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Abstract—This paper describes StopWatch, a system that
defends against timing-based side-channel attacks that e
from coresidency of victims and attackers in infrastructure-
as-a-service cloud environments.StopWatch triplicates each
cloud-resident guest virtual machine (VM) and places repkas
so that the three replicas of a guest VM are coresident with
nonoverlapping sets of (replicas of) other VMs. Then,Stop-
Watch uses the timing behaviors of a VM’s replicas collectively
to determine the timing of events observed by each one or by
an external observer, so that observable timing behaviorsauld
have been observed in the absence of any other individual,
coresident VM. In this respect, StopWatch implements a form
of “differentially private” timing behavior in a cloud. We d etall
the design and implementation ofStopWatch in Xen, evaluate
the factors that influence its performance, and address the
problem of placing VM replicas in a cloud under the constrairts
of StopWatch so as to still enable adequate cloud utilization.
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I. INTRODUCTION

Implicit timing-based information flows potentially
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This state of affairs is reminiscent of another subdomain
of the security field, namely inference control in the reteas
of datasets of sensitive information (e.g., health records
about people. Perturbation of query results (randomimatio
and coarsening again being notable examples) has been a
staple of that subdomain for decades (e.g., [2]). Recently,
a formal underpinning to guide its application has started
to gain momentum, namelgifferential privacy. “Achieving
differential privacy revolves around hiding the presence o
absence of a single individual” [3] in a dataset.

In this paper we adapt this intuitive goal of differential
privacy — i.e., that the adversary cannot discern from his ob
servations whether a person is represented in a dataset — to
the entirely different domain of timing attacks in the cloud
More specifically, we develop a system call&topWatch
that perturbs timing signals available to an attacker VM so
that these signals could have been observed in the absence of
the victim, irrespective of the distinctiveness of the wict
within the cloud workload. Due to our different domain,
however, the methods employed BtopWatchto achieve

threaten the use of clouds for highly sensitive computation this property are wholly different than randomizing query
In an “infrastructure as a service” (laaS) cloud, such arresponses. RatheStopWatchperturbs timings observed by
attack would be mounted by an attacker submitting arthe attacker VM to “match” those of @eplica attacker VM
attacker virtual machine (VM) to the cloud that times that isnot coresident with the victim.

the duration between events that it can observe, in order Since StopWatchcannot identify attackers and victims,

to make inferences about wactim VM with which it is

realizing this intuition in practice requires replicatiegch

running simultaneously on the same host but otherwis&/M on multiple hosts and enforcing that the replicas are
cannot access. Such attacks were first studied in the contegdresident with nonoverlapping sets of (replicas of) other

of timing-basedcovert channels, in which the victim VM

VMs. Moreover, two replicas is not enough: one might be

is infected with a Trojan horse that intentionally signalscoresident with its victim, and by symmetry, the timings it
information to the attacker VM by manipulating the timings observes would necessarily influence the timings imposed
that the attacker VM observes. Of more significance inon the pair.StopWatchthus uses three replicas that coreside

modern cloud environments, however, are timing-besseel

with nonoverlapping sets of (replicas of) other VMs and

channels, which leverage the same principles to attack anmposes the timing of the “median” of the three on all

uninfected but oblivious victim VM.

replicas. Even if the median timing of an event is that

A known defense against timing-based covert channelsbserved by an attacker replica that is coresident with a
and side channels is to perturb (e.g., through randomizatiovictim replica, attacker replicas that do not coreside i
or coarsening) clocks that are visible to VMs, making it victim observed timings both below and above the median.
more difficult for the attacker VM to measure the duration We detail the implementation oStopWatchin Xen,

between events and so to receive the signals (e.g., [1])ewWhi

this technique slows (but does not entirely defeat) timing- ‘The median can be viewed as “microaggregating” the timings t

based channels, the protection it offers can be difficult o

impossible to quantify when applied heuristically.

I

confound inferences from them (c.f., [4]-[6]). This analoguggests the
possibility of using other microaggregation functions, vesll, of which
there are many [7]. We do not pursue that possibility here.



specifically to enforce this “median” behavior on all real- “differentially private” observation of event timings.
time clocks and “clocks” available via the I/O subsystem « We detail the implementation of this strategy in Xen,
(e.g., disk and network interrupts). In doing s®tppWatch yielding a system callecstopWatch and evaluate the
interferes with all timing side-channel attacks commonly performance ofStopWatchon a variety of workloads.
used in the research literature, owing to the normal use of  This evaluation sheds light on the features of workloads
real-time as a reference clock in those exploits. (Timing that most impact the performance of applications run-
attacks that do not use real-time clocks should generally ning on StopWatchand how they can be adapted for
be more fragile due to unpredictable influences on other  best performance.

reference clocks.) Moreover, for uniprocessor VN&op- « We identify algorithmic results from graph theory and
Watch enforces deterministic execution across all of a VM'’s computational biology that resolve the problem of how
replicas, making it impossible for an attacker VM to utilize to place replicas under the constraintsStbpWatchto

other internally observable clocks and ensuring the same  maximally utilize a cloud infrastructure.

outputs from the VM replicas. By applying this median  The rest of this paper is structured as follows. We describe
principle to the timing of these outputStopWatchfurther  ye|ated work in§ll. We provide an overview of the design of
interferes with inferences that an observer external to th%topWatchin §11l. We then detail how we address classes of
cloud could make on the basis of output timings. internal “clocks” used in timing attacks i1V and §V, and

We extensively evaluate the performance of &fOp-  then turn to timing as seen by an outside observejMh
Watch prototype for supporting web service (file down- \we evaluate performance of owBtopWatch prototype in
loads), network file systems, and various types of comsyj gyl treats the replica placement problem that would

putational tasks. Our analysis reveals the primary factorge faced by cloud operators usi®&jopWatch We discuss
that influence the performance penalties ti&topWatch  fytyre work in§IX and conclude irgX.

