
Third-Party DFA Evaluation on Encrypted Files

Lei Wei Michael K. Reiter

Department of Computer Science

University of North Carolina at Chapel Hill

{lwei,reiter}@cs.unc.edu

Abstract

We present protocols by which a client can evaluate a

deterministic finite automaton (DFA) on an encrypted file

stored at a server, once authorized to do so by the file owner.

Our protocols provably protect the privacy of the DFA and

the file contents from a malicious server and the privacy of

the file contents (except for the result of the evaluation) from

an honest-but-curious client. One of our protocols addi-

tionally protects the privacy of the DFA from the client; this

property enables others to outsource execution of the pro-

tocol to the client without needing to disclose their DFAs to

it. Our protocols are practical for a range of cloud storage

scenarios.

1 Introduction

Outsourcing file storage to storage service providers

(SSPs) and “clouds” can provide significant savings to file

owners in terms of management costs and capital invest-

ments (e.g., [35]). However, because cloud storage can

heighten the risk of file disclosure, prudent file owners en-

crypt their cloud-resident files to protect their confidential-

ity. This encryption introduces difficulties in managing ac-

cess to these files by third parties, however. For exam-

ple:

• Third-party service providers who are contracted to an-

alyze files stored in the cloud generally cannot do so if

the files are encrypted. For example, periodically “scan-

ning” files to detect new malware, as is common today

for PC platforms, cannot presently be performed on en-

crypted files by a third party.

• With some exceptions (see Section 2), third-party cus-

tomers generally cannot search the files if they are en-

crypted. Searches on genome datasets, pharmaceutical

databases, document corpora, or network logs are crit-

ical for research in various fields, but the privacy con-

straints of these datasets may mandate their encryption,

particularly when stored in the cloud.

These difficulties are compounded when the third party

views its queries on the files to be sensitive, as well.

New malware signatures may be sensitive since releasing

them enables attackers to design malware to evade them

(e.g., [47]). Customers of datasets in numerous domains

(e.g., pharmaceutical research) may view their research in-

terests, and hence their queries, as private.

As a step toward resolving this tension among file protec-

tion, search access by authorized third parties, and privacy

for third-party queries, in this paper we introduce proto-

cols by which a third-party (called the “client”) can perform

private searches on encrypted files (stored at the “server”),

once it is authorized to do so by the file owner. The type of

searches that our protocols enable is motivated by the sce-

narios above, which in many cases involve pattern matching

a file against one or more regular expressions. Multi-pattern

string matching is especially common in analysis of con-

tent for malware (e.g., [39, 32]) and also is commonplace

in searches on genome data, for example. In fact, there are

now a number of available genome databases (e.g., [1, 2])

and accompanying tools for multi-pattern matching against

them (e.g., [5]). With the goal of improving privacy in such

applications, we develop protocols to evaluate a determin-

istic finite automaton (DFA) of the client’s choice on the

plaintext of the encrypted file and to return the final state to

the client to indicate which, if any, of the patterns encoded

in the DFA were matched. We stress that while there is

much work on secure two-party computation including the

specific case of private DFA evaluation on a private file (see

Section 2), very few works have anticipated the possibility

that the file is available only in encrypted form. This set-

ting will become more common as data-storage outsourcing

grows.

The security properties we prove for our protocols in-

clude privacy of the DFA and file contents against arbitrary

server adversaries, and privacy of the file (except what is re-

vealed by the evaluation result) against honest-but-curious

1

client adversaries. We refer to our protocols that provide

(only) these properties as one-sided, since their protection

of the DFA pertains only to server adversaries (even while

protecting the file from both clients and servers). We further

develop a two-sided protocol that hides the DFA from the

client, as well, permitting others to outsource DFA evalua-

tions to the client without disclosing the DFAs to it. Though

our proofs are limited to only honest-but-curious client ad-

versaries, our protocols appear to be extensible with stan-

dard techniques to provably protect file privacy even against

arbitrary client adversaries, albeit at substantially greater

cost. Here we limit our attention to honest-but-curious

client adversaries, however, in light of our motivating sce-

narios that involve third parties that the file owner must au-

thorize and so presumably trusts to some extent.

We believe our protocols will be efficient enough for

many practical scenarios. They support evaluation of any

DFA over an alphabet Σ on any file consisting of ℓ sym-

bols drawn from Σ, and require the file to be stored using

ℓm ciphertexts where m = |Σ|. Because m is a multiplica-

tive factor in the storage cost, our protocols are best suited

for use with small alphabets Σ, e.g., bits (m = 2), bytes

(m = 256), alphanumeric characters (m = 36), or DNA

nucleotides (m = 4 for “A”, “C”, “G”, and “T”). Specifi-

cally, we provide three protocols:

1. In Section 4, we present a one-sided protocol that lever-

ages additively homomorphic encryption (e.g., [36]) and

transmits (nm+3)ℓ+3 ciphertexts to evaluate a DFA of

n states.

2. In Section 5, we leverage additively homomorphic en-

cryption that additionally supports a single homomorphic

multiplication of ciphertexts (e.g., [9]) to develop a two-

sided protocol that transmits (nm + 3)ℓ + 3 ciphertexts.

3. In Section 6, we again leverage this type of encryption to

construct a more efficient one-sided protocol that trans-

mits only (n + m + 1)ℓ + 3 ciphertexts.

We stress that our protocols require only additively homo-

morphic encryption or small extensions thereof, for which

much more efficient implementations exist (e.g., [36, 9])

than fully homomorphic schemes [19, 45]. Before describ-

ing our protocols, we discuss related work in Section 2 and

clarify our goals in Section 3.

2 Related Work

The functionalities offered by our protocols could be im-

plemented with general techniques for “computing on en-

crypted data” [38] or two-party secure computation [46,

24]. These general techniques tend to yield less effi-

cient protocols than one designed for a specific purpose,

and our case will be no exception. In particular, the for-

mer achieves computations non-interactively using fully

homomorphic encryption, for which existing implementa-

tions [19, 45, 41, 43] are dramatically more costly than the

techniques we use [20]. The latter utilizes a “garbled cir-

cuit” construction that is of size linear in the circuit repre-

sentation of the function to be computed. Despite progress

on practical implementations of this technique [33, 4, 37],

this limitation renders it substantially more communication-

intensive for the problem we consider.

Two-party private DFA evaluation, in which a server has

a file and a client has a DFA to evaluate on that file, has

been a topic of recent focus. To our knowledge, Troncoso-

Pastoriza et al. [44] were the first to present such a protocol,

which they proved secure in the honest-but-curious setting.

Frikken [17] presented a protocol for the same setting that

improved on the round complexity and computational costs.

Gennaro et al. [18] gave a two-party DFA evaluation pro-

tocol that they proved secure against arbitrary adversaries.

Our work differs from these in that in our protocols, the file

is made available to the parties only in ciphertext form, and

in our protocol in Section 5, even the DFA is made avail-

able only in ciphertext form. In this respect, the protocol

of Blanton and Aliasgari [6] is relevant; they adapted the

Troncoso-Pasoriza et al. protocol to an “outsourcing” model

in which the client and server secret-share the DFA and file,

respectively, between two additional hosts that interactively

evaluate the DFA on the file without reconstructing either

one. While our protocol utilizes secret sharing, as well — in

our case, of the file owner’s file-decryption key — our pro-

tocol shares much less data and does not share the client’s

DFA (or thus require two parties between which to share

it) at all. Pattern-matching and search problems other than

DFA evaluation have also been studied in the two-party set-

ting, e.g., by Jha et al. [29], Hazay and Lindell [26], Katz

and Malka [30], and Hazay and Toft [27]. Again, these

works input the plaintext file to one party and so do not

directly apply to our setting.

By two-party secret-sharing the file-decryption key and

using this to compute on encrypted data, our protocols are

related those of Choi et al. [13]. This work developed a

protocol based on garbled circuits by which two parties can

evaluate a general function after a private decryption key

has been shared between them. This protocol can be used

to solve the problem we propose, but inherits the aforemen-

tioned limitations of garbled circuits.

Specialized protocols for performing searches on en-

crypted files or database relations have also been devel-

oped. For example, searchable encryption [42, 23, 8, 11, 15]

enables a party holding a file-decryption key to search

for attribute values in the ciphertext file stored at an un-

trusted server. These techniques have been generalized to

support more complex queries, notably conjunctive [10],

disjunctive [31] and range queries [40] and inner prod-

ucts [31]. Searchable encryption schemes typically achieve

2

non-interactive queries on encrypted files, in part by attach-

ing “tag” information to the ciphertext of each file to enable

the query operation. However, broadening the supported

search attributes typically requires expanding the tags, and

so the sizes of the tags are determined by the richness of the

supported queries. In contrast, in our work the file cipher-

texts are independent of the DFA(s) to be evaluated (assum-

ing a fixed size for the alphabets Σ over which the DFAs are

defined), and the computation is performed interactively be-

tween the two parties. Besides searchable encryption, other

works have explored storing database relations at an un-

trusted server in a form that hides sensitive attributes or as-

sociations between attributes while supporting rich queries,

e.g., range queries [28, 12] or SQL queries [25, 14]. The

security properties offered by these techniques are usually

heuristic, without formal definitions and proofs, and we are

unaware of any designed to support DFA searches.

3 Problem Description

Let [k] denote the set {0, 1, . . . , k − 1}. A deterministic

finite automaton M is a tuple 〈Q, Σ, δ, qinit〉 where Q is a set

of |Q| = n states; Σ is a set (alphabet) of |Σ| = m symbols;

δ : Q×Σ → Q is a transition function; and qinit is the initial

state. We label the n states in Q simply by [n]. We retain Σ
in the DFA definition to conform with tradition, though we

will generally assume that Σ and m are fixed across DFAs

and globally known.

