
Mitigating Timing Channels in Clouds using StopWatch∗

Peng Li
Department of Computer Science

University of North Carolina

Email: pengli@cs.unc.edu

Debin Gao
School of Information Systems

Singapore Management University

Email: dbgao@smu.edu.sg

Michael K. Reiter
Department of Computer Science

University of North Carolina

Email: reiter@cs.unc.edu

Abstract
This paper presentsStopWatch, a system that defends
against timing-based side-channel attacks that arise from
coresidency of victims and attackers in infrastructure-
as-a-service clouds.StopWatchtriplicates each cloud-
resident guest virtual machine (VM) and places repli-
cas so that the three replicas of a guest VM are coresi-
dent with nonoverlappingsets of (replicas of) other VMs.
StopWatchuses the timing of events at a VM’s replicas
collectively to determine the timings observed by each
one or by an external observer, so that observable tim-
ing behaviors could have been observed in the absence
of any other individual, coresident VM. We detail the de-
sign and implementation ofStopWatchin Xen, evaluate
the factors that influence its performance, and address
the problem of placing VM replicas in a cloud under the
constraints ofStopWatchso as to still enable adequate
cloud utilization.

1 Introduction

Implicit timing-based information flows potentially
threaten the use of clouds for very sensitive computa-
tions. In an “infrastructure as a service” (IaaS) cloud,
such an attack would be mounted by an attacker sub-
mitting a virtual machine (VM) to the cloud that times
the duration between events that it can observe, to make
inferences about avictim VM with which it is running
simultaneously on the same host but otherwise cannot
access. Such attacks were first studied in the context of
timing-basedcovert channels, in which the victim VM
is infected with a Trojan horse that intentionally signals
information to the attacker VM by manipulating the tim-
ings that the attacker VM observes. Of more significance
in modern cloud environments, however, are timing-
basedside channels, which leverage the same principles
to attack an uninfected but oblivious victim VM.

A known defense against timing-based covert chan-
nels and side channels is to perturb (e.g., through ran-
domization or coarsening) clocks that are visible to VMs,
making it more difficult for the attacker VM to measure
the duration between events and so to receive the signals
(e.g., [25, 45]). While this technique slows (but does not

∗This technical report subsumes TR11-010 [34].

entirely defeat) timing-based channels, the protection it
offers can be difficult or impossible to quantify when ap-
plied heuristically.

This state of affairs is reminiscent of another subdo-
main of the security field, namely inference control in the
release of datasets of sensitive information (e.g., health
records) about people. Perturbation of query results (ran-
domization and coarsening again being notable exam-
ples) has been a staple of that subdomain for decades
(e.g., [1]). Recently, a formal underpinning to guide its
application has started to gain momentum, namelydiffer-
ential privacy. “Achieving differential privacy revolves
around hiding the presence or absence of a single indi-
vidual” [18] in a dataset.

In this paper we adapt this intuitive goal of differential
privacy — i.e., that the adversary cannot discern from his
observations whether a person is represented in a dataset
— to the entirely different domain of timing attacks in
the cloud. More specifically, we develop a system called
StopWatchthat perturbs timing signals available to an
attacker VM so that these signals could have been ob-
served in the absence of the victim. Due to our different
domain, however, the methods employed inStopWatch
to achieve this property are wholly different than ran-
domizing query responses. Rather,StopWatchperturbs
timings observed by the attacker VM to “match” those
of a replica attacker VM that isnot coresident with the
victim.

Since StopWatchcannot identify attackers and vic-
tims, realizing this intuition in practice requires repli-
cating each VM on multiple hosts and enforcing that
the replicas are coresident with nonoverlapping sets of
(replicas of) other VMs. Moreover, two replicas is not
enough: one might be coresident with its victim, and
by symmetry, its timings would necessarily influence the
timings imposed on the pair.StopWatchthus uses three
replicas that coreside with nonoverlapping sets of (repli-
cas of) other VMs and imposes the timing of the “me-
dian” of the three on all replicas. Even if the median
timing of an event is that which occurred at an attacker
replica that is coresident with a victim replica, timings
both below and above the median occurred at attacker
replicas that do not coreside with the victim.1

1The median can be viewed as “microaggregating” the timings to

1

We detail the implementation ofStopWatchin Xen,
specifically to intervene on all real-time clocks and, no-
tably, to enforce this “median” behavior on “clocks”
available via the I/O subsystem (e.g., network interrupts).
In doing so,StopWatchinterferes with all timing side-
channel attacks commonly used in the research literature,
owing to the normal use of real time as a reference clock
in those exploits. (Timing attacks that do not use real-
time clocks should generally be more fragile due to un-
predictable influences on other reference clocks.) More-
over, for uniprocessor VMs,StopWatchenforces deter-
ministic execution across all of a VM’s replicas, making
it impossible for an attacker VM to utilize other inter-
nally observable clocks and ensuring the same outputs
from the VM replicas. By applying the median princi-
ple to the timing of these outputs,StopWatchfurther in-
terferes with inferences that an observer external to the
cloud could make on the basis of output timings.

We extensively evaluate the performance of ourStop-
Watch prototype for supporting web service (file down-
loads), network file systems, and various types of com-
putations. Our analysis shows that performance costs
of StopWatchcan range up to 3× for network-intensive
applications, and it further enables us to identify adap-
tations to a service that can vastly increase its perfor-
mance when run overStopWatch. For example, we show
that reliable transport that minimizes client-to-server ac-
knowledgements (or unreliable transport with no ac-
knowledgements, as in UDP) can dramatically improve
file download latencies versus TCP in the common case
of few losses, even to the extent of making file download
overStopWatchcompetitive with file download over un-
modified Xen. For computational benchmark programs,
we find that the overheads induced byStopWatchare di-
rectly correlated with their amounts of disk I/O.

We also analyze a utilization question that would be
faced by cloud operators if they were to make use of
StopWatch, namely how many guest VMs can be simul-
taneously executed on an infrastructure ofn machines
under the constraint that the three replicas for each guest
VM coreside with nonoverlapping sets of (replicas of)
other VMs. We relate this question to a graph-theoretic
problem studied in computational biology and find that
Θ(n2) guest VMs can be simultaneously executed. We
also identify practical algorithms for placing replicas to
achieve this bound.

To summarize, our contributions are as follows: First,
we introduce a novel approach for defending against tim-
ing side-channel attacks in “infrastructure-as-a-service”
(IaaS) compute clouds that leverages replication of guest
VMs with the constraint that the replicas of each guest

confound inferences from them (c.f., [16, 43, 27]). This analogy sug-
gests the possibility of using other microaggregation functions, as well,
of which there are many [49].

VM coreside with nonoverlapping sets of (replicas of)
other VMs. The median timings of events across the
three guest VM replicas are then imposed on these repli-
cas to interfere with their use of event timings to extract
information from a victim VM with which one is coresi-
dent. Second, we detail the implementation of this strat-
egy in Xen, yielding a system calledStopWatch, and
evaluate the performance ofStopWatchon a variety of
workloads. This evaluation sheds light on the features of
workloads that most impact the performance of applica-
tions running onStopWatchand how they can be adapted
for best performance. Third, we identify algorithmic re-
sults from graph theory and computational biology that
resolve the problem of how to place replicas under the
constraints ofStopWatchto maximally utilize a cloud
infrastructure.

2 Related Work

Timing channel defenses. Defenses against informa-
tion leakage via timing channels are diverse, taking nu-
merous different angles on the problem. Research on
type systems and security-typed languages to eliminate
timing attacks offers powerful solutions (e.g., [2, 50]),
but this work is not immediately applicable to our goal
here, namely adapting an existing virtual machine mon-
itor (VMM) to support practical mitigation of timing
channels today. Other research has focused on the elimi-
nation of timing side channels within cryptographic com-
putations (e.g., [30, 31]), but we seek an approach that
applies to general computations.

Askarov et al. [3] distinguish betweeninternal tim-
ing channels that involve the implicit or explicit mea-
surement of time from within the system, andexter-
nal timing channels that involve measuring the system
from the point of view of an external observer. De-
fenses for both internal (e.g., [25, 2, 50, 45]) and external
(e.g., [28, 22, 3, 23, 51]) timing channels have received
significant attention individually, though to our knowl-
edge,StopWatch is novel in addressing timing chan-
nels through a combination of both techniques.Stop-
Watch incorporates internal defenses to interfere with
an attacker’s use of real-time clocks or “clocks” that it
might derive from the I/O subsystem. In doing so,Stop-
Watch imposes determinism on uniprocessor VMs and
then uses this feature to additionally build an effective
external defense against such attacker VMs, as well.

