
TECHNICAL REPORT NO. TR11-004, DEPT. OF COMPUTER SCIENCE, UNC CHAPEL HILL. SUBMITTED: JUNE 30, 2011

MAPS: Machine-based Automatic Phone Surveillance

Dibyendusekhar Goswami, Fabian Monrose, Jan-Michael Frahm

Department of Computer Science, UNC Chapel Hill

{dgoswami, fabian, jmf}@cs.unc.edu

ABSTRACT

Exploring potential threats to electronic media has been an area of
active interest in computer security for the purpose of prevention of
these threats. We examine a threat scenario that involves
eavesdropping on phones with virtual keypads, a class of phones
becoming increasingly popular by the day. We explore an approach
to automatically recover the text that was typed by a person on his
phone, based solely on a video of this typing activity by observing
the phone directly, or by observing a reflection of the phone in the
user’s glasses or even his eyes. Our experiments were conducted
on two popular smart phones, the iPhone and the Nexus One; the
same approach can be extended for surveillance on a variety of
phones and devices with virtual keypads.

KEYWORDS: Surveillance, Eavesdropping, Data security, Phone

security

1 INTRODUCTION

Bob, on his way to work, is sitting on a bus typing an email on his

smart phone. Alice, sitting right across him, records a video of the

reflection of Bob’s typing activity on his glasses. She records this

video using her cell phone camera; so no one around is suspicious.

Meanwhile, a program on Alice’s phone uses this video to

automatically retrieve the complete text of what Bob was typing.

At first, the scenario above looks like a scene from one of the

numerous unrealistic James Bond or CSI movies. However, after

you have read this paper, we are sure that you would believe that

this scene could be real and could happen to any of us in the near

future. In this paper, we explore the feasibility of threats similar to

the one described above. We apply state-of-the-art tools in

computer vision to examine how real this threat is and whether it

can be carried out using cheap equipments that cost no more than

a few hundred dollars.

Recently, there has been a flood of smart phones in the market.

Sale statistics on the internet show that around 300 million smart

phones were sold in the year 2010 [12]. More than 50 million units

of iPhone were sold within the last two years [10], and more than

100,000 units of the Nexus One were sold within the first three

months of its release in 2010 [11]. The increasing popularity of

these internet-enabled smart phones has resulted in these phones

being used by a large number of people for the exchange of various

types of information. Apart from making calls and sending text

messages, they are used for sending emails, sharing photographs

downloading audio/video media, among a lot of other things. There

are predictions that mobile phones would become the primary

personal computing devices in the near future [9], replacing laptops

and notebook computers.

With the growing popularity of mobile devices in the last few years,

attacks targeting them are also surging [13]. Network intrusion

attacks and their defenses have received a considerable amount of

attention in the recent past. Back in 2004, Guo et al. [14] and Wang

et al. [15] had pointed out probable attacks in smart phone

networks and suggested solutions. Since then, there has been a lot

of research in such threats. [13], [23] and [24] are some recent

papers which suggest different approaches for privacy monitoring in

data entering and leaving smart phones.

While cryptographic mechanisms have been effective in preventing

different types of eavesdropping on phones, they cannot protect the

physical environment of the victim. So far, there has not been any

extensive study on how camera-based surveillance can be used to

threaten the privacy of a phone user. Today’s world is full of

surveillance cameras ubiquitously present in all public places.

Additionally, pocket camcorders, cell phone cameras, and other

small sized video capture devices are getting more powerful as well

as cheaper by the day. Spying on people has always been an

effective way of information retrieval and smart phone users could

soon become targets. Hence the threat that we attempt to study in

this paper is very relevant in the current scenario. Figure 1 shows

the two types of threat scenarios that we examine; the first one

(which we call direct surveillance) happens when the camera has a

direct view of the typing activity, and the second one (indirect

surveillance) happens when the camera records a reflection of this

activity on the victims glasses, or his eyes, or some other reflective

 (a) Direct surveillance threat model

 (b) Indirect surveillance threat model

Figure 1: Threat models for automatic phone surveillance

TECH. REPORT NO. TR11-004, UNC CHAPEL HILL, JUNE 2011

2

surface nearby, like a window pane, a teapot etc. Of course, an

automated tool, such as the one that we have designed, is required

in the case of long-lasting surveillance procedures or long user

activity.

Automatic surveillance on a phone is a hard problem that poses

several challenges. One particular issue is that without the use of

expensive and sophisticated cameras, it is not possible to have a

resolution high enough to read what is displayed on phone display

screen. As a result, we cannot use optical character recognition

methods [16]. We approached the problem by an analysis of hand

gestures and other movements on the touch-screen of the phone.

Motion analysis in our threat scenario is complicated because of

various reasons. One of the reasons is that there are two types of

motion to be dealt with: the motion of the user’s fingers on the

touch-screen of the phone, as well as the overall motion of the

phone itself. The latter is a distraction for us; we are only interested

in what movement takes place on the touch-screen, not the phone

movement when the user is typing on it. This is a relative

advantage of using motion analysis for surveillance on a computer

keyboard [4], as the keyboard stays stationary when the user is

typing on it.

The phone screen is a relatively small object when compared to the

size of a user’s hands; a large part of the phone is occluded by the

user’s fingers when he is typing. This occlusion poses challenges

when standard computer vision techniques are applied for tracking,

recognition and registration of the phone in the video. The wide

variations in the viewing angle of the phone in different videos also

pose a challenge in phone tracking. Depending on the scenario, it

might be extremely difficult to get a good frontal view of the phone

screen; in a video without a good view, motion analysis is an even

bigger challenge than phone recognition.

One of the foremost challenges in camera-based automatic phone

surveillance is the resolution at which the algorithm is required to

perform for the threat to be real. As explained in Appendix-I

[Section 8], the maximum resolution of an object in an image is

directly proportional to the size of the object and the diameter of the

camera lens. It is also inversely proportional to the distance of the

object from the camera. While it is possible to capture a very high

resolution image of the phone by using a large telescope, it makes

the security threat unreal as it would be hard to spy on a person

with a huge telescope right in front of her. It would also be very

expensive and is not the kind of threat that we are interested in.

Limitations in the size of the camera lens in cheap digital cameras,

pocket camcorders or mobile phone cameras result in limitations in

the resolution of the images that can be captured by them.

Formulae in Appendix-I predict that our approach needs to perform

at far lower resolutions than what is required for the human eye.

Figure 2 shows two images, the first of which is an image in which

the iPhone has a resolution of 200X350 pixels and in the second

one the iPhone has a resolution of 25X44 pixels. Our algorithm has

produced very promising results for a surveillance video at the

resolution of the second image; for effective indirect surveillance

using a cell phone camera, we need the ability to perform at even

lower resolution than that.

We are also very interested in recovering data from reflections. We

have shown promising results for automatic surveillance from a

video of the reflection of the victim’s typing activity on his

sunglasses. Figure 1(b) shows our experimental setup for this case.

One of the obvious challenges in recovering data from reflections is

because of the size of the object under surveillance. While the size

of an iPhone is about 11.5 cm X 6 cm [17]; the size of this phone’s

reflection on a pair of sunglasses would be about 1.07 cm X 0.57

cm [Section 8], which is around a tenth of the original object size;

the size of this phone’s reflection on a human eye would be about

1.6 mm X 0.86 mm [Section 8], which is around a hundredth of the

object size! Direct surveillance itself causes a low-resolution-

challenge for our algorithm; it is obvious that indirect surveillance,

where the object being monitored is much smaller, poses an even

harder low-resolution-challenge. Additionally, depending on the

surface where the reflection takes place, there might be a need for

distortion correction of the reflected image. Distortion correction in

reflected images is in itself a major research topic in computer

vision. Nishino and Nayar [18] have done seminal work focused on

rectifying images that capture reflections of the surrounding

environment on the human eye. We have not addressed this issue

yet but as we apply our algorithm to eye reflections in the near

future, we would need to do so.

The current contributions of our work are:

• We show that it is possible to automatically reconstruct

the text being typed by a user on a virtual keypad phone

by analyzing solely the video stream of the typing activity.

• We have developed a robust method for tracking the

phone as well as analyzing the user’s motion by using

state-of-the-art techniques in computer vision.

• We have examined the threat of automatic phone

surveillance via monitoring of the reflection of the phone

in the user’s glasses.

The remainder of this paper is organized as follows. In Section 2
we talk about some previous work that are related to our topic, and
which have inspired us in several ways. Section 3 explains the
details of our method in several sub-sections. In Section 4 we
present some of our results. In Section 5, we give a discussion of
how real this threat is and what kind of optical instruments are
required to carry out this threat. In Section 6, we conclude and
mention some of the steps that we are taking in the future.

