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Abstract—This paper describesStopWatch, a system that
defends against timing-based side-channel attacks that arise
from coresidency of victims and attackers in infrastructure-
as-a-service cloud environments.StopWatch triplicates each
cloud-resident guest virtual machine (VM) and places replicas
so that the three replicas of a guest VM are coresident with
nonoverlapping sets of (replicas of) other VMs. Then,Stop-
Watch uses the timing behaviors of a VM’s replicas collectively
to determine the timing of events observed by each one or by
an external observer, so that observable timing behaviors could
have been observed in the absence of any other individual,
coresident VM. In this respect,StopWatch implements a form
of “differentially private” timing behavior in a cloud. We d etail
the design and implementation ofStopWatch in Xen, evaluate
the factors that influence its performance, and address the
problem of placing VM replicas in a cloud under the constraints
of StopWatch so as to still enable adequate cloud utilization.
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I. I NTRODUCTION

Implicit timing-based information flows potentially
threaten the use of clouds for highly sensitive computations.
In an “infrastructure as a service” (IaaS) cloud, such an
attack would be mounted by an attacker submitting an
attacker virtual machine (VM) to the cloud that times
the duration between events that it can observe, in order
to make inferences about avictim VM with which it is
running simultaneously on the same host but otherwise
cannot access. Such attacks were first studied in the context
of timing-basedcovert channels, in which the victim VM
is infected with a Trojan horse that intentionally signals
information to the attacker VM by manipulating the timings
that the attacker VM observes. Of more significance in
modern cloud environments, however, are timing-basedside
channels, which leverage the same principles to attack an
uninfected but oblivious victim VM.

A known defense against timing-based covert channels
and side channels is to perturb (e.g., through randomization
or coarsening) clocks that are visible to VMs, making it
more difficult for the attacker VM to measure the duration
between events and so to receive the signals (e.g., [1]). While
this technique slows (but does not entirely defeat) timing-
based channels, the protection it offers can be difficult or
impossible to quantify when applied heuristically.

This state of affairs is reminiscent of another subdomain
of the security field, namely inference control in the release
of datasets of sensitive information (e.g., health records)
about people. Perturbation of query results (randomization
and coarsening again being notable examples) has been a
staple of that subdomain for decades (e.g., [2]). Recently,
a formal underpinning to guide its application has started
to gain momentum, namelydifferential privacy. “Achieving
differential privacy revolves around hiding the presence or
absence of a single individual” [3] in a dataset.

In this paper we adapt this intuitive goal of differential
privacy — i.e., that the adversary cannot discern from his ob-
servations whether a person is represented in a dataset — to
the entirely different domain of timing attacks in the cloud.
More specifically, we develop a system calledStopWatch
that perturbs timing signals available to an attacker VM so
that these signals could have been observed in the absence of
the victim, irrespective of the distinctiveness of the victim
within the cloud workload. Due to our different domain,
however, the methods employed inStopWatch to achieve
this property are wholly different than randomizing query
responses. Rather,StopWatchperturbs timings observed by
the attacker VM to “match” those of areplica attacker VM
that isnot coresident with the victim.

Since StopWatchcannot identify attackers and victims,
realizing this intuition in practice requires replicatingeach
VM on multiple hosts and enforcing that the replicas are
coresident with nonoverlapping sets of (replicas of) other
VMs. Moreover, two replicas is not enough: one might be
coresident with its victim, and by symmetry, the timings it
observes would necessarily influence the timings imposed
on the pair.StopWatchthus uses three replicas that coreside
with nonoverlapping sets of (replicas of) other VMs and
imposes the timing of the “median” of the three on all
replicas. Even if the median timing of an event is that
observed by an attacker replica that is coresident with a
victim replica, attacker replicas that do not coreside withthe
victim observed timings both below and above the median.1

We detail the implementation ofStopWatch in Xen,

1The median can be viewed as “microaggregating” the timings to
confound inferences from them (c.f., [4]–[6]). This analogy suggests the
possibility of using other microaggregation functions, aswell, of which
there are many [7]. We do not pursue that possibility here.



specifically to enforce this “median” behavior on all real-
time clocks and “clocks” available via the I/O subsystem
(e.g., disk and network interrupts). In doing so,StopWatch
interferes with all timing side-channel attacks commonly
used in the research literature, owing to the normal use of
real-time as a reference clock in those exploits. (Timing
attacks that do not use real-time clocks should generally
be more fragile due to unpredictable influences on other
reference clocks.) Moreover, for uniprocessor VMs,Stop-
Watch enforces deterministic execution across all of a VM’s
replicas, making it impossible for an attacker VM to utilize
other internally observable clocks and ensuring the same
outputs from the VM replicas. By applying this median
principle to the timing of these outputs,StopWatchfurther
interferes with inferences that an observer external to the
cloud could make on the basis of output timings.

We extensively evaluate the performance of ourStop-
Watch prototype for supporting web service (file down-
loads), network file systems, and various types of com-
putational tasks. Our analysis reveals the primary factors
that influence the performance penalties thatStopWatch
imposes; e.g., inbound packets to aStopWatch-supported
network service incur much larger overheads than outbound
ones. This enables us to identify adaptations to a service
that can vastly increase its performance when run over
StopWatch. For example, we show that reliable transport
using negative acknowledgements (or unreliable transport
with no acknowledgements, as in UDP) versus positive
ones (as in TCP) can dramatically improve file download
latencies in the common case of few losses, even to the
extent of making file download overStopWatchcompetitive
with file download over unmodified Xen. For computational
benchmark programs, we find that the overheads induced by
StopWatchare directly correlated with the amount of disk
I/O they perform.

We also analyze a utilization question that would be
faced by cloud operators if they were to make use of
StopWatch, namely how many guest VMs can be simultane-
ously executed on an infrastructure ofn machines under the
constraint that the three replicas for each guest VM coreside
with nonoverlapping sets of (replicas of) other VMs. We
relate this question to a graph-theoretic problem studied
in computational biology and find thatΘ(n2) guest VMs
can be simultaneously executed. We also identify practical
algorithms for placing replicas to achieve this bound.

To summarize, our contributions are as follows:
• We introduce a novel approach for defending against

timing side-channel attacks in “infrastructure-as-a-
service” (IaaS) compute clouds that leverages replica-
tion of guest VMs with the constraint that the repli-
cas of each guest VM coreside with nonoverlapping
sets of (replicas of) other VMs. The median timing
of any event across the three guest VM replicas is
then imposed on all of its replicas to approximate a

“differentially private” observation of event timings.
• We detail the implementation of this strategy in Xen,

yielding a system calledStopWatch, and evaluate the
performance ofStopWatchon a variety of workloads.
This evaluation sheds light on the features of workloads
that most impact the performance of applications run-
ning on StopWatchand how they can be adapted for
best performance.

• We identify algorithmic results from graph theory and
computational biology that resolve the problem of how
to place replicas under the constraints ofStopWatchto
maximally utilize a cloud infrastructure.

The rest of this paper is structured as follows. We describe
related work in§II. We provide an overview of the design of
StopWatchin §III. We then detail how we address classes of
internal “clocks” used in timing attacks in§IV and §V, and
then turn to timing as seen by an outside observer in§VI.
We evaluate performance of ourStopWatch prototype in
§VII. §VIII treats the replica placement problem that would
be faced by cloud operators usingStopWatch. We discuss
future work in§IX and conclude in§X.

