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ABSTRACT 

Exploring potential threats to electronic media has been an area of 
active interest in computer security for the purpose of prevention of 
these threats. We examine a threat scenario that involves 
eavesdropping on phones with virtual keypads, a class of phones 
becoming increasingly popular by the day. We explore an approach 
to automatically recover the text that was typed by a person on his 
phone, based solely on a video of this typing activity by observing 
the phone directly, or by observing a reflection of the phone in the 
user’s glasses or even his eyes. Our experiments were conducted 
on two popular smart phones, the iPhone and the Nexus One; the 
same approach can be extended for surveillance on a variety of 
phones and devices with virtual keypads. 
 
KEYWORDS: Surveillance, Eavesdropping, Data security, Phone 

security 

 

1 INTRODUCTION 

Bob, on his way to work, is sitting on a bus typing an email on his 

smart phone. Alice, sitting right across him, records a video of the 

reflection of Bob’s typing activity on his glasses. She records this 

video using her cell phone camera; so no one around is suspicious. 

Meanwhile, a program on Alice’s phone uses this video to 

automatically retrieve the complete text of what Bob was typing.  

 

At first, the scenario above looks like a scene from one of the 

numerous unrealistic James Bond or CSI movies. However, after 

you have read this paper, we are sure that you would believe that 

this scene could be real and could happen to any of us in the near 

future. In this paper, we explore the feasibility of threats similar to 

the one described above. We apply state-of-the-art tools in 

computer vision to examine how real this threat is and whether it 

can be carried out using cheap equipments that cost no more than 

a few hundred dollars. 

 

Recently, there has been a flood of smart phones in the market. 

Sale statistics on the internet show that around 300 million smart 

phones were sold in the year 2010 [12]. More than 50 million units 

of iPhone were sold within the last two years [10], and more than 

100,000 units of the Nexus One were sold within the first three 

months of its release in 2010 [11]. The increasing popularity of 

these internet-enabled smart phones has resulted in these phones 

being used by a large number of people for the exchange of various 

types of information. Apart from making calls and sending text 

messages, they are used for sending emails, sharing photographs 

downloading audio/video media, among a lot of other things. There 

are predictions that mobile phones would become the primary 

personal computing devices in the near future [9], replacing laptops 

and notebook computers. 

 

With the growing popularity of mobile devices in the last few years, 

attacks targeting them are also surging [13]. Network intrusion 

attacks and their defenses have received a considerable amount of 

attention in the recent past. Back in 2004, Guo et al. [14] and Wang 

et al. [15] had pointed out probable attacks in smart phone 

networks and suggested solutions. Since then, there has been a lot 

of research in such threats. [13], [23] and [24] are some recent 

papers which suggest different approaches for privacy monitoring in 

data entering and leaving smart phones.   

 

 

While cryptographic mechanisms have been effective in preventing 

different types of eavesdropping on phones, they cannot protect the 

physical environment of the victim. So far, there has not been any 

extensive study on how camera-based surveillance can be used to 

threaten the privacy of a phone user. Today’s world is full of 

surveillance cameras ubiquitously present in all public places. 

Additionally, pocket camcorders, cell phone cameras, and other 

small sized video capture devices are getting more powerful as well 

as cheaper by the day. Spying on people has always been an 

effective way of information retrieval and smart phone users could 

soon become targets. Hence the threat that we attempt to study in 

this paper is very relevant in the current scenario. Figure 1 shows 

the two types of threat scenarios that we examine; the first one 

(which we call direct surveillance) happens when the camera has a 

direct view of the typing activity, and the second one (indirect 

surveillance) happens when the camera records a reflection of this 

activity on the victims glasses, or his eyes, or some other reflective 

 

         
 

                        (a) Direct surveillance threat model 

 

 
 

       (b) Indirect surveillance threat model 

 

Figure 1: Threat models for automatic phone surveillance 
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surface nearby, like a window pane, a teapot etc. Of course, an 

automated tool, such as the one that we have designed, is required 

in the case of long-lasting surveillance procedures or long user 

activity.  

 

Automatic surveillance on a phone is a hard problem that poses 

several challenges. One particular issue is that without the use of 

expensive and sophisticated cameras, it is not possible to have a 

resolution high enough to read what is displayed on phone display 

screen. As a result, we cannot use optical character recognition 

methods [16]. We approached the problem by an analysis of hand 

gestures and other movements on the touch-screen of the phone. 

 

Motion analysis in our threat scenario is complicated because of 

various reasons. One of the reasons is that there are two types of 

motion to be dealt with: the motion of the user’s fingers on the 

touch-screen of the phone, as well as the overall motion of the 

phone itself. The latter is a distraction for us; we are only interested 

in what movement takes place on the touch-screen, not the phone 

movement when the user is typing on it. This is a relative 

advantage of using motion analysis for surveillance on a computer 

keyboard [4], as the keyboard stays stationary when the user is 

typing on it. 

 

The phone screen is a relatively small object when compared to the 

size of a user’s hands; a large part of the phone is occluded by the 

user’s fingers when he is typing. This occlusion poses challenges 

when standard computer vision techniques are applied for tracking, 

recognition and registration of the phone in the video. The wide 

variations in the viewing angle of the phone in different videos also 

pose a challenge in phone tracking. Depending on the scenario, it 

might be extremely difficult to get a good frontal view of the phone 

screen; in a video without a good view, motion analysis is an even 

bigger challenge than phone recognition. 

 

 

One of the foremost challenges in camera-based automatic phone 

surveillance is the resolution at which the algorithm is required to 

perform for the threat to be real. As explained in Appendix-I 

[Section 8], the maximum resolution of an object in an image is 

directly proportional to the size of the object and the diameter of the 

camera lens. It is also inversely proportional to the distance of the 

object from the camera. While it is possible to capture a very high 

resolution image of the phone by using a large telescope, it makes 

the security threat unreal as it would be hard to spy on a person 

with a huge telescope right in front of her. It would also be very 

expensive and is not the kind of threat that we are interested in. 

Limitations in the size of the camera lens in cheap digital cameras, 

pocket camcorders or mobile phone cameras result in limitations in 

the resolution of the images that can be captured by them. 

Formulae in Appendix-I predict that our approach needs to perform 

at far lower resolutions than what is required for the human eye. 

Figure 2 shows two images, the first of which is an image in which 

the iPhone has a resolution of 200X350 pixels and in the second 

one the iPhone has a resolution of 25X44 pixels. Our algorithm has 

produced very promising results for a surveillance video at the 

resolution of the second image; for effective indirect surveillance 

using a cell phone camera, we need the ability to perform at even 

lower resolution than that. 

 

We are also very interested in recovering data from reflections. We 

have shown promising results for automatic surveillance from a 

video of the reflection of the victim’s typing activity on his 

sunglasses. Figure 1(b) shows our experimental setup for this case. 

One of the obvious challenges in recovering data from reflections is 

because of the size of the object under surveillance. While the size 

of an iPhone is about 11.5 cm X 6 cm [17]; the size of this phone’s 

reflection on a pair of sunglasses would be about 1.07 cm X 0.57 

cm [Section 8], which is around a tenth of the original object size; 

the size of this phone’s reflection on a human eye would be about 

1.6 mm X 0.86 mm [Section 8], which is around a hundredth of the 

object size! Direct surveillance itself causes a low-resolution-

challenge for our algorithm; it is obvious that indirect surveillance, 

where the object being monitored is much smaller, poses an even 

harder low-resolution-challenge. Additionally, depending on the 

surface where the reflection takes place, there might be a need for 

distortion correction of the reflected image. Distortion correction in 

reflected images is in itself a major research topic in computer 

vision. Nishino and Nayar [18] have done seminal work focused on 

rectifying images that capture reflections of the surrounding 

environment on the human eye. We have not addressed this issue 

yet but as we apply our algorithm to eye reflections in the near 

future, we would need to do so. 

 

The current contributions of our work are: 

 

• We show that it is possible to automatically reconstruct 

the text being typed by a user on a virtual keypad phone 

by analyzing solely the video stream of the typing activity. 

• We have developed a robust method for tracking the 

phone as well as analyzing the user’s motion by using 

state-of-the-art techniques in computer vision. 

• We have examined the threat of automatic phone 

surveillance via monitoring of the reflection of the phone 

in the user’s glasses. 

 
The remainder of this paper is organized as follows. In Section 2 
we talk about some previous work that are related to our topic, and 
which have inspired us in several ways. Section 3 explains the 
details of our method in several sub-sections. In Section 4 we 
present some of our results. In Section 5, we give a discussion of 
how real this threat is and what kind of optical instruments are 
required to carry out this threat. In Section 6, we conclude and 
mention some of the steps that we are taking in the future. 
 