Our goal is to enable a client holding a DFA M to inter-

act with a server holding the ciphertext of a file to evaluate

M on the file plaintext. More specifically, the client should

output the final state to which the file plaintext drives the

DFA, i.e., if the plaintext file is a sequence 〈σk〉k∈[ℓ] where

each σk ∈ Σ, then the client should output δ(. . . δ(δ(qinit,

σ0), σ1), . . . , σℓ−1). We also permit the client to learn the

file length ℓ and the server to learn both ℓ and the number of

states n in the client’s DFA.1 The client should learn noth-

ing else about the file, however, and the server should learn

nothing else about either the file or the client’s DFA; we

call such a protocol one-sided because the DFA is protected

from only one party (while the file is protected from both).

We will also present a two-sided protocol that additionally

prevents the client from learning anything about the DFA

except again for n and the final state.

We emphasize that neither the client nor the server is

the file owner and so neither possesses the file decryption

key. So as to enable DFA evaluation, it is thus necessary

1Since the final state exposes log2 n bits of the file to the client, pre-

sumably the server should learn n so as to monitor for excessive exposure

or to charge according to the information learned by the client. Moreover,

the client can arbitrarily inflate n by adding unreachable states. As such,

we consider disclosing n to the server to be practically necessary but of

little threat to the client.

for the file owner to provide information related to the pri-

vate file-decryption key to each one. In our protocols, the

client and server each receive a share of the private key; this

is the means by which the file owner authorizes the client

and server to conduct the protocol. As a result, a client

and server that collude could pool their information to de-

crypt the file. We consider such collusion outside our threat

model and prove security against only a client or server act-

ing in isolation.

Our protocols do not retrieve the file based on the DFA

evaluation results, e.g., in a way that hides from the server

what file is being retrieved, though they can be augmented

to do so. That is, once the client learns the final state of

the DFA evaluation, it can employ various techniques to re-

trieve the file privately (e.g., [22]). Moreover, some of our

motivating scenarios in Section 1, e.g., malware scans of

cloud-resident files by a third party, may not require file re-

trieval but only that matches be reported to the file owner.

4 A One-Sided Protocol

In this section we present a protocol that meets the goals

described in Section 3. We call this protocol “one-sided”

because it is one-sided in its protection of the DFA used in

the protocol; i.e., the DFA is known to the client but must

be hidden from the server. In contrast, our protocol hides

the file contents from both the server and the client, except

for the final DFA state returned to the client.

4.1 Construction

Let “←” denote assignment and “s
$← S” denote the

assignment to s of a randomly chosen element of set S.

Let κ denote a security parameter that would be typical for

public-key cryptosystems based on the difficulty of factor-

ing, e.g., κ ≈ 1200 at a minimum for most applications

today.

Encryption scheme Our scheme is built using an ad-

ditively homomorphic encryption scheme with plaintext

space R where 〈R, +
R
, ·

R
〉 denotes a commutative ring.

Specifically, an encryption scheme E includes algorithms

Gen, Enc, and Dec where: Gen is a randomized algo-

rithm that on input 1κ outputs a public-key/private-key pair

(pk , sk) ← Gen(1κ); Enc is a randomized algorithm that

on input public key pk and plaintext m ∈ R (where R

can be determined as a function of pk) produces a cipher-

text c ← Encpk (m), where c ∈ Cpk and Cpk is the ci-

phertext space determined by pk ; and Dec is a determin-

istic algorithm that on input a private key sk and cipher-

text c ∈ Cpk produces a plaintext m ← Decsk (c) where

m ∈ R. In addition, E supports an operation +pk on cipher-

texts such that for any public-key/private-key pair (pk , sk),

3

Decsk (Encpk (m1) +pk Encpk (m2)) = m1 +
R

m2. Using

+pk , it is possible to implement ·pk for which Decsk (m2 ·pk
Encpk (m1)) = m1 ·R m2.

We also require E to support two-party decryption.

Specifically, we assume there is an efficient randomized al-

gorithm Share that on input a private key sk outputs shares

(sk1, sk2) ← Share(sk), and that there are efficient deter-

ministic algorithms Dec1 and Dec2 such that Decsk (c) =
Dec2

sk2
(c, Dec1

sk1
(c)).

An example of an encryption scheme E that meets the

above requirements is due to Paillier [36] with modifica-

tions by Damgård and Jurik [16]. In this scheme, the ring R

is ZN , the ciphertext space C〈N,g〉 is Z∗
N2 , and the relevant

algorithms are as follows.

Gen(1κ): Choose random κ/2-bit strong primes p, p′;

set N ← pp′ and g ← N + 1; compute d ∈ ZNϕ(N)

such that d ≡ 1 mod N and d ≡ 0 mod ϕ(N) where

ϕ(N) = (p − 1)(p′ − 1); and return the public key 〈N, g〉
and private key 〈N, g, d, ϕ(N)〉.
Enc〈N,g〉(m): Select x

$← Z∗
N and return

gmxN mod N2.

Dec〈N,g,d,ϕ(N)〉(c): Return ((cd mod N2) − 1)/N .

c1 +〈N,g〉 c2: Return c1c2 mod N2.

m ·〈N,g〉 c: Return cm mod N2.

Share(〈N, g, d, ϕ(N)〉): Return sk1 = 〈N, g, d1〉
and sk2 = 〈N, g, d2〉 where d1

$← ZNϕ(N) and

d2 ← d − d1 mod Nϕ(N).
Dec1

〈N,g,d1〉(c): Return cd1 mod N2.

Dec2
〈N,g,d2〉(c1, c2): Return ((c2c

d2
1 mod N2) − 1)/N .

We henceforth refer to this scheme as “Pai”.

We use pk

∑

to denote summation using +pk ; R

∑

to denote

summation using +
R
; and R

∏

to denote the product using ·
R

of a sequence. In addition, for any operation op, we use top

to denote the time required to perform op; e.g., tDec is the

time to perform a Dec operation.

Encoding δ in a Bivariate Polynomial over R A sec-

ond ingredient for our protocol is a method for encoding a

DFA 〈Q, Σ, qinit, δ〉, and specifically the transition function

δ, as a bivariate polynomial f(x, y) over R where x is the

variable representing a DFA state and y is the variable rep-

resenting an input symbol. That is, if we treat each state

q ∈ Q and each σ ∈ Σ as distinct elements of R, then

we would like f(q, σ) = δ(q, σ). We can achieve this by

choosing f to be the interpolation polynomial

f(x, y) = R

∑

σ∈Σ

(fσ(x) ·
R

Λσ(y)) (1)

where fσ(q) = δ(q, σ) for each q ∈ Q and where

Λσ(y) = R

∏

σ′∈Σ
σ′ 6=σ

y −
R

σ′

σ −
R

σ′
(2)

is a Lagrange basis polynomial. Note that Λσ(σ) = 1 and

Λσ(σ′) = 0 for any σ′ ∈ Σ \ {σ}.

Calculating (2) requires taking multiplicative inverses in

R. While not every element of a ring has a multiplicative

inverse in the ring, fortunately the ring ZN used in Paillier

encryption, for example, has negligibly few elements with

no inverses, and so there is little risk of encountering an

element with no inverse. So, using (2), we can calculate

coefficients 〈λσj〉j∈[m] so that

Λσ(y) = R

m−1
∑

j=0

λσj ·R yj

For our algorithm descriptions, we encapsulate this calcula-

tion in the procedure 〈λσj〉σ∈Σ,j∈[m] ← Lagrange(Σ).
Each fσ needed to compute (1) can again be determined

as an interpolation polynomial in the Lagrange form and

then expressed as fσ(x) = R

∑n−1
i=0 aσi ·R xi. In our pseu-

docode, we encapsulate this calculation as 〈aσi〉σ∈Σ,i∈[n]

← ToPoly(Q, Σ, δ).
Having produced coefficients 〈aσi〉σ∈Σ,i∈[n], our proto-

col additionally requires a function to “shift” these coeffi-

cients to produce a polynomial f ′(x, y) satisfying f ′(q +
R

r, σ) = δ(q, σ) for each q ∈ Q and σ ∈ Σ, for a specified

r ∈ R. We could construct f ′ “from scratch” in the same

way we constructed f, but our protocols in Sections 5–6

require a different approach. Specifically, if we set

f ′(x, y) = R

∑

σ∈Σ

(f ′
σ(x) ·

R
Λσ(y))

where f ′
σ(x) = R

∑n−1
i=0 a′

σi ·R xi, then it suffices if f ′
σ(x +

R

r) = fσ(x) for all σ ∈ Σ. Note that

fσ(x −
R

r) = R

n−1
∑

i=0

aσi ·R (x −
R

r)i

= R

n−1
∑

i=0

aσi ·R R

i
∑

i′=0

(

i

i′

)

·
R

xi−i′ ·
R

(−
R
r)i′ (3)

= R

n−1
∑

i=0

(

R

n−1−i
∑

i′=0

aσ(i+i′) ·R
(

i + i′

i′

)

·
R

(−
R
r)i′

)

·
R

xi

where (3) follows from the binomial theorem. As such, set-

ting

a′
σi ← R

n−1−i
∑

i′=0

aσ(i+i′) ·R
(

i + i′

i′

)

·
R

(−
R
r)i′ (4)

4

client(pk , sk1, pk ′, 〈Q,Σ, δ, qinit〉) server(pk , sk2,Σ,

〈ckj〉k∈[ℓ],j∈[m])

c101. n ← |Q|,m ← |Σ| s101. m ← |Σ|
c102. 〈aσi〉σ∈Σ,i∈[n] s102. 〈λσj〉σ∈Σ,j∈[m]

← ToPoly(Q, Σ, δ) ← Lagrange(Σ)
c103. α ← Encpk (qinit)

m101.
n

-

m102.
ℓ

¾

c104. for k ← 0 . . . ℓ − 1 s103. for k ← 0 . . . ℓ − 1

c105. r
$
← R

c106. α ← α +pk Encpk (r)
c107. β ← Dec1

sk1
(α)

c108. ρ ← Encpk′ (r)

m103.
α,β,ρ

-

s104. γ ← Dec2
sk2

(α, β)

s105. for σ ∈ Σ

s106. Ψσ ← pk

m−1
X

j=0

λσj ·pk ckj

c109. 〈a′
σi〉σ∈Σ,i∈[n] s107. for i ∈ [n]

← Shift(r, 〈aσi〉σ∈Σ,i∈[n]) s108. µσi ← γi ·pk Ψσ

s109. endfor

s110. endfor

m104.
〈µσi〉σ∈Σ,i∈[n]

¾

c110. α ← pk

X

σ∈Σ

pk

n−1
X

i=0

a′
σi ·pk µσi

c111. endfor s111. endfor

c112. r
$
← R

c113. α ← α +pk Encpk (r)
c114. β ← Dec1

sk1
(α)

c115. ρ ← Encpk ′(r)

m105.
α,β,ρ

-

s112. γ∗ ← Dec2
sk2

(α, β)

m106.
γ∗

¾

c116. return γ∗ −
R

r

Figure 1. Protocol Π1(E), described in Sec

tion 4

ensures f ′
σ(x +

R
r) = fσ(x) and, therefore, f(x +

R

r, σ) = f ′(x, σ). In our pseudocode, we encapsu-

late calculations (4) in the invocation 〈a′
σi〉σ∈Σ,i∈[n] ←

Shift(r, 〈aσi〉σ∈Σ,i∈[n]).