II. RELATED WORK

A. Timing channel defenses

Defenses against information leakage via timing channels
are diverse, taking numerous different angles on the problem.
Research on type systems and security-typed languages to
eliminate timing attacks offers powerful solutions (e.g.,[8],
[9]), but this work is not immediately applicable to our goal
here, namely adapting an existing virtual machine monitor
(VMM) to support practical mitigation of timing channels
today. Other research has focused on the elimination of
timing side channels within cryptographic computations
(e.g., [10], [11]), but we seek an approach that applies to
general computations.

Askarov et al. [12] distinguish betweeninternal timing
channels that involve the implicit or explicit measurement
of time from within the system, andexternal timing chan-
nels that involve measuring the system from the point of
view of an external observer. Defenses for both internal
(e.g., [1], [8], [9]) and external (e.g., [12]–[16]) timing
channels have received significant attention individually,
though to our knowledge,StopWatchis novel in addressing
timing channels through a combination of both techniques.
StopWatch incorporates internal defenses to interfere with
an attacker’s use of real-time clocks or “clocks” that it might
derive from the I/O subsystem. In doing so,StopWatch
imposes determinism on uniprocessor VMs and then uses
this feature to additionally build an effective external defense
against such attacker VMs, as well.StopWatch’s internal
and external defense strategies also differ individually from
prior work, in interfering with timing channels by allowing
replicas (in the internal defenses) and external observers(in



the external defenses) to observe only median timings from
the three replicas. That is, each internal and external timing
observation is of either an attacker VM replica that is not
coresident with a victim VM replica or else lies between
timings of such replicas.

B. Replication

To our knowledge,StopWatchis novel in utilizing repli-
cation for timing channel defense. That said, replication
has a long history that includes techniques similar to those
we use here. For example, state-machine replication [17],
[18] to mask Byzantine faults [19] ensures that correct
replicas return the same response to each request so that
this response can be identified by “vote” (a technique
related to one employed inStopWatch; see§III and §VI).
To ensure that correct replicas return the same responses,
these systems enforce the delivery of requests to replicas
in the same order; moreover, they typically assume that
replicas are deterministic and process requests in the order
they are received.Enforcing replica determinism has also
been a focus of research in (both Byzantine and benignly)
fault-tolerant systems; most (e.g., [20]–[25]), but not all
(e.g., [26]), do so at other layers of the software stack than
StopWatchdoes.

More fundamentally, to our knowledge all prior systems
that enforce timing determinism across replicas permit one
replica to dictate timing-related events for the others, which
does not suffice for our goals: that replica could be the one
coresident with the victim, and so permitting it to dictate
timing related events would simply “copy” the information
it gleans from the victim to the other replicas and, eventually,
to leak it out of the cloud. Rather, by forcing the timing of
events to conform to the median timing across three VM
replicas, at most one of which is coresident with the victim,
the enforced timing of each event is either the timing of a
replica not coresident with the victim or else between the
timing of two replicas that are not coresident with the victim.
This strategy is akin to ones developed for Byzantine fault-
tolerant clock synchronization (e.g., see [27,§5.2]).

Aside from replication for fault tolerance, replication has
been explored to detect server penetration [28]–[31]. These
approaches purposely employ diverse replica codebases or
data representations so as to reduce the likelihood of a
single exploit succeeding on multiple replicas. Divergence
of replica behavior in these approaches is then indicative of
an exploit succeeding on one but not others. In contrast to
these approaches,StopWatchleverages (necessarily)identi-
cal guest VM replicas to address a different class of attacks
(timing side-channels) than replica compromise.

Research on VM executionreplay (e.g., [32], [33]) fo-
cuses on recording nondeterministic events that alter VM
execution and then coercing these events to occur the same
way when the VM is replayed. The replayed VM is a replica
of the original, albeit a temporally delayed one, and so this

can also be viewed as a form of replication.StopWatch
similarly coerces VM replicas to observe the same event
timings, but again, unlike these timings being determined by
one replica (the original), they are determined collectively
using median calculations, so as to interfere with an attacker
VM trying to leak information about a victim with which
it coresides. That said, the state-of-the-art in this domain
(e.g., [33]) addresses multiprocessor VM execution, which
our present implementation ofStopWatch does not. We
expect thatStopWatchcould be extended to support multi-
processor execution with techniques developed for replay of
multiprocessor VMs, and we plan to investigate this in future
research. Mechanisms for enforcing deterministic execution
of parallel computations through modifications at user level
(e.g., [34], [35]) or the operating system (e.g., [36]) are less
relevant to our goals, as they are not easily utilized by an
IaaS cloud provider that accepts arbitrary VMs for execution.

III. D ESIGN

Our design is focused on “infrastructure as a service”
(IaaS) clouds that accept virtual machine images, or “guest
VMs,” from customers to execute. Amazon EC2 (http://aws.
amazon.com/ec2/) and Rackspace (http://www.rackspace.
com/) are example providers of public IaaS clouds. Given
the concerns associated with side channel attacks in cloud
environments (e.g., [37]), we seek to develop virtualization
software that would enable a provider to construct a cloud
that offers substantially stronger assurances against leakage
via timing channels. This cloud might be a higher assurance
offering that a provider runs alongside its normal cloud
(while presumably charging more for the greater assurance
it offers) or a private cloud with substantial assurance needs
(e.g., run by and for an intelligence or military community).

Our threat model is a customer who submitsattacker
VMs for execution that are designed to employ timing side-
channels. We presume that the attacker VM is designed to
extract information from a particular victim VM, versus
trying to learn general statistics about the cloud such as
its average utilization. We assume that access controls are
effective in preventing the attacker VMs from accessing
victim VMs directly or from escalating their own privileges
in a way that would permit them to access victim VMs.
We assume that the cloud’s virtualization software (in our
case, Xen and our extensions thereof) is not compromised.
We allow that the attacker might determine if its VM (or
one of its replicas) is colocated with a victim VM replica,
though we assume that the attacker VM would generally
be unable to assemble a complete inventory of VMs with
which it (or more specifically all of its replicas, see below)
are coresident.

According to Wray [38], to exploit a timing channel, the
attacker VM measures the timing of observable events using
a clock that is independent of the timings being measured.
While the most common such clock is real time, in principle



a clock can be any sequence of observable events. With
this general definition of a “clock,” a timing attack simply
involves measuring one clock using another. Wray identified
four possible clock sources in conventional computers [38]:

• TL: the “CPU instruction-cycle clock”, i.e., a clock
constructed by executing a simple timing loop;

• Mem: the memory subsystem (e.g., data/instruction
fetches);

• IO: the I/O subsystem (e.g., network, disk, and DMA
interrupts); and

• RT: real-time clocks provided by the hardware platform
(e.g., time-of-day registers).

StopWatch is designed to interfere with the use ofIO
and RT clocks and, for uniprocessor VMs,TL or Mem

clocks, for timing attacks. (As discussed in§II-B, extension
to multiprocessor VMs remains a topic of future work.)
IO and RT (especiallyRT) clocks are an ingredient in
every documented timing side-channel attack in the research
literature that we have found, undoubtedly because real-
time is the most intuitive, independent and reliable reference
clock for measuring another clock. As such, intervening
on these clocks is of paramount importance. Moreover, the
manner in which we do so implies that the scheduler in a
uniprocessor guest VM will behave deterministically, which
interferes with any attempts to useTL or Mem clocks.

