
Real-Time Handling of GPU Interrupts in LITMUSRT

Glenn A. Elliott, Chih-Hao Sun, and James H. Anderson
Department of Computer Science, University of North Carolina at Chapel Hill

Abstract—Graphics processing units (GPUs) are becom-
ing increasingly important in today’s platforms as their
increased generality allows for them to be used as powerful
co-processors. However, unlike standard CPUs, GPUs are
treated as I/O devices and require the use of interrupts to
facilitate communication with the CPU. Interrupts cause
delays in the execution of real-time tasks, challenges in real-
time operating system implementation, and difficulties for
formal analysis. We examine methods for designing proper
real-time interrupt handling in multiprocessor systems and
present our solution, klitirqd, an addition to LITMUSRT, to
address the challenges caused by interrupts in real-time sys-
tems. klitirqd is a flexible solution that improves upon prior
approaches by supporting non-partitioned multiprocessor
scheduling algorithms while respecting the single-threaded
sporadic task model and also supporting asynchronous I/O.
We use klitirqd to realize real-time GPU interrupt handling
and overcome significant technical challenges of altering the
interrupt processes of a closed-source GPU driver. This
technique can be generalized to potentially support any
closed-source device driver.

I. INTRODUCTION

The parallel architecture of the graphics processing
unit (GPU) often allows data parallel computations to
be carried out at rates orders of magnitude greater
than those offered by a traditional CPU. Enabled by
increased programmability and single-precision floating-
point support, the use of graphics hardware for solving
non-graphical (general purpose) computational problems
began gaining wide-spread popularity in the early part
of the last decade [9], [13], [18]. However, early ap-
proaches were limited in scope and flexibility because
non-graphical algorithms had to be mapped to languages
developed exclusively for graphics. Graphics hardware
manufactures recognized the market opportunities for
better support of general purpose computations on GPUs
(GPGPU) and released language extensions and run-
time environments,1 eliminating many of the limitations
found in early GPGPU solutions. Since the release
of these second-generation GPGPU technologies, both
graphics hardware and runtime environments have grown
in generality, increasing the applicability of GPGPU
to a breadth of domains. Today, GPUs can be found

1Notable platforms include the Compute Unified Device Architec-
ture (CUDA) from Nvidia, Stream from AMD/ATI, OpenCL from
Apple and the Khronos Group, and DirectCompute from Microsoft

integrated on-chip in mobile devices and laptops [1], [4],
[2], as discrete cards in higher-end consumer computers
and workstations, and also within some of the world’s
fastest super-computers [17].

GPUs have applications in a number of real-time
domains. For example, a GPU can efficiently carry
out many digital signal processing operations such as
multidimensional FFTs and convolution as well as ma-
trix operations such as factorization on data sets of
up to several gigabytes in size. These operations, cou-
pled with other GPU-efficient algorithms, can be used
in medical imaging and video processing, where real-
time constraints are common. A particularly compelling
application is that of driver-assisted and autonomous
automobiles. In these platforms, multiple streams of
data from video feeds and laser range sensors must be
processed and correlated for localized navigation and
obstacle avoidance [25]. GPUs are well suited to handle
this type of workload since the sensors generate huge
amounts of data and the algorithms used are often data
parallel. Moreover, autonomous automobiles are clearly
a safety-critical application where real-time constraints
are important.

Prior Work: The real-time community has only
recently begun investigating the use of GPUs in real-
time systems. On the theoretical side, Raravi et al.
have developed methods for estimating worst-case ex-
ecution time on GPUs [21] and scheduling algorithms
for “two-type” heterogeneous multiprocessor platforms,
with CPU/GPU platforms particularly in mind [6], [22].
On the more applied side, Kato et al. have developed
quality-of-service techniques for graphical displays on
fixed-priority systems [15], [16].

In our own work, we have investigated and addressed
many of the challenges faced when integrating GPUs that
have non-real-time, throughput-oriented, closed-source
device drivers into an actual real-time operating sys-
tem [12] on a multiprocessor platform. The non-real-
time-oriented drivers exhibit behaviors that are difficult
to manage in a real-time system. For example, the driver
only allows one task to execute work non-preemptively
on a GPU at a time. When a GPU comes under con-
tention, a blocked task waits on a spinlock, consuming
CPU time, until it receives the GPU. This wastes CPU

time that could be used to schedule other real-time tasks.
To make this situation more difficult, blocked tasks have
no mechanism to change the priority of a GPU-holding
task. Thus, real-time tasks can be blocked, consuming
CPU time, for an unbounded duration of time.

Additionally, a GPU-using task may self-suspend from
CPU execution while it waits for computational results
from a GPU. The non-preemptive execution on the
GPU usually takes from 10s of milliseconds up to
several seconds, depending upon the application [12].
Supposing that we could somehow bound the duration
a blocked task spin-waits for a GPU, this bounded
duration would still be quite long and a considerable
amount of CPU time consumed. The primary solution
we presented in [12] to address these issues is to
treat a GPU as a shared resource, protected by a real-
time suspension-based semaphore. The use of a real-
time semaphore removes the GPU driver from resource
arbitration decisions (since all arbitration decisions have
already been made by the time a task invokes the driver)
and priority inheritance mechanisms make it possible
to bound blocking time. The fact that the semaphore is
suspension-based (blocked jobs suspend from execution)
increases the CPU availability to other real-time tasks.
We validated this approach in experiments on UNC’s
real-time Linux-based operating system, LITMUSRT, and
demonstrated improved real-time characteristics such as
reduced CPU utilization and reduced deadline tardiness.

