
A General Framework for Embedding Domain Specific
Languages into Object-Oriented Programming Languages

Hao Xu
Department of Computer Science

University of North Carolina at Chapel Hill
xuh@cs.unc.edu

William Miao
School of Information and Library Science
University of North Carolina at Chapel Hill

wemiao@email.unc.edu

Abstract
In this paper, we introduce a general framework of language em-
bedding in OO host languages. Unlike other approaches, which em-
bed object language programs as nested calls to functions or data
constructors, our framework embeds object language programs as
a chain of method invocations. Our framework allows embedding
a wider range of object language grammars into an OO host lan-
guage, while still allowing object language programs to be type
checked by the host language compiler and to run efficiently at run
time. We demonstrate our framework using ELIA, our extension to
Java with automatically constructed parameters (ACPs), and show
how we can encode the parser, AST builder, type checker, and inter-
preter for the simply typed lambda calculus (STLC) in a concrete
syntax without redundant brackets or commas. Our framework is
only based on the basic OO features, generics, and ACPs, and do
not require higher-order functions or generalized abstract data types
(GADTS) in the host language. It is a generalization of our previous
framework [34], which can be fully implemented in Java without
ACPs.

Keywords Embedded Domain Specific Language, Object-Oriented
Programming, Automatically Constructed Parameter, Term Infer-
ence, Language Extension, General Framework

1. Introduction
One popular way of implementing a new language is “embedding”
the language in an existing language [18]. In this application do-
main, the former is called the object language and the latter is called
the host language. The “embedding” approach allows the infras-
tructure of the host language, such as its compiler, to be reused by
the object language, and the properties of the host language, such
as type safety, to carry over to the object language. This approach
is especially appealing in implementing domain specific languages
(DSLs). It enables creating new DSLs with state of the art sup-
port infrastructures, such as secure and scalable virtual machines
and developer tools, that are generally available only to mainstream
programming languages.

The main advantage of the “embedding” approach, compared
to other approaches to implementing embedded DSLs, is that it re-

[Copyright notice will appear here once ’preprint’ option is removed.]

quires minimum coupling with the host language. It does not re-
quire meta language constructs in the host language or extensibil-
ity of the host language compiler. The embedded DSLs rely on the
syntax and semantics of the host language, but not how the syntax
and semantics are defined or implemented. As a result, the “embed-
ding” approach allows the host languages to evolve without break-
ing the embedded DSLs, as long as the host languages are back-
ward compatible in syntax and semantics. Another advantage of
this approach is that no external tools or preprocessors are needed
for compiling embedded DSL code, as embedded DSL code is host
language code.

Despite its advantages, the gap between research and industry
prevents embedding from being widely adopted. One problem is
that programming paradigms differ. On the one hand, most research
that produced methodologies for embedding one typed language
into another was done in a functional setting; on the other hand,
most widely used and well-supported programming languages to-
day, such as the Java programming language, are object-oriented
(OO) programming languages. These languages usually do not di-
rectly support many key functional features, such as higher-order
functions and generalized algebraic data types (GADTs). Another
problem is that most research focuses on building tagless inter-
preters that help achieve better performance at runtime. Most of
the existing methodologies for typed embedding require that em-
bedded DSL programs be written in a restricted grammar.

To bridge this gap, we need to find a method that allows em-
bedding a wider range of object language grammars into OO host
languages, while still allowing object language programs to be type
checked by the host language compiler and to run efficiently at run
time. The key idea is to simulate the object language parser using
the host language type checker, rather than using the host language
parser as in other approaches [4, 32]. We briefly explain our idea
using terminologies of pushdown automata. Given a grammar of an
object language, a well-formed object language program is a string
of input symbols that is accepted by a corresponding pushdown au-
tomaton. We encode this automaton using classes and methods in
an OO host language. More specifically, we map

• an input symbol to a method invocation in the host language;
and
• a string of input symbols to a chain of method invocations

(COMICs) in the host language, where the return value of
one method invocation becomes the object on which the next
method invocation is performed. This style of embedding is
sometimes called the method chaining style.

Then, we assign host language types to the methods so that type
checking COMICs simulates the automaton. This way, only well-
formed object language programs can be mapped to well-typed host
language COMICs.

1 2010/10/11

Unlike traditional approaches, the COMIC embedding

• decouples the concrete syntax of the object language from rep-
resentations of abstract syntax trees (ASTs) in the host lan-
guage, thereby allowing more flexibility in the object langauge;
• provides better hints to the host language semantic editor,

thereby enabling “parsing/type checking/AST building as you
go” and more accurate reuse of host language editor function-
alities, such as autocompletion, in the object language.

In practice, various DSLs in tools suchs as jMock [2], Hibernate
Criteria Query [16], and Google Protocol Buffers [1] are imple-
mented in the method chaining style.

In this paper, we introduce a general framework of language
embedding in OO host languages. In addition to the features of the
general COMIC embedding, this framework

• allows defining AST builders, type checkers, and interpreters
separately;
• works with existing methodologies for defining tagless inter-

preters.

We demonstrate our general framework using ELIA, our extension
to Java. A previous framework [34] by the first author, which can
be fully implemented in Java, is a special case of this framework.
We demonstrate our approach by encoding a parser, AST builder,
type checker, and interpreter for the STLC with a concrete syntax
in ELIA.

2. ELIA
In this section we informally introduce ELIA, our extension of
Java.

2.1 Overview of ELIA
The main motivation for introducing ELIA is to encode complex
automata that cannot be fully encoded in the type system of Java.
In designing ELIA, we created the following criteria: it should be
a conservative extension, require minimal change in the host lan-
guage, have minimal impact on the runtime performance, not be
useful only for the task of language embedding, and not compro-
mise type safety. ELIA satisfies all the above criteria.

The basic idea of ELIA is combining techniques of logical
programming with those of type theory. ELIA allows programmers
to define a list of logical premises and put logical queries in their
programs. The compiler then performs these logical queries at
compile time. For a successful query, the compiler also constructs
a “proof”, which can be used at runtime as a computational term.
The results of the compilation, such as whether the compilation
succeeds, are determined by the results of the logical queries. The
logical premises and logical queries are similar to clauses and
queries in Prolog [28].

2.2 Automatically Constructed Parameters
The most important concept in ELIA is automatically constructed
parameters (ACPs). An ELIA method definition can declare a list
of ACPs in addition to regular Java method parameters. The types
of ACPs correspond to logical queries.

There are two main differences between an ACP and a regu-
lar Java method parameter. First, an ACP can have a function type
as well as a regular Java type. When an ACP has a function type, it
can be used as a function in the method definition. For example, the
following method definition declares an ACP p of type S->String

1

1 S->String is a function type. The function takes in a value of type S and
returns a value of type String.

besides a regular Java method parameter x of type S, where high-
lighted text is ELIA-specific syntax. ELIA uses the vertical line to
delimit ACPs from regular Java method parameters.

static <S> String deepDeref(S x |S->String p) {

return p (x);

}

In general, the syntax of an ACP list is

T1 p1,...,Tm pm

where m ∈ N, Ti is a function type of the form (P1,. . .,Pni)->Ri,
where ni ∈ N, and pi is an ACP name, for all i ∈ {1, . . . ,m}. A
more complex example is

static double gravity(
double m1, double m2, double r,

|double G, (double,double)->double prod) {

return G*m1*m2/prod(r,r);
}

We omit the parentheses in an ACP type when the function type
has only one parameter. In the following discussion, we write
(P1,. . .,Pn)->R in a more readable form (P1,. . .,Pn)→R, and refer
to (P1,. . .,Pni) as the parameter type of the ACP.