More specifically, to interfere withIO clocks,StopWatch
replicates each attacker VM (or, really, every VM, since we
do not presume to know which ones are attacker VMs)
threefold so that the three replicas of a guest VM are
coresident with nonoverlapping sets of (replicas of) other
VMs. Then, when determining the timing with which an
event is made available to each replica, the median timing
value of the three is adopted. The median timing is either
observed at an attacker replica that is not coresident with a
victim VM replica or else falls between timings of the two
replicas that are not coresident with the victim VM. In the
latter case, assuming that the two replicas not coresident with
the victim do not themselves offer timings that are extreme,
this leaves little latitude for the median timing to convey
useful information to the attacker.StopWatchaddressesRT
clocks by replacing a VM’s view of real time with a virtual
time that depends on the VM’s own progress, an idea due
to Popek and Kline [39]. Optionally,StopWatchadjusts the
progression of virtual time periodically using the median real
time of the three replicas at fixed points in their executions,
thereby roughly synchronizing their views of real time with
actual real time to a degree. As discussed in§II, we view
StopWatch’s use of medians in addressingIO andRT clocks
as one of our primary conceptual innovations.

A side effect of howStopWatchaddressesIO and RT

clocks is that it enforces deterministic execution of unipro-
cessor attacker VM replicas, additionally disabling its ability
to useTL or Mem clocks. These mechanisms thus deal

effectively with internal observations of time, but it remains
possible that an external observer could still glean infor-
mation from the real-time duration between the arrival of
packets that the attacker VM sends. To interfere with this
timing channel, we again apply the principle of emitting
packets to an external observer with timing dictated by the
median timing of the three VM replicas.

The general strategy of permitting only the median timing
of each event to be observed, which pervades our design,
ensures that an observer sees a timing that is dictated by
a replica that is not coresident with the victim VM or else
that is bound above and below by such timings. (And, of
course, the observer does not learn which replica’s timing
was adopted.) Intuitively, the protection offered by the latter
case derives from the limited latitude for modulating clocks
that these bounds allow, but this protection hinges on an
additional assumption that these bounds are not too loose. As
an extreme case, suppose that one attacker VM replica runs
alone, one is coresident with a massive workload that nearly
starves it, and the third is coresident with only the victim
VM. In this case, the third’s timings will likely be the median
that is observed, and the presumably large gap between the
timings of the first and second leaves plenty of latitude for
the third to observe modulations of clocks induced by the
victim. As such, VM replicas must be provided the resources
needed to support reasonably tight bounds on execution rates
of VM replicas, an assumption which is also needed for
functional correctness in our design (see§V).

IV. RT CLOCKS

Real-time clocks provide reliable and intuitive reference
clocks for measuring the timings of other event sequences.
In this section, we describe the high-level strategy taken in
StopWatch to interfere with their use for timing channels
and detail the implementation of this strategy in Xen.

A. Strategy

The strategy adopted inStopWatch to interfere with a
VM’s use of real-time clocks is to virtualize these real-
time clocks so that their values observed by a VM are a
deterministic function of the VM’s instructions executed so
far [39]. That is, after the VM executesinstr instructions,
the virtual time observed from within the VM is

virt (instr) ← slope × instr + start (1)

To determinestart at the beginning of VM replica execu-
tion, the VMMs on the machines hosting the VM’s replicas
exchange their current real times;start is initially set to the
median of these values.slope is initially set to a constant
determined by the tick rate of the machines on which the
replicas reside.

Optionally, the VMMs can adjuststart and slope peri-
odically, e.g., after the VM replicas execute an “epoch” of
I instructions, in an effort to coarsely synchronizevirt and



real time. For example, after thek-th epoch, each VMM
hosting a replica can send to the others the durationDk

over which it executed thoseI instructions and its real time
Rk at the end of that duration. Then, the VMMs can select
the median real timeR∗

k and the durationD∗

k reported by
that same machine and reset

startk+1 ← virtk(I)

slopek+1 ← arg min
v∈[ℓ,u]

∣

∣

∣

∣

R∗

k − virtk(I) +D∗

k

I
− v

∣

∣

∣

∣

for a preconfigured constant range[ℓ, u], to yield the formula
for virtk+1.2 The use ofℓ and u ensures thatslopek+1 is
not too extreme and, ifℓ > 0, that slopek+1 is positive.
In this way, virtk+1 should approach real time on the
computer contributing the median real timeR∗

k over the
next I instructions, assuming that the machine and VM
workloads stay roughly the same. Of course, the smallerI-
values are, the morevirt follows real time and so poses the
risk of becoming useful in timing attacks. So,virt should
be adjusted only for tasks for which coarse synchronization
with real time is important and then only with largeI values.

B. Implementation in Xen

Real-time clocks provided by a typical x86 platform
include timer interrupts and various hardware counters.
Closely related to these real-time clocks is the time stamp
counter register, which is accessed using therdtsc instruc-
tion and stores the count of processor ticks since reset.

1) Timer interrupts: Operating systems typically measure
the passage of time by counting timer interrupts; i.e., the
operating system sets up a hardware device to interrupt pe-
riodically at a known rate, such as100 times per second [40].
There are various such hardware devices that can be used
for this purpose. Our current implementation ofStopWatch
assumes the guest VM uses a Programmable Interval Timer
(PIT) as its timer interrupt source, but our implementation
for other sources would be similar. TheStopWatchVMM
generates timer interrupts for a guest on a schedule dictated
by that guest’svirtual time virt as computed in (1). To do
so, it is necessary for the VMM to be able to track the
instruction countinstr executed by the guest VM.

In our present implementation,StopWatchuses the guest
branch count for instr , i.e., keeping track only of the
number of branches that the guest VM executes. Several
architectures support hardware branch counters, but theseare
not sensitive to the multiplexing of multiple guests onto a
single hardware processor and so continue to count branches
regardless of the guest that is currently executing. So, to
accurately track the branch count for a guest,StopWatch
implements avirtualized branch counter for each guest. The

2In other words, if(R∗

k
− virtk(I) + D∗

k
)/I ∈ [ℓ,u] then this value

becomesslopek+1. Otherwise, eitherℓ or u does, whichever is closer to
(R∗

k
− virtk(I) +D∗

k
)/I.

VM Control Structure (VMCS), through which guest execu-
tion is controlled, provides a heap area to save and restore
model-specific register (MSR) values such as the hardware
branch counter during VMexits and entries, respectively
(described below). Using this mechanism,StopWatchtracks
the branch count for each guest and uses it forinstr in (1).

A remaining question is precisely when to inject each
timer interrupt. Intel VT augments IA-32 with two new
forms of CPU operations: virtual machine extensions (VMX)
root operation and VMX non-root operation [41]. While the
VMM (e.g., the Xen hypervisor) uses root operation, guest
VMs use VMX non-root operation. In non-root operation,
certain instructions and events cause aVM exit to the VMM,
so that the VMM can emulate those instructions or deal with
those events. Once completed, control is transferred back to
the guest VM via aVM entry. The guest then continues
running as if it had never been interrupted.

VM exits provide the VMM the opportunity to inject
timer interrupts into the guest VM as the guest’s virtual time
advances. However, so that guest VM replicas will observe
the same timer interrupts at precisely the same points in their
executions,StopWatchinjects timer interrupts only after VM
exits that are caused by guest execution. Other VM exits can
be induced by events external to the VM, such as hardware
interrupts on the physical machine; these would generally
occur at different points during the execution of the guest
VM replicas but will not be visible to the guest [42,§29.3.2].
For VM exits caused by guest VM execution, the VMM
injects any needed timer interrupts on the next VM entry.

2) rdtsc calls and CMOS RTC values: Another way for
a guest VM to measure time is viardtsc calls. Xen already
emulates the return values to these calls. More specifically,
to produce the return value for ardtsc call, the Xen
hypervisor computes the time passed since guest reset using
its real-time clock, and then this time value is scaled using
a constant parameter.StopWatchreplaces this use of a real-
time clock with the guest’s virtual clock (1).

