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Abstract entirely defeat) timing-based channels, the protection it

This paper presentStopWatch a system that defends offers can be difficult or impossible to quantify when ap-

against timing-based side-channel attacks that arise frorﬂhed.heurlsncally. o o
coresidency of victims and attackers in infrastructure- 1 NS State of affairs is reminiscent of another subdo-

as-a-service cloudsStopWatchtriplicates each cloud- main of the security field, namely inference control in the
resident guest virtual machine (VM) and places rep“_release of datasets of sensitive information (e.g., health

cas so that the three replicas of a guest VM are coresf€€0rds) about people. Perturbation of query results (ran-
dent with nonoverlapping sets of (replicas of) other VMs, d0mization and coarsening again being notable exam-
StopWatchuses the timing of events at a VM's replicas P/€S) has been a staple of that subdomain for decades
collectively to determine the timings observed by each(€-9-» [1]). Recently, a formal underpinning to guide its
one or by an external observer, so that observable tim@Pplication has“star.ted_ to gain momentum, nardgfyr-

ing behaviors could have been observed in the absenc@i@ Privacy. “Achieving differential privacy revolves
of any other individual, coresident VM. We detail the de- @ound hiding the presence or absence of a single indi-
sign and implementation topWatchin Xen, evaluate  Vidual’[18]inadataset. . .

the factors that influence its performance, and address ' this paper we adapt this intuitive goal of differential
the problem of placing VM replicas in a cloud under the Privacy —i.e., that the adversary cannot discern from his

constraints ofStopWatchso as to still enable adequate observations whether a person is represented in a dataset
cloud utilization. — to the entirely different domain of timing attacks in

the cloud. More specifically, we develop a system called

) StopWatchthat perturbs timing signals available to an
1 Introduction attacker VM so that these signals could have been ob-
Implicit timing-based information flows potentially served in the absence of the victim. Due to our different

threaten the use of clouds for very sensitive computadomain, however, the methods employedSiopWatch
tions. In an “infrastructure as a service” (laaS) cloud,!© achieve this property are wholly different than ran-
such an attack would be mounted by an attacker subd0Mmizing query responses. RathBtopWaichperturbs
mitting a virtual machine (VM) to the cloud that times {iMings observed by the attacker VM to “match” those

the duration between events that it can observe, to mak@f @ replica attacker VM that isnot coresident with the
inferences about sictim VM with which it is running ~ Victim. o .
simultaneously on the same host but otherwise cannot Since StopWatchcannot identify attackers and vic-
access. Such attacks were first studied in the context dfmS, realizing this intuition in practice requires repli-
timing-basectovert channels, in which the victim VM cating each VM on multiple hosts and enforcing that
is infected with a Trojan horse that intentionally signals the replicas are coresident with nonoverlapping sets of
information to the attacker VM by manipulating the tim- (replicas of) other VMs. Moreover, two replicas is not
ings that the attacker VM observes. Of more significanceeNough: one might be coresident with its victim, and
in modern cloud environments, however, are timing-by symmetry, its timings would necessarily influence the
basedside channels, which leverage the same principles timings imposed on the paiStopWatchthus uses three
to attack an uninfected but oblivious victim VM. replicas that coreside with nonoverlapping sets of (repli-
A known defense against timing-based covert chan¢@s of) other VMs and imposes the timing of the “me-
nels and side channels is to perturb (e.g., through rardian” of the three on all replicas. Even if the median
domization or coarsening) clocks that are visible to VMs, iming of an event is that which occurred at an attacker
making it more difficult for the attacker VM to measure "eplica that is coresident with a victim replica, timings
the duration between events and so to receive the signaRPth below and above the median occurred at attacker
(e.g., [25, 45]). While this technique slows (but does notréPlicas that do not coreside with the victim.

*This technical report subsumes TR11-010 [34]. 1The median can be viewed as “microaggregating” the timiogs t



We detail the implementation dtopWatchin Xen, VM coreside with nonoverlapping sets of (replicas of)
specifically to intervene on all real-time clocks and, no-other VMs. The median timings of events across the
tably, to enforce this “median” behavior on “clocks” three guest VM replicas are then imposed on these repli-
available via the 1/0 subsystem (e.g., network interrupts)cas to interfere with their use of event timings to extract
In doing so,StopWatchinterferes with all timing side- information from a victim VM with which one is coresi-
channel attacks commonly used in the research literaturelent. Second, we detail the implementation of this strat-
owing to the normal use of real time as a reference cloclegy in Xen, yielding a system calleStopWatch and
in those exploits. (Timing attacks that do not use real-evaluate the performance &ftopWatchon a variety of
time clocks should generally be more fragile due to un-workloads. This evaluation sheds light on the features of
predictable influences on other reference clocks.) Moreworkloads that most impact the performance of applica-
over, for uniprocessor VMsStopWatchenforces deter- tions running orStopWatchand how they can be adapted
ministic execution across all of a VM’s replicas, making for best performance. Third, we identify algorithmic re-
it impossible for an attacker VM to utilize other inter- sults from graph theory and computational biology that
nally observable clocks and ensuring the same outputsesolve the problem of how to place replicas under the
from the VM replicas. By applying the median princi- constraints ofStopWatchto maximally utilize a cloud
ple to the timing of these outputSfopWatchfurther in-  infrastructure.
terferes with inferences that an observer external to the
cloud could make on the basis of output timings.

We extensively evaluate the performance of Stop- 2 Related Work

Watch prototype for supporting web service (file down- Timing channel defenses. Defenses against informa-
loads), network file systems, and various types of comtjon |eakage via timing channels are diverse, taking nu-
putations. Our analysis shows that performance costgerous different angles on the problem. Research on
of StopWatchcan range up to 8 for network-intensive type systems and security-typed languages to eliminate
applications, and it further enables us to identify adaptiming attacks offers powerful solutions (e.g., [2, 50]),
tations to a service that can vastly increase its perforyt this work is not immediately applicable to our goal
mance when run ovestopWatch For example, we Show  here, namely adapting an existing virtual machine mon-
that reliable transport that minimizes client-to-server a jior (VMM) to support practical mitigation of timing
knowledgements (or unreliable transport with no ac-channels today. Other research has focused on the elimi-
knowledgements, as in UDP) can dramatically improvenation of timing side channels within cryptographic com-

file download latencies versus TCP in the common casgtations (e.g., [30, 31]), but we seek an approach that
of few losses, even to the extent of making file download;ppjies to general computations.

