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Abstract—We present an efficient algorithm for simulating diffuse reflections of sound in a static scene. Our
approach is built on the latest advances in precomputed light transport techniques for visual rendering and uses
them to develop an improved acoustic radiance transfer technique. We precompute a direct-to-indirect acoustic
transfer operator for the scene, and use it to map direct sound incident on the surfaces of the scene to multi-
bounce diffuse indirect sound, which is then gathered at the listener to compute the final impulse response. Our
algorithm decouples the transfer operator from the source position so we can efficiently update the acoustic
response at the listener when the source moves. We highlight its performance on various benchmarks and
observe significant speedups over prior methods based on acoustic radiance transfer.

Index Terms—sound propagation, radiosity, virtual reality, precomputed transport
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1 INTRODUCTION

Sound rendering or auditory displays can aug-
ment graphical rendering and provide the user
with an enhanced spatial sense of presence.
Some of the driving applications of sound ren-
dering include acoustic design of architectural
models or outdoor scenes, walkthroughs of
large CAD models with sounds of machine
parts or moving people, urban scenes with
traffic, computer games, etc. The computation
of sound propagation paths takes into account
the knowledge of sound sources, listener loca-
tions, the 3D model of the environment, and
material absorption and scattering properties.

The modeling of sound propagation effects
needs to account for different wave propa-
gation phenomena such as specular reflec-
tions, scattering (including diffuse reflections
and edge diffraction), interference, etc. In this
paper, we mainly focus on the modeling of
diffuse reflections, which are considered im-
portant for modeling sound propagation [1].
Many objective [2] and perceptual [3] studies
have been conducted to ascertain the impor-
tance of diffuse reflections for sound propaga-
tion. Further, it is computationally challenging
to model high orders of diffuse reflection.
Thus, due to its importance and computa-
tional challenge, modeling diffuse reflections
for sound propagation is an active area of

interest in many sound rendering applications.
At a broad level, sound propagation

algorithms can be classified into numerical
and geometric methods. Numerical methods
attempt to directly compute numerical
solutions to the acoustic wave equation.
However, the complexity of these methods is
proportional to the volume of the scene and
the fourth power of the maximum frequency
of sound simulated, and can be very slow
for large acoustic spaces or high frequency
sound sources. In terms of geometric sound
propagation, two standard methods used to
simulate diffuse sound reflections are based
on ray (or volume) tracing and radiance
transfer. Our approach is motivated by recent
developments in global illumination based on
precomputed light transport algorithms [4],
[5], [6]. Specifically, our work is inspired by
direct-to-indirect transfer algorithms for visual
rendering, that map direct light incident on
the surfaces of a scene to indirect light on the
surfaces of the scene after multiple bounces.

Main Results We present a new algorithm for
modeling diffuse reflections of sound based on
the direct-to-indirect transfer approach. This
formulation decouples the precomputation of
acoustic radiance transfer operators from both
the source and the listener positions, and can
efficiently update the acoustic response at the
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listener whenever the source moves.
The algorithm uses an SVD approximation

of the transfer operator to perform higher-
order diffuse reflections. We show that this
allows us to reduce the memory requirements
and increase the performance of our algo-
rithm. Our algorithm decouples the transfer
operator from the source position, and thus
accelerates the computations as compared to
the state-of-the-art.

We highlight the performance of our
algorithm on various models. In practice,
it is much faster than prior methods based
on radiance transfer. To the best of our
knowledge, it is the first approach that can
perform diffuse reflections in static scenes
with moving sources at almost interactive
rates.

The rest of this paper is organized as fol-
lows. Section 2 covers some background ma-
terial and gives a brief survey of related
work. Section 3 gives a broad overview of our
approach. Section 4 discusses our direct-to-
indirect acoustic radiance transfer algorithm,
and we describe its implementation in Sec-
tion 5. Section 6 presents some experimental
results and compares the performance of our
algorithm with prior methods.

2 RELATED WORK

In this section, we give a brief overview
of prior algorithms for radiance transfer
computation and diffuse reflections.

