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Abstract

Online gaming is a lucrative and growing industry but one that is slowed by cheating that
compromises the gaming experience and hence drives away players (and revenue). In this paper
we develop a technique by which game developers can enable game operators to validate the
behavior of game clients as being consistent with valid execution of the sanctioned client software.
Our technique employs symbolic execution of the client software to extract constraints on client-
side state implied by each client-to-server message, and then uses constraint solving to determine
whether the sequence of client-to-server messages can be “explained” by any possible user inputs,
in light of the server-to-client messages already received. The requisite constraints and solving
components can be developed either simultaneously with the game or retroactively for existing
games. We demonstrate our approach in two case studies: one of the open-source game XPilot,
and one of a game similar to Pac-Man of our own design.

1 Introduction

Multi-player online games are very popular and profitable and are growing more so. Since 1996
the computer game industry has quadrupled — in 2008 alone, worldwide video-game software sales
grew 20 percent to $32 billion [29]. Estimates place revenue from online games at $11 billion, with
games such as World of Warcraft, which has more than 10 million subscribers worldwide, bringing
in around $1 billion in revenue for parent company Blizzard Entertainment [1, 14].

Since its inception, the online game industry has been plagued by cheating of numerous types,
in some cases with financial repercussions to the game operator. Age of Empires and America’s
Army are examples of online games that suffered substantial player loss due to cheating [36], and for
subscription games, player loss translates directly to a reduction in revenue. And game developers
and operators are not the only ones for whom the stakes are high. Hoglund and McGraw [20] argue
that “games are a harbinger of software security issues to come,” suggesting that defenses against
game cheats and game-related security problems will be important techniques for securing future
massive distributed systems of other types.

In this paper, we develop an approach to detect a significant class of cheats in which a player
changes a game client to allow behaviors that a sanctioned game client would not allow. To
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accomplish this, the player might modify the client executable or in-memory data structures of a
running client, for example. Today, the most robust defense against such client modification is to
maintain authoritative state at the server, beyond the reach of direct manipulation by cheaters.
This defense, however, exacts a heavy price from game operators, owing to the increased bandwidth
use that results due to sending low-level client events (in the limit, every player input) to the server
for accessing such state and conveying the effects back to clients. As bandwidth is one of the largest
costs for large-scale game operators [32] and also a recurring one, this tension between bandwidth
use and cheat prevention is problematic:

In the US and European markets, a good goal to shoot for is 4-6 kilobits per second
(kps)/player or less. ... If you can get the bit rate down to 2kps, you’re “golden.”
It’s hard to see how that can happen, however, without putting dangerous amounts of
data directly into the client, which is just asking for trouble from talented cheaters and
hackers. [32, p. 112]

The movement of games to all manners of devices using wireless, volume-priced communication
only reinforces the importance of keeping bandwidth utilization to a minimum. Moreover, even
with the amount of detailed client information collected at the server, server-side checking today is
heuristic (and thus potentially incomplete) and manually programmed (and thus effort-intensive):

Players love to cheat — especially in online games ... be ready to add server-side support
to prevent user cheating with methods that you were not able to predict. [19]

In this paper we demonstrate a technique to detect any type of cheating that causes the client to
exhibit behavior, as seen by the server, that is inconsistent with the sanctioned client software and
the game state known at the server. That is, our approach discerns whether there was any possible
sequence of user inputs to the sanctioned client software that could have given rise to each message
received at the server, given what the server knew about the game client based on previous messages
from the client and the messages the server sent to the client. In doing so, our approach remedies
the previously heuristic and manual construction of server-side checks. Moreover, our approach
potentially enables new game designs that reduce bandwidth use by placing more authoritative
state at the client, since our approach verifies that the client’s behavior is consistent with legal
management of that state. While reducing the interaction with the client will generally increase
the computational cost of our verification, the verification need not be done on the critical path of
game play and can be performed selectively (e.g., only for suspected or winning players). Moreover,
it can benefit from the dramatic growth of inexpensive computing power (larger numbers of cores)
in game-operator server farms.

Our strategy exploits the fact that game clients are often structured as an event loop that
processes user inputs, server messages, or other events in the context of current game state and
then sends an update to the server on the basis of its processing. We symbolically execute the loop
to derive a predicate that characterizes the effects of the loop, and specifically the update sent to
the server, as a function of its inputs and game state. By partially instantiating these predicates
on the basis of the actual messages the server receives from a client and what the server previously
sent to the client, a verifier can then use a constraint solver to determine whether the resulting
predicate is satisfiable. If so, then this indicates that the messages are consistent with proper client
execution — i.e., there were some user inputs that could have yielded these messages.