over StopWatchcompetitive with file download overun-  agkarov et al. [3] distinguish betwednternal tim-
modified Xen. For computational benchmark programsing channels that involve the implicit or explicit mea-
we find that the overheads induced 8topWatchare di- g, rement of time from within the system, aester-
rectly correlated with their amounts of disk /0. nal timing channels that involve measuring the system
We also analyze a utilization question that would befrom the point of view of an external observer. De-
faced by cloud operators if they were to make use Offenses for both internal (e.g., [25, 2, 50, 45]) and external
StopWatch namely how many guest VMs can be simul- e g [28, 22, 3, 23, 51]) timing channels have received
taneously executed on an infrastructurenofnachines  significant attention individually, though to our knowl-
under the constraint that the three replicas for each guegldge, StopWatchis novel in addressing timing chan-
VM coreside with nonoverlapping sets of (replicas of) nels through a combination of both techniqueStop-
other VMs. We relate this question to a graph-theoretiqyatch incorporates internal defenses to interfere with
problem studied in computational biology and find thatan attacker's use of real-time clocks or “clocks” that it
©(n°) guest VMs can be simultaneously executed. Wemight derive from the 1/0 subsystem. In doing Stop-
alsq |dent|}‘y practical algorithms for placing replicas to \atch imposes determinism on uniprocessor VMs and
achieve this b_OU”d- - ~ then uses this feature to additionally build an effective
To summarize, our contributions are as follows: First, external defense against such attacker VMs, as well.
we introduce a novel approach for defending against tim- - syopwatcPs internal and external defense strategies
ing side-channel attacks in “infrastructure-as-a-s&Vic aso differ individually from prior work, in interfering
(laaS) compute clouds that leverages replication of guesiith timing channels by allowing replicas (in the inter-
VMs with the constraint that the replicas of each guestya| defenses) and external observers (in the external de-
confound inferences from them (c.f., [16, 43, 27]). Thislagg sug- fenses) to observe only median timings from the three

gests the possibility of using other microaggregation fians, as well, replica_ls. That iS_, each internal and eXter_nal timir?g ob-
of which there are many [49]. servation is of either an attacker VM replica that is not




coresident with a victim VM replica or else lies be- Watchleverages (necessarilyjentical guest VM repli-
tween timings of such replicas. This offers a more prin-cas to address a different class of attacks (timing side
cipled defense than randomly perturbing the timings ofchannels) than replica compromise.

events observable at or from an nonreplicated attacker Research on VM executiomplay (e.g., [48, 17]) fo-

VM (e.g., [25]). Random noise does not asymptotically cuses on recording nondeterministic events that alter VM
eliminate timing channels [3], in part because a distribu-execution and then coercing these events to occur the
tion from which to draw the randomness must be chosesame way when the VM is replayed. The replayed VM
without reference to an execution in the absence of thés a replica of the original, albeit a temporally delayed
victim — i.e., how the execution “should have” looked. one, and so this can also be viewed as a form of repli-
StopWatchuses replication and careful replica place- cation. StopWatchsimilarly coerces VM replicas to ob-
ment (in terms of the other VMs with which each replica serve the same event timings, but again, unlike these tim-
coresides) exactly to provide such a reference. ings being determined by one replica (the original), they
Replication. To our knowledge StopWatchis novel are determined collectively using median calculations,
in utilizing replication for timing channel defense. That so as to interfere with one attacker VM replica that is
said, replication has a long history that includes tech-coresident with the victim from simply propagating its
niques similar to those we use here. For examplefimings to all replicas. That said, the state-of-the-art in
state-machine replication [32, 41] to mask ByzantineVM replay (e.g., [17]) addresses multiprocessor VM ex-
faults [33] ensures that correct replicas return the samecution, which our presentimplementatiorRibpWatch
response to each request so that this response can dees not. We expect th&topWatchcould be extended
identified by “vote” (a technique related to one employedto support multiprocessor execution with techniques de-
in StopWatch see§3 and§6). To ensure that correct veloped for replay of multiprocessor VMs, and we plan
replicas return the same responses, these systems enfotodnvestigate this in future research. Mechanisms for en-
the delivery of requests to replicas in the same orderforcing deterministic execution of parallel computations
moreover, they typically assume that replicas are deterthrough modifications at user level (e.g., [9, 8]) or the
ministic and process requests in the order they are reOS (e.g., [4]) are less relevant to our goals, as they are
ceived. Enforcing replica determinism has also been a not easily utilized by an laaS cloud provider that accepts
focus of research in (both Byzantine and benignly) fault-arbitrary VMs for execution.

tolerant systems; most (e.g., [11, 6, 12, 36, 35, 7]), but

not all (e.g., [13]), do so at other layers of the software
stack tharStopWatchdoes.

More fundamentally, to our knowledge all prior sys- Our design is focused on “infrastructure as a ser-
tems that enforce timing determinism across replicas pelvice” (laaS) clouds that accept virtual machine im-
mit one replica to dictate timing-related events for theages, or “guest VMs,” from customers to execute.
others, which does not suffice for our goals: that replicaAmazon EC2 ¥ttp://aws.amazon.com/ec2/) and
could be the one coresident with the victim, and so perRackspacehttp: //www.rackspace.com/) are exam-
mitting it to dictate timing related events would simply ple providers of public 1aaS clouds. Given the concerns
“copy” the information it gleans from the victim to the associated with side-channel attacks in cloud environ-
other replicas and, eventually, to leak it out of the cloud.ments (e.g., [39]), we seek to develop virtualization soft-
Rather, by forcing the timing of events to conform to the ware that would enable a provider to construct a cloud
median timing across three VM replicas, at most one ofthat offers substantially stronger assurances agairist lea
which is coresident with the victim, the enforced timing age via timing channels. This cloud might be a higher as-
of each event is either the timing of a replica not coresi-surance offering that a provider runs alongside its normal
dent with the victim or else between the timing of two cloud (while presumably charging more for the greater
replicas that are not coresident with the victim. Thisassurance it offers) or a private cloud with substantial
strategy is akin to ones developed for Byzantine fault-assurance needs (e.g., run by and for an intelligence or
tolerant clock synchronization (e.g., see [46,2]). military community).

Aside from replication for fault tolerance, replication  Our threat model is a customer who subnaittscker
has been explored to detect server penetration [20, 14/Ms for execution that are designed to employ timing
37, 21]. These approaches purposely employ diversside channels. We presume that the attacker VM is de-
replica codebases or data representations so as to redusigned to extract information from a particular victim
the likelihood of a single exploit succeeding on multi- VM, versus trying to learn general statistics about the
ple replicas. Divergence of replica behavior in these ap<loud such as its average utilization. We assume that ac-
proaches is then indicative of an exploit succeeding orcess controls prevent the attacker VMs from accessing
one but not others. In contrast to these approachtes-  victim VMs directly or from escalating their own privi-

3 Design



leges in a way that would permit them to access victimability to useTL or Mem clocks. These mechanisms thus

VMs. The cloud’s virtualization software (in our case, deal effectively with internal observations of time, but it