2 RELATED WORK 

Backes et al.[1] have presented a novel eavesdropping technique 

for spying at a distance on data displayed on an LCD monitor by 

 
 
Figure 2: Algorithm needs to perform at low resolutions 
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capturing images from reflections in various common objects like 

eye-glasses, teapots, spoons, and even the human eye balls. They 

present results of capturing data from distances ranging from 5m to 

30m, with equipments that include high quality SLR cameras, low 

cost telescopes as well as very expensive and large size 

telescopes. Balzarotti et al [4] have presented a novel approach for 

eavesdropping on keyboard input from surveillance videos. Their 

approach assumes that the keyboard is placed on a flat table, the 

user’s hands have restricted movement, the camera has a clear 

overhead view of the typing activity, and that the keyboard does not 

move when the user is typing. While these are all reasonable

assumptions for keyboard surveillance, none of them hold true in 

the case of phone surveillance. While typing on the phone, the user 

has complete freedom of moving the phone as well as moving his 

hands. It is also not always feasible to have a clear view of the 

typing activity because of occlusion of the phone by the user’s

hands, face and shoulders. Also, even when a clear view is present 

a large part of the phone is still occluded by the user’s fin

he is typing on it. Hence, while the approach presented by 

Balzarotti et al has provided good results for keyboard surveillance, 

it cannot be directly extended to phone surveillance.

3 APPROACH 

The goal of our work is to automatically reconstruct the text typed 
by a user by analyzing a video recording of the typing session. 
Figure 4 is a flowchart of our approach. The inputs to our method 
are the surveillance video and some prior information about the 
phone being tracked, namely, the keypad layout and a reference 
image of that phone. Both these facts can be easily obtained from 
an online user manual of the phone. Figure 3
images for two of the phones we used in our experiments. 
 

 
The reference image is used by our algorithm to track and identify 
the location of the phone in the surveillance video. Our tracking 
algorithm, the details of which are in Section 3.2, gives information 
about the location as well as orientation of the phon
particular frame of the video. Given the location of the phone in a 
particular frame, we would then like to focus our attention on that 
particular area of the frame.  

 
The tracking step in our method is followed by a stabilization step 
[Section 3.3], in which we align the image of the phone in 
successive frames of the input video. As we shall explain later, this 
helps us to nullify the overall motion of the phone and concentrate 
on the movement of the users fingers on the virtual keypad. 
 
Our next task is to detect “key pressed” events across the video 
[Section 3.4]. A “key pressed” event is one in which the user has 
typed a single character on his keypad. There is one particular 

                

                                     
                

                 (a) iPhone                                       (b) Nexus One

 

Figure 3: Reference images IREF for two phones used in our 

experiments 
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various common objects like 

glasses, teapots, spoons, and even the human eye balls. They 

present results of capturing data from distances ranging from 5m to 

30m, with equipments that include high quality SLR cameras, low 

y expensive and large size 

telescopes. Balzarotti et al [4] have presented a novel approach for 

eavesdropping on keyboard input from surveillance videos. Their 

approach assumes that the keyboard is placed on a flat table, the 

ovement, the camera has a clear 

overhead view of the typing activity, and that the keyboard does not 

move when the user is typing. While these are all reasonable 

assumptions for keyboard surveillance, none of them hold true in 

e. While typing on the phone, the user 

has complete freedom of moving the phone as well as moving his 

hands. It is also not always feasible to have a clear view of the 

typing activity because of occlusion of the phone by the user’s 

s. Also, even when a clear view is present 

a large part of the phone is still occluded by the user’s fingers when 

, while the approach presented by 

Balzarotti et al has provided good results for keyboard surveillance, 

directly extended to phone surveillance.  

The goal of our work is to automatically reconstruct the text typed 
the typing session. 

a flowchart of our approach. The inputs to our method 
surveillance video and some prior information about the 

phone being tracked, namely, the keypad layout and a reference 
image of that phone. Both these facts can be easily obtained from 

ual of the phone. Figure 3 shows reference 
r two of the phones we used in our experiments.  

 

The reference image is used by our algorithm to track and identify 
the location of the phone in the surveillance video. Our tracking 
algorithm, the details of which are in Section 3.2, gives information 
about the location as well as orientation of the phone in any 
particular frame of the video. Given the location of the phone in a 
particular frame, we would then like to focus our attention on that 

llowed by a stabilization step 
, in which we align the image of the phone in 

successive frames of the input video. As we shall explain later, this 
helps us to nullify the overall motion of the phone and concentrate 
on the movement of the users fingers on the virtual keypad.  

s across the video 
. A “key pressed” event is one in which the user has 

typed a single character on his keypad. There is one particular 

feature in most smart phones (with a virtual keypad) that 
tremendously helps us in detecting such events. This feature is that
whenever a user presses a particular key, that key pops up on the 
phone screen. For example [Figure 7], when
letter ‘T’, a big ‘T’ pops up somewhere 
the user know what he has just typed.

techniques coupled with the information provided by our tracking 
algorithm, we are able to detect such “key pressed” events.
  
For every frame in the video, the method
answers the question, “Was a key pressed by the user in 
frame?” If the answer to the previous question
task then is to predict which key was pressed by the user in this 
particular event. Determination of which key was pressed requires 
an alignment of the phone in this video frame to the 
Image of the phone. Our algorithm [Section 3.5
output of the previous steps, as well as t
the phone keypad layout to provide this analysis
 
We have now identified the individual characters that were pressed 
by the user during the “key pressed” events in the video. Because 
of various challenges involved in the different stages of our 
approach, it is extremely hard to produce a 
i.e, the output of our approach needs to undergo some 
text processing to produce higher accuracy results.
the process of exploring probabilistic text p
us and the results reported in this paper does not 

3.1 Background 

 

(b) Nexus One 

for two phones used in our 

      

      
 

Figure 4: Flowchart of our approach 
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feature in most smart phones (with a virtual keypad) that 
y helps us in detecting such events. This feature is that 

es a particular key, that key pops up on the 
, when the user presses the 

’ pops up somewhere on the phone screen to let 
the user know what he has just typed. Using change detection 

the information provided by our tracking 
detect such “key pressed” events. 

method described in Section 3.4 
the question, “Was a key pressed by the user in this 

If the answer to the previous question is affirmative, our 
to predict which key was pressed by the user in this 

Determination of which key was pressed requires 
video frame to the Reference 
Section 3.5] makes use of the 

f the previous steps, as well as the prior knowledge about 
this analysis [Section 3.5].  

now identified the individual characters that were pressed 
by the user during the “key pressed” events in the video. Because 
of various challenges involved in the different stages of our 
approach, it is extremely hard to produce a 100% correct output, 

, the output of our approach needs to undergo some additional 
to produce higher accuracy results. We are still in 

probabilistic text processing tools to assist 
us and the results reported in this paper does not include that step.  

 

“Key pressed” event occurs ?

Identify and track the phone in the video

eference Image

with respect to the phone 

Loop: For every frame in the video
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GO TO NEXT FRAME
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This section provides an introduction to some of the computer 
vision tools used in our approach. SIFT [3] is a powerful feature 
descriptor that we use for feature tracking in various stages of our 
method. The SIFT descriptor of a region consists of a histogram of 
gradients in that region. SIFT descriptors are widely used because 
they associate to each region a signature which identifies their 
appearance in a compact and robust way. They are consistent with 
considerable variations of the illumination, viewpoint and other 
viewing conditions [25]. Maximally Stable Extremal Regions 
(MSERs) [2] are regions in an image that are either brighter or 
darker than their surroundings. These regions are stable across a 
range of thresholds of the intensity functions. We use an MSER 
detector in our tracking process to detect regions on the phone that 
are repeatable across changes in illumination, as well as changes 
in viewpoint.    
 

A homography is a projective transformation that relates a planar 
object in two different views. The phone screen in one image is 
related to the same screen in another image by a homography. 
Affine normalization is the process of converting elliptical regions in 
an image to circles so that these can be matched with other regions 
which are related to them by an affine transformation. RANSAC, 
which stands for Random Sample Consensus [6] is a widely used 
method in computer vision for robust estimation of models from 
data. The method essentially uses random samples to construct a 
model and then selects the model which has the highest consensus 
from all other samples. We use RANSAC to estimate a 
homography between two different views of the same planar object.   
 

3.2 Phone Identification, Tracking and Registration 

Determining the location of the phone in the video is extremely 

helpful to focus our analysis on the object of interest. In any frame 

in the surveillance video, our tracking algorithm locates the phone 

by matching areas on the phone in the reference image [Figure 3] 

to areas in the surveillance image. The reason we chose an area 

feature detector over widely-used point detectors like Harris 

Corners [5] was because most of the features returned by point 

detectors happen to lie in the keypad region of the phone, which is 

often occluded by the user’s hands or fingers. Because of the 

occlusions, they tend to return fewer relevant features than what is 

required by our matching algorithm. Moreover, a phone has several 

distinct regions like the keys, the phone screen etc. which are 

picked up by the MSER detector with good consistency over a 

considerable variation of illumination as well as viewing angles. We 

also observed that the keys on the virtual keypad of the phone are 

regions of a particular type which are similar in appearance to each 

other but very different from non-key regions. Hence it is easier to 

detect the keys on the phone.   