Numerical Acoustics The propagation
of sound in a medium is governed by the
acoustic wave equation, a second-order partial
differential equation [7]. Several techniques
(e.g., finite difference time-domain method)
are known for directly solving the wave
equation using numerical methods [8], [9]
and accurately modeling sound propagation
in a scene. Modeling diffuse reflections is
essentially a matter of specifying appropriate
boundary conditions to the numerical solver
and performing the simulation on a grid fine
enough to capture the detailed “roughness”
of the surfaces that results in acoustic wave
scattering [10]. However, despite recent
advances [9], these methods can be rather
slow and are mainly limited to simple static

sources. Precomputation-based methods have
recently been developed [11] that use a
numerical simulator to compute the acoustic
response of a scene from several sampled
source positions; at runtime these responses
are interpolated given the actual source
position. These methods are fast, but require
large amounts of precomputed data.

Geometric Acoustics Most sound propaga-
tion techniques used in practical applications
model the acoustic effects of an environ-
ment in terms of linearly propagating rays or
3D volumes. These geometric acoustics tech-
niques are not as accurate as numerical meth-
ods in terms of solving the wave equation, and
cannot easily model all kinds of propagation
effects, but allow efficient simulation of early
reflections.

Methods based on ray tracing [12], [13]
are able to model both diffuse and specular
reflections of sound. Since early specular
reflections provide the listener with important
perceptual cues regarding the direction of
sound, specialized techniques have been
developed for modeling specular reflections,
which include volume tracing [14], [15] and
the image source method [16], [17]. For static
scenes, which frequently arise in architectural
acoustics and virtual environments, radiance
transfer methods can be used to simulate
reflections from surfaces with arbitrary BRDFs
[18], [19]. Many techniques have also been
designed to simulate edge diffraction [20],
[21], [22].

Precomputed Light Transport The radiosity
algorithm [23] is the classic example of an
algorithm which precomputes light transport
effects in a scene. However, the classic radios-
ity algorithm uses a full solution that needs
to be recomputed every time the light source
moves. In contrast, precomputed radiance trans-
fer (PRT) algorithms essentially decouple light
transport effects from the light source con-
figuration. This is performed by computing
a linear operator that defines how a variable
light source configuration affects the radiances
at sample points on the surfaces in the scene.
PRT techniques can support both distant [4],
[24] and local [25] source configurations.

Direct-to-indirect transfer algorithms [5], [6]
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are one class of precomputed light transport
algorithms. These algorithms compute linear
operators which map direct light incident on
the surface samples to multi-bounce indirect
light at the samples. These algorithms are de-
signed to handle diffuse reflections, and some
of them can also support limited glossy reflec-
tions. In order to reduce the storage and pro-
cessing requirements, these techniques project
the radiance function over the surface of the
scene into a hierarchical basis, such as Haar
wavelets [26] or the spectral mesh basis [27].
Our approach is based on applying these ideas
to sound propagation.

3 OVERVIEW

We present a direct-to-indirect acoustic radi-
ance transfer technique to accelerate the radi-
ance transfer computations for sound propa-
gation so that the first few orders of diffuse re-
flection can be computed efficiently, for static
scenes with moving sources.

3.1 Sound Rendering vs. Visual Rendering
There are some key differences between the
nature of light and sound waves. In this sec-
tion, we give a brief overview of these differ-
ences. For further details, we refer the reader
to surveys of sound rendering algorithms [28].
With light transport simulation, we are mainly
concerned with the steady-state values of ra-
diance over the surface of the scene. This is
because light travels fast enough that transient
radiance values are not observed and can be
ignored. However, the speed of sound in air is
much slower (340 m/s for sound as compared
to 3 × 108 m/s for light), and hence it is
important to compute time-varying radiances
over the surface.