2 RELATED WORK

Backes et al.[1] have presented a novel eavesdropping technique

for spying at a distance on data displayed on an LCD monitor by

Figure 2: Algorithm needs to perform at low resolutions

350

44

200X350 25X44

H
e

ig
h

t
(p

ix
e

ls
)

capturing images from reflections in various common objects like

eye-glasses, teapots, spoons, and even the human eye balls. They

present results of capturing data from distances ranging from 5m to

30m, with equipments that include high quality SLR cameras, low

cost telescopes as well as very expensive and large size

telescopes. Balzarotti et al [4] have presented a novel approach for

eavesdropping on keyboard input from surveillance videos. Their

approach assumes that the keyboard is placed on a flat table, the

user’s hands have restricted movement, the camera has a clear

overhead view of the typing activity, and that the keyboard does not

move when the user is typing. While these are all reasonable

assumptions for keyboard surveillance, none of them hold true in

the case of phone surveillance. While typing on the phone, the user

has complete freedom of moving the phone as well as moving his

hands. It is also not always feasible to have a clear view of the

typing activity because of occlusion of the phone by the user’s

hands, face and shoulders. Also, even when a clear view is present

a large part of the phone is still occluded by the user’s fin

he is typing on it. Hence, while the approach presented by

Balzarotti et al has provided good results for keyboard surveillance,

it cannot be directly extended to phone surveillance.

3 APPROACH

The goal of our work is to automatically reconstruct the text typed
by a user by analyzing a video recording of the typing session.
Figure 4 is a flowchart of our approach. The inputs to our method
are the surveillance video and some prior information about the
phone being tracked, namely, the keypad layout and a reference
image of that phone. Both these facts can be easily obtained from
an online user manual of the phone. Figure 3
images for two of the phones we used in our experiments.

The reference image is used by our algorithm to track and identify
the location of the phone in the surveillance video. Our tracking
algorithm, the details of which are in Section 3.2, gives information
about the location as well as orientation of the phon
particular frame of the video. Given the location of the phone in a
particular frame, we would then like to focus our attention on that
particular area of the frame.

The tracking step in our method is followed by a stabilization step
[Section 3.3], in which we align the image of the phone in
successive frames of the input video. As we shall explain later, this
helps us to nullify the overall motion of the phone and concentrate
on the movement of the users fingers on the virtual keypad.

Our next task is to detect “key pressed” events across the video
[Section 3.4]. A “key pressed” event is one in which the user has
typed a single character on his keypad. There is one particular

 (a) iPhone (b) Nexus One

Figure 3: Reference images IREF for two phones used in our

experiments

TECH. REPORT NO. TR11-004, UNC CHAPEL HILL,

3

various common objects like

glasses, teapots, spoons, and even the human eye balls. They

present results of capturing data from distances ranging from 5m to

30m, with equipments that include high quality SLR cameras, low

y expensive and large size

telescopes. Balzarotti et al [4] have presented a novel approach for

eavesdropping on keyboard input from surveillance videos. Their

approach assumes that the keyboard is placed on a flat table, the

ovement, the camera has a clear

overhead view of the typing activity, and that the keyboard does not

move when the user is typing. While these are all reasonable

assumptions for keyboard surveillance, none of them hold true in

e. While typing on the phone, the user

has complete freedom of moving the phone as well as moving his

hands. It is also not always feasible to have a clear view of the

typing activity because of occlusion of the phone by the user’s

s. Also, even when a clear view is present

a large part of the phone is still occluded by the user’s fingers when

, while the approach presented by

Balzarotti et al has provided good results for keyboard surveillance,

directly extended to phone surveillance.

The goal of our work is to automatically reconstruct the text typed
the typing session.

a flowchart of our approach. The inputs to our method
surveillance video and some prior information about the

phone being tracked, namely, the keypad layout and a reference
image of that phone. Both these facts can be easily obtained from

ual of the phone. Figure 3 shows reference
r two of the phones we used in our experiments.

The reference image is used by our algorithm to track and identify
the location of the phone in the surveillance video. Our tracking
algorithm, the details of which are in Section 3.2, gives information
about the location as well as orientation of the phone in any
particular frame of the video. Given the location of the phone in a
particular frame, we would then like to focus our attention on that

llowed by a stabilization step
, in which we align the image of the phone in

successive frames of the input video. As we shall explain later, this
helps us to nullify the overall motion of the phone and concentrate
on the movement of the users fingers on the virtual keypad.

s across the video
. A “key pressed” event is one in which the user has

typed a single character on his keypad. There is one particular

feature in most smart phones (with a virtual keypad) that
tremendously helps us in detecting such events. This feature is that
whenever a user presses a particular key, that key pops up on the
phone screen. For example [Figure 7], when
letter ‘T’, a big ‘T’ pops up somewhere
the user know what he has just typed.

techniques coupled with the information provided by our tracking
algorithm, we are able to detect such “key pressed” events.

For every frame in the video, the method
answers the question, “Was a key pressed by the user in
frame?” If the answer to the previous question
task then is to predict which key was pressed by the user in this
particular event. Determination of which key was pressed requires
an alignment of the phone in this video frame to the
Image of the phone. Our algorithm [Section 3.5
output of the previous steps, as well as t
the phone keypad layout to provide this analysis

We have now identified the individual characters that were pressed
by the user during the “key pressed” events in the video. Because
of various challenges involved in the different stages of our
approach, it is extremely hard to produce a
i.e, the output of our approach needs to undergo some
text processing to produce higher accuracy results.
the process of exploring probabilistic text p
us and the results reported in this paper does not

3.1 Background

(b) Nexus One

for two phones used in our

Figure 4: Flowchart of our approach

“Key pressed” event occurs ?

Identify and track the phone in the video

Align to the Reference Image

Stabilize the frames with respect to the

Loop: For every frame in the video

YES

END

OF

LOOP

SURVEILLANCE

VIDEO

USER TYPED STRING

INPUTS

OUTPUT

KEYPAD

LAYOUT

Decide which key was pressed

UNC CHAPEL HILL, JUNE 2011

feature in most smart phones (with a virtual keypad) that
y helps us in detecting such events. This feature is that

es a particular key, that key pops up on the
, when the user presses the

’ pops up somewhere on the phone screen to let
the user know what he has just typed. Using change detection

the information provided by our tracking
detect such “key pressed” events.

method described in Section 3.4
the question, “Was a key pressed by the user in this

If the answer to the previous question is affirmative, our
to predict which key was pressed by the user in this

Determination of which key was pressed requires
video frame to the Reference
Section 3.5] makes use of the

f the previous steps, as well as the prior knowledge about
this analysis [Section 3.5].

now identified the individual characters that were pressed
by the user during the “key pressed” events in the video. Because
of various challenges involved in the different stages of our
approach, it is extremely hard to produce a 100% correct output,

, the output of our approach needs to undergo some additional
to produce higher accuracy results. We are still in

probabilistic text processing tools to assist
us and the results reported in this paper does not include that step.

“Key pressed” event occurs ?

Identify and track the phone in the video

eference Image

with respect to the phone

Loop: For every frame in the video

NO

GO TO NEXT FRAME

USER TYPED STRING

OUTPUT

KEYPAD

LAYOUT

REFERENCE

IMAGE

Decide which key was pressed

TECH. REPORT NO. TR11-004, UNC CHAPEL HILL, JUNE 2011

4

This section provides an introduction to some of the computer
vision tools used in our approach. SIFT [3] is a powerful feature
descriptor that we use for feature tracking in various stages of our
method. The SIFT descriptor of a region consists of a histogram of
gradients in that region. SIFT descriptors are widely used because
they associate to each region a signature which identifies their
appearance in a compact and robust way. They are consistent with
considerable variations of the illumination, viewpoint and other
viewing conditions [25]. Maximally Stable Extremal Regions
(MSERs) [2] are regions in an image that are either brighter or
darker than their surroundings. These regions are stable across a
range of thresholds of the intensity functions. We use an MSER
detector in our tracking process to detect regions on the phone that
are repeatable across changes in illumination, as well as changes
in viewpoint.

A homography is a projective transformation that relates a planar
object in two different views. The phone screen in one image is
related to the same screen in another image by a homography.
Affine normalization is the process of converting elliptical regions in
an image to circles so that these can be matched with other regions
which are related to them by an affine transformation. RANSAC,
which stands for Random Sample Consensus [6] is a widely used
method in computer vision for robust estimation of models from
data. The method essentially uses random samples to construct a
model and then selects the model which has the highest consensus
from all other samples. We use RANSAC to estimate a
homography between two different views of the same planar object.

3.2 Phone Identification, Tracking and Registration

Determining the location of the phone in the video is extremely

helpful to focus our analysis on the object of interest. In any frame

in the surveillance video, our tracking algorithm locates the phone

by matching areas on the phone in the reference image [Figure 3]

to areas in the surveillance image. The reason we chose an area

feature detector over widely-used point detectors like Harris

Corners [5] was because most of the features returned by point

detectors happen to lie in the keypad region of the phone, which is

often occluded by the user’s hands or fingers. Because of the

occlusions, they tend to return fewer relevant features than what is

required by our matching algorithm. Moreover, a phone has several

distinct regions like the keys, the phone screen etc. which are

picked up by the MSER detector with good consistency over a

considerable variation of illumination as well as viewing angles. We

also observed that the keys on the virtual keypad of the phone are

regions of a particular type which are similar in appearance to each

other but very different from non-key regions. Hence it is easier to

detect the keys on the phone.