StopWatch’s internal and external defense strategies
also differ individually from prior work, in interfering
with timing channels by allowing replicas (in the inter-
nal defenses) and external observers (in the external de-
fenses) to observe only median timings from the three
replicas. That is, each internal and external timing ob-
servation is of either an attacker VM replica that is not

2

coresident with a victim VM replica or else lies be-
tween timings of such replicas. This offers a more prin-
cipled defense than randomly perturbing the timings of
events observable at or from an nonreplicated attacker
VM (e.g., [25]). Random noise does not asymptotically
eliminate timing channels [3], in part because a distribu-
tion from which to draw the randomness must be chosen
without reference to an execution in the absence of the
victim — i.e., how the execution “should have” looked.
StopWatchuses replication and careful replica place-
ment (in terms of the other VMs with which each replica
coresides) exactly to provide such a reference.
Replication. To our knowledge,StopWatchis novel
in utilizing replication for timing channel defense. That
said, replication has a long history that includes tech-
niques similar to those we use here. For example,
state-machine replication [32, 41] to mask Byzantine
faults [33] ensures that correct replicas return the same
response to each request so that this response can be
identified by “vote” (a technique related to one employed
in StopWatch; see§3 and§6). To ensure that correct
replicas return the same responses, these systems enforce
the delivery of requests to replicas in the same order;
moreover, they typically assume that replicas are deter-
ministic and process requests in the order they are re-
ceived. Enforcing replica determinism has also been a
focus of research in (both Byzantine and benignly) fault-
tolerant systems; most (e.g., [11, 6, 12, 36, 35, 7]), but
not all (e.g., [13]), do so at other layers of the software
stack thanStopWatchdoes.

More fundamentally, to our knowledge all prior sys-
tems that enforce timing determinism across replicas per-
mit one replica to dictate timing-related events for the
others, which does not suffice for our goals: that replica
could be the one coresident with the victim, and so per-
mitting it to dictate timing related events would simply
“copy” the information it gleans from the victim to the
other replicas and, eventually, to leak it out of the cloud.
Rather, by forcing the timing of events to conform to the
median timing across three VM replicas, at most one of
which is coresident with the victim, the enforced timing
of each event is either the timing of a replica not coresi-
dent with the victim or else between the timing of two
replicas that are not coresident with the victim. This
strategy is akin to ones developed for Byzantine fault-
tolerant clock synchronization (e.g., see [40,§5.2]).

Aside from replication for fault tolerance, replication
has been explored to detect server penetration [20, 14,
37, 21]. These approaches purposely employ diverse
replica codebases or data representations so as to reduce
the likelihood of a single exploit succeeding on multi-
ple replicas. Divergence of replica behavior in these ap-
proaches is then indicative of an exploit succeeding on
one but not others. In contrast to these approaches,Stop-

Watch leverages (necessarily)identical guest VM repli-
cas to address a different class of attacks (timing side
channels) than replica compromise.

Research on VM executionreplay (e.g., [48, 17]) fo-
cuses on recording nondeterministic events that alter VM
execution and then coercing these events to occur the
same way when the VM is replayed. The replayed VM
is a replica of the original, albeit a temporally delayed
one, and so this can also be viewed as a form of repli-
cation.StopWatchsimilarly coerces VM replicas to ob-
serve the same event timings, but again, unlike these tim-
ings being determined by one replica (the original), they
are determined collectively using median calculations,
so as to interfere with one attacker VM replica that is
coresident with the victim from simply propagating its
timings to all replicas. That said, the state-of-the-art in
VM replay (e.g., [17]) addresses multiprocessor VM ex-
ecution, which our present implementation ofStopWatch
does not. We expect thatStopWatchcould be extended
to support multiprocessor execution with techniques de-
veloped for replay of multiprocessor VMs, and we plan
to investigate this in future research. Mechanisms for en-
forcing deterministic execution of parallel computations
through modifications at user level (e.g., [9, 8]) or the
OS (e.g., [4]) are less relevant to our goals, as they are
not easily utilized by an IaaS cloud provider that accepts
arbitrary VMs for execution.

3 Design

Our design is focused on “infrastructure as a ser-
vice” (IaaS) clouds that accept virtual machine im-
ages, or “guest VMs,” from customers to execute.
Amazon EC2 (http://aws.amazon.com/ec2/) and
Rackspace (http://www.rackspace.com/) are exam-
ple providers of public IaaS clouds. Given the concerns
associated with side-channel attacks in cloud environ-
ments (e.g., [39]), we seek to develop virtualization soft-
ware that would enable a provider to construct a cloud
that offers substantially stronger assurances against leak-
age via timing channels. This cloud might be a higher as-
surance offering that a provider runs alongside its normal
cloud (while presumably charging more for the greater
assurance it offers) or a private cloud with substantial
assurance needs (e.g., run by and for an intelligence or
military community).

Our threat model is a customer who submitsattacker
VMs for execution that are designed to employ timing
side channels. We presume that the attacker VM is de-
signed to extract information from a particular victim
VM, versus trying to learn general statistics about the
cloud such as its average utilization. We assume that ac-
cess controls prevent the attacker VMs from accessing
victim VMs directly or from escalating their own privi-

3

leges in a way that would permit them to access victim
VMs. The cloud’s virtualization software (in our case,
Xen and our extensions thereof) is trusted.

According to Wray [47], to exploit a timing chan-
nel, the attacker VM measures the timing of observable
events using aclock that is independent of the timings
being measured. While the most common such clock
is real time, a clock can be any sequence of observable
events. With this general definition of a “clock,” a tim-
ing attack simply involves measuring one clock using
another. Wray identified four possible clock sources in
conventional computers [47]:

• TL: the “CPU instruction-cycle clock”, i.e., a clock
constructed by executing a simple timing loop;

• Mem: the memory subsystem (e.g., data/instruction
fetches);

• IO: the I/O subsystem (e.g., network, disk, and DMA
interrupts); and

• RT: real-time clocks provided by the hardware plat-
form (e.g., time-of-day registers).

StopWatchis designed to interfere with the use ofIO

andRT clocks and, for uniprocessor VMs,TL or Mem

clocks, for timing attacks. (As discussed in§2, exten-
sion to multiprocessor VMs is a topic of future work.)
IO andRT (especiallyRT) clocks are an ingredient in
every timing side-channel attack in the research litera-
ture that we have found, undoubtedly because real time
is the most intuitive, independent and reliable reference
clock for measuring another clock. So, intervening on
these clocks is of paramount importance. Moreover, the
wayStopWatchdoes so forces the scheduler in a unipro-
cessor guest VM to behave deterministically, interfering
with attempts to useTL orMem clocks.

More specifically, to interfere withIO clocks, Stop-
Watchreplicates each attacker VM (i.e., every VM, since
we do not presume to know which ones are attacker
VMs) threefold so that the three replicas of a guest VM
are coresident with nonoverlapping sets of (replicas of)
other VMs. Then, when determining the timing with
which an event is made available to each replica, the
median timing value of the three is adopted. We justify
the median below, and as discussed in§2, we viewStop-
Watch’s use of medians in addressingIO clocks as one
of our primary innovations. StopWatchaddressesRT
clocks by replacing a VM’s view of real time with a vir-
tual time that depends on the VM’s own progress, an idea
due to Popek and Kline [38]. Optionally,StopWatchad-
justs virtual time periodically using the median real time
of the three replicas, thereby roughly synchronizing their
views of real time with actual real time to a degree.

A side effect of howStopWatchaddressesIO and
RT clocks is that it enforces deterministic execution
of uniprocessor attacker VM replicas, also disabling its

ability to useTL orMem clocks. These mechanisms thus
deal effectively with internal observations of time, but it
remains possible that an external observer could glean
information from the real-time duration between the ar-
rival of packets that the attacker VM sends. To interfere
with this timing channel, we emit packets to an external
observer with timing dictated by, again, the median tim-
ing of the three VM replicas.