Protocol steps Our protocol, denoted Π1(E), is shown in

Figure 1. Pseudocode for the client is aligned on the left of

the figure and labeled c101–c116; the server pseudocode

is on the right of the figure and labeled s101–s112; and

messages exchanged between them are aligned in the cen-

ter and labeled m101–m106. The client receives as input

a public key pk under which the file (at the server) is en-

crypted; a share sk1 of the private key sk corresponding

to pk ; another public key pk
′; and the DFA 〈Q, Σ, δ, qinit〉.

The server receives as input the public key pk , a share

sk2 of the private key sk , the alphabet Σ, and ciphertexts

ckj ← Encpk ((σk)j) of the k-th file symbol σk, for each

j ∈ [m] and for each k ∈ [ℓ] where ℓ denotes the file length

in symbols. We assume that sk1 and sk2 were generated as

(sk1, sk2) ← Share(sk).

We require that the plaintext space of pk
′ includes the

plaintext space R of pk . To emphasize this, we assume its

generation as (pk ′, sk ′) ← Gen(1κ+2), since if Pai were in

use, this property would be ensured. That said, note that no

information about sk
′ is provided to either party, and so ci-

phertexts created using pk
′ — namely ρ created in c108 and

c115 and sent in m103 and m105, respectively — will be in-

decipherable and are ignored in the protocol. These cipher-

texts are included to simplify the proof of privacy against

client adversaries (Section 4.3) and can be elided in an ac-

tual implementation. We will omit these values from further

discussion in this section.

The protocol is structured as matching for loops ex-

ecuted by the client (c104–c111) and server (s103–s111).

The client begins the k-th loop iteration with an encryp-

tion α of the current state of its DFA, which it “blinds”

by homomorphically adding to it a random ring element r
(c105–c106). The client uses its share sk1 of sk to cre-

ate the “partial decryption” β of α (c107) and sends α
and β to the server (m103). The server uses its share

sk2 of sk to complete the decryption of α to obtain the

blinded state γ (s104). The server then computes, for each

σ ∈ Σ (s105), a value Ψσ such that Λσ(σk) = Decsk (Ψσ)
(s106) by utilizing coefficients 〈λσj〉σ∈Σ,j∈[m] output from

Lagrange (s102). The server then returns (in m104) values

〈µσi〉σ∈Σ,i∈[n] created so that Decsk (µσi) = γi ·
R

Λσ(σk)
(s108). The client uses these ciphertexts, together with co-

efficients 〈a′
σi〉σ∈Σ,i∈[n] calculated using the Shift opera-

tion (c109), to assemble a ciphertext α of the new DFA state

(c110).

After ℓ loop iterations, the client interacts with the server

one more time in order to decrypt the final state. Specif-

ically, the client blinds α again (c113) and sends α and

its partial decryption β to the server (m105), for which the

server completes the decryption (s112). The server returns

the result (m106), and the client then unblinds the final state

and returns it (c116).

For brevity, the description in Figure 1 omits numerous

checks that the client and server should perform to confirm

that the values each receives are well-formed. For example,

the client should confirm that µσi ∈ Cpk for each σ ∈ Σ
and i ∈ [n], upon receiving these in m104. The server

should similarly confirm the well-formedness of the values

it receives.

Efficiency The communication complexity of Π1(E) is

dominated by (nm + 3)ℓ + 3 = O(ℓnm) ciphertexts.

5

This is higher than, e.g., the DFA evaluation protocol of

Troncoso-Pasoriza et al. [44], which sends O(ℓ(n+m)) ci-

phertexts, and is asymptotically the same as the protocols

of Frikken [17] and Gennaro et al. [18]. (The hidden con-

stants in the big-O complexity of the Gennaro et al. protocol

are more substantial, however, due to the protocol’s exten-

sive use of zero-knowledge proofs.) The computation of

Π1(E) is dominated by O(ℓnm) modular exponentiations

(when instantiated with Pai); this is outperformed only by

Frikken’s protocol, which requires O(ℓ) modular exponen-

tiations (but still O(ℓnm) symmetric-key operations). But

as discussed in Section 2, none of the those protocols are

able to work with an encrypted file.

Our protocol could be made noninteractive by replacing

the encryption scheme E with fully homomorphic encryp-

tion [19, 45] — the client could encrypt each aσi under the

public key pk and send these ciphertexts to the server, en-

abling the server to perform calculations analogous to c110

itself. That said, existing fully homomorphic schemes are

far less efficient than the additively homomorphic schemes

for which Π1(E) is designed. For example, the cipher-

texts resulting from the security parameter recommended

by Gentry and Halevi [20] (yielding a fully homomorphic

scheme roughly as secure as 1024-bit RSA) would be about

1.5 MBytes in size. As such, the communication costs with

fully homomorphic encryption could conceivably be com-

petitive with Π1(E) only for files of size ℓ ≈ 5,000 or larger,

assuming E produces 300-byte ciphertexts (as would Pai

with κ = 1200). Moreover, the computational costs of fully

homomorphic schemes are substantially larger than those in

only additively homomorphic ones such as Pai [20].

4.2 Security Against Server Attacks

In this section we prove that the server, by executing this

protocol (even arbitrarily maliciously), gains no advantage

in either determining the DFA the client is evaluating or the

plaintext of the file in its possession. That is, we prove only

the privacy of the file and DFA inputs against server adver-

saries. We are not concerned with showing that a client can

detect server misbehavior, a property often called correct-

ness. In fact, we would argue that correctness is not partic-

ularly meaningful in our context. After all, the server can

simply ignore its input file and execute the protocol (cor-

rectly) with the client using another file. That said, Π1(E)
could be augmented using standard tools to enforce correct-

ness, with a commensurate impact on performance; we do

not explore these alternatives here.

We formalize our security claims against server compro-

mise by defining two separate server adversaries. The first

server adversary S = (S1, S2) attacks the DFA M = 〈Q,

Σ, δ, qinit〉 held by the client, as described in experiment

Expts-dfaΠ1(E) in Figure 2(a). S1 first generates a file 〈σk〉k∈[ℓ]

and two DFAs M0, M1. (Note that we use, e.g., “M0.Q”

and “M1.Q” to disambiguate their state sets.) S2 then re-

ceives the ciphertexts 〈ckj〉k∈[ℓ],j∈[m] of its file and oracle

access to clientOr(pk , sk1, pk ′, Mb) for b chosen randomly.

S2 is also passed information φ created for it by S1.

clientOr responds to queries from S2 as follows, ignor-

ing malformed queries. The first query (say, consisting

of simply “start”) causes clientOr to begin the protocol;

clientOr responds with a message of the form n (i.e., of

the form of message m101). The second invocation by S2

must include a single integer ℓ (i.e., of the form of mes-

sage m102); clientOr responds with a message of the form

α, β, ρ, i.e., three values as in message m103. The next

ℓ − 1 queries by S2 must contain nm elements of Cpk ,

i.e., 〈µσi〉σ∈Σ,i∈[n] as in m104, to which clientOr responds

with three values as in message m103. The next query

to clientOr again must contain nm elements of Cpk as in

m104, to which clientOr responds with three values as in

m105. The next (and last) query by S2 can consist simply

of a value in R, as in message m106.

Eventually S2 outputs a bit b′, and Expts-dfaΠ1(E)(S) = 1
only if b′ = b. We say the advantage of S is

Advs-dfa
Π1(E)(S) = 2 · P

(

Expts-dfaΠ1(E)(S) = 1
)

− 1

and define Advs-dfa
Π1(E)(t, ℓ, n, m) = maxS Advs-dfa

Π1(E)(S)
where the maximum is taken over all adversaries S taking

time t and selecting a file of length ℓ and DFAs containing

n states and an alphabet of m symbols.

Experiment Expt
ind-cpa
E (U)

(p̂k , ŝk) ← Gen(1κ)

b̂
$
← {0, 1}

b̂′ ← U
Encb̂

p̂k
(·,·)

(p̂k)

if b̂′ = b̂

then return 1
else return 0

Figure 3. Expt
indcpa
E (U)

We reduce DFA privacy

against server attacks to

the IND-CPA [3] security

of the encryption scheme.

IND-CPA security is de-

fined using the experiment

in Figure 3, in which an

adversary U is provided a

public key p̂k and access

to an oracle Encb̂

p̂k
(·, ·) that

consistently encrypts ei-

ther the first of its two in-

puts (if b̂ = 0) or the sec-

ond of those inputs (if b̂ = 1). Eventually U outputs a guess

b̂′ at b̂, and Expt
ind-cpa
E (U) = 1 only if b̂′ = b̂. The IND-

CPA advantage of U is defined as

Adv
ind-cpa
E (U) = 2 · P

(

Expt
ind-cpa
E (U) = 1

)

− 1

and then Adv
ind-cpa
E (t, w) = maxU Adv

ind-cpa
E (U) where

the maximum is taken over all adversaries U executing in

time t and making w queries to Encb̂

p̂k
(·, ·).