Contributions: One aspect that we did not address
in our prior work was the effect hardware interrupts
from GPUs have on real-time execution. Interrupts for
cause complications in real-time systems by introducing
increased system latencies, decreased schedulability, and
additional complexity in real-time operating systems.
Proper real-time interrupt handling should ideally respect
the priorities of executing real-time tasks. However, this
is a non-trivial task, especially for systems with shared
I/O resources. In this paper we examine the nature,
servicing techniques, and effects general interrupts have
on real-time execution. We present an approach for
the proper real-time handling of interrupts and improve
upon prior methods by supporting non-partitioned mul-
tiprocessor scheduling algorithms without violating the
single-threaded sporadic task model, while also sup-
porting asynchronous I/O. We apply our technique to
the real-time scheduling of GPU interrupts, which also
required us to overcome significant technical challenges
to alter the interrupt processes of the closed-source GPU.

The rest of this paper is organized as follows. In Sec. II
we review the problems posed by interrupts in real-
time systems and discuss how interrupts are processed
in Linux-based operating systems. In Sec. III, prior

work in real-time interrupt handling is discussed, and
we present our solution, klitirqd, for scheduled interrupt
handling in LITMUSRT. In Sec. IV we apply klitirqd to
handle GPU interrupts, and explain in great detail how
interrupt processing from the closed-source GPU driver
must be intercepted, parameters decoded, and rerouted
to klitirqd. Our implementation in LITMUSRT for real-
time GPU interrupt handling is evaluated in Sec. V and
compared against standard Linux interrupt processing
through experimentation on a multicore, multi-GPU,
platform. Finally, we conclude with a summary of our
approach and results in Sec. VI and also present future
research enabled by this work.

Please note for the rest of this paper we will focus
our attention on GPU technologies from the manufac-
ture NVIDIA. NVIDIA’s CUDA [3] platform is widely
accepted as the leading solution for GPGPU.

II. INTERRUPT HANDLING

An interrupt is an asynchronous hardware signal is-
sued from a system device to a system CPU. Upon
receipt of an interrupt, a CPU halts the execution of the
task it is currently executing and immediately executes
an interrupt handler. An interrupt handler is a segment
of code responsible for taking the appropriate actions to
process a given interrupt. Each device driver registers
a set of driver-specific interrupt handlers for all of the
interrupts its associated device may raise. Only after
the interrupt handler has completed execution may an
interrupted CPU resume the execution of the previously
scheduled task.

Interrupts are difficult to manage in a real-time system.
Interrupts may come periodically, sporadically, or at
entirely unpredictable moments, depending upon the
application. Interrupts often cause disruptions in a real-
time system since the CPU must temporarily halt the ex-
ecution of the currently scheduled task. In uniprocessor
and partitioned multiprocessor systems, one may be able
model an interrupt source and handler as the highest-
priority real-time task in a system or as a blocking
source [19], [14], though the unpredictable nature of
interrupts in some applications may require conserva-
tive analysis. Such approaches can also be extended
to multiprocessor systems where real-time tasks may
migrate between CPUs [11]. However, in such systems
the subtle difference between an interruption and pre-
emption creates an additional concern: an interrupted
task cannot migrate to another CPU since the interrupt
handler temporarily uses the interrupted task’s program
stack. Stack corruption would occur if a task resumed
execution before the interrupt handler completed. As a
result, conservative analysis must also be used when

accounting for interrupts in these systems too. A real-
time system, both in analysis and in practice, benefits
greatly by minimizing the interruption durations. Split
interrupt handling is a common way of achieving this,
even in non-real-time systems.

Under split interrupt handling, an interrupt handler
only performs the minimum amount of processing nec-
essary to ensure proper functioning of hardware; any
additional work that may need to be carried out in
response to an interrupt is deferred for later processing.
This deferred work may then be scheduled in a separate
thread of execution with an appropriate priority. The
duration of interruption is minimized and deferred work
competes fairly with other tasks for CPU time. This,
in essence, describes proper interrupt handling in a
real-time system. However, achieving this in practice is
actually more complicated.

Interrupt Handling In Linux: We now review how
split interrupt handling may be designed and imple-
mented. While we will discuss real-time approaches, we
will first examine interrupt handling in Linux.2 We do
this for several reasons. First, Linux provides the basis
for LITMUSRT, the platform considered in this work.
Second, and much more importantly, high-performance
GPU drivers are currently only available for general-
purpose operating systems, specifically: Microsoft Win-
dows, Mac OS X, Solaris, FreeBSD, and Linux. At the
moment, any real-time system using GPUs built from
available technology must be based upon FreeBSD or
Linux since the other three listed operating systems
are not real-time and are closed-source. Only these
two open-source operating systems can be modified
to support real-time scheduling and interrupt handling
(they themselves are not real-time without modification).
Between FreeBSD and Linux, Linux is the most likely
choice due to its wide adoption, its ability to run on
platforms ranging from embedded systems to supercom-
puters, and its vigorous community support. Further,
FreeBSD is not currently supported by the major GPU
manufacture AMD.

During the initialization of the Linux kernel, kernel
components and device drivers (such as a GPU driver)
register interrupt handlers with the kernel’s interrupt
services layer. These registrations are essentially name-
value pairs of the form <interrupt identifier,
interrupt service routine>. Interrupts may
be classified as global or local. Local interrupts, as the
name implies, are only handled by the processor on
which they are raised. In contrast, global interrupts may
be dispatched to any system CPU that is configured to

2Please note that what follows is only a short overview of Linux
interrupt handling; please see [10] for a more complete description.

Scheduled

Real-Time Task

...
Interrupt ID Top-Half ISR Pointer

.........

............

ISR Table

Interrupt

Top-Half ISR (Driver)

Bottom-Half (softirq)...

Scheduled

Real-Time Task

1

2

3

4

Figure 1. The interrupt handling sequence in Linux. (1) An interrupt
occurs and the currently scheduled task is suspended. (2) The interrupt
service routine for the interrupt type is executed. (3) The driver may
schedule deferred work in the form of a tasklet. (4) Before resuming
the interrupted task, up to ten softirqs are executed, possibly including
tasklets scheduled in (3).

receive the given type of interrupt. By default, all CPUs
in Linux are configured to receive all global interrupts,
though CPUs can be later “shielded” from doing so.