Permitting only the median timing of an event to be
observed limits the information that an attacker VM can
glean from being co-located with a victim VM of inter-
est, because the distribution of the median timings sub-
stantially dampens the visibility of a victim’s activities.
To see how, consider a victim VM that induces timings
that are exponentially distributed with rateλ ′, versus a
baseline (i.e., non-victim) exponential distribution with
rate λ > λ ′.2 Fig. 1(a) plots example distributions of
the attacker VMs’ observations underStopWatchwhen
an attacker VM is coresident with the victim (“Median
of two baselines, one victim”) and when attacker VM is
not (“Median of three baselines”). This figure shows that
these median distributions are quite similar, even whenλ
is substantially larger thanλ ′; e.g.,λ = 1 andλ ′ = 1/2
in the example in Fig. 1(a). In this case, to reject the null
hypothesis that the attacker VM is not coresident with the
victim using aχ-square test, the attacker can do so with
high confidence in the absence ofStopWatchwith only
a single observation, but doing so underStopWatchre-
quires almost two orders of magnitude more (Fig. 1(b)).
This improvement becomes even more pronounced ifλ
andλ ′ are closer; the casesλ = 1, λ ′ = 2/3 andλ = 1,
λ ′ =10/11 are shown in Figs. 1(c) and 1(d), respectively.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6

pr
ob

ab
ili

ty

x

Baseline
Victim

Median of three baselines
Median of two baselines,

 one victim

(a) Distribution of median;λ ′ =
1/2

 0
 10
 20
 30
 40
 50
 60
 70
 80

0.70 0.75 0.80 0.85 0.90 0.95 0.99N
um

be
r

of
 O

bs
er

va
tio

ns

confidence

w/ StopWatch
w/o StopWatch

(b) Observations needed to detect
victim; λ ′ = 1/2

 0

 50

 100

 150

 200

 250

0.70 0.75 0.80 0.85 0.90 0.95 0.99N
um

be
r

of
 O

bs
er

va
tio

ns

confidence

w/ StopWatch
w/o StopWatch

(c) Observations needed to detect
victim; λ ′ = 2/3

 0
 100
 200
 300
 400
 500
 600
 700
 800

0.70 0.75 0.80 0.85 0.90 0.95 0.99N
um

be
r

of
 O

bs
er

va
tio

ns

confidence

w/ StopWatch
w/o StopWatch

(d) Observations needed to detect
victim; λ ′ = 10/11

Figure 1: Justification for median; baseline distribution
Exp(λ), λ = 1, and victim distribution Exp(λ ′)

Of course, in terms of absolute numbers of observa-

2It is not uncommon to model packet inter-arrival time, for example,
using an exponential distribution (e.g., [29]).

4

tions needed to detect the victim VM with confidence,
this assessment may be very conservative, since the at-
tacker would face numerous pragmatic difficulties that
we have not modeled here (e.g., migration of VMs be-
tween cores). Moreover, detecting the victim VM is
only the first step of extracting useful information (e.g.,
a cryptographic key) from it. But even this simple exam-
ple shows the power of disclosing only median timings
of three VM replicas, and in§5.2 we will repeat this il-
lustration using actual message traces.

4 RT clocks

Real-time clocks provide reliable and intuitive reference
clocks for measuring the timings of other events. In
this section, we describe the high-level strategy taken in
StopWatchto interfere with their use for timing channels
and detail the implementation of this strategy in Xen with
hardware-assisted virtualization (HVM).

4.1 Strategy

The strategy adopted inStopWatchto interfere with a
VM’s use of real-time clocks is to virtualize these real-
time clocks so that their values observed by a VM are a
deterministic function of the VM’s instructions executed
so far [38]. That is, after the VM executesinstr instruc-
tions, the virtual time observed from within the VM is

virt(instr)← slope× instr+ start (1)

To determinestart at the beginning of VM replica exe-
cution, the VMMs hosting the VM’s replicas exchange
their current real times;start is initially set to the me-
dian of these values.slope is initially set to a constant
determined by the tick rate of the machines on which the
replicas reside.

Optionally, the VMMs can adjuststart andslope pe-
riodically, e.g., after the replicas execute an “epoch” of
I instructions, to coarsely synchronizevirt and real time.
For example, after thek-th epoch, each VMM can send
to the others the durationDk over which its replica exe-
cuted thoseI instructions and its real timeRk at the end
of that duration. Then, the VMMs can select the median
real timeR∗

k and the durationD∗
k from that same machine

and reset

startk+1 ← virtk(I)

slopek+1 ← arg min
v∈[ℓ,u]

∣

∣

∣

∣

R∗
k − virtk(I)+D∗

k

I
− v

∣

∣

∣

∣

for a preconfigured constant range[ℓ,u], to yield the
formula for virtk+1.3 The use ofℓ and u ensures that

3In other words, if(R∗
k − virtk(I) +D∗

k)/I ∈ [ℓ,u] then this value
becomesslopek+1. Otherwise, eitherℓ or u does, whichever is closer to
(R∗

k − virtk(I)+D∗
k)/I.

slopek+1 is not too extreme and, ifℓ > 0, thatslopek+1 is
positive. In this way,virtk+1 should approach real time
on the computer contributing the median real timeR∗

k
over the nextI instructions, assuming that the machine
and VM workloads stay roughly the same. Of course,
the smallerI-values are, the morevirt follows real time
and so poses the risk of becoming useful in timing at-
tacks. So,virt should be adjusted only for tasks for which
coarse synchronization with real time is important and
then only with largeI values.

4.2 Implementation in Xen

Real-time clocks on a typical x86 platform include timer
interrupts and various hardware counters. Closely related
to these real-time clocks is the time stamp counter regis-
ter, which is accessed using therdtsc instruction and
stores a count of processor ticks since reset.
Timer interrupts. Operating systems typically mea-
sure the passage of time by counting timer interrupts; i.e.,
the operating system sets up a hardware device to inter-
rupt periodically at a known rate, such as 100 times per
second [46]. There are various such hardware devices
that can be used for this purpose. Our current imple-
mentation ofStopWatchassumes the guest VM uses a
Programmable Interval Timer (PIT) as its timer interrupt
source, but our implementation for other sources would
be similar. TheStopWatchVMM generates timer inter-
rupts for a guest on a schedule dictated by that guest’s
virtual time virt as computed in (1). To do so, it is nec-
essary for the VMM to be able to track the instruction
countinstr executed by the guest VM.

In our present implementation,StopWatchuses the
guestbranch count for instr, i.e., keeping track only of
the number of branches that the guest VM executes. Sev-
eral architectures support hardware branch counters, but
these are not sensitive to the multiplexing of multiple
guests onto a single hardware processor and so continue
to count branches regardless of the guest that is currently
executing. So, to track the branch count for a guest,
StopWatchimplements avirtualized branch counter for
each guest. The VM Control Structure (VMCS), through
which guest execution is controlled, provides a heap area
to save and restore model-specific register (MSR) values
such as the hardware branch counter during VMexits and
entries, respectively (described below). Using this mech-
anism,StopWatchtracks the branch count for each guest
and uses it forinstr in (1).

A question is when to inject each timer interrupt. Intel
VT augments IA-32 with two new forms of CPU oper-
ations: virtual machine extensions (VMX) root opera-
tion and VMX non-root operation [44]. While the VMM
uses root operation, guest VMs use VMX non-root op-
eration. In non-root operation, certain instructions and

5

events cause aVM exit to the VMM, so that the VMM
can emulate those instructions or deal with those events.
Once completed, control is transferred back to the guest
VM via a VM entry. The guest then continues running as
if it had never been interrupted.

VM exits give the VMM the opportunity to inject
timer interrupts into the guest VM as the guest’s virtual
time advances. However, so that guest VM replicas ob-
serve the same timer interrupts at the same points in their
executions,StopWatchinjects timer interrupts only after
VM exits that are caused by guest execution. Other VM
exits can be induced by events external to the VM, such
as hardware interrupts on the physical machine; these
would generally occur at different points during the ex-
ecution of the guest VM replicas but will not be visible
to the guest [26,§29.3.2]. For VM exits caused by guest
VM execution, the VMM injects any needed timer inter-
rupts on the next VM entry.
rdtsc calls and CMOS RTC values. Another way for
a guest VM to measure time is viardtsc calls. Xen
already emulates the return values to these calls. More
specifically, to produce the return value for ardtsc call,
the Xen hypervisor computes the time passed since guest
reset using its real-time clock, and then this time value is
scaled by a constant factor.StopWatchreplaces this use
of a real-time clock with the guest’s virtual clock (1).

A virtualized real-time clock (RTC) is also provided to
HVM guests in Xen; this provides time to the nearest sec-
ond for the guest to read. The virtual RTC gets updated
by Xen using its real-time clock.StopWatchresponds to
requests to read the RTC using the guest’s virtual time.
Reading counters. The guest can also observe real time
from various hardware counters, e.g., the PIT counter,
which repeatedly counts down to zero (at a pace dictated
by real time) starting from a constant. These counters,
too, are already virtualized in modern VMMs such as
Xen. In Xen, these return values are calculated using a
real-time clock;StopWatchuses the guest virtual time
(1), instead.