In our theorem statements throughout this paper, we omit

terms that are negligible as a function of the security param-

eter κ.

6

Experiment Expts-dfaΠ1(E)(S1, S2)

(pk , sk) ← Gen(1κ)
(sk1, sk2) ← Share(sk)
(pk ′, sk ′) ← Gen(1κ+2)
(ℓ, 〈σk〉k∈[ℓ], M0, M1, φ) ← S1(pk , sk2)
if M0.Q 6= M1.Q or M0.Σ 6= M1.Σ then return 0

b
$
← {0, 1}

m ← |Mb.Σ|
for k ∈ [ℓ], j ∈ [m]

ckj ← Encpk ((σk)j)

b′ ← S
clientOr(pk,sk1,pk ′,Mb)
2 (φ, 〈ckj〉k∈[ℓ],j∈[m])

if b′ = b

then return 1
else return 0

(a) Experiment Expts-dfaΠ1(E)

Experiment Expts-fileΠ1(E)(S1, S2)

(pk , sk) ← Gen(1κ)
(sk1, sk2) ← Share(sk)
(pk ′, sk ′) ← Gen(1κ+2)
(ℓ, 〈σ0k〉k∈[ℓ], 〈σ1k〉k∈[ℓ], M, φ) ← S1(pk , sk2)

b
$
← {0, 1}

m ← |M.Σ|
for k ∈ [ℓ], j ∈ [m]

ckj ← Encpk ((σbk)j)

b′ ← S
clientOr(pk,sk1,pk ′,M)
2 (φ, 〈ckj〉k∈[ℓ],j∈[m])

if b′ = b

then return 1
else return 0

(b) Experiment Expts-fileΠ1(E)

Figure 2. Experiments for proving security of Π1(E) against server adversaries

Theorem 1. For t′ = t + tGen + tShare,

Advs-dfa
Π1(E)(t, ℓ, n, m) ≤ 2Adv

ind-cpa
E (t′, ℓ + 1)

Proof. Let S be an adversary meeting the parameters t, ℓ,

n, and m. Consider a simulation Sims-dfa
Π1(E) for Expts-dfaΠ1(E)

that differs only by simulating clientOr so as to substitute

all ciphertexts produced with pk
′ with encryptions of zero

(i.e., ρ ← Encpk ′(0) in c108 and c115). Then b is hid-

den information-theoretically from S in Sims-dfa
Π1(E), since

γ is a random element of R in s104 (see c106) and since

γ∗ is a random element of R (see c113). As a result,

P

(

Sims-dfa
Π1(E)(S) = 1

)

= 1
2 and for Advs-dfa

Π1(E)(S) to be

nonzero, S must distinguish Sims-dfa
Π1(E) from Expts-dfaΠ1(E).

We construct an IND-CPA adversary U that, on input

p̂k , sets pk
′ ← p̂k and uses its own oracle Encb̂

p̂k
to choose

between running Expts-dfaΠ1(E) and Sims-dfa
Π1(E) for S by setting

ρ ← Encb̂

p̂k
(0, r) in c108 and c115. (Aside from this, U

performs Expts-dfaΠ1(E) faithfully, using (pk , sk) ← Gen(1κ)
and (sk1, sk2) ← Share(sk) it generates itself.) U then

returns b̂′ = 1 if S2 outputs b′ = b and b̂′ = 0, otherwise.

Then,

P

(

Expt
ind-cpa
E (U) = 1

)

=
1

2
P

(

Expts-dfaΠ1(E)(S) = 1
)

+
1

2
P

(

Sim
s-dfa
Π1(E)(S) = 0

)

=
1

2

(

1

2
+

1

2
Advs-dfa

Π1(E)(S)

)

+
1

4

=
1

2
+

1

4
Advs-dfa

Π1(E)(S)

and so Adv
ind-cpa
E (U) = 1

2Advs-dfa
Π1(E)(S).

Note that U makes ℓ + 1 oracle queries and runs in time

t′ = t + tGen + tShare, due to the need to generate (pk , sk)
and sk2.

The second server adversary S = (S1, S2) attacks

the file for which it holds the per-symbol ciphertexts

〈ckj〉k∈[ℓ],j∈[m] as in experiment Expts-fileΠ1(E) shown in Fig-

ure 2(b). Here, S1 produces two separate, equal-length

plaintext files 〈σ0k〉k∈[ℓ], 〈σ1k〉k∈[ℓ] and a DFA M. S2 then

receives the ciphertexts 〈ckj〉k∈[ℓ],j∈[m] for file 〈σbk〉k∈[ℓ]

where b is chosen randomly. S2 is also given oracle access

to clientOr(pk , sk1, pk ′, M). Eventually S2 outputs a bit b′,
and Expts-fileΠ1(E) (S) = 1 iff b′ = b. We say the advantage

of S is

Advs-file
Π1(E) (S) = 2 · P

(

Expts-fileΠ1(E) (S) = 1
)

− 1

and then Advs-file
Π1(E) (t, ℓ, n, m) = maxS Advs-file

Π1(E) (S)
where the maximum is taken over all adversaries S =
(S1, S2) taking time t and producing (from S1) files of ℓ
symbols and a DFA of n states and alphabet of size m.

Theorem 2. For t′ = t + tGen + tShare,

Advs-file
Π1(Pai)(t, ℓ, n, m)

≤ 2Adv
ind-cpa
Pai (t′, ℓ + 1) + Adv

ind-cpa
Pai (t′, ℓm)

Proof. Let Expts-file-0Π1(Pai) denote experiment Expts-fileΠ1(Pai)

with b fixed at b = 0, and let Expts-file-1Π1(Pai) denote the exper-

iment Expts-fileΠ1(Pai) with b fixed at b = 1. Consider a simula-

tion Sims-file-0
Π1(Pai) for Expts-file-0Π1(Pai) that differs only by sim-

ulating clientOr so as to substitute all ciphertexts produced

with pk
′ with encryptions of zero (i.e., ρ ← Encpk ′(0) in

c108 and c115). Proceeding as in the proof of Theorem 1,

we construct an IND-CPA adversary U0 that uses its own

oracle Encb̂

p̂k
to choose between running Expts-file-0Π1(Pai) and

Sims-file-0
Π1(Pai) for S, i.e., by setting pk

′ ← p̂k and ρ ←
Encb̂

p̂k
(r, 0) in c108 and c115. (Aside from this, U0 per-

forms Expts-file-0Π1(Pai) faithfully, using (pk , sk) ← Gen(1κ)

7

and (sk1, sk2) ← Share(sk) it generates itself.) U0 returns

b̂′ = 0 if b′ = b and b̂′ = 1, otherwise. Then,

1 + Adv
ind-cpa
Pai (U0) = 2 · P

(

Expt
ind-cpa
Pai (U0) = 1

)

=

P

(

Expts-file-0Π1(Pai) (S) = 1
)

+ P

(

Sims-file-0
Π1(Pai) (S) = 0

)

(5)

Now consider a simulation Sim
s-file-1
Π1(Pai) for

Expts-file-1Π1(Pai) that again differs only by simulating

clientOr so as to substitute all ciphertexts produced with

pk
′ with encryptions of zero. As above, we construct an

IND-CPA adversary U1 that uses its own oracle Encb̂

p̂k
to

choose between running Expts-file-1Π1(Pai) and Sims-file-1
Π1(Pai) for

S, i.e., by setting pk
′ ← p̂k and ρ ← Encb̂

p̂k
(0, r) in c108

and c115. U1 returns b̂′ = 1 if b′ = b and b̂′ = 0, otherwise.

Then,

1 + Adv
ind-cpa
Pai (U1) = 2 · P

(

Expt
ind-cpa
Pai (U1) = 1

)

=

P

(

Sims-file-1
Π1(Pai) (S) = 0

)

+ P

(

Expts-file-1Π1(Pai) (S) = 1
)

(6)

Finally, consider an adversary U that uses its ora-

cle Encb̂

p̂k
to choose between running Sims-file-0

Π1(Pai) and

Sims-file-1
Π1(Pai) for S. Specifically, on input p̂k = 〈N, g〉,

U generates d2
$← ZN2 and invokes S1(p̂k , sk2) where

sk2 = 〈N, g, d2〉. Upon receiving 〈σ0k〉k∈[ℓ] and 〈σ1k〉k∈[ℓ]

from S1, U sets ckj ← Encb̂

p̂k
((σ0k)j , (σ1k)j). Addition-

ally, in the simulation of clientOr, U sets α ← Enc
p̂k

(r)

in c106 and c113 and β ← grα−d2 mod N2 in c107 and

c114, so that αd2β ≡ gr mod N2. (U also generates pk
′

itself and constructs all encryptions for pk
′ as encryptions

of zero.) When S2 outputs b′, U outputs b′ as b̂′. Then,

1 + Adv
ind-cpa
Pai (U) =

2 · P

(

Expt
ind-cpa
Pai (U) = 1

)

= 2 · P

(

Sims-file
Π1(Pai)(S) = 1

)

=

P

(

Sims-file-0
Π1(Pai) (S) = 1

)

+ P

(

Sims-file-1
Π1(Pai) (S) = 1

)

(7)

Adding (5), (6) and (7), we get

3 + Adv
ind-cpa
Pai (U0) + Adv

ind-cpa
Pai (U) + Adv

ind-cpa
Pai (U1)

= P

(

Expts-file-0Π1(Pai) (S) = 1
)

+ P

(

Sims-file-0
Π1(Pai) (S) = 0

)

+ P

(

Sims-file-0
Π1(Pai) (S) = 1

)

+ P

(

Sims-file-1
Π1(Pai) (S) = 1

)

+ P

(

Sims-file-1
Π1(Pai) (S) = 0

)

+ P

(

Expts-file-1Π1(Pai) (S) = 1
)

= 2 · P

(

Expts-fileΠ1(Pai)(S) = 1
)

+ 2

= 3 + Advs-file
Π1(Pai)(S)

Experiment Exptc-fileΠ1(E)(C1, C2)

(pk , sk) ← Gen(1κ)
(sk1, sk2) ← Share(sk)
(pk ′, sk ′) ← Gen(1κ+2)
(ℓ, 〈σ0k〉k∈[ℓ], 〈σ1k〉k∈[ℓ], M, φ) ← C1(pk , sk1, pk ′)
if M(〈σ0k〉k∈[ℓ]) 6= M(〈σ1k〉k∈[ℓ]) then return 0

b
$
← {0, 1}

m ← |M.Σ|
for k ∈ [ℓ], j ∈ [m]

ckj ← Encpk ((σbk)j)

b′ ← C
serverOr(pk ,sk2,M.Σ,〈ckj〉k∈[ℓ],j∈[m])

2 (φ)
if b′ = b

then return 1
else return 0

Figure 4. Experiment ExptcfileΠ1(E)

The result then follows because each of U0 and U1 makes

ℓ + 1 oracle queries and runs in time t′ = t + tGen + tShare

due to the need to generate (pk , sk) and sk2, and because U
makes ℓm oracle queries and runs in time t + tGen + tShare

due to the need to generate pk
′ and d2, the latter of which

requires time similar to tShare.