Algorithm 1 gives an outline of our tracking approach. We start by

detecting MSER regions in the reference phone image, and

selecting some regions which are repeatable across different

surveillance scenarios. Let us call them the distinguished regions

Dref. These distinguished regions [Figure 4] consist of keys, the

phone screen, and some other regions which are frequently

detected in different videos. Note that the selection of Dref needs to

be done only once for every type of phone that we want to detect.

For example, if we select Dref for an iPhone, it can be used for all

surveillance videos that track an iPhone.

The surveillance video can be represented by a sequence of

frames or images { I1, I2 … IM } extracted from the video at times { t1,

t2 … tM }. For every image Ik in this sequence, we match MSERs

detected in this image to the distinguished regions Dref. We

represent MSER regions by their SIFT descriptors. SIFT descriptors

are very suitable for our case as the image of the phone undergoes

a lot of variation in lighting conditions as well as viewing angles in

different surveillance videos and SIFT descriptors are invariant to a

large degree in terms of changes in scale, intensity as well as

viewing angle.

We represent the regions returned by the MSER detector as

ellipses, and perform affine normalization to turn them into oriented

circles before extracting their SIFT descriptors. This pre-processing

step makes the matching invariant to affine transformations and

hence makes these descriptors robust to a wider difference in

viewing angles.

As shown in Figure 5, the distinguished regions { Dk } determined in

the surveillance image IK contain answers to questions like “Where

is the outline of the entire phone?”, “Where is the display screen of

the phone?”, and “Where are the keys in the keypad of the

phone?”. From the output of the tracking algorithm, we compute a

mask for the entire phone, henceforth called the phone mask

[Figure 15], which identifies the location of the phone in the image.

Algorithm 1: Track and Identify the Phone

Output: For every frame in the video, a vector of ellipses that

represent the location of the phone as well as location of

keys and other such features on the phone in that particular

frame

1: detect MSERs in the reference phone image IREF (say {Rref})

2: select a subset of MSERs in {Rref}, which are repeatable across

different surveillance scenarios. Let us name this subset

distinguished regions {Dref}.

3: for every image IK in the surveillance video do:

4: detect MSERs in the image IK (say {RK}).

5: match regions in {RK} to distinguished regions {Dref} in

the reference image and select those regions in {RK}

which have high match scores.

6: refine the output of step 5 by a model-based post-

processing method to finalize the distinguished regions

{DK}

 {DK} contains the {phone location, keys location, keypad

lines, ...} in image IK

(a) Reference image (b) Surveillance image

Figure 5: Distinguished regions detected in the Reference image and

matched with those detected in a Surveillance image

Screen

middle

Phone

outline

Keys

Keypad

Lines

Additionally, we have observed that the keys in a QWERTY key

are arranged in horizontal lines. To take advantage of that

structure, we fit lines to the keys detected on the phon

surveillance image. These lines (henceforth referred to as

lines) help us get a stronger confidence on the location of the

keypad of the phone, and that is helpful because

events that we are primarily interested in take place in the keypad

area of the phone rather than the entire phone.

We have successfully employed our approach to detect the phone

in various surveillance scenarios [Figure 6] including the case in

which the video captures a reflection of the typing activity in a

person’s sunglasses. Once the phone has been identified and

located in the video, we now proceed to the next stage

would attempt to detect the “key pressed” events in a stabilize

stream.

3.3 Change detection by absolute differencing

At the resolution at which our approach is implemented

possible to find out what the user is typing by read

screen on the phone. We had to design an approach

on the analysis of the motion of the user’s fingers

that take place on the phone like the “key pops up” event

We decided to use one of the simplest yet very powerful methods

of motion and change detection, namely, the method of a

differencing. The general idea of absolute differencing

looking at the differences between two images of the same scene

taken at different times. The parts of the scene that

will look exactly the same in both images, and the

images come from the parts that have moved.

differences can determine where in the scene the motion took place

as well as what type of motion it was.

We compute a difference image by considering the

absolute differences. Let us consider the sequence of images

extracted from the video { I1, I2 … IM }. Let the absolute difference

images between each consecutive pair be the sequence {

DM-1 }, where,

Dn(x) = | In+1(x) – In(x) |, for every pixel x in the images

 (a) Reference image (b) Direct surveillance

 (c) Direct surveillance (d) Sunglass reflections

Figure 6: Distinguished regions detected in various scenarios.

TECH. REPORT NO. TR11-004, UNC CHAPEL HILL,

5

the keys in a QWERTY keypad

To take advantage of that

on the phone in the

. These lines (henceforth referred to as keypad

) help us get a stronger confidence on the location of the

because the “key pressed”

place in the keypad

to detect the phone

including the case in

which the video captures a reflection of the typing activity in a

Once the phone has been identified and

located in the video, we now proceed to the next stage in which we

would attempt to detect the “key pressed” events in a stabilized

Change detection by absolute differencing

is implemented, it is not

read it off the display

approach which relies

fingers and other events

the “key pops up” event [Figure 7].

We decided to use one of the simplest yet very powerful methods

the method of absolute

absolute differencing involves

between two images of the same scene

that were stationary

, and the differences in the

have moved. Analysis of these

determine where in the scene the motion took place

We compute a difference image by considering the pixel-wise

Let us consider the sequence of images

. Let the absolute difference

images between each consecutive pair be the sequence { D1, D2 …

in the images

An analysis of the difference image DK

motion that took place in the scene between the times

We begin our analysis by assuming that the phone

stationary in the video, that is, the user does not move the phone

while typing on it. We would later generalize the discussion to

involve the movement of the phone as well.

different types of motions or events leave

difference image.

In our experiments, we found out that the motion

phone area (for a phone with a virtual keypad

a very small number of categories:

• “Key pops up”: This is the event in which a key is pressed by

the user. In all virtual keypad phones, whenever a user

presses a key (say the letter T [Figure 7]

on the screen so that the user easily knows what he is typing.

• “Key pops down”: This is the event in which the key (say the

letter T) that popped up when the user pressed it pops down

so that the user can carry on with the typing activity.

• “Finger moves”: This is the event in which the user’s finger(s)

are moving in the phone area between the times when

presses the keys [Figure 9].

• “No movement”: This is the event that no movement occurs

inside the phone area. This takes place when the user pauses

while typing, or just before and after the message has been

typed.

Figures 7, 8 and 9 show the difference images for the two most

significant events, the “key pops up” and the “finger moves” events

 (a) Image Ik (b) Image Ik+1

Figure 8: Signature of a “key pops up event” for a Nexus One phone

(b) Direct surveillance

(d) Sunglass reflections

Distinguished regions detected in various scenarios.

 (a) Image Ik (b) Image Ik+1

Figure 7: Signature of a “key pops up event” in the difference image

for an iPhone. The key T was pressed between the frames

(b) and (a) and (c) is the difference image that records this

motion.

UNC CHAPEL HILL, JUNE 2011

 gives us a good idea of the

motion that took place in the scene between the times tK and tK+1.

We begin our analysis by assuming that the phone remains

the user does not move the phone

while typing on it. We would later generalize the discussion to

involve the movement of the phone as well. We observed that

f motions or events leave typical signatures in the

that the motion taking place in the

for a phone with a virtual keypad) can be classified into

: This is the event in which a key is pressed by

the user. In all virtual keypad phones, whenever a user

[Figure 7]), the letter T pops up

n so that the user easily knows what he is typing.

: This is the event in which the key (say the

) that popped up when the user pressed it pops down

so that the user can carry on with the typing activity.

event in which the user’s finger(s)

area between the times when he

: This is the event that no movement occurs

inside the phone area. This takes place when the user pauses

while typing, or just before and after the message has been

show the difference images for the two most

significant events, the “key pops up” and the “finger moves” events

 (c) Difference image Dk

Signature of a “key pops up event” for a Nexus One phone

 (c) Difference image Dk

Signature of a “key pops up event” in the difference image

was pressed between the frames

(b) and (a) and (c) is the difference image that records this

respectively. The signature of the “key pops down” event is very

similar to the “key pops up” event.

Thus, the process of detection of the “key pressed” event in the

sequence of frames {I1, I2 … IM} is reduced to the process of

detection of the “key pops up” event in the sequence of difference

images {D1, D2 …DM-1}. We use certain heuristics and parameters

to detect the “key pops up” event in the difference image

3.3.1 Detection of the “key pops up” event

The task of detecting whether a “key pops up” event

difference image Dk essentially involves searching

appearance in the image, This is accomplished by f

image Dk with an averaging filter and looking at the places

are local maxima of the filter output. If the filter output at one of

these maxima is within a certain range of value

empirically), a “key pops up” event occurs in this difference image

otherwise it does not. The following sections A and B

certain spatial as well as temporal data in the difference

sequence help us in searching for this event.