5 IO clocks

IO clocks are typically network, disk and DMA inter-
rupts. (Other device interrupts, such as keyboards, mice,
graphics cards, etc., are typically not relevant for guest
VMs in clouds.) We outline our strategy for mitigating
their use to implement timing channels in§5.1, and then
in §5.2 we describe our implementation of this strategy
in StopWatch.

5.1 Strategy

The method described in§4 for dealing withRT clocks
by introducing virtual time provides a basis for address-

ing sources ofIO clocks. A component of our strategy
for doing so is to synchronize I/O events across the three
replicas of each guest VM in virtual time, so that ev-
ery I/O interrupt occurs at the same virtual time at all
replicas. Among other things, this synchronization will
force uniprocessor VMs to execute deterministically, but
it alone will not be enough to interfere withIO clocks;
it is also necessary to prevent the timing behavior of
one replica’s machine from imposing I/O interrupt syn-
chronization points for the others, as discussed in§2–3.
This is simpler to accomplish for disk accesses and DMA
transfers since replica VMs initiate these themselves, and
so we will discuss this case first. The more difficult case
of network interrupts, where we explicitly employ me-
dian calculations to dampen the influence of any one ma-
chine’s timing behavior on the others, will then be ad-
dressed.

Disk and DMA interrupts. The replication of each
guest VM at start time includes replicating its entire
disk image, and so any disk blocks available to one VM
replica will be available to all. By virtue of the fact that
(uniprocessor) VMs execute deterministically inStop-
Watch, replicas will issue disk and DMA requests at the
same virtual time. Upon receiving such a request from
a replica at timeV , the VMM adds a constant∆d to de-
termine a “delivery time” for the interrupt, i.e., at virtual
timeV +∆d , and initiates the corresponding I/O activities
(disk access or DMA transfer). The constant∆d must be
large enough to ensure that the data transfer completes by
the virtual delivery time. Once the virtual delivery time
has been determined, the VMM simply waits for the first
VM exit caused by the guest VM (as in§4.2) that occurs
at a virtual time at least as large as this delivery time.
The VMM then injects the interrupt prior to the next VM
entry of the guest. This interrupt injection also includes
copying the data into the address space of the guest, so
as to prevent the guest VM from polling for the data in
advance of the interrupt to create a form of clock (e.g.,
see [25,§4.2.2]).

Network interrupts. Unlike the initiation of disk ac-
cesses and DMA transfers, the activity giving rise to a
network interrupt, namely the arrival of a network packet
that is destined for the guest VM, is not synchronized in
virtual time across the three replicas of the guest VM. So,
the VMMs on the three machines hosting these replicas
must coordinate to synchronize the delivery of each net-
work interrupt to the guest VM replicas. To prevent the
timing of one from dictating the delivery time at all three,
these VMMs exchange proposed delivery times and se-
lect the median, as discussed in§3. To solicit proposed
timings from the three, it is necessary, of course, that the
VMMs hosting the three replicas all observe each net-
work packet. So,StopWatchreplicates every network
packet to all three computers hosting replicas of the VM

6

for which the packet is intended. This is done by a log-
ically separate “ingress node” that we envision residing
on a dedicated computer in the cloud. (Of course, there
need not be only one such ingress for the whole cloud.)

When a VMM observes a network packet to be deliv-
ered to the guest, it sends its proposed virtual time — i.e.,
in the guest’s virtual time, see§4 — for the delivery of
that interrupt to the VMMs on the other machines host-
ing replicas of the same guest VM. (We stress that these
proposals are not visible to the guest VM replicas.) Each
VMM generates its proposed delivery time by adding a
constant offset∆n to the virtual time of the guest VM
at its last VM exit. ∆n must be large enough to ensure
that once the three proposals have been collected and
the median determined at all three replica VMMs, the
chosen median virtual time has not already been passed
by any of the guest VMs.∆n is thus determined us-
ing an assumed upper bound on the real time it takes
for each VMM to observe the interrupt and to propagate
its proposal to the others. In distributed computing par-
lance, we thus assume asynchronous system, i.e., there
are known bounds on processor execution rates and mes-
sage delivery times. The synchronous model has been
widely used to develop and deploy distributed protocols
(e.g., [15]).

Once the median proposed virtual time for a network
interrupt has been determined at a VMM, the VMM sim-
ply waits for the first VM exit caused by the guest VM
(as in§4.2) that occurs at a virtual time at least as large
as that median value.4 The VMM then injects the inter-
rupt prior to the next VM entry of the guest. As with disk
accesses and DMA transfers, this interrupt injection also
includes copying the data into the address space of the
guest, so as to prevent the guest VM from polling for the
data in advance of the interrupt to create a form of clock
(e.g., see [25,§4.2.2]).

Real �me

V
ir

tu
a

l �
m

e

R1

Replica A Replica B Replica C

B C A C A B

Arrival of packet at VMM

A’s proposal

Delivery of packet to guest

+∆n

+∆n

+∆n

B’s proposal
C’s proposal

Real �me Real �me
R1 R1R2 R2 R2

Arrival of proposal at VMM

Figure 2: Delivering a packet to guest VM replicas.

The process of determining the delivery time of a net-
work packet to guest VMs replicas is pictured in Fig. 2.

4If the median time determined by a VMM has already passed, then
our synchrony assumption was violated by the underlying system. In
this case, that VMM’s replica has diverged from the others and so must
be recovered by, e.g., copying the state of another replica.

This figure depicts a real-time interval[R1,R2] at the
three machines at which a guest VM is replicated, show-
ing at each machine: the arrival of a packet at the VMM,
the proposal made by each VMM, the arrival of proposals
from other replica machines, the selection of the median,
and the delivery of the packet to the guest replica. Each
stepped diagonal line shows the progression of virtual
time at that machine.

5.2 Implementation in Xen

Xen presents to each HVM guest a virtualized plat-
form that resembles a classic PC/server platform with
a network card, disk, keyboard, mouse, graphics dis-
play, etc. This virtualized platform support is provided
by virtual I/O devices (device models) in Dom0, a do-
main in Xen with special privileges. QEMU (http:
//fabrice.bellard.free.fr/qemu) is used to im-
plement device models. One instance of the device mod-
els is run in Dom0 per HVM domain. (See Fig. 3.)

Dom0
HVM Guest

I/O request

Device

Model
VM

exit

VM

entry

(3) Request interrupt
vPIC

S
h

a
re

d

M
e

m
o

ry

(2) Copy data

VMM

(1) Proposals to/from

other replicas

Figure 3: Emulation of I/O devices inStopWatch. “I/O
request” present only for disk I/O.

Network card emulation. In the case of a network card,
the device model running in Dom0 receives packets des-
tined for the guest VM. WithoutStopWatchmodifica-
tion, the device model copies this packet to the guest ad-
dress space and asserts a virtual network device interrupt
via the virtual Programmable Interrupt Controller (vPIC)
exposed by the VMM for this guest. HVM guests can-
not see real external hardware interrupts since the VMM
controls the platform’s interrupt controllers [26,§29.3.2].

In StopWatch, we modify the network card device
model so as to place each packet destined for the guest
VM into a buffer hidden from the guest, rather than de-
livering it to the guest. The device model then reads
from a shared memory the current virtual time of the
guest (as of the guest’s last VM exit), adds∆n to this
virtual time to create its proposed delivery (virtual) time
for this packet, and multicasts this proposal to the other
two replicas (step 1 in Fig 3). A memory region shared
between Dom0 and the VMM allows device models in
Dom0 to read guest virtual time, which is computed and

7

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20000 40000 60000 80000

Inter-packet delivery times (virtual)

Median of three baselines
Median of two baselines,

one victim

(a) Distribution of median (CDF)

 0

 20

 40

 60

 80

 100

 120

0.70 0.75 0.80 0.85 0.90 0.95 0.99

N
um

be
r

of
 o

bs
er

va
tio

ns

confidence

w/ StopWatch
w/o StopWatch

(b) Observations needed to detect
victim

Figure 4: Virtual inter-packet delivery times with cores-
ident victim (“two baselines, one victim”) and in a run
where no replica was coresident with a victim (“three
baselines”)

updated on every VM exit by the VMM.