4.3 Security Against Client Attacks

The proof of security against client attacks is easier in

the sense that the client has the DFA in its possession, and

so security of the DFA is not a concern. (In Section 5 we

will introduce a protocol to hide the DFA from the client,

as well, and so we will need to revisit this issue later.) The

proof of security against the client therefore is concerned

with the privacy of only the file. However, by the nature

of what the protocol computes for the client — i.e., the fi-

nal state of a DFA match on the file — it naturally exposes

log2 n bits about the file to the client. As such, this permits

the client to distinguish two files of its choosing, simply

by running the protocol correctly using a DFA that distin-

guishes between the two files it chose.

For this reason, it is necessary to adapt the notion of

indistinguishability to apply only to files that produce the

same final state for the client’s DFA. So, in the experiment

Exptc-fileΠ1(E) (Figure 4) that we use to define file security

against client adversaries, the adversary C = (C1, C2) suc-

ceeds (i.e., Exptc-fileΠ1(E) (C) returns 1) only if the two files

〈σ0k〉k∈[ℓ] and 〈σ1k〉k∈[ℓ] output by C1 both drive the DFA

M, also output by C1, to the same final state (denoted

M(〈σ0k〉k∈[ℓ]) = M(〈σ1k〉k∈[ℓ])).

This caveat aside, the experiment Exptc-fileΠ1(E) is straight-

forward: C1 is provided a public key pk , private-key share

sk1, and another public key pk
′, and returns the two ℓ-

symbol files (for ℓ of its choosing) 〈σ0k〉k∈[ℓ] and 〈σ1k〉k∈[ℓ]

and a DFA M. Depending on how b is then chosen, one

of these files is encrypted using pk and then provided to

8

the server, to which C2 is given oracle access (denoted

serverOr(pk , sk2, M.Σ, 〈ckj〉k∈[ℓ],j∈[m])).
Adversary C2 can invoke serverOr first with a message

containing an integer n (i.e., with a message of the form

m101), to which serverOr returns ℓ (message m102). C2

can then invoke serverOr up to ℓ + 1 times. The first ℓ
such invocations take the form α, β, ρ and correspond to

messages of the form m103. Each such invocation elicits a

response 〈µσi〉σ∈Σ,i∈[n] (i.e., of the form m104). The last

client invocation is of the form α, β, ρ and corresponds to

m105. This invocation elicits a response γ∗ (i.e., of the

form m106). Malformed or extra queries are rejected by

serverOr.

As discussed in Section 1, we prove file privacy against

honest-but-curious client adversaries. A client adversary

(C1, C2) is honest-but-curious if C2 invokes serverOr ex-

actly as Π1(E) prescribes, using DFA M output by C1. The

advantage hbcAdvc-file
Π1(E) (C) of C = (C1, C2) is

hbcAdvc-file
Π1(E) (C) = 2 · P

(

Exptc-fileΠ1(E) (C) = 1
)

− 1

and hbcAdvc-file
Π1(E) (t, ℓ, n, m) = maxC Advc-file

Π1(E) (C)
where the maximum is taken over honest-but-curious client

adversaries C running in total time t and producing files of

length ℓ and a DFA of n over an alphabet of m symbols.

Theorem 3. For t′ = t + tGen + (ℓ + 1) · tDec ,

hbcAdvc-file
Π1(Pai)(t, ℓ, n, m) ≤ Adv

ind-cpa
Pai (t′, ℓm(1 + n))

Proof. Given an adversary C = (C1, C2) running in time t
and selecting files of length ℓ symbols and a DFA of n states

over an alphabet of m symbols, we construct an IND-CPA

adversary U that demonstrates the theorem as follows. On

input p̂k = 〈N, g〉, U generates (pk ′, sk ′) ← Gen(1κ+2)

and d1
$← ZN2 , and invokes C1(p̂k , sk1, pk

′) where

sk1 = 〈N, g, d1〉 to obtain (ℓ, 〈σ0k〉k∈[ℓ], 〈σ1k〉k∈[ℓ], M, φ),
where M = 〈Q, Σ, qinit, δ〉 is a DFA. Note that d1 is cho-

sen from a distribution that is statistically indistinguishable

from that from which d1 is chosen in the real system. For

k ∈ [ℓ] and j ∈ [m], U sets ckj ← Encb̂

p̂k
((σ0k)j , (σ1k)j).

U then invokes C2(φ) and simulates responses to C2’s

queries to serverOr as follows (ignoring malformed invoca-

tions). In response to the initial query n, the adversary U
returns ℓ and, in preparation for the subsequent serverOr in-

vocations by C2, sets q0 ← qinit and q1 ← qinit. For the k-th

query of the form α, β, ρ (0 ≤ k < ℓ), the adversary U sets

r ← Decsk ′(ρ), γ0 ← q0 +
R
r, and γ1 ← q1 +

R
r, and then

sets µσi ← Encb̂

p̂k
(((γ0)

i ·
R
Λσ(σ0k), ((γ1)

i ·
R
Λσ(σ1k)) for

σ ∈ Σ and i ∈ [n]. After this, U updates q0 ← δ(q0, σ0k)
and q1 ← δ(q1, σ1k), and returns 〈µσi, 〉σ∈Σ,k∈[n] to C2.

For the last query α, β, ρ, adversary U computes r ←
Decsk ′(ρ) and returns γ∗ = q0 +

R
r (= q1 +

R
r) to C2.

When C2 outputs b′, U outputs b′, as well.

This simulation is statistically indistinguishable from the

real system provided that C is honest-but-curious, and so ig-

noring terms that are negligible in κ, hbcAdvc-file
Π1(Pai)(C) =

Adv
ind-cpa
Pai (U). Note that U runs in t′ = t + tGen +(ℓ+1) ·

tDec where tGen denotes the time to generate (pk ′, sk ′) and

tDec denotes the time to do one Pai decryption. U makes

nm oracle queries in order to respond to each of the ℓ ora-

cle queries following the first, plus an additional ℓm queries

to create 〈ckj〉k∈[ℓ],j∈[m].

5 A Two-Sided Protocol

In this section we extend the protocol Π1(E) to protect

the secrecy of the DFA 〈Q, Σ, qinit, δ〉 from the client. As

such, this modification enables the client to execute the pro-

tocol on behalf of others who do not trust it with knowledge

of the DFA. One scenario in which this protection is desir-

able is if the client is executing the protocol on behalf of an-

other party (possibly the actual owner of the file) who does

not have the bandwidth or processing available for perform-

ing the evaluation herself. If that party wants to evaluate a

DFA on the cloud-resident files but is currently constrained

to doing so from a bandwidth-limited device (e.g., a mobile

cellular device), the owner can “encrypt” the DFA as pre-

scribed by our protocol and send the result to the proxy (i.e.,

client). The client can then conduct the evaluation and re-

turn to the requesting party the state in which each searched

file left the DFA.

5.1 Construction

Encryption scheme The primary conceptual difference

between our protocol in this section, denoted Π2(E), and

the protocol Π1(E) developed in Section 4 is that we are

unable to provide client with the DFA itself; rather, we

give it encryptions of the coefficients 〈aσi〉σ∈Σ,i∈[n] ←
ToPoly(Q, Σ, δ). The implications of this to the protocol

are far-reaching, however, due to the operations that the

client needs to perform using these coefficients: both Shift-

ing and especially combining coefficients with ciphertexts

as was done in line c110 in Figure 1. For this reason, we

need to expand the properties we require of the encryption

system we use, to include the ability to homomorphically

“multiply” ciphertexts once. We emphasize that we do not

require fully homomorphic encryption. Our construction

can be instantiated with any additively homomorphic en-

cryption scheme that allows a single homomorphic multipli-

cation of two ciphertexts [9, 21], provided that it also sup-

ports two-party decryption. Here we build from the more

well-studied scheme of Boneh, Goh and Nissim [9], which

we denote by BGN.

Specifically, BGN uses an algorithm BGNInit that, on

input 1κ, outputs (p, p′, G, G′, e) where p, p′ are ran-

9

dom κ/2-bit primes, G and G′ are cyclic groups of order

N = pp′, and e : G × G → G′ is a bilinear map. In this

encryption scheme, the ring R is ZN , the ciphertext space

C〈N,G,G′,e,g,h,ĝ〉 is G ∪ G′, and the relevant algorithms are

defined as follows. Note that we assume that elements of G

and G′ are encoded distinctly.

Gen(1κ): Generate (p, p′, G, G′, e) ← BGNInit(1κ); select

random generators g, u
$← G; set N ← pp′, h ← up′

, and

ĝ ← e(g, g)p; and return public key 〈N, G, G′, e, g, h, ĝ〉
and private key 〈N , G, G′, e, g, ĝ, p〉.
Enc〈N,G,G′,e,g,h,ĝ〉(m): Select x

$← ZN and return gmhx.