Another key difference between light and
sound is that the wavelengths of sound waves
are much larger than the wavelengths of light
waves, and are comparable to the sizes of
obstacles in typical architectural and game
scenes. Therefore, diffraction plays an impor-
tant role in sound propagation, and it must
be modeled in order to generate plausible
sounds. In the rest of the paper, we limit
ourselves to modeling diffuse reflections; our
approach can be combined with other algo-
rithms for computing specular reflection, edge
diffraction, etc.

The basic sound propagation problem is:
Given the signal emitted by a source (i.e.,
a time-varying pressure wave), compute the
signal heard by a listener after modeling the
reflections, diffractions and interferences with
the environment. This is typically performed
using impulse responses (IRs). An IR describes
the sound heard at the listener if the source
emits a unit impulse at t = 0. Under the
assumptions of room acoustics [29], the sound
heard by the listener for an arbitrary source
sound can be computed by convolving the
source sound with the IR at the listener’s
location. Therefore, for the remainder of this
paper, we shall be concerned with computing
IRs given the source and listener positions and
a geometric model of the scene along with the
material properties.

3.2 Acoustic Rendering Equation
As a geometric approximation to the acoustic
wave equation, the propagation of sound in
a scene can be modeled using an extension of
the standard graphics rendering equation [30],
called the acoustic rendering equation [18]:

L(x′, ω) = L0(x′, ω) (1)

+

∫
S

R(x, x′, ω)L

(
x,

x′ − x
|x′ − x|

)
dx

where L is final outgoing radiance, L0 is
emitted radiance and R is the reflection kernel,
which describes how radiance at point x in-
fluences radiance at point x′:

R(x, x′, ω) = ρ(x, x′, ω)G(x, x′)V (x, x′)P (x, x′)
(2)

Here, ρ is the BRDF of the surface at x, G is
the form factor between x and x′, V is the
point-to-point visibility function, and P is a
propagation term [18] that takes into account
the effect of propagation delays. The latter is
unique to sound rendering as visual rendering
algorithms neglect propagation delays due to
the high speed of light.

Note that the radiances used in Equation
2 are functions of time – typically impulse
responses. The time variable t is hidden in
Equation 2 for the sake of brevity. This added
dimension of time complicates the storage and
processing requirements of sound propaga-
tion algorithms based on the acoustic ren-
dering equation. Visual rendering algorithms
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typically model glossy reflections using a
directionally-varying radiance function, which
can be represented using spherical harmonics
or some other directional basis [4], [26]. In
order to model sound reflections using time-
varying radiances, a basis such as the Fourier
basis is typically used [19].

3.3 Impulse Response Representation
In this section, we describe the methods we
use to represent impulse responses in the fre-
quency domain. The goal of our algorithm is
to compute impulse responses at surface sam-
ples and the listener. The impulse response at
a point is a function of time, denoted by f(t).
In order to apply attenuation and delay using
a unified formulation [19], we represent our
IRs in the frequency domain using the Fourier
transform [31]. For a continuous function f :
[0, T ]→ R, the Fourier transform is defined as
(upto a scale factor):

F(f(t)) = F (ω) =

∫ T

0

f(t)eιωtdt (3)

and the inverse Fourier transform is defined
as (upto a scale factor):

F−1(F (ω)) = f̂(t) =

∫ ∞
−∞

F (ω)eιωtdω (4)

Here, F is the Fourier transform of f . The
inverse Fourier transform is exact (i.e., f̂(t) =
f(t)) only for periodic functions. However, the
domain of f is finite, whereas the domain of F
is infinite. For functions defined over a finite
interval [0, T ] (such as IRs), the Fourier trans-
form implicitly assumes that f(t) is periodic
with period T , and can be extrapolated over
the entire real line.

One way to interpret this is that the Fourier
transform is a linear transform over infinite-
dimensional function space. It transforms
functions from the canonical basis (where the
basis vectors are Dirac delta functions of the
form δ(t − ti)) to a sinusoidal basis (with
basis vectors of the form eιωit). However,
this transformation involves a projection into
the subspace of periodic functions. Therefore
the inverse Fourier transform reconstructs a
periodic function which matches the original
function in the interval [0, T ].