 (a) Image Ik (b) Image Ik+1 (c) Difference image

Figure 9: Signature of a “finger moves” event. The finger moves over

the phone between the frames (a) and (b) and (c) is the

difference image that records this motion

Algorithm 2: Detect “key pops up” event in difference image

Output: Set of probable points in DK where this event occurs

Return NULL if no such point is found

1: filter DK with an averaging filter f, size(f) ∝ key_size

DK΄ = f ∗ DK,

2: calculate DK+1΄ and DK-1΄ as in step 1.

2: select a set of local maxima in the filtered output

this set {MK}.

3: for every point (xK
i, yK

i) in MK do:

4: check if DK΄ (xK
i, yK

i) is in the proper range.

5: check if the ratio
��΄ ���

�, 	

� �

���΄ ���
�, 	

� �
 is in proper range.

6: check if the ratio
��΄ ���

�, 	

� �

���΄ ���
�, 	

� �
 is in proper range.

7: if (xK
i, yK

i) satisfies all three conditions {4, 5, 6}

8: add (xK

i, yK
i) to the output.

TECH. REPORT NO. TR11-004, UNC CHAPEL HILL,

6

respectively. The signature of the “key pops down” event is very

, the process of detection of the “key pressed” event in the

} is reduced to the process of

up” event in the sequence of difference

heuristics and parameters

” event in the difference image sequence.

Detection of the “key pops up” event

“key pops up” event occurs in a

searching for a blob-like

This is accomplished by filtering the

at the places which

If the filter output at one of

values (determined

up” event occurs in this difference image;

A and B explain how

spatial as well as temporal data in the difference image

a) SPATIAL DATA IN THE DIFFERENCE IMAGE

Our tracking algorithm [Section 3.2] gives us information about the

location of the phone in the surveillance

of the keys on the virtual keypad of the phone

fit keypad lines to the detected keys. Figure 10

lines overlaid on a difference image which

pops up” event. The knowledge of the position of the

and the detected keys helps us know where

to search for the “key pops up” event.

Our tracking algorithm outputs regions.

location of the keys and keypad lines, we also have an idea of the

size of the keys (in pixels) in a surveillance image

keys is approximated as the average size of the regions

reported as keys by the tracking algorithm.

size helps us to determine the size of the averaging filter that we

use while searching for the “key pops up” event

accurate detection, it is very crucial to have an

matches the size of the key that pops up

b) TEMPORAL DATA IN THE DIFFERENCE IMAGE SEQUENCE

In order to capture all the key pressed events,

from the surveillance video at a rate of 30 frames per second.

Surveys of typing speeds ([7], [8]) show tha

speed in virtual QWERTY keypads (like the ones on the phones we

experiment on) ranges around 15-30 words per minute. This means

that in a video of 30 seconds (900 frames

only about 40 to 80 keys. Our job is to find those 40 to 8

images out of 900, in which a “key pressed” event was

the rest of the 820 to 860 frames, the difference image mostly

records a “finger moves” event (Figure 9)

must be able to correctly reject the “finger moves” events

robust and accurate way. Analysis of temporal relations in the

difference image sequence helps us

pops up” events and “finger moves” events and thus

“finger moves” events. Algorithm 2 gives a detailed outline of our

method.

(c) Difference image Dk

Signature of a “finger moves” event. The finger moves over

the phone between the frames (a) and (b) and (c) is the

difference image that records this motion

(a) Keypad lines (b) Size of the averaging filter

Figure 10: Spatial data helps in searching for “key pops up” event

(a) Keypad lines overlaid on a difference image which records

the pressing of the key E. Keypad lines give us a good idea of

where to look for a “key pops up”

(b) The size of the averaging filter is important for detecting the

type of blob that identifies a “key pops up event”. The size of

the red circle (the averaging filter) must match the size of

the key (in this figure, letter H) that pops up.

: Detect “key pops up” event in difference image DK

where this event occurs

key_size(DK)

a set of local maxima in the filtered output DK΄. Let us call

) is in the proper range.

is in proper range.

is in proper range.

) satisfies all three conditions {4, 5, 6} then

UNC CHAPEL HILL, JUNE 2011

SPATIAL DATA IN THE DIFFERENCE IMAGE

gives us information about the

surveillance image as well the location

of the phone. Additionally, we also

Figure 10 (a) shows keypad

which has recorded a “key

The knowledge of the position of the keypad lines

and the detected keys helps us know where in the difference image

regions. Hence, apart from the

we also have an idea of the

size of the keys (in pixels) in a surveillance image. The size of the

the average size of the regions which are

reported as keys by the tracking algorithm. The knowledge of key

size of the averaging filter that we

while searching for the “key pops up” event (Figure 10 (b)). For

have an averaging filter that

matches the size of the key that pops up in the difference image.

TEMPORAL DATA IN THE DIFFERENCE IMAGE SEQUENCE

In order to capture all the key pressed events, we extract frames

video at a rate of 30 frames per second.

show that the average typing

s (like the ones on the phones we

30 words per minute. This means

900 frames) the user typically types

ur job is to find those 40 to 80 difference

images out of 900, in which a “key pressed” event was recorded. In

0 frames, the difference image mostly

(Figure 9). Hence our algorithm

must be able to correctly reject the “finger moves” events in a

. Analysis of temporal relations in the

difference image sequence helps us differentiate between “key

nts and “finger moves” events and thus reject these

Algorithm 2 gives a detailed outline of our

ze of the averaging filter

Spatial data helps in searching for “key pops up” event

(a) Keypad lines overlaid on a difference image which records

. Keypad lines give us a good idea of

where to look for a “key pops up” event.

(b) The size of the averaging filter is important for detecting the

type of blob that identifies a “key pops up event”. The size of

the red circle (the averaging filter) must match the size of

) that pops up.

 (a) (b)

Figure 11: Three successive difference images recording “finger

moves” events. These events are continuous in nature.

Figure 11 shows three successive frames that record “finger

moves” events. The moving of the finger over the phone is a

continuous event and hence is detected in many of the difference

images in the sequence.

Figure 12 shows three successive frames near a “key pops up”

event. The ‘key pops up’ and ‘key pops down’ events are sporadic

or episodic in nature. The key pops up in an instant, stays on for

some time (during which the difference image shows a zero

difference at the place where the key pops us) and then pops down

in an instant.

Thus, by examining the neighboring images in the

sequence, we are able to reject “finger moves” events and

higher confidence over the prediction of a “key pops up

process involves comparing the ratio of pixel values

averaging filter) in the blocks that represent the particular event in

the difference image DK with the pixel values at the same locations

in its time neighbors DK-1 and DK+1.

3.3.2 “Which key was pressed?”

Once a “key pops up” event has been recorded in a difference

image DK, our task now is to predict which key was pressed. While

template matching with the appearance of the key (in the difference

DK image or the image IK+1) seemed to be a promising idea initially,

as we started lowering the resolution of the images (for vide

surveillance from a distance or for surveillance on the reflections on

a sunglasses etc.), it was difficult to distinguish the keys from each

other based solely on their appearance. The scenario is shown in

the Figure 13, which shows images from two surv

that have captured the typing activity at a rather low resolution. In

13(a), the key R was pressed but template matching would give

 (a) (b)

Figure 12: Three successive difference images near a “key pops up”

event. Image (b) records this event and (a) and (c) are the

nearby difference images.

TECH. REPORT NO. TR11-004, UNC CHAPEL HILL,

7

(c)

Three successive difference images recording “finger

moves” events. These events are continuous in nature.

Figure 11 shows three successive frames that record “finger

moves” events. The moving of the finger over the phone is a

s detected in many of the difference

Figure 12 shows three successive frames near a “key pops up”

event. The ‘key pops up’ and ‘key pops down’ events are sporadic

or episodic in nature. The key pops up in an instant, stays on for

ome time (during which the difference image shows a zero

difference at the place where the key pops us) and then pops down

Thus, by examining the neighboring images in the difference image

events and obtain a

pops up” event. The

process involves comparing the ratio of pixel values (after

in the blocks that represent the particular event in

el values at the same locations

Once a “key pops up” event has been recorded in a difference

, our task now is to predict which key was pressed. While

template matching with the appearance of the key (in the difference

) seemed to be a promising idea initially,

as we started lowering the resolution of the images (for video

surveillance from a distance or for surveillance on the reflections on

a sunglasses etc.), it was difficult to distinguish the keys from each

on their appearance. The scenario is shown in

the Figure 13, which shows images from two surveillance videos

that have captured the typing activity at a rather low resolution. In

was pressed but template matching would give

positive results for many letters that look like

(for example B, P, E, H, A). We decided that

which key was pressed was to look at the location of the

was detected in the difference image while searching for the “key

pops up” event.

Algorithm 3 gives an outline of our approach

computing the transformation that warps the

to the reference image IREF (details in Algorithm 4)

(c)

Three successive difference images near a “key pops up”

event. Image (b) records this event and (a) and (c) are the

Algorithm 3: Detect which key was pressed at the time

Input: i) The point (xK, yK) in the difference image

pops up” event has occurred.

 ii) A keypad map for this phone that says where on the phone

screen a key pops up when that particular key is pressed

by the user.