Xen and our extensions thereof) is trusted. remains possible that an external observer could glean
According to Wray [47], to exploit a timing chan- information from the real-time duration between the ar-

nel, the attacker VM measures the timing of observabldival of packets that the attacker VM sends. To interfere
events using &lock that is independent of the timings With this timing channel, we emit packets to an external
being measured. While the most common such clockobserver with timing dictated by, again, the median tim-
is real time, a clock can be any sequence of observablig of the three VM replicas.
events. With this general definition of a “clock,” a tim-  Permitting only the median timing of an event to be
ing attack simply involves measuring one clock usingobserved limits the information that an attacker VM can
another. Wray identified four possible clock sources inglean from being co-located with a victim VM of inter-
conventional computers [47]: est, because the distribution of the median timings sub-
stantially dampens the visibility of a victim’s activities
To see how, consider a victim VM that induces timings
that are exponentially distributed with raté, versus a
Thaseline (i.e., non-victim) exponential distribution it
rateA > A’.2 Fig. 1(a) plots example distributions of
the attacker VMs’ observations undStopWatchwhen
an attacker VM is coresident with the victim (“Median
of two baselines, one victim”) and when attacker VM is
not (“Median of three baselines”). This figure shows that
StopWatchis designed to interfere with the usel@  these median distributions are quite similar, even when
andRT clocks and, for uniprocessor VM3,L or Mem is substantially larger thah’; e.g.,A =1 andA’ =1/2
clocks, for timing attacks. (As discussed§B, exten- inthe example in Fig. 1(a). In this case, to reject the null
sion to multiprocessor VMs is a topic of future work.) hypothesis that the attacker VM is not coresident with the
I0 andRT (especiallyRT) clocks are an ingredient in victim using ax-square test, the attacker can do so with
every timing side-channel attack in the research literahigh confidence in the absence $fopWatchwith only
ture that we have found, undoubtedly because real tima single observation, but doing so unds#topWatchre-
is the most intuitive, independent and reliable referenceuires almost two orders of magnitude more (Fig. 1(b)).
clock for measuring another clock. So, intervening onThis improvement becomes even more pronounced if
these clocks is of paramount importance. Moreover, thendA’ are closer; the casés=1,A’ =2/3 andA = 1,
way StopWatchdoes so forces the scheduler in a unipro-A’ =10/11 are shown in Figs. 1(c) and 1(d), respectively.
cessor guest VM to behave deterministically, interfering
with attempts to us@L or Mem clocks.

More specifically, to interfere withO clocks, Stop-
Watchreplicates each attacker VM (i.e., every VM, sinceg )}
we do not presume to know which ones are attacker o ——— s on—a—B_o oo J
VMs) threefold so that the three replicas of a guest VM x confidence
are coresident with nonoverlapping sets of (replicas of)a) Distribution of median;A’ = (b) Observations needed to detect

e TL: the “CPU instruction-cycle clock”, i.e., a clock
constructed by executing a simple timing loop;

e Mem: the memory subsystem (e.g., data/instructio
fetches);

e |0: the I/O subsystem (e.g., network, disk, and DMA
interrupts); and

e RT: real-time clocks provided by the hardware plat-
form (e.g., time-of-day registers).

1 T

70 w/SiopWalch ,,",, !
60 |- Wlo Stopwatch —5—

T
Baseline
0.8 | Victim ------- m
edian of three baselines —&—
0.6 edian of two baselines, ---©---
04 [P one victim

obability

Number of Observations
IS
o

other VMs. Then, when determining the timing with victim; A" =1/2
which an event is made available to each replica, th§ 20 T T StopWatch = 300 [ o/ stopwatcn = il
200  wi/o StopWatch —5— 600 |- W/o Stopwatch —5— P

g

median timing value of the three is adopted. We justifyZ
the median below, and as discussefdanwe viewStop- 100
Watchis use of medians in addressifg clocks as one ” =

500
400 e
300 grvoeflh-=m-- M

200
100

-

o
¥

s S

- o
070 075 0.80 0.85 0.90 095 0.99

Number of Observations

Number of

0 =) =) =) £ ]
070 075 0.80 0.85 0.90 095 0.99

of our primary innovations. StopWatchaddresse®T confidence confidence
clocks by replacing a VM's view of real time with a vir- (c) Observations needed to detet) Observations needed to detect
tual time that depends on the VM'’s own progress, an idea victim; A’ =2/3 victim; A’ = 10/11

due to Popek and Kline [38]. OptionallgtopWatchad-
justs virtual time periodically using the median real time Figure 1: Justification for median; baseline distribution
of the three replicas, thereby roughly synchronizing theirExp(A ), A = 1, and victim distribution Exp\")
views of real time with actual real time to a degree.

A side effect of howStopWatchaddresse$O and Of course, in terms of absolute numbers of observa-
RT clocks is that it enforces deterministic execution  2jis not uncommon to model packet inter-arrival time, foample,
of uniprocessor attacker VM replicas, also disabling itsusing an exponential distribution (e.g., [29]).




tions needed to detect the victim VM with confidence, slopg,, ; is not too extreme and, #> 0, thatslopeg,  is
this assessment may be very conservative, since the gbositive. In this wayyirty, 1 should approach real time
tacker would face numerous pragmatic difficulties thaton the computer contributing the median real tiRRe
we have not modeled here (e.g., migration of VMs be-over the next instructions, assuming that the machine
tween cores). Moreover, detecting the victim VM is and VM workloads stay roughly the same. Of course,
only the first step of extracting useful information (e.g., the smallen -values are, the monart follows real time

a cryptographic key) from it. But even this simple exam-and so poses the risk of becoming useful in timing at-
ple shows the power of disclosing only median timingstacks. Sovirt should be adjusted only for tasks for which

of three VM replicas, and i§5.2 we will repeat this il-  coarse synchronization with real time is important and
lustration using actual message traces. then only with largd values.
4 RT clocks 4.2 Implementation in Xen

Real-time clocks provide reliable and intuitive referencegea_time clocks on a typical x86 platform include timer
clocks for measuring the timings of other events. INjyerrynts and various hardware counters. Closely related

this section, we describe the high-level strategy taken ing, these real-time clocks is the time stamp counter regis-
StopWatchto interfere with their use for timing channels (o \vhich is accessed using thétsc instruction and

and detail the implementation of this strategy in Xen with

' A e stores a count of processor ticks since reset.
hardware-assisted virtualization (HVM).

Timer interrupts. Operating systems typically mea-
sure the passage of time by counting timer interrupts; i.e.,
4.1 Strategy the operating system sets up a hardware device to inter-

. . . rupt periodically at a known rate, such as 100 times per
The strategy adopted iStopWaichto interfere with a second [46]. There are various such hardware devices

VM'’s use of real-time clocks is to virtualize these real- that can be used for this purpose. Our current imple-

time clocks so that their values observed by a VM are a .
S ) o . mentation ofStopWatchassumes the guest VM uses a
deterministic function of the VM’s instructions executed

so far [38]. That s, after the VM executasstr instruc- Programmable Interval Timer (PIT) as its timer interrupt

tions. the virtual time observed from within the VM s SCUrce: but our implementation for other sources would
' be similar. TheStopWatchVMM generates timer inter-

virt(instr) <— slope x instr + start (1)  rupts for a guest on a schedule dictated by that guest's
virtual time virt as computed in (1). To do so, it is nec-
essary for the VMM to be able to track the instruction
countinstr executed by the guest VM.