 

Algorithm 1 gives an outline of our tracking approach. We start by 

detecting MSER regions in the reference phone image, and 

selecting some regions which are repeatable across different 

surveillance scenarios. Let us call them the distinguished regions 

Dref. These distinguished regions [Figure 4] consist of keys, the 

phone screen, and some other regions which are frequently 

detected in different videos. Note that the selection of Dref needs to 

be done only once for every type of phone that we want to detect. 

For example, if we select Dref for an iPhone, it can be used for all 

surveillance videos that track an iPhone.  

 

The surveillance video can be represented by a sequence of 

frames or images { I1, I2 … IM } extracted from the video at times { t1, 

t2 … tM }. For every image Ik in this sequence, we match MSERs 

detected in this image to the distinguished regions Dref. We 

represent MSER regions by their SIFT descriptors. SIFT descriptors 

are very suitable for our case as the image of the phone undergoes 

a lot of variation in lighting conditions as well as viewing angles in 

different surveillance videos and SIFT descriptors are invariant to a 

large degree in terms of changes in scale, intensity as well as 

viewing angle.  

  

 

We represent the regions returned by the MSER detector as 

ellipses, and perform affine normalization to turn them into oriented 

circles before extracting their SIFT descriptors. This pre-processing 

step makes the matching invariant to affine transformations and 

hence makes these descriptors robust to a wider difference in 

viewing angles. 

 

As shown in Figure 5, the distinguished regions { Dk } determined in 

the surveillance image IK contain answers to questions like “Where 

is the outline of the entire phone?”, “Where is the display screen of 

the phone?”, and “Where are the keys in the keypad of the 

phone?”. From the output of the tracking algorithm, we compute a 

mask for the entire phone, henceforth called the phone mask 

[Figure 15], which identifies the location of the phone in the image.  

Algorithm 1: Track and Identify the Phone 

 

Output: For every frame in the video, a vector of ellipses that 

represent the location of the phone as well as location of 

keys and other such features on the phone in that particular 

frame  

 

1:   detect MSERs in the reference phone image IREF (say {Rref}) 

 

2:  select a subset of MSERs in {Rref}, which are repeatable across 

different surveillance scenarios. Let us name this subset 

distinguished regions {Dref}. 

 

3:    for every image IK in the surveillance video do: 

 

4:  detect MSERs in the image IK (say {RK}). 
 

5:  match regions in {RK} to distinguished regions {Dref} in 

the reference image and select those regions in {RK} 

which have high match scores. 

 

6: refine the output of step 5 by a model-based post-

processing method to finalize the distinguished regions 

{DK}  

 

 {DK} contains the {phone location, keys location, keypad 

lines, ...} in image IK  

 
 

(a) Reference image                 (b) Surveillance image 

 

Figure 5: Distinguished regions detected in the Reference image and 

matched with those detected in a Surveillance image  

Screen

middle

Phone

outline

Keys

Keypad 

Lines



 

 

Additionally, we have observed that the keys in a QWERTY key

are arranged in horizontal lines. To take advantage of that 

structure, we fit lines to the keys detected on the phon

surveillance image. These lines (henceforth referred to as 

lines) help us get a stronger confidence on the location of the 

keypad of the phone, and that is helpful because

events that we are primarily interested in take place in the keypad 

area of the phone rather than the entire phone.  

 

We have successfully employed our approach to detect the phone 

in various surveillance scenarios [Figure 6] including the case in 

which the video captures a reflection of the typing activity in a 

person’s sunglasses. Once the phone has been identified and 

located in the video, we now proceed to the next stage 

would attempt to detect the “key pressed” events in a stabilize

stream. 

 

3.3 Change detection by absolute differencing

At the resolution at which our approach is implemented

possible to find out what the user is typing by read 

screen on the phone. We had to design an approach

on the analysis of the motion of the user’s fingers 

that take place on the phone like the “key pops up” event 

We decided to use one of the simplest yet very powerful methods 

of motion and change detection, namely, the method of a

differencing. The general idea of absolute differencing 

looking at the differences between two images of the same scene 

taken at different times. The parts of the scene that 

will look exactly the same in both images, and the 

images come from the parts that have moved. 

differences can determine where in the scene the motion took place 

as well as what type of motion it was.  

 

We compute a difference image by considering the 

absolute differences. Let us consider the sequence of images 

extracted from the video { I1, I2 … IM }. Let the absolute difference 

images between each consecutive pair be the sequence {

DM-1 }, where, 

Dn(x) = | In+1(x) – In(x) |, for every pixel x in the images

 

                                             
  (a) Reference image                                (b) Direct surveillance

 

                         
     (c) Direct surveillance                              (d) Sunglass reflections

 

Figure 6: Distinguished regions detected in various scenarios. 
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the keys in a QWERTY keypad 

To take advantage of that 

on the phone in the 

. These lines (henceforth referred to as keypad 

) help us get a stronger confidence on the location of the 

because the “key pressed” 

place in the keypad 

to detect the phone 

including the case in 

which the video captures a reflection of the typing activity in a 

Once the phone has been identified and 

located in the video, we now proceed to the next stage in which we 

would attempt to detect the “key pressed” events in a stabilized 

Change detection by absolute differencing 

is implemented, it is not 

read it off the display 

approach which relies 

fingers and other events 

the “key pops up” event [Figure 7]. 

We decided to use one of the simplest yet very powerful methods 

the method of absolute 

absolute differencing involves 

between two images of the same scene 

that were stationary 

, and the differences in the 

have moved. Analysis of these 

determine where in the scene the motion took place 

We compute a difference image by considering the pixel-wise 

Let us consider the sequence of images 

. Let the absolute difference 

images between each consecutive pair be the sequence { D1, D2 … 

in the images 

An analysis of the difference image DK 

motion that took place in the scene between the times 

We begin our analysis by assuming that the phone 

stationary in the video, that is, the user does not move the phone 

while typing on it. We would later generalize the discussion to 

involve the movement of the phone as well. 

different types of motions or events leave 

difference image. 

  

In our experiments, we found out that the motion 

phone area (for a phone with a virtual keypad

a very small number of categories: 

 

• “Key pops up”: This is the event in which a key is pressed by 

the user. In all virtual keypad phones, whenever a user 

presses a key (say the letter T [Figure 7]

on the screen so that the user easily knows what he is typing. 

• “Key pops down”: This is the event in which the key (say the 

letter T) that popped up when the user pressed it pops down 

so that the user can carry on with the typing activity.

• “Finger moves”: This is the event in which the user’s finger(s) 

are moving in the phone area between the times when 

presses the keys [Figure 9]. 

• “No movement”: This is the event that no movement occurs 

inside the phone area. This takes place when the user pauses 

while typing, or just before and after the message has been 

typed.   

 

Figures 7, 8 and 9 show the difference images for the two most 

significant events, the “key pops up” and the “finger moves” events 

         
    (a) Image Ik       (b) Image Ik+1           

 

Figure 8: Signature of a “key pops up event” for a Nexus One phone

 

 
(b) Direct surveillance 

    
(d) Sunglass reflections 

Distinguished regions detected in various scenarios.  

          
 
 (a) Image Ik         (b) Image Ik+1          

 

Figure 7: Signature of a “key pops up event” in the difference image 

for an iPhone. The key T was pressed between the frames 

(b) and (a) and (c) is the difference image that records this 

motion.  
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 gives us a good idea of the 

motion that took place in the scene between the times tK and tK+1. 

We begin our analysis by assuming that the phone remains 

the user does not move the phone 

while typing on it. We would later generalize the discussion to 

involve the movement of the phone as well. We observed that 

f motions or events leave typical signatures in the 

that the motion taking place in the 

for a phone with a virtual keypad) can be classified into 

: This is the event in which a key is pressed by 

the user. In all virtual keypad phones, whenever a user 

[Figure 7]), the letter T pops up 

n so that the user easily knows what he is typing.  

: This is the event in which the key (say the 

) that popped up when the user pressed it pops down 

so that the user can carry on with the typing activity. 

event in which the user’s finger(s) 

area between the times when he 

: This is the event that no movement occurs 

inside the phone area. This takes place when the user pauses 

while typing, or just before and after the message has been 

show the difference images for the two most 

significant events, the “key pops up” and the “finger moves” events 

           
           (c) Difference image Dk 

Signature of a “key pops up event” for a Nexus One phone 

       

          (c) Difference image Dk 

Signature of a “key pops up event” in the difference image 

was pressed between the frames 

(b) and (a) and (c) is the difference image that records this 



 

 

respectively. The signature of the “key pops down” event is very 

similar to the “key pops up” event.  