Output: Set of probable letters that were pressed along with

respective probabilities.

Return NULL if no key was pressed at time

1: estimate a homography HK between the image

reference image IREF (details in Algorithm 4).

2: warp the difference image DK by the transformation

DK΄= DK * HK

 (xK, yK) transforms to (xK΄, yK΄) under this transformation

2: perform posterior optimization via the steps 3 and 4.

(explained further in the Section 3.3.2)

3: for every key i in the keypad do:

4: ����� �
�������������

��

 p'(i) ∝ probability that key i was pressed

ai = area where key i pops up if it is pressed

aintersection = area of overlap between the blob at

(xK΄, yK΄) in DK

pops up if pressed

6: return NULL if aintersection = 0 for all keys

5: select the n keys with the highest probabilities

7: renormalize the probabilities to make them sum to 1 and

all the n (key, probability) pairs.

 (a)

Figure 13: At low resolutions, it is difficult to predict which key was

pressed based on its appearance. So template matching fails

UNC CHAPEL HILL, JUNE 2011

positive results for many letters that look like R at that resolution

d that the best way to predict

s to look at the location of the blob that

while searching for the “key

our approach. We begin by

computing the transformation that warps the surveillance image IK

(details in Algorithm 4). We warp the

: Detect which key was pressed at the time tK

) in the difference image DK, where a “key

ii) A keypad map for this phone that says where on the phone

screen a key pops up when that particular key is pressed

Set of probable letters that were pressed along with

Return NULL if no key was pressed at time tK.

between the image IK and the

(details in Algorithm 4).

by the transformation HK to get

) under this transformation

posterior optimization via the steps 3 and 4.

(explained further in the Section 3.3.2)

was pressed

pops up if it is pressed

= area of overlap between the blob at

K΄ and the area where key i

pops up if pressed

= 0 for all keys

keys with the highest probabilities

the probabilities to make them sum to 1 and output

 (b)

At low resolutions, it is difficult to predict which key was

pressed based on its appearance. So template matching fails

difference image DK by the same transformation to obtain a warped

difference image DK΄. We then perform posterior optimizati

determine which keys have the highest probabilities of being

pressed, given the warped difference image DK΄

yK΄) where the “key pops up” blob occurs. At this stage, we take

advantage of the fact that it is easy to obtain from a single

experiment, a map that says which region of the screen pops up

when a particular key is pressed on this phone.

For any key i in the keypad,

���/���� � ����
� /�� ����

where, ���� = prior probability of the key i being pressed

 ���/���� = posterior probability of the key

given DK΄ and (xK΄, yK΄)

 ����
� /�� = probability the blob at (xK΄, yK

key i has been pressed

 =
�������������

��

ai = area where key i pops up if it is pressed

map)

aintersection = area of overlap between the blob at (
DK΄ and the area where key
pressed

Based on formula (1) above, we compute the posterior probabilities

of keys by computing the ratio of areas of overlap.

overlap at all between the blob in the difference image and the

up” areas of the keys in the given map, we assume

pressed in this frame.

From the results of the posterior optimization, we could either

choose to output the one particular key with the highest probability

as the one being pressed or we could output a list of probable keys

and their corresponding probabilities. An example output of this

stage might look like “There is a 70% chance that an

pressed, and a 30% chance that it might have been an

exploring ways to utilize these probabilities by

probabilistic text processing method to refine the results of our

overall approach.

3.4 Image Alignment

Image alignment is one of the most crucial parts of our entire
approach. The analysis in Section 3.3 of this paper assumes that
the phone is stationary and all the events and motions are with
respect to the phone. In a general scenario, while typing, the user
moves the phone as well. In this case, the difference image
between two consecutive frames in the video IK
information about:

• The overall motion of the phone and the hand(s) holding the

phone
• The motion of the fingers in the phone area and the “key

pressed events”

The first type of motion is a distraction for us as we are only
interested in the motion that happens in the phone area.
shows two consecutive images (a) and (b) (let us call them
Ib) in the image sequence of a surveillance video. A “key p
event” occurs between the times ta and tb in the video.

TECH. REPORT NO. TR11-004, UNC CHAPEL HILL,

8

to obtain a warped

We then perform posterior optimization to

s have the highest probabilities of being

 and the point (xK΄,

At this stage, we take

obtain from a single

says which region of the screen pops up

 (1)

being pressed

terior probability of the key i being pressed

K΄) in DK΄ given that

pressed (given by the

area of overlap between the blob at (xK΄, yK΄) in
and the area where key i pops up if

posterior probabilities

of keys by computing the ratio of areas of overlap. If there is no

overlap at all between the blob in the difference image and the “pop

in the given map, we assume that no key was

From the results of the posterior optimization, we could either

choose to output the one particular key with the highest probability

a list of probable keys

An example output of this

“There is a 70% chance that an E was

pressed, and a 30% chance that it might have been an R”. We are

exploring ways to utilize these probabilities by designing a

cessing method to refine the results of our

the most crucial parts of our entire
of this paper assumes that

the phone is stationary and all the events and motions are with
respect to the phone. In a general scenario, while typing, the user
moves the phone as well. In this case, the difference image DK

K and IK+1 contains

The overall motion of the phone and the hand(s) holding the

The motion of the fingers in the phone area and the “key

The first type of motion is a distraction for us as we are only
that happens in the phone area. Figure 14

shows two consecutive images (a) and (b) (let us call them Ia and
) in the image sequence of a surveillance video. A “key pressed

in the video. (c) is the

difference image between Ia and Ib calculated by taking the pixel
wise differences in both images. We can clearly see the
disturbance in the difference image caused by the slight mo
of the phone. In fact, detecting the “key pops up” event in the
difference image (c) is very difficult.
computed between images Ia and Ib’, where I
subjected to a transformation that aligns the phone area in image
to the phone area in image Ia. It is evident that the difference image
(d) is more meaningful for our analysis and also clearly shows the
“key pops up” event in it.

Our tracking algorithm [Section 3.2] tells us the location of the

phone in the image and also returns the region that is occupied by

the phone in the image. From the output of this stage, a

mask is computed so that we mask out

surveillance image except the phone,

interest. The phone mask [Figure 15] plays a

image alignment process as this helps us find feature

exactly on the phone.

 (a)

 (c)

Figure 14: The need for image alignment.

(a) and (b) are two consecutive frames in a video. (c) is the

difference image between (a) and (b). (d) is the difference

image between (a) and (b) after aligning the phone area in

(b) to the phone area in (a).

 (a)

Figure 15: Result of locating or masking the phone in an image

(a) Cropped image from surveillance video.

(b) Locating the phone in the image

UNC CHAPEL HILL, JUNE 2011

calculated by taking the pixel-
wise differences in both images. We can clearly see the
disturbance in the difference image caused by the slight movement
of the phone. In fact, detecting the “key pops up” event in the

image (c) is very difficult. (d) is the difference image
’, where Ib’ is the image Ib

subjected to a transformation that aligns the phone area in image Ib
. It is evident that the difference image

(d) is more meaningful for our analysis and also clearly shows the

tells us the location of the

phone in the image and also returns the region that is occupied by

From the output of this stage, a phone

is computed so that we mask out everything else in the

 and focus on the object of

plays an important role in the

image alignment process as this helps us find features that lie

 (b)

(d)

The need for image alignment.

(a) and (b) are two consecutive frames in a video. (c) is the

difference image between (a) and (b). (d) is the difference

image between (a) and (b) after aligning the phone area in

(b)

Result of locating or masking the phone in an image

(a) Cropped image from surveillance video.

(b) Locating the phone in the image (phone mask)

TECH. REPORT NO. TR11-004, UNC CHAPEL HILL, JUNE 2011

9

One of the initial ideas that we explored was to align the phone in

all the images in the surveillance video to the reference image of

the phone. This approach, while it seems to simplify the process a

lot, turned out to be a failure because of several reasons. One

apparent reason was that in many of the surveillance images, a

large part of the phone in occluded by the user’s hands; so there

weren’t enough correct correspondences to estimate a correct

transformation that warps the surveillance image to the reference

image. Another reason was that our method of absolute

differencing relies on the temporal relations between the video

frames. Hence, separately aligning each of the frames to the

reference image destroyed that temporal relation between

successive frames.

In our approach, before computing the difference image between

two successive images IK and IK+1, we align the phone areas in the

two images via SIFT matching. The very reason that we use only

features that lie on the phone makes sure that the warping between

these images stabilizes the phone area (so that the difference

images do not show the movement of the phone).

An important requirement of image alignment occurs at the stage

where we determine which key was pressed by the user, once a

“key pops up” event has been detected. The first step in Algorithm

3 is to align the surveillance image IK to the reference image IREF by

a homography HK. Computing this homography turns out to be a

challenging task as the user’s fingers obstruct a large part of the

phone’s keypad in a “key pressed” frame. These occlusions,

coupled with wide differences in illumination and viewing angle

often lead to incorrect homographies being computed between the

IK and IREF. Algorithm 4 describes the method of alignment that we

designed to overcome this challenge.