We demonstrate our approach with two case studies. In the first, we apply our technique to
the open-source game XPilot. Because XPilot was developed as is commonplace today, i.e., with
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low-level client events being sent to the server, this case study does not fully illustrate the strengths
of our approach. However, it does demonstrate the (few) ways in which we found it necessary to
adapt XPilot to use our technique efficiently. For the second case study, we use a game of our own
design that is similar to Pac-Man but that has features to better exercise our technique. Together,
these two case studies illustrate the limits and benefits of our approach and serve as guidance for
game developers who are considering using this technique for detecting cheating in their games.

Following our initial investigation of these case studies, we investigate the impact of message
loss on our verification technique. We extend our technique to improve verification performance in
the face of message loss on the network. We then evaluate this extension using XPilot, since it is
an example of a game built to use an unreliable transport protocol for performance reasons and
consequently to continue gameplay despite message loss.

2 Related Work

Detecting the misbehavior of remote clients in a client-server application is an area that has re-
ceived considerable attention. One strategy, of which ours is a special case, is to construct a model
of proper client behavior against which actual client behaviors are compared. Giffin et al. [16]
developed such an approach for validating remote system calls back to the home server from com-
putations outsourced to (potentially untrusted) worker machines. In that work, remote system calls
are compared to a control flow model generated from the binary code of the outsourced computa-
tion, specifically either a non-deterministic finite-state automaton or a push-down automaton that
mirrors the flow of control in the executable. A more recent example is work by Guha et al. [18]:
through static analysis of the client portion of Ajax web applications (HTML and JavaScript), their
system constructs a control-flow graph for the client that describes the sequences of URLs that the
client-side program can invoke. Any request that does not conform to this graph is then flagged as
potentially malicious.

The technique we develop here follows this paradigm. We similarly use analysis (in our case, of
source code) to develop a model of client behavior, against which inputs (messages from the client)
are compared. The primary differentiator of our approach from previous works is soundness: only
sequences of client messages that could have actually been produced through valid client execution,
on the inputs sent by the server, will be accepted. This precision is accomplished though our use
of symbolic execution to derive the complete implications of each message value to the client-side
state. While this would hardly be tractable for any arbitrary client-server application, the control-
loop structure of game clients and the frequent communication that is typically necessary for game
play bounds the amount of uncertainty that the verifier faces in checking the client’s messages.

A different approach to protecting against client misbehavior in client-server settings is to en-
sure that clients manage no authoritative state that could affect the server or the larger application;
as discussed in the introduction, this is commonplace today for games. A recent system for im-
plementing web applications to have this property is Swift [10], for example. The extreme of this
approach is for the client to simply forward all unseen inputs (e.g., user inputs) to the server, where
a trusted copy of the client-side computation acts on these inputs directly; e.g., this is implemented
for Web 2.0 applications in the Ripley system [37]. In contrast, our approach detects any client
behavior that is inconsistent with legal client execution, without requiring that all low-level events
be sent to the server. Our approach also represents a middle ground in terms of programmer effort
between automatic partitioning, which can require extensive manual annotation of the program [10],
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and client replication on the server, which requires none. In our case studies, we found that our
approach was largely automatic but did require manual tuning in some cases to be efficient.

If the preceding approach can be viewed as a “pessimistic” way of eliminating trust in the client
to manage authoritative state, one might say an “optimistic” version was proposed by Jha et al. [24].
Instead of moving authoritative state to a trusted server, a trusted audit server probabilistically
audits the management of authoritative state at the client. In this approach, each game client
periodically commits to its complete state by sending a cryptographic hash of it to the audit
server. If later challenged by the audit server, the client turns over the requested committed
state and all information (client-to-server and server-to-client updates, user inputs) needed to re-
trace and validate the client’s behavior between this state and the next committed state. This
approach, however, introduces additional costs to the client in the form of increased computation
(to cryptographically hash game state, which can be sizable), storage (to retain the information
needed to respond to an audit), and bandwidth (to transmit that information in the event of an
audit). Our approach introduces none of these and can even enable bandwidth savings. Moreover,
verification of clients in this scheme must be done during game play, since clients cannot retain the
needed information forever. In contrast, our approach enables the game operator to audit at any
time in the future, provided that it records the needed messages (to which it already has access).