Second, in a method invocation, the programmer does not spec-
ify the values of ACPs, but lets the ELIA compiler automatically
construct them according to their types. For example,2

deepDeref(new Reference <String >("xyz"))

Before explaining how ACPs work, we need to introduce another
concept. In ELIA, programmers can define building blocks of ACP
values called ACP constructors. An ACP value constructor is simi-
lar to a static Java method, but differs from a static Java method in
two aspects:

1. It is defined with an ELIA keyword implicit.

2. All of tts parameters are ACPs.

For example, we can define the following ACP constructor:

implicit <T> T deref(Reference <T> p) {
return p.get();

}

This ACP constructor provides a building block for building ACP
values.

In general, we denote the type of every ACP constructor acpc

implicit <T1,...,Tn> R acpc(P1 x1,...,Pm xm) { ... }

by

<T1,...,Tn >(P1,...,Pm)→R

where m,n ∈ N, R is the return type, P1,. . .,Pm are parameter
types, and T1,. . .,Tn are type parameters. We may omit the paren-
theses in the type if the parameter list has exactly one parameter.
For example, the type of the ACP constructor we just defined is
<T>Reference<T>→T. The types of ACP constructors correspond
to logical premises. They provide important heuristics to the ELIA
compiler when it tries to construct values for ACPs.

Intuitively, an ACP type (P1,. . .,Pm)→R asks the question:
“can you construct an ACP value which is a function that maps
any values of types P1,. . .,Pm to a value of type R?” The algorithm

2 A Reference<T> object stores a reference to another object of type T. It is
defined in the standard Java package java.lang.ref. The Reference<T>
type has a method named get which returns the object referred to by the
reference object.

2 2010/10/11

used by the ELIA compiler to construct values for ACPs is similar
to “backward chaining” in automatic theorem proving, which we
demonstrate using an example.

Example 2.1. In this example, we use the method deepDeref and
the ACP constructor deref we just defined. Suppose that we have
defined the following local variables:

String s = "xyz";
Reference <String > rs = new Reference <String >(s);
Reference <Reference <String >> rrs =

new Reference <Reference <String >>(rs);

In order to retrieve the string object from the three variables, we
need to dereference them zero, one, and two times, respectively.
If this operation is implemented in Java, then we need to either
write three separate methods, or to write one method that finds out
the types using reflection dynamically at runtime. In ELIA, we can
write one method, in a statically type-safe fashion. The method is
the deepDeref method that we defined earlier.

Now, let us take a look at what happens when ELIA compiles
the following method invocations:

deepDeref(s)
deepDeref(rs)
deepDeref(rrs)

Recall that the type of the ACP p of the deepDeref method is
S->String, where S is the type of the regular Java parameter x.
Since the arguments to the regular parameters have different types,
the ACPs also have different types. We show the ACP types for the
three method invocations in Table 1. The constructed ACP values
are shown next to their types, and we denote function composition
by ◦.

For the first method invocation, the ACP type asks the question
“can you construct a function that maps a value of type String to
a value of type String?” The ELIA compiler assigns the ACP the
identity function id. We can write this process in the style of natural
deduction [12, 14]. Here, we abbreviate String to S.

S S→S
id

S
→E

For the second method invocation, the ACP type asks the ques-
tion “can you construct a function that maps a value of type
Reference<String> to a value of type String?” The ELIA com-
piler starts by trying to find a function that returns a value of type
String. It goes through all ACP constructors, asking the question
“could this ACP constructor return a value of type String?” It finds
the ACP constructor deref, which has type <T>Reference<T>→T,
and instantiates the type variable T to type String by unification.
As the parameter type of this instance of deref is the same as
the parameter type of the ACP, the compiler assigns the ACP the
function deref. We can write this process in the style of natural
deduction. Here, we abbreviate Reference to R.

R<S> R<S>→S
deref

S
→E

For the third method invocation, the ACP type asks the ques-
tion “can you construct a function that maps a value of type
Reference<Reference<String>> to a value of type String?” The
ELIA compiler starts by trying to find a function that returns a
value of type String. It goes through all ACP contructors, ask-
ing the question “could this ACP constructor return a value of
type String?” It finds the ACP constructor deref, which has
type <T>Reference<T>→T, and instantiates the type variable T to
type String by unification. But in this case, the parameter type
of this instance of deref is Reference<String>, which is dif-
ferent from the parameter type Reference<Reference<String>>

of the ACP. The compiler proceeds by trying to find a function
that returns a value of type Reference<String>. It finds deref

again, but initiates the type variable T to type Reference<String>.
This time, this instance of deref takes in an argument of type
Reference<Reference<String>>, which is exactly what we are
looking for. Thus, the ELIA compiler constructs a function by
composing two derefs together. We can write this process in the
style of natural deduction.

R<R<S>> R<R<S>>→R<S>
deref

R<S>
→E

R<S>→S
deref

S
→E

The general process of constructing ACP values is described
below:

• First, the compiler converts types of all (visible) ACP construc-
tors into logical expressions, which are used as premises in the
inference.
• Then, the compiler converts the types of ACPs into logical

expressions, which are used as queries in the inference.
• Given the premises and queries, the ELIA compiler uses back-

ward chaining to find a proof of the queries based on the
premises.
• Finally, the proof is converted back to an ACP value.

2.3 Equality Type
In addition to function types, ACPs can also have equality types
and inequality types. An equality type has the form A1==A2, where
A1 and A2 are regular Java types. For example,

static <S,R> R eq(S x|S==R p) {
return p(x);

}

An ACP with equality type A1==A2 can be used as a function of type
A1→A2, but its constructed value can only be the identity function
id. The ACP enforces the definitional type equality A1=A2.

Similarly, ELIA also supports the inequality type. An inequality
type has the form A1!=A2, where A1 and A2 are regular Java types.
For example,

static <S,R> S ineq(S x|S!=R q) {
return x;

}

Unlike other ACPs, an ACP with an inequality type cannot be used
as a function.

2.4 Cut and Customizable Error Messages
ELIA supports a special syntax ! which, when put into an ACP
list, works similarly to the “cut” predicate in Prolog.3 For example,
given the following definitions:

interface A { . . . }
interface B { . . . }
implicit A r1() { . . . }
implicit B r2() { . . . }

the method

static <V> B ng(|()->V p,!,V==B q) {
return q(p());

}

can never be invoked. The reason is ELIA matches ACPs with ACP
constructors in the order the ACP constructors are defined in the

3 By default, all ACP values are constructed locally in a method invocation.
Therefore, there is no need for “cut” between method invocations.

3 2010/10/11

method call S ACP type constructed value
deepDeref(s) String String->String id

deepDeref(rs) Reference<String> Reference<String>->String deref

deepDeref(rrs) Reference<Reference<String>> Reference<Reference<String>>->String deref◦deref

Table 1. ACP Types and Constructed ACP Values

program. that the ACP p matches r1 first, which makes V=A and
fails the second ACP q. ! prevent the compiler from backtracking
and matching the ACP p with r2.