imposes; e.g., inbound packets toS#opWatchsupported
network service incur much larger overheads than outbound Il. RELATED WORK
ones. This enables us to identify adaptations to a service
that can vastly increase its performance when run ovef*
StopWatch For example, we show that reliable transport Defenses against information leakage via timing channels
using negative acknowledgements (or unreliable transposdre diverse, taking numerous different angles on the pneble
with no acknowledgements, as in UDP) versus positiveResearch on type systems and security-typed languages to
ones (as in TCP) can dramatically improve file downloadeliminate timing attacks offers powerful solutions (e[g],
latencies in the common case of few losses, even to thf9]), but this work is not immediately applicable to our goal
extent of making file download oveStopWatchcompetitive  here, namely adapting an existing virtual machine monitor
with file download over unmodified Xen. For computational (VMM) to support practical mitigation of timing channels
benchmark programs, we find that the overheads induced kipday. Other research has focused on the elimination of
StopWatchare directly correlated with the amount of disk timing side channels within cryptographic computations
I/O they perform. (e.g., [10], [11]), but we seek an approach that applies to
We also analyze a utilization question that would begeneral computations.
faced by cloud operators if they were to make use of Askarov et al. [12] distinguish betwednternal timing
StopWatch namely how many guest VMs can be simultane-channels that involve the implicit or explicit measurement
ously executed on an infrastructureroimachines under the of time from within the system, anekternal timing chan-
constraint that the three replicas for each guest VM coeesidnels that involve measuring the system from the point of
with nonoverlapping sets of (replicas of) other VMs. We view of an external observer. Defenses for both internal
relate this question to a graph-theoretic problem studiede.g., [1], [8], [9]) and external (e.g., [12]-[16]) timing
in computational biology and find thab(n?) guest VMs  channels have received significant attention individyally
can be simultaneously executed. We also identify practicathough to our knowledgeStopWatchis novel in addressing
algorithms for placing replicas to achieve this bound. timing channels through a combination of both techniques.
To summarize, our contributions are as follows: StopWatchincorporates internal defenses to interfere with
« We introduce a novel approach for defending againsen attacker's use of real-time clocks or “clocks” that it hitig
timing side-channel attacks in “infrastructure-as-a-derive from the I/O subsystem. In doing sStopWatch
service” (laaS) compute clouds that leverages replicaimposes determinism on uniprocessor VMs and then uses
tion of guest VMs with the constraint that the repli- this feature to additionally build an effective externalatese
cas of each guest VM coreside with nonoverlappingagainst such attacker VMs, as wefitopWatcls internal
sets of (replicas of) other VMs. The median timing and external defense strategies also differ individualhyrf
of any event across the three guest VM replicas isprior work, in interfering with timing channels by allowing
then imposed on all of its replicas to approximate areplicas (in the internal defenses) and external obsefirers

Timing channel defenses



the external defenses) to observe only median timings froncan also be viewed as a form of replicatioBtopWatch
the three replicas. That is, each internal and externahtimi similarly coerces VM replicas to observe the same event
observation is of either an attacker VM replica that is nottimings, but again, unlike these timings being determingd b
coresident with a victim VM replica or else lies betweenone replica (the original), they are determined colletyive
timings of such replicas. using median calculations, so as to interfere with an agiack
VM trying to leak information about a victim with which
it coresides. That said, the state-of-the-art in this domai
To our knowledge StopWatchis novel in utilizing repli-  (e.g., [33]) addresses multiprocessor VM execution, which
cation for timing channel defense. That said, replicationour present implementation oftopWatch does not. We
has a long history that includes techniques similar to thosexpect thatStopWatchcould be extended to support multi-
we use here. For example, state-machine replication [17hrocessor execution with techniques developed for replay o
[18] to mask Byzantine faults [19] ensures that correctmultiprocessor VMs, and we plan to investigate this in fatur
replicas return the same response to each request so thasearch. Mechanisms for enforcing deterministic exeauti
this response can be identified by “vote” (a techniqueof parallel computations through modifications at userlleve
related to one employed iStopWatch see§lll and §VI). (e.g., [34], [35]) or the operating system (e.g., [36]) assl
To ensure that correct replicas return the same responseaglevant to our goals, as they are not easily utilized by an
these systems enforce the delivery of requests to replicdaaS cloud provider that accepts arbitrary VMs for executio
in the same order; moreover, they typically assume that
replicas are deterministic and process requests in the orde Il. DESIGN
they are receivedEnforcing replica determinism has also  Our design is focused on “infrastructure as a service”
been a focus of research in (both Byzantine and benignlyjlaaS) clouds that accept virtual machine images, or “guest
fault-tolerant systems; most (e.g., [20]-[25]), but not al VMs,” from customers to execute. Amazon EC2 (http://aws.
(e.g., [26]), do so at other layers of the software stack thammazon.com/ec2/) and Rackspace (http://www.rackspace.
StopWatchdoes. com/) are example providers of public laaS clouds. Given
More fundamentally, to our knowledge all prior systemsthe concerns associated with side channel attacks in cloud
that enforce timing determinism across replicas permit onenvironments (e.g., [37]), we seek to develop virtualmati
replica to dictate timing-related events for the othersicivh  software that would enable a provider to construct a cloud
does not suffice for our goals: that replica could be the onghat offers substantially stronger assurances againishdea
coresident with the victim, and so permitting it to dictate via timing channels. This cloud might be a higher assurance
timing related events would simply “copy” the information offering that a provider runs alongside its normal cloud
it gleans from the victim to the other replicas and, evemyual (while presumably charging more for the greater assurance
to leak it out of the cloud. Rather, by forcing the timing of it offers) or a private cloud with substantial assurancedsee
events to conform to the median timing across three VM(e.g., run by and for an intelligence or military community)
replicas, at most one of which is coresident with the victim, Our threat model is a customer who submétsacker
the enforced timing of each event is either the timing of aVMs for execution that are designed to employ timing side-
replica not coresident with the victim or else between thechannels. We presume that the attacker VM is designed to
timing of two replicas that are not coresident with the victi  extract information from a particular victim VM, versus
This strategy is akin to ones developed for Byzantine faultirying to learn general statistics about the cloud such as
tolerant clock synchronization (e.g., see [23,2]). its average utilization. We assume that access controls are
Aside from replication for fault tolerance, replicationsha effective in preventing the attacker VMs from accessing
been explored to detect server penetration [28]-[31]. &hesvictim VMs directly or from escalating their own privileges
approaches purposely employ diverse replica codebases or a way that would permit them to access victim VMs.
data representations so as to reduce the likelihood of ®/e assume that the cloud’s virtualization software (in our
single exploit succeeding on multiple replicas. Divergenc case, Xen and our extensions thereof) is not compromised.
of replica behavior in these approaches is then indicative oWe allow that the attacker might determine if its VM (or
an exploit succeeding on one but not others. In contrast tone of its replicas) is colocated with a victim VM replica,

B. Replication

these approacheStopWatchleverages (necessarilidenti-  though we assume that the attacker VM would generally
cal guest VM replicas to address a different class of attack®e unable to assemble a complete inventory of VMs with
(timing side-channels) than replica compromise. which it (or more specifically all of its replicas, see below)

Research on VM executioreplay (e.g., [32], [33]) fo- are coresident.
cuses on recording nondeterministic events that alter VM According to Wray [38], to exploit a timing channel, the
execution and then coercing these events to occur the sanat¢tacker VM measures the timing of observable events using
way when the VM is replayed. The replayed VM is a replicaa clock that is independent of the timings being measured.
of the original, albeit a temporally delayed one, and so thisNhile the most common such clock is real time, in principle



a clock can be any sequence of observable events. Witeffectively with internal observations of time, but it reims
this general definition of a “clock,” a timing attack simply possible that an external observer could still glean infor-
involves measuring one clock using another. Wray identifiednation from the real-time duration between the arrival of
four possible clock sources in conventional computers:[38]packets that the attacker VM sends. To interfere with this
" ie. a clock timing channel, we again apply the principle of emitting
packets to an external observer with timing dictated by the
median timing of the three VM replicas.