Other work on defeating cheating specifically in online games comes in many varieties. Useful
surveys of the problem are due to Yan and Randell [42], Lyhyaoui et al. [28], and Webb and Soh [40].
One common approach to defeat a variety of cheats involves augmenting the client-side computer
with monitoring functionality to perform cheat detection (e.g., PunkBuster and [12, 13, 26, 31, 34]).
Such approaches require consideration of how to defend this functionality from tampering, and
some commercial examples have met with resistance from the user community (e.g., World of
Warcraft’s Warden, see [39]). In contrast, our approach does not rely on monitoring functionality
being added to clients. Other work focuses on wholly different cheats than we consider here.
One example is game “bots” that perform certain repetitive or precise tasks in place of human
gamers [8, 34, 41, 9, 30]. Bots that utilize the sanctioned game client to do so (as many do)
will go undetected by our scheme, since the client behavior as seen by the server could have been
performed by the sanctioned game client on inputs from a real human user (albeit an especially
skilled or patient one). Another cheat that has received significant attention occurs when clients
delay or suppress reporting (and choosing) their own actions for a game step until after learning
what others have chosen in that step (e.g., [2, 11]). Such attacks can also go unnoticed by our
techniques, if such delay or suppression could be explained by factors (e.g., network congestion)
other than client modification. Our techniques are compatible with all proposed defenses of which
we are aware for both game bots and delay/suppression and so can be used together with them.
Finally, various works have examined security specifically for peer-to-peer games, e.g., using peer-
based auditing [17, 22, 25]. Our technique may be applicable in some peer-to-peer auditing schemes,
but we focus on the client-server setting here.

Our approach to validating client-side execution utilizes symbolic execution, a technique that
has seen significant interest in the security community for generating vulnerability signatures [4],
generating inputs that will induce error conditions [7, 43], automating mimicry attacks [27], and
optimizing privacy-preserving computations [38], to name a few. A recent approach to generating
weakest preconditions has shown promise as a more efficient alternative to symbolic execution in
some applications [5, 23], and we plan to investigate the application of this technique to our problem
to make client checking even more efficient.
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3 Goals, Assumptions and Limitations

The defense that we develop in this paper addresses a class of game cheats that Webb and Soh
term Invalid commands:

Usually implemented by modifying the game client, the invalid command cheat results
in the cheater sending commands that are not possible with an unmodified game client.
Examples include giving the cheater’s avatar great strength or speed. This may also be
implemented by modifying the game executable or data files. Many games suffer this
form of cheating, including console games such as Gears of War. [40, §4.2.3]

Importantly, our technique will even detect commands that are invalid in light of the history of the
client’s previous behaviors witnessed by the game server, even if those commands could have been
valid in some other execution. Simply put, our approach will detect any client game play that is
impossible to observe from the sanctioned client software.

We designed our cheat detection technique primarily for use by game developers. As we present
and evaluate our approach, it requires access to source code for the game, though potentially
a similar approach could be developed with access to only the game executable. The approach
should be attractive to game developers because it can save them significant effort in implementing
customized server-side verification of client behaviors. Our approach is comprehensive and largely
automatic; in our case study described in §5, we needed only modest adaptations to an existing
open-source game.

In order for detection to be efficient, our technique depends on certain assumptions about the
structure of the game client. We assume in this paper that the game client is structured as a
loop that processes inputs (user inputs, or messages from the game server) and that updates the
game server about certain aspects of its status that are necessary for multiplayer game play (e.g.,
the client’s current location on a game map, so that the server can update other players in the
game with that location). Updates from the client to the server need not be in exact one-to-one
correspondence to loop iterations. However, as the number of loop iterations that execute without
sending updates increases, the uncertainty in the verifier’s “model” of the client state also generally
increases. This increase will induce greater server-side computation in verifying that future updates
from the client are consistent with past ones. As we will see in §5, it is useful for these updates
from the client to indicate which server-to-client messages the client has received, but importantly,
the information sent by the client need not include the user inputs or a full account of its relevant
state. Indeed, it is this information that a game client would typically send today and that we
permit the client to omit in our approach.