Instead of directly aligning the image IK (called the target frame) to

IREF, we first choose an image ICF (called the clear frame) in the

same video that has an unobstructed view of the phone keypad. To

find this image, we again use the output of our tracking method

(Section 3.2) which also returns the number of keys detected in

each surveillance image in the video. If more number of keys were

detected, that image has a more unobstructed view of the keypad.

We then compute a homography between the reference image and

the clear frame. This homography would be accurate because we

have an unobstructed view of the keypad and hence there would be

reliable feature matches between the two images. The next step is

to estimate a homography between the target frame and the clear

frame. This homography would also be correct as both images are

from the same video and have roughly the same lighting conditions

and viewing angles. The final homography that we require is just a

multiplication of the two homographies just computed.

4 RESULTS

For our experiments, we used a Canon Vixia HG 21 Camcorder

(costs about 1000 USD). The experiments were conducted in an

indoor environment, and the camera was at a distance of 2 to 3

meters from the user.

4.1 Direct surveillance with no phone movement

We conducted our first set of experiments keeping the phone stable

(hence not moving) while the user types on it. The experiments

were performed on a direct surveillance setup where the camera

had an unobstructed view of the phone and was at a distance of

about 2 meters from the user. The results we obtained for these

surveillance videos were excellent and showed promise that our

algorithm was ready to be applied to more challenging scenarios.

4.1.1 iPhone dataset

For this dataset, we conducted the experiments at four different

resolutions of the surveillance video. The Figure 16 shows frames

at the highest and lowest resolution videos. Table 1 below

summarizes the results of this set of experiments. Ground truth

refers to the string that was typed by the user and Reconstructed

string is the string predicted by our algorithm. It can be observed

that we predicted the string with 100% accuracy at resolutions

which were at and above 50X88 pixels.

Ground truth:

the quick fox jumped over lazy dog

Exp 1.1, 1.2 and 1.3: Video resolution: 200 X 350, 100 X 175,

50 X 88

Reconstructed string:

the quick fox jumped over lazy dog

Algorithm 4: Align “key pressed” frame IK to the reference image

IREF

Output: A homography HK that warps IK to IREF

1: find a clear frame ICF, in the image sequence of the same video,

such that ICF has an unobstructed view of the phone keypad.

2: estimate homography HCF-REF between ICF and IREF.

3: estimate homography HK-CF between IK and ICF.

4: calculate the homography HK by:

HK = HK-CF * HCF-REF

 (a) (b)

Figure 16: Range of resolution for iPhone surveillance videos

(a) Resolution: 200 X 350

(b) Resolution: 25 X 44

350

44

H
e

ig
h

t
(p

ix
e

ls
)

TECH. REPORT NO. TR11-004, UNC CHAPEL HILL, JUNE 2011

10

Exp 1.4: Video resolution: 25 X 44

Reconstructed string:

the quick fox jumpedxlovder nlazy dog

Table 1: Results of experiments for the iPhone dataset

In the case Exp 1.4, in which the input video had a resolution of

25X44 pixels [Figure 16(b)], our algorithm still predicted most parts

of the string correctly. In terms of the number of frames that fired as

“key pressed events”, there is a false positive rate of 11 % and no

false negatives. The Levenshtein Edit Distance between the

Reconstructed string and the Ground truth is 5 characters. Based

on this measure, there is an error rate of 14% per character for Exp

1.4. Another popular measure used for evaluation of Machine

Translation is Word Error Rate (WER), which is based on the

normalized Levenshtein edit distance between the hypothesis and

the reference, assuming a word as the basic unit of comparison.

The WER in case of Exp 1.4 turns out to be (2/7). It is interesting to

note that at the resolution at which Exp 1.4 was recorded [Figure

16(b)], it is not possible for a human being to predict the user-typed

string by watching the video.

4.1.2 Nexus One dataset

We conducted a similar set of experiments on surveillance videos

of the Nexus One phone. The experiments were in three different

resolutions of the surveillance video. Figure 17 shows frames

extracted from the video. Table 2 summarizes the results of the

experiments.

In these experiments, we were also able to detect when the user

switches the keypad from “ABC” mode (in which the letters appear

on the virtual keypad) to the “123” mode (in which numbers keypad

replaces the alphabets keypad at the same place on the virtual

keypad) and the “Symbols” mode (in which the symbols keypad

replaces the alphabet keypad on the phone). Based on simple

heuristics, we also recovered when the user types in the “lower

case” and “upper case”. These features can be very useful in

scenarios where the goal is to recover passwords and other such

information where the string to be recovered is case-sensitive and

is likely to contain special characters.

Ground truth:

the quick fox jumps over the lazy dog BROWN DOG. tHHE

QUICK BROWN FOX JUMPS OVER THE LAZY DOG.

9876501234@#$%&*+()

Exp 2.1: Video resolution: 160 X 280

Reconstructed string:

the qick fox jumps over the lazy dog BROWN DG. tHHE QUICK

BROWN FOX JUMPS OVER THE LAZY DOG.

9876501234@#$%&*+()

Exp 2.2: Video resolution: 80 X 140

Reconstructed string:

the quick fox jumps over the lazy dog BRWN DOG. tHHE

QUICK BROWN FOX JUMPS OVER THE LAZY DOG.

9876501234@#$%&*+()

Exp 2.3: Video resolution: 40 X 70

Reconstructed string:

the qick fox jumps over the lazy dog BROWN DOG. tHHE

QUICK BROWN FOX JUMPS OVER THE LAZY DOG.

9876501234@#$%&*+()

Table 2: Results of experiments for the Nexus One dataset

It can be observed that we predicted the string with almost

complete accuracy at all resolutions. In terms of the number of

frames that fired as “key pressed events”, there is a false negative

rate of 1.05 % and no false positives. The Levenshtein Edit

Distance between the Reconstructed string and the Ground truth is

1 character in all the three cases; there is an error rate of 1 % per

character according to this measure. The Word Error Rate in all the

cases is (1/20) in all the three cases; we got one incorrect word in

the entire string in the three cases.

4.2 Direct surveillance with phone movement

In this set of experiments, the user types on the phone and the

phone is allowed to move (in contrast to the scenario in Section 4.1

where the phone remains static). This case is challenging because

we have to deal with the movement of the phone as well as the

 (a) (c)

Figure 17: Range of resolution for Nexus One surveillance videos

(a) Resolution: 160 X 280

(b) Resolution: 40 X 70

280

70

H
e

ig
h

t
(p

ix
e

ls
)

Ground truth: the quick fox jumped over the lazy dog

Reconstructed string:
thevvb qcuikm fnooxajlummed doverb thv azztm dcvog

Table 3: Results of reconstruction for direct surveillance with phone

movement

movement of the user’s fingers in the phone area.

Table 3 shows the results of our algorithm on one surveillance

video. The bold letters in the reconstructed string are the correctly

detected letters. There is a rather large quantity of false positive

“key pressed events”, around 50%, because of which

string does not make any sense. The number of false negatives is

around 10%. The Levenshtein Edit Distance between the

truth and Reconstructed string is 19 characters, which is also pretty

large considering that the length of the input string is only

characters. However, in terms of the number of

Ground truth that were recovered in their correct relative order in

the Reconstructed string, we have an accuracy of

out of the 29 characters typed by the user have been detected

their correct order by the algorithm. A number of false positives can

be reduced by manipulating the parameters of our

detection algorithm. A language model based post

would be very helpful in predicting the user-typed

accuracy. In the keyboard surveillance method proposed by

Balzarotti et al [4], a major part of their approach is language

modeling and text analysis to reproduce what was being typed o

the keyboard.

For each “key pressed” event, instead of storing

(for example, the user has pressed the letter E), we store

probable characters with their respective probabilit

there is a 55% chance that an E has been pressed, but a 45%

chance that it might actually have been an R; the

are next to each other in the phone keypad).

obtaining these probabilities is explained in Sectio

3]. The reconstructed string shown in Table 3 shows only the most

probable outputs for each letter. We are in the process of exploring

ways to use these probabilities meaningfully to produce a correct

output string.

4.3 Surveillance on the reflection on sunglasses

We extended our approach for automatic text reconstruction to a
surveillance video of the reflection of a user’s typing activity in his

 (a) letter = U

 (b) letter = E

Figure 18: Successful detections in direct surveillance videos.