In this vector space interpretation of the
Fourier transform, Equation 3 is a dot product.

This suggests the way to compute the Fourier
transform of a function sampled at N dis-
crete points, or the Discrete Fourier Transform
(DFT):

Fk =

N−1∑
i=0

fie
−ι 2πN ki (5)

and the corresponding inverse DFT:

fi =
1

N

N−1∑
k=0

Fke
ι 2πN ki (6)

Here, the fis denote samples of f(t) at equi-
spaced points of time, and Fks denote samples
of F (ω) at equi-spaced values of normalized
frequency. Computing the N dot products of
N -dimensional vectors in Equation 5 would
take O(n2) time. We compute the DFT us-
ing the Fast Fourier Transform (FFT) [32] al-
gorithm, which can compute the DFT of a
function with N samples in O(n log n) time
by exploiting correlations between elements of
the Fourier basis vectors.

The linearity property of the Fourier trans-
form implies that attenuations and accumula-
tion of IRs can be performed easily:

F(af1(t) + bf2(t)) = aF(f1(t)) + bF(f2(t)) (7)

Another useful implication is that unlike in
time-domain, in frequency-domain delays can
also be applied using a scale factor:

F(f(t−∆t)) = e−ιω∆tF(f(t)) (8)

Note that care must be taken to ensure that
the delays align on sample boundaries, other-
wise the inverse Fourier transform will con-
tain non-zero imaginary parts.

If we model a unit impulse emitted by the
source at time t = 0 (i.e., the signal emitted
by the source has all Fourier coefficients set
to 1), then computing the acoustic radiance
transfer using the above expressions for delay
and attenuation results in a frequency-domain
signal. Computing the inverse Fourier trans-
form of this signal using the method described
by Siltanen et al [19] yields a periodic function
which is approximately equal to the time-
domain IR at the listener within the interval
[0, T ] for some user-specified maximum IR
time T , which is also the period of the func-
tion. It is important to note that this method
does not compute the steady-state acoustic
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response, but the time-varying impulse re-
sponse. The key to this is the frequency-
domain delay equations described above.

The Fourier transform lets us store IRs at all
the sample points as a collection of N column
vectors, one for each Fourier coefficient. This
also allows us to store transfer operators as
a collection of N matrices, and allows us to
express direct-to-indirect transfer as N matrix-
vector products.

4 ALGORITHM

Our algorithm uses the direct-to-indirect
transfer formulation for modeling diffuse re-
flections of sound. The overall approach is as
follows (see Figure 1):

1) Choose a number of sample points on
the scene surfaces. We discuss our sam-
pling approach in Section 5.

2) Given the source position, compute the
direct impulse response at each sample.
This is performed at runtime using ray
tracing.

3) Given the direct responses, compute
the “indirect” response at each sample
(for some user-specified number of dif-
fuse reflections). This is expressed as a
matrix-vector multiplication, where the
transfer matrix is precomputed. Note
that this formulation requires that the
scene be static, otherwise the transfer
matrix would need to be recomputed
every frame.

4) Given the direct and indirect responses,
compute the final IR at the listener posi-
tion. This is performed at runtime using
raytracing.

4.1 Direct-to-Indirect Acoustic Radiance
Transfer
Let us assume that the surface is discretized
into p samples. The transfer operator can then
be computed in terms of the direct impulse
responses at all samples to impulses emit-
ted from every other sample. Since these are
time-varying impulse responses, we can use
Fourier coefficients to represent the signals in
the frequency domain. Let there be f Fourier
coefficients per surface sample. We then per-
form our computations on each frequency
band (each band corresponding to one Fourier

coefficient) independently. From the definition
of the Fourier basis functions, we see that
the Fourier coefficients have frequencies ωk =
2π
f k, for k = 0 . . . f − 1.