Upon receipt of an interrupt on a CPU, Linux imme-
diately invokes the registered interrupt service routine
(ISR). In terms of split interrupt handling, the ISR is the
top-half of the interrupt handler. If an interrupt requires
additional processing beyond what can be implemented
in a minimal top-half, the top-half processing may issue
deferred work to the Linux kernel in the form of softirqs.
Softirqs are small units of work executed by the Linux
kernel, and in split interrupt handling parlance, each
invocation of a softirq is an ISR bottom-half. The se-
quence of steps taken by Linux to service an interrupt are
illustrated in Fig. 1. There are several types of softirqs,
but for the scope of this paper, we focus on tasklets,
which are the type of softirq used by most I/O devices,
including GPUs; we will use the terms softirq and tasklet
synonymously.

The standard Linux kernel executes softirqs using a
heuristic. Immediately after executing an interrupt top-
half, but before resuming execution of an interrupted

thread, the kernel will execute up to ten bottom-halves.
Any pending softirqs remaining are dispatched to one
of several (one for each CPU) kernel threads dedicated
to softirq processing; these are the “ksoftirq” daemons.
This thread is scheduled within Linux with a very high-
priority, but is a schedulable and preemptible entity
nonetheless. The mechanism of executing a fixed number
of pending bottom-halves after every interrupt can intro-
duce an unacceptably long latency into interrupt process-
ing in a real-time system and causes one to wonder if
this can even be considered a split interrupt system. In all
likelihood, a system experiencing few interrupts (though
it may still be heavily utilized) will execute top- and
bottom-halves in pairs. That is, for every top-half that
yields a bottom-half, that bottom-half will subsequently
be executed before the interrupt processing completes.
In the unlikely event that a bottom-half is deferred
to a ksoftirq daemon, it is generally not possible to
analytically bound the length of the deferral since these
daemons are not scheduled with real-time priorities.

The well-known PREEMPT_RT Linux kernel patch
addresses this issue by processing all bottom-halves (ex-
cept the most critical, such as timers) with a worker-pool
of schedulable threads. However, even PREEMPT_RT
has its limitations. First, due to its POSIX real-time
underpinnings, PREEMPT_RT is only suitable for use
in static-priority real-time systems. Second, like the
standard Linux kernel, softirq threads are pinned to
individual CPUs and preclude their use in a globally-
scheduled system. Finally, the scheduling priorities of the
softirq threads are fixed (but may be changed manually).
To illustrate the limitations inherent in assigning a fixed
priority to a softirq thread, consider the situation where
a real-time task blocks while waiting for an interrupt
from an I/O device. One would hope that the softirq
thread processing this interrupt would be scheduled with
the priority of the blocked task. However, since the
softirq cannot change the priority of its thread until it
is scheduled, either the blocked task or higher-priority
tasks may experience delays as the result of a priority
inversion. If the softirq thread is scheduled with a lesser
priority than the blocked task, then the blocked task is
delayed. If the softirq thread is scheduled with a greater
priority than the blocked task, then other tasks with
lesser priorities than the softirq thread may be delayed.
A system designer, through the careful use of interrupt
shields, might be able to ensure that a given softirq
thread executes on behalf of a single task, and thus
be able to assign equal scheduling priorities to both.
However, this precludes tasks of differing priorities to
share a single device (and softirq thread), such as a GPU.

Neither the standard nor PREEMPT_RT variants of

the Linux kernel are robust enough to implement proper
real-time-schedulable split interrupt handling. The im-
plementation of a complete real-time solution would
require deep changes to many core Linux components,
device drivers, and even user-level processes. Since
Linux is primarily a general-purpose operating system,
such changes are unlikely to occur in the near future.
However, supposing Linux could implement proper split
interrupt handling, how might it be done?

III. INTERRUPT HANDLING IN LITMUSRT

LITMUSRT is a real-time Linux-based testbed that has
been under continual development at UNC for over five
years. Our research group has used LITMUSRT to eval-
uate many real-time scheduling algorithms and locking
protocols and has offered many valuable insights into the
implementation constraints of real-time systems. To date,
LITMUSRT has largely been limited to workloads that
are not very I/O intensive since LITMUSRT has provided
no mechanisms for real-time I/O. The implementation
of real-time I/O is a considerable effort, and proper
implementation of split-interrupt handling is one critical
aspect of this work, one we begin here.

As discussed in the previous section, current Linux-
based operating systems use fixed-priority CPU-pinned
softirq daemons. In this paper, we introduce a new
class of LITMUSRT-aware daemons called klitirqd. This
name is an abbreviation for “Litmus softirq daemon”
and is prefixed with a ‘k’ to indicate that the daemon
executes in kernel space. klitirqd daemons may function
under any LITMUSRT-supported job-level static-priority
(JLSP) scheduling algorithm, including partitioned-,
clustered-, and global-earliest-deadline-first. At the mo-
ment klitirqd only supports tasklet processing (suitable
in most I/O situations), though it should be relatively
simple to extend support to all types of softirqs.

klitirqd is designed to be extensible. Unlike the
ksoftirq daemons, the system designer may create an
arbitrary number of klitirqd threads to process tasklets
from a single device, or a single klitirqd thread may
be shared amongst many devices. The detailed imple-
mentation of klitirqd is as follows. Instead of using the
standard Linux tasklet_schedule() function call
to issue a tasklet to the kernel, an alternative function
litmus_tasklet_schedule() is provided to is-
sue a tasklet directly to a klitirqd thread. The caller (such
as a device driver) must supply both an owner for the
given tasklet as well as a klitirqd identifier that specifies
which klitirqd daemon is to perform the processing. The
owner of the tasklet may be a pointer to a real-time user
process, such as one blocked for a particular I/O event,
or even a bandwidth server used to limit the processing
rate of a particular type of tasklet. An idle klitirqd thread

suspends, waiting for a tasklet to process. Once a tasklet
arrives, the klitirqd thread adopts the scheduling priority,
including any inherited priority, of the tasklet owner.