 

Thus, the process of detection of the “key pressed” event in the 

sequence of frames {I1, I2 … IM} is reduced to the process of 

detection of the “key pops up” event in the sequence of difference 

images {D1, D2 …DM-1}. We use certain heuristics and parameters 

to detect the “key pops up” event in the difference image

 

3.3.1 Detection of the “key pops up” event

The task of detecting whether a “key pops up” event

difference image Dk essentially involves searching 

appearance in the image, This is accomplished by f

image Dk with an averaging filter and looking at the places 

are local maxima of the filter output. If the filter output at one of 

these maxima is within a certain range of value

empirically), a “key pops up” event occurs in this difference image

otherwise it does not. The following sections A and B 

certain spatial as well as temporal data in the difference

sequence help us in searching for this event. 

            
 (a) Image Ik          (b) Image Ik+1               (c) Difference image 

 
Figure 9: Signature of a “finger moves” event. The finger moves over 

the phone between the frames (a) and (b) and (c) is the 

difference image that records this motion

 

Algorithm 2: Detect “key pops up” event in difference image 

 

Output: Set of probable points in DK where this event occurs

Return NULL if no such point is found 

 

1:   filter DK with an averaging filter f, size(f) ∝ key_size

 

DK΄ = f ∗ DK,          

 

2:   calculate DK+1΄ and DK-1΄ as in step 1.  

 

2:   select a set of local maxima in the filtered output 

this set {MK}.  
 

3:   for every point (xK
i, yK

i) in MK do: 

 

4:  check if DK΄ (xK
i, yK

i) is in the proper range.

 

5:  check if the ratio 
��΄ ���

�,  	

�  �

���΄ ���
�,  	


�  �
 is in proper range.

 

6:  check if the ratio 
��΄ ���

�,  	

�  �

���΄ ���
�,  	


�  �
 is in proper range.

 

7:    if (xK
i, yK

i) satisfies all three conditions {4, 5, 6} 

 
8:  add (xK

i, yK
i) to the output. 
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respectively. The signature of the “key pops down” event is very 

, the process of detection of the “key pressed” event in the 

} is reduced to the process of 

up” event in the sequence of difference 

heuristics and parameters 

” event in the difference image sequence. 

Detection of the “key pops up” event 

“key pops up” event occurs in a 

searching for a blob-like 

This is accomplished by filtering the 

at the places which 

If the filter output at one of 

values (determined 

up” event occurs in this difference image; 

A and B explain how 

spatial as well as temporal data in the difference image 

a) SPATIAL DATA IN THE DIFFERENCE IMAGE

 

Our tracking algorithm [Section 3.2] gives us information about the 

location of the phone in the surveillance 

of the keys on the virtual keypad of the phone

fit keypad lines to the detected keys. Figure 10

lines overlaid on a difference image which 

pops up” event. The knowledge of the position of the 

and the detected keys helps us know where

to search for the “key pops up” event.  

 

Our tracking algorithm outputs regions. 

location of the keys and keypad lines, we also have an idea of the 

size of the keys (in pixels) in a surveillance image

keys is approximated as the average size of the regions 

reported as keys by the tracking algorithm. 

size helps us to determine the size of the averaging filter that we 

use while searching for the “key pops up” event

accurate detection, it is very crucial to have an 

matches the size of the key that pops up 

 

b) TEMPORAL DATA IN THE DIFFERENCE IMAGE SEQUENCE

 

In order to capture all the key pressed events, 

from the surveillance video at a rate of 30 frames per second.

Surveys of typing speeds ([7], [8]) show tha

speed in virtual QWERTY keypads (like the ones on the phones we 

experiment on) ranges around 15-30 words per minute. This means 

that in a video of 30 seconds (900 frames

only about 40 to 80 keys. Our job is to find those 40 to 8

images out of 900, in which a “key pressed” event was

the rest of the 820 to 860 frames, the difference image mostly 

records a “finger moves” event (Figure 9)

must be able to correctly reject the “finger moves” events 

robust and accurate way. Analysis of temporal relations in the 

difference image sequence helps us 

pops up” events and “finger moves” events and thus 

“finger moves” events. Algorithm 2 gives a detailed outline of our 

method. 

 
(c) Difference image Dk 

Signature of a “finger moves” event. The finger moves over 

the phone between the frames (a) and (b) and (c) is the 

difference image that records this motion 

    
 

(a) Keypad lines      (b) Size of the averaging filter

 

Figure 10: Spatial data helps in searching for “key pops up” event

 

(a) Keypad lines overlaid on a difference image which records 

the pressing of the key E. Keypad lines give us a good idea of 

where to look for a “key pops up” 

 

(b) The size of the averaging filter is important for detecting the 

type of blob that identifies a “key pops up event”. The size of 

the red circle (the averaging filter) must match the size of 

the key (in this figure, letter H) that pops up. 

: Detect “key pops up” event in difference image DK 

where this event occurs 

key_size(DK) 

a set of local maxima in the filtered output DK΄. Let us call 

) is in the proper range. 

is in proper range. 

is in proper range. 

) satisfies all three conditions {4, 5, 6} then 
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SPATIAL DATA IN THE DIFFERENCE IMAGE 

gives us information about the 

surveillance image as well the location 

of the phone. Additionally, we also 

Figure 10 (a) shows keypad 

which has recorded a “key 

The knowledge of the position of the keypad lines 

and the detected keys helps us know where in the difference image 

regions. Hence, apart from the 

we also have an idea of the 

size of the keys (in pixels) in a surveillance image. The size of the 

the average size of the regions which are 

reported as keys by the tracking algorithm. The knowledge of key 

size of the averaging filter that we 

while searching for the “key pops up” event (Figure 10 (b)). For 

have an averaging filter that 

matches the size of the key that pops up in the difference image. 

TEMPORAL DATA IN THE DIFFERENCE IMAGE SEQUENCE 

In order to capture all the key pressed events, we extract frames 

video at a rate of 30 frames per second. 

show that the average typing 

s (like the ones on the phones we 

30 words per minute. This means 

900 frames) the user typically types 

ur job is to find those 40 to 80 difference 

images out of 900, in which a “key pressed” event was recorded. In 

0 frames, the difference image mostly 

(Figure 9). Hence our algorithm 

must be able to correctly reject the “finger moves” events in a 

. Analysis of temporal relations in the 

difference image sequence helps us differentiate between “key 

nts and “finger moves” events and thus reject these 

Algorithm 2 gives a detailed outline of our 

 

ze of the averaging filter 

Spatial data helps in searching for “key pops up” event 

(a) Keypad lines overlaid on a difference image which records 

. Keypad lines give us a good idea of 

where to look for a “key pops up” event. 

(b) The size of the averaging filter is important for detecting the 

type of blob that identifies a “key pops up event”. The size of 

the red circle (the averaging filter) must match the size of 

) that pops up.  



 

 

 

                  
               (a)   (b)   

 

Figure 11: Three successive difference images recording “finger 

moves” events. These events are continuous in nature.

Figure 11 shows three successive frames that record “finger 

moves” events. The moving of the finger over the phone is a 

continuous event and hence is detected in many of the difference 

images in the sequence. 

 

Figure 12 shows three successive frames near a “key pops up” 

event. The ‘key pops up’ and ‘key pops down’ events are sporadic 

or episodic in nature. The key pops up in an instant, stays on for 

some time (during which the difference image shows a zero 

difference at the place where the key pops us) and then pops down 

in an instant.  

 

Thus, by examining the neighboring images in the 

sequence, we are able to reject “finger moves” events and 

higher confidence over the prediction of a “key pops up

process involves comparing the ratio of pixel values 

averaging filter) in the blocks that represent the particular event in 

the difference image DK with the pixel values at the same locations 

in its time neighbors DK-1 and DK+1. 

3.3.2 “Which key was pressed?” 

Once a “key pops up” event has been recorded in a difference 

image DK, our task now is to predict which key was pressed. While 

template matching with the appearance of the key (in the difference 

DK image or the image IK+1) seemed to be a promising idea initially, 

as we started lowering the resolution of the images (for vide

surveillance from a distance or for surveillance on the reflections on 

a sunglasses etc.), it was difficult to distinguish the keys from each 

other based solely on their appearance. The scenario is shown in 

the Figure 13, which shows images from two surv

that have captured the typing activity at a rather low resolution. In 

13(a), the key R was pressed but template matching would give 

 

               
            (a)   (b)   
 

Figure 12: Three successive difference images near a “key pops up” 

event. Image (b) records this event and (a) and (c) are the 

nearby difference images. 
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(c) 

Three successive difference images recording “finger 

moves” events. These events are continuous in nature. 