For each frequency ωk, we define acoustic
radiance vectors of the form l(ωk), which con-
tain p elements that represent the kth Fourier
coefficients of the IRs at each patch. For the
sake of brevity, we shall omit the parameter ωk
from the equations in the rest of the paper as
it may be obvious from the context. All of the
computations we describe in the rest of this
section are repeated for each frequency ωk.

If we take the Neumann series expansion of
Equation 2 and express it in matrix form, we
get:

ln+1(ωk) = T(ωk)ln(ωk) (9)

where ln(ωk) is the kth Fourier coefficient of
the IRs at each surface sample after n reflec-
tions. The transfer matrix T(ωk) can be used
to compute the effect of one diffuse reflection.
The (i, j)th element of T(ωk) describes how
the kth Fourier coefficient at sample j affects
the kth Fourier coefficient at sample i after
one diffuse reflection. The entries of T can
be computed by shooting rays and computing
visibility and form factors between samples.
The propagation terms are complex numbers
which are computed for each Fourier coef-
ficient using the distances between samples
[19].

The above matrix-vector multiplication
needs to be performed once per frequency
coefficient for each order of reflection
at runtime. However, even for scenes of
moderate complexity, the number of surface
samples, p, can be very large. Since T is a
p× p matrix and ln is a p× 1 vector, this step
takes O(p2) time per frequency coefficient per
order of reflection, which can quickly become
quite expensive. We use the singular value
decomposition (SVD) to compute a rank k
approximation of T. This allows us to reduce
the complexity to O(pk). Next, we show that
this approximation can allow us to further
accelerate higher-order reflections.

4.2 Multiple Bounces and Runtime Com-
plexity

We use the SVD approximation to reduce the
complexity of the matrix-vector multiplica-
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Fig. 1. Overview of our algorithm. In a precomputation step, we sample the surfaces on the
scene, and compute a one-bounce transfer operator for these samples (T). We then use the
SVD to compute the modes of the transfer operator. At runtime, we shoot rays from the source
(which may move freely) and compute direct IRs at the surface samples. We then apply the
transfer operator (with a user-specified number of modes retained) repeatedly to quickly obtain
the multi-bounce indirect IRs at the surface samples. We then compute the final IR at the listener
position in a final gathering step.

tions to O(pk) per bounce. However, for mul-
tiple bounces, the cost of computing transfer
matrices that represent additional bounces can
be further reduced to O(k2) by precomputing
appropriate matrices. Suppose the direct IRs
at each surface sample (for a given frequency)
are stored in a vector l0. Further suppose we
have a rank k approximation of T, given by
T̃ = ŨS̃Ṽ

T
, where Ũ is a p× k matrix, S̃ is a

k×k diagonal matrix and ṼT is a k×p matrix.
Then the first-order impulse response at each
surface sample is given by:

T̃l0 = ŨS̃Ṽ
T
l0

= Ũb

where b = S̃Ṽ
T
l0 is l0 projected into the span

of the first k right singular vectors of T. The
second-order response is:

T̃T̃l0 = Ũ(S̃Ṽ
T
Ũ)S̃Ṽ

T
l0

= ŨDb

where D = S̃Ṽ
T
Ũ is essentially the one-

bounce operator in the k-dimensional sub-
space spanned by the singular vectors corre-
sponding to the top k singular values of T.
The cost of multiplying b by D is simply

O(k2). Notice that the third-order response can
be written as ŨD2b, and so on. This allows
us to compute higher-order responses using a
k × k matrix instead of a p × p matrix. Thus
we can quickly compute the first few orders
of diffuse reflection at runtime; the approxi-
mation error due to the SVD is compensated
by the gain in performance.

5 IMPLEMENTATION

In this section, we discuss some important
aspects of our implementation. Our imple-
mentation is CPU-based, and uses Microsoft
DirectX 9 for visualization, and Intel Math
Kernel Library (MKL) for the matrix opera-
tions.

5.1 Approximations
Our algorithm allows for the following user-
controlled approximations: surface samples,
both in number and location; frequency samples,
i.e. the number of Fourier coefficients used to
represent IRs; and number of modes retained
after computing the SVD of the transfer op-
erator.