Once the network device model receives the two pro-
posals in addition to its own, it takes the median proposal
as the delivery time and stores this delivery time in the
memory it shares with the VMM. The VMM compares
guest virtual time to the delivery time stored in the shared
memory upon every guest VM exit caused by guest VM
execution. Once guest virtual time has passed the de-
livery time, the network device model copies the packet
into the guest address space (step 2 in Fig. 3) and asserts
a virtual network interrupt on the vPIC prior to the next
VM entry (step 3).

In Fig. 4(a) we show the distribution of virtual inter-
packet delivery times in an actual run with an active vic-
tim, in comparison to the virtual delivery times with no
victim present. This plot is directly analogous to that in
Fig. 1(a) but is generated from a real trace and shows the
distribution as a CDF for ease of readability. Fig. 4(b)
shows the number of observations needed to distinguish
the victim and no-victim distributions in Fig. 4(a) as a
function of the desired confidence. This figure is anal-
ogous to that in Fig. 1(b), and confirms thatStopWatch
strengthens defense against timing attacks by an order of
magnitude in this scenario. Again, the absolute number
of observations needed to distinguish these distributions
is likely quite conservative, owing to numerous practical
challenges to gathering these observations.

Disk and DMA emulation. The emulation of the IDE
disk and DMA devices is similar to the network card em-
ulation above. StopWatchcontrols when the disk and
DMA device models complete requests and notify the
guest. Instead of copying data read to the guest address
space, the device model inStopWatchprepares a buffer
to receive this data. In addition, rather than asserting an
appropriate interrupt via the vPIC to the guest as soon as
the data is available, theStopWatchdevice model reads
the current guest virtual time from memory shared with
the VMM, adds∆d, and stores this value as the interrupt
delivery time in the shared memory. Upon the first VM

exit caused by guest execution at which the guest vir-
tual time has passed this delivery time, the device model
copies the buffered data into the guest address space and
asserts an interrupt on the vPIC. Disk writes are handled
similarly, in that the interrupt indicating write comple-
tion is delivered as dictated by adding∆d to the virtual
time at which the write was initiated.

6 External Observers

The mechanisms described in§4–5 intervene on two sig-
nificant sources of clocks; though VM replicas can mea-
sure the progress of one relative to the other, for example,
their measurements will be the same and will reflect the
median of their timing behaviors. Moreover, by forcing
each guest VM to execute (and, in particular, schedule
its internal activities) on the basis of virtual time and by
synchronizing I/O events across replicas in virtual time,
uniprocessor guest VMs execute deterministically, strip-
ping them of the ability to leverageTL andMem clocks,
as well. (More specifically, the progress ofTL andMem

clocks are functionally determined by the progress of vir-
tual time and so are not independent of it.) There never-
theless remains the possibility that an external observer,
on whose real-time clock we cannot intervene, could dis-
cern information on the basis of the real-time behavior of
his attacker VM. In this section we describe our approach
to addressing this form of timing channel.

Because guest VM replicas will run deterministically,
they will output the same network packets in the same
order. StopWatchuses this property to interfere with a
VM’s ability to exfiltrate information on the basis of its
real-time behavior as seen by an external observer.Stop-
Watch does so by adopting the median timing across the
three guest VM replicas for each output packet. The me-
dian is selected at a separate “egress node” that is ded-
icated for this purpose, analogous to the “ingress node”
that replicates every network packet destined to the guest
VM to the VM’s replicas (see§5). Like the ingress node,
there need not be only one egress node for the whole
cloud.

To implement this scheme in Xen, every packet sent
by a guest VM replica is tunneled by the network de-
vice model on that machine to the egress node over TCP.
The egress node forwards an output packet to its destina-
tion after receiving the second copy of that packet (i.e.,
the same packet from two guest VM replicas). Since the
second copy of the packet it receives exhibits the median
output timing of the three replicas, this strategy ensures
that the timing of the output packet sent toward its des-
tination is either the timing of a guest replica not cores-
ident with the victim VM or else a timing that falls be-
tween those of guest replicas not coresident with the vic-
tim. This algorithm is slightly simpler than the median

8

calculations described previously, since the egress node
need not receive all three copies of a packet prior to for-
warding it; it need only receive the first two.

7 Performance Evaluation

In this section we evaluate the performance of ourStop-
Watch prototype. We present additional implementation
details that impact performance in§7.1, our experimental
setup in§7.2, and our tests and their results in§7.3–7.4.

7.1 Selected implementation details

Our prototype is a modification of Xen version 4.0.2-rc1-
pre, amounting to insertions or changes of roughly 1500
source lines of code (SLOC) in the hypervisor. There
were also about 2000 SLOC insertions and changes to
the QEMU device models distributed with that Xen ver-
sion. In addition to these changes, we incorporated
OpenPGM (http://code.google.com/p/openpgm/)
into the network device model in Dom0. OpenPGM is
a high-performance reliable multicast implementation,
specifically of the Pragmatic General Multicast (PGM)
specification [42]. In PGM, reliable transmission is ac-
complished by receivers detecting loss and requesting re-
transmission of lost data. OpenPGM is used inStop-
Watch for replicating packets destined to a guest VM to
all of that VM’s replicas and for communication among
the VMMs hosting guest VM replicas.

Recall from §5 that each VMM proposes (via an
OpenPGM multicast) a virtual delivery time for each net-
work interrupt, and the VMMs adopt the median pro-
posal as the actual delivery time. As noted there, each
VMM generates its proposal by adding a constant off-
set ∆n to the current virtual time of the guest VM.∆n

must be large enough to ensure that by the time each
VMM selects the median, that virtual time has not al-
ready passed in the guest VM. However, subject to this
constraint,∆n should be minimized since the real time
to which∆n translates imposes a lower bound on the la-
tency of the interrupt delivery. (Note that because∆n is
specified in virtual time and virtual time can vary in its
relationship to real time, the exact real time to which∆n

translates can vary during execution.) We selected∆n to
accommodate timing differentials in the arrivals of pack-
ets destined to the guest VM at its three replicas’ VMMs
and the delays for delivering each VMM’s proposed vir-
tual delivery time to the others. For the platform used
in our experiments (see§7.2) and under diverse network-
ing workloads, we found that a value of∆n that typically
translates to a real-time delay in the vicinity of 12-15ms
sufficed to meet the above criteria. The analogous offset
∆d for determining the virtual delivery time for disk and
DMA interrupts translates to roughly 15-20ms.

7.2 Experimental setup

Our “cloud” consisted of three machines with the same
hardware configuration: 4 Intel Core2 Quad Q9650
3.00GHz CPUs, 8GB memory, and 70GB disk. Dom0
was configured to run Linux kernel version 2.6.32.25.
Each HVM guest had one virtual CPU, 2GB memory and
16GB disk space. Each guest ran Linux kernel 2.6.32.24
and was configured to use the Programmable Interrupt
Controller (PIC) as its interrupt controller and a Pro-
grammable Interrupt Timer (PIT) of 250Hz as its clock
source. The Advanced Programmable Interrupt Con-
troller (APIC) was disabled. An emulated ATA QEMU
disk and a QEMU Realtek RTL-8139/8139C/8139C+
were provided to the guest as its disk and network card.
In each of our tests, we installed an application (e.g., a
web server, NFS server, or other program) in the guest
VM, as will be described later.

After the guest VM was configured, we copied it to our
three machines and restored the VM at each. In this way,
our three replicas started running from the same state. In
addition, we copied the disk file to all three machines to
provide identical disk state to the three replicas.

Once the guest VM replicas were started, inbound
packets for this guest VM were replicated to all three
machines for delivery to their replicas as discussed in
§5. These three machines were attached to a /24 sub-
net within our campus network, and as a result, broadcast
traffic on the network (e.g., ARP requests) was replicated
for delivery as in§5. The volume of these broadcasts av-
eraged roughly 50-100 packets per second. As such, this
background activity was present throughout our experi-
ments and is reflected in our numbers.