Figure 11 shows three successive frames that record “finger 

moves” events. The moving of the finger over the phone is a 

s detected in many of the difference 

Figure 12 shows three successive frames near a “key pops up” 

event. The ‘key pops up’ and ‘key pops down’ events are sporadic 

or episodic in nature. The key pops up in an instant, stays on for 

ome time (during which the difference image shows a zero 

difference at the place where the key pops us) and then pops down 

Thus, by examining the neighboring images in the difference image 

events and obtain a 

pops up” event. The 

process involves comparing the ratio of pixel values (after 

in the blocks that represent the particular event in 

el values at the same locations 

Once a “key pops up” event has been recorded in a difference 

, our task now is to predict which key was pressed. While 

template matching with the appearance of the key (in the difference 

) seemed to be a promising idea initially, 

as we started lowering the resolution of the images (for video 

surveillance from a distance or for surveillance on the reflections on 

a sunglasses etc.), it was difficult to distinguish the keys from each 

on their appearance. The scenario is shown in 

the Figure 13, which shows images from two surveillance videos 

that have captured the typing activity at a rather low resolution. In 

was pressed but template matching would give 

positive results for many letters that look like 

(for example B, P, E, H, A). We decided that

which key was pressed was to look at the location of the 

was detected in the difference image while searching for the “key 

pops up” event.  

 

 

Algorithm 3 gives an outline of our approach

computing the transformation that warps the 

to the reference image IREF (details in Algorithm 4)

 
(c) 

Three successive difference images near a “key pops up” 

event. Image (b) records this event and (a) and (c) are the 

 

Algorithm 3: Detect which key was pressed at the time 

 

Input: i) The point (xK, yK) in the difference image 

pops up” event has occurred. 

 ii) A keypad map for this phone that says where on the phone 

screen a key pops up when that particular key is pressed 

by the user.  

 

Output: Set of probable letters that were pressed along with 

respective probabilities. 

Return NULL if no key was pressed at time 

 

1:  estimate a homography HK between the image 

reference image IREF (details in Algorithm 4).
 

2:   warp the difference image DK by the transformation 

DK΄= DK * HK 

 

         (xK, yK) transforms to (xK΄, yK΄) under this transformation

 

2:   perform posterior optimization via the steps 3 and 4.

(explained further in the Section 3.3.2)

 

3:   for every key i in the keypad do: 

 

4:  ����� �  
�������������

��
 

  

     p'(i) ∝ probability that key i was pressed

 

ai = area where key i pops up if it is pressed

 

aintersection = area of overlap between the blob at 

(xK΄, yK΄) in DK

pops up if pressed

 

6:   return NULL if aintersection = 0 for all keys

 

5:   select the n keys with the highest probabilities 

 

7:  renormalize the probabilities to make them sum to 1 and 

all the n (key, probability) pairs. 

                  
         (a)    

 

Figure 13: At low resolutions, it is difficult to predict which key was 

pressed based on its appearance. So template matching fails 

UNC CHAPEL HILL, JUNE 2011 

positive results for many letters that look like R at that resolution 

d that the best way to predict 

s to look at the location of the blob that 

while searching for the “key 

our approach. We begin by 

computing the transformation that warps the surveillance image IK 

(details in Algorithm 4). We warp the 

: Detect which key was pressed at the time tK  

) in the difference image DK, where a “key 

ii) A keypad map for this phone that says where on the phone 

screen a key pops up when that particular key is pressed 

Set of probable letters that were pressed along with 

Return NULL if no key was pressed at time tK. 

between the image IK and the 

(details in Algorithm 4).          

by the transformation HK to get 

) under this transformation 

posterior optimization via the steps 3 and 4. 

(explained further in the Section 3.3.2) 

was pressed 

pops up if it is pressed 

= area of overlap between the blob at  

K΄ and the area where key i 

pops up if pressed 

= 0 for all keys 

keys with the highest probabilities  

the probabilities to make them sum to 1 and output 

 
   (b) 

At low resolutions, it is difficult to predict which key was 

pressed based on its appearance. So template matching fails  



 

 

difference image DK by the same transformation to obtain a warped 

difference image DK΄. We then perform posterior optimizati

determine which keys have the highest probabilities of being 

pressed, given the warped difference image DK΄ 

yK΄) where the “key pops up” blob occurs. At this stage, we take 

advantage of the fact that it is easy to obtain from a single 

experiment, a map that says which region of the screen pops up 

when a particular key is pressed on this phone.  

 

For any key i in the keypad,  

 

���/���� � ����
� /��   ����   

 

where, ���� = prior probability of the key i being pressed

 

            ���/���� = posterior probability of the key 

given DK΄ and ( xK΄, yK΄) 

 

             ����
� /�� = probability the blob at ( xK΄, yK

key i has been pressed 

 

                          =  
�������������

��
 

   
ai  =  area where key i pops up if it is pressed

map) 
 

aintersection  =  area of overlap between the blob at (
DK΄ and the area where key 
pressed 

 

Based on formula (1) above, we compute the posterior probabilities 

of keys by computing the ratio of areas of overlap. 

overlap at all between the blob in the difference image and the 

up” areas of the keys in the given map, we assume 

pressed in this frame. 

 

From the results of the posterior optimization, we could either 

choose to output the one particular key with the highest probability 

as the one being pressed or we could output a list of probable keys 

and their corresponding probabilities. An example output of this 

stage might look like “There is a 70% chance that an 

pressed, and a 30% chance that it might have been an 

exploring ways to utilize these probabilities by 

probabilistic text processing method to refine the results of our 

overall approach.  

 

3.4 Image Alignment 

Image alignment is one of the most crucial parts of our entire 
approach. The analysis in Section 3.3 of this paper assumes that 
the phone is stationary and all the events and motions are with 
respect to the phone. In a general scenario, while typing, the user 
moves the phone as well. In this case, the difference image 
between two consecutive frames in the video IK
information about: 
 
• The overall motion of the phone and the hand(s) holding the 

phone 
• The motion of the fingers in the phone area and the “key 

pressed events” 
 
The first type of motion is a distraction for us as we are only 
interested in the motion that happens in the phone area.
shows two consecutive images (a) and (b) (let us call them 
Ib) in the image sequence of a surveillance video. A “key p
event” occurs between the times ta and tb in the video. 
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to obtain a warped 

We then perform posterior optimization to 

s have the highest probabilities of being 

 and the point (xK΄, 

At this stage, we take 

obtain from a single 

says which region of the screen pops up 

      (1) 

being pressed 

terior probability of the key i being pressed 

K΄) in DK΄ given that 

pressed (given by the 

area of overlap between the blob at (xK΄, yK΄) in 
and the area where key i pops up if 

posterior probabilities 

of keys by computing the ratio of areas of overlap. If there is no 

overlap at all between the blob in the difference image and the “pop 

in the given map, we assume that no key was 

From the results of the posterior optimization, we could either 

choose to output the one particular key with the highest probability 

a list of probable keys 

An example output of this 

“There is a 70% chance that an E was 

pressed, and a 30% chance that it might have been an R”. We are 

exploring ways to utilize these probabilities by designing a 

cessing method to refine the results of our 

the most crucial parts of our entire 
of this paper assumes that 

the phone is stationary and all the events and motions are with 
respect to the phone. In a general scenario, while typing, the user 
moves the phone as well. In this case, the difference image DK 

K and IK+1 contains 

The overall motion of the phone and the hand(s) holding the 

The motion of the fingers in the phone area and the “key 

The first type of motion is a distraction for us as we are only 
that happens in the phone area. Figure 14 

shows two consecutive images (a) and (b) (let us call them Ia and 
) in the image sequence of a surveillance video. A “key pressed 

in the video.  (c) is the 

difference image between Ia and Ib calculated by taking the pixel
wise differences in both images. We can clearly see the 
disturbance in the difference image caused by the slight mo
of the phone. In fact, detecting the “key pops up” event in the 
difference image (c) is very difficult. 
computed between images Ia and Ib’, where I
subjected to a transformation that aligns the phone area in image 
to the phone area in image Ia. It is evident that the difference image 
(d) is more meaningful for our analysis and also clearly shows the 
“key pops up” event in it. 

 

Our tracking algorithm [Section 3.2] tells us the location of the 

phone in the image and also returns the region that is occupied by 

the phone in the image. From the output of this stage, a 

mask is computed so that we mask out

surveillance image except the phone, 

interest. The phone mask [Figure 15] plays a

image alignment process as this helps us find feature

exactly on the phone.  

 

      (a)   

  

 (c)    

 

Figure 14: The need for image alignment. 

(a) and (b) are two consecutive frames in a video. (c) is the 

difference image between (a) and (b). (d) is the difference 

image between (a) and (b) after aligning the phone area in 

(b) to the phone area in (a). 