Due to the scope of what it tries to detect, however, our technique has some limitations that
are immediately evident. First, our technique will not detect cheats that are permitted by the
sanctioned client software due to bugs. Second, modifications to the game client that do not change
its behavior as seen at the server will go unnoticed by our technique. For example, any action that
is possible to perform will be accepted, and so cheating by modifying the client program to make
difficult (but possible) actions easy will go undetected. Put in a more positive light, however,
this means that our technique has no false alarms, assuming that symbolic execution successfully
explores all paths through the client. As another example, a client modification that discloses
information to the player that should be hidden, e.g., such as a common cheat that uncovers parts
of the game map that should be obscured, will go unnoticed by our technique. In the limit, a player
could write his own version of the game client from scratch and still go undetected, provided that
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the behaviors it emits, as witnessed by the server, are a subset of those that the sanctioned client
software could emit.

4 Our Approach

Our detection mechanism analyzes client output (as seen by the game server) and determines
whether that output could in fact have been produced by a valid game client. Toward that end,
a key step of our approach is to profile the game client’s source code using symbolic execution
and then use the results in our analysis of observed client outputs. We begin with a summary
of symbolic execution in §4.1, and then discuss its application in our context in §4.2–§4.6. The
symbolic execution engine that we use in our work is klee [6], with some modifications to make it
more suitable for our task.

Before we continue, we clarify our use of certain terminology. Below, when we refer to a valid
client, we mean a client that faithfully executes a sanctioned game-client program (and does not
interfere with its behavior). Values or messages are then valid if they could have been emitted by
a valid game client.

4.1 Symbolic Execution

Symbolic execution is a way of “executing” a program while exploring all execution paths, for
example to find bugs in the program. Symbolic execution works by executing the software with its
initial inputs specially marked so they are allowed to be “anything” — the memory regions of the
input are marked as symbolic and are not given any initial value. The program is executed step-
by-step, building constraints on the symbolic variables based on the program’s operations on those
variables. For example, if the program sets a ← b+ c, where a, b, and c are all marked as symbolic,
then after the operation, there will be a new logical constraint on the value of a that states that
it must equal the sum of b and c. When the program conditionally branches on a symbolic value,
execution forks and both program branches are followed, with the true branch forming a constraint
that the symbolic value evaluates to true and the false branch forming the opposite constraint.
Using this strategy, symbolic execution attempts to follow each possible code path in the target
program, building a constraint that must hold on execution of that path.

Symbolic execution can help locate software bugs by providing constraints that enable a con-
straint solver (klee uses stp [15]) to generate concrete inputs that cause errors to occur. For
example, if execution reaches an error condition (or a state thought to be “impossible”), then a
constraint solver can use the constraints associated with that path to solve for a concrete input
value which triggers the error condition. Having a concrete input that reliably reproduces an error
is a great help when trying to correct the bug in the source code.

4.2 Generating Constraints

The first step of our technique is identifying the main event loop of the game client and all of its
associated client state, which should include any global memory, memory that is a function of the
client input, and memory that holds data received from the network. These state variables are
then provided to the symbolic execution tool, which is used to generate a constraint for each path
through the loop in a single round. These constraints are thus referred to as round constraints.
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100: loc ← 0;
101:
102: while true do

103: key ← readkey();
104: if key = ESC then

105: endgame();
106: else if key = ‘↑’ then

107: loc ← loc + 1;
108: else if key = ‘↓’ then

109: loc ← loc − 1;
110: end if

111: sendlocation(loc);
112: end while

(a) A toy game client . . .

200: prev loc ← symbolic;
201: loc ← prev loc;
202: while true do

203: key ← symbolic;
204: if key = ESC then

205: endgame();
206: else if key = ‘↑’ then

207: loc ← loc + 1;
208: else if key = ‘↓’ then

209: loc ← loc − 1;
210: end if

211: breakpoint;
212: end while

(b) . . . instrumented to run symbolically

Figure 1: Example game client

For example, consider the toy game client in Figure 1(a). This client reads a keystroke from
the user and either increments or decrements the value of the location variable loc based on the
key that was read. The new location value is then sent to the server, and the client loops to read
a new key from the user. Although this example is a toy, one can imagine it forming the basis for
a Pong client.

To prepare for symbolic execution, we modify the program slightly, as shown in Figure 1(b).
First, we initialize the variable key not with a concrete input value read from the user (line 103)
but instead as an unconstrained symbolic variable (line 203). We then replace the instruction to
send output to the server (line 111) with a breakpoint in the symbolic execution (line 211). Finally,
we create a new symbolic state variable, prev loc (line 200), which will represent the game state
up to this point in the execution. The state variable loc will be initialized to this previous state
(line 201).