Dec〈N,G,G′,e,g,ĝ,p〉(c): If c ∈ G, then return the discrete

logarithm of e(c, g)p with respect to base ĝ. If c ∈ G′, then

return the discrete logarithm of cp with respect to base ĝ.

c1 +〈N,G,G′,e,g,h,ĝ〉 c2: If c1 and c2 are in the same group

(i.e., both are in G or both are in G′), then return c1c2.

Otherwise, if c1 ∈ G and c2 ∈ G′, then return e(c1, g)c2.

m ·〈N,G,G′,e,g,h,ĝ〉 c: Return cm .

c1 ⊙〈N,G,G′,e,g,h,ĝ〉 c2: If c1, c2 ∈ G, then return e(c1, c2).

Otherwise, return ⊥.

Share(〈N, G, G′, e, g, ĝ, p〉): Return sk1 = 〈G, G′, d1〉
and sk2 = 〈G, G′, e, g, ĝ, d2〉 where d1

$← ZN and

d2 ← p − d1 mod N .

Dec1
〈G,G′,d1〉(c): Return cd1 .

Dec2
〈G,G′,e,g,ĝ,d2〉(c1, c2): If c1, c2 ∈ G, then return the

discrete logarithm of e(c2c
d2
1 , g) with respect to base ĝ. If

c1, c2 ∈ G′, then return the discrete logarithm of c2c
d2
1 with

respect to base ĝ.

Note the new operator ⊙pk that homomorphically multi-

plies two ciphertexts in G. Since the result is in G′, it is

not possible to use the result as an argument to ⊙pk . This is

the sense in which this scheme permits homomorphic mul-

tiplication “once”. Also note that though the basic scheme

of Boneh et al. did not include ĝ = e(g, g)p in the public

key, Boneh et al. proposed an extension supporting multi-

party threshold decryption [9, Section 5] that did so2; it is

this extension that we adopt here.

A complication of using BGN is the need to compute

a discrete logarithm to decrypt in Dec〈N,G,G′,e,g,ĝ,p〉 and

Dec2
〈G,G′,e,g,ĝ,d2〉. We thus need to design our protocol so

that any ciphertext that a party attempts to decrypt should

hold a plaintext from a small range 0 . . . L. Then, Pollard’s

lambda method [34, p. 128] enables recovery of the plain-

text in O(
√

L) time. Alternatively, a precomputed table that

maps ĝm to the plaintext m ∈ {0 . . .L} enables decryption

to be performed by table lookup.

2The exact construction supporting threshold decryption was left im-

plicit by Boneh et al. [9], but we have confirmed that including ĝ =
e(g, g)p in the public key is what they intended [7].

Protocol steps Protocol Π2(E) is shown in Figure 5. It

has a similar structure to Π1(E), but differs in many re-

spects.

• Rather than taking the DFA 〈Q, Σ, qinit, δ〉 as input, the

client takes α ← Encpk (qinit) and encrypted coeffi-

cients 〈âσi〉σ∈Σ,i∈[n] as input. Specifically, Figure 5 pre-

sumes that these coefficients are created by performing

〈aσi〉σ∈Σ,i∈[n] ← ToPoly(Q, Σ, δ) and then encrypting

each aσi using pk , i.e., âσi ← Encpk (aσi) for each

σ ∈ Σ and i ∈ [n].
• Because server decrypts the (blinded) DFA state in line

s204, the plaintext should be adequately small so that

decryption — which as discussed above, involves com-

puting (or looking up) a discrete logarithm if BGN en-

cryption is in use — is not too costly. For this reason,

and assuming R = ZN (as it is in BGN) and Q = [n],
the blinding term is drawn from {0, 1}κ′

instead of R,

where κ′ ≪ κ is another security parameter. Then, the

statistical distance between the distribution of γ seen by

server in line s204 when the blinded state is q (i.e., when

γ = q+
R
r) and uniformly random choices from {0, 1}κ′

is

∑

x

∣

∣

∣

∣

∣

P(q + r = x | r
$← {0, 1}κ′

)

−P(r = x | r
$← {0, 1}κ′

)

∣

∣

∣

∣

∣

=
∑

0≤x<q

1

2κ′
+

∑

2κ′≤x<q+2κ′

1

2κ′
=

q

2κ′−1

Since q ∈ [n] and since the server sees ℓ + 1 “sam-

ples” of γ in a protocol execution, we anticipate setting

κ′ ≈ log2 n + log2 ℓ + 20 to achieve a reasonable bal-

ance between decryption cost and security for moder-

ately sized n and ℓ (e.g., ℓn < 220). It is important to

note, however, that generally κ′ will need to grow with

n and ℓ (though only logarithmically so).

• The fact that each âσi is a ciphertext imposes several

changes to the protocol. First, it is necessary to employ

the “one-time multiplication” operator ⊙pk in line c207

to produce the ciphertext of the new state, versus ·pk as

in line c110. Second, the Shift operation must be altered

to work on ciphertexts, i.e., changing (4) to

â′
σi ← pk

n−1−i
∑

i′=0

((

i + i′

i′

)

·
R

(−
R
r)i′

)

·pk âσ(i+i′) (8)

5.2 Security

The theorems in Section 4.2 that pertain to security

against server adversaries for Π1(E) carry over more-or-less

directly for Π2(E). That is, if we adapt the definitions of

Expts-dfaΠ1(E) and Expts-fileΠ1(E) in the natural way to Π2(E) —

10

client(pk , sk1, pk ′, Σ, n, server(pk , sk2,Σ,

α, 〈âσi〉σ∈Σ,i∈[n]) 〈ckj〉k∈[ℓ],j∈[m])

s201. m ← |Σ|
s202. 〈λσj〉σ∈Σ,j∈[m]

← Lagrange(Σ)

m201.
n

-

m202.
ℓ

¾

c201. for k ← 0 . . . ℓ − 1 s203. for k ← 0 . . . ℓ − 1

c202. r
$
← {0, 1}κ′

c203. α ← α +pk Encpk (r)
c204. β ← Dec1

sk1
(α)

c205. ρ ← Encpk′ (r)

m203.
α,β,ρ

-

s204. γ ← Dec2
sk2

(α, β)

s205. for σ ∈ Σ

s206. Ψσ ← pk

m−1
X

j=0

λσj ·pk ckj

c206. 〈â′
σi〉σ∈Σ,i∈[n] s207. for i ∈ [n]

← Shift(r, 〈âσi〉σ∈Σ,i∈[n]) s208. µσi ← γi ·pk Ψσ

s209. endfor

s210. endfor

m204.
〈µσi〉σ∈Σ,i∈[n]

¾

c207. α ← pk

X

σ∈Σ

pk

n−1
X

i=0

a′
σi ⊙pk µσi

c208. endfor s211. endfor

c209. r
$
← {0, 1}κ′

c210. α ← α +pk Encpk (r)
c211. β ← Dec1

sk1
(α)

c212. ρ ← Encpk ′(r)

m205.
α,β,ρ

-

s212. γ∗ ← Dec2
sk2

(α, β)

m206.
γ∗

¾

c213. return γ∗ −
R

r

Figure 5. Protocol Π2(E), described in Sec

tion 5

in particular, to modify the behavior of clientOr to conform

to Π2(E) — then ignoring terms negligible in κ and κ′, we

can prove:

Theorem 4. For t′ = t + tGen + tShare,

Advs-dfa
Π2(E)(t, ℓ, n, m) ≤ 2Adv

ind-cpa
E (t′, ℓ + 1)

Theorem 5. For t′ = t + tGen + tShare,

Advs-file
Π2(BGN)(t, ℓ, n, m)

≤ 2Adv
ind-cpa
BGN (t′, ℓ + 1) + Adv

ind-cpa
BGN (t′, ℓm)

The proofs of these theorems are analogous their coun-

terparts for Π1(E), and so we omit them here.

The case of client adversaries in Π2(E) differs more sub-

stantially from that in Π1(E). For one, we need to formal-

ize and prove a result about the degree to which the DFA is

protected from the client. Such an experiment for defin-

ing this type of security is shown in Figure 6. This ex-

periment is analogous to that of Figure 4, though is longer

due to the need to prepare the input arguments to C2. In

this experiment, C2 is invoked with encrypted coefficients

〈âσi〉σ∈Σ,i∈[n] and the encrypted initial state α for one of

two DFAs output by C1 (determined by random selection

of b). C2 can invoke serverOr first with an integer n (as

in m201), in response to which serverOr returns ℓ (as in

m202). C2 can then invoke serverOr ℓ times, each time

with ciphertexts α, β, ρ (as in m203), and receive cipher-

texts 〈µσi〉σ∈Σ,i∈[n] in response (as in m204). After this,

C2 can invoke serverOr with ciphertexts α, β, ρ and re-

ceive a value γ∗ in response. Finally, C2 outputs a bit b′,
and Exptc-dfaΠ2(E)(C) = 1 only if b′ = b. As usual, for any

honest-but-curious C we define

hbcAdvc-dfa
Π2(E)(C) = 2 · P

(

Exptc-dfaΠ2(E)(C) = 1
)

− 1

and then hbcAdvc-dfa
Π2(E)(t, ℓ, n, m) =

maxC hbcAdvc-dfa
Π2(E)(C) where the advantage is taken

over all honest-but-curious adversaries C taking time t,

producing a file of ℓ symbols, and producing DFAs with n
states and an alphabet of m symbols.