At first glance, one may assume that the klitirqd
threads are scheduled with their adopted priorities
by LITMUSRT as determined by the active real-time
scheduling algorithm.3 However, this is only part of the
solution. LITMUSRT supports single threaded sporadic
task systems on multiprocessor platforms. If a klitirqd
thread were to service a tasklet in the manner described
above, then it would be possible for klitirqd to exe-
cute simultaneously with the owner of that tasklet on
a multiprocessor system. From the point of view of
scheduling, this would essentially make the owner of
a tasklet multithreaded. This breaks any single-threaded
real-time analysis. While this may not be an issue for
tasks that block on synchronous I/O (a blocked task
cannot execute simultaneously with the klitirqd servicing
its tasklet), this does become an issue for asynchronous
I/O. In asynchronous I/O, a task may issue a batch of
I/O requests while continuing on to other processing.
It is only at some time later the this task rendezvouses
with I/O results. Asynchronous I/O helps improve overall
performance and is commonly used in GPU applications
to mask bus latencies.

To address asynchronous I/O, we require that all tasks
in LITMUSRT that are ready to execute hold a per-task
mutex. Regular real-time tasks acquire this mutex at
every job release. If a task blocks on I/O, it releases
this mutex. The klitirqd daemon that processes the cor-
responding tasklet must acquire the mutex of the tasklet
owner before executing and the mutex is released upon
tasklet completion. Thus, the scheduling between klitirqd
and the tasklet owner is mutually exclusive. In the case
of asynchronous I/O, the klitirqd daemons buffer pending
tasklets and are only executed when the corresponding
owner releases its mutex to rendezvous with I/O results.
The sporadic task model is thus preserved.

We recognize that similar architectures for split in-
terrupt handling have been proposed and implemented
before. For instance, LynxOS [5] has supported priority-
inheritance-based split interrupt handling for many years.
In LynxOS, the interrupt processing daemon inherits the
greatest priority of any task actively using the device
that raised the interrupt. However, LynxOS only supports
fixed-priority scheduling. Steinberg et al. have also de-
veloped and implemented similar techniques based upon
bandwidth inheritance to support interrupt processing
in a modified L4 microkernel [24] and the NOVA
microhypervisor [23]. While both of these approaches

3LITMUSRT supports a variety of real-time schedulers through a
plugin architecture.

are similar to our own, there are several key differences.
First, we support JLSP schedulers, while prior work
has focused only on fixed-priority systems. Second, we
support non-partitioned multiprocessor systems while
maintaining the single-threaded sporadic task model.
LynxOS supports non-partitioned scheduling, but breaks
the single-threaded sporadic task model. Steinberg et al.’s
methods are limited to uniprocessor and partitioned sys-
tems, which requires any tasks that share a resource to be
within the same partition. Finally, the implementation of
our solution in LITMUSRT allows the use of unmodified
Linux device drivers. At this time, native GPU drivers
for LynxOS and L4 are unavailable.

More closely related to the methodology we use
here, Manica et al. presented an implementation of real-
time scheduled interrupt handlers in Linux [20]. Their
approach grouped softirqs within bandwidth servers,
similar to the techniques used by Steinberg et al., with
the aim of constraining resource consumption by I/O-
using tasks. However, each of their interrupt handling
threads were pinned to individual processors and did
not use priority inheritance mechanisms suitable for non-
partitioned multiprocessor scheduling.

IV. GPU INTEGRATION

Having given sufficient attention to proper real-time
interrupt handling and our approach in LITMUSRT, we
apply these techniques to arrive at a complete real-time
GPU interrupt handling infrastructure.

In Sec. III, we described how interrupt handlers are to
call the function litmus_tasklet_schedule() to
dispatch bottom-half tasklets to klitirqd. The caller must
provide two parameters: (1) the owner of the tasklet (the
real-time task that requires the bottom-half to execute to
make progress) and (2) a klitirqd identifier for the dae-
mon that is to execute the tasklet. It should be relatively
straightforward for a LITMUSRT-aware device driver to
provide these parameters, but how shall we accomplish
this with a closed-source GPU driver that cannot even be
modified to call litmus_tasklet_schedule()?
This is a significant technical challenge and requires a
detailed study of the interactions between the black-box
driver and the operating system. We will accomplish this
in four parts: tasklet interception, device identification,
and owner identification, and dispatch.

Tasklet Interception: Though the GPU driver is
closed-source, it must still interface with an open source
operating system kernel. The driver makes use of a
variety of kernel services, including interrupt handler
registration and tasklet scheduling. Though we cannot
modify the GPU driver, we may still intercept the calls
the driver makes to these OS services. In particular,

we modify the standard internal Linux API function
tasklet_schedule().

When a kernel component calls
tasklet_schedule(), it must provide a callback
function pointer that specifies the entry point for the
execution of the deferred work. If we can identify
callbacks to the GPU driver, then we can identify and
intercept all tasklets the driver schedules. Luckily, this
is possible because the driver is loaded into Linux
as a module (or kernel plugin). We leverage this
fact to use various module-related features of Linux
to inspect every callback function pointer of every
tasklet scheduled in the system online.4 Thus we make
modifications to tasklet_schedule() to catch
tasklets from the GPU driver and redirect the scheduling
of the deferred work.