  
        (a)    

 

Figure 15: Result of locating or masking the phone in an image

(a) Cropped image from surveillance video. 

(b) Locating the phone in the image 
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calculated by taking the pixel-
wise differences in both images. We can clearly see the 
disturbance in the difference image caused by the slight movement 
of the phone. In fact, detecting the “key pops up” event in the 

image (c) is very difficult. (d) is the difference image 
’, where Ib’ is the image Ib 

subjected to a transformation that aligns the phone area in image Ib 
. It is evident that the difference image 

(d) is more meaningful for our analysis and also clearly shows the 

tells us the location of the 

phone in the image and also returns the region that is occupied by 

From the output of this stage, a phone 

is computed so that we mask out everything else in the 

 and focus on the object of 

plays an important role in the 

image alignment process as this helps us find features that lie 

 
     (b) 

 
(d) 

The need for image alignment.  

(a) and (b) are two consecutive frames in a video. (c) is the 

difference image between (a) and (b). (d) is the difference 

image between (a) and (b) after aligning the phone area in 

 
(b) 

Result of locating or masking the phone in an image 

(a) Cropped image from surveillance video.  

(b) Locating the phone in the image (phone mask) 
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One of the initial ideas that we explored was to align the phone in 

all the images in the surveillance video to the reference image of 

the phone. This approach, while it seems to simplify the process a 

lot, turned out to be a failure because of several reasons. One 

apparent reason was that in many of the surveillance images, a 

large part of the phone in occluded by the user’s hands; so there 

weren’t enough correct correspondences to estimate a correct 

transformation that warps the surveillance image to the reference 

image. Another reason was that our method of absolute 

differencing relies on the temporal relations between the video 

frames. Hence, separately aligning each of the frames to the 

reference image destroyed that temporal relation between 

successive frames.  

 

In our approach, before computing the difference image between 

two successive images IK and IK+1, we align the phone areas in the 

two images via SIFT matching. The very reason that we use only 

features that lie on the phone makes sure that the warping between 

these images stabilizes the phone area (so that the difference 

images do not show the movement of the phone).  

 

An important requirement of image alignment occurs at the stage 

where we determine which key was pressed by the user, once a 

“key pops up” event has been detected. The first step in Algorithm 

3 is to align the surveillance image IK to the reference image IREF by 

a homography HK. Computing this homography turns out to be a 

challenging task as the user’s fingers obstruct a large part of the 

phone’s keypad in a “key pressed” frame. These occlusions, 

coupled with wide differences in illumination and viewing angle 

often lead to incorrect homographies being computed between the 

IK and IREF. Algorithm 4 describes the method of alignment that we 

designed to overcome this challenge.  

 

Instead of directly aligning the image IK (called the target frame) to 

IREF, we first choose an image ICF (called the clear frame) in the 

same video that has an unobstructed view of the phone keypad. To 

find this image, we again use the output of our tracking method 

(Section 3.2) which also returns the number of keys detected in 

each surveillance image in the video. If more number of keys were 

detected, that image has a more unobstructed view of the keypad. 

We then compute a homography between the reference image and 

the clear frame. This homography would be accurate because we 

have an unobstructed view of the keypad and hence there would be 

reliable feature matches between the two images. The next step is 

to estimate a homography between the target frame and the clear 

frame. This homography would also be correct as both images are 

from the same video and have roughly the same lighting conditions 

and viewing angles. The final homography that we require is just a 

multiplication of the two homographies just computed.  

4 RESULTS 

For our experiments, we used a Canon Vixia HG 21 Camcorder 

(costs about 1000 USD). The experiments were conducted in an 

indoor environment, and the camera was at a distance of 2 to 3 

meters from the user. 

4.1 Direct surveillance with no phone movement 

We conducted our first set of experiments keeping the phone stable 

(hence not moving) while the user types on it. The experiments 

were performed on a direct surveillance setup where the camera 

had an unobstructed view of the phone and was at a distance of 

about 2 meters from the user. The results we obtained for these 

surveillance videos were excellent and showed promise that our 

algorithm was ready to be applied to more challenging scenarios.  

 

4.1.1 iPhone dataset 

For this dataset, we conducted the experiments at four different 

resolutions of the surveillance video. The Figure 16 shows frames 

at the highest and lowest resolution videos. Table 1 below 

summarizes the results of this set of experiments. Ground truth 

refers to the string that was typed by the user and Reconstructed 

string is the string predicted by our algorithm. It can be observed 

that we predicted the string with 100% accuracy at resolutions 

which were at and above 50X88 pixels. 

 

 

Ground truth:  

the quick fox jumped over lazy dog 

 

 

Exp 1.1, 1.2 and 1.3: Video resolution: 200 X 350, 100 X 175, 

50 X 88 

 

Reconstructed string: 

the quick fox jumped over lazy dog 

 

Algorithm 4: Align “key pressed” frame IK to the reference image 

IREF 

 

Output: A homography HK that warps IK to IREF 

 

1:   find a clear frame ICF, in the image sequence of the same video, 

such that ICF has an unobstructed view of the phone keypad. 

 

2:   estimate homography HCF-REF between ICF and IREF. 

 

3:   estimate homography HK-CF between IK and ICF. 

 

4:   calculate the homography HK by:  

 

HK = HK-CF * HCF-REF 

      
                 (a)                 (b)  

 

Figure 16: Range of resolution for iPhone surveillance videos  

(a) Resolution: 200 X 350 

(b) Resolution: 25 X 44 
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Exp 1.4: Video resolution: 25 X 44 

 

Reconstructed string: 

the quick fox jumpedxlovder nlazy dog 

 

 

Table 1: Results of experiments for the iPhone dataset 

 

In the case Exp 1.4, in which the input video had a resolution of 

25X44 pixels [Figure 16(b)], our algorithm still predicted most parts 

of the string correctly. In terms of the number of frames that fired as 

“key pressed events”, there is a false positive rate of 11 % and no 

false negatives. The Levenshtein Edit Distance between the 

Reconstructed string and the Ground truth is 5 characters. Based 

on this measure, there is an error rate of 14% per character for Exp 

1.4. Another popular measure used for evaluation of Machine 

Translation is Word Error Rate (WER), which is based on the 

normalized Levenshtein edit distance between the hypothesis and 

the reference, assuming a word as the basic unit of comparison. 

The WER in case of Exp 1.4 turns out to be (2/7). It is interesting to 

note that at the resolution at which Exp 1.4 was recorded [Figure 

16(b)], it is not possible for a human being to predict the user-typed 

string by watching the video.  

 

4.1.2 Nexus One dataset 

We conducted a similar set of experiments on surveillance videos 

of the Nexus One phone. The experiments were in three different 

resolutions of the surveillance video. Figure 17 shows frames 

extracted from the video. Table 2 summarizes the results of the 

experiments. 

  

In these experiments, we were also able to detect when the user 

switches the keypad from “ABC” mode (in which the letters appear 

on the virtual keypad) to the “123” mode (in which numbers keypad 

replaces the alphabets keypad at the same place on the virtual 

keypad) and the “Symbols” mode (in which the symbols keypad 

replaces the alphabet keypad on the phone). Based on simple 

heuristics, we also recovered when the user types in the “lower 

case” and “upper case”. These features can be very useful in 

scenarios where the goal is to recover passwords and other such 

information where the string to be recovered is case-sensitive and 

is likely to contain special characters. 

 

 

Ground truth:  

the quick fox jumps over the lazy dog  BROWN DOG. tHHE 

QUICK BROWN FOX JUMPS OVER THE LAZY DOG. 

9876501234@#$%&*+() 

 

 

Exp 2.1: Video resolution: 160 X 280 

 

Reconstructed string: 

the qick fox jumps over the lazy dog  BROWN DG. tHHE QUICK 

BROWN FOX JUMPS OVER THE LAZY DOG. 

9876501234@#$%&*+() 

 

 

Exp 2.2: Video resolution: 80 X 140 

 

Reconstructed string: 

the quick fox jumps over the lazy dog  BRWN DOG. tHHE 

QUICK BROWN FOX JUMPS OVER THE LAZY DOG. 

9876501234@#$%&*+() 

 

 

Exp 2.3: Video resolution: 40 X 70 

 

Reconstructed string: 

the qick fox jumps over the lazy dog  BROWN DOG. tHHE 

QUICK BROWN FOX JUMPS OVER THE LAZY DOG. 

9876501234@#$%&*+() 

 

 

Table 2: Results of experiments for the Nexus One dataset 

 

It can be observed that we predicted the string with almost 

complete accuracy at all resolutions. In terms of the number of 

frames that fired as “key pressed events”, there is a false negative 

rate of 1.05 % and no false positives. The Levenshtein Edit 

Distance between the Reconstructed string and the Ground truth is 

1 character in all the three cases; there is an error rate of 1 % per 

character according to this measure. The Word Error Rate in all the 

cases is (1/20) in all the three cases; we got one incorrect word in 

the entire string in the three cases.  