Experiment Exptc-dfaΠ2(E)(C1, C2)

(pk , sk) ← Gen(1κ)
(sk1, sk2) ← Share(sk)
(pk ′, sk ′) ← Gen(1κ+2)
(ℓ, 〈σk〉k∈[ℓ], M0, M1, φ) ← C1(pk , sk1, pk ′)
if M0.Q 6= M1.Q or M0.Σ 6= M1.Σ

or M0(〈σk〉k∈[ℓ]) 6= M1(〈σk〉k∈[ℓ]) then return 0

b
$
← {0, 1}

〈Q,Σ, δ, qinit〉 ← Mb

n ← |Q|, m ← |Σ|
for k ∈ [ℓ], j ∈ [m]

ckj ← Encpk ((σk)j)
〈aσi〉σ∈Σ,i∈[n] ← ToPoly(Q,Σ, δ)
for σ ∈ Σ, i ∈ [n]

âσi ← Encpk (aσi)
α ← Encpk (qinit)

b′ ← C
serverOr(pk,sk2,〈ckj〉k∈[ℓ],j∈[m])

2 (φ, α, 〈âσi〉σ∈Σ,i∈[n])
if b′ = b

then return 1
else return 0

Figure 6. Experiment ExptcdfaΠ2(E)(C1, C2)

Theorem 6. For t′ = t + tGen + (ℓ + 1) · tDec ,

hbcAdvc-dfa
Π2(BGN)(t, ℓ, n, m) ≤ Adv

ind-cpa
BGN (t′, (ℓ+1)nm)

Proof. Given an honest-but-curious adversary C for

Π2(BGN) that runs in time t, produces a file of length

11

ℓ, and produces DFAs of n states over an alphabet of m
symbols, we construct an IND-CPA attacker U for E to

demonstrate the theorem as follows. On input p̂k = 〈N ,

G, G′, e, g, h, ĝ〉, U generates (pk ′, sk ′) ← Gen(1κ+2)

and d1
$← ZN , and invokes C1(p̂k , sk1, pk

′) where

sk1 = 〈G, G′, d1〉 to obtain (ℓ, 〈σk〉k∈[ℓ], M0, M1, φ).
Note that d1 is chosen from a distribution that is perfectly

indistinguishable from that from which d1 is chosen in the

real system. If M0.Q 6= M1.Q, M0.Σ 6= M1.Σ, or

M0(〈σk〉k∈[ℓ]) 6= M1(〈σk〉k∈[ℓ]), then U aborts the simu-

lation, since Exptc-dfaΠ2(E)(C) = 0 in this case. Otherwise,

letting Σ = M0.Σ, Q = M0.Q, m = |Σ| and n = |Q|,
U computes 〈a0σi〉σ∈Σ,i∈[n] ← ToPoly(Q, Σ, M0.δ) and

〈a1σi〉σ∈Σ,i∈[n] ← ToPoly(Q, Σ, M1.δ), and then sets âσi

← Encb̂

p̂k
(a0σi, a1σi) for σ ∈ Σ and i ∈ [n].

U then invokes C2(φ, α, 〈âσi〉σ∈Σ,i∈[n]) and simulates

responses to C2’s queries to serverOr as follows (ignoring

malformed invocations). In response to the initial query n,

the adversary U returns ℓ and, in preparation for the sub-

sequent serverOr invocations by C2, sets q0 ← M0.qinit,

and q1 ← M1.qinit. For the k-th query of the form α, β, ρ
(0 ≤ k < ℓ), the adversary U sets r ← Decsk ′(ρ),

γ0 ← q0+R
r, and γ1 ← q1+R

r; sets µσi ← Encb̂

p̂k
(((γ0)

i·
R

Λσ(σk)), ((γ1)
i ·

R
Λσ(σk))) for σ ∈ Σ and i ∈ [n]; updates

q0 ← M0.δ(q0, σk) and q1 ← M1.δ(q1, σk); and returns

〈µσi〉σ∈Σ,k∈[n] to C2. After ℓ such invocations, U responds

to the next invocation α, β, ρ by computing r ← Decsk ′(ρ)
and returning q0+

R
r (= q1 +

R
r). Finally, when C2 outputs

b′, U outputs b′, as well.

U’s simulation is perfectly indistinguishable from the

real system to an honest-but-curious adversary C, and so

Adv
ind-cpa
BGN (U) = hbcAdvc-dfa

Π2(BGN)(C). Note that U runs

in t′ = t + tGen + (ℓ + 1) · tDec , where tGen is incurred

to generate (pk ′, sk ′). U makes nm oracle queries in order

to respond to each oracle query except the first and last, of

which there are ℓ, and makes nm additional oracle queries

to create 〈âσi〉σ∈Σ,i∈[n].

The second way in which the argument for security

against client adversaries for Π2(E) differs from that for

Π1(E) is that the argument for file security needs to be

adapted accordingly. If we again alter Exptc-fileΠ1(E) in the

natural way to produce Exptc-fileΠ2(E) , then it is straightfor-

ward to prove the following theorem:

Theorem 7. For t′ = t + tGen + (ℓ + 1) · tDec ,

hbcAdvc-file
Π2(E) (t, ℓ, n, m) ≤ Adv

ind-cpa
BGN (t′, ℓm(1 + n))

6 A More Communication-Efficient One-

Sided Protocol

The last protocol we present has the same goals as Π1(E)
— i.e., it is “one-sided” in the sense that DFA privacy is

offered against only server adversaries — but incurs less

communication costs. Specifically, whereas the communi-

cation cost of Π1(E) is dominated by sending (nm+3)ℓ+3
ciphertexts, the protocol we present in this section, called

Π3(E), sends only (n+m+1)ℓ+3 ciphertexts. Π3(E) ac-

complishes this in part by exploiting a cryptosystem that is

additively homomorphic and that offers the ability to homo-

morphically “multiply” ciphertexts once, as we employed

for Π2(E) in Section 5. BGN is thus an appropriate encryp-

tion scheme to instantiate E , and this observation will again

inform our design.

Protocol Π3(E) is shown in Figure 7. Note that the in-

put arguments to both the client and the server are iden-

tical to those in Π1(E), as are the client and server op-

erations before (c301–c303, s301–s302, and m301–m302)

their main loops (c304–c314, s303–s313). Moreover, the

beginning (c305–c308, m303) and end (c313) of the client’s

main loop, and the steps following the client and server

main loops (c315–c319, s314, m305–m306), are inherited

directly from Π2(E). The primary novelties of Π3(E) can

be summarized as follows:

• As in Π2(E), after the k-th invocation of the form m303,

the server constructs Ψσ to be an encryption of Λσ(σk)
(s306). Rather than constructing each µσi ← γi ·pk Ψσ,

however, the server sends 〈Ψσ〉σ∈Σ to the client in mes-

sage m304. Each µσi is then constructed at the client,

instead (c310–c312).

• Because each µσi is constructed at the client, it is neces-

sary for the server to send γ to the client (m304). So as to

not divulge the current DFA state to the client — recall

that the client possesses the blinding term r, see c305 —

the server blinds γ again with a random r′ (s308–s309)

before returning it.

• A consequence of this additional blinding by server is

that the client’s Shift operation must be adapted to ac-

count for it. To enable this, the server also sends in m304

the ciphertext νi of (r′)i, for each i ∈ [n] (see s311). The

client can then construct a ciphertext si of (r +
R
r′)i for

each i ∈ [n], using the binomial theorem:

si ← pk

i
∑

i′=0

((

i

i′

)

·
R

ri′
)

·pk νi−i′ (9)

The client can then calculate a ciphertext â′
σi of the co-

12

efficient of xi in f ′
σ:

â′
σi ← pk

n−1−i
∑

i′=0

(

aσ(i+i′) ·R
(

i + i′

i′

)

·
R

(−
R
1)i′

)

·pk si′

(10)

In our pseudocode, the calculations (9) and (10) are

encapsulated within the operation 〈â′
σi〉σ∈Σ,i∈[n] ←

Shift(r, 〈νi〉i∈[n], 〈aσi〉σ∈Σ,i∈[n]) on line c309.

The privacy of the file and DFA from server adversaries

and the privacy of the file from client adversaries can be

proved for Π3(E) very similarly to how they are proved for

Π1(E). In fact, Theorems 1–3 hold for Π3(E) unchanged

except for replacing Pai with BGN where appropriate.

7 Conclusion

With the growth of cloud storage due to the cost sav-

ings it offers, it is imperative that we develop efficient tech-

niques for enabling the same sorts of third-party access to

cloud-resident files that is commonplace today for privately

stored files — e.g., malware scans or searches by authorized

partners. The fact that cloud-resident files are generally at

greater risk of exposure, however, mandates their encryp-

tion, hindering these sorts of third-party access.

In this paper, we have developed a family of protocols

for enabling DFA evaluation on encrypted files by third par-

ties authorized by the file owner. Our one-sided protocols

provably protect the privacy of the DFA from an arbitrar-

ily malicious server holding the ciphertext file, as well as

the privacy of the file from the server and from an honest-

but-curious client performing the DFA evaluation. We also

presented a two-sided protocol that additionally protects

the privacy of the DFA from the client, enabling others

to outsource their DFA evaluations to it without divulging

their DFAs. Our protocols employ additively homomorphic

cryptosystems or small extensions thereof, for which prac-

tical implementations exist. The costs of our protocols in

terms of storage, communication and computation suggest

that they are sufficiently practical for many domains, partic-

ularly ones where files consist of symbols from a limited al-

phabet, and are more practical than protocols that would re-

sult from the application of general private two-party com-

putation or fully homomorphic encryption to this problem.

