/iss/pdf/esr_
intrusion-detection-and-prevention-systems-markets.
pdf.

[16] M. Allman, C. Kreibich, V. Paxson, R. Sommer, and N. Weaver.
Principles for Developing Comprehensive Network Visibility. In
USENIX Workshop on Hot Topics in Security, 2008.

[17] M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A. Shaikh, and
J. van der Merwe. Design and implementation of a Routing Con-
trol Platform. In Proc. of NSDI, 2005.

[18] G. R. Cantieni, G. Iannaccone, C. Barakat, C. Diot, and P. Thi-
ran. Reformulating the Monitor Placement problem: Optimal
Network-Wide Sampling. In Proc. of CoNeXT, 2006.

[19] M. Casado, T. Garfinkel, A. Akella, M. Friedman, D. Boneh,
N. Mckeown, and S. Shenker. SANE: A Protection Architecture
for Enterprise Networks. In USENIX Security, 2006.

[20] F. Cuppens and A. Miege. Alert correlation in a cooperative intru-
sion detection framework. In Proc. IEEE Symposium on Security
and Privacy, 2002.

[21] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K. Fall, G. Ian-
naccone, A. Knies, M. Manesh, and S. Ratnasamy. RouteBricks:
Exploiting Parallelism to Scale Software Routers. In Proc. SOSP,
2009.

[22] H. Dreger, A. Feldmann, V. Paxson, and R. Sommer. Predict-
ing the Resource Consumption of Network Intrusion Detection
Systems. In Proc. RAID, 2008.

[23] N. Duffield and M. Grossglauser. Trajectory Sampling for Direct
Traffic Observation. In Proc. of ACM SIGCOMM, 2001.

[24] A. Feldmann, A. G. Greenberg, C. Lund, N. Reingold, J. Rex-
ford, and F. True. Deriving Traffic Demands for Operational IP
Networks: Methodology and Experience. In Proc. of ACM SIG-
COMM, 2000.

[25] B. Fortz, J. Rexford, and M. Thorup. Traffic Engineering with
Traditional IP Routing Protocols. IEEE Communications Maga-
zine, Oct. 2002.

[26] L. Foschini, A. V. Thapliyal, L. Cavallaro, C. Kruegel, and G. Vi-
gna. A Parallel Architecture for Stateful, High-Speed Intrusion
Detection. In Proc. ICISS, 2008.

[27] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Meyers, J. Rex-
ford, G. Xie, H. Yan, J. Zhan, and H. Zhang. A Clean Slate
4D Approach to Network Control and Management. ACM SIG-
COMM CCR, 35(5), Oct. 2005.

[28] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. Kaashoek. The
click modular router. ACM Transactions on Computer Systems
(TOCS), 18(3):263–297, 2000.

[29] C. Kruegel, F. Valeur, G. Vigna, and R. A. Kemmerer. Stateful
Intrusion Detection for High-Speed Networks. In Proc. IEEE
Symposium on Security and Privacy, 2002.

[30] A. Lakhina, M. Crovella, and C. Diot. Diagnosing Network-Wide
Traffic Anomalies. In Proc. of ACM SIGCOMM, 2004.

[31] J. Lee, S. H. Hwang, N. Park, S.-W. Lee, S. Jun, and Y. S. Kim.
A high performance NIDS using FPGA-based regular expression
matching. In Proc. Symposium on Applied Computing (SAC),
2007.

[32] C. R. Meiners, J. Patel, E. Norige, E. Torng, and A. X. Liu. Fast
regular expression matching using small tcams for network intru-
sion detection and prevention systems. In Proc. USENIX Security
Symposium, 2010.

[33] A. Mitra, W. Najjar, and L. Bhuyan. Compiling PCRE to FPGA
for accelerating Snort IDS. In Proc. Architecture for Networking
and Communications Systems (ANCS), 2007.

[34] V. Paxson. Bro: A System for Detecting Network Intruders in
Real-Time. In Proc. USENIX Security Symposium, 1998.

[35] M. Roughan. Simplifying the Synthesis of Internet Traffic Matri-
ces. ACM SIGCOMM CCR, 35(5), 2005.

[36] D. L. Schuff, Y. R. Choe, and V. S. Pai. Conservative vs. opti-
mistic parallelization of stateful network intrusion detection. In
Proc. Symposium on Principles and Practice of Parallel Pro-
gramming (PPoPP), 2007.

[37] V. Sekar, N. Duffield, K. van der Merwe, O. Spatscheck, and
H. Zhang. LADS: Large-scale Automated DDoS Detection Sys-
tem. In Proc. of USENIX ATC, 2006.

[38] V. Sekar, R. Krishnaswamy, A. Gupta, and M. K. Reiter.
Network-wide deployment of intrusion detection and prevention
systems. In Proc. CoNext, 2010.

14

[39] V. Sekar, M. K. Reiter, W. Willinger, H. Zhang, R. Kompella,
and D. G. Andersen. cSamp: A System for Network-Wide Flow
Monitoring. In Proc. of NSDI, 2008.

[40] A. Shaikh and A. Greenberg. OSPF Monitoring: Architecture,
Design and Deployment Experience. In Proc. of NSDI, 2004.

[41] R. Smith, C. Estan, and S. Jha. XFA: Faster signature matching
with extended automata. In Proc. IEEE Symposium on Security
and Privacy, 2008.

[42] R. Smith, C. Estan, S. Jha, and S. Kong. Deflating the Big Bang:
fast and scalable deep packet inspection with variable-extended
automata. In Proc. SIGCOMM, 2008.

[43] S. R. Snapp, J. Brentano, G. V. Dias, T. L. Goan, L. T. Heberlein,
C. lin Ho, K. N. Levitt, B. Mukherjee, S. E. Smaha, T. Grance,
D. M. Teal, and D. Mansur. DIDS (distributed intrusion detection
system), - motivation, architecture, and an early prototype. In
Proc. National Computer Security Conference, 1991.