Device Identification: In a platform with multi-
ple GPUs, merely intercepting deferred GPU work is
not enough; we must also determine which GPU in
the system raised the initial interrupt. While we could
have possibly performed this identification process at
the lowest levels of interrupt handling, we opted for a
simpler solution closer to the tasklet scheduling process.
The GPU driver attaches to every tasklet a reference to
a block of memory that provides input parameters to
the associated callback function. Included in this block
of data is a device identifier (ranging from 0 to g,
where g is the number of system GPUs), which indicates
which GPU raised the interrupt. However, accessing this
data within the memory block is challenging since it
is packaged in a driver-specific format. Fortunately, the
driver’s links into the open source OS code allow us to
locate the device identifier.

Because the internal APIs of Linux change frequently
and many Linux users use custom kernel configurations,
the Nvidia driver is not distributed as a monolithic
precompiled binary. Instead, the driver is distributed in a
partially compiled form, allowing it to support a chang-
ing kernel in varied configurations. The portions of the
driver that Nvidia wishes to keep closed are distributed
in obfuscated precompiled object files. However, the dis-
tribution also includes plain source code for an OS/driver
interface layer that bridges the internal Linux kernel
interfaces with the precompiled object files. Through the
visual inspection of this bridge code, we gained insight
into the format of the tasklet memory block, and, through
a process of trial and error, determined the fixed address
offset of the device identifier.

This brings us half-way into our process of redirecting
deferred work from the GPU driver to klitirqd process-

4This may sound like a costly operation, but it is actually quite a
low-overhead process.

ing. We can intercept and identify the source of tasklets
the driver hands off to the kernel for later processing.
What remains is to schedule the deferred work with the
proper priority by identifying the user task that is using
the associated GPU and then to dispatch the work to the
appropriate klitirqd daemon.

Owner Identification: As mentioned in Sec. I, a
closed-source GPU driver can exhibit behaviors that are
detrimental to the predictability requirements of a real-
time system. In [12], we presented methods for removing
the GPU driver from resource arbitration decisions,
thereby removing much of the associated uncertainty.
The primary method we presented introduced a real-
time semaphore to arbitrate exclusive access to the GPU.
This mechanism was complemented by the fact that the
programs that execute on the GPU, called kernels5, do so
non-preemptively—the GPU cannot be shared between
tasks even without real-time mutual exclusion controls.6

The execution of a basic GPU-using job (the sporadic
invocation of a GPU-using task) goes through several
phases. In the first phase, the job executes purely on
the CPU. In the next phase, the job sends data to the
GPU, which is stored in device memory, for use by
the GPU kernel. Next, the job suspends from the CPU
when the kernel is invoked on a GPU. The GPU exe-
cutes the kernel using many parallel threads, but kernel
execution does not complete until after the last GPU-
thread has completed. Once the kernel has completed,
an interrupt is sent to the host CPU and handled by the
device driver, which subsequently wakes the blocked job
from its suspension. The job resumes execution on the
CPU and copies back the kernel results from the GPU
back to main-memory. Optionally, the job may continue
executing on the CPU without using the GPU. Thus, a
GPU-using job has five execution phases as depicted in
Fig. 2. This model of a GPU-using job is a generalization
of potentially more complex execution patterns. A more
complex job may execute multiple kernels and may
communicate with the GPU in between them.7 However,
this model this pattern with beginning and ending points.
That is, when a job begins using the GPU and when it is
finishes using the GPU; it is this interval that we protect
with a real-time semaphore.

5This name is derived historically from “kernel” in mathematics.
We will use “OS kernel” to refer to the operating system and “GPU
kernel” to refer to a GPU program instance.

6It is possible for two tasks to share a GPU by overlapping data
transmission of one task with the GPU execution of another. This
is often done to mask transmission latencies. However, we leave an
investigation into real-time solutions for this usage pattern for future
work.

7For example, a memset() operation on device memory called
from a host-side application is implemented as a small kernel which
copies the given byte value to all bytes in the specified memory.

CPU
CPU:

Send

CPU:

Receive
CPUGPU

Request GPU Release GPU

Critical Section

Figure 2. Execution phases of a GPU-using job.

We extend our prior solution to not only use a real-
time semaphore to arbitrate GPU access, but to also act
as registry for tasks actively using GPUs. Whenever a
GPU is allocated to a task by the OS kernel, an internal
lookup table indexed by device identifier (ranging from
0 to g) is updated to record device ownership. With
the device identifier extracted from the tasklet memory
block and device registry table, determining the current
GPU owner is straightforward. We now have gathered
all required information to dispatch a GPU tasklet to
klitirqd; now we must determine which klitirqd instance
will perform the processing.

klitirqd Dispatch: The architecture of klitirqd is
general enough to support any number of daemon in-
stances, all scheduled by a JLSP real-time scheduler.
Since a system may have g GPUs, we should have at
least g klitirqd instances to ensure that all GPUs can be
used simultaneously. However, such an approach may
cause implementation difficulties in schedulers where
task migrations between CPUs are constrained. In order
to remain flexible and avoid any dependencies on any
particular scheduler implementation, for each scheduling
domain (ready queue), we allocate one klitirqd daemon
per GPU that may be accessed within that domain.
For example, in a system with four GPUs where CPUs
are globally scheduled, there are four klitirqd daemons
for GPU processing. If that system where scheduled in
clusters and GPUs were shared across clusters, then each
cluster would have four klitirqd daemons. If GPUs were
isolated to particular clusters, perhaps one each per CPU
cluster, then each cluster would only have one klitirqd
daemon.