Another important usage of “cut” is that it can act as a point
where programmers can define customized error messages. Cus-
tomizable error messages can be used to bridge the gap in error
reporting between a host language and an embedded language. In
ELIA, programmers can define customized error messages after !
using the error keyword. ELIA types can be concatenated with
strings to form error messages. We demonstrated its syntax using
the following example:

class A {
<T> T is(S n|

! error (S+" is not convertible to "+T),
S->T p) {
...

}
}

2.5 Type Inference
In addition to constructing ACP values, the ELIA compiler can also
infer the instantiation of free type variables when they are in an
ACP type. For example, we can define a more general version of
the function deepDeref we defined earlier.

static <S,R,T> R deepDeref2(S x|S->R p,
S!=Reference <T> q) {
return p(x);

}

In this method, the ACP has type S->R.
In a method invocation such as

deepDeref2(rs)

where rs is a local variable of type Reference<String>, the com-
piler unifies the ACP type Reference<String>->R with deref’s
type Reference<T>->T, and infers that R=String.

3. Our General COMIC Embedding Framework
In this section we introduce our general COMIC embedding frame-
work. First, we introduce the algebraic multistack pushdown au-
tomaton (ampda), our variant of pushdown automata. We use amd-
pas as intermediate encoding devices for parsers, AST builders, and
type checkers, so that they can be defined separately. Then, we in-
troduce our general encoding framework, which is based on the
idea of representing ampdas in the type system of ELIA. Finally,
we show an example of encoding a parser, an AST builder, a type
checker, and an interpreter for the Simply Typed Lambda Calculus
(STLC) in ELIA using our framework. Using this encoding, we can
embed STLC programs as shown in the following example.

Example 3.1. The STLC program fun x ⇒ fun y ⇒ y x can
be encoded by the following COMIC:

prog.fun().x().fun().y(). arrow ().y().x().run()

Note that we encode the grammar rule “fun binds the longest
subexpression possible,” which is similar to other rules such as
“‘else’ associates with the closes ‘if.”’

3.1 Preliminaries
Our general methodology is to model the parser as a variant of
pushdown automata (pda). The main reason that we choose this
variant of pda is that it is easier to present in this paper and more
straightforward to encode in ELIA than the standard pda.

Definition 3.2. A (one-sorted algebraic) signature is a pair (Σ, ar)
where

• Σ is a finite set of function symbols
• ar is a function from Σ to N which assigns an arity to every

function symbol.

We write a signature with Σ = {f1, . . . , fn} and ar(f1) =
d1, . . . , ar(fn) = dn as {f1 : d1, . . . , fn : dn}. The purpose of
introducing signatures is so that we can use terms generated from
signatures as stack elements in our automaton defined below. Fol-
lowing the notation of “Foundations for Programming Languages”
[22], we denote the terms over a signature S by Terms(S), and
the terms over a signature and a finite set V of variable symbols by
Terms(S, V).

Definition 3.3. An algebraic multistack pushdown automaton (am-
pda) is a tuple (Q,Σ,S1, . . . ,Sn, δ, z, F), where

• n ≥ 1 is the number of stacks
• Q is a finite set of states
• Σ is a finite set of input symbols
• Si is a signature that generates the set of terms that can be

pushed onto the ith stack, for i ∈ {1, . . . , n}
• δ is a partial function fromQ×Terms(S1)∗×. . .×Terms(Sn)∗×

Σ to Q× Terms(S1)∗ × . . .× Terms(Sn)∗

• z ∈ Q × Terms(S1)∗ × . . . × Terms(Sn)∗ is the initial
configuration
• F ⊂ Q×Terms(S1)∗× . . .×Terms(Sn)∗ is the finite set of

accepting configurations

A configuration is an element in Q × Terms(S1)∗ × . . . ×
Terms(Sn)∗. We denote a configuration by qs, where s is a short-
hand for (s1, . . . , sn), the n-tuple of stacks. We assume that in
every stack there is a special element ⊥ which denotes bottom of
stack. We write a stack consisting terms A1, . . . , An, where An is
the top of the stack, as ⊥A1 . . . An. We may write a configuration
qs in the vector form

q

 s1
...
sn

To improve the readability of ampda definitions, we represent

the partial function δ of an ampda as a transition table. In a transi-
tion table, each row corresponds to a state and each column corre-
sponds to an input symbol. The first row indicates the input symbols
and the first column indicates the states. We use a pair (q, a), where
q is a state and a is an input symbol, as the coordinates of a cell in
a transition table. In each cell (q, a), we write the transition rules
that are activated by state q and input symbol a.

Given a finite set V of variable symbols, we can write two kinds
of rules in a cell.

4 2010/10/11

The first kind of rules are transition rules. A transition rule rep-
resents a transition from a configuration qs to another configuration
q′t, where si, ti ∈ Terms(Si, V)∗ for all i ∈ {1, . . . , n}. Intu-
itively, a transition rule s/q′t in cell (q, a) means:

If the current configuration matches qs, then transition to q′t.

A transition rule is represented by the vector form s1
...
sn

 /q′
 t1

...
tn

We omit the brackets if there is only one stack. We allow multiple
transition rules in a cell as long as there is only one rule that is
applicable at a time. If there are multiple rules in a cell, we can
further divide the rules into two groups. The first group of rules are
“stop rules.” After applying a “stop rule,” the transition in the cell is
complete and the ampda proceeds to process the next input symbol,
if any. The second group of rules are “continuation rules.” After a
continuation rule is applied, the ampda continues to apply rules in
the same cell until it hits a “stop rule.” Every cell that is not empty
must contain at least one “stop rule.”4 We write a / at the end of a
“stop rule” and an ∗ at the end of a “continuation rule.”

The second kind of rules are lookup rules. A lookup rule in-
stantiates variables in the rule by performing recursive lookup on a
stack. It has the form sti =υ1...υn A . . ., where n ∈ N, υ1 . . . υn
is a list of variable symbols that appear in A, sti indicates that the
lookup is performed on the ith stack, and A ∈ Terms(Si, V) is a
term pattern that the rule looks for on the stack. The rule starts from
the top of the stack and goes down until it finds a term A′ such that
A and A′ are unifiable. If it reaches bottom of stack, then it fails.

In this paper, we consider only ampdas that can be represented
by a transition table with a finite number of rules in every cell.

Example 3.4. The following is an example transition table for an
ampda that accepts the langauge {anbn|n ∈ N}.

Initial configuration = 0⊥

Accepting configurations = {0⊥, 1⊥}

a b
0 /0B B/1
1 B/1

Example 3.5. The following is an example transition table for an
ampda that accepts the langauge {anbn|n ∈ N} ∪ {anc|n ∈ N}.
Here, we need multiple rules in a cell of the transition table (which
simulates the behavior of a jump pda [3]).

Initial configuration = 0⊥

Accepting configurations = {0⊥,1⊥}

a b c

0 /0B B/1
(1) B/0 ∗
(2) ⊥/1⊥ /

1 B/1

3.2 Encoding Ampdas In ELIA
The general idea of encoding an ampda in ELIA is based on the
following interpretation of the transition table.

4 The main purpose for introducing these two groups of rules is so that we
can encode a wider range of transition functions in a transition table. No
transition function in any ampda should diverge. If application of the rules
diverges, then the rules are not valid represention of a transition function.