Symbolically executing this modified program, we see that there are four possible paths through
the main loop that the client could take in any given round. In the first possible path, key is ESC,
and the game ends. Note that this branch never reaches the breakpoint. The second and third
possible paths are taken when key is equal to ‘↑’ and ‘↓’, respectively. The final path is taken when
key is none of the aforementioned keys. These last three paths all terminate at the breakpoint.

Via symbolic execution, the verifier can obtain the constraints for all symbolic variables at
the time each path reached the breakpoint. Because we artificially created prev loc during the
instrumentation phase, it remains an unconstrained symbolic variable in all three cases. The state
variable loc, however, is constrained differently on each of the three paths. In the case when key

is equal to ‘↑’, symbolic execution reports loc = prev loc + 1 as the only constraint on loc. When
key is equal to ‘↓’, the constraint is that loc = prev loc − 1. And when key is not ‘↑’, ‘↓’, or ESC,
the constraint is that loc = prev loc.

Therefore, there are three possible paths that can lead to a message being sent to the server. If
the server receives a message from a client — and the client is a valid client — then the client must
have taken one of these three paths. Since each path introduces a constraint on the value of loc

as a function of its previous value, the verifier can take the disjunction of these constraints, along
with the current and previous values of loc (which the server already knows) and see if they are
all logically consistent. That is, the verifier can check to see if the change in values for loc match
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up to a possible path that a valid game client might have taken. If so, then this client is behaving
according to the rules of a valid game client. The disjunction of round constraints in this case is:

(loc = prev loc + 1) ∨ (loc = prev loc − 1) ∨ (loc = prev loc) (1)

For example, suppose the verifier knows that the client reported on its previous turn that its
loc was 8. If the client were to then report its new location as loc = 9, the verifier could simply
check to see if the following is satisfiable:

(prev loc = 8) ∧ (loc = 9) ∧

[(loc = prev loc + 1) ∨ (loc = prev loc − 1) ∨ (loc = prev loc)]

Of course, it is satisfiable, meaning that the new value loc = 9 could in fact have been generated
by a valid game client. Suppose, though, that in the next turn, the client reports his new position
at loc = 12. Following the same algorithm, the verifier would check the satisfiability of

(prev loc = 9) ∧ (loc = 12) ∧

[(loc = prev loc + 1) ∨ (loc = prev loc − 1) ∨ (loc = prev loc)]

Because these round constraints are not satisfiable, no valid game client could have produced the
message loc = 12 (in this context). Therefore, the verifier can safely conclude that the sender of
that message is running an incompatible game client — is cheating.

There are also constraints associated with the variable key. We have omitted these here for
clarity, showing only the constraints on loc. We have also omitted the constraints generated by the
preamble of the loop, which in this case are trivial (“loc = 0”) but in general would be obtained
by applying symbolic execution to the preamble separately. Had there been any random coin flips
or reading of the current time, the variables storing the results would also have been declared
symbolic, and constraints generated accordingly. While file input (e.g., configuration files) could
also be declared symbolic, in this paper we generally assume that such input files are known to the
verifier (e.g., if necessary, sent to the server at the beginning of game play) and so treat these as
concrete.

4.3 Accumulating Constraints

While the branches taken by a client in each round may not be visible to the verifier, the verifier can
keep a set of constraints that represent possible client executions so far. Specifically, the verifier
forms a conjunction of round constraints that represents a sequence of possible paths through
the client’s loop taken over multiple rounds; we call this conjunction an accumulated constraint
and denote the set of satisfiable accumulated constraints at the end of round i by Ci. This set
corresponds to the possible paths taken by a client through round i.

The verifier updates a given set Ci−1 of accumulated constraints upon receiving a new client
message msg i in round i. To do so, the verifier first combines the values given in msg i with each
round constraint for round i, where each symbolic variable in the round constraint represents client
state for round i, and the round constraint characterizes those variables as a function of the variables
for round i − 1. The verifier then combines each result with each accumulated constraint in Ci−1

and checks for satisfiability.
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For example, let us parameterize the round constraints for the toy example in §4.2 with the
round number j:

G(j) = { locj = locj−1 + 1 , locj = locj−1 − 1 , locj = locj−1 }

Note that each member of G(j) corresponds to a disjunct in (1). If in round i = 2 the server receives
the message msg2 = 9 from the client, then it generates the constraint M = “loc2 = 9”, because
the value “9” in the message represents information corresponding to the variable loc in the client
code. Then, combining M with each G ∈ G(2) gives the three constraints:

loc2 = 9 ∧ loc2 = loc1 + 1
loc2 = 9 ∧ loc2 = loc1 − 1
loc2 = 9 ∧ loc2 = loc1

Note that the combination of the client message with each round constraint involves both instan-
tiation (e.g., using j = 2 above) as well as including the specific values given in the client message
at that round (i.e., loc2 = 9 above).

