
Addendum to Tardiness Bounds for Global EDF
with Deadlines Different from Periods

Jeremy Erickson1, Nan Guan2, and Sanjoy Baruah1

1 The University of North Carolina at Chapel Hill, Chapel Hill, NC
{jerickso,baruah}@cs.unc.edu

2 Uppsala University, Uppsala, Sweden, Nan.Guan@it.uu.se

Abstract. In Tardiness Bounds for Global EDF with Deadlines Differ-
ent from Periods [1], provided tardiness bounds for the global Earliest
Deadline First (EDF) scheduling algorithm which are the tightest known
in the case of arbitrary deadlines, in which deadlines need not be equal
to periods. However, in some cases it is possible to develop even tighter
bounds. In this technical report we describe this technique and provide
an initial experimental appraisal.

In [1] we provided, with proof, tardiness bounds that could be used to analyze
the global Earliest Deadline First (EDF) scheduler even in the case in which
deadlines and periods differ. We did so by providing an extra term Si for each
task which can be roughly indicated as the extra tardiness that could be created
due to a task being due early. In [1] we statically defined this number purely
based on the task parameters. However, this technique is more conservative than
necessary in some cases. In this report, we will refer heavily to the theorems,
lemmas, and proofs presented in [1].

Observe that the values Ui and Si are used in Theorem 1 only for the pur-
pose of upper-bounding dbf(τi, t). Lemma 1 proved that using Ui = Ci

Ti
(i.e.,

utilization) and Si = Ci × max
{

0, 1− Di

Ti

}
are sufficient to produce tardiness

bounds. However, any values of Vi and Si such that

dbf(τi, t) ≤ Vit+ Si (1)

holds can play the same role in the proof of Theorem 1, and provide bounded
tardiness under the assumption that ∀τi, Vi ≤ 1 and

∑
τi∈τ Vi ≤ m. We can then

obtain tardiness bounds by replacing Ui with Vi in Definition 1 and finding a
minimal compliant vector as before.

It is trivial to observe that if Vi < Ui, then (1) cannot hold. Thus, the
bounds cannot be improved by decreasing Vi. However, if we increase Vi, we can
reduce the corresponding Si term. Of course, due to the conditions for bounded
tardiness above, this is only possible if the system is not fully utilized. Using
a method similar to the proof of Lemma 1, one can demonstrate that Si =
max {0, Ci − ViDi} provides the smallest value such that (1) holds.

We have performed simple experiments which demonstrate that in some
cases, tardiness bounds can be improved by increasing Vi and decreasing Si.

2 J. Erickson, N. Guan, S. Baruah

The most obvious case is when a value does not contribute to L(x) but does
have a nonzero Si value. In this case, we may increase Vi at least to the minimum
value it would require to contribute to L(x), and S(τ) will be decreased with no
increase to L(x), resulting in smaller bounds for all tasks. In some other cases,
the increase to L(x) caused by increasing Vi is less than the decrease to S(τ),
which also leads to smaller tardiness bounds. Therefore, for many task systems
which are not fully utilized, improvements to the bound are possible.

However, we have not yet found an efficient method for determining the
smallest possible tardiness bounds for a given task set. We instead use Algo-
rithm 1 below to find an improvement which is not guaranteed to be optimal.
We observe in light of Lemma 5 that minimizing L(x) + S(τ) is sufficient to
minimize the overall tardiness bounds. Algorithm 1 starts by using the initial
L(x)+S(τ) as in Theorem 1, which can be computed exactly using Algorithm 1.
We then iterate, using the variable i to track whether an improvement has been
made. We use one parameter, j, which specifies the desired step size by which
to increase each Vi value. We increase by less than j in cases where increasing
by j either violates the conditions for bounded tardiness or is clearly suboptimal
(i.e., when Vi = Ci

Di
, Si = 0 so no further increase is desirable.) We attempt to

increase Vi for each task independently, and actually increase Vi for whichever
task leads to the largest decrease in L(x) +S(τ). Iteration terminates whenever
no improvement was made during one iteration, or when

∑
τi∈τ Vi reaches m.

In order to determine the validity of this approach, we generated a random
set of constrained-deadline (Di ≤ Ti) task systems. Each set of 1000 tasks was
determined by parameters m, the number of CPUs, Umax, the maximum possi-
ble utilization for a given task, and Utot, the total utilization of all tasks. Task
utilizations Ui were selected uniformly from the range [0, Umax], periods Ti uni-
formly from [5, 30], and deadlines uniformly from [0, Ti]. Tasks were generated
until

∑
Ui > Utot − Umax, at which point a task of utilization Utot −

∑
Ui was

created to achieve Utot exactly. Tasks were generated with Utot ranging from
m − .9 to m − .1 in increments of 0.1, with Umax values of 0.1, 0.5, and 1, and
with m values of 4, 8, and 16.