Representing Terms Generated by a Signature We define a
ELIA type constructor Tf of arity n for each function symbol
of arity n, and a type variable Tv for every variable symbol v. The
general encoding function en0[−]5 from terms to ELIA types is
defined as

en0[v] = Tv

en0[f(A1, . . . , An)] = Tf<en0[A1], . . . , en0[An]>

where v is a variable symbol, f is a function symbol of arity n, and
A1, . . . , An are terms.

Representing Stacks of Terms The idea follows that of algebraic
data types. We define two ELIA type constructors: push of arity 2
and T⊥ of arity 0. A stack of terms ⊥A1 . . . An is represented by
type

push<en0[An], push<en0[An−1], . . . , push<en0[A1], T⊥>>>

In the transition rules, we usually only need to inspect the top
portion of a stack. The top portion of a stack consisting of terms
A1, . . . , An is represented by type

push<en0[An], push<en0[An−1], . . . , push<en0[A1], v>>>

where v is a type variable that does not appear in en0[A1], . . . , en0[An].
The general encoding function en1[−] from stacks of terms to
ELIA types is defined as

en1[ε] = v

en1[⊥] = T⊥

en1[sA] = push < en0[A], en1[s] >

where ε is the empty sequence, s is a possibly empty sequence
of stack terms, A is a stack term, and v is a fresh type variable.
For example, given a signature {B : 0}, the encoding of a stack
⊥BBB looks like push<TB , push<TB , push<TB , T⊥>>>,
and the encoding of the top portion BBB of a stack looks like
push<TB , push<TB , push<TB , υ>>>.

Representing States, Input Symbols, and Configurations Given
an ampda with n stacks, we define an ELIA type constructor Cq of
arity n for each state q, and a method Ma in Cq for each state and
input symbol pair (q, a) if and only if the cell (q, a) is not empty.
For example, the transition table in Example 3.5 yields the ELIA
type constructors and methods shown in the following table:

ELIA type methods
C0 Ma, Mb, Mc

C1 Mb

Given the representation of states and input symbols, the general
encoding function en2[−] from configurations to ELIA types is
defined as

en2[qs] = Cq<en1[s1], . . . , en1[sn]>

where qs is a configuration.

Representing Transition Rules We defined ELIA types T∗ and
T/ indicating “continuation rules” and “stop rules,” respectively.
For every cell (q, a) that is not empty, we define an ELIA type
constructor Gq,a of arity 2. For each transition rule s/q′t in cell
(q, a), we defined an ACP constructor of type (to make it easier to
read, we assume that free type variables are implicitly universally
quantified)

Gq,a<en2[q′t], τ1>→ Gq,a<en2[qs], τ2>

5 We use square brackets for metalevel functions to avoid confusion with
parentheses which are used to represent subterms.

5 2010/10/11

where type τ1 and τ2 are either T∗ or T/. 6 The left hand side repre-
sents the target configuration and the right hand side represents the
source configuration. The ELIA ACP constructor code looks like

implicit <. . .>

Gq,a<en2[qs],τ2> r(Gq,a<en2[q′t],τ1> p) { . . . }

For every method Ma in ELIA type Cq<S1, . . . , Sn>, where
S1, . . . , Sn are ELIA types, we set its return type to φ, where φ is
a fresh type variable, and define an ACP of type

Gq,a<φ, T/>→ Gq,a<Cq<S1, . . . , Sn>,T∗>

Intuitively, the right hand side represents the current configuration
and the left hand side represents that we want to apply rules in cell
(q, a) repeatedly until it hits a “stop rule.”

The ELIA code looks like

interface Cq <S1,. . .,Sn> {
<. . .> φ Ma(
| Gq,a<φ,T/>->Gq,a<Cq <S1,. . .,Sn>,T∗> p);
. . .

}

The transition rules in cell (q, a) are simulated by the ACP con-
structors and the ACP as follows. Suppose that we have a con-
figuration qs. Its representation in ELIA is type en2[qs]. Every
methodMa in this ELIA type has an ACP of typeGq,a<φ, T/>→
Gq,a<en2[qs], T∗>. To construct a value for this ACP, the com-
piler starts by looking for an ACP constructor instance whose return
type isGq,a<en2[qs], T∗>. If it finds an ACP constructor instance
of type Gq,a<en2[q′t], T∗> → Gq,a<en2[qs], T∗>, then it pro-
ceeds by looking for another ACP constructor instance whose re-
turn type is Gq,a<en2[q′t], T∗>, which simulates a “continuation
rule” transition from qs to q′t; if it finds an ACP constructor in-
stance of type Gq,a<en2[q′t], T/> → Gq,a<en2[qs], T∗>, then
it stops and assigns type variable φ the type en2[q′t], which simu-
lates a “stop rule” transition from qs to q′t. The two cases can be
written in the style of natural deduction as follows: (we omit all
labels in the deductions)

∗ :

...
Gq,a<en2[q

′t],T∗> Gq,a<en2[q
′t],T∗>→Gq,a<en2[qs],T∗>

Gq,a<en2[qs],T∗>

/ :
Gq,a<en2[q

′t],T/> Gq,a<en2[q
′t],T/>→Gq,a<en2[qs],T∗>

Gq,a<en2[qs],T∗>

Next, we show an example. The following transition rules from
cell (0, c) in Example 3.5

(1) B/0 ∗
(2) ⊥/1⊥ /

can be represented by ACP constructors of the following types:

<v>G0,c<C0<v>, T∗>→ G0,c<C0<push<TB , v>>, T∗>
G0,c<C1<T⊥>,T/>→ G0,c<C0<T⊥>,T∗>

Representing Lookup Rules We define an ELIA type constructor
L of arity 2 and two ACP constructors. The purpose of introducing
L is so that we can use L<v, φ> to denote “look up φ in stack v.”
The first ACP constructor has type

()→ L<push<φ, v>, φ>

6 We are not writing the type the other way around as

Gq,a<en2[qs], τ2>→ Gq,a<en2[q
′t], τ1>

because of backchaining.

e → x variable
| e e application
| fun x ⇒ e abstraction
| (e) parentheses

Figure 1. Concrete Syntax: abstraction binds the longest subex-
pression possible

Initial Configuration = 0⊥
Acception Configurations = {1⊥}

x fun ⇒ ()
0 /1 /2 /0P
1 /1 /2 /0P P/1
2 /3
3 /0

Table 2. Parser Transition Table

and the second ACP constructor has type

(χ! =φ,L<v, φ>)→ L<push<χ, v>, φ>

where v, φ, and χ are type variables (free variables are implicitly
universally quantified). The ELIA code looks like

implicit <. . .> L<push<φ,v>,φ> r0() { . . . }
implicit <. . .>
L<push<χ,v>,φ> r1(χ!=φ q, L<v,φ> p) { . . . }

Intuitively, they encode the following:

If the top element of stack matches φ, success.
Otherwise, pop top element χand try again.
If it reaches bottom of stack, failure.