300: Ci ← ∅
301: M ← msgToConstraint(msg

i
)

302: for G ∈ G(i) do

303: for C ∈ Ci−1 do

304: C′ ← C ∧ G ∧ M

305: if isSatisfiable(C′) then

306: Ci ← Ci ∪ {C′}
307: end if

308: end for

309: end for

Figure 2: Construction of Ci from Ci−1

and msg i

These three round constraints each represent a pos-
sible path the client might have taken in the second
round. The verifier must therefore consider each of them
in turn as if it were the correct path. For example, if
C1 = {loc1 = 8}, then the verifier can use each round
constraint to generate the following possible accumulated
constraints:

loc1 = 8 ∧ [loc2 = 9 ∧ loc2 = loc1 + 1]
loc1 = 8 ∧ [loc2 = 9 ∧ loc2 = loc1 − 1]
loc1 = 8 ∧ [loc2 = 9 ∧ loc2 = loc1]

Since the second and third constraints are not satisfi-
able, however, this reduces to

C2 = {loc1 = 8 ∧ [loc2 = 9 ∧ loc2 = loc1 + 1]}

= {loc1 = 8 ∧ loc2 = 9}

The basic algorithm for constructing Ci from Ci−1 and msg i is thus as shown in Figure 2. In
this figure, msgToConstraint simply translates a message to the constraint representing what values
were sent in the message. It is important to note that while |Ci| = 1 for each i in our toy example,
this will not generally be the case for a more complex game. In another game, there might be
many accumulated constraints represented in Ci−1, each of which would have to be extended with
the possible new round constraints to produce Ci.

4.4 Constraint Pruning

Every accumulated constraint in Ci is a conjunction C = c1 ∧ . . . ∧ cn (or can be written as one,
in conjunctive normal form). In practice, constraints can grow very quickly. Even in the toy
example of the previous section, the accumulated constraint in C2 has one more conjunct than the
accumulated constraint in C1. As such, the verifier must take measures to avoid duplicate constraint
checking and to reduce the size of accumulated constraints.
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First, the verifier partitions the conjuncts of each new accumulated constraint C ′ (line 304)
based on variables (e.g., loc2) referenced by its conjuncts. Specifically, consider the undirected
graph in which each conjunct ck in C ′ is represented as a node and the edge (ck, ck′) exists if and
only if there is a variable that appears in both ck and ck′ . Then, each connected component of
this graph defines a block in the partition of C ′. Because no two blocks for C ′ share variable
references, the verifier can check each block for satisfiability independently (line 305), and each
block is smaller, making each such check more efficient. And, since some accumulated constraints
C ′ will share conjuncts, caching proofs of satisfiability for previously-checked blocks will allow
shared blocks to be confirmed as satisfiable more efficiently.

Second, because round constraints refer only to variables in two consecutive rounds — i.e., any
G ∈ G(j) refers only to variables for round j and j − 1 — the formulas G and M in line 304
will refer only to variables in rounds i and i − 1. Therefore, if there are blocks of conjuncts for
C ′ in line 304 that contain no references to variables for round i, then these conjuncts cannot be
rendered unsatisfiable in future rounds. Once the verifier determines that this block of conjuncts
is satisfiable (line 305), it can safely remove the conjuncts in that block from C ′.

4.5 Server Messages

Round constraints are not a function of only user inputs (and potentially random coin flips and
time readings) but also of messages from the server that the client processes in that round. We
have explored two implementation strategies for accounting for server messages when generating
round constraints:

• Eager: In this approach, eager round constraints are generated with the server-to-client messages
marked symbolic in the client software, just like user inputs. Each member of G(i) is then built
by conjoining an eager round constraint with one or more conjuncts of the form “svrmsg = m”,
where svrmsg is the symbolic variable for a server message in the client software, and m is the
concrete server message that this variable took on in round i. We refer to this approach as
“eager” since it enables precomputation of round constraints prior to verification but, in doing
so, also computes them for paths that may never be traversed in actual game play.