Each klitirqd daemon used for GPU processing
is assigned to a specific GPU within that schedul-
ing domain. This assignment is recorded in another
lookup table, which is referenced within our modi-
fied tasklet_schedule(). A tasklet from the GPU
driver is intercepted, the source device is identified, the
ownership of that device is found, and the proper kli-
tirqd instance known. With this information, we modify
tasklet_schedule() to redirect all GPU tasklets to
klitirqd by calling litmus_tasklet_schedule().

tasklet_schedule()

Driver T.H. ISR tasklet

0101101

1001110

GPU ID

GPU Registry

Module Info:

Is callback to GPU driver?

callback

klitirqd

Registry

litmus_tasklet_schedule()

1 2

3

4

5

Figure 3. GPU tasklet redirection. (1) A tasklet from the GPU
driver is passed to tasklet_schedule(). (2) The tasklet is
intercepted if the callback points to the driver. (3) The GPU identifier
is extracted from the memory block attached to the tasklet using a
known address offset and the GPU owner is found. (4) The GPU is
mapped to a klitirqd instance, and (5) the GPU tasklet is passed on to
litmus_tasklet_schedule().

This process is summarized in Fig. 3.8

V. EVALUATION

Evaluation Platform: Motivated by the autonomous
automotive application discussed in Sec. I, we validated
our GPU interrupt handling approach on a multicore
platform with several GPUs. Encouraged by results
from [7], we will limit our attention to a multiprocessor
system scheduled by the clustered earliest-deadline-first
algorithm, with GPUs statically assigned to clusters.
As described in the previous sections, the allocation of
GPUs to tasks can be performed through the treatment of
system GPUs as shared resources with access arbitrated
by real-time locking protocols. In this paper, we use
a simple k-exclusion locking protocol that extends the
Flexible Multiprocessor Locking Protocol (FMLP) [8]
so that k resources (our GPUs) can be simultaneously
managed. This k-exclusion protocol, which we term the
k-FMLP, was implemented in LITMUSRT to support this
work.9 Special considerations had to be paid to integrate
with klitirqd. Specifically, the priority inherited by a GPU
holder must also be propagated to the associated klitirqd.

Our evaluation platform is as follows. We use a dual-
socket six-core Intel Xeon X5060 CPU platform, for a
total of twelve cores running at 2.67GHz, scheduled with
the clustered earliest-deadline-first algorithm. Clustering
is split along the NUMA architecture of the system,
yielding six cores per cluster. Incidentally, an L3 cache
is shared within each cluster. Our platform also includes
eight Nvidia GTX-470 GPUs. Though any CPU core can

8GPU tasklets may spawn additional deferred work using Linux
work queues, which are dedicated to process work that is “more
deferrable” than tasklets. We replicate our GPU tasklet solution to
perform this work to avoid any priority inversions.

9Please see Appendix A of the online version of this paper at
http://www.cs.unc.edu/~anderson/papers.html for a more complete de-
scription of the k-FMLP.

http://www.cs.unc.edu/~anderson/papers.html

access any GPU, we statically assign four GPUs to each
cluster and a k-FMLP semaphore (where k = 4) protects
each GPU pool. This GPU assignment complements the
I/O bus architecture of the system, which is also split
along NUMA boundaries. This clustering of the CPUs
and GPUs attempts to minimize bus contention which
can significantly affect data transmission rates between
CPUs and GPUs. Finally, four klitirqd daemon instances
are run in each cluster, one for each GPU.

We use CUDA 4.0 Release Candidate 2 for our GPU
runtime environment. We opted to use this release can-
didate environment because CUDA 4.0 offers significant
improvements for multi-GPU platforms. We encountered
no stability issues with the release candidate drivers.

Experimental Setup: In these experiments, we paid
considerations towards real application characteristics in-
spired by the autonomous automobile application, as dis-
cussed in the introduction. This has implications for task
period, execution time, and CPU/GPU data transmission
size. Task sets composed of both CPU-only and GPU-
using tasks were randomly generated with these impli-
cations in mind. The period of every task was randomly
selected from the range [15ms, 60ms], periods common
to sensor feeds such as video cameras. The utilization of
each task was generated from an exponential distribution
with mean 0.5 (tasks with utilizations greater than 1.0
are regenerated). This yields relatively long average per-
task execution times, but we expect GPU-using tasks to
have such execution time since current GPUs typically
cannot efficiently process short GPU kernels due to I/O
bus latencies. Next, between 20% and 30% of tasks
within each task set were selected as GPU-using tasks.
We have found that this ratio maximized the utilization
of both CPUs and GPUs on our platform. For each GPU-
using task, a GPU critical section of 80% the length of
task execution time was assigned. Of the critical section
length, 20% was allocated to transmitting data between
the CPU and GPU. This distribution of critical section
length and data transmission time is common to many
GPU applications, including FFTs and convolutions [12],
which are used frequently in image processing. Finally,
the task set was partitioned across the two clusters using
a two-pass worst-fit partitioning algorithm which first
assigned GPU-using tasks to clusters, followed by CPU-
only tasks. This tends to evenly distribute GPU-using
tasks between clusters. In order to gauge the performance
of our implementation with respect to system utilization,
task sets were generated with system utilizations ranging
from 7.5 to 11.5, in increments of 0.1, for a total of 41
task sets.

Generated task sets were executed in LITMUSRT for
a duration of two minutes. Every task set was executed

 0

 50

 100

 150

 200

 250

 300

 350

 400

7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5

#
 o

f
S

im
u

lt
a

n
e

o
u

s
 S

c
h

e
d

u
lin

g
s

Task Set Utilization

Count of Simultaneous Scheduling of Tasklet and Owner

klitirqd
Standard Handling

Figure 4. Histogram of concurrent execution events of a tasklet and its
owner. No concurrent execution events were observed under klitirqd.
There is no apparent trend with regard to task set utilization, though
the number of events observed differs greatly among the task sets.

twice, once in LITMUSRT configured to use klitirqd and
once in LITMUSRT using standard Linux interrupt han-
dling. Time-stamped execution trace logs of scheduling
and interrupt events were made from within the kernel
using the low-overhead tracing facilities in LITMUSRT.
From this data we compared the performance of klitirqd
and standard Linux interrupt handling in LITMUSRT

according to the following metrics.
Metrics: Ideally the system should conform to the

sporadic task model and not suffer any priority inver-
sions. However, due to implementation limitations in a
real operating system this cannot be entirely achieved.
To characterize the degree of deviation from this ideal,
we assessed each interrupt handling method by: (i)
counting the number of concurrent execution events,
where tasklets and owners are simultaneously scheduled
in violation of the sporadic task model; (ii) determining
the distribution of priority inversion durations, which
should be mostly short; (iii) number of priority inver-
sions, which should be low; and (iv) cumulative priority
inversion length, which should also be low.