 

4.2 Direct surveillance with phone movement 

In this set of experiments, the user types on the phone and the 

phone is allowed to move (in contrast to the scenario in Section 4.1 

where the phone remains static). This case is challenging because 

we have to deal with the movement of the phone as well as the 

 
            (a)                  (c) 

 

Figure 17: Range of resolution for Nexus One surveillance videos 

(a) Resolution: 160 X 280 

(b) Resolution: 40 X 70 

280

70

H
e

ig
h
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e

ls
)

 
Ground truth: the quick fox jumped over the lazy dog 
 
Reconstructed string:  
thevvb qcuikm fnooxajlummed doverb thv azztm dcvog 
 

Table 3: Results of reconstruction for direct surveillance with phone 

movement 
 



 

 

movement of the user’s fingers in the phone area.

 

Table 3 shows the results of our algorithm on one surveillance 

video. The bold letters in the reconstructed string are the correctly 

detected letters. There is a rather large quantity of false positive 

“key pressed events”, around 50%, because of which 

string does not make any sense. The number of false negatives is 

around 10%. The Levenshtein Edit Distance between the 

truth and Reconstructed string is 19 characters, which is also pretty 

large considering that the length of the input string is only 

characters. However, in terms of the number of 

Ground truth that were recovered in their correct relative order in 

the Reconstructed string, we have an accuracy of

out of the 29 characters typed by the user have been detected 

their correct order by the algorithm. A number of false positives can 

be reduced by manipulating the parameters of our 

detection algorithm. A language model based post

would be very helpful in predicting the user-typed 

accuracy. In the keyboard surveillance method proposed by 

Balzarotti et al [4], a major part of their approach is language 

modeling and text analysis to reproduce what was being typed o

the keyboard.  

 

For each “key pressed” event, instead of storing 

(for example, the user has pressed the letter E), we store

probable characters with their respective probabilit

there is a 55% chance that an E has been pressed, but a 45% 

chance that it might actually have been an R; the

are next to each other in the phone keypad). 

obtaining these probabilities is explained in Sectio

3]. The reconstructed string shown in Table 3 shows only the most 

probable outputs for each letter. We are in the process of exploring 

ways to use these probabilities meaningfully to produce a correct 

output string. 

4.3 Surveillance on the reflection on sunglasses

We extended our approach for automatic text reconstruction to a 
surveillance video of the reflection of a user’s typing activity in his 

           
  (a) letter = U 

 

   

          
  (b) letter = E 

 

   

Figure 18: Successful detections in direct surveillance videos.

The images on the left are the difference images that 

record the “key pops up” event, and on the right 

corresponding frames where the “key pressed event” can 

be seen 
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fingers in the phone area. 

algorithm on one surveillance 

The bold letters in the reconstructed string are the correctly 

There is a rather large quantity of false positive 

of which the output 

. The number of false negatives is 

between the Ground 

, which is also pretty 

g that the length of the input string is only 29 

number of characters in the 

hat were recovered in their correct relative order in 

have an accuracy of 90 %, that is, 26 

have been detected in 

number of false positives can 

be reduced by manipulating the parameters of our change 

post-processing step 

typed string with higher 

. In the keyboard surveillance method proposed by 

Balzarotti et al [4], a major part of their approach is language 

modeling and text analysis to reproduce what was being typed on 

 just one character 

letter E), we store many 

respective probabilities (for example, 

has been pressed, but a 45% 

; the letters E and R 

in the phone keypad). The process of 

probabilities is explained in Section 3.1.2 [Algorithm 

The reconstructed string shown in Table 3 shows only the most 

probable outputs for each letter. We are in the process of exploring 

ways to use these probabilities meaningfully to produce a correct 

eflection on sunglasses 

automatic text reconstruction to a 
the reflection of a user’s typing activity in his 

sunglasses. The threat scenario is the one shown in Figure 19. We 
applied our algorithm to a surveillance video of sunglass reflections 
and obtained very encouraging results.
[Section 3.2] performed remarkably well on this video. Some results 
can be seen in Figure 20. 

  

Some correctly detected “key pressed frames” are shown in Figure 

21. In terms of correctly detecting the 

have several correct detections (25 to 50%) in sunglass ref

videos. However, there are still a lot of false negatives as well as 

false positives that result in the output string

 

One of the primary reasons is a failure in the image alignm

process [Section 3.4, Algorithm 4] that is 

“which key was pressed”. Misalignments occur primarily because 

the sunglass reflection images are noisy,

in illumination from the reference image 

distortion (they are images on a spherical mirror, the sunglass)

One particular case of misalignment is shown in Figure 22.

  
 (a)    

 

Figure 20: (a) MSER regions correctly detected in a sunglass 

reflection image 

(b) keypad lines correctly detected in a sunglass 

reflection frame 

   (a) 

 

      
 (b)    

 

Figure 19:  Surveillance on sunglass reflections

(a) Frame from the surveillance video 

(b) Phone image in the sunglasses (flipped; it is a virtual 

image)  

(c) Contrast enhancement applied to (b)

 

 

Successful detections in direct surveillance videos. 

The images on the left are the difference images that 

record the “key pops up” event, and on the right are the 

corresponding frames where the “key pressed event” can 

UNC CHAPEL HILL, JUNE 2011 

sunglasses. The threat scenario is the one shown in Figure 19. We 
surveillance video of sunglass reflections 

and obtained very encouraging results. The SIFT+MSER tracker 
performed remarkably well on this video. Some results 

“key pressed frames” are shown in Figure 

the “key pressed events”, we 

correct detections (25 to 50%) in sunglass reflection 

there are still a lot of false negatives as well as 

false positives that result in the output strings not being meaningful.  

failure in the image alignment 

that is required to determine 

Misalignments occur primarily because 

sunglass reflection images are noisy, they have a large change 

in illumination from the reference image IREF, and have radial 

distortion (they are images on a spherical mirror, the sunglass). 

is shown in Figure 22. 

 
(b) 

ly detected in a sunglass 

(b) keypad lines correctly detected in a sunglass 

 

 
(c) 

Surveillance on sunglass reflections 

(a) Frame from the surveillance video  

(b) Phone image in the sunglasses (flipped; it is a virtual 

Contrast enhancement applied to (b) 



 

 

 

 

5 HOW REAL IS THE THREAT? (PRACTICAL LIMITS

In Appendix – I [Section 8] we provide a discussion on 

parameters if this threat was to be planned in a real scenario.

following is a discussion based on the results of that analysis. 

5.1 How good are current equipments

In Section 8, we saw that the maximum resolution with which a 
particular object can be captured by a camera depends upon

• The diameter of its lens 
• Distance of object from the camera 

 
For our algorithm, we have demonstrated successful results even 
at an object resolution 25 X 44 (pixels in each dimension) (for the 
iPhone). This was in the case when the phone was static, but in the 
general cases we have promising results with resolutions around 
100 X 175.  
By the expression (3) [Section 8.2.1], the minimum diameter of a 
lens required to directly capture the typing activity of the phone at 
the resolution of 100 X 175 from a distance of 1 met
The diameter of most good cell phone cameras (iPhone, Nexus 
One etc.) is in the range of 1.3 to 1.5 mm. This implies that if Ali

(a) letter = E 

   

  (c) letter = G 

   

Figure 21: Correct detection of keys pressed in sunglass reflection 

video.The images on the left are the difference images 

that record the “key pops up” event, and on the right are 

the corresponding frames where the “key pressed event” 

can be seen. 

       
 (a)   (b)   

 

Figure 22: Misalignment of sunglass frames. 

(c) is the phone in (b) aligned with the reference image (a).

(a) is the IREF, and we can see that the aligned image (c) is 

distorted. 
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PRACTICAL LIMITS)  

a discussion on the relevant 

in a real scenario. The 

based on the results of that analysis.  

How good are current equipments 

, we saw that the maximum resolution with which a 
particular object can be captured by a camera depends upon 

For our algorithm, we have demonstrated successful results even 
at an object resolution 25 X 44 (pixels in each dimension) (for the 
iPhone). This was in the case when the phone was static, but in the 

cases we have promising results with resolutions around 

, the minimum diameter of a 
lens required to directly capture the typing activity of the phone at 
the resolution of 100 X 175 from a distance of 1 meter is 1.16 mm. 

ost good cell phone cameras (iPhone, Nexus 
One etc.) is in the range of 1.3 to 1.5 mm. This implies that if Alice 

is at a distance of around 1 m from Bob, and has an unobstructed 
view of Bob’s phone she can get an automated transcript of what 
Bob is typing by recording a video from her own cell phone itself. 
This can very easily take place in a crowded place like a bus or a 
metro train.  
 