The general strategy of permitting only the median timing
A of each event to be observed, which pervades our design,
ensures that an observer sees a timing that is dictated by
a replica that is not coresident with the victim VM or else
that is bound above and below by such timings. (And, of
course, the observer does not learn which replica’s timing

StopWatchis designed to interfere with the use 8  \as adopted.) Intuitively, the protection offered by thiteia
and RT clocks and, for uniprocessor VMS[L or Mem  case derives from the limited latitude for modulating cleck
clocks, for timing attacks. (As discussed§h-B, extension  that these bounds allow, but this protection hinges on an
to multiprocessor VMs remains a topic of future work.) additional assumption that these bounds are not too loase. A
IO and RT (especially RT) clocks are an ingredient in an extreme case, suppose that one attacker VM replica runs
every documented timing side-channel attack in the rebearcgione, one is coresident with a massive workload that nearly
literature that we have found, undoubtedly because reaktarves it, and the third is coresident with only the victim
time is the most intuitive, independent and reliable refeee  \/\. |n this case, the third’s timings will likely be the media
clock for measuring another clock. As such, interveninginat is observed, and the presumably large gap between the
on these clocks is of paramount importance. Moreover, thgmings of the first and second leaves plenty of latitude for
manner in which we do so implies that the scheduler in &he third to observe modulations of clocks induced by the
uniprocessor guest VM will behave deterministically, whic victim. As such, VM replicas must be provided the resources
interferes with any attempts to u3e. or Mem clocks. needed to support reasonably tight bounds on executios rate

More specifically, to interfere withO clocks, StopWatch  of VM replicas, an assumption which is also needed for
replicates each attacker VM (or, really, every VM, since wefunctional correctness in our design (8.
do not presume to know which ones are attacker VMs)
threefold so that the three replicas of a guest VM are IV. RT cLocks
coresident with nonoverlapping sets of (replicas of) other Real-time clocks provide reliable and intuitive reference
VMs. Then, when determining the timing with which an clocks for measuring the timings of other event sequences.
event is made available to each replica, the median timingn this section, we describe the high-level strategy taken i
value of the three is adopted. The median timing is eitheiStopWatchto interfere with their use for timing channels
observed at an attacker replica that is not coresident with and detail the implementation of this strategy in Xen.
victim VM replica or else falls between timings of the two
replicas that are not coresident with the victim VM. In the
latter case, assuming that the two replicas not coresidigmtw  The strategy adopted iStopWatchto interfere with a
the victim do not themselves offer timings that are extremeVM's use of real-time clocks is to virtualize these real-
this leaves little latitude for the median timing to conveytime clocks so that their values observed by a VM are a
useful information to the attackeStopWatchaddresse®T  deterministic function of the VM's instructions executesl s
clocks by replacing a VM's view of real time with a virtual far [39]. That is, after the VM executesstr instructions,
time that depends on the VM’s own progress, an idea du#he virtual time observed from within the VM is
to Popek and Kline [39]. Optionally§topWatchadjusts the
progression of virtual time periodically using the mediealr
time of the three replicas at fixed points in their executionsTo determinestart at the beginning of VM replica execu-
thereby roughly synchronizing their views of real time with tion, the VMMs on the machines hosting the VM’s replicas
actual real time to a degree. As discussedlinwe view  exchange their current real timesyurt is initially set to the
StopWatcrs use of medians in addressit@ andRT clocks  median of these valueslope is initially set to a constant
as one of our primary conceptual innovations. determined by the tick rate of the machines on which the

A side effect of howStopWatchaddressesO and RT  replicas reside.
clocks is that it enforces deterministic execution of uaipr Optionally, the VMMs can adjusttart and slope peri-
cessor attacker VM replicas, additionally disabling itdigb ~ odically, e.g., after the VM replicas execute an “epoch” of
to use TL or Mem clocks. These mechanisms thus deall instructions, in an effort to coarsely synchronizet and

o TL: the “CPU instruction-cycle clock
constructed by executing a simple timing loop;

o« Mem: the memory subsystem (e.g., data/instruction
fetches);

o 10: the I/O subsystem (e.g., network, disk, and DM
interrupts); and

o RT: real-time clocks provided by the hardware platform
(e.g., time-of-day registers).

A. Strategy

virt (instr) < slope X instr + start 1)



real time. For example, after theth epoch, each VMM VM Control Structure (VMCS), through which guest execu-
hosting a replica can send to the others the durafipgn tion is controlled, provides a heap area to save and restore
over which it executed thoskinstructions and its real time model-specific register (MSR) values such as the hardware
Ry, at the end of that duration. Then, the VMMs can selectbranch counter during VMexits and entries, respectively

the median real timeg?; and the durationD; reported by (described below). Using this mechanis&ippWatchtracks

that same machine and reset the branch count for each guest and uses itifetr in (1).