• Lazy: In this approach, lazy round constraints are generated from the client software after it has
been instantiated with the concrete server-to-client messages that the client processed in that
round; these round constraints for round i then constitute G(i) directly. Since the server messages
are themselves a function of game play, the lazy round constraints cannot be precomputed (as
opposed to eager round constraints) but rather must be computed as part of verification. As
such, the expense of symbolic execution is incurred during verification, but only those paths
consistent with server messages observed during game play need be explored.

In either case, it is necessary that the server log the messages it sent and that the verifier know
which of these messages the client actually processed (versus, say, were lost). In our case study in
§5, we will discuss how we convey this information to the server, which it records for the verifier.

As discussed above, the eager approach permits symbolic execution to be decoupled from ver-
ification, in that eager round constraints can be computed in advance of game play and then
augmented with additional conjuncts that represent server messages processed by the client in that
round. As such, the generation of round constraints in the eager approach is a conceptually direct
application of a tool like klee (albeit one fraught with game-specific challenges, such as those we
discuss in §5.4.1). The lazy approach, however, tightly couples the generation of round constraints
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and verification; below we briefly elaborate on its implementation.
To support the lazy approach, we extend klee by building a model of the network that permits

it access to the log of messages the client processed (from the server) in the current round i and any
message the client sent in that round. Below, we use the term active path to refer to an individual,
symbolically executing path through the client code. Each active path has its own index into the
message log, so that each can interact with the log independently.

To handle server-to-client messages from the log, we intercept the recv() system call and
instead call our own replacement function. This function first checks to see that the next message
in the network log is indeed a server-to-client message. If it is, we return the message and advance
this active path’s pointer in the log by one message. Otherwise, this active path has attempted
more network reads in round i than actually occurred in the network log prior to reaching the
breakpoint corresponding to a client-message send. In this case, we return zero bytes to the
recv() call, indicating that no message is available to be read. Upon an active path reaching the
breakpoint (which corresponds to a client send), if the next message in the log is not a client-to-
server message, then this active path has attempted fewer network reads than the log indicates,
and it is terminated as invalid. Otherwise, the round constraint built so far is added to G(i), and
the logged client message is used to instantiate the new conjunct M in line 301 of Figure 2.

4.6 Scaling to Many Clients

Implementing our technique on a real-world online game with a large user base might require its own
special implementation considerations. As we will see in §5, our eager and lazy implementations are
not yet fast enough to perform validation on the critical path of game play. So, the game operator
must log all the messages to and from clients that are needed to validate game play offline. That
said, the need for logging will not be news to game operators, and they already do so extensively:

LOG EVERYTHING, and offer a robust system for reviewing the logs. When hunting
down bugs and/or reviewing player cries of foul, nothing makes the job of the GM easier
than knowing that he/she has perfect information and can state with 100% accuracy
when a player isn’t telling the whole truth. [35]

As such, our approach introduces potentially little additional logging to what game operators al-
ready perform. Nevertheless, to minimize this overhead, game operators might use a log-structured
file system [33]. Such file systems write data sequentially in a log-like structure and are optimized
for small writes (as would be the case when logging client and server messages). Log-structured
file systems have been implemented for NetBSD and Linux, for example.

Once the messages are logged, they can be searched later to extract a specific game trace to
be checked (e.g., for a winning player). The checking itself can be parallelized extensively, in that
the trace of a player can be checked independently of others’, and even blocks within accumulated
constraints C ′ (see §4.4) can be checked in parallel. Traces can also be partially checked, by starting
in the middle of a trace, say at round i with client-to-server message msg i, and checking from that
point forward (i.e., with Ci−1 = {true}). Of course, while such a partial check can validate the
internal consistency of the part of the trace that is checked, it will not detect inconsistencies between
the validated part and other parts.
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5 Case Study: XPilot

In our first case study, we apply our technique to XPilot, an open-source multiplayer game written
in about 150,000 lines of C code. XPilot uses a client-server architecture that has influenced
other popular open source games. For example, the authors of Freeciv used XPilot’s client-server
architecture as a basis for the networking in that game. XPilot was first released over 15 years ago,
but it continues to enjoy an active user base. In fact, in July 2009, 7b5 Labs released an XPilot client
for the Apple iPhone and Apple iPod Touch (see http://7b5labs.com/xpilotiphone), which is
one of several forks and ports of the XPilot code base over the years. We focus on one in particular
called XPilot NG (XPilot Next Generation).