A virtualized real-time clock (RTC) is also provided to
HVM guests in Xen; this provides time to the nearest second
for the guest to read. The virtual RTC gets updated by Xen
using its real-time clock. As in the case of therdtsc call,
StopWatchresponds to requests to read the RTC using the
guest’s virtual time in place of real time.

3) Reading counters: Other sources from which the guest
can observe real time are various hardware counters, e.g., the
PIT counter, which repeatedly counts down to zero (at a pace
dictated by real time) starting from a constant value. A guest
VM can issue a port I/O request to read the current PIT
counter value. These counters, too, are already virtualized
in modern VMMs such as VMWare (see [40]) and Xen.
In Xen, these return values are calculated using a real-time
clock, and soStopWatchinstead uses the guest virtual time
(1) in place of real time, as before.



V. IO CLOCKS

IO clocks are typically network, disk and DMA interrupts.
(Other device interrupts, such as keyboards, mice, graphics
cards, etc., are typically not relevant for guest VMs in
clouds.) We outline our strategy for mitigating their use to
implement timing channels in§V-A, and then in§V-B we
describe our implementation of this strategy inStopWatch.

A. Strategy

Recall thatStopWatchreplicates each guest VM threefold
and controls the timing ofIO clocks seen at each replica by
taking a median of proposed timings from the three VMMs
hosting them. In order to solicit proposed timings from the
three, it is necessary, of course, that the VMMs hosting the
three replicas all observe each event. As such, inStopWatch
we replicate every network packet to all three computers
hosting replicas of the VM for which the packet is intended.
This is done using a logically separate “ingress node” that
we envision residing on a dedicated computer in the cloud.
This replication at runtime is not necessary for disk blocks
retrieved from the local disk; the replication of each VM at
start time includes replicating its entire disk image, and so
any disk blocks available to one VM replica will be available
to all. For similar reasons, DMA transfers do not require
replication inStopWatch.

When a VMM observes a data transfer that should even-
tually cause an IO interrupt to be delivered to the guest,
it sends its proposed virtual time — i.e., in the guest’s
virtual time, see§IV — for the delivery of that interrupt
to the VMMs on the other machines hosting replicas of the
same guest VM. It generates its proposed delivery time by
adding a constant offset∆ to the virtual time of the guest
VM at its last VM exit.∆ must be large enough to ensure
that once the three proposals have been collected and the
median determined at all three replica VMMs, the chosen
median virtual time has not already been passed by any of
these VMMs.∆ is thus determined using an assumed upper
bound on the real time it takes for each VMM to observe
the interrupt and to propagate its proposal to the others.
In distributed computing parlance, we thus assume that the
system issynchronous, i.e., that there exist known bounds on
processor execution rates and message delivery times. The
synchronous model has been widely used to develop reliable
distributed protocols (e.g., [19], [43]).

Once the median proposed virtual time for an IO interrupt
has been determined at a VMM, the VMM simply waits for
the first VM exit caused by the guest VM (as in§IV-B)
that occurs at a virtual time at least as large as that median
value. The VMM then injects the interrupt prior to the next
VM entry of the guest. This interrupt injection also includes
copying the data into the address space of the guest, so as to
prevent the guest VM from polling for the data in advance of
the interrupt to create a form of clock (e.g., see [1,§4.2.2]).
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Figure 1. The steps involved in delivering a packet to guest VM replicas.

The process of determining the delivery time of a network
packet to guest VMs replicas is pictured in Fig. 1. This figure
depicts a real-time interval[T1, T2] at the three machines at
which a guest VM is replicated, showing at each machine:
the arrival of a packet at the VMM, the proposal made
by each VMM, the arrival of proposals from other replica
machines, the selection of the median, and the delivery of
the packet to the guest replica. Each stepped diagonal line
shows the progression of virtual time at that machine.

B. Implementation in Xen

Xen presents to each HVM guest a virtualized platform
that resembles a classic PC/server platform with a network
card, disk, keyboard, mouse, graphics display, etc. This vir-
tualized platform support is provided by virtual I/O devices
(device models) in Dom0, a domain in Xen with special priv-
ileges. QEMU (http://fabrice.bellard.free.fr/qemu) is used to
implement device models. One instance of the device models
is run in Dom0 per HVM domain. (See Fig. 2.)
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Figure 2. Emulation of I/O devices inStopWatch. “I/O request” present
only for disk I/O.

1) Network card emulation: In the case of a network
card, the device model running in Dom0 receives packets
destined for the guest VM. WithoutStopWatchmodification,
the device model copies this packet to the guest address
space and asserts a virtual network device interrupt via the
virtual Programmable Interrupt Controller (vPIC) exposed
by HVM for this guest. HVM guests cannot see real external



hardware interrupts since the VMM controls the platform’s
interrupt controllers [42,§29.3.2].

In StopWatch, we modify the network card device model
so as to place each packet destined for the guest VM into a
buffer hidden from the guest, rather than delivering it to the
guest. The device model then reads from a shared memory
the current virtual time of the guest (as of the guest’s last
VM exit), adds∆ to this virtual time to create its proposed
delivery (virtual) time for this packet, and multicasts this
proposal to the other two replicas (step 1 in Fig 2). A
memory region shared between Dom0 and the VMM allows
device models in Dom0 to read guest virtual time, which is
computed and updated on every VM exit by the VMM.

Once the network device model receives the two proposals
in addition to its own, it takes the median proposal as the
delivery time and stores this delivery time in the memory
it shares with the VMM. The VMM compares guest virtual
time (1) to the delivery time stored in the shared memory
upon every guest VM exit caused by guest VM execution.
Once guest virtual time has passed the delivery time, the
network device model copies the packet into the guest
address space (step 2 in Fig. 2) and asserts a virtual network
interrupt on the vPIC prior to the next VM entry (step 3).

2) Disk emulation: The emulation of the IDE disk device
is performed similarly to the network card emulation above.
StopWatchcontrols when the disk device model completes
disk I/O requests and notifies the guest. Instead of copying
data read from virtual disk sectors to the guest address space,
the device model inStopWatchprepares a buffer to receive
this data. In addition, rather than asserting a virtual IDE
disk interrupt via the vPIC to the guest as soon as the data
is available from disk, theStopWatchdevice model reads
the current guest virtual time from memory shared with the
VMM, adds ∆, and then multicasts its proposal for this
interrupt to the other replicas. Once it has collected all three
proposals, the disk device model stores the median value as
the interrupt delivery time in the shared memory. Upon the
first VM exit caused by guest execution at which the guest
virtual time has passed this delivery time, the disk device
model copies the buffered data into the guest address space
and asserts a virtual disk interrupt on the vPIC. Disk writes
are handled similarly, in that the interrupt indicating write
completion is delivered as dictated by the median of the
proposals from the replica’s device models.

3) DMA emulation: The DMA device is also emulated in
Xen. Once activated, the DMA device model continues data
transfer into the guest address space on its own; when the
data transfer is completed, the DMA device model issues
an interrupt request. Since guest virtual time can be seen
by device models running in Dom0 (via the memory shared
with the VMM), we can modify the DMA device model to
transfer data at rate tied to guest virtual time, not real time,
so that a guest VM cannot create anIO clock independent of
RT clocks by polling its memory for DMA data. We can also

postpone the virtual DMA interrupt until our guests have
passed the median proposed virtual time for this interrupt,
as in the network and disk cases above. While not yet having
completed an implementation of these modifications to the
DMA device model, we see no obstacles to doing so and
plan to complete this work for the final version of the paper.
For the evaluation results in§VII, we disable DMA.