Results: Fig. 4 shows our measurements for the
number of concurrent execution events. No violations
of the model were detected when using klitirqd. How-
ever, as expected, violations are possible under standard
Linux. Most task sets experienced over 100 concurrent
execution events during two minutes of execution and up
to 200 concurrent execution events occurred frequently.
These numbers in themselves may appear to be low,
but consider that, though GPU-using tasks operate asyn-
chronously, they do rendezvous with I/O results quickly
in our experiments. It is most often the case that a GPU-
using task is already blocked by the time its tasklet is

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

P
(I

n
v
e

rs
io

n
 D

u
ra

ti
o

n
 <

=
 X

)

Priority Inversion Duration (microseconds)

Distribution of Priority Inversions: Task Set Utilization of 11.4

klitriqd Standard Handling

Figure 5. The cumulative distribution of priority inversion durations
show that the typical inversion is much shorter under klitirqd than
without.

scheduled. We would expect to see a greater number
of concurrent execution events with a greater degree of
asynchronous I/O operations. The absence of concurrent
execution events under klitirqd shows that is is effective
at enforcing conformance to the sporadic task model.

With regard to (ii), while priority inversions cannot be
totally eliminated, nevertheless they should be as short
as possible. Fig. 5 shows a representative example of the
cumulative distribution function (CDF) of priority inver-
sion length under both interrupt handling methods.10 It
shows that a typical priority inversion is much shorter
under klitirqd than under Linux interrupt handling. For
example, 90% of inversions under klitirqd are shorter
than 9µs, whereas the 90th percentile exceeds 30µs
under Linux interrupt handling.

While priority inversions should be as short as possi-
ble, the number of inversions is also important because
a system that suffers many short inversions may be
disrupted by their cumulative effect. Fig. 6 depicts the
number of inversions caused by GPU tasklet processing
under both interrupt handling methods. For all but one of
the task sets, the use of klitirqd resulted in a significant
reduction of priority inversions. The sole exception was
the task set with a system utilization of 8.0. However,
a closer examination reveals that the cumulative priority
inversion length is in fact shorter under klitirqd. This
can be seen in Fig. 7, which shows cumulative priority
inversion length as a function of maximum priority
inversion length. That is, a point (x, y) on a curve in the
graph implies that all priority inversion up to length x
have a cumulative duration of y. For example, all priority
inversion of length up to x = 50µs have a cumulative

10Graphs for all tested task sets are available in the online version
of this paper.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5

#
 o

f
P

ri
o

ri
ty

 I
n

v
e

rs
io

n
s

Task Set Utilization

Number of Priority Inversions

klitirqd
Standard Handling

Figure 6. Histogram of detected inversions in two minutes of
execution for each task set under both klitirqd and standard Linux
interrupt handling. There is no observable trend in task set utilization
with this sample size, though variance between task sets is significant.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

C
u

m
u

la
ti
v
e

 I
n

v
e

rs
io

n
 L

e
n

g
th

 (
m

ic
ro

s
e

c
o

n
d

s
)

Priority Inversion Duration (microseconds)

Cumulative Inversion Length: Task Set Utilization of 8.0

klitriqd Standard Handling

Figure 7. Cumulative priority inversion length as a function of
maximum priority inversion length. The total duration of priority
inversion is more than twice as large under standard Linux interrupt
handling than klitirqd.

duration of only 180,000µs under klitirqd, but more than
475,000µs under Linux interrupt handling. If priority in-
versions of all lengths are considered, i.e., if x = 200 in
Fig. 7, then the cumulative inversion length still does not
exceed 200,000µs under klitirqd, whereas the cumulative
inversion length under standard Linux interrupt handling
exceeds 500,000µs ≈ 0.5s. This shows that even though
the number of priority inversions is slightly greater under
klitirqd in this particular case, the overall effect is much
less because most inversions are indeed short. In all other
cases where there were fewer priority inversions under
klitirqd than under standard Linux interrupt handling,
the cumulative priority inversion length was similarly
(much) less.

In summary, our data shows that klitirqd outperformed

standard Linux interrupt handling in each of the four
evaluation metrics. Further, these results demonstrate
that even closed-source drivers, be they for GPUs or
other devices, can still be prevented from causing undue
interference. The klitirqd approach to interrupt handling
thus lays the foundation for the integration of GPUs into
predictable real-time systems.

VI. CONCLUSION

In this paper we presented a flexible real-time interrupt
architecture able to support any JLSP-scheduled non-
partitioned multiprocessor platform while also respect-
ing the sporadic task model. This solution was imple-
mented in our real-time Linux-based operating system,
LITMUSRT, and we showed that it can be successfully
applied to even a closed-source GPU driver, thus allow-
ing for improved real-time characteristics for real-time
systems using GPUs. Our implementation was tested
through empirical experimentation and shown to greatly
reduce the interference caused by GPU interrupts in
comparison to standard interrupt handling in Linux.

This paper lays the groundwork for future investi-
gations into real-time platforms using GPUs. In this
study, we limited our examination to a cluster-scheduled
system. We are preparing to perform a wider study where
we will consider the full gamut of partitioned, clustered,
and global schedulers, GPU assignment methods, and
various locking protocols. A decision in each category
affects the available options in the others. For exam-
ple, the choice of a partitioned scheduler limits which
locking protocols may be used for GPU allocation. Such
decisions also affect the tightness of real-time analysis
techniques. It is not immediately clear which system
configurations offer the best real-time properties. This
wider study will also include an examination of parti-
tioning heuristics for CPU/GPU platforms in addition
to the development of a new k-exclusion protocol for
globally scheduled multiprocessors.