To determinestart at the beginning of VM replica exe-
cution, the VMMs hosting the VM’s replicas exchange

their current real timesstart is initially set to the me- In our present implementatior§topWatchuses the
dian of these valuesslope is initially set to a constant guestbranch count for instr, i.e., keeping track only of
dete_rmined _by the tick rate of the machines on which thqhe number of branches thé\t thé guest VM executes. Sev-
repllcgs reside. . eral architectures support hardware branch counters, but
. O.ptlonally, the VMMs can-ad]usﬂtart andsl(?‘pe pe-" these are not sensitive to the multiplexing of multiple
r|9d|cally_, €.g., after the replicas e*?‘:”te an ep_och Ofguests onto a single hardware processor and so continue
| instructions, to coarsely synchronizet and real time. to count branches regardless of the guest that is currently
For example, after thkh.th epoch, ea}ch _VMM can send executing. So, to track the branch count for a guest,
to the others the duratiddy over which its replica exe- StopWatchimplements avirtualized branch counter for
cuted those instructions and its real timgy at the end each guest. The VM Control Structure (VMCS), through

of tT?t durgtmg.ghzn, tT.e '\;LV:CMS Ctin felect the ”;]?d'ar\mhich guest execution is controlled, provides a heap area
real timeR, and the duratio, from that same machine to save and restore model-specific register (MSR) values

and reset such as the hardware branch counter during&s and
starty 1 < virty(l) entries, respectively (described below). Using this mech-
R; —virt(l) + D; anism,Stquatchr_acks the branch count for each guest
— and uses it fornstr in (1).

A question is when to inject each timer interrupt. Intel
for a preconfigured constant rangieu], to yield the VT augments IA-32 with two new forms of CPU oper-
formula forvirt,,1.> The use of¢ andu ensures that ations: virtual machine extensions (VMX) root opera-

31 other words, If(R —virt(1) + D{)/1 € [¢.u] then this value tion and VMX non-root operation [44]. While the VMM

becomeslope,. ;. Otherwise, eithef or u does, whichever is closerto  USES r00t operation, guest _VMS use VMX non-root op-
(R; —virti (1) +D;) /1. eration. In non-root operation, certain instructions and

sdopg,, < arg min
vell,ul |




events cause ¥M exit to the VMM, so that the VMM ing sources ofO clocks. A component of our strategy
can emulate those instructions or deal with those event$or doing so is to synchronize I/O events across the three
Once completed, control is transferred back to the guesteplicas of each guest VM in virtual time, so that ev-
VM via a VM entry. The guest then continues running asery 1/O interrupt occurs at the same virtual time at all
if it had never been interrupted. replicas. Among other things, this synchronization will

VM exits give the VMM the opportunity to inject force uniprocessor VMs to execute deterministically, but
timer interrupts into the guest VM as the guest’s virtualit alone will not be enough to interfere witl® clocks;
time advances. However, so that guest VM replicas obit is also necessary to prevent the timing behavior of
serve the same timer interrupts at the same points in thewne replica’s machine from imposing 1/O interrupt syn-
executionsStopWatchinjects timer interrupts only after chronization points for the others, as discusseglin3.
VM exits that are caused by guest execution. Other VMThis is simpler to accomplish for disk accesses and DMA
exits can be induced by events external to the VM, suctiransfers since replica VMs initiate these themselves, and
as hardware interrupts on the physical machine; thesso we will discuss this case first. The more difficult case
would generally occur at different points during the ex- of network interrupts, where we explicitly employ me-
ecution of the guest VM replicas but will not be visible dian calculations to dampen the influence of any one ma-
to the guest [26§29.3.2]. For VM exits caused by guest chine’s timing behavior on the others, will then be ad-
VM execution, the VMM injects any needed timer inter- dressed.
rupts on the next VM entry. Disk and DMA interrupts. The replication of each
rdtsc callsand CMOSRTC values. Anotherway for guest VM at start time includes replicating its entire
a guest VM to measure time is viaitsc calls. Xen disk image, and so any disk blocks available to one VM
already emulates the return values to these calls. Morgeplica will be available to all. By virtue of the fact that
specifically, to produce the return value forétsc call,  (uniprocessor) VMs execute deterministically $top-
the Xen hypervisor computes the time passed since guestatch, replicas will issue disk and DMA requests at the
reset using its real-time clock, and then this time value issame virtual time. Upon receiving such a request from
scaled by a constant factdBtopWatchreplaces this use  a replica at time&/, the VMM adds a constamy to de-
of a real-time clock with the guest's virtual clock (1).  termine a “delivery time” for the interrupt, i.e., at virfua

A virtualized real-time clock (RTC) is also provided to timeV +Ag, and initiates the corresponding I/0 activities
HVM guests in Xen; this provides time to the nearest sec{disk access or DMA transfer). The constagtmust be
ond for the guest to read. The virtual RTC gets updatedarge enough to ensure that the data transfer completes by
by Xen using its real-time clockStopWatchresponds to  the virtual delivery time. Once the virtual delivery time
requests to read the RTC using the guest’s virtual time. has been determined, the VMM simply waits for the first
Reading counters. The guest can also observe real time VM exit caused by the guest VM (as §4.2) that occurs
from various hardware counters, e.g., the PIT counterat a virtual time at least as large as this delivery time.
which repeatedly counts down to zero (at a pace dictatedhe VMM then injects the interrupt prior to the next VM
by real time) starting from a constant. These countersentry of the guest. This interrupt injection also includes
too, are already virtualized in modern VMMs such ascopying the data into the address space of the guest, so
Xen. In Xen, these return values are calculated using as to prevent the guest VM from polling for the data in
real-time clock; StopWatchuses the guest virtual time advance of the interrupt to create a form of clock (e.g.,

(1), instead. see [25§4.2.2]).
Network interrupts. Unlike the initiation of disk ac-
5 10 clocks cesses and DMA transfers, the activity giving rise to a

network interrupt, namely the arrival of a network packet
IO clocks are typically network, disk and DMA inter- that is destined for the guest VM, is not synchronized in
rupts. (Other device interrupts, such as keyboards, micejirtual time across the three replicas of the guest VM. So,
graphics cards, etc., are typically not relevant for guesthe VMMs on the three machines hosting these replicas
VMs in clouds.) We outline our strategy for mitigating must coordinate to synchronize the delivery of each net-
their use to implement timing channels§®.1, and then  work interrupt to the guest VM replicas. To prevent the
in §5.2 we describe our implementation of this strategytiming of one from dictating the delivery time at all three,

in StopWatch these VMMs exchange proposed delivery times and se-
lect the median, as discussed§® To solicit proposed
5.1 Strategy timings from the three, it is necessary, of course, that the