A remaining question is precisely when to inject each
. ) . timer interrupt. Intel VT augments IA-32 with two new
slope, | + arg min R —virty(I) + Dj, . forms of CPU operations: virtual machine extensions (VMX)

veE[l,u] I root operation and VMX non-root operation [41]. While the

VMM (e.g., the Xen hypervisor) uses root operation, guest
VMs use VMX non-root operation. In non-root operation,
certain instructions and events causéM exit to the VMM,
so that the VMM can emulate those instructions or deal with
those events. Once completed, control is transferred lmack t
next I instructions, assuming that the machine and vmthe guest VM via avM entry. The guest then continues
workloads stay roughly the same. Of course, the smadHer running as if it had never been interrupted.
values are, the moreirt follows real time and so poses the VM exits provide the VMM the opportunity to inject
risk of becoming useful in timing attacks. Seirt should timer interrupts into the guest VM as the guest’s virtualdim
be adjusted only for tasks for which coarse synchronizatiofdvances. However, so that guest VM replicas will observe

with real time is important and then only with largevalues. ~ the same timer interrupts at precisely the same points in the
executionsStopWatchnjects timer interrupts only after VM

B. Implementation in Xen exits that are caused by guest execution. Other VM exits can
Real-time clocks provided by a typical x86 platform _be induced by events e_zxternal to_ the VM, such as hardware
include timer interrupts and various hardware countersiNt€rrupts on the physical machine; these would generally
Closely related to these real-time clocks is the time stam@Ccur at different points during the execution of the guest
counter register, which is accessed usingrttesc instruc- VM replicas but will not be visible to the guest [4§29.3.2].
tion and stores the count of processor ticks since reset. FOr VM exits caused by guest VM execution, the VMM
1) Timer interrupts. Operating systems typically measure injects any needed timer interrupts on the next VM entry.
the passage of time by counting timer interrupts; i.e., the 2) rdtsc callsand CMOSRTC values: Another way for
operating system sets up a hardware device to interrupt p&guest VM to measure time is viat sc calls. Xen already
riodically at a known rate, such ag0 times per second [40]. emulates the return values to these calls. More specifjcally
There are various such hardware devices that can be usée produce the return value for edt sc call, the Xen
for this purpose. Our current implementation $fopWatch  hypervisor computes the time passed since guest reset using
assumes the guest VM uses a Programmable Interval Timdis real-time clock, and then this time value is scaled using
(PIT) as its timer interrupt source, but our implementationa constant paramete$topWatchreplaces this use of a real-
for other sources would be similar. TigtopWatchvMM  time clock with the guest’s virtual clock (1).
generates timer interrupts for a guest on a schedule dictate A virtualized real-time clock (RTC) is also provided to
by that guest'siirtual time virt as computed in (1). To do HVM guests in Xen; this provides time to the nearest second
so, it is necessary for the VMM to be able to track thefor the guest to read. The virtual RTC gets updated by Xen
instruction countinstr executed by the guest VM. using its real-time clock. As in the case of thdt sc call,
In our present implementatiostopWatchuses the guest StopWatchresponds to requests to read the RTC using the
branch count for instr, i.e., keeping track only of the guest’s virtual time in place of real time.
num_ber of branches that the guest VM executes. Several 3) Reading counters. Other sources from which the guest
architectures support hardware branch counters, but#tese .4 gpserve real time are various hardware counters, leeg., t
not sensitive to the multiplexing of multiple guests onto apyr counter, which repeatedly counts down to zero (at a pace
single hardware processor and so continue to count branch@g:tated by real time) starting from a constant value. A gues
regardless of the guest that is currently executing. So, tQp can issue a port I/O request to read the current PIT
accurately track the branch count for a gueStopWaich  counter value. These counters, too, are already virtuhlize
implements avirtualized branch counter for each guest. The i, modern VMMs such as VMWare (see [40]) and Xen.
2 , , _ In Xen, these return values are calculated using a real-time
In other words, if(R} — virty(I) 4+ Dj)/I € [¢,u] then this value . . .
becomesslope, | ;. Otherwise, eithel or u does, whichever is closer to Cloc_k’ and S(StOpW‘E_ItCthtead uses the guest virtual time
(Ry, — virty(I) + D;)/1. (1) in place of real time, as before.

startgyq1 « virtg(I)

for a preconfigured constant rangeu], to yield the formula
for virt,1.> The use of¢ and v ensures thatlope, , , is
not too extreme and, if > 0, that slope,_, is positive.
In this way, virty., should approach real time on the
computer contributing the median real tinf& over the



ReplicaA ReplicaB ReplicaC

V. 10 cLOCKS

C’s proposal

10 clocks are typically network, disk and DMA interrupts.
(Other device interrupts, such as keyboards, mice, graphicg =2 R Gl
cards, etc., are typically not relevant for guest VMs ing | %
clouds.) We outline our strategy for mitigating their use to~
implement timing channels ifV-A, and then in§V-B we
describe our implementation of this strategyStopWatch
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OArrival of packet at VMM O Arrival of proposal at VMM DDeIivery of packet to guest

A. Strategy
. Figure 1. The steps involved in delivering a packet to guddtréplicas.
Recall thatStopWatchreplicates each guest VM threefold

and controls the timing ofO clocks seen at each replica by

taking a median of proposed timings from the three VMMSs e process of determining the delivery time of a network
hosting them. In order to solicit proposed timings from thepaciet to guest VMs replicas is pictured in Fig. 1. This figure
three, it is necessary, of course, that the VMMs hosting th‘?jepicts a real-time interval,, T, at the three machines at
three replicas all observe each event. As suct§topWaich  \yhich a guest VM is replicated, showing at each machine:
we replicate every network packet to all three computerspe arrival of a packet at the VMM, the proposal made
hosting replicas of the VM for which the packet is intended.by each VMM, the arrival of proposals from other replica
This is done using a logically separate “ingress node” thapachines, the selection of the median, and the delivery of
we envision residing on a dedicated computer in the cloudi,e packet to the guest replica. Each stepped diagonal line

This replication at runtime is not necessary for disk blocksshows the progression of virtual time at that machine.
retrieved from the local disk; the replication of each VM at

start time includes replicating its entire disk image, and s B, |mplementation in Xen
any disk blocks available to one VM replica will be available
to all. For similar reasons, DMA transfers do not require
replication in StopWatch

When a VMM observes a data transfer that should even
tually cause an 10 interrupt to be delivered to the guest

it sends its proposed virtual time — i.e., in the gue‘Stsileges. QEMU (http://fabrice.bellard.free.friqgemu) ised to

virtual time, seeslV — for the delivery of that interrupt . . . .
to the VMMs on the other machines hosting replicas of the|mplementdeV|ce models. One instance of the device models

same guest VM. It generates its proposed delivery time b)'lS run in Domo per HVM domain. (See Fig. 2.)
adding a constant offsek to the virtual time of the guest
VM at its last VM exit. A must be large enough to ensure
that once the three proposals have been collected and the
median determined at all three replica VMMs, the chosen
median virtual time has not already been passed by any of
these VMMs.A is thus determined using an assumed upper
bound on the real time it takes for each VMM to observe
the interrupt and to propagate its proposal to the others.
In distributed computing parlance, we thus assume that the
system issynchronous, i.e., that there exist known bounds on
processor execution rates and message delivery times. The
synchronous model has been widely used to develop reliable
distributed protocols (e.g., [19], [43]). Figure 2. Emulation of 1/O devices iStopWatch “I/O request” present
Once the median proposed virtual time for an 10 interruptonly for disk 1/0.
has been determined at a VMM, the VMM simply waits for
the first VM exit caused by the guest VM (as $hV-B) 1) Network card emulation: In the case of a network
that occurs at a virtual time at least as large as that mediacard, the device model running in DomO receives packets
value. The VMM then injects the interrupt prior to the next destined for the guest VM. Witho&topWatchmodification,
VM entry of the guest. This interrupt injection also inclede the device model copies this packet to the guest address
copying the data into the address space of the guest, so asgpace and asserts a virtual network device interrupt via the
prevent the guest VM from polling for the data in advance ofvirtual Programmable Interrupt Controller (vPIC) exposed
the interrupt to create a form of clock (e.g., see§d.2.2]). by HVM for this guest. HVM guests cannot see real external