The images on the left are the difference images that

record the “key pops up” event, and on the right

corresponding frames where the “key pressed event” can

be seen

TECH. REPORT NO. TR11-004, UNC CHAPEL HILL,

11

fingers in the phone area.

algorithm on one surveillance

The bold letters in the reconstructed string are the correctly

There is a rather large quantity of false positive

of which the output

. The number of false negatives is

between the Ground

, which is also pretty

g that the length of the input string is only 29

number of characters in the

hat were recovered in their correct relative order in

have an accuracy of 90 %, that is, 26

have been detected in

number of false positives can

be reduced by manipulating the parameters of our change

post-processing step

typed string with higher

. In the keyboard surveillance method proposed by

Balzarotti et al [4], a major part of their approach is language

modeling and text analysis to reproduce what was being typed on

 just one character

letter E), we store many

respective probabilities (for example,

has been pressed, but a 45%

; the letters E and R

in the phone keypad). The process of

probabilities is explained in Section 3.1.2 [Algorithm

The reconstructed string shown in Table 3 shows only the most

probable outputs for each letter. We are in the process of exploring

ways to use these probabilities meaningfully to produce a correct

eflection on sunglasses

automatic text reconstruction to a
the reflection of a user’s typing activity in his

sunglasses. The threat scenario is the one shown in Figure 19. We
applied our algorithm to a surveillance video of sunglass reflections
and obtained very encouraging results.
[Section 3.2] performed remarkably well on this video. Some results
can be seen in Figure 20.

Some correctly detected “key pressed frames” are shown in Figure

21. In terms of correctly detecting the

have several correct detections (25 to 50%) in sunglass ref

videos. However, there are still a lot of false negatives as well as

false positives that result in the output string

One of the primary reasons is a failure in the image alignm

process [Section 3.4, Algorithm 4] that is

“which key was pressed”. Misalignments occur primarily because

the sunglass reflection images are noisy,

in illumination from the reference image

distortion (they are images on a spherical mirror, the sunglass)

One particular case of misalignment is shown in Figure 22.

 (a)

Figure 20: (a) MSER regions correctly detected in a sunglass

reflection image

(b) keypad lines correctly detected in a sunglass

reflection frame

 (a)

 (b)

Figure 19: Surveillance on sunglass reflections

(a) Frame from the surveillance video

(b) Phone image in the sunglasses (flipped; it is a virtual

image)

(c) Contrast enhancement applied to (b)

Successful detections in direct surveillance videos.

The images on the left are the difference images that

record the “key pops up” event, and on the right are the

corresponding frames where the “key pressed event” can

UNC CHAPEL HILL, JUNE 2011

sunglasses. The threat scenario is the one shown in Figure 19. We
surveillance video of sunglass reflections

and obtained very encouraging results. The SIFT+MSER tracker
performed remarkably well on this video. Some results

“key pressed frames” are shown in Figure

the “key pressed events”, we

correct detections (25 to 50%) in sunglass reflection

there are still a lot of false negatives as well as

false positives that result in the output strings not being meaningful.

failure in the image alignment

that is required to determine

Misalignments occur primarily because

sunglass reflection images are noisy, they have a large change

in illumination from the reference image IREF, and have radial

distortion (they are images on a spherical mirror, the sunglass).

is shown in Figure 22.

(b)

ly detected in a sunglass

(b) keypad lines correctly detected in a sunglass

(c)

Surveillance on sunglass reflections

(a) Frame from the surveillance video

(b) Phone image in the sunglasses (flipped; it is a virtual

Contrast enhancement applied to (b)

5 HOW REAL IS THE THREAT? (PRACTICAL LIMITS

In Appendix – I [Section 8] we provide a discussion on

parameters if this threat was to be planned in a real scenario.

following is a discussion based on the results of that analysis.

5.1 How good are current equipments

In Section 8, we saw that the maximum resolution with which a
particular object can be captured by a camera depends upon

• The diameter of its lens
• Distance of object from the camera

For our algorithm, we have demonstrated successful results even
at an object resolution 25 X 44 (pixels in each dimension) (for the
iPhone). This was in the case when the phone was static, but in the
general cases we have promising results with resolutions around
100 X 175.
By the expression (3) [Section 8.2.1], the minimum diameter of a
lens required to directly capture the typing activity of the phone at
the resolution of 100 X 175 from a distance of 1 met
The diameter of most good cell phone cameras (iPhone, Nexus
One etc.) is in the range of 1.3 to 1.5 mm. This implies that if Ali

(a) letter = E

 (c) letter = G

Figure 21: Correct detection of keys pressed in sunglass reflection

video.The images on the left are the difference images

that record the “key pops up” event, and on the right are

the corresponding frames where the “key pressed event”

can be seen.

 (a) (b)

Figure 22: Misalignment of sunglass frames.

(c) is the phone in (b) aligned with the reference image (a).

(a) is the IREF, and we can see that the aligned image (c) is

distorted.

TECH. REPORT NO. TR11-004, UNC CHAPEL HILL,

12

PRACTICAL LIMITS)

a discussion on the relevant

in a real scenario. The

based on the results of that analysis.

How good are current equipments

, we saw that the maximum resolution with which a
particular object can be captured by a camera depends upon

For our algorithm, we have demonstrated successful results even
at an object resolution 25 X 44 (pixels in each dimension) (for the
iPhone). This was in the case when the phone was static, but in the

cases we have promising results with resolutions around

, the minimum diameter of a
lens required to directly capture the typing activity of the phone at
the resolution of 100 X 175 from a distance of 1 meter is 1.16 mm.

ost good cell phone cameras (iPhone, Nexus
One etc.) is in the range of 1.3 to 1.5 mm. This implies that if Alice

is at a distance of around 1 m from Bob, and has an unobstructed
view of Bob’s phone she can get an automated transcript of what
Bob is typing by recording a video from her own cell phone itself.
This can very easily take place in a crowded place like a bus or a
metro train.

The diameter of most cheap digital cameras (under 200 USD)
ranges from 2.0 to 6.0 mm; they can effectively spy from a distance
of 1 to 4 meters from the typing user. The diameter of slightly high
price range (under 500 USD) digital cameras ranges up to 20 mm;
they can be used to spy upon the person up to distances of 10 m or
more.

Figure 23 and Figure 24 provide an approximate range at which
direct and indirect surveillance can be carried out using our
algorithm with the use of different types of cameras.
overhead surveillance cameras and such equip
directly spy on the phone user whereas high quality cameras and
telescopes would be required to spy on the
eye from distances of 5 m or more. T
that the threat that we examine is real and
using moderately priced equipment in a real life setting.

6 CONCLUSION

Through our current work, we have shown that
reconstruction solely from a surveillance video is possible for
eavesdropping on a smart phone. We have developed a method for
tracking and identifying a phone that has been successful
range of surveillance videos. This algorithm has performed
remarkably well even when we applied it for tracking th
video that captured a reflection of the phone in the user’s
sunglasses. Based on an analysis of optical parameters
equipments, we have predicted that automatic spying on a phone
user is a potential threat that could be carried out
available cameras using state-of
algorithms.

There are several possible directions in which
carried out in this area. For further improvement of our spying

Correct detection of keys pressed in sunglass reflection

video.The images on the left are the difference images

that record the “key pops up” event, and on the right are

the corresponding frames where the “key pressed event”

(c)

reference image (a).

, and we can see that the aligned image (c) is

(a) 2 m (b) 4 m (c) 3 m

Figure 23: Approximate spying range for

(a) Cell phone camera/pocket camcorders (~100 USD)

(b) Cheap digital cameras (~150 USD)

(c) Cheap surveillance cameras (~150 USD)

(d) SLR cameras (~500 USD)

 (a) 2 m (b) 5 m (c) 15 m

Figure 24: Approximate spying range for

reflections in glasses / sunglasses

(a) SLR cameras (~500 USD)

(b) HD Camcorders (~1000 USD)

(c) Cheap telescopes (~700 USD)

UNC CHAPEL HILL, JUNE 2011

1 m from Bob, and has an unobstructed
view of Bob’s phone she can get an automated transcript of what

by recording a video from her own cell phone itself.
This can very easily take place in a crowded place like a bus or a

The diameter of most cheap digital cameras (under 200 USD)
hey can effectively spy from a distance

of 1 to 4 meters from the typing user. The diameter of slightly high
tal cameras ranges up to 20 mm;

they can be used to spy upon the person up to distances of 10 m or

provide an approximate range at which
direct and indirect surveillance can be carried out using our
algorithm with the use of different types of cameras. Thus,
overhead surveillance cameras and such equipments can easily

whereas high quality cameras and
e required to spy on the reflection on glasses or

The analysis above predicts
threat that we examine is real and could be carried out

moderately priced equipment in a real life setting.

Through our current work, we have shown that automatic text
solely from a surveillance video is possible for

We have developed a method for
that has been successful in a wide

range of surveillance videos. This algorithm has performed
remarkably well even when we applied it for tracking the phone in a

ion of the phone in the user’s
an analysis of optical parameters and optical

, we have predicted that automatic spying on a phone
that could be carried out with readily

of-the-art computer vision

There are several possible directions in which future work could be
For further improvement of our spying

 (d) 15 m

Approximate spying range for direct surveillance

(a) Cell phone camera/pocket camcorders (~100 USD)

(b) Cheap digital cameras (~150 USD)

(c) Cheap surveillance cameras (~150 USD)

(b) 5 m (c) 15 m

Approximate spying range for indirect surveillance from

reflections in glasses / sunglasses

TECH. REPORT NO. TR11-004, UNC CHAPEL HILL, JUNE 2011

13

algorithm, the use of a good language analysis model would be
very helpful. It is also necessary to conduct more experiments in
real world settings to get a better idea of the usability of the
approach. There lies another vast area of designing methods for
prevention of this threat. There have been reports of breach privacy
filters installed on touch screens [19]. There are also new types of
phone touch screens, which instead of providing visual feedback (in
the form of the character “popping out”) provide tactile feedback to
the user in the form of a mechanical click [20] or a vibration [21]
under the user’s fingertips when she presses a key in the virtual
keypad. There are also new technologies which provide for
alternative ways of text input on a phone touchscreen rather than
typing on it [22].