REFERENCES

[1] AMD Fusion Family of APUs. Available from:
http://sites.amd.com/us/Documents/48423B_fusion_
whitepaper_WEB.pdf.

[2] Bringing high-end graphics to handheld devices. Avail-
able from: http://www.nvidia.com/object/IO_90715.html.

[3] CUDA Zone [online]. Available from: http://www.nvidia.
com/object/cuda_home_new.html.

[4] Intel details 2011 processor features, offers
stunning visuals build-in. Available from:
http://download.intel.com/newsroom/kits/idf/2010_
fall/pdfs/Day1_IDF_SNB_Factsheet.pdf.

[5] Writing device drivers of LynxOS. Available
from: http://www.lynuxworks.com/support/lynxos/docs/
lynxos4.2/0732-00-los42_writing_device_drivers.pdf.

[6] B. Andersson, G. Raravi, and K. Bletsas. Assigning real-
time tasks on heterogeneous multiprocessors with two
unrelated types of processors. In 31st RTSS, pages 239–
248, 2010.

[7] A. Bastoni, B. Brandenburg, and J. Anderson. An
empirical comparison of global, partitioned, and clustered
multiprocessor real-time schedulers. In 31st RTSS, pages
14–24, 2010.

[8] A. Block, H. Leontyev, B. Brandenburg, and J. Anderson.
A flexible real-time locking protocol for multiprocessors.
In 13th ECRTS, pages 47–57, 2007.

[9] J. Bolz, I. Farmer, E. Grinspun, and P. Schröoder. Sparse
matrix solvers on the GPU: conjugate gradients and
multigrid. In SIGGRAPH ’03, pages 917–924, 2003.

[10] D. Bovet and M Cesati. Understanding the Linux Kernel.
O’Reilly, 3rd edition, 2006.

[11] B. Brandenburg, H. Leontyev, and J. Anderson. An
overview of interrupt accounting techniques for multipro-
cessor real-time systems. Journal of Systems Architecture,
2010.

[12] G. Elliott and J. Anderson. Globally scheduled real-time
systems with gpus. In 18th RTNS, 2010.

[13] M. J. Harris, W. V. Baxter, T. Scheuermann, and A. Las-
tra. Simulation of cloud dynamics on graphics hardware.
In SIGGRAPH ’03, pages 92–101, 2003.

[14] K. Jeffay and D. Stone. Accounting for interrupt handling
costs in dynamic priority task systems. In 14th RTSS,
pages 212–221, 1993.

[15] S. Kato, K. Lakshmanan, R. Rajkumar, and Y. Ishikawa.
Resource sharing in GPU-accelerated windowing sys-
tems. In 17th RTAS, pages 191–200, 2011.

[16] S. Kato, K. Lakshmanan, R. Rajkumar, and Y. Ishikawa.
TimeGraph: GPU scheduling for real-time multi-tasking
environments. In USENIX Annual Technical Conference,
2011. To appear.

[17] V. Kindratenko and P. Trancoso. Trends in high-
performance computing. Computing in Science Engineer-
ing, 13(3):92–95, 2011.

[18] J. Krüger and R. Westermann. Linear algebra operators
for gpu implementation of numerical algorithms. In
SIGGRAPH ’03, pages 908–916, 2003.

[19] J. Liu. Real-Time Systems. Prentice Hall, 2000.
[20] N. Manica, L. Abeni, L. Palopoli, D. Faggioli, and

C. Scordino. Schedulable device drivers: Implementation
and experimental results. In 6th OSPRT, 2010.

[21] G. Raravi and B. Andersson. Calculating an upper bound
on the finishing time of a group of threads executing on
a GPU: A preliminary case study. In Work-in-progress
session of 16th ECRTS, pages 5–8, 2010.

[22] G. Raravi and B. Andersson. Provably good multiproces-
sor scheduling of implicit-deadline sporadic tasks with
resource sharing on two-type heterogeneous platform.
Technical Report HURRAY-TR-110106, CISTER-ISEP
Research Center, Polytechnic Institute of Porto, 2011.

[23] U. Steinberg, A. Böttcher, and B. Kauer. Timeslice
donation in component-based systems. In 6th OSPERT,
2010.

[24] U. Steinberg, J. Wolter, and H. Härtig. Fast component
interaction for real-time systems. In 17th ECRTS, 2005.

[25] S. Thrun. GPU technology conference keynote, day 3,
2010. Available from: http://livesmooth.istreamplanet.
com/nvidia100923/.

http://sites.amd.com/us/Documents/48423B_fusion_whitepaper_WEB.pdf
http://sites.amd.com/us/Documents/48423B_fusion_whitepaper_WEB.pdf
http://www.nvidia.com/object/IO_90715.html
http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/object/cuda_home_new.html
http://download.intel.com/newsroom/kits/idf/2010_fall/pdfs/Day1_IDF_SNB_Factsheet.pdf
http://download.intel.com/newsroom/kits/idf/2010_fall/pdfs/Day1_IDF_SNB_Factsheet.pdf
http://www.lynuxworks.com/support/lynxos/docs/lynxos4.2/0732-00-los42_writing_device_drivers.pdf
http://www.lynuxworks.com/support/lynxos/docs/lynxos4.2/0732-00-los42_writing_device_drivers.pdf
http://livesmooth.istreamplanet.com/nvidia100923/
http://livesmooth.istreamplanet.com/nvidia100923/

	Introduction
	Interrupt Handling
	Interrupt Handling in LITMUSRT
	GPU Integration
	Evaluation
	Conclusion
	References