Acknowledgements

We are grateful to Dan Boneh for helpful clarifications

about the Boneh-Goh-Nissim cryptosystem [9]. This re-

search was supported in part by NSF award 0910483 and

by a gift from NEC.

client(pk , sk1, pk ′, 〈Q, Σ, δ, qinit〉) server(pk , sk2,Σ,

〈ckj〉k∈[ℓ],j∈[m])

c301. n ← |Q|,m ← |Σ| s301. m ← |Σ|
c302. 〈aσi〉σ∈Σ,i∈[n] s302. 〈λσj〉σ∈Σ,j∈[m]

← ToPoly(Q, Σ, δ) ← Lagrange(Σ)
c303. α ← Encpk (qinit)

m301.
n

-

m302.
ℓ

¾

c304. for k ← 0 . . . ℓ − 1 s303. for k ← 0 . . . ℓ − 1

c305. r
$
← {0, 1}κ′

c306. α ← α +pk Encpk (r)
c307. β ← Dec1

sk1
(α)

c308. ρ ← Encpk′ (r)

m303.
α,β,ρ

-

s304. γ ← Dec2
sk2

(α, β)

s305. for σ ∈ Σ

s306. Ψσ ← pk

m−1
X

j=0

λσj ·pk ckj

s307. endfor

s308. r′
$
← R

s309. γ ← γ +
R

r′

s310. for i ∈ [n]
s311. νi ← Encpk ((r′)i)
s312. endfor

m304.
γ,〈Ψσ〉σ∈Σ,〈νi〉i∈[n]
¾

c309. 〈â′
σi〉σ∈Σ,i∈[n]

← Shift(r, 〈νi〉i∈[n],

〈aσi〉σ∈Σ,i∈[n])
c310. for σ ∈ Σ, i ∈ [n]
c311. µσi ← γi ·pk Ψσ

c312. endfor

c313. α ← pk

X

σ∈Σ

pk

n−1
X

i=0

â′
σi ⊙pk µσi

c314. endfor s313. endfor

c315. r
$
← {0, 1}κ′

c316. α ← α +pk Encpk (r)
c317. β ← Dec1

sk1
(α)

c318. ρ ← Encpk′ (r)

m305.
α,β,ρ

-

s314. γ∗ ← Dec2
sk2

(α, β)

m306.
γ∗

¾

c319. return γ∗ −
R

r

Figure 7. Protocol Π3(E), described in Sec
tion 6

References

[1] GenBank. http://www.ncbi.nlm.nih.gov/

genbank/.

[2] United Kingdom National DNA Database. http://www.

npia.police.uk/en/8934.htm.

[3] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Re-

lations among notions of security for public-key encryption

13

schemes. In Advances in Cryptology – CRYPTO ’98, pages

26–45, Aug. 1998.
[4] A. Ben-David, N. Nisan, and B. Pinkas. FairplayMP: A sys-

tem for secure multi-party computation. In 15th ACM Con-

ference on Computer and Communications Security, pages

257–266, 2008.
[5] D. Betel and C. Hogue. Kangaroo – a pattern-matching

program for biological sequences. BMC Bioinformatics, 3,

2002.
[6] M. Blanton and M. Aliasgari. Secure outsourcing of DNA

searching via finite automata. In Data and Applications Se-

curity and Privacy XXIV, pages 49–64, June 2010.
[7] D. Boneh. Personal communication, July 2011.
[8] D. Boneh, G. D. Crescenzo, R. Ostrovsky, and G. Persiano.

Public key encryption with keyword search. In Advances in

Cryptology – EUROCRYPT 2004, pages 506–522, 2004.
[9] D. Boneh, E.-J. Goh, and K. Nissim. Evaluating 2-DNF

formulas on ciphertexts. In 2nd Theory of Cryptography

Conference, pages 325–342, 2005.
[10] D. Boneh and B. Waters. Conjunctive, subset, and range

queries on encrypted data. In 4th Theory of Cryptography

Conference, pages 535–554, Feb. 2007.
[11] Y.-C. Chang and M. Mitzenmacher. Privacy preserving key-

word searches on remote encrypted data. In Applied Cryp-

tography and Network Security, 3rd International Confer-

ence, pages 442–455, 2005.
[12] K. Chen, R. Kavuluru, and S. Guo. RASP: Efficient

multidimensional range query on attack-resilient encrypted

databases. In 1st ACM Conference on Data and Application

Security and Privacy, Feb. 2011.
[13] S. G. Choi, A. Elbaz, A. Juels, T. Malkin, and M. Yung.

Two-party computing with encrypted data. In Advances in

Crypotology – ASIACRYPT 2007, pages 298–314, 2007.
[14] V. Ciriani, S. D. C. D. Vimercati, S. Foresti, S. Jajodia,

S. Paraboschi, and P. Samarati. Combining fragmentation

and encryption to protect privacy in data storage. ACM

Transactions on Information and System Security, 13(3),

July 2010.
[15] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky. Search-

able symmetric encryption: Improved definitions and effi-

cient constructions. In 13th ACM Conference on Computer

and Communications Security, pages 79–88, 2006.
[16] I. Damgård and M. Jurik. A generalisation, a simplifica-

tion and some applications of Paillier’s probabilistic public-

key system. In Public Key Cryptography, 4th International

Workshop on Practice and Theory in Public Key Cryptosys-

tems, pages 119–136, Feb. 2001.
[17] K. B. Frikken. Practical private DNA string searching and

matching through efficient oblivious automata evaluation. In

Data and Applications Security XXIII, pages 81–94, July

2009.
[18] R. Gennaro, C. Hazay, and J. S. Sorensen. Text search pro-

tocols with simulation based security. In Public Key Cryp-

tography – PKC 2010, pages 332–350, 2010.
[19] C. Gentry. Fully homomorphic encryption using ideal lat-

tices. In 41st ACM Symposium on Theory of Computing,

pages 169–178, 2009.
[20] C. Gentry and S. Halevi. Implementing Gentry’s fully-

homomorphic encryption scheme. In Advances in Cryptol-

ogy – EUROCRYPT 2011, May 2011.

[21] C. Gentry, S. Halevi, and V. Vaikuntanathan. A simple BGN-

type cryptosystem from LWE. In Advances in Cryptology –

EUROCRYPT 2010, pages 506–522, May 2010.

[22] C. Gentry and Z. Ramzan. Single-database private infor-

mation retrieval with constant communication rate. In Au-

tomata, Languages and Programming, 32nd International

Colloquium, pages 803–815, July 2005.

[23] E.-J. Goh. Secure indexes. Cryptology ePrint Archive, Re-

port 2003/216, 2003. http://eprint.iacr.org/.

[24] O. Goldreich, S. Micali, and A. Wigderson. How to play

any mental game. In 19th ACM Symposium on Theory of

Computing, pages 218–229, 1987.

[25] H. Hacigümüş, B. Iyer, C. Li, and S. Mehrotra. Executing

SQL over encrypted data in the database-service-provider

model. In 2002 ACM SIGMOD International Conference

on Management of Data, pages 216–227, June 2002.

[26] C. Hazay and Y. Lindell. Efficient protocols for set intersec-

tion and pattern matching with security against malicious

and covert adversaries. Journal of Cryptology, 23(3):422–

456, 2010.

[27] C. Hazay and T. Toft. Computationally secure pattern

matching in the presence of malicious adversaries. In Ad-

vances in Cryptology – ASIACRYPT 2010, pages 195–212,

2010.

[28] B. Hore, S. Mehrotra, and G. Tsudik. A privacy-preserving

index for range queries. In 30th International Conference

on Very Large Data Bases, pages 720–731, Aug. 2004.

[29] S. Jha, L. Kruger, and V. Shmatikov. Towards practical pri-

vacy for genomic computation. In 29th IEEE Symposium on

Security and Privacy, pages 216–230, 2008.

[30] J. Katz and L. Malka. Secure text processing with applica-

tions to private DNA matching. In 17th ACM Conference on

Computer and Communications Security, pages 485–492,

2010.

[31] J. Katz, A. Sahai, and B. Waters. Predicate encryption sup-

porting disjunctions, polynomial equations, and inner prod-

ucts. In Advances in Cryptology – EUROCRYPT 2008,

pages 146–162, Apr. 2008.

[32] T. Kojm. ClamAV. http://www.clamav.net.

[33] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay –

a secure two-party computation system. In 13th USENIX

Security Symposium, pages 287–302, Aug. 2004.

[34] A. J. Menezes, P. C. V. Oorschot, and S. A. Vanstone. Hand-

book of Applied Cryptography. CRC Press, 1997.

[35] D. Needle. Cloud storage poised to save enterprises money:

Report. http://itmanagement.earthweb.com/

datbus/article.php/3896116/Cloud-Storage-

Poised-to-Save-Enterprises-Money-Report.htm,

July 30, 2010.

[36] P. Paillier. Public-key cryptosystems based on composite de-

gree residuosity classes. In Advances in Cryptology – EU-

ROCRYPT ’99, pages 223–238, May 1999.

[37] B. Pinkas, T. Schneider, N. Smart, and S. Williams. Secure

two-party computation is practical. In Advances in Cryptol-

ogy – ASIACRYPT 2009, pages 250–267, Dec. 2009.

[38] R. Rivest, L. Adleman, and M. Dertouzos. On data banks

and privacy homomorphisms. Foundations of Secure Com-

putation, pages 169–177, 1978.

14

[39] M. Roesch. Snort – lightweight intrusion detection for net-

works. In 13th USENIX Conference on System Administra-

tion, pages 229–238, 1999.

[40] E. Shi, J. Bethencourt, T.-H. Chan, D. Song, and A. Perrig.

Multi-dimensional range query over encrypted data. In 2007

IEEE Symposium on Security and Privacy, pages 350–364,

May 2007.

[41] N. P. Smart and F. Vercauteren. Fully homomorphic encryp-

tion with relatively small key and ciphertext sizes. In Public

Key Cryptography – PKC 2010, pages 420–443, May 2010.

[42] D. X. Song, D. Wagner, and A. Perrig. Practical techniques

for searches on encrypted data. In 2000 IEEE Symposium

on Security and Privacy, 2000.

[43] D. Stehlé and R. Steinfeld. Faster fully homomorphic en-

cryption. In Advances in Cryptology – ASIACRYPT 2010,

pages 377–394, Dec. 2010.

[44] J. R. Troncoso-Pastoriza, S. Katzenbeisser, and M. Celik.

Privacy preserving error resilient DNA searching through

oblivious automata. In 14th ACM Conference on Computer

and Communications Security, pages 519–528, 2007.

[45] M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan.

Fully homomorphic encryption over the integers. In Ad-

vances in Cryptology – EUROCRYPT 2010, pages 24–43,

2010.

[46] A. C. Yao. Protocols for secure computations. In 23rd IEEE

Symposium on Foundations of Computer Science, pages

160–164, 1982.

[47] J. Zhuge, T. Holz, C. Song, J. Guo, X. Han, and W. Zou.

Studying malicious websites and the underground economy

on the Chinese web. In Proceedings of the Workshop on the

Economics of Information Security, June 2008.

15