VMMs hosting the three replicas all observe each net-
The method described 4 for dealing withRT clocks  work packet. SoStopWatchreplicates every network
by introducing virtual time provides a basis for address-packet to all three computers hosting replicas of the VM



for which the packet is intended. This is done by a log-This figure depicts a real-time intervéR;,Ry] at the
ically separate “ingress node” that we envision residingthree machines at which a guest VM is replicated, show-
on a dedicated computer in the cloud. (Of course, theréng at each machine: the arrival of a packet at the VMM,
need not be only one such ingress for the whole cloud.) the proposal made by each VMM, the arrival of proposals
When a VMM observes a network packet to be deliv-from other replica machines, the selection of the median,
ered to the guest, it sends its proposed virtual time — i.e.and the delivery of the packet to the guest replica. Each
in the guest’s virtual time, sef — for the delivery of  stepped diagonal line shows the progression of virtual
that interrupt to the VMMSs on the other machines host-time at that machine.
ing replicas of the same guest VM. (We stress that these
proposals are not visible to the guest VM replicas.) Each5
VMM generates its proposed delivery time by adding a

constant Oﬁseﬂn to the virtual time of the guest VM Xen presents to each HVM guest a virtualized p|at_
at its last VM exit. Ay must be large enough to ensure form that resembles a classic PC/server platform with
that once the three proposals have been collected amgl network card, disk, keyboard, mouse, graphics dis-
the median determined at all three replica VMMs, thepjay, etc. This virtualized platform support is provided
chosen median virtual time has not already been passegl; virtual I/0 devices (device models) in Dom0, a do-
by any of the guest VMs.A, is thus determined us- main in Xen with special privileges. QEMUhttp:

ing an assumed upper bound on the real time it take$ /fabrice.bellard.free.fr/qemu) is used to im-

for each VMM to observe the interrupt and to propagateplement device models. One instance of the device mod-

its proposal to the others. In distributed computing par-g|s is run in Dom0 per HYM domain. (See Fig. 3.)
lance, we thus assumesgnchronous system, i.e., there

are known bounds on processor execution rates and mes-
sage delivery times. The synchronous model has been
widely used to develop and deploy distributed protocols
(e.g., [15)).

Once the median proposed virtual time for a network
interrupt has been determined at a VMM, the VMM sim-
ply waits for the first VM exit caused by the guest VM
(as in§4.2) that occurs at a virtual time at least as large
as that median value The VMM then injects the inter- (3) Request interrupt VMM
rupt prior to the next VM entry of the guest. As with disk
accesses and DMA transfers, this interrupt injection als@rigure 3: Emulation of I/O devices iStopWatch “l/O
includes copying the data into the address space of thequest” present only for disk I/0.
guest, so as to prevent the guest VM from polling for the

data in advance of the interrupt to create a form of clocknetwork card emulation. In the case of a network card,
(e.g., see [254.2.2)). the device model running in DomoO receives packets des-
tined for the guest VM. WithouStopWatchmodifica-

tion, the device model copies this packet to the guest ad-
dress space and asserts a virtual network device interrupt

.2 Implementation in Xen

DomO
HVM Guest

(2)Copydata Device (1) Proposals to/from

€ \lodel ¢ other replicas 3
VM VM A
exit entry iT

/O request

ReplicaA ReplicaB ReplicaC

C’s proposal

Y Y i via the virtual Programmable Interrupt Controller (vPIC)

B’s proposal

£
N e ' exposed by the VMM for this guest. HVM guests can-
S i ‘ not see real external hardware interrupts since the VMM
L 0—@0 HL 00 L - controls the platform’s interrupt controllers [29.3.2].
" Realtime "7 Realtime T Realtime ' In StopWatch we modify the network card device

OArrivanf packet at VMM OArrivalof proposal at VMM DDeIivery of packet to guest model SO as to place each packet dest|ned for the guest
_ o _ VM into a buffer hidden from the guest, rather than de-
Figure 2: Delivering a packet to guest VM replicas. livering it to the guest. The device model then reads
from a shared memory the current virtual time of the
The process of determining the delivery time of a net-guest (as of the guest's last VM exit), adfls to this
work packet to guest VMs replicas is pictured in Fig. 2. virtual time to create its proposed delivery (virtual) time
; — _ for this packet, and multicasts this proposal to the other
If the median time d_etermmed_ by a VMM has alread_y passed, the two replicas (step 1 in Fig 3). A memory region shared
our synchrony assumption was violated by the underlyingesys In . .
this case, that VMM's replica has diverged from the othedssmmust between DomO and the VM_M aHOW_S d_eV'CG models in
be recovered by, e.g., copying the state of another replica. DomO to read guest virtual time, which is computed and




exit caused by guest execution at which the guest vir-
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Figure 4: Virtual inter-packet delivery times with cores- 6 External Observers

ident victim ("t_WO baselines, one vigtim”) a,nd, in a run The mechanisms describeds#-5 intervene on two sig-
where no replica was coresident with a victim (‘three yificant sources of clocks; though VM replicas can mea-
baselines”) sure the progress of one relative to the other, for example,
their measurements will be the same and will reflect the
. median of their timing behaviors. Moreover, by forcing
updated on every VM exit by the VMM. each guest VM to execute (and, in particular, schedule
Once the network device model receives the two pross internal activities) on the basis of virtual time and by
posals in addition to its own, it takes the median proposakynchronizing 1/0 events across replicas in virtual time,
as the delivery time and stores this delivery time in theypiprocessor guest VMs execute deterministically, strip-
memory it shares with the VMM. The VMM compares ping them of the ability to leverageL andMem clocks,
guest virtual time to the delivery time stored in the sharetjglS well. (More specifically, the progress BE andMem
memory upon every guest VM exit caused by guest VMc|ocks are functionally determined by the progress of vir-
execution. Once guest virtual time has passed the deya) time and so are not independent of it.) There never-
livery time, the network device model copies the packetheless remains the possibility that an external observer,
into the guest address space (step 2 in Fig. 3) and asseg whose real-time clock we cannot intervene, could dis-
a virtual network interrupt on the vPIC prior to the next cern information on the basis of the real-time behavior of
VM entry (step 3). his attacker VM. In this section we describe our approach
In Fig. 4(a) we show the distribution of virtual inter- to addressing this form of timing channel.
packet delivery times in an actual run with an active vic-  Because guest VM replicas will run deterministically,
tim, in comparison to the virtual delivery times with no they will output the same network packets in the same
victim present. This plot is directly analogous to that in order. StopWatchuses this property to interfere with a
Fig. 1(a) butis generated from a real trace and shows thgM’s ability to exfiltrate information on the basis of its
distribution as a CDF for ease of readability. Fig. 4(b) real-time behavior as seen by an external obseSiep-
shows the number of observations needed to distinguisi/atchdoes so by adopting the median timing across the
the victim and no-victim distributions in Fig. 4(a) as a three guest VM replicas for each output packet. The me-
function of the desired confidence. This figure is anal-dian is selected at a separate “egress node” that is ded-
ogous to that in Fig. 1(b), and confirms thtopWatch icated for this purpose, analogous to the “ingress node”
strengthens defense against timing attacks by an order @hat replicates every network packet destined to the guest
magnitude in this scenario. Again, the absolute numbex/M to the VM'’s replicas (seé5). Like the ingress node,
of observations needed to distinguish these distributionghere need not be only one egress node for the whole
is likely quite conservative, owing to numerous practicalcloud.
challenges to gathering these observations. To implement this scheme in Xen, every packet sent
Disk and DMA emulation. The emulation of the IDE by a guest VM replica is tunneled by the network de-
disk and DMA devices is similar to the network card em- vice model on that machine to the egress node over TCP.
ulation above. StopWatchcontrols when the disk and The egress node forwards an output packet to its destina-
DMA device models complete requests and notify thetion after receiving the second copy of that packet (i.e.,
guest. Instead of copying data read to the guest addresise same packet from two guest VM replicas). Since the
space, the device model BtopWatchprepares a buffer second copy of the packet it receives exhibits the median
to receive this data. In addition, rather than asserting aoutput timing of the three replicas, this strategy ensures
appropriate interrupt via the vPIC to the guest as soon athat the timing of the output packet sent toward its des-
the data is available, th8topWatchdevice model reads tination is either the timing of a guest replica not cores-
the current guest virtual time from memory shared withident with the victim VM or else a timing that falls be-
the VMM, adds/\y, and stores this value as the interrupt tween those of guest replicas not coresident with the vic-
delivery time in the shared memory. Upon the first VM tim. This algorithm is slightly simpler than the median