C. Example execution

In this section we illustrate the mechanisms described
in §V-A–V-B by showing the progression of delivery times
proposed by the three replicas of a guest VM for a series
of inbound packets and, in particular, howStopWatchinter-
feres with a potential timing side channel. In the execution
pictured in Fig. 3, guest VM replicas “B” and “C” ran
alone on their respective machines, whereas replica “A”
was coresident with another VM (the “victim”) that sent a
continuous stream of traffic during the run. Due to resource
contention on the machine hosting replica A, this replica
executed slightly behind replicas B and C in real time;
this is shown by A’s proposals for the delivery of inbound
packets occurring atearlier virtual times. Since the median
delivery time was selected for each inbound packet, replica
A’s proposals were not selected as the delivery times. Rather,
the delivery time selected for each inbound packet varied
between B’s and C’s over time. In this way, the activity of
the victim coresident with A is hidden from the replicas.

VI. EXTERNAL OBSERVERS

The mechanisms described in§IV–V intervene on two
significant sources of clocks; though VM replicas can mea-
sure the progress of one relative to the other, for example,
their measurements will be the same and will reflect the
median of their timing behaviors. Moreover, by forcing each
guest VM to execute (and, in particular, schedule) on the
basis of virtual time and by synchronizing I/O events across
replicas in virtual time, uniprocessor guest VMs execute
deterministically, stripping them of the ability to leverageTL
andMem clocks, as well. (More specifically, the progress
of TL andMem clocks are functionally determined by the
progress of virtual time and so are not independent of it.)
There nevertheless remains the possibility that an external
observer, on whose real-time clock we cannot intervene,
could discern information on the basis of the real-time
behavior of his attacker VM. In this section we describe
our approach to addressing this form of timing channel.

Because guest VM replicas will run deterministically, they
will output the same network packets in the same order.
StopWatch uses this property to interfere with a VM’s
ability to exfiltrate information on the basis of its real-time
behavior as seen by an external observer.StopWatchdoes
so by adopting the median timing across the three guest
VM replicas for each output packet. The median is selected
at a physically separate “egress node” that is dedicated for
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Figure 3. Virtual delivery times proposed by three replicasof a guest VM per inbound packet in an actual execution. Replica A was coresident with a
“victim” VM inducing resource contention with replica A, causing it to run behind replicas B and C.

this purpose, analogous to the “ingress node” that replicates
every network packet destined to the guest VM to each of
the VM’s replicas (see§V).

To implement this in the context of Xen, every packet sent
by a guest VM replica is forwarded by the network device
model on that machine to the egress node over TCP. The
egress node forwards an output packet toward its destination
after receiving the second copy of that packet (i.e., the same
packet from two guest VM replicas). Since the second copy
of the packet it receives exhibits the median packet output
timing of the three replicas, this strategy ensures that the
timing of the output packet sent toward its destination is
either the timing of a guest replica not coresident with the
victim VM or else a timing that falls between those of
guest replicas not coresident with the victim. This algorithm
is slightly simpler than the median computations described
previously in that the egress node need not receive all three
copies of a packet prior to forwarding it onward; it need
only receive the first two.

VII. PERFORMANCEEVALUATION

In this section we evaluate the performance ofStopWatch
in a variety of tests that highlight the main bottlenecks in
our present implementation. Admittedly, our present im-
plementation is largely unoptimized and encounters some
stability issues, but our prototype is mature enough to run
tests reasonably reliably. We describe some additional detail
regarding our implementation that impacts performance in
§VII-A, our experimental setup in§VII-B, and our tests and
their results in§VII-C–VII-D.

A. Selected implementation details

Our prototype implementation is a modification of Xen
version 4.0.2-rc1-pre, amounting to insertions or changes
of roughly 1500 SLOC in the hypervisor. In addition, there
were about 2000 SLOC insertions and changes to the QEMU
device models distributed with that Xen version.

In addition to these changes, we incorporated the mul-
ticast implementation OpenPGM (http://code.google.com/p/
openpgm/) into the device models in Dom0. OpenPGM is
a high-performance implementation of a reliable multicast
protocol, specifically of the Pragmatic General Multicast

(PGM) specification [44]. In PGM, reliable transmission
is accomplished by receivers detecting loss and requesting
retransmission of lost data. OpenPGM is used inStopWatch
for replicating packets destined to a guest VM to all of that
VM’s replicas and for communication among the VMMs
hosting guest VM replicas.

Two additional items are important to understand the
results of our experiments in this section. Recall from§V
that each VMM proposes (via an OpenPGM multicast) a
virtual delivery time for each I/O interrupt, and the VMMs
adopt the median proposal as the actual delivery time. As
noted there, each VMM generates its proposal by adding a
constant offset∆ to the current virtual time of the guest
VM. ∆ must be large enough to ensure that by the time
each VMM selects the median, that virtual time has not
already passed in the guest VM. However, subject to this
constraint,∆ should be minimized since the real time to
which ∆ translates imposes a lower bound on the latency
of the interrupt delivery. (Note that because∆ is specified
in virtual time and virtual time can vary in its relationship
to real time, the exact real time to which∆ translates can
vary during execution.) In our present implementation, the
value of∆ used for disk interrupts translates to a real-time
delay in the vicinity of 30ms on the platform used in our
experiments (see§VII-B). For network interrupts, the value
of ∆ used translates to roughly 15ms.

A second detail that is important for understanding per-
formance of our prototype is that when, after a VM exit,
the VMM determines that the guest VM’s virtual time has
surpassed the virtual delivery time of an as-yet-undelivered
I/O interrupt, the VMMpauses the virtual CPU (vCPU) of
the guest VM so as to give the device model an opportunity
to inject the interrupt before the next VM entry. After
taking the necessary steps to inject the interrupt, the device
model thenunpauses the vCPU. Pausing and unpausing the
vCPU is a relatively heavyweight operation in Xen; our
measurements suggest that simply pausing and unpausing
incurs overhead of 0.5ms on average, though we have
observed this cost to be more than twice that large, as well.
Since pausing and unpausing can happen frequently — e.g.,
ten times per second or more in some of our tests — this



latency can add up.

B. Experimental setup

Our “cloud” consisted of three machines with the same
hardware configuration: 4 Intel Core2 Quad Q9650 3.00GHz
CPUs, 8GB memory, and 70GB disk. Dom0 was configured
to run Linux kernel version 2.6.32.25.

Each HVM guest had one virtual CPU, 2GB memory and
16GB disk space. Each guest ran Linux kernel 2.6.32.24
and was configured to use the Programmable Interrupt Con-
troller (PIC) as its interrupt controller and a Programmable
Interrupt Timer (PIT) of 250Hz as its clock source. An
emulated ATA QEMU disk and a QEMU Realtek RTL-
8139/8139C/8139C+ were provided to the guest as its disk
and network card. As discussed in§V-B, our implementation
of DMA in StopWatch is not complete at present, and so
the DMA device was disabled. For the same reason, the
Advanced Programmable Interrupt Controller (APIC) was
also disabled. In each of our tests, we installed an application
(e.g., a web server, NFS server, or other benchmarking
program) in the guest VM, as will be described later.

After the guest VM was configured, we used thexm save
facility provided by Xen to save the running guest state
into a file. Instead of restoring this saved state only to one
machine, we copied the saved state to our three machines
and restored the VM at each. In this way, our three replicas
started running from the same state. In addition, we copied
the disk file to all three machines to provide identical disk
state to the three replicas.

Once the guest VM replicas were started, inbound packets
for this guest VM were replicated to all three machines for
delivery to their replicas as discussed in§V. These three
machines were attached to a /24 subnet within our campus
network, and as a result, broadcast traffic on the network
(e.g., ARP requests) was additionally replicated for delivery
as in§V. The volume of these broadcasts averaged roughly
50-100 packets per second. As such, this background activity
was present throughout our experiments and is reflected in
our numbers.