In our implementation, we compute a sur-
face parameterization which maps the scene
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primitives to the unit square (essentially a
uv texture mapping). This parameterization
is computed using Least Squares Conformal
Mapping (LSCM) [33]. We allow the user to
specify the texture dimensions; each texel of
the resulting texture is mapped to a single sur-
face sample using an inverse mapping process.
The number of texels mapped to a given prim-
itive is weighted by the area of the primitive,
to ensure a roughly even distribution of sam-
ples. We chose the LSCM algorithm for this
purpose since our modeling tools (Blender 1)
have an implementation built-in; it can be re-
placed with any other technique for sampling
the surfaces as long as the number of samples
generated on a primitive is proportional to its
area.

Our implementation allows the user to vary
the number of Fourier coefficients used to
represent the IRs. It has been shown [19]
that 1K Fourier coefficients can provide an
acceptable compromise between performance
and quality, and therefore we use 1K Fourier
coefficients for all our experiments.

We measure the error caused by the SVD ap-
proximation of the transfer operator in terms
of the Frobenius norm. Figure 2 plots the
Frobenius norm error against the number of
modes retained for the transfer operator (T).
The figure clearly shows that we could use a
very small number of modes to compute IRs
with diffuse reflections at runtime.

5.2 Audio Processing

As described in Section 3 the pressure signal
at a source is convolved with an IR from the
source to a listener to compute the final audio
at the listener. The algorithm presented in Sec-
tion 4 computes a frequency domain energy
IR with 1K Fourier coefficients. The pressure
IR is computed from the energy IR [34] and
upsampled to encode the desired propagation
delay in the IR [19].

Moving sources and listeners: In typical
virtual environments applications, the source
and listener are moving and the audio is
streaming from a source in chunks of audio
samples (called audio frames). The size of the
audio frames is determined by the allowed
latency for the application. We choose audio

1. http://www.blender.org

frames of 4800 samples at sampling rate of
48KHz leading to a 100ms latency in our audio
output. For a static source and listener, com-
puting the final audio is trivial and amounts
to convolving each audio frame with the IR
to compute output audio frames. For moving
sources and listeners, IRs evolve over time
which could lead to discontinuities in the fi-
nal audio when using different IRs for two
adjacent audio frames. In order to minimize
such discontinuity artifacts, windowing [35] is
applied at the source frame and the listener
frame when the source and listener are mov-
ing respectively. The windowing applied by
our audio processing step is similar to Siltanen
et. al. [19].

6 RESULTS

In this section, we present some experimen-
tal results on the performance and quality
achieved by our implementation of our al-
gorithm. All of our tests were performed on
an Intel Xeon X5560 workstation with 4 cores
(each operating at 2.80 GHz) and 4GB of RAM
running Windows Vista. MKL parallelizes our
matrix operations over all 4 cores of the test
machine. Therefore, the timings we report are
for all 4 cores. We have benchmarked our
implementation on three scenes whose com-
plexity is typical of scenes encountered in
acoustics applications. Figure 3 shows these
scenes along with some details.

For comparison, we chose the state-of-the-
art frequency acoustic radiance transfer algo-
rithm [19]. To the best of our knowledge, the
only other algorithms for simulating diffuse
reflections of sound are naı̈ve time-domain
radiance transfer and path tracing. Naı̈ve
time-domain radiance transfer would require
a large amount of memory, and since the
frequency-domain radiance transfer approach
[19] is superior to it in this regard, we chose
not to compare against the time-domain ra-
diance transfer approach. Path tracing can be
used for dynamic scenes, however, since the
scene would have to be traversed millions of
times per frame, we choose not to compare our
algorithm with path tracing, since we restrict
ourselves to static scenes.

The frequency-domain acoustic radiance
transfer method [19] works by computing the

http://www.blender.org
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(a) (b) (c)

Fig. 2. SVD approximation error for transfer operators. For each benchmark scene, the plots
show the relative Frobenius norm of rank-k approximations of T (for one value of ω) for all possible
values of k. From left to right: (a) Room, (b) Hall, (c) Sigyn.