calculations described previously, since the egress nodé.2 Experimental setup

need not receive all three copies of a packet prior to for- _ ) _
warding it; it need only receive the first two. Our “cloud” consisted of three machines with the same

hardware configuration: 4 Intel Core2 Quad Q9650

3.00GHz CPUs, 8GB memory, and 70GB disk. DomO
7 Performance Evaluation was configured to run Linux kernel version 2.6.32.25.
Each HVM guest had one virtual CPU, 2GB memory and
16GB disk space. Each guest ran Linux kernel 2.6.32.24
and was configured to use the Programmable Interrupt
Controller (PIC) as its interrupt controller and a Pro-
grammable Interrupt Timer (PIT) of 250Hz as its clock
source. The Advanced Programmable Interrupt Con-
7.1 Selected implementation details troller (APIC) was disabled. An emulated ATA QEMU

disk and a QEMU Realtek RTL-8139/8139C/8139C+

Our prototype is a modification of Xen version 4.0.2-1¢1-\ o6 provided to the guest as its disk and network card.
pre, amounting to insertions or changes of roughly 150Q, g4ch of our tests, we installed an application (e.g., a

source lines of code (SLOC) in the hypervisor. Thereweb server, NFS server, or other program) in the guest
were also about 2000 SLOC insertions and changes tgnm as will be described later.

the QEMU device models distributed with that Xen ver-
sion. In addition to these changes, we incorpora\teqh
OpenPGM Littp://code.google.com/p/openpgm/)
into the network device model in Dom0. OpenPGM is
a h|gh—performance rehabl_e multicast |mp_lementat|on,provide identical disk state to the three replicas.
specifically of the Pragmatic General Multicast (PGM) . .

e . o Once the guest VM replicas were started, inbound
specification [42]. In PGM, reliable transmission is ac-

. . . . éaackets for this guest VM were replicated to all three
complished by receivers detecting loss and requesting r machines for delivery to their replicas as discussed in
transmission of lost data. OpenPGM is usedSiop- y P

Watchfor replicating packets destined to a guest VM to 5. These three machines were attached to a /24 sub-
all of that VM's replicas and for communication among net within our campus network, and as a result, broadcast

the VMMs hosting guest VM replicas. traffic on the ngtwork (e.g., ARP requests) was replicated
Recall from §5 that each VMM proposes (via an for delivery as ing5. The volume of these broadcasts av-
OpenPGM multicast) a virtual delivery time for each net- eraged roughly 50-100 packets per second. As such, this

work interrupt, and the VMMs adopt the median pro- background activity was present throughout our experi-

. ) ments and is reflected in our numbers.
posal as the actual delivery time. As noted there, each

VMM generates its proposal by adding a constant off-

setAn to the current virtual time of the guest VMy, 7.3  Network Services

must be large enough to ensure that by the time each

VMM selects the median, that virtual time has not al- In this section we describe tests involving network ser-
ready passed in the guest VM. However, subject to thig/ices deployed on the cloud. In all of our tests, our
constraint,A, should be minimized since the real time client that interacted with the cloud-resident service was
to which A, translates imposes a lower bound on the la-a Lenovo T400 laptop with a dual-core 2.8GHz CPU and
tency of the interrupt delivery. (Note that becadsgis  2GB memory attached to an 802.11 wireless network on
specified in virtual time and virtual time can vary in its our campus.

relationship to real time, the exact real time to whigh  File download. Our first experiments tested the perfor-
translates can vary during execution.) We seleéietb ~ mance of file download by the client from a web serverin
accommodate timing differentials in the arrivals of pack-the cloud. The total times for the client to retrieve files of
ets destined to the guest VM at its three replicas’ VMMsvarious sizes over HTTP are shown in Fig. 5. This figure
and the delays for delivering each VMM'’s proposed vir- shows tests in which our guest VM ran Apache version
tual delivery time to the others. For the platform used2.2.14, and the file retrieval was from a cold start (and
in our experiments (s€g.2) and under diverse network- so file-system caches were empty). The “Total” curve
ing workloads, we found that a value &f that typically  in Fig. 5(a) shows the average latency for the client to
translates to a real-time delay in the vicinity of 12-15msretrieve a file from an unmodified Xen guest VM in the
sufficed to meet the above criteria. The analogous offsetloud. The “Total” curve in Fig. 5(b) shows the average
A4 for determining the virtual delivery time for disk and cost of file retrieval from ouiStopWatchimplementa-
DMA interrupts translates to roughly 15-20ms. tion. Every average is for ten runs. Note that both axes

In this section we evaluate the performance of Stap-
Watch prototype. We present additional implementation
details that impact performance§i.1, our experimental
setup in§7.2, and our tests and their result$ih3-7.4.