Xen presents to each HVM guest a virtualized platform
that resembles a classic PC/server platform with a network
card, disk, keyboard, mouse, graphics display, etc. This vi
tualized platform support is provided by virtual /0 dedce
{device models) in Dom0, a domain in Xen with special priv-
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HVM Guest

(2)Copydata Device (1) Proposals to/from
, __otherreplicas
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VM VM J A

exit entry iT
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paieys

/O request

vPIC [€
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3) Request interrupt VMM




hardware interrupts since the VMM controls the platform’spostpone the virtual DMA interrupt until our guests have
interrupt controllers [42$29.3.2]. passed the median proposed virtual time for this interrupt,
In StopWatch we modify the network card device model as in the network and disk cases above. While not yet having
so as to place each packet destined for the guest VM into eompleted an implementation of these modifications to the
buffer hidden from the guest, rather than delivering it te th DMA device model, we see no obstacles to doing so and
guest. The device model then reads from a shared memopjan to complete this work for the final version of the paper.
the current virtual time of the guest (as of the guest’s lasfor the evaluation results igVII, we disable DMA.
VM exit), addsA to this virtual time to create its proposed
delivery (virtual) time for this packet, and multicastssthi
proposal to the other two replicas (step 1 in Fig 2). A In this section we illustrate the mechanisms described
memory region shared between DomO0 and the VMM allowsin §V-A-V-B by showing the progression of delivery times
device models in DomO to read guest virtual time, which isproposed by the three replicas of a guest VM for a series
computed and updated on every VM exit by the VMM.  of inbound packets and, in particular, h&topWatchinter-
Once the network device model receives the two proposalferes with a potential timing side channel. In the execution
in addition to its own, it takes the median proposal as thepictured in Fig. 3, guest VM replicas “B” and “C” ran
delivery time and stores this delivery time in the memoryalone on their respective machines, whereas replica “A’
it shares with the VMM. The VMM compares guest virtual was coresident with another VM (the “victim”) that sent a
time (1) to the delivery time stored in the shared memorycontinuous stream of traffic during the run. Due to resource
upon every guest VM exit caused by guest VM executioncontention on the machine hosting replica A, this replica
Once guest virtual time has passed the delivery time, thexecuted slightly behind replicas B and C in real time;
network device model copies the packet into the guesthis is shown by As proposals for the delivery of inbound
address space (step 2 in Fig. 2) and asserts a virtual netwopackets occurring agarlier virtual times. Since the median
interrupt on the vPIC prior to the next VM entry (step 3). delivery time was selected for each inbound packet, replica
2) Disk emulation: The emulation of the IDE disk device A's proposals were not selected as the delivery times. Rathe
is performed similarly to the network card emulation above.the delivery time selected for each inbound packet varied
StopWatchcontrols when the disk device model completesbetween B’s and C’s over time. In this way, the activity of
disk 1/0 requests and notifies the guest. Instead of copyinthe victim coresident with A is hidden from the replicas.
data read from virtual disk sectors to the guest addresgspac
the device model irBtopWatchprepares a buffer to receive
this data. In addition, rather than asserting a virtual IDE The mechanisms described §V-V intervene on two
disk interrupt via the vPIC to the guest as soon as the datsignificant sources of clocks; though VM replicas can mea-
is available from disk, theStopWatchdevice model reads sure the progress of one relative to the other, for example,
the current guest virtual time from memory shared with thetheir measurements will be the same and will reflect the
VMM, adds A, and then multicasts its proposal for this median of their timing behaviors. Moreover, by forcing each
interrupt to the other replicas. Once it has collected a##¢h guest VM to execute (and, in particular, schedule) on the
proposals, the disk device model stores the median value dmsis of virtual time and by synchronizing I/O events across
the interrupt delivery time in the shared memory. Upon thereplicas in virtual time, uniprocessor guest VMs execute
first VM exit caused by guest execution at which the guestleterministically, stripping them of the ability to leveeaT L
virtual time has passed this delivery time, the disk deviceand Mem clocks, as well. (More specifically, the progress
model copies the buffered data into the guest address spaocé TL and Mem clocks are functionally determined by the
and asserts a virtual disk interrupt on the vPIC. Disk writesprogress of virtual time and so are not independent of it.)
are handled similarly, in that the interrupt indicating t@ri There nevertheless remains the possibility that an externa
completion is delivered as dictated by the median of theobserver, on whose real-time clock we cannot intervene,
proposals from the replica’s device models. could discern information on the basis of the real-time
3) DMA emulation: The DMA device is also emulated in behavior of his attacker VM. In this section we describe
Xen. Once activated, the DMA device model continues dataur approach to addressing this form of timing channel.
transfer into the guest address space on its own; when the Because guest VM replicas will run deterministically, they
data transfer is completed, the DMA device model issuesvill output the same network packets in the same order.
an interrupt request. Since guest virtual time can be seeStopWatch uses this property to interfere with a VM'’s
by device models running in DomO (via the memory sharedability to exfiltrate information on the basis of its reah
with the VMM), we can modify the DMA device model to behavior as seen by an external obser&opWatchdoes
transfer data at rate tied to guest virtual time, not reaktim so by adopting the median timing across the three guest
so that a guest VM cannot create l@nhclock independent of VM replicas for each output packet. The median is selected
RT clocks by polling its memory for DMA data. We can also at a physically separate “egress node” that is dedicated for

C. Example execution

VI. EXTERNAL OBSERVERS
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Figure 3. Virtual delivery times proposed by three replichs guest VM per inbound packet in an actual execution. Repi was coresident with a
“victim” VM inducing resource contention with replica A, esing it to run behind replicas B and C.