[44] R. Sommer, V. Paxson, and N. Weaver. An Architecture for Ex-
ploiting Multi-Core Processors to Parallelize Network Intrusion
Prevention. Concurrency and Computation: Practice and Expe-
rience, Wiley, 21(10):1255–1279, 2009.

[45] N. Spring, R. Mahajan, and D. Wetherall. Measuring ISP Topolo-
gies with Rocketfuel. In Proc. of ACM SIGCOMM, 2002.

[46] R. Teixeira, A. Shaikh, T. Griffin, and J. Rexford. Dynamics of
hot-potato routing in IP networks. In Proc. SIGMETRICS, 2004.

[47] A. Valdes and K. Skinner. Probabilistic alert correlation. In Proc.
RAID, 2001.

[48] M. Vallentin, R. Sommer, J. Lee, C. Leres, V. Paxson, and B. Tier-
ney. The NIDS Cluster: Scalable, Stateful Network Intrusion
Detection on Commodity Hardware. In Proc. of RAID, 2007.

[49] G. Vasiliadis, S. Antonatos, M. Polychronakis, E. P. Markatos,
and S. Ioannidis. Gnort: High Performance Network Intrusion
Detection Using Graphics Processors. In Proc. RAID, 2008.

[50] G. Vasiliadis, M. Polychronakis, S. Antonatos, E. P. Markatos,
and S. Ioannidis. Regular expression matching on graphics hard-
ware for intrusion detection. In Proc. RAID, 2009.

[51] G. Vasiliadis, M. Polychronakis, and S. Ioannidis. MIDeA: A
Multi-Parallel Intrusion Detection Architecture. In Proc. CCS,
2011.

[52] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An integrated
experimental environment for distributed systems and networks.
In Proc. OSDI, 2002.

[53] F. Yu, T. V. Lakshman, M. A. Motoyama, and R. H. Katz. SSA:
A Power and Memory Efficient Scheme to Multi-Match Packet
Classification. In Proc. ANCS, 2005.

[54] Y. Zhang and V. Paxson. Detecting stepping stones. In Proc.
USENIX Security Symposium, 2000.

A Mapping to configurations

For brevity, we only show the mapping step for the repli-
cation formulation in Figure 21. Solving the optimiza-
tion formulation using an LP solver gives us the optimal
assignments of the dikj and cikjj′ values. The mapping
procedure runs once per class-path combination; i.e., for
each i,k. For each such combination, the first loop it-
erates over non-zero dikj values and assigns processing
responsibilities across the respective Rjs. At each step it
tracks the currently assigned range (i.e., endrange) and
uses this value as the startrange for the next assignment
to ensure that the ranges assigned to the different nodes

are non-overlapping. After completing the processing
assignments, it does a similar loop over the replication
assignments, again ensuring that the assigned ranges do
not overlap across the nodes.

for all i,k do
startrange← 0,endrange← 0
{Start with the local processing assignments}
for all Rj ∈ Pik s.t. dikj > 0 do

endrange← endrange+dikj
processi,k(Rj)← [startrange,endrange]
startrange← endrange

end for
{Now, move to the replication assignments}
for all Rj ∈ Pik do

for all Rj′ ∈MirrorSetj s.t. cikjj′ > 0 do
endrange← endrange+ cikjj′

offloadi,k(Rj,Rj′)← [startrange,endrange]
startrange← endrange

end for
end for

end for

Figure 21: Mapping the optimization solution into a set
of hash ranges for each shim instance

B Additional Results

B.1 Varying datacenter location

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

Internet2
Geant

TiNet TelstraSprint Level3NTT

M
ax

im
um

 c
om

pu
te

 lo
ad

Max Vol Source
Max Vol Observed

Max Paths
Min Avg Distance

Figure 22: Choosing a data center location with
MaxLinkLoad = 0.1.

Figure 22 shows the effect of different datacenter
placement strategies, but setting the MaxLinkLoad = 0.1.
The one interesting difference is that there is a more pro-
nounced gap between the placement strategies for TiNet,
Sprint, and Level3 at MaxLinkLoad = 0.1 compared to
Figure 11 with MaxLinkLoad = 0.4. This suggests that a
more careful placement evaluation might be needed un-
der stricter communication constraints. Even in this case,

15

however, we notice that the Max Vol Obs strategy is the
best choice across all topologies.

B.2 Varying the datacenter capacity

 0.1
 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0 2 4 6 8 10 12 14

M
ax

im
um

 c
om

pu
te

 lo
ad

Normalized capacity of the data center

Internet2
Geant
TiNet

Telstra

Sprint
Level3

NTT

(a) MaxLinkLoad = 0.1

 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0 2 4 6 8 10 12 14

M
ax

im
um

 c
om

pu
te

 lo
ad

Normalized capacity of the data center

(b) MaxLinkLoad = 0.4

Figure 23: Maximum compute load as a function of the
provisioned datacenter capacity

Figure 23 shows the effect of increasing the datacen-
ter capacity for two values of MaxLinkLoad. For both
values, we find a natural diminishing returns property
where the slope of the load reduction decreases as the
data center capacity increases. The difference is that at
a low value, MaxLinkLoad = 0.1, we see that the knee
of the curve occurs much earlier at X = 2 and for some
cases (e.g., Internet2) there is little to be gained by in-
creasing the datacenter capacity at low link loads. This
is expected—with a tighter bound of MaxLinkLoad there
are very few opportunities to offload traffic processing.
At MaxLinkLoad = 0.4, the knee of the curve for most
topologies is around 8–10; hence, we chose this value
for our evaluation setup.

16