After the guest VM was configured, we copied it to our
ree machines and restored the VM at each. In this way,
our three replicas started running from the same state. In
addition, we copied the disk file to all three machines to
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Figure 5: Average HTTP file-retrieval latency. Figure 6: Averagedpcast file-retrieval latency.
are log-scale. deed, recall that the PGM protocol specification [42], and

To better understand the components of the costs igo the OpenPGM implementation that we use, ensures
both the baseline an&topWatchcases, we crafted a reliability using negative acknowledgements.
small program that performs the same function as a web To jllustrate this point, in Fig. 6 we repeat the exper-
server but that does so in a way that cleanly separategents in Fig. 5 but using the Linux utilitydpcast to
the costs of retrieving the file from disk and of send- transfer the fil& Fig. 6(a) shows the performance us-
ing the file to the client. More specifically, this pro- ing unmodified Xen; Fig. 6(b) shows the performance
gram first reads the entire file into a buffer and Only usingStopWatch Not Surprising|y’ F|g G(a) shows per-
then does it send the file to the client in its entirety. By formance comparable to (but slightly more efficient than,
serializing these steps and measuring each individuallyby less than a factor of two) the baseline TCP in Fig. 5(a),
we gain a better appreciation for the component costgyt rather than losing an order of magnitu@égpWatch
and StopWatcfs impacts on them. The “Net” curves in js competitive in Fig. 6(b) with these baseline numbers
Fig. 5 show the average measured network costs, and thgr files of 1200KB or more.

“Disk” curves show the disk costs. Whereas the network remained the bottleneck in the
Fig. 5 shows that for file download, a service ru_nningtests shown in Fig. 6(a), thdisk was at least as much of
on our currenStopWatchprototype loses roughly:83in g pottleneck in the tests in Fig. 6(b). By eliminating the
download speed for files of 100KB or larger. While the positive acknowledgements in TCP, the extra network-

disk access costs increasedStopWaichin our exper-  ing |/0 costs associated with usigfopWatchwere re-
iments in comparison to the baseline, the bottleneck by, ceq essentially to the median selection by the egress
an order of magnitude or more was the network transnode (se6), which were minimal. Disk I/O remained
mission delay in both the baseline and ffopWatch a5 the main bottleneck, but it imposed an order of mag-
The performance cost dstopWatchin comparison 10 pjtyde less overhead than the networking 1/0 costs previ-
Fhe baseline was dominated by the time for de_livery Ofously had (Fig. 5(b)). This reduction, in turn, permitted
inbound packets to the web—ser\_/er guest VM, i.e., theStopWatchUDP file transfer (Fig. 6(b)) to perform com-
TCP SYN and ACK messages in the three-way handparaply to the baseline TCP performance in Fig. 5(a).
shake, and then additional acknowledgements sent by the \yjs reiterate that the performance offered in Fig. 6(b)
client. Enforcing a median timing on output packéB)( s not specific to UDP. This performance should also

adds modest overhead in comparison. be achievable with a reliable transport protocol designed

This combination of insights, namely the detriment, minimize client-to-server messages during file down-
of inbound packets (mostly acknowledgementsjtop-  |q54, as is typical of negative acknowledgment schemes
Watchfile download performance and the fact that these, 4 protocols using forward error correction.

costs so outweigh disk access costs, raises the posfiirs \we also set up a Network File System (NFSv4)
bility of recovering file download performance using a ¢o.\er in our guest VM. On our client machine, we in-

transport protocol that minimizes packets inbound to thestalled an NFSv4 client; remotely mounted the filesys-

web server, e.g., using negative e}cknowledgemgnts Ym exported by the NFS server; performed file opera-
forward error correction. Alternatively, an unreliable

N ¢ protocol with K led ‘ h tions manually; and then rarfsstat on the NFS server
ransport protocof with no acknowleagements, such ag, print its server-side statistics, including the mix of
UDP, could be used; transmission reliability could then
be enforced at a Iayer above UDP usmg negative ac- 5We are not advocating UDP for file retrieval generally buheat
knowledgements or forward error correction. Thoughare simply demonstrating the advantagesStspWatchof a protocol
TCP does not define negative acknowledgements, trangat minimizes client-to-server packets. We did not user®@M in

: T : these tests since the web site (as the “multicast” origiatould need
pQI‘t protoc_ols that |mplement re“ablhty using them_are to initiate the connection to the client; this would haveuiegd more
V_V|de|y available, particularly fomulticast \_’Vhere POSI= supstantial modifications. This “directionality” issuerist fundamen-
tive acknowledgements can lead to “ack implosion.” In-tal to negative acknowledgements, however.
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Figure 7: Tests of NFS server usinffsstone
Figure 8: Tests of PARSEC applications

operations induced by our activity. We then used the _ _ o L
nhfsstone benchmarking utility to evaluate the perfor- PARSEC suite (version 2.1), providing each the “native
mance of the NFS server with and withaBtopWatch input designated for itterret is representative of next-
nhfsstone generates an artificial load with a specified 9eneration search engines for non-text document data
mix of NFS operations. The mix of NFS operations usedtYPes. In our tests, we configured the application for
in our tests was the previously extracted mix fildn ~ image similarity searchblackscholes calculates op-
each test, the client machine ran five processes using tHén Pricing with Black-Scholes partial differential egua
mounted file system, making calls at a constant rate rangions and is representative of financial analysis applica-
ing from 25 to 400 per second in total across the fivelions. canneal is representative of engineering applica-
client processes. tions and uses simulated annealing to optimize routing
The average latency per operation is shown incost of a chip designdedup represe_nts next-genera_tion_
Fig. 7(a). In this figure, the horizontal axis is the rate PACKUPp storage systems characterized by a combination
at which operations were submitted to the server; not&fglobal andlocal compressiostreamclusterisrep-
that this axis is log-scale. Fig. 7(a) suggests that afésentative of data mining algorithms for online cluster-
NFS server oveStopWatchincurs roughly a % increase  I"d Problems. Each of these applications involves var-
in latency over an NFS server running over unmodified'©US activities, including initial confl_gurgtlon, creagin
Xen. Since the NFS implementation used TCP, in somé local directory for results, unpacking input files, per-
sense this is unsurprising in light of the file download forming its computation, and finally cleaning up tempo-
results in Fig. 5. That said, it is also perhaps surprising' files.

that StopWatcls cost increased only roughly logarithmi- ~ We ran each benchmark ten times within a single
cally as a function of the offered rate of operations. Thisguest VM over unmodified Xen, and then ten more times

modest growth is in part becauSgopWatchschedules with three guest VM repl_icas ove3topWatch Fig. 8(a) _
packets for delivery to guest VM replicas independentlySNows the average runtimes of these benchmark appli-
— the scheduling of one does not depend on the delivergations in the two cases. In this figure, each applica-
of a previous one, and so they can be “pipelined” — and'on 1S described by a pair of bars; the plac_k bar on the
because the number of TCP packets from the client td€ft Shows the performance of the application over un-

the server actually decreases per operation, on averag&@odified Xen, and the beige bar on the right shows the
as the offered load grows (Fig. 7(b)). performance of the application ov&topWatch Stop-
Watch imposed an overhead of at most 257 for

) blackscholes) to the average running time of the ap-
7.4 Computations plications. Owing to the dearth of network traffic in-
SvoIved in these applications, the overhead imposed by
StopWatchis overwhelmingly due to the overhead in-
volved in intervening on disk I/O (s€g). As shown in
Fig. 8(b), there is a direct correlation between the num-
;)t?er of disk interrupts to deliver during the application
run and the performance penalty (in absolute terms) that
StopWatchimposes.