this purpose, analogous to the “ingress node” that reglicat (PGM) specification [44]. In PGM, reliable transmission
every network packet destined to the guest VM to each ofs accomplished by receivers detecting loss and requesting
the VM's replicas (segV). retransmission of lost data. OpenPGM is use&tapWatch

To implement this in the context of Xen, every packet senffor replicating packets destined to a guest VM to all of that
by a guest VM replica is forwarded by the network deviceVM'’s replicas and for communication among the VMMs
model on that machine to the egress node over TCP. Thilosting guest VM replicas.
egress node forwards an output packet toward its destmatio Tyo additional items are important to understand the
after receiving the second copy of that packet (i.e., theesamresylts of our experiments in this section. Recall frgwh
packet from two guest VM replicas). Since the second copyhat each VMM proposes (via an OpenPGM multicast) a
of the packet it receives exhibits the median packet outpuirtyal delivery time for each 1/O interrupt, and the VMMs
timing of the three replicas, this strategy ensures that thgqopt the median proposal as the actual delivery time. As
timing of the output packet sent toward its destination isnoted there, each VMM generates its proposal by adding a
either the timing of a guest replica not coresident with theconstant offsetA to the current virtual time of the guest
victim VM or else a timing that falls between those of \/\1. A must be large enough to ensure that by the time
guest replicas not coresident with the victim. This algorit  each VMM selects the median, that virtual time has not
is slightly simpler than the median computations describejjready passed in the guest VM. However, subject to this
previously in that the egress node need not receive all thregynstraint, A should be minimized since the real time to
copies of a packet prior to forwarding it onward; it need which A translates imposes a lower bound on the latency
only receive the first two. of the interrupt delivery. (Note that becaudeis specified

VIl. PERFORMANCE EVALUATION in virtual time and virtual time can vary in its relationship

to real time, the exact real time to which translates can

in a variety of tests that highlight the main bottlenecks inVa"y during execut|on_.) I_n our present |mpIementat|on,_the
our present implementation. Admittedly, our present im-value (.)fA use_d_f(_)r disk interrupts translates to a re‘?‘"t'me
' X delay in the vicinity of 30ms on the platform used in our

plemgntf_ﬂlon Is largely unoptlmlzgd and encounters SOmgxperiments (segVII-B). For network interrupts, the value
stability issues, but our prototype is mature enough to run

tests reasonably reliably. We describe some additionalldet of A used translates to roughly 15ms.

regarding our implementation that impacts performance in A Second detail that is important for understanding per-
§VII-A, our experimental setup ifVII-B, and our tests and formance of our prototype is that when, after a VM exit,

In this section we evaluate the performancesedpWatch

their results in§VII-C—VII-D. the VMM determines that the guest VM’s virtual time has
) ) _ surpassed the virtual delivery time of an as-yet-undediger
A. Selected implementation details /0 interrupt, the VMM pauses the virtual CPU (vCPU) of

Our prototype implementation is a modification of Xen the guest VM so as to give the device model an opportunity
version 4.0.2-rcl-pre, amounting to insertions or changet inject the interrupt before the next VM entry. After
of roughly 1500 SLOC in the hypervisor. In addition, there taking the necessary steps to inject the interrupt, thecdevi
were about 2000 SLOC insertions and changes to the QEMUhodel thenunpauses the vCPU. Pausing and unpausing the
device models distributed with that Xen version. VCPU is a relatively heavyweight operation in Xen; our

In addition to these changes, we incorporated the mulmeasurements suggest that simply pausing and unpausing
ticast implementation OpenPGM (http://code.google.@@m/ incurs overhead of 0.5ms on average, though we have
openpgm/) into the device models in Dom0. OpenPGM isobserved this cost to be more than twice that large, as well.
a high-performance implementation of a reliable multicastSince pausing and unpausing can happen frequently — e.g.,
protocol, specifically of the Pragmatic General Multicastten times per second or more in some of our tests — this



latency can add up.

B. Experimental setup

Our “cloud” consisted of three machines with the same
hardware configuration: 4 Intel Core2 Quad Q9650 3.00GHz
CPUs, 8GB memory, and 70GB disk. DomO0 was configured
to run Linux kernel version 2.6.32.25.

Each HVM guest had one virtual CPU, 2GB memory and
16GB disk space. Each guest ran Linux kernel 2.6.32.24
and was configured to use the Programmable Interrupt Con-
troller (PIC) as its interrupt controller and a Programneabl
Interrupt Timer (PIT) of 250Hz as its clock source. An
emulated ATA QEMU disk and a QEMU Realtek RTL-
8139/8139C/8139C+ were provided to the guest as its disk
and network card. As discusseds-B, our implementation
of DMA in StopWatchis not complete at present, and so
the DMA device was disabled. For the same reason, the
Advanced Programmable Interrupt Controller (APIC) was
also disabled. In each of our tests, we installed an apditat
(e.g., a web server, NFS server, or other benchmarking
program) in the guest VM, as will be described later.

After the guest VM was configured, we used ttrasave
facility provided by Xen to save the running guest state
into a file. Instead of restoring this saved state only to one
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machine, we copied the saved state to our three machines
and restored the VM at each. In this way, our three replicasrigure 4. Average HTTP file-retrieval latency as a functidrfile size.
started running from the same state. In addition, we copied
the disk file to all three machines to provide identical disk
state to the three replicas. unmodified Xen guest VM in the cloud. The “Total” curve

Once the guest VM replicas were started, inbound packet# Fig. 4(b) shows the average cost of file retrieval from our
for this guest VM were replicated to all three machines forStopWatchimplementation. Every average is for ten runs.
delivery to their replicas as discussed §d. These three Note that both axes are log-scale.
machines were attached to a /24 subnet within our campus To better understand the components of the costs in
network, and as a result, broadcast traffic on the networkoth the baseline an8topWatchcases, we crafted a small
(e.g., ARP requests) was additionally replicated for @giiv  program that performs the same function as a web server
as in§V. The volume of these broadcasts averaged roughlyut that does so in a way that cleanly separates the costs
50-100 packets per second. As such, this background gctivitof retrieving the file from disk and of sending the file to
was present throughout our experiments and is reflected ithe client. More specifically, this program first reads the
our numbers. entire file into a buffer and only then does it send the file

_ to the client in its entirety. By serializing these steps and

C. Network Services measuring each individually, we gain a better appreciation

In this section we describe tests involving network ser-for the component costs arfstopWatcts impacts on them.
vices deployed on the cloud. In all of our tests, our clientThe curves marked “Net” in Fig. 4 illustrate the average
that interacted with the cloud-resident service was a Lenovmeasured network costs, and the curves marked “Disk”
T400 laptop with a dual-core 2.8GHz CPU and 2GB mem-illustrate the disk costs.
ory attached to an 802.11 wireless network on our campus. Fig. 4 illustrates that for file download, a service running