7 REFERENCES

[1] M. Backes, M. Durmuth, D. Unruh. Compromising Reflections –or- How

to Read LCD Monitors Around the Corner. In Proceedings of the IEEE

Symposium on Security and Privacy (SSP '08), Oakland, CA, May

2008.

[2] J. Matas, O. Chum, M. Urba, and T. Pajdla. Robust Wide Baseline

Stereo from Maximally Stable Extremal Regions. Proc. of British

Machine Vision Conference, pages 384-396, 2002.

[3] D.G.Lowe. Object Recognition from Local Scale-Invariant Features. In

ICCV99, pages 1150-1157, 1999.

[4] D. Balzarotti, M. Cova, G. Vigna, ClearShot: Eavesdropping on

Keyboard Input from Video, Proceedings of the 29th IEEE Symposium

on Security and Privacy - Oakland, California, May 18-21, 2008

[5] Harris, C. and Stephens, M. 1988. A combined corner and edge

detector. In Alvey Vision Conference, pp. 147–151.

[6] Martin A. Fischler and Robert C. Bolles (June 1981). Random Sample

Consensus: A Paradigm for Model Fitting with Applications to Image

Analysis and Automated Cartography. Comm. of the ACM 24: 381–395

[7] T. Költringer and T. Grechenig, “Comparing the immediate usability of

graffiti 2 and virtual keyboard,” in Proc. CHI Extended Abstracts, 2004,

pp. 1175-1178.

[8] I. S. MacKenzie and J. C. Read, “Using paper mockups for evaluating

soft keyboard layouts,” in Proc. CASCON, 2007, pp. 98-108.

[9] John J. Barton , Shumin Zhai , Steve B. Cousins, “Mobile Phones Will

Become The Primary Personal Computing Devices”, Proceedings of

the Seventh IEEE Workshop on Mobile Computing Systems &

Applications, p.3-9, April 06-07, 2006

[10] http://txt4ever.wordpress.com/2009/10/29/iphone-sales-figures-2009-

show-confusing-results/

[11] http://blog.flurry.com/bid/31410/Day-74-Sales-Apple-iPhone-vs-Google-

Nexus-One-vs-Motorola-Droid

[12] http://www.email-marketing-reports.com/wireless-mobile/smartphone-

statistics.htm

[13] Liu, L., Yan, G., Zhang, X., Chen, S.: “Virusmeter: Preventing your

cellphone from spies”. In: Proceedings of the 12th International

Symposium On Recent Advances In Intrusion Detection. (2009)

[14] C. Guo, H. J. Wang, and W. Zhu. Smart-phone attacks and defenses.

In HotNets III, 2004.

[15] Helen J. Wang, Chuanxiong Guo, Daniel. R. Simon, and Alf

Zugenmaier. Shield: vulnerability-driven network filters for preventing

known vulnerability exploits. In Proc. SIGCOMM, August 2004.

[16] S Impedovo, L Ottaviano and S Occhinegro, Optical character

recognition—a survey, Int. J. Pattern Recognition Artif. Intell. 5 (1/2)

(1991), pp. 1–24.

[17] http://www.apple.com/iphone/specs.html

[18] Ko Nishino, S.K.Nayar, "Corneal imaging system: Environment from

eyes", International Journal of Computer Vision 70(1), 23–40, 2006

[19] http://www.prosecurityzone.com/News/It_security/Data_protection/Data

_breach_survey_identifies_snooping_as_a_growing_risk_16077.asp#a

xzz1NxzM0ZpE

[20] Nokia perfects the clicky tactile touchscreen,

http://www.redferret.net/?p=9533

[21] VibeTonz technology: Nokia Licenses Vibration Feedback,

http://www.phonescoop.com/news/item.php?n=2270

[22] Swype: Text Input for Screens, http://swypeinc.com/index.html

[23] A.Schmidt, F.Peters, F.Lamour, C.Scheel, S.A. Çamtepe, S. Albayrak.

Monitoring Smartphones for Anomaly Detection, Mobile Networks and

Applications(2009)

[24] W.Enck, P.Gilbert, B.Chun. TaintDroid: An Information-Flow Tracking

System for Realtime Privacy Monitoring on Smartphones

[25] K.Mikolajczyk, C.Schmid. A performance evaluation of local

descriptors, Pattern Analysis and Machine Intelligence, IEEE

Transactions on , vol.27, no.10, pp.1615-1630, Oct. 2005

8 APPENDIX – I: AN OPTICS PRIMER

In this section we present an analysis of the relevant parameters of

an optical system that are required to carry out the threat scenario

that we imagine in the real world. Backes et al [1] have provided a

very clear explanation of these parameters.

8.1 Size of the object of surveillance

The first question that matters to us is “What is the size of the

object that we want to capture in the video?”. In the case of direct

surveillance it is the size of the phone. In case of surveillance that

involves capturing the typing activity from a reflection in the

person’s glasses or his eyeballs, the question is “What is the size of

the phone’s image in the reflecting surface?” For answering these

questions we need to refer to some of the basic optics theories.

8.1.1 Size of the reflected image

The reflection of an object in a curved mirror creates a virtual image

that is located behind the reflecting surface. The overall situation is

depicted in Figure 25. If the width of a spherical mirror is small

compared to its radius, it is common to approximate the mirror as a

lens of focal length f0 = r / 2. The location b0 of the virtual image

(the distance between the virtual image and the reflecting surface),

given the location a0 of the object is given by the thin lens equation

as, !" � 1 /(2/% − 1/a")

The size u0 of the virtual image is given by u0 = b0 x / a0, where x

is the size of the phone. Finally we have to consider that the image

appears smaller if seen from an angle ; the apparent size u1 = u0

()* +.

The size of the iPhone is 11.5 cm X 6.2 cm. Using the formulae

derived above, assuming that a person holds the phone at a

distance of 30 cm from his eyes while typing, the size of the image

of the iPhone in a normal pair of sunglasses (assuming a radius of

curvature of 200 mm) is 1.07 cm X 0.57 cm, and the size of the

image of the iPhone in a person’s eye balls (assuming the average

eye ball radius of 8mm) is 1.6 mm X 0.86 mm.Thus, calculations

Figure 25: Size of the reflected image on a convex mirror.

Courtesy of Backes et al. [1]

TECH. REPORT NO. TR11-004, UNC CHAPEL HILL, JUNE 2011

14

reveal that the image of the phone in a person’s glasses is about a

tenth of the actual size, and the size of the image of the phone in

his eyes is about a hundredth of the actual size.

8.2 Limits of optical resolution

Some relevant questions are, “Is it feasible to conduct the video
surveillance on another phone by using the camera in my phone?”,
“How powerful a camera do I need to make the automatic detection
work on the reflection of the typing activity in another person’s
sunglasses or eyes?”. For answering all these questions, we first
need to understand the term “Optical resolution”.

Let the distance from the camera to the object being captured be ,.
The object might be the phone or its reflection on some surface. Let

- be the required resolution of this object on the camera image (in

pixels). If the size of the object is ./, then the optical resolution 0

(in radians) required to capture the object with the desired

resolution in the image is given by,

 0 = 1%(21-(.1/-,) ≈ .1 / -, (1)

where the approximation holds as .1 ≪ ,.

8.2.1 Diffraction Bounds

Diffraction is a physical phenomenon that diffuses light or any other

electromagnetic wave, whenever it passes some aperture. Though

this phenomenon is well-known for being visible to the human eye

for very small apertures, in case of high magnifications, it is

noticeable even for large apertures like lenses used in cameras and

telescopes. In fact, as we will see further in this discussion,

diffraction constitutes one of the most limiting parameters in the use

of cameras for surveillance scenarios.

The influence of diffraction on the maximum optical resolution of a

telescope is given by Rayleigh’s criterion. Let two point sources P1,

P2 be given such that the angle between these two sources is 0 (in

radians). Let D be the diameter of the lens of the camera and 5 the

wavelength of the light. Then Raleigh’s criterion states that the two

points P1, P2 can be distinguished if and only if

0 ≥ 1.22 5/� (2)

From equations (1) and (2), we can derive an expression for the

maximum resolution of an object that can be captured by a camera

lens at a given distance. The expression is:

n ≤ ./D/(1.22 λ d) (3)

From the expression above, it is apparent that the maximum

resolution that can be captured by a camera or telescope lens is

directly proportional to the diameter of the lens, and inversely

proportional to the distance between the camera and the object.