In this section we evaluate the performance of variou
computations orStopWatchthat may be representative
of future cloud workloads. For this purpose, we em-
ploy the PARSEC benchmarks [10]. PARSEC is a di
verse set of benchmarks that covers a wide range
computations that are likely to become important in the
near future (sekttp://parsec.cs.princeton.edu/

overview.htm). Here we take PARSEC as representa-
tive of future cloud workloads. 8 ReplicaPlacement in the Cloud

We utilized the following five applications from the StopWatchrequires that the three replicas of each guest

8This mix was 1137%setattr, 24.07%1lookup, 1192%vwrite, VM are coresident With r_lonoverlapping s_ets of (repli-
7.93%getattr, 3234%read and 1237%create. cas of) other VMs. This imposes constraints on how a
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cloud operator places guest VM replicas on its machines9  Collaborating Attacker VM s

In this section we seek to clarify how significant these ) ) .
placement constraints are, in terms of the provider's abilOUr discussion so far has not explicitly addressed the

ity to best utilize its infrastructure. After all, if under possibility of attacker VMs _collaborating to mount tim-
these constraints, the provider were able to simultaneY attacks. The appa}rent ”Sk_s Of such c_ollaboratlon can
ously run a number of guest VMs that scales, say, onl)pe seen in the foIIowmg p053|blllty: replicas of one at-
linearly in the number of cloud nodes, then the providert2cker VM ('VM17) reside on machines A, B, and C; one
should forgoStopWatchand simply run each guest VM replica of another attacker VM (“VM2") resides on ma-

(non-replicated) in isolation on a separate node. Fortugh!ne A anda _repllca of_the_ victim VM res_ldes on ma-
nately, we will see that the cloud operator is not limited chine C IfVM2 induces 5|gr_1|f|cant load on its mz_;tchmes,
to such poor utilization of its machines. then this may slow the replica of VM1 on machine A to

) ) an extent that marginalizes its impact on median calcu-
If the cloud hasn machines, then consider the com- |a4ins among its replicas’ VMMs. The replicas of VM1

plete, undirected graph (cliqui onn vertices, one per 4,14 then observe timings influenced by the larger of
machine. For every guest VM, the placement of its thregy,o replicas on B and C — which may well reflect tim-
replicas forms drianglein K, consisting of the vertices ings influenced by the victim.

for the machines on which the replicas are placed and the Mounting such an attack, or any collaborative attack
edges between those vertices. The placement ConStrairlR/olving multiple attacker ’\/Ms on one machine, ap-
of StopWatchcan_be expressgd by requiring that th_e tr_i- ears to be difficult, however. Just as the reasor;ing in
angles_ representing VM replica placements be paIrWIS‘gig. 1 and its confirmation in Fig. 4 suggest that an at-
edge-digoint. As such, the numbdrof guest VMs that tacker VM detecting its coresidence with a victim VM

can simultaneously be run on a cloudromachines is is made much harder bgtopWatch one attacker VM

the same as t_he number of edge-disjoint triangles tha(Eetecting coresidence with another using timing covert

can bepacked into K,. A c_orollary of a result due to channels would also be impeded ByopWatch If the

Horsley [24, Theorem 1.1] is: cloud takes measures to avoid disclosing coresidence of
one VM with another by other channels, it should be dif-
ficult for the attacker to even detect when he is in a posi-

Theorem 1 A maximum packing of K, with pairwise  tion to mount such an attack or to interpret the results of

edge-disjoint triangles has exactly k triangles, where: (i)  mounting such an attack indiscriminately.

ifnisodd, thenkisthelargest integer such that 3k < (2) If such attacks are nevertheless feared, they can be
and (3) — 3k ¢ {1,2}; and (”)r|1f niseven, thenkisthe  made harder still by increasing the number of replicas
largest integer such that 3k < (3) — 5. of each VM. If the number were increased from three

to, say, five, then inducing sufficient load to marginalize
one attacker replica from its median calculations would
So, a cloud oh machines usingtopWatchcan simulta-  not substantially increase the attacker’s ability to mount
neously executk = ©(n?) guest VMs. attacks on a victim. Rather, the attacker would need to
Algorithms for packing edge-disjoint triangles in a marginalize multiple of its replicas, along with accom-
graph have previously been studied due to their uses iflishing the requisite setup to do so.
computational biology (e.g., [5]), yielding practical al-
gorithms for placing triangles to approximate the opti- .
mal value ok triangles ork, to within a constant factor. 10 Conclusion

For exall”nplg, a greedy approach W'_” s_,uccessfully plac%e have proposed a novel method of addressing timing
a_lt Ieastgk_ triangles, and_more sophlstl_cated augmenta-side channelsin laaS compute clouds that employs three-
tion algorithms can achieve at !ea%k in polynomial \yay replication of guest VMs and placement of these
time [19]. These results immediately translate to algo-\ replicas so that they are coresident with nonover-
rithms by which a clloud op.e.rator usirfopWatchcan lapping sets of (replicas of) other VMs. By imposing on
place guest VM replicas efficiently. all replicas the median timing of each observable event
Of course, these algorithms for packing triangles doamong the replicas, we suppress their ability to glean in-
not account for the nuances of scheduling guest VMs irformation from a victim VM with which one is cores-
a cloud. For example, different guest VMs come withident. We described an implementation of this tech-
different resource demands. A direction for future work nique in Xen, yielding a system callestopWatch and
is to adapt these algorithms to accommodate guest VMsive evaluated the performance $fopWatchon a vari-
resource needs as well as the constraints imposed bsty of workloads. Though the performance cost for our
StopWatch current prototype ranges up tox3or networking appli-
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cations, we used our evaluation to identify the sources

of costs and alternative application designs (e.g., rigiab

transmission using negative acknowledgements, to sup-[7]

port serving files) that can enhance performance consid-

erably. Finally, we identified results in graph theory and

computational biology that provides a basis for clouds to

schedule guest VMs under the constraintStdpWatch [8]

while still utilizing their infrastructure effectively. &

envision a mature version &topWatchbeing a possible

basis for the construction of a high-security cloud facil-

ity, as would be suitable for supporting communities with

significant assurance needs (e.g., military, intelligence

or financial communities). [9]
An important topic for future work is extendirgtop-

Watch to support multiprocessor guest VMs. As dis-

cussed ir§2, previous research on replay of multiproces-

sor VMs (e.g., [17]) should provide a basis for extend-

ing our currentStopWatchprototype, and we are cur- [10]

rently investigating this direction. A second direction fo

improvement is that we have implicitly assumed in our[11]

StopWatchimplementation — and in many of our de-

scriptions in this paper — that the replicas of each VM

are placed on a set of homogeneous machines. Expand-

ing our approach and implementation to heterogeneoull2]

machines poses additional challenges that we hope to ad-

dress in future work. This possibility would also impact

the placement algorithms summarized;8) perhaps in

a way similar to how diverse workloads would. [13]
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