1) Filedownload: Our first experiments tested the perfor- on our currenStopWatchprototype loses approximately one
mance of file download by the client from a web server in theorder of magnitude in download speed. That is, a server
cloud. The total times for the client to retrieve files of wars  running on ourStopWatchprototype downloaded roughly
sizes over HTTP are shown in Fig. 4. This figure showsl10% of the data that a regular web server did in the same
tests in which our guest VM ran Apache version 2.2.14, ancamount of time. While the disk access costs increased in
the file retrieval was from a cold start (and so file-systemStopWatchin our experiments in comparison to the baseline,
caches were empty). The “Total” curve in Fig. 4(a) showsthe bottleneck by an order of magnitude or more was the
the average latency for the client to retrieve a file from annetwork transmission delay in both the baseline and for



StopWatch The network performance degradationStbp-

100000

Watch in comparison to the baseline was dominated by the ~Total
time for delivery ofinbound packets to the web-server guest 10000 T— 8 Net
VM, i.e., the TCP SYN and ACK messages in the three- 1000 {—erisk -1

way handshake, and then additional acknowledgements sent 100
by the client. Enforcing a median timing on output packets / ......... '
(§VI) adds modest overhead in comparison. 10 P
This combination of insights, namely the detriment of 1 ek
inbound packets (mostly acknowledgements)StopWatch o1 B
file download performance and the fact that these costs so ! 10 FiIeSizto::(B) 1000 10000
outweigh disk access costs, raises the possibility of recov
ering file download performance using a transport protocol (a) Baseline, withouStopWatch
that utilizesnegative acknowledgements, so as to minimize
unnecessary packets inbound to the web server. Alterna- 100000
tively, a transport protocol with no acknowledgementshsuc ~+-Total
as UDP, could be used; in this case, transmission religbilit R
could instead be enforced at a layer above UDP, and again, a 1000 1——arbisk
technique using negative acknowledgements would be best.
Though TCP does not define negative acknowledgements,
transport protocols that implement reliability using nidga
acknowledgements are widely available, particularly &i-r
ablemulticast where positive acknowledgements can lead to ) " — — —
“ack implosion.” Indeed, recall that the PGM protocol spec- Filesize (K8)
ification [44], and so the OpenPGM implementation that we
use, ensures reliability using negative acknowledgements
To illustrate this point, in Fig. 5 we repeat the same ex-Figure 5. Averageudpcast file-retrieval latency as a function of file
periments as in Fig. 4 but using the Linux utiliidpcast size.
to transfer the filé. Fig. 5(a) shows the performance over
unmodified Xen; Fig. 5(b) shows the performance over
StopWatch Not surprisingly, Fig. 5(a) shows performance Not specific to UDP. Rather, this performance should also
comparable to (but slightly more efficient than) the baselin be achievable with a reliable transport protocol desigoed t
TCP averages in Fig. 4(a), but rather than losing an order gmninimize client-to-server messages during file download, a
magnitude StopWatchis competitive in Fig. 5(b) with these IS typical of negative acknowledgment schemes.
baseline numbers for files of 200KB or more. 2) NFS We also set up a Network File System (NFSv4)
Whereas the network remained the bottleneck in the testserver in our guest VM. On our client machine, we in-
shown in Fig. 5(a), thedisk was at least as much of a stalled an NFSv4 client and remotely mounted the filesystem
bottleneck in the tests in Fig. 5(b). By eliminating the exported by the NFS server. We used thkef sst one
positive acknowledgements in TCP, the extra networkingoenchmarking utility to evaluate the performance of the NFS
I/O costs associated with usin§topWatchwere reduced server with and withouStopWatch nhf sst one generates
essentially to the median selection by the egress node (se# artificial load with a specified mix of NFS operations.
§VI), which were minimal. This left disk I/O as the main The mix of NFS operations used in our tests is shown in
bottleneck; since the disk 1/0 costs were dominated byFig. 6(a). We obtained the mix file by using sst at on
the networking I/O costs by an order of magnitude inthe NFS server to print its server-side statistics. In eash t
the TCP case (Fig. 4(b)), “falling back” to the disk 1/O the client machine ran five processes using the mounted file
bottleneck permitte&topWatchUDP file transfer (Fig. 5(b)) system, making calls at a constant rate ranging from 25 to
to perform comparably to the baseline TCP performance ift00 per second in total across the five client processes.
Fig. 4(a). The average latency per operation is shown in Fig. 6(b). In
We reiterate that the performance offered in Fig. 5(b) isthis figure, the horizontal axis is the rate at which operatio
3 _ _ _ were submitted to the server; note that this axis grows at
We stress that we are not advocating UDP for file retrievalegally . .
but rather are simply demonstrating the advantagesStopWatchof file an eXponent'al rate. Fig. 6(b) suggests that an NFS server
downloading with a protocol that minimizes client-to-sampackets. We — over StopWatchincurs roughly alOx increase in latency
did not use OpenPGM in these tests since the web site (as tiicast’  gyer an NFS server running over unmodified Xen. Since
originator) would need to initiate the connection to theertj this would . . . .
have required more substantial modifications. This “diceetlity” issue is the NFS |mplementat|0n used TCP, in some sense this is
not fundamental to negative acknowledgements, however. unsurprising in light of the file download results in Fig. 4.
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Operation % || Operation %
null 0 getattr  7.93

http://parsec.cs.princeton.edu/overview.htm). Here take

setattr 11.37 root 0 PARSEC as representative of future cloud workloads.
lookup  24.07 read 32.34 More specifically, we utilized the following five applica-
write  11.92 create 12.37 : : : -
remove 0 link o tions from the PARSEC suite (version 2.1), providing each
mkdir 0 rmdir 0 the “native” input designated for it.
readdir 0 fsstat 0 1) ferret: This application is representative of next-
(a) NFS operation distribution generation search engines for non-text document data
types. In our tests, we configured the application for
image similarity search.
T O 4 2) bl ackschol es: This application calculates option
T - T a pricing with Black-Scholes partial differential equa-
2 :‘ ........... tions and is representative of financial analysis appli-
H cations.
T “—Baseline 3) canneal : This application is representative of engi-
20 e-StopWatch neering applications and uses simulated annealing to
10 . . . optimize routing cost of a chip design.
0 " o o 0 4) dedup: This application represents next-generation
Load (Operations per second] backup storage systems characterized by a combina-
(b) Average latency per operation tion of global and local compression.
5) streantl ust er: This application is representative
of data mining algorithms for online clustering prob-
121 lems.
10 ~