For each lookup rule sti =υ1...υn A . . . in cell (q, a), we de-
fine an ACP of type L<Si, en0[A]> in method Ma of type
Cq<S1, . . . , Sn> and extend the type constructor Gq,a with type
variables en0[υ0], . . . , en0[υn]. The ELIA code looks like

interface Cq <S1,. . .,Sn> {
<. . .> φ Ma(

| L<Si,en0[A]> q,

Gq,a<φ,T/ ,en0[υ0],. . .,en0[υn] >

->Gq,a<Cq <S1,. . .,Sn>,T∗ ,en0[υ0],. . .,en0[υn] > p);

. . .
}

We will show an example of lookup rules in Section 3.3.3.

3.3 Example: Embedding Simply-Type Lambda Calculus
(STLC) with A Concrete Syntax

In this subsection, we show an example of embedding the STLC in
ELIA using our general framework. We introduce the embedding
in four parts: parser, AST builder, type checker, and interpreter. The
syntax of the STLC is shown in Figure 1.

3.3.1 Parser
The parser ampda is shown in Table 2. We follow the steps in our
general framework.

1. For terms, as there is only one stack and one function symbol
P used in the stack, it suffices to define an ELIA type P.

2. For stacks, we define ELIA types push and bot, representing
push, and T⊥, respectively.

6 2010/10/11

3. For states, input symbols, and configurations, we define ELIA
types and methods as shown in the following table:

ELIA type defined methods
C0 x, fun, l
C1 x, fun, l, r
C2 x

C3 arrow

where C0, C1, C2, and C3 represent states 0, 1, 2, and 3, respec-
tively, x, fun, arrow, l, and r represent input symbols x, fun,
⇒, (, and), respectively.

4. For the transition rules, we define an ELIA type constructor
representing Gq,a in our framework for every non-empty cell
(q, a), as shown in the following table:

x fun ⇒ ()
0 G0x G0fun G0l

1 G1x G1fun G1l G1r

2 G2x

3 G3arrow

We define ELIA types C (Continuation) and O (Stop), which rep-
resents ∗ and /, respectively.
For each rule, we define an ACP constructor. The type decla-
ration part of the ACP constructor definitions are shown in the
following table. We omit the key word implicit.
q, a ACP constructor
0, x <V> G0x<C0<V>,C> r0(G0x<C1<V>,O> p)

1, x <V> G1x<C1<V>,O> r1(G1x<C1<V>,C> p)

2, x <V> G2x<C2<V>,C> r2(G2x<C3<V>,O> p)

0, fun <V> G0fun<C0<V>,C> r3(G0fun<C2<V>,O> p)

1, fun <V> G1fun<C1<V>,C> r4(G1fun<C2<V>,O> p)

3,⇒ <V> G4arrow<C4<V>,C> r5(G4arrow<C0<V>,O> p)

0, (<V> G0l<C0<V>,C> r6(G0l<C0<push<P,V>>,O> p)

1, (<V> G1l<C1<V>,C> r7(G1l<C20<push<P,V>>,O> p)

1,) <V> G1r<C1<push<P,V>>,C> r8(G1r<C1<V>,O> p)

We can write the full details of the methods from step 3.

interface C0<V> {
<T> T x(|G0x <T,O>->G0x <C0<V>,C> p);
<T> T fun(|G0fun <T,O>->G0fun <C0<V>,C> p);
<T> T l(|G0l <T,O>->G0l <C0<V>,C> p);

}
interface C1<V> {

<T> T x(|G1x <T,O>->G1x <C1<V>,C> p);
<T> T fun(|G1fun <T,O>->G1fun <C1<V>,C> p);
<T> T l(|G1l <T,O>->G1l <C1<V>,C> p);
<T> T r(|G1r <T,O>->G1r <C1<V>,C> p);

}
interface C2<V> {

<T> T x(|G2x <T,O>->G2x <C2<V>,C> p);
}
interface C3<V> {

<T> T
arrow(|G3arrow <T,O>->G3arrow <C2<V>,C> p);

}

5. We do not have lookup rules in this ampda, but we define an
ELIA type constructor L without any method, which represents
L in our framework. We will use it in the following subsubsec-
tions.

6. In fact, we can simplify some of the methods. If there is only
one rule that applies in cell (q, a) and no element is popped
from the stack, then we can determine the return type T and re-
move the ACP. For example, for method x in C0, we can deter-
mine the return type of the method by looking at the table above.
The only ACP constructor that can be used to construct the
ACP value is <V> G0x<C0<V>,C> r0(G0x<C1<V>,O> p). There-
fore, we can remove the ACP in the method declaration and

replace the return type with C1<V>. The following is the simpli-
fied code:

interface C0<V> {
C1<V> x();
C2<V> fun();
C0<push <P,V>> l();

}
interface C1<V> {

C1<V> x();
C2<V> fun();
C0<push <P,V>> l();
<T> T r(|G1r <T,O>->G1r <C1<V>,C> p);

}
interface C2<V> {

C3<V> x();
}
interface C3<V> {

C1<V> arrow ();
}

3.3.2 AST Builder
We extend our parser with an AST builder. We introduce a new
stack with signature S ={x : 0, var : 1, app : 2, abs : 2, A :
1, A′ : 1}. The general AST builder partial function node[−] from
sequences of input symbols to Terms(S) that we want to encode
is defined as

node[x] = var(x)

node[x ?] = app(x, node[?])

node[(?)] = node[?]

node[(?1) ?2] = app(node[?1], node[?2])

node[fun x ⇒ ?] = abs(x, node[?])

where ?, ?1, ?2 ∈ Σ∗ (i.e. they match any sequence of input
symbols).

The main usage of this stack is to store intermediate AST nodes
during the processing of an input string.

Example 3.6. The following are examples where we need to store
more than one intermediate AST node. We denote a sequence of
input symbols that form a subexpression by e1, e2.

1. For prefix (e1 . . ., the usage of e1 depends on the following
symbol. For example, if the following symbol is x, then we
build an app node; if it is), then we do not build any new node.
As we can not determine how node[e1] should be used, we store
node[e1] in the stack.

2. For prefix (fun x ⇒ e1 . . ., the usage of x and e1 depends on
the following symbol. For example, if it is x, then we build an
app node; if it is), we build an abs node. Therefore, we store
x, node[e1] in the stack.

3. For prefix (e1 fun x ⇒ e2 . . ., the usage of e1, x, and e2
depends on the following symbol. For example, if it is x, then
we build an app node; if it is), we build an abs node and then
build an app node. Therefore, we store node[e1], x, node[e2]
in the stack.

As this example shows, when a “)” is processed, we may need
recursive node building (the amortized time complexity is still
linear).