Fig. 3. Benchmark scenes. From left to right: (a) Room (252 samples), (b) Hall (177 samples),
(c) Sigyn (1024 samples).

transfer operator (without any SVD approx-
imation) and iteratively applying it to the
direct acoustic response until the solution con-
verges. In this sense, it is similar to radiosity,
and can be considered to compute the acoustic
equivalent of global illumination. In order to
perform a fair comparison, we restrict it to
computing the same orders of reflection as our
algorithm.

Table 1 summarizes the performance char-
acteristics of the precomputation and runtime
stages of our algorithm. The complexity of
the runtime steps depends on the number of
modes retained during the SVD approxima-
tion; the table clearly highlights this depen-
dency. As can be seen from the table, our
algorithm allows a very efficient update of the
impulse responses when the source position
changes in the run-time step as compared
to the state-of-the-art techniques [19]. Note
that we precompute a one-bounce transfer
operator, and use the approach described in
Section 4.2 to handle multiple orders of re-
flection at runtime. Depending on the appli-
cation, we could also precompute a multi-
bounce operator and apply it directly at run-
time, thus improving our performance further.
However, we have used the more flexible ap-

proach of varying the orders of reflection at
runtime in our implementation. This way, the
speedups we demonstrate are lower bounds on
the speedups possible for our implementation;
precomputing a multi-bounce transfer opera-
tor would result in even greater performance
gains.

Table 2 shows the benefit of the SVD in
reducing the memory required to store the
transfer operator. The table shows that with-
out SVD, which is essentially a form of lossy
compression, the transfer operators may be
too large to be used on everyday hardware.
For the uncompressed (“reference”) case, the
transfer operator size is n×n, for each Fourier
coefficient (1K in our case). For the com-
pressed (“50 Modes”) case, the transfer oper-
ator size is n× k for Ũ, k× k for D and k× n
for S̃Ṽ

T
, where k is the number of modes

retained. In the table, k = 50, and n is the
number of surface samples in the scene.

Table 3 compares the runtime performance
of our method to the performance of acoustic
radiance transfer [19]. The timings in the table
describe the time required to update the IRs at
the listener position when the source position
is changed. The table clearly shows the advan-
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Scene Precomputation Time Modes Runtime
T SVD Initial Scatter Transfer Operator Final Gather

10 43.2 ms 24.0 ms 33.7 ms
Room 14.2 s 94.5 s 25 45.8 ms 43.8 ms 35.0 ms

50 42.4 ms 84.3 ms 36.4 ms

10 37.8 ms 26.8 ms 31.5 ms
Hall 13.1 s 93.1 s 25 37.1 ms 45.5 ms 30.2 ms

50 36.6 ms 79.7 ms 31.2 ms

Sigyn 6.31 min 50.9 min 50 164.1 ms 218.1 ms 109.9 ms

TABLE 1
Performance characteristics of our algorithm. For each scene, we present the precomputation

time required by our algorithm for 1K Fourier coefficients. Under precomputation time, we show
the time required to compute the transfer operator, T, and the time required to compute its SVD

approximation. We also compare running times for varying numbers of modes from the SVD.
The table shows the time spent at runtime in initial shooting from the source, applying the

transfer operator, and gathering the final IR at the listener position.

Scene Samples Reference 50 Modes

Room 177 250.6 161.6
Hall 252 508.0 221.6
Sigyn 1024 8388.6 839.2

TABLE 2
Memory requirements of the transfer operators

computed by our algorithm with (column 4)
and without (column 3) SVD compression.

Note that since the entries of each matrix are
complex numbers, each entry requires 8 bytes

of storage. All sizes in the table are in MB.

tage of our approach. Since our precomputed
transfer operator is decoupled from the source
position, moving the source does not require
us to recompute the transfer operator; this fact
allows us to update the source position much
faster than a straightforward acoustic radiance
transfer technique.