C. Network Services

In this section we describe tests involving network ser-
vices deployed on the cloud. In all of our tests, our client
that interacted with the cloud-resident service was a Lenovo
T400 laptop with a dual-core 2.8GHz CPU and 2GB mem-
ory attached to an 802.11 wireless network on our campus.

1) File download: Our first experiments tested the perfor-
mance of file download by the client from a web server in the
cloud. The total times for the client to retrieve files of various
sizes over HTTP are shown in Fig. 4. This figure shows
tests in which our guest VM ran Apache version 2.2.14, and
the file retrieval was from a cold start (and so file-system
caches were empty). The “Total” curve in Fig. 4(a) shows
the average latency for the client to retrieve a file from an
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Figure 4. Average HTTP file-retrieval latency as a function of file size.

unmodified Xen guest VM in the cloud. The “Total” curve
in Fig. 4(b) shows the average cost of file retrieval from our
StopWatch implementation. Every average is for ten runs.
Note that both axes are log-scale.

To better understand the components of the costs in
both the baseline andStopWatchcases, we crafted a small
program that performs the same function as a web server
but that does so in a way that cleanly separates the costs
of retrieving the file from disk and of sending the file to
the client. More specifically, this program first reads the
entire file into a buffer and only then does it send the file
to the client in its entirety. By serializing these steps and
measuring each individually, we gain a better appreciation
for the component costs andStopWatch’s impacts on them.
The curves marked “Net” in Fig. 4 illustrate the average
measured network costs, and the curves marked “Disk”
illustrate the disk costs.

Fig. 4 illustrates that for file download, a service running
on our currentStopWatchprototype loses approximately one
order of magnitude in download speed. That is, a server
running on ourStopWatchprototype downloaded roughly
10% of the data that a regular web server did in the same
amount of time. While the disk access costs increased in
StopWatchin our experiments in comparison to the baseline,
the bottleneck by an order of magnitude or more was the
network transmission delay in both the baseline and for



StopWatch. The network performance degradation ofStop-
Watch in comparison to the baseline was dominated by the
time for delivery ofinbound packets to the web-server guest
VM, i.e., the TCP SYN and ACK messages in the three-
way handshake, and then additional acknowledgements sent
by the client. Enforcing a median timing on output packets
(§VI) adds modest overhead in comparison.

This combination of insights, namely the detriment of
inbound packets (mostly acknowledgements) toStopWatch
file download performance and the fact that these costs so
outweigh disk access costs, raises the possibility of recov-
ering file download performance using a transport protocol
that utilizesnegative acknowledgements, so as to minimize
unnecessary packets inbound to the web server. Alterna-
tively, a transport protocol with no acknowledgements, such
as UDP, could be used; in this case, transmission reliability
could instead be enforced at a layer above UDP, and again, a
technique using negative acknowledgements would be best.
Though TCP does not define negative acknowledgements,
transport protocols that implement reliability using negative
acknowledgements are widely available, particularly for reli-
ablemulticast where positive acknowledgements can lead to
“ack implosion.” Indeed, recall that the PGM protocol spec-
ification [44], and so the OpenPGM implementation that we
use, ensures reliability using negative acknowledgements.

To illustrate this point, in Fig. 5 we repeat the same ex-
periments as in Fig. 4 but using the Linux utilityudpcast
to transfer the file.3 Fig. 5(a) shows the performance over
unmodified Xen; Fig. 5(b) shows the performance over
StopWatch. Not surprisingly, Fig. 5(a) shows performance
comparable to (but slightly more efficient than) the baseline
TCP averages in Fig. 4(a), but rather than losing an order of
magnitude,StopWatchis competitive in Fig. 5(b) with these
baseline numbers for files of 100KB or more.

Whereas the network remained the bottleneck in the tests
shown in Fig. 5(a), thedisk was at least as much of a
bottleneck in the tests in Fig. 5(b). By eliminating the
positive acknowledgements in TCP, the extra networking
I/O costs associated with usingStopWatch were reduced
essentially to the median selection by the egress node (see
§VI), which were minimal. This left disk I/O as the main
bottleneck; since the disk I/O costs were dominated by
the networking I/O costs by an order of magnitude in
the TCP case (Fig. 4(b)), “falling back” to the disk I/O
bottleneck permittedStopWatchUDP file transfer (Fig. 5(b))
to perform comparably to the baseline TCP performance in
Fig. 4(a).

We reiterate that the performance offered in Fig. 5(b) is

3We stress that we are not advocating UDP for file retrieval generally
but rather are simply demonstrating the advantages forStopWatchof file
downloading with a protocol that minimizes client-to-server packets. We
did not use OpenPGM in these tests since the web site (as the “multicast”
originator) would need to initiate the connection to the client; this would
have required more substantial modifications. This “directionality” issue is
not fundamental to negative acknowledgements, however.
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Figure 5. Averageudpcast file-retrieval latency as a function of file
size.

not specific to UDP. Rather, this performance should also
be achievable with a reliable transport protocol designed to
minimize client-to-server messages during file download, as
is typical of negative acknowledgment schemes.

2) NFS: We also set up a Network File System (NFSv4)
server in our guest VM. On our client machine, we in-
stalled an NFSv4 client and remotely mounted the filesystem
exported by the NFS server. We used thenhfsstone
benchmarking utility to evaluate the performance of the NFS
server with and withoutStopWatch. nhfsstone generates
an artificial load with a specified mix of NFS operations.
The mix of NFS operations used in our tests is shown in
Fig. 6(a). We obtained the mix file by usingnfsstat on
the NFS server to print its server-side statistics. In each test,
the client machine ran five processes using the mounted file
system, making calls at a constant rate ranging from 25 to
400 per second in total across the five client processes.

The average latency per operation is shown in Fig. 6(b). In
this figure, the horizontal axis is the rate at which operations
were submitted to the server; note that this axis grows at
an exponential rate. Fig. 6(b) suggests that an NFS server
over StopWatch incurs roughly a10× increase in latency
over an NFS server running over unmodified Xen. Since
the NFS implementation used TCP, in some sense this is
unsurprising in light of the file download results in Fig. 4.
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Figure 6. Tests of NFS server usingnhfsstone

That said, it is also perhaps surprising thatStopWatch’s cost
increased only roughly logarithmically as a function of the
offered rate of operations. This is in part due to the fact that
StopWatchcan schedule packets for delivery to guest VM
replicas independently — the scheduling of one does not
depend on the delivery of a previous one, and so they can
be “pipelined” — and because the number of TCP packets
from the client to the server actually decreases per operation,
on average, as the offered load grows, as shown in Fig. 6(c).

D. Emerging computations

In this section we evaluate the performance of various
computations onStopWatchthat may be representative of
future cloud workloads. For this purpose, we employ the
PARSEC benchmarks [45]. PARSEC is a diverse set of
benchmarks that does not focus on a single application
domain, but rather covers a wide range of computations
that are likely to become important in the near future (see

http://parsec.cs.princeton.edu/overview.htm). Here wetake
PARSEC as representative of future cloud workloads.

More specifically, we utilized the following five applica-
tions from the PARSEC suite (version 2.1), providing each
the “native” input designated for it.

1) ferret: This application is representative of next-
generation search engines for non-text document data
types. In our tests, we configured the application for
image similarity search.

2) blackscholes: This application calculates option
pricing with Black-Scholes partial differential equa-
tions and is representative of financial analysis appli-
cations.

3) canneal: This application is representative of engi-
neering applications and uses simulated annealing to
optimize routing cost of a chip design.