The AST builder amdpa is shown in Table 3. The main differ-
ence between Table 2 and Table 3 is that we added one component
to the ampda stack vector and refined the rules in column “)”. We
define ELIA type constructors x, var, app, abs, A, Aprimes to rep-
resent x, var, app, abs,A,A′. We show the encoding of the rules

7 2010/10/11

Initial Configuration = 0

[
⊥
⊥

]
Acception Configurations = {1

[
⊥
⊥e1

]
}

x fun ⇒ (

0

[]
/1

[
var(x)

] []
/2

[] []
/0

[
P
A

]
1

[
e1

]
/1

[
app(e1, x)

] []
/2

[] []
/0

[
P
A′

]
2

[]
/3

[
x

]
3

[]
/0

[]
)

0

1

(1)

[
xe1

]
/1

[
abs(x, e1)

]
∗

(2)

[
var(x)e1

]
/1

[
app(var(x), e1)

]
∗

(3)

[
abs(x, e1)e2

]
/1

[
app(abs(x, e1), e2)

]
∗

(4)

[
app(e1, e2)e3

]
/1

[
app(app(e1, e2), e3)

]
∗

(5)

[
P
Ae1

]
/1

[
e1

]
/

(6)

[
P

e1A
′e2

]
/1

[
app(e1, e2)

]
/

2
3

Table 3. AST Builder Transition Table: e1, e2, e3 are variable symbols

in column “)” only. Most other rules can be encoded in a simi-
lar fashion to the parser encoding. We use different color boxes to
mark different components of the encoding: green – Stack 1, blue
– Stack 2, red – whether another rule needs to be applied.
Transition Rule (1)

implicit <V1,V2 ,e1>

G1r <C1< V1 , push<e1,push<x,V2>> >,C>

r1(G1r <C1< V1 , push<abs<x,e1>,V2> >,C> p)

Transition Rule (2)

implicit <V1,V2 ,e1>

G1r <C1< V1 , push<e1,push<var<x>,V2>> >,C>

r2(G1r <C1< V1 , push<app<var<x>,e1>,V2> >,C> p)

Transition Rule (3)

implicit <V1,V2 ,e1,e2 >

G1r <C1< V1 , push<e2,push<abs<x,e1>,V2>> >,C>

r3(G1r <C1< V1 , push<app<abs<x,e1>,e2>,V2> >,C> p)

Transition Rule (4)

implicit <V1,V2 ,e1,e2 ,e3>

G1r <C1< V1 , push<e3,push<app<e1,e2>,V2>> >,C>

r4(G1r <C1< V1 , push<app<app<e1,e2>,e3>,V2> >,C> p)

Transition Rule (5)

implicit <V1,V2 ,e1>

G1r <C1< push<P,V1> , push<e1,push<Aprime,V2>> >,C>

r5(G1r <C1< V1 , push<e1,V2> >,O> p)

Transition Rule (6)

implicit <V1,V2 ,e1,e2 >

G1r <C1 < push<P,V1> ,

push<e2,push<Aprime,push<e1,V2>>> >,C>

r1(G1r <C1< V1 , push<app<e1,e2>,V2> >,O> p)

3.3.3 Type Checker
We extend our AST builder with a type checker. We introduce
two new stacks with signatures {x : 0, fun : 2, ty : 2} and
{x : 0, fun : 2}, respectively. Intuitively, the first new stack stores
the typing environment, and the second new stack stores the types
of the AST nodes in the stack used by the AST builder. To follow
convention, we write the function symbol fun as an infix “→”, and
the function symbol ty as an infix “:”. The general typing partial
function type[−,−] that we want to encode is defined as

type[var(x), E] = lookup[E , x]

type[app(e1, e2), E] = τ2

if type[e1, E] = τ1 → τ2

and type[e2, E] = τ1

type[abs(x, e), E] = τ1 → τ2

if type[e, push(x : τ1, E)]

8 2010/10/11

Initial Configuration = 0

 ⊥⊥⊥
⊥

Acception Configurations = {1

 ⊥
⊥e1
⊥
⊥τ1

}
x fun ⇒ (

0 st3 =τ1 υ : τ1 . . .,

 /1

 var(x)

τ1

 /2

 /0
 P
A

1 st3 =τ1 x : τ1 . . .,

 e1

τ1 → τ2

 /1
 app(e1, x)

τ2

 /2

 /0
 P
A′

2

 /3

 x
x : τ1

3

 /0

)
0

1

(1)

 xe1
x : τ1
τ2

 /1
 abs(x, e1)

τ1 → τ2

 ∗

(2)

 var(υ)e1

τ1 → τ2 τ1

 /1
 app(var(υ), e1)

τ2

 ∗

(3)

 abs(υ, e1)e2

τ1 → τ2 τ1

 /1
 app(abs(υ, e1), e2)

τ2

 ∗

(4)

 app(e1, e2)e3

τ1 → τ2 τ1

 /1
 app(app(e1, e2), e3)

τ2

 ∗

(5)

 P
Ae1

 /1
 e1

 /

(6)

 P
e1A

′e2

τ1 → τ2 τ1

 /1
 app(e1, e2)

τ2

 /

2
3

Table 4. Type Checker Transition Table: υ, e1, e2, e3, τ1, τ2 are variable symbols

9 2010/10/11

where the partial function lookup is defined as

lookup[push(x : τ, E), x] = τ

lookup[push(y : τ, E), x] = lookup[E , x]

if y 6= x

The type checking amdpa is shown in Table 4. The main difference
between Table 3 and Table 4 is that we added two components to
the ampda stack vector and added lookup rules in column x.

We define ELIA type constructors fun, ty to represent fun, ty.
We only show how to encode rules in cell (0, x). Most other rules
can be encoded in a similar fashion as we did before. We use
different color boxes to mark different components of the encoding:
green – Stack 1, blue – Stack 2, purple – Stack 3, orange – Stack 4,
yellow – the type pattern to look up.
Generic Lookup Rule 1

implicit <T,V> L< push<T,V> , T > r0()

Generic Lookup Rule 2

implicit <V,T1,T2>

L< V , T1 > r2(T2!=T1 q,L< push<T2,V> , T1 > p)

Transition Rule 3 in cell (0, x)

implicit <V1,V2 ,V3,V4 ,t1>

G0v <C0 < V1 , V2 , V3 , V4 >,C, t1 >

r3(G0v <C0< V1 , push<var<x>,V2> , V3 , push<t1,V4> >,

O, t1 > p)

The method x looks like the following.

interface C0<V1,V2,V3 ,V4> {
<T,t1> T x(|

L<V3,ty<x, t1 >> p0,

G0v <T,S, t1 >->G0v <C0 <V1,V2 ,V3,V4>,C, t1 > p);

}

3.4 Integration with Interpreters
With the AST builder and type checker, we are capable of building
a type that represents a well-typed (in the object language type
system) AST. Using ACP constructors, we can convert this type
to ACP values that can be executed at runtime.

1. We define necessary auxiliary classes for interpreting object
language ASTs. We defined the following interface:

interface Val <S> {
<T> Val <app <S,T>> app(T o);

}
interface Env {

<V,e> Env push(V x, Val <e> o);
<V> Val <Var <V>> lookup(V x);

}

2. For each AST node constructor f , we define an ACP con-
structor that converts types representing AST nodes constructed
from f to ACP values the represents the computation of the
AST nodes. The basic idea is that given an ELIA type e1 repre-
senting an AST, we ask the compiler to construct an ACP value
of type Env->Val<e1>. The following rules recursively decon-
struct e1 and perform ACP value construction on its subterms.
For the app node, we define the following ACP constructor:

implicit <e1,e2 > Val <app <e1,e2 >> Rapp(
Env ->Val <e1> a, Env ->Val <e2 > b, Env env) {
return a(env).app(b(env));

}

For the abs node, we define the following ACP constructor:

implicit <V,e1> Val <abs <V,e1>> Rabs(
Env ->Val <e1> a, V vari , Env env) {
return new Val <abs <V,e1 >>() {

<e2 >
Val <app <abs <V,e1>,e2>> app(Val <e2 > o) {

return a(env.push(vari ,o));
}

};
}

For the var node, we define the following ACP constructor:

implicit <V> Val <var <V>> Rvar(
V vari , Env env) {
return env.lookup(vari);

}

For the x node, we replace the definition of type constructor x
with the following class to make it a singleton type:

class x {
private static x _x = new x();
private x() {}
public x getx() { return _x; }

}

and define the following singleton class and ACP constructor:

implicit x Rv() {
return x.getx ();

}

3. Finally, we define a interpretor function that ties the ACP con-
structors defined above to our AST builder.

class C1<V1 ,V2,V3,V4> {
<e,t> Val <e> run(|
V1==bot p0,V2==push <e,bot > p1,
V3==bot p2,V4==push <t,bot > p3,
Env ->e r) {

return r(new Env ());
}

}

We show an example of embedding STLC programs using our
encoding.