\ Each of these applications involves a variety of activjties
including initial configuration, creating a local direcyor

- —
£ I Ao, for results, unpacking input files, performing the desatibe
: i T Aceereoesssienes ' computation, and finally cleaning up temporary files.
t 4 o Sorver o Clont We ran each benchmark ten times within a single guest
‘Z§ R E——— VM over unmodified Xen, and then ten more times with
0 three guest VM replicas ovestopWatch Fig. 7(a) shows
2 50 100 200 400 the average runtimes of these benchmark applications in the
toad (Operations per second) two cases. In this figure, each application is described by a
(c) Average number of TCP packets per operation pair of bars; the black bar on the left shows the performance

of the application over unmodified Xen, and the beige
bar on the right shows the performance of the application
over StopWatch(and is labeled with a “(sw)” designation).
StopWatchimposed an overhead between roughly @or

increased only roughly logarithmically as a function of theSt reantl uster) to 6x (for ferret) to the average
y roughly 10g Y running time of the applications. Owing to the dearth of

offered rate of operations. This is in part due to the fact thanetwork traffic involved in these applications, the overhea

StopWatghcan schedule packets for dghvery to guest VM i{nposed byStopWatchis overwhelmingly due to the over-
replicas independently — the scheduling of one does no . N . i

i . Nead involved in intervening on disk I/O (s&¥). As shown
depend on the delivery of a previous one, and so they cal Fi 7(b), there is a direct correlation between the numbe
be “pipelined” — and because the number of TCP packets 9. '

) . of disk interrupts to deliver during the application run and
from the client to the server actually decreases per operati he performance penalty (in absolute terms) atpWatch
on average, as the offered load grows, as shown in Fig. 6(c§ P P y

Figure 6. Tests of NFS server usingf sst one

That said, it is also perhaps surprising tSabpWatcls cost

mposes.

D. Emerging computations VIIl. REPLICA PLACEMENT IN THE CLOUD

In this section we evaluate the performance of various The mechanisms embodied 8topWatchare designed to
computations onStopWatchthat may be representative of enable a cloud operator to provide defenses against timing
future cloud workloads. For this purpose, we employ theside-channel attacks by ensuring that the three replicas of
PARSEC benchmarks [45]. PARSEC is a diverse set okach guest VM are coresident with nonoverlapping sets of
benchmarks that does not focus on a single applicatioffreplicas of) other VMs. This imposes constraints on how a
domain, but rather covers a wide range of computationgloud operator places guest VM replicas on its machines.
that are likely to become important in the near future (sedn this section we seek to clarify how significant these
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—1 Theorem 1. A maximum packing of K,, with pairwise edge-
1000 digoint triangles has exactly k triangles, where: (i) if n is
10000 odd, then & is the largest integer such that 3k < (%) and
T a0 o2 () —3k & {1,2}; and (ii) if n is even, then & is the largest
E oo integer such that 3k < () — 2.
4000 So, a cloud of» machines usingstopWatchcan simultane-
2000 ously execute: = ©(n?) guest VMs.
o L —1 . _I:l Algorithms for packing edge-disjoint triangles in a graph

have previously been studied due to their uses in compu-
tational biology (e.g., [47]), yielding practical algdrihs

for placing triangles to approximate the optimal value of
(a) Runtimes w/o and w&topWatch k triangles onK,, to within a constant factor. For example,
the greedy approach of arbitrarily placing the next triangl
S0 as to not share any edges with those already placed will
successfully place at Iea%tk triangles, and more sophis-

350

place guest VM replicas efficiently.

Of course, these algorithms for packing triangles in graphs
2 were not devised with attention to the nuances of scheduling
guest VMs in a cloud. For example, different guest VMs
come with different resource demands that must be taken
(b) Disk interrupts per application into account in their placement. An interesting directidn o
future work is to adapt these algorithms to accommodate
guest VMs' resource requests as well as the constraints
imposed byStopWatch
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E 250 ticated augmentation algorithms can achieve at Iéastn
: 200 - polynomial time [48]. These results immediately transtate
5 150 algorithms by which a cloud operator usisgopWatchcan
£
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Figure 7. Tests of PARSEC applications

placement constraints are, in terms of the provider’s tbili IX. FUTURE WORK

to best utilize its infrastructure investment. After allunder Aside from the direction of future work mentioned at the
these constraints, the provider were able to simultangouslend of the preceding section, there are some limitations of
run a number of guest VMs that scales, say, only linearlyoyr existingStopWatchprototype that warrant further devel-
in the number of cloud nodes, then the provider might asspment. The first is the fact that it supports only uniprooess
well forgo StopWatchand simply run each guest VM (non- gyest VMs. As discussed §il, previous research on replay
replicated) in isolation on a separate node. Fortunatedy, wof multiprocessor VMs (e.g., [33]) should provide a basis fo
will see in this section that the cloud Operator is not limdite extending our CurrenStopWatchprototype beyond unipro_
to such poor utilization of its machines. cessor VMs, and we are currently investigating this dicecti

If the cloud hasn machines, then consider the com- A second direction that we believe presents opportunities f
plete, undirected graph (cliquek, on n vertices, each improvement is the performance of our prototype, which
vertex corresponding to one of the cloud’s machines. Fois relatively unoptimized at this point. For this reason, we
every guest VM submitted to the cloud, we characterizedo not believe that the performance evaluation §Mll
the placement of its three replicas astraangle in K, represents the best performance achievableStopWatch
consisting of the vertices corresponding to the machines othough it does shed light on the factors that most influence
which the replicas are placed and the edges between thosige performance of applications running ov&topWatch
vertices. The constraint that the three replicas of eaclstgue We have implicitly assumed in owBtopWatchimplemen-
VM be coresident with nonoverlapping sets of (replicas of)tation — and in many of our descriptions in this paper
other VMs can be expressed by requiring that the triangles— that the replicas of each VM are placed on a set
representing their placements be pairnésige-disoint. As  of homogeneous machines. Expanding our approach and
such, the numbek of guest VMs that can simultaneously implementation to heterogeneous machines poses additiona
be run on a cloud ofrn machines under the constraints challenges that we hope to address in future work. This
of StopWatchis the same as the number of edge-disjointpossibility would also impact the placement algorithms
triangles that can bpacked into K,,. A corollary of a general summarized in§VIll, perhaps in a way similar to how
result due to Horsley [46, Theorem 1.1] is: diverse workloads would.
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