4) dedup: This application represents next-generation
backup storage systems characterized by a combina-
tion of global and local compression.

5) streamcluster: This application is representative
of data mining algorithms for online clustering prob-
lems.

Each of these applications involves a variety of activities,
including initial configuration, creating a local directory
for results, unpacking input files, performing the described
computation, and finally cleaning up temporary files.

We ran each benchmark ten times within a single guest
VM over unmodified Xen, and then ten more times with
three guest VM replicas overStopWatch. Fig. 7(a) shows
the average runtimes of these benchmark applications in the
two cases. In this figure, each application is described by a
pair of bars; the black bar on the left shows the performance
of the application over unmodified Xen, and the beige
bar on the right shows the performance of the application
over StopWatch(and is labeled with a “(sw)” designation).
StopWatchimposed an overhead between roughly 3× (for
streamcluster) to 6× (for ferret) to the average
running time of the applications. Owing to the dearth of
network traffic involved in these applications, the overhead
imposed byStopWatchis overwhelmingly due to the over-
head involved in intervening on disk I/O (see§V). As shown
in Fig. 7(b), there is a direct correlation between the number
of disk interrupts to deliver during the application run and
the performance penalty (in absolute terms) thatStopWatch
imposes.

VIII. R EPLICA PLACEMENT IN THE CLOUD

The mechanisms embodied inStopWatchare designed to
enable a cloud operator to provide defenses against timing
side-channel attacks by ensuring that the three replicas of
each guest VM are coresident with nonoverlapping sets of
(replicas of) other VMs. This imposes constraints on how a
cloud operator places guest VM replicas on its machines.
In this section we seek to clarify how significant these
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Figure 7. Tests of PARSEC applications

placement constraints are, in terms of the provider’s ability
to best utilize its infrastructure investment. After all, if under
these constraints, the provider were able to simultaneously
run a number of guest VMs that scales, say, only linearly
in the number of cloud nodes, then the provider might as
well forgo StopWatchand simply run each guest VM (non-
replicated) in isolation on a separate node. Fortunately, we
will see in this section that the cloud operator is not limited
to such poor utilization of its machines.

If the cloud hasn machines, then consider the com-
plete, undirected graph (clique)Kn on n vertices, each
vertex corresponding to one of the cloud’s machines. For
every guest VM submitted to the cloud, we characterize
the placement of its three replicas as atriangle in Kn

consisting of the vertices corresponding to the machines on
which the replicas are placed and the edges between those
vertices. The constraint that the three replicas of each guest
VM be coresident with nonoverlapping sets of (replicas of)
other VMs can be expressed by requiring that the triangles
representing their placements be pairwiseedge-disjoint. As
such, the numberk of guest VMs that can simultaneously
be run on a cloud ofn machines under the constraints
of StopWatch is the same as the number of edge-disjoint
triangles that can bepacked intoKn. A corollary of a general
result due to Horsley [46, Theorem 1.1] is:

Theorem 1. A maximum packing of Kn with pairwise edge-
disjoint triangles has exactly k triangles, where: (i) if n is
odd, then k is the largest integer such that 3k ≤

(

n

2

)

and
(

n
2

)

−3k 6∈ {1, 2}; and (ii) if n is even, then k is the largest
integer such that 3k ≤

(

n

2

)

− n
2 .

So, a cloud ofn machines usingStopWatchcan simultane-
ously executek = Θ(n2) guest VMs.

Algorithms for packing edge-disjoint triangles in a graph
have previously been studied due to their uses in compu-
tational biology (e.g., [47]), yielding practical algorithms
for placing triangles to approximate the optimal value of
k triangles onKn to within a constant factor. For example,
the greedy approach of arbitrarily placing the next triangle
so as to not share any edges with those already placed will
successfully place at least13k triangles, and more sophis-
ticated augmentation algorithms can achieve at least3

5k in
polynomial time [48]. These results immediately translateto
algorithms by which a cloud operator usingStopWatchcan
place guest VM replicas efficiently.

Of course, these algorithms for packing triangles in graphs
were not devised with attention to the nuances of scheduling
guest VMs in a cloud. For example, different guest VMs
come with different resource demands that must be taken
into account in their placement. An interesting direction of
future work is to adapt these algorithms to accommodate
guest VMs’ resource requests as well as the constraints
imposed byStopWatch.

IX. FUTURE WORK

Aside from the direction of future work mentioned at the
end of the preceding section, there are some limitations of
our existingStopWatchprototype that warrant further devel-
opment. The first is the fact that it supports only uniprocessor
guest VMs. As discussed in§II, previous research on replay
of multiprocessor VMs (e.g., [33]) should provide a basis for
extending our currentStopWatchprototype beyond unipro-
cessor VMs, and we are currently investigating this direction.
A second direction that we believe presents opportunities for
improvement is the performance of our prototype, which
is relatively unoptimized at this point. For this reason, we
do not believe that the performance evaluation in§VII
represents the best performance achievable forStopWatch,
though it does shed light on the factors that most influence
the performance of applications running overStopWatch.

We have implicitly assumed in ourStopWatchimplemen-
tation — and in many of our descriptions in this paper
— that the replicas of each VM are placed on a set
of homogeneous machines. Expanding our approach and
implementation to heterogeneous machines poses additional
challenges that we hope to address in future work. This
possibility would also impact the placement algorithms
summarized in§VIII, perhaps in a way similar to how
diverse workloads would.



A more foundational topic for future research is quanti-
tatively evaluating the degree to which enforcing the timing
of events to conform to the median of several replicas, as
we do in StopWatch, interferes with timing channels. The
property is compelling at an intuitive level, we believe, and
has precedent in other, related domains, e.g., Byzantine clock
synchronization, as discussed in§II, and inference control
in statistical databases (e.g., [4]–[6], [49]). We are currently
investigating formal bases and empirical frameworks for
backing this intuitive appeal. One possible basis for doing
so is differential privacy [3], as discussed in§I.

X. CONCLUSION

We have proposed a novel method of addressing timing
side-channels in IaaS compute clouds that employs three-
way replication of guest VMs and placement of these VM
replicas so that they are coresident with nonoverlapping sets
of (replicas of) other VMs. By imposing on all replicas
the median timing of each observable event among the
replicas, we achieve a defense against timing channels that
is conceptually akin to differential privacy. We describedan
implementation of this technique in Xen, yielding a system
called StopWatch, and we evaluated the performance of
StopWatch on a variety of workloads. Though the over-
head induced by our current prototype is large for some
activities, we used our evaluation to identify the sources
of costs and alternative application designs (e.g., reliable
transmission using negative acknowledgements, to support
serving files) that can enhance performance considerably.
Finally, we identified algorithmic research in graph theory
and computational biology that provides a basis for cloud
operators to schedule guest VMs under the constraints of
StopWatch while still utilizing their infrastructure effec-
tively. We envision a mature version ofStopWatchbeing a
possible basis for the construction of a high-security cloud
offering, as would be suitable for supporting communities
with significant assurance needs (e.g., military, intelligence,
or financial communities).
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[11] B. Köpf and G. Smith, “Vulnerability bounds and leak-
age resilience of blinded cryptography under timing
attacks,” in23rd IEEE Computer Security Foundations
Symposium, Jul. 2010, pp. 44–56.

[12] A. Askarov, A. C. Myers, and D. Zhang, “Predictive
black-box mitigation of timing channels,” in17th ACM
Conference on Computer and Communications Secu-
rity, Oct. 2010, pp. 520–538.

[13] M. H. Kang and I. S. Moskowitz, “A pump for
rapid, reliable, secure communication,” inACM Con-
ference on Computer and Communications Security,
Nov. 1993, pp. 119–129.