7.3 Network Services

In this section we describe tests involving network ser-
vices deployed on the cloud. In all of our tests, our
client that interacted with the cloud-resident service was
a Lenovo T400 laptop with a dual-core 2.8GHz CPU and
2GB memory attached to an 802.11 wireless network on
our campus.
File download. Our first experiments tested the perfor-
mance of file download by the client from a web server in
the cloud. The total times for the client to retrieve files of
various sizes over HTTP are shown in Fig. 5. This figure
shows tests in which our guest VM ran Apache version
2.2.14, and the file retrieval was from a cold start (and
so file-system caches were empty). The “Total” curve
in Fig. 5(a) shows the average latency for the client to
retrieve a file from an unmodified Xen guest VM in the
cloud. The “Total” curve in Fig. 5(b) shows the average
cost of file retrieval from ourStopWatchimplementa-
tion. Every average is for ten runs. Note that both axes

9

 0.1

 1

 10

 100

 1000

 10000

 100000

1 10 100 1000 10000

T
im

e(
m

s)

File size (KB)

Net
Disk

Total

(a) WithoutStopWatch

1 10 100 1000 10000

File size (KB)

Net
Disk

Total

(b) With StopWatch

Figure 5: Average HTTP file-retrieval latency.

are log-scale.
To better understand the components of the costs in

both the baseline andStopWatchcases, we crafted a
small program that performs the same function as a web
server but that does so in a way that cleanly separates
the costs of retrieving the file from disk and of send-
ing the file to the client. More specifically, this pro-
gram first reads the entire file into a buffer and only
then does it send the file to the client in its entirety. By
serializing these steps and measuring each individually,
we gain a better appreciation for the component costs
andStopWatch’s impacts on them. The “Net” curves in
Fig. 5 show the average measured network costs, and the
“Disk” curves show the disk costs.

Fig. 5 shows that for file download, a service running
on our currentStopWatchprototype loses roughly 3× in
download speed for files of 100KB or larger. While the
disk access costs increased inStopWatchin our exper-
iments in comparison to the baseline, the bottleneck by
an order of magnitude or more was the network trans-
mission delay in both the baseline and forStopWatch.
The performance cost ofStopWatchin comparison to
the baseline was dominated by the time for delivery of
inbound packets to the web-server guest VM, i.e., the
TCP SYN and ACK messages in the three-way hand-
shake, and then additional acknowledgements sent by the
client. Enforcing a median timing on output packets (§6)
adds modest overhead in comparison.

This combination of insights, namely the detriment
of inbound packets (mostly acknowledgements) toStop-
Watch file download performance and the fact that these
costs so outweigh disk access costs, raises the possi-
bility of recovering file download performance using a
transport protocol that minimizes packets inbound to the
web server, e.g., using negative acknowledgements or
forward error correction. Alternatively, an unreliable
transport protocol with no acknowledgements, such as
UDP, could be used; transmission reliability could then
be enforced at a layer above UDP using negative ac-
knowledgements or forward error correction. Though
TCP does not define negative acknowledgements, trans-
port protocols that implement reliability using them are
widely available, particularly formulticast where posi-
tive acknowledgements can lead to “ack implosion.” In-

 0.1

 1

 10

 100

 1000

 10000

 100000

1 10 100 1000 10000

T
im

e(
m

s)

File size (KB)

Net
Disk

Total

(a) WithoutStopWatch

1 10 100 1000 10000

File size (KB)

Net
Disk

Total

(b) With StopWatch

Figure 6: Averageudpcast file-retrieval latency.

deed, recall that the PGM protocol specification [42], and
so the OpenPGM implementation that we use, ensures
reliability using negative acknowledgements.

To illustrate this point, in Fig. 6 we repeat the exper-
iments in Fig. 5 but using the Linux utilityudpcast to
transfer the file.5 Fig. 6(a) shows the performance us-
ing unmodified Xen; Fig. 6(b) shows the performance
usingStopWatch. Not surprisingly, Fig. 6(a) shows per-
formance comparable to (but slightly more efficient than,
by less than a factor of two) the baseline TCP in Fig. 5(a),
but rather than losing an order of magnitude,StopWatch
is competitive in Fig. 6(b) with these baseline numbers
for files of 100KB or more.

Whereas the network remained the bottleneck in the
tests shown in Fig. 6(a), thedisk was at least as much of
a bottleneck in the tests in Fig. 6(b). By eliminating the
positive acknowledgements in TCP, the extra network-
ing I/O costs associated with usingStopWatchwere re-
duced essentially to the median selection by the egress
node (see§6), which were minimal. Disk I/O remained
as the main bottleneck, but it imposed an order of mag-
nitude less overhead than the networking I/O costs previ-
ously had (Fig. 5(b)). This reduction, in turn, permitted
StopWatchUDP file transfer (Fig. 6(b)) to perform com-
parably to the baseline TCP performance in Fig. 5(a).

We reiterate that the performance offered in Fig. 6(b)
is not specific to UDP. This performance should also
be achievable with a reliable transport protocol designed
to minimize client-to-server messages during file down-
load, as is typical of negative acknowledgment schemes
and protocols using forward error correction.
NFS. We also set up a Network File System (NFSv4)
server in our guest VM. On our client machine, we in-
stalled an NFSv4 client; remotely mounted the filesys-
tem exported by the NFS server; performed file opera-
tions manually; and then rannfsstat on the NFS server
to print its server-side statistics, including the mix of

5We are not advocating UDP for file retrieval generally but rather
are simply demonstrating the advantages forStopWatchof a protocol
that minimizes client-to-server packets. We did not use OpenPGM in
these tests since the web site (as the “multicast” originator) would need
to initiate the connection to the client; this would have required more
substantial modifications. This “directionality” issue isnot fundamen-
tal to negative acknowledgements, however.

10

 0

 5

 10

 15

 20

25 50 100 200 400

T
im

e(
m

s)

Load (Operations per second)

StopWatch
Baseline

(a) Average latency per op

 0

 2

 4

 6

 8

 10

 12

25 50 100 200 400

T
C

P
 p

ac
k

et
s

p
er

 o
p

er
at

io
n

Load (Operations per second)

Client to Server
Server to Client

(b) Average packets per op

Figure 7: Tests of NFS server usingnhfsstone

operations induced by our activity. We then used the
nhfsstone benchmarking utility to evaluate the perfor-
mance of the NFS server with and withoutStopWatch.
nhfsstone generates an artificial load with a specified
mix of NFS operations. The mix of NFS operations used
in our tests was the previously extracted mix file.6 In
each test, the client machine ran five processes using the
mounted file system, making calls at a constant rate rang-
ing from 25 to 400 per second in total across the five
client processes.

The average latency per operation is shown in
Fig. 7(a). In this figure, the horizontal axis is the rate
at which operations were submitted to the server; note
that this axis is log-scale. Fig. 7(a) suggests that an
NFS server overStopWatchincurs roughly a 3× increase
in latency over an NFS server running over unmodified
Xen. Since the NFS implementation used TCP, in some
sense this is unsurprising in light of the file download
results in Fig. 5. That said, it is also perhaps surprising
thatStopWatch’s cost increased only roughly logarithmi-
cally as a function of the offered rate of operations. This
modest growth is in part becauseStopWatchschedules
packets for delivery to guest VM replicas independently
— the scheduling of one does not depend on the delivery
of a previous one, and so they can be “pipelined” — and
because the number of TCP packets from the client to
the server actually decreases per operation, on average,
as the offered load grows (Fig. 7(b)).

7.4 Computations

In this section we evaluate the performance of various
computations onStopWatchthat may be representative
of future cloud workloads. For this purpose, we em-
ploy the PARSEC benchmarks [10]. PARSEC is a di-
verse set of benchmarks that covers a wide range of
computations that are likely to become important in the
near future (seehttp://parsec.cs.princeton.edu/
overview.htm). Here we take PARSEC as representa-
tive of future cloud workloads.

We utilized the following five applications from the

6This mix was 11.37%setattr, 24.07%lookup, 11.92%write,
7.93%getattr, 32.34%read and 12.37%create.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

ferret

blackscholes

canneal

dedup

stream
cluster

T
im

e(
m

s)

Baseline

171 177

1530

3730

290

StopWatch

401 455

3715

6665

439

(a) Average runtimes

 0

 50

 100

 150

 200

 250

 300

 350

ferret

blackscholes

canneal

dedup

stream
cluster

N
um

be
r

of
 d

is
k

in
te

rr
up

ts

31 38

183

293

27

(b) Disk interrupts

Figure 8: Tests of PARSEC applications

PARSEC suite (version 2.1), providing each the “native”
input designated for it.ferret is representative of next-
generation search engines for non-text document data
types. In our tests, we configured the application for
image similarity search.blackscholes calculates op-
tion pricing with Black-Scholes partial differential equa-
tions and is representative of financial analysis applica-
tions.canneal is representative of engineering applica-
tions and uses simulated annealing to optimize routing
cost of a chip design.dedup represents next-generation
backup storage systems characterized by a combination
of global and local compression.streamcluster is rep-
resentative of data mining algorithms for online cluster-
ing problems. Each of these applications involves var-
ious activities, including initial configuration, creating
a local directory for results, unpacking input files, per-
forming its computation, and finally cleaning up tempo-
rary files.