Example 3.7. In this example, we assume that our ampda has two
more input symbols y and z that behave like the input symbol x.
Assume that we have an object prog of type C0<bot,bot,bot,bot>.
The STLC program fun x ⇒ x can be embedded as the following
COMIC:

prog.fun().x(). arrow ().x(). run()

The constructed ACP value for the ACP r in method run is

λenv1.Rabs(Rx,λenv2.Rvar(Rx,env2),env1)

where we use the λ notation to represent functions. An expression
λx.e denotes a unary function that returns the value of e given a
value of x. The STLC program fun x ⇒ fun y ⇒ y x can be
embedded as the following COMIC:

prog.fun().x().fun().y(). arrow ().y().x().run()

The constructed ACP value for the ACP r in method run is

λenv1.Rabs(Rx,λenv2.Rabs(Ry,λenv3.Rapp(
λenv4.Rvar(Ry,env4),
λenv5.Rvar(Rx,env5),env3),env2),env1)

The STLC program (fun y ⇒ y) (fun x ⇒ x) can be
embedded as the following COMIC:

10 2010/10/11

prog.l().fun().y(). arrow ().y().r()
.l(). fun().x(). arrow ().x().r().run()

The constructed ACP value for the ACP r in method run is

λenv1.Rapp(
λenv2.Rabs(Ry,λenv3.Rvar(Ry,env3),env2),
λenv4.Rabs(Rx,λenv5.Rvar(Rx,env5),env4),env1)

Our interpretor is very similar to the “final approach” [4], which
allows an embedded program to be written once and evaluated in
many different ways. Our approach allows the embedded program
to be written once, represented internally in many different ways
(such as final or initial), and evaluated in many different ways.

4. Discussion
Improving Readability ELIA allows using operators as method
names and omitting dots and parentheses if the method has no pa-
rameters, which can be used to improve the readability of embed-
ded programs. For example, if we replace the method name arrow

in the previous example with method name =>, then we can embed
fun y ⇒ fun x ⇒ y x as prog fun y => fun x => y x run.

Error Messages When using a general purpose programming
language as the host language for an embedded DSL, error mes-
sages produced by the host language compiler are usually less rel-
evant to the embedded DSL. As shown in Section 2.4, ELIA has
a feature that allows programmatically defining customized error
messages to be output when the compiler fails to construct ACP
values. Using this feature, we can define error messages in our en-
coding that are more relevant to the embedded DSL.

Extending/Restricting Our Framework In the framework intro-
duced in this paper, we assume that every input symbol is mapped
to a method for clarity. An impact of this simplification is that we
can only encode a finite number of constants or variables in our
framework. To avoid this limitation, we can extend our ampda so
that the input is a string of terms generated from a signature. Us-
ing this extension, the methods in the encoding will have regular
Java parameters and will allow an infinite number of constants and
variables.

If we restrict ampdas to have one stack and combine stack sym-
bols with states, then our framework reverts back to our previous
framework [34, 35], which can be implemented in Java.

Encoding Generation Manually writing the ELIA code that en-
codes a parser, type checker, AST builder, and interpreter of a com-
plex DSL can be very tedious. Our framework enables automatic
generation of this code from a DSL specification. In our previous
work, we created a tool that can be used to automatically generate
code from DSL specifications written in a high-level specification
language [35]. Although our code generator only implements a re-
stricted version of our general framework tailored to the static pro-
gramming capability of Java, it can be easily modified to generate
code for ELIA and implement our full framework.

Challenges in Designing ELIA There are some challenges in de-
signing ELIA. The first challenge is to avoid non-termination of
compilation. There are a few techniques that can be applied to de-
tect static programs that diverge. Currently, we use a simple order-
based termination proving technique. For complex ACP construc-
tors and ACPs, we can use the “transformational” approach in auto-
mated termination analysis for logic programs [27] (and references
therein), which translates a logic program into a term rewriting sys-
tem (TRS) and applies termination analysis on the TRS. Another
challenge is formalizing the extension. It turns out that ELIA can
be easily formalized by extending the FGJ calculus [11] with ACPs,

as the interaction between ACPs and the type system of Java is min-
imal. A third challenge is to make ELIA useful beyond the scope
of language embedding. The generality of ELIA allows us to use it
in other scenarios such at automatic type conversion and enforcing
user-defined static properties of methods.

5. Related Work
DSLs Most of the research on embedded DSLs is in the func-
tional setting. There are proposals for embedding typed languages
into typed host languages, based on GADT [13, 32], dependent
types [7, 25, 33], ordinary functions [4], or higher order abstract
syntax [26]. Research is usually focused on creating tagless inter-
preters, which reduce the overhead in embedded DSL implemen-
tations. Implementing embedded DSLs in OO/functional program-
ming languages [10] and pure OO programming langauges [34, 35]
is a less extensively studied area of research. Our examples show
that COMIC embedding can be used together with tagless inter-
preters to implement embedded DSLs in an OO setting.

Many programming languages support defining embedded
DSLs to some extent. However, when designing embedded DSLs
in these languages, the designers need to deal with restrictions of
the host language. Many DSL systems provide meta languages for
the specific domain of DSL definition [20, 30]. In these tools, the
meta languages are themselves domain specific languages. Pattern
languages, such as OMeta [31] and π [17], allow defining patterns
and their semantics, and can also be used as meta languages for
embedded DSLs.

OO Programming ELIA is based on Java [8]. Some features of
ELIA, such as flexible syntax, were inspired by Scala [23]. How-
ever, the most important features of ELIA, such as ACPs and cus-
tomizable error messages, are not in Scala. The equality type for
ACPs was inspired by a similar typing constraint proposed for C]
[15]. ACP types differ from typing constraints in that they are not
only constraints that need to be solved, but also specifications from
which ACP values are inferred. Predicate dispatch [5, 6, 21, 24, 29]
is a mechanism for dynamically determining the code to be exe-
cuted upon a method invocation based on user-defined predicates.
ACP types do not interfere with dynamic method dispatching and
do not have runtime overhead.

Logic Programming Concepts such as “cut” and backward
chaining are used in Prolog [28] and automatic theorem proving.
However, in their applications, a proof that a query is satisfiable is
usually an addition to the result of the query; while in ELIA, the
proof is essential for constructing ACP values.

Type classes [9] in Haskell incorporate logic programming into
a functional programming language, which is probably one of the
reasons why Haskell is often used as the host language for em-
bedded DSLs. ELIA incorporates logic programming into an OO
programming language.