[14] J. Giles and B. Hajek, “An information-theoretic and
game-theoretic study of timing channels,”IEEE Trans-
actions on Information Theory, vol. 48, no. 9, Sep.
2002.

[15] A. Haeberlen, B. C. Pierce, and A. Narayan, “Differ-
ential privacy under fire,” in20th USENIX Security
Symposium, Aug. 2011.

[16] D. Zhang, A. Askarov, and A. C. Myers, “Predictive
mitigation of timing channels in interactive systems,”
in 18th ACM Conference on Computer and Communi-
cations Security, Oct. 2011.

[17] L. Lamport, “The implementation of reliable dis-
tributed multiprocess systems,”Computer Networks,
vol. 2, no. 2, pp. 95–114, May 1978.

[18] F. B. Schneider, “Implementing fault-tolerant services
using the state machine approach: A tutorial,”ACM
Computing Surveys, vol. 22, no. 4, Dec. 1990.

[19] L. Lamport, R. Shostak, and M. Pease, “The Byzantine
generals problem,”ACM Transactions on Programming
Languages and Systems, vol. 4, no. 3, pp. 382–401, Jul.



1982.
[20] A. Borg, W. Blau, W. Graetsch, F. Herrmann, and

W. Oberle, “Fault tolerance under UNIX,”ACM Trans-
actions on Computer Systems, vol. 7, no. 1, pp. 1–24,
Feb. 1989.

[21] P. A. Barrett, A. M. Hilborne, P. G. Bond, D. T. Seaton,
P. Verissimo, L. Rodrigues, and N. A. Speirs, “The
Delta-4 extra performance architecture (XPA),” in20th
International Symposium on Fault-Tolerant Computing,
Jun. 1990, pp. 481–488.

[22] T. C. Bressoud, “TFT: A software system for
application-transparent fault tolerance,” in28th Inter-
national Symposium on Fault-Tolerant Computing, Jun.
1998, pp. 128–137.

[23] P. Narasimhan, L. E. Moser, and P. M. Melliar-Smith,
“Enforcing determinism for the consistent replication
of multithreaded CORBA applications,” inIEEE Sym-
posium on Reliable Distributed Systems, Oct. 1999, pp.
263–273.

[24] J. Napper, L. Alvisi, and H. Vin, “A fault-tolerant Java
virtual machine,” in2003 International Conference on
Dependable Systems and Networks, Jun. 2003, pp.
425–434.

[25] C. Basile, Z. Kalbarczyk, and R. K. Iyer, “Active
replication of multithreaded applications,”IEEE Trans-
actions on Parallel and Distributed Systems, vol. 17,
no. 5, pp. 448–465, May 2006.

[26] T. C. Bressoud and F. B. Schneider, “Hypervisor-
based fault-tolerance,”ACM Transactions on Computer
Systems, vol. 14, no. 1, pp. 80–107, Feb. 1996.

[27] F. B. Schneider, “Undersanding protocols for Byzan-
tine clock synchronization,” Department of Computer
Science, Cornell University, Tech. Rep. 87-859, Aug.
1987.

[28] D. Gao, M. K. Reiter, and D. Song, “Behavioral
distance for intrusion detection,” inRecent Advances
in Intrusion Detection: 8th International Symposium,
2005, pp. 63–81.

[29] B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu,
J. Davidson, J. Knight, A. Nguyen-Tuong, and J. Hiser,
“N-variant systems: A secretless framework for se-
curity through diversity,” in 15th USENIX Security
Symposium, Aug. 2006.

[30] A. Nguyen-Tuong, D. Evans, J. C. Knight, B. Cox,
and J. W. Davidson, “Security through redundant data
diversity,” in 38th IEEE/IFPF International Conference
on Dependable Systems and Networks, Jun. 2008.

[31] D. Gao, M. K. Reiter, and D. Song, “Beyond output
voting: Detecting compromised replicas using HMM-
based behavioral distance,”IEEE Transactions on De-
pendable and Secure Computing, vol. 6, no. 2, pp. 96–
110, 2009.

[32] M. Xu, V. Malyugin, J. Sheldon, G. Venkitachalam,
and B. Weissman, “ReTrace: Collecting execution trace

with virtual machine deterministic replay,” in3rd Work-
shop on Modeling, Benchmarking and Simulation, Jun.
2007.

[33] G. W. Dunlap, D. G. Lucchetti, P. M. Chen, and
M. A. Fetterman, “Execution replay of multiprocessor
virtual machines,” in4th ACM Conference on Virtual
Execution Environments, Mar. 2008, pp. 121–130.

[34] E. D. Berger, T. Yang, T. Liu, and G. Novark, “Grace:
Safe multithreaded programming for C/C++,” in24th
ACM Conference on Object Oriented Programming,
Systems, Languages and Applications, Oct. 2009, pp.
81–96.

[35] T. Bergan, O. Anderson, J. Devietti, L. Ceze, and
D. Grossman, “CoreDet: A compiler and runtime sys-
tem for deterministic multithreaded execution,” in15th
Conference on Architectural Support for Programming
Languages and Operating Systems, Mar. 2010, pp. 53–
64.

[36] A. Aviram, S.-C. Weng, S. Hu, and B. Ford, “Effi-
cient system-enforced deterministic parallelism,” in9th
USENIX Symposium on Operating Systems Design and
Implementation, Oct. 2010.

[37] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage,
“Hey, you, get off of my cloud: Exploring information
leakage in third-party compute clouds,” in16th ACM
Conference on Computer and Communications Secu-
rity, 2009, pp. 199–212.

[38] J. C. Wray, “An analysis of covert timing channels,” in
1991 IEEE Symposium on Security and Privacy, 1991,
pp. 2–7.

[39] G. Popek and C. Kline, “Verifiable secure operating
system software,” inAFIPS National Computer Con-
ference, 1974, pp. 145–151.

[40] Timekeeping in VMware Virtual Machines, VMWare
Inc., May 2010.

[41] R. Uhlig, G. Neiger, D. Rodgers, A. L. Santoni,
F. C. M. Martins, A. V. Anderson, S. M. Bennett,
A. Kagi, F. H. Leung, and L. Smith, “Intel virtualiza-
tion technology,”IEEE Computer, vol. 38, no. 3, pp.
48–56, May 2005.

[42] Intel 64 and IA-32 Architectures Software Developer’s
Manual, Intel Corporation, Oct. 2011.

[43] D. Dolev and H. R. Strong, “Authenticated algorithms
for Byzantine agreement,”SIAM Journal of Comput-
ing, vol. 12, pp. 656–666, 1983.

[44] T. Speakman, et al., “PGM reliable transport protocol
specification,” Request for Comments 3208, Internet
Engineering Task Force, Dec. 2001.

[45] C. Bienia, “Benchmarking modern multiprocessors,”
Ph.D. dissertation, Princeton University, Jan. 2011.

[46] D. Horsley, “Maximum packing of the complete graph
with uniform length cycles,”Journal of Graph Theory,
vol. 68, no. 1, pp. 1–7, Sep. 2011.

[47] V. Bafna and P. A. Pevzner, “Genome rearrangements



and sorting by reversals,”SIAM Journal on Computing,
vol. 25, no. 2, pp. 272–289, Apr. 1996.

[48] T. Feder and C. Subi, “Packing edge-disjoint trian-
gles in given graphs,” last retrieved from http://theory.
stanford.edu/∼tomas/triclique.ps on 14 Nov. 2011.

[49] A. Roth and T. Roughgarden, “Interactive privacy via
the median mechanism,” in42nd ACM Symposium on
Theory of Computing, Jun. 2010, pp. 765–774.