The diameter of most cheap digital cameras (under 200 USD)
ranges from 2.0 to 6.0 mm; they can effectively spy from a distance 
of 1 to 4 meters from the typing user. The diameter of slightly high 
price range (under 500 USD) digital cameras ranges up to 20 mm; 
they can be used to spy upon the person up to distances of 10 m or 
more. 

 
Figure 23 and Figure 24 provide an approximate range at which 
direct and indirect surveillance can be carried out using our 
algorithm with the use of different types of cameras. 
overhead surveillance cameras and such equip
directly spy on the phone user whereas high quality cameras and 
telescopes would be required to spy on the 
eye from distances of 5 m or more. T
that the threat that we examine is real and 
using moderately priced equipment in a real life setting.

 

6 CONCLUSION 

Through our current work, we have shown that
reconstruction solely from a surveillance video is possible for 
eavesdropping on a smart phone. We have developed a method for 
tracking and identifying a phone that has been successful
range of surveillance videos. This algorithm has performed 
remarkably well even when we applied it for tracking th
video that captured a reflection of the phone in the user’s 
sunglasses. Based on an analysis of optical parameters
equipments, we have predicted that automatic spying on a phone
user is a potential threat that could be carried out
available cameras using state-of
algorithms.  
 
There are several possible directions in which 
carried out in this area. For further improvement of our spying 

 

 

Correct detection of keys pressed in sunglass reflection 

video.The images on the left are the difference images 

that record the “key pops up” event, and on the right are 

the corresponding frames where the “key pressed event” 

 
(c) 

reference image (a). 

, and we can see that the aligned image (c) is 

 

(a) 2 m              (b) 4 m             (c) 3 m  

 

Figure 23: Approximate spying range for 

(a) Cell phone camera/pocket camcorders (~100 USD)

(b) Cheap digital cameras (~150 USD)

(c) Cheap surveillance cameras (~150 USD) 

(d) SLR cameras (~500 USD) 

        
 

             (a) 2 m                   (b) 5 m                    (c) 15 m

 

Figure 24: Approximate spying range for 

reflections in glasses / sunglasses

(a) SLR cameras (~500 USD) 

(b) HD Camcorders (~1000 USD) 

(c) Cheap telescopes (~700 USD) 
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1 m from Bob, and has an unobstructed 
view of Bob’s phone she can get an automated transcript of what 

by recording a video from her own cell phone itself. 
This can very easily take place in a crowded place like a bus or a 

The diameter of most cheap digital cameras (under 200 USD) 
hey can effectively spy from a distance 

of 1 to 4 meters from the typing user. The diameter of slightly high 
tal cameras ranges up to 20 mm; 

they can be used to spy upon the person up to distances of 10 m or 

provide an approximate range at which 
direct and indirect surveillance can be carried out using our 
algorithm with the use of different types of cameras. Thus, 
overhead surveillance cameras and such equipments can easily 

whereas high quality cameras and 
e required to spy on the reflection on glasses or 

The analysis above predicts 
threat that we examine is real and could be carried out 

moderately priced equipment in a real life setting.  

Through our current work, we have shown that automatic text 
solely from a surveillance video is possible for 

We have developed a method for 
that has been successful in a wide 

range of surveillance videos. This algorithm has performed 
remarkably well even when we applied it for tracking the phone in a 

ion of the phone in the user’s 
an analysis of optical parameters and optical 

, we have predicted that automatic spying on a phone 
that could be carried out with readily 

of-the-art computer vision 

There are several possible directions in which future work could be 
For further improvement of our spying 

 

  (d) 15 m 

Approximate spying range for direct surveillance  

(a) Cell phone camera/pocket camcorders (~100 USD) 

(b) Cheap digital cameras (~150 USD) 

(c) Cheap surveillance cameras (~150 USD)  

 

(b) 5 m                    (c) 15 m 

Approximate spying range for indirect surveillance from 

reflections in glasses / sunglasses 
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algorithm, the use of a good language analysis model would be 
very helpful. It is also necessary to conduct more experiments in 
real world settings to get a better idea of the usability of the 
approach. There lies another vast area of designing methods for 
prevention of this threat. There have been reports of breach privacy 
filters installed on touch screens [19]. There are also new types of 
phone touch screens, which instead of providing visual feedback (in 
the form of the character “popping out”) provide tactile feedback to 
the user in the form of a mechanical click [20] or a vibration  [21] 
under the user’s fingertips when she presses a key in the virtual 
keypad. There are also new technologies which provide for 
alternative ways of text input on a phone touchscreen rather than 
typing on it [22]. 
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8 APPENDIX – I: AN OPTICS PRIMER 

In this section we present an analysis of the relevant parameters of 

an optical system that are required to carry out the threat scenario 

that we imagine in the real world. Backes et al [1] have provided a 

very clear explanation of these parameters. 

8.1 Size of the object of surveillance 

The first question that matters to us is “What is the size of the 

object that we want to capture in the video?”. In the case of direct 

surveillance it is the size of the phone. In case of surveillance that 

involves capturing the typing activity from a reflection in the 

person’s glasses or his eyeballs, the question is “What is the size of 

the phone’s image in the reflecting surface?” For answering these 

questions we need to refer to some of the basic optics theories. 

 

8.1.1 Size of the reflected image 

The reflection of an object in a curved mirror creates a virtual image 

that is located behind the reflecting surface. The overall situation is 

depicted in Figure 25. If the width of a spherical mirror is small 

compared to its radius, it is common to approximate the mirror as a 

lens of focal length f0 = r / 2. The location b0 of the virtual image 

(the distance between the virtual image and the reflecting surface), 

given the location a0 of the object is given by the thin lens equation 

as, !" � 1 /(2/% − 1/a") 

The size u0 of the virtual image is given by u0 = b0 x / a0, where x 

is the size of the phone. Finally we have to consider that the image 

appears smaller if seen from an angle  ; the apparent size u1 = u0  

()* +. 

The size of the iPhone is 11.5 cm X 6.2 cm. Using the formulae 

derived above, assuming that a person holds the phone at a 

distance of 30 cm from his eyes while typing, the size of the image 

of the iPhone in a normal pair of sunglasses (assuming a radius of 

curvature of 200 mm) is 1.07 cm X 0.57 cm, and the size of the 

image of the iPhone in a person’s eye balls (assuming the average 

eye ball radius of 8mm) is 1.6 mm X 0.86 mm.Thus, calculations 

 
Figure 25: Size of the reflected image on a convex mirror. 

Courtesy of Backes et al. [1] 
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reveal that the image of the phone in a person’s glasses is about a 

tenth of the actual size, and the size of the image of the phone in 

his eyes is about a hundredth of the actual size. 

8.2 Limits of optical resolution 

Some relevant questions are, “Is it feasible to conduct the video 
surveillance on another phone by using the camera in my phone?”, 
“How powerful a camera do I need to make the automatic detection 
work on the reflection of the typing activity in another person’s 
sunglasses or eyes?”. For answering all these questions, we first 
need to understand the term “Optical resolution”.  

Let the distance from the camera to the object being captured be ,. 
The object might be the phone or its reflection on some surface. Let 

- be the required resolution of this object on the camera image (in 

pixels). If the size of the object is ./, then the optical resolution 0 

(in radians) required to capture the object with the desired 

resolution in the image is given by, 

 0 =  1%(21-( .1/-, )  ≈  .1 / -,                                             (1)      

where the approximation holds as .1 ≪  ,. 

 

8.2.1 Diffraction Bounds 

Diffraction is a physical phenomenon that diffuses light or any other 

electromagnetic wave, whenever it passes some aperture. Though 

this phenomenon is well-known for being visible to the human eye 

for very small apertures, in case of high magnifications, it is 

noticeable even for large apertures like lenses used in cameras and 

telescopes. In fact, as we will see further in this discussion, 

diffraction constitutes one of the most limiting parameters in the use 

of cameras for surveillance scenarios. 

 

The influence of diffraction on the maximum optical resolution of a 

telescope is given by Rayleigh’s criterion. Let two point sources P1, 

P2 be given such that the angle between these two sources is 0 (in 

radians). Let D be the diameter of the lens of the camera and 5 the 

wavelength of the light. Then Raleigh’s criterion states that the two 

points P1, P2 can be distinguished if and only if 

  
0 ≥ 1.22 5/�                                         (2)

                  
From equations (1) and (2), we can derive an expression for the 

maximum resolution of an object that can be captured by a camera 

lens at a given distance. The expression is: 

 

n  ≤ ./D/(1.22 λ d)                         (3) 

 

From the expression above, it is apparent that the maximum 

resolution that can be captured by a camera or telescope lens is 

directly proportional to the diameter of the lens, and inversely 

proportional to the distance between the camera and the object. 