Experiments were performed on each task set using Algorithm 1 with a simple
binary search algorithm in place of Algorithm 1 to compute L(x) values. The
binary search algorithm runs very quickly at the expense of providing only an
approximate solution. Algorithm 1 was run both with j = 1 (in which case
each Vi was increased as much as possible or not at all) and with j = 0.1.
Experiments ran noticeably faster for j = 1, because many fewer iterations were
required. However, utilizing j = 0.1 produced marginally better improvements.
This demonstrates that increasing several Vi values each by less than the full
amount can be better than increasing a smaller number of Vi values.

Results are shown in Figures 1(a), 1(b), and 1(c). Several trends immediately
appear. For task sets with small values of Umax, having a larger difference be-
tween m and Utot leads to more significant improvements. This is unsurprising,
because larger differences between m and Utot allow for greater increases in Vi
values. In the extreme case where Utot = m our technique would provide abso-

Title Suppressed Due to Excessive Length 3

1: for all τi ∈ τ do
2: Vi = Ui

3: Si = Ci ×max
{

0, 1− Di
Ti

}
4: end for
5: b = initial best L(x) + S(τ) value
6: i = 1
7: while i = 1 AND

∑
τi∈τ Vi < m do

8: i = 0
9: k = min{j,m−

∑
τi∈τ Vi}

10: for all τi ∈ τ do

11: Vi = min
{

1, Ci
min{Di,Ti}

, Vi + k
}

12: Si = max {0, Ci − ViDi}
13: c = best L(x) + S(τ) value for τ
14: if c < b then
15: b = c
16: i = 1
17: end if
18: Restore Vi and Si to previous values
19: end for
20: if i = 1 then
21: Update Vi and Si to match most recent b value
22: end if
23: end while

Algorithm 1: Algorithm to determine improved bound by altering Vi and
Si

4 J. Erickson, N. Guan, S. Baruah

 0

 5

 10

 15

 20

 25

 30

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

B
ou

nd
 Im

pr
ov

em
en

t (
%

)

Headroom (m - Utot)

j = .1, Umax = .1
j = 1, Umax = .1
j = .1, Umax = .5
j = 1, Umax = .5
j = .1, Umax = 1
j = 1, Umax = 1

(a) Improvement to Average Bound for m = 4

 0

 2

 4

 6

 8

 10

 12

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

B
ou

nd
 Im

pr
ov

em
en

t (
%

)

Headroom (m - Utot)

j = .1, Umax = .1
j = 1, Umax = .1
j = .1, Umax = .5
j = 1, Umax = .5
j = .1, Umax = 1
j = 1, Umax = 1

(b) Improvement to Average Bound for m = 8

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

B
ou

nd
 Im

pr
ov

em
en

t (
%

)

Headroom (m - Utot)

j = .1, Umax = .1
j = 1, Umax = .1
j = .1, Umax = .5
j = 1, Umax = .5
j = .1, Umax = 1
j = 1, Umax = 1

(c) Improvement to Average Bound for m = 16

Title Suppressed Due to Excessive Length 5

lutely no improvement to the bounds, because no Vi value could be increased.
For task sets with larger values of Umax, larger differences between m and Utot
do not necessarily lead to larger improvements in the bound. We believe this is
primarily a result of the fact that task sets with larger utilizations have larger
xi values, so increasing Vi causes larger increases to L(x) than in task systems
with smaller utilization. This fact is also likely the reason that improvements to
the bound are smaller for task systems with larger utilization.

With larger values of m, the percentage increase of the bounds is smaller. We
believe this is due to the fact that L(x)+S(τ) is divided by m in computing the
bounds. The scaling factor is not linear due to the Ci component of the bound.
Also, for larger values of m, the effect of larger Umax values is less pronounced.
This may be due to the presence of a greater number of smaller tasks that can
have their utilization increased without increasing L(x).

Altogether, some level of improvemenet does seem to be possible, particularly
on a small number of processors when the system is under-utilized by nearly a
full processor and when task utilizations are small.

References

1. Erickson, J.P., Guan, N., Baruah, S.K.: Tardiness bounds for global EDF with
deadlines different from periods. In: Principles of Distributed Systems (OPODIS).
(2010)