We ran each benchmark ten times within a single
guest VM over unmodified Xen, and then ten more times
with three guest VM replicas overStopWatch. Fig. 8(a)
shows the average runtimes of these benchmark appli-
cations in the two cases. In this figure, each applica-
tion is described by a pair of bars; the black bar on the
left shows the performance of the application over un-
modified Xen, and the beige bar on the right shows the
performance of the application overStopWatch. Stop-
Watch imposed an overhead of at most 2.57× (for
blackscholes) to the average running time of the ap-
plications. Owing to the dearth of network traffic in-
volved in these applications, the overhead imposed by
StopWatchis overwhelmingly due to the overhead in-
volved in intervening on disk I/O (see§5). As shown in
Fig. 8(b), there is a direct correlation between the num-
ber of disk interrupts to deliver during the application
run and the performance penalty (in absolute terms) that
StopWatchimposes.

8 Replica Placement in the Cloud

StopWatchrequires that the three replicas of each guest
VM are coresident with nonoverlapping sets of (repli-
cas of) other VMs. This imposes constraints on how a

11

cloud operator places guest VM replicas on its machines.
In this section we seek to clarify how significant these
placement constraints are, in terms of the provider’s abil-
ity to best utilize its infrastructure. After all, if under
these constraints, the provider were able to simultane-
ously run a number of guest VMs that scales, say, only
linearly in the number of cloud nodes, then the provider
should forgoStopWatchand simply run each guest VM
(non-replicated) in isolation on a separate node. Fortu-
nately, we will see that the cloud operator is not limited
to such poor utilization of its machines.

If the cloud hasn machines, then consider the com-
plete, undirected graph (clique)Kn onn vertices, one per
machine. For every guest VM, the placement of its three
replicas forms atriangle in Kn consisting of the vertices
for the machines on which the replicas are placed and the
edges between those vertices. The placement constraints
of StopWatchcan be expressed by requiring that the tri-
angles representing VM replica placements be pairwise
edge-disjoint. As such, the numberk of guest VMs that
can simultaneously be run on a cloud ofn machines is
the same as the number of edge-disjoint triangles that
can bepacked into Kn. A corollary of a result due to
Horsley [24, Theorem 1.1] is:

Theorem 1 A maximum packing of Kn with pairwise
edge-disjoint triangles has exactly k triangles, where: (i)
if n is odd, then k is the largest integer such that 3k ≤

(n
2

)

and
(n

2

)

−3k 6∈ {1,2}; and (ii) if n is even, then k is the
largest integer such that 3k ≤

(n
2

)

− n
2 .

So, a cloud ofn machines usingStopWatchcan simulta-
neously executek = Θ(n2) guest VMs.

Algorithms for packing edge-disjoint triangles in a
graph have previously been studied due to their uses in
computational biology (e.g., [5]), yielding practical al-
gorithms for placing triangles to approximate the opti-
mal value ofk triangles onKn to within a constant factor.
For example, a greedy approach will successfully place
at least1

3k triangles, and more sophisticated augmenta-
tion algorithms can achieve at least3

5k in polynomial
time [19]. These results immediately translate to algo-
rithms by which a cloud operator usingStopWatchcan
place guest VM replicas efficiently.

Of course, these algorithms for packing triangles do
not account for the nuances of scheduling guest VMs in
a cloud. For example, different guest VMs come with
different resource demands. A direction for future work
is to adapt these algorithms to accommodate guest VMs’
resource needs as well as the constraints imposed by
StopWatch.

9 Collaborating Attacker VMs

Our discussion so far has not explicitly addressed the
possibility of attacker VMs collaborating to mount tim-
ing attacks. The apparent risks of such collaboration can
be seen in the following possibility: replicas of one at-
tacker VM (“VM1”) reside on machines A, B, and C; one
replica of another attacker VM (“VM2”) resides on ma-
chine A; and a replica of the victim VM resides on ma-
chine C. If VM2 induces significant load on its machines,
then this may slow the replica of VM1 on machine A to
an extent that marginalizes its impact on median calcu-
lations among its replicas’ VMMs. The replicas of VM1
would then observe timings influenced by the larger of
the replicas on B and C — which may well reflect tim-
ings influenced by the victim.

Mounting such an attack, or any collaborative attack
involving multiple attacker VMs on one machine, ap-
pears to be difficult, however. Just as the reasoning in
Fig. 1 and its confirmation in Fig. 4 suggest that an at-
tacker VM detecting its coresidence with a victim VM
is made much harder byStopWatch, one attacker VM
detecting coresidence with another using timing covert
channels would also be impeded byStopWatch. If the
cloud takes measures to avoid disclosing coresidence of
one VM with another by other channels, it should be dif-
ficult for the attacker to even detect when he is in a posi-
tion to mount such an attack or to interpret the results of
mounting such an attack indiscriminately.

If such attacks are nevertheless feared, they can be
made harder still by increasing the number of replicas
of each VM. If the number were increased from three
to, say, five, then inducing sufficient load to marginalize
one attacker replica from its median calculations would
not substantially increase the attacker’s ability to mount
attacks on a victim. Rather, the attacker would need to
marginalize multiple of its replicas, along with accom-
plishing the requisite setup to do so.

10 Conclusion

We have proposed a novel method of addressing timing
side channels in IaaS compute clouds that employs three-
way replication of guest VMs and placement of these
VM replicas so that they are coresident with nonover-
lapping sets of (replicas of) other VMs. By imposing on
all replicas the median timing of each observable event
among the replicas, we suppress their ability to glean in-
formation from a victim VM with which one is cores-
ident. We described an implementation of this tech-
nique in Xen, yielding a system calledStopWatch, and
we evaluated the performance ofStopWatchon a vari-
ety of workloads. Though the performance cost for our
current prototype ranges up to 3× for networking appli-

12

cations, we used our evaluation to identify the sources
of costs and alternative application designs (e.g., reliable
transmission using negative acknowledgements, to sup-
port serving files) that can enhance performance consid-
erably. Finally, we identified results in graph theory and
computational biology that provides a basis for clouds to
schedule guest VMs under the constraints ofStopWatch
while still utilizing their infrastructure effectively. We
envision a mature version ofStopWatchbeing a possible
basis for the construction of a high-security cloud facil-
ity, as would be suitable for supporting communities with
significant assurance needs (e.g., military, intelligence,
or financial communities).

An important topic for future work is extendingStop-
Watch to support multiprocessor guest VMs. As dis-
cussed in§2, previous research on replay of multiproces-
sor VMs (e.g., [17]) should provide a basis for extend-
ing our currentStopWatchprototype, and we are cur-
rently investigating this direction. A second direction for
improvement is that we have implicitly assumed in our
StopWatchimplementation — and in many of our de-
scriptions in this paper — that the replicas of each VM
are placed on a set of homogeneous machines. Expand-
ing our approach and implementation to heterogeneous
machines poses additional challenges that we hope to ad-
dress in future work. This possibility would also impact
the placement algorithms summarized in§8, perhaps in
a way similar to how diverse workloads would.

11 References
[1] N. R. Adam and J. C. Worthmann. Security-control

methods for statistical databases: A comparative
study.ACM Computing Surveys, 21(4), Dec. 1989.

[2] J. Agat. Transforming out timing leaks. In27th
ACM Symposium on Principles of Programming
Languages, pages 40–53, 2000.

[3] A. Askarov, A. C. Myers, and D. Zhang. Predictive
black-box mitigation of timing channels. In17th
ACM Conference on Computer and
Communications Security, pages 520–538, Oct.
2010.

[4] A. Aviram, S.-C. Weng, S. Hu, and B. Ford.
Efficient system-enforced deterministic
parallelism. In9th USENIX Symposium on
Operating Systems Design and Implementation,
Oct. 2010.

[5] V. Bafna and P. A. Pevzner. Genome
rearrangements and sorting by reversals.SIAM
Journal on Computing, 25(2):272–289, Apr. 1996.

[6] P. A. Barrett, A. M. Hilborne, P. G. Bond, D. T.
Seaton, P. Verissimo, L. Rodrigues, and N. A.
Speirs. The Delta-4 extra performance architecture
(XPA). In 20th International Symposium on

Fault-Tolerant Computing, pages 481–488, June
1990.