Figure 4 shows some impulse responses
computed by our algorithm, as compared with
the reference acoustic radiance transfer case.
As the figure shows, reducing the number
of modes has very little effect on the overall
shape of the IRs. Coupled with the memory
savings demonstrated in Table 2 and perfor-
mance advantage demonstrated in Table 3,
we see that using the SVD allows us to sig-
nificantly reduce memory requirements and
increase performance without significant ad-
verse effects on the IRs computed. Of course,
the best way to demonstrate the benefit of

our approach is by comparing audio clips; for
this we refer the reader to the accompanying
video.

7 CONCLUSION
We have described a precomputed direct-
to-indirect transfer approach to solving the
acoustic rendering equation in the frequency
domain for diffuse reflections. We have
demonstrated that our approach is able to
efficiently simulate early diffuse reflections for
a moving source and listener in static scenes.
In comparison with existing methods, our ap-
proach offers a significant performance advan-
tage when handling moving sources.

7.1 Limitations
Our approach has some limitations. Since it
is a precomputed acoustic radiance transfer
algorithm, it cannot be used for scenes with
dynamic objects. In such situations, algorithms
based on path tracing are the best avail-
able choice. However, in many applications,
including games and virtual environments,
scenes are entirely or mostly static, with rel-
atively few moving parts, and hence our al-
gorithm can still be used to model reflections
within the static portions of the scene.

Our algorithm performs matrix-vector mul-
tiplications on large matrices at runtime. The
size of the matrix still depends on the surface
size and complexity of the scene. Therefore,
our method is useful mainly for scenes of low
to medium complexity.
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Scene Orders Radiance Transfer Direct-to-Indirect Transfer
(50 modes)

2 11.7 s 131.8 ms
Room 5 11.8 s 154.4 ms

10 12.0 s 179.3 ms

2 10.6 s 116.5 ms
Hall 5 10.7 s 147.3 ms

10 10.9 s 170.5 ms

2 185.3 s 468.5 ms
Sigyn 5 186.7 s 491.2 ms

10 188.7 s 512.8 ms

TABLE 3
Comparison of our approach with a straightfoward Acoustic Radiance Transfer approach [19].

We compare the time required by our algorithm to update the source position and recompute the
IR at the listener position after a varying number of diffuse reflections. Since the Acoustic

Radiance Transfer approach does not decouple the transfer operator from the source position, it
needs to perform a costly recomputation of the transfer operator each time the source moves.

On the other hand, our algorithm quickly updates the direct IR at all surface samples, then
applies the precomputed transfer operator. This allows our approach to handle moving sources

far more efficiently than the state-of-the-art.

(a) Room, reference (b) Room, 50 modes

(c) Hall, reference (d) Hall, 50 modes

Fig. 4. Comparison of second order diffuse IRs computed by our system with and without SVD
compression, for some of our benchmark scenes.
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7.2 Future Work

Our algorithm uses 1K Fourier coefficients per
IR, and this significantly increases our mem-
ory requirements. It is crucial to develop an
approach to reduce these storage requirements
in order to make it feasible to implement
on hardware such as video game consoles.
It might be possible to use a representation
based on Raghuvanshi et al’s precomputed
numerical simulation algorithm [11].

In most complex scenes, each surface sam-
ple may influence only a subset of all sam-
ples in the scene, due to occlusion effects.
This observation motivates us to subdivide
the scene into cells separated by portals. We
could compute transfer operators for each cell
independently, and model the interchange of
sound energy at the portal boundaries. Cells
and portals have been previously used to
model late reverberation [36], and would be
a promising research direction for diffuse re-
flections.

The acoustic response over the surfaces
of the scene typically are smooth functions.
Therefore, it would be beneficial to exploit
the spatial coherence of IRs by projecting the
transfer operator into basis functions defined
over the surfaces of the scene. Furthermore,
it might be interesting to investigate the pos-
sibility of applying direct-to-indirect transfer
techniques to the problem of non-diffuse re-
flections or edge diffractions.
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