Some functional programming languages support explicitly the
notion of proofs [7] (and references therein) through dependent
types. A dependently typed language usually either has a type lan-
guage that is separate from the term language, or has only one lan-
guage for both its types and its terms. The expressibility of lan-
guages that support dependent types lies in the power of dependent
type theory [19]. A language that supports dependent types is usu-
ally capable of statically guaranteeing various properties, such as
length preservation and permutation in a sort algorithm, and has the
potential of being a practical host language for embedded DSLs, if
it has a strong type inference algorithm.

11 2010/10/11

6. Conclusion
Our paper introduced a powerful framework for embedding DSLs
into OO programming languages. Unlike other approaches, which
embed object language programs as nested calls to functions or data
constructors, our framework embeds object language programs as a
chain of method invocations. We used ampdas, our variant of pdas,
as an intermediate devices for representing parser, AST builders,
and type checkers in a uniform fashion. We demonstrated our
framework by using an example of encoding the STLC in ELIA,
our extension to Java with ACPs. This example shows that the
COMIC embedding can be used to embed DSLs of other program-
ming paradigms into OO host languages. The ideas of ACPs and
COMIC embedding could also be extended to host languages of
other programming paradigms, given proper encoding. We hope
that in the future, we can extend our framework to other program-
ming languages and paradigms.

References
[1] http://code.google.com/apis/protocolbuffers/.
[2] jMock. http://www.jmock.org.
[3] Jean-Michel Autebert, Jean Berstel, and Luc Boasson. Context-

Free Language and Pushdown Automata, volume 1 Word, Language,
Grammar of Handbook of Formal Languages, chapter 3, pages 111–
174. Springer, 1997.

[4] Jacques Carette, Oleg Kiselyov, and Chung-chieh Shan. Finally tag-
less, partially evaluated: Tagless staged interpreters for simpler typed
languages. J. Funct. Program., 19(5):509–543, 2009.

[5] Craig Chambers and Weimin Chen. Efficient multiple and predicated
dispatching. SIGPLAN Not., 34(10):238–255, 1999.

[6] Michael Ernst, Craig Kaplan, and Craig Chambers. Predicate dis-
patching: A unified theory of dispatch. In ECCOP ’98: Proceedings
of the 12th European Conference on Object-Oriented Programming,
pages 186–211, London, UK, 1998. Springer-Verlag.

[7] Seth Fogarty, Emir Pasalic, Jeremy Siek, and Walid Taha. Concoqtion:
indexed types now! In PEPM ’07: Proceedings of the 2007 ACM SIG-
PLAN symposium on Partial evaluation and semantics-based program
manipulation, pages 112–121, New York, NY, USA, 2007. ACM.

[8] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. Java(TM)
Language Specification, The (3rd Edition) (Java (Addison-Wesley)).
Addison-Wesley Professional, 2005.

[9] Cordelia V. Hall, Kevin Hammond, Simon L. Peyton Jones, and
Philip L. Wadler. Type classes in haskell. ACM Trans. Program. Lang.
Syst., 18(2):109–138, 1996.

[10] Christian Hofer, Klaus Ostermann, Tillmann Rendel, and Adriaan
Moors. Polymorphic embedding of dsls. In GPCE ’08, pages 137–
148, New York, NY, USA, 2008. ACM.

[11] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Feather-
weight java: A minimal core calculus for java and gj. In ACM Transac-
tions on Programming Languages and Systems, pages 132–146, 1999.

[12] Andrzej Indrzejczak. Natural Deduction, Hybrid Systems and Modal
Logics. Springer, 2010.

[13] Simon Peyton Jones. Simple unification-based type inference for
gadts. pages 50–61. ACM Press, 2006.

[14] Donald Kalish, Richard Montague, and Gary Mar. Logic: Techniques
of Formal Reasoning Second Edition. Oxford University Press, 1980.

[15] Andrew Kennedy and Claudio V. Russo. Generalized algebraic data
types and object-oriented programming. In OOPSLA ’05, pages 21–
40, New York, NY, USA, 2005. ACM.

[16] Gavin King, Christian Bauer, Max Rydahl Andersen, Emmanuel
Bernard, and Steve Ebersole. Hibernate reference documentation
3.3.2.ga, 2009.

[17] Roman Knöll and Mira Mezini. π: a pattern language. In Proceed-
ing of the 24th ACM SIGPLAN conference on Object oriented pro-
gramming systems languages and applications, OOPSLA ’09, pages
503–522, New York, NY, USA, 2009. ACM.

[18] P. J. Landin. The next 700 programming languages. Commun. ACM,
9(3):157–166, 1966.

[19] Per Martin-Lof. Intuitionistic type theory. Bibliopolis, 1984.
[20] Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and

how to develop domain-specific languages. ACM Comput. Surv.,
37(4):316–344, 2005.

[21] Todd Millstein, Christopher Frost, Jason Ryder, and Alessandro
Warth. Expressive and modular predicate dispatch for java. ACM
Trans. Program. Lang. Syst., 31(2):1–54, 2009.

[22] John C. Mitchell. Foundations for Programming Languages. MIT
Press, 1996.

[23] Martin Odersky. The scala language specification version 2.7 draft,
2009.

[24] Doug Orleans. Incremental programming with extensible decisions. In
AOSD ’02: Proceedings of the 1st international conference on Aspect-
oriented software development, pages 56–64, New York, NY, USA,
2002. ACM.

[25] Emir Pasalic, Walid Taha, and Tim Sheard. Tagless staged interpreters
for typed languages. SIGPLAN Not., 37(9):218–229, 2002.

[26] F. Pfenning and C. Elliot. Higher-order abstract syntax. In PLDI ’88:
Proceedings of the ACM SIGPLAN 1988 conference on Programming
Language design and Implementation, pages 199–208, New York, NY,
USA, 1988. ACM.

[27] Peter Schneider-Kamp, Jürgen Giesl, Alexander Serebrenik, and René
Thiemann. Automated termination proofs for logic programs by term
rewriting. ACM Trans. Comput. Logic, 11(1):1–52, 2009.

[28] Leon Sterling and Ehud Shapiro. The art of Prolog: advanced pro-
gramming techniques. MIT Press, Cambridge, MA, USA, 1986.

[29] Aaron Mark Ucko. Predicate dispatching in the common lisp object
system, 2001.

[30] Arie van Deursen, Paul Klint, and Joost Visser. Domain-specific
languages: an annotated bibliography. SIGPLAN Not., 35(6):26–36,
2000.

[31] Alessandro Warth and Ian Piumarta. Ometa: an object-oriented lan-
guage for pattern matching. In Proceedings of the 2007 symposium
on Dynamic languages, DLS ’07, pages 11–19, New York, NY, USA,
2007. ACM.

[32] Hongwei Xi, Chiyan Chen, and Gang Chen. Guarded recursive
datatype constructors. SIGPLAN Not., 38(1):224–235, 2003.

[33] Hongwei Xi and Frank Pfenning. Dependent types in practical pro-
gramming. In In Proceedings of ACM SIGPLAN Symposium on Prin-
ciples of Programming Languages, pages 214–227. ACM Press, 1998.

[34] Hao Xu. A general framework for method chaining style embedding
of domain specific languages. UNC Technical Report, 2009.

[35] Hao Xu. Erilex: An embedded domain specific language generator. In
TOOLS 2010, 2010.

12 2010/10/11