[7] C. Basile, Z. Kalbarczyk, and R. K. Iyer. Active
replication of multithreaded applications.IEEE
Transactions on Parallel and Distributed Systems,
17(5):448–465, May 2006.

[8] T. Bergan, O. Anderson, J. Devietti, L. Ceze, and
D. Grossman. CoreDet: A compiler and runtime
system for deterministic multithreaded execution.
In 15th Conference on Architectural Support for
Programming Languages and Operating Systems,
pages 53–64, Mar. 2010.

[9] E. D. Berger, T. Yang, T. Liu, and G. Novark.
Grace: Safe multithreaded programming for
C/C++. In24th ACM Conference on Object
Oriented Programming, Systems, Languages and
Applications, pages 81–96, Oct. 2009.

[10] C. Bienia.Benchmarking modern multiprocessors.
PhD thesis, Princeton University, Jan. 2011.

[11] A. Borg, W. Blau, W. Graetsch, F. Herrmann, and
W. Oberle. Fault tolerance under UNIX.ACM
Transactions on Computer Systems, 7(1):1–24,
Feb. 1989.

[12] T. C. Bressoud. TFT: A software system for
application-transparent fault tolerance. In28th
International Symposium on Fault-Tolerant
Computing, pages 128–137, June 1998.

[13] T. C. Bressoud and F. B. Schneider.
Hypervisor-based fault-tolerance.ACM
Transactions on Computer Systems, 14(1):80–107,
Feb. 1996.

[14] B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu,
J. Davidson, J. Knight, A. Nguyen-Tuong, and
J. Hiser. N-variant systems: A secretless
framework for security through diversity. In15th
USENIX Security Symposium, Aug. 2006.

[15] F. Cristian, B. Dancey, and J. Dehn.
Fault-tolerance in air traffic control systems.ACM
Transactions on Computer Systems, 14(3), Aug.
1996.

[16] J. Domingo-Ferrer and V. Torra. Median-based
aggregation operators for prototype construction in
ordinal scales.International Journal of Intelligent
Systems, 18(6):633–655, 2003.

[17] G. W. Dunlap, D. G. Lucchetti, P. M. Chen, and
M. A. Fetterman. Execution replay of
multiprocessor virtual machines. In4th ACM
Conference on Virtual Execution Environments,
pages 121–130, Mar. 2008.

[18] C. Dwork. A firm foundation for private data
analysis.Communications of the ACM, 54(1), Jan.
2011.

[19] T. Feder and C. Subi. Packing edge-disjoint
triangles in given graphs. Last retrieved from

13

http://theory.stanford.edu/~tomas/

triclique.ps on 14 Nov. 2011.
[20] D. Gao, M. K. Reiter, and D. Song. Behavioral

distance for intrusion detection. InRecent
Advances in Intrusion Detection: 8th International
Symposium, pages 63–81, 2005.

[21] D. Gao, M. K. Reiter, and D. Song. Beyond output
voting: Detecting compromised replicas using
HMM-based behavioral distance.IEEE
Transactions on Dependable and Secure
Computing, 6(2):96–110, 2009.

[22] J. Giles and B. Hajek. An information-theoretic
and game-theoretic study of timing channels.IEEE
Transactions on Information Theory, 48(9), Sept.
2002.

[23] A. Haeberlen, B. C. Pierce, and A. Narayan.
Differential privacy under fire. In20th USENIX
Security Symposium, Aug. 2011.

[24] D. Horsley. Maximum packing of the complete
graph with uniform length cycles.Journal of
Graph Theory, 68(1):1–7, Sept. 2011.

[25] W.-M. Hu. Reducing timing channels with fuzzy
time. In1991 IEEE Symposium on Security and
Privacy, pages 8–20, 1991.

[26] Intel Corporation.Intel 64 and IA-32 Architectures
Software Developer’s Manual, Oct. 2011.

[27] M. E. Kabir and H. Wang. Microdata protection
method through microaggregation: A
median-based approach.Information Security
Journal: A Global Perspective, 20:1–8, 2011.

[28] M. H. Kang and I. S. Moskowitz. A pump for
rapid, reliable, secure communication. InACM
Conference on Computer and Communications
Security, pages 119–129, Nov. 1993.

[29] T. Karagiannis, M. Molle, M. Faloutsos, and
A. Broido. A nonstationary Poisson view of
Internet traffic. InINFOCOM 2004, pages
1558–1569, Mar. 2004.

[30] B. Köpf and M. Dürmuth. A provably secure and
efficient countermeasure against timing attacks. In
22nd IEEE Computer Security Foundations
Symposium, pages 324–335, July 2009.

[31] B. Köpf and G. Smith. Vulnerability bounds and
leakage resilience of blinded cryptography under
timing attacks. In23rd IEEE Computer Security
Foundations Symposium, pages 44–56, July 2010.

[32] L. Lamport. The implementation of reliable
distributed multiprocess systems.Computer
Networks, 2(2):95–114, May 1978.

[33] L. Lamport, R. Shostak, and M. Pease. The
Byzantine generals problem.ACM Transactions on
Programming Languages and Systems,
4(3):382–401, July 1982.

[34] P. Li, D. Gao, and M. K. Reiter. StopWatch:

Toward “differentially private” timing for cloud
executions. Technical Report TR11-010,
Department of Computer Science, University of
North Carolina at Chapel Hill, 2011.

[35] J. Napper, L. Alvisi, and H. Vin. A fault-tolerant
Java virtual machine. In2003 International
Conference on Dependable Systems and Networks,
pages 425–434, June 2003.

[36] P. Narasimhan, L. E. Moser, and P. M.
Melliar-Smith. Enforcing determinism for the
consistent replication of multithreaded CORBA
applications. InIEEE Symposium on Reliable
Distributed Systems, pages 263–273, Oct. 1999.

[37] A. Nguyen-Tuong, D. Evans, J. C. Knight, B. Cox,
and J. W. Davidson. Security through redundant
data diversity. In38th IEEE/IFPF International
Conference on Dependable Systems and Networks,
June 2008.

[38] G. Popek and C. Kline. Verifiable secure operating
system software. InAFIPS National Computer
Conference, pages 145–151, 1974.

[39] T. Ristenpart, E. Tromer, H. Shacham, and
S. Savage. Hey, you, get off of my cloud:
Exploring information leakage in third-party
compute clouds. In16th ACM Conference on
Computer and Communications Security, pages
199–212, 2009.

[40] F. B. Schneider. Undersanding protocols for
Byzantine clock synchronization. Technical Report
87-859, Department of Computer Science, Cornell
University, Aug. 1987.

[41] F. B. Schneider. Implementing fault-tolerant
services using the state machine approach: A
tutorial.ACM Computing Surveys, 22(4), Dec.
1990.

[42] T. Speakman, et al. PGM reliable transport
protocol specification. Request for Comments
3208, Internet Engineering Task Force, Dec. 2001.

[43] V. Torra. Microaggregation for categorical
variables: A median based approach. InPrivacy in
Statistical Databases, CASC Project Final
Conference, pages 162–174, June 2004.

[44] R. Uhlig, G. Neiger, D. Rodgers, A. L. Santoni,
F. C. M. Martins, A. V. Anderson, S. M. Bennett,
A. Kagi, F. H. Leung, and L. Smith. Intel
virtualization technology.IEEE Computer,
38(3):48–56, May 2005.

[45] B. C. Vattikonda, S. Das, and H. Shacham.
Eliminating fine grained timers in Xen. InACM
Cloud Computing Security Workshop, Oct. 2011.

[46] VMWare Inc.Timekeeping in VMware Virtual
Machines, May 2010.

[47] J. C. Wray. An analysis of covert timing channels.
In 1991 IEEE Symposium on Security and Privacy,

14

pages 2–7, 1991.
[48] M. Xu, V. Malyugin, J. Sheldon,

G. Venkitachalam, and B. Weissman. ReTrace:
Collecting execution trace with virtual machine
deterministic replay. In3rd Workshop on
Modeling, Benchmarking and Simulation, June
2007.

[49] Z. S. Xu and Q. L. Da. An overview of operators
for aggregating information.International Journal
of Intelligent Systems, 18(9):953–969, 2003.

[50] S. Zdancewic and A. C. Myers. Observational
determinism for concurrent program security. In
16th IEEE Computer Security Foundations
Workshop, pages 29–43, June 2003.

[51] D. Zhang, A. Askarov, and A. C. Myers. Predictive
mitigation of timing channels in interactive
systems. In18th ACM Conference on Computer
and Communications Security, Oct. 2011.

15