5.1 The Game

The game’s style resembles that of Asteroids, in which the player controls an avatar in the form of
a spaceship, which she navigates through space, avoiding obstacles and battling other ships. But
XPilot adds many new dimensions to game play, including computer-controlled players, several mul-
tiplayer modes (capture the flag, death match, racing, etc.), networking (needed for multiplayer),
better physics simulation (e.g., accounting for fuel weight in acceleration), and updated graphics.
In addition, XPilot is a highly configurable game, both at the client and the server. For example,
clients can set key mappings, and servers can configure nearly every aspect of the game (e.g., ship
mass, initial player inventory, probability of each type of power-up appearing on the map, etc.).

As we have discussed, developers of today’s networked games design clients with little authori-
tative state in order to help address cheating. In keeping with that paradigm, XPilot was written
with very little such state in the client itself. Despite this provision, there are still ways a malicious
user can send invalid messages in an attempt to cheat. In XPilot, there are some sets of keys that
the client should never report pressing simultaneously. For example, a player cannot press the key
to fire (KEY FIRE SHOT) while at the same time pressing the key to activate his shield (KEY SHIELD).
A valid game client will filter out any attempts to do so, deactivating the shield whenever a player
is firing and bringing it back online afterward. However, an invalid game client might attempt to
gain an advantage by sending a keyboard update that includes both keys. As it happens, the server
does its own (manually configured) checking and so the cheat fails in this case, but the fact that
the client behavior is verifiably invalid remains. There are numerous examples of similar cheats
in online games that servers fail to catch, either because of programming errors or because that
particular misuse of the protocol was unforeseen by the game developers. In our evaluations, we
confirmed that our technique detects this attempt to cheat in XPilot, as expected. This detection
was a direct result of the logic inherent in the game client, in contrast to the manually programmed
rule in the XPilot server.

At the core of the architecture of the XPilot client is a main loop that reads input from the user,
sends messages to the server, and processes new messages from the server. In §5.3 and §5.4, we
describe the verification of XPilot client behavior by generating lazy round constraints and eager
round constraints for this loop, respectively. However, we first describe modifications we made to
XPilot, in order to perform verification.
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5.2 Game Modifications

Message acknowledgments Client-server communication in XPilot uses UDP traffic for its
timeliness and decreased overhead — the majority of in-game packets are relevant only within a
short time after they are sent (e.g., information about the current game round). For any traffic
that must be delivered reliably (e.g., chat messages between players), XPilot uses a custom layer
built atop UDP. Due to XPilot’s use of UDP and the fact that it can process arbitrary numbers
of messages in a single client loop, we added to XPilot an acknowledgement scheme to inform the
server of which inbound messages the client processed in each loop iteration and between sending
its own messages to the server. The server logs this information for use by the verifier. There are
many possible efficient acknowledgement schemes to convey this information; the one we describe
in Appendix A assumes that out-of-order arrival of server messages is rare.

These acknowledgments enable the server to record a log of relevant client events in the order
they happened (as reported by the client). For each client-to-server message that the server never
received, the verifier simply replaces the constraint M implied by the missing message (see line 301
of Figure 2) with M = true.

Floating-point operations XPilot, like most games of even moderate size, includes an abun-
dance of floating-point variables and math. However, it is not currently possible to generate con-
straints on floating-point numbers with klee or to check them using stp. Therefore, we implement
XPilot’s floating-point operations using a simple fixed-point library of our own creation. As a result,
symbolic execution on the XPilot client produces constraints from this library for every mathemat-
ical operation in the client code involving a symbolic floating-point number. These constraints, in
turn, inflate the verification speeds reported in §5.4, in particular.

Client trimming The XPilot client, like presumably any game client, contains much code that
is focused on enhancing the user gaming experience but that has no effect on the messages that
the client could send to the server. To avoid analyzing this code, we trimmed much of it from the
game client that we subjected to analysis. Below we summarize the three classes of such code that
we trimmed. Aside from these three types of code, we also trimmed mouse input-handling code,
since all game activities can be performed equivalently using the keyboard.

First, several types of user inputs impact only the graphical display of the game but have no
effect on the game’s permissible behaviors as seen by the server. For example, one type of key press
adjusts the display of game-play statistics on the user’s console. As such, we excised these inputs
from the client software for the purposes of our analysis.

Second, there are certain “reliable” messages the server sends the client (using the custom
reliable-delivery protocol built over UDP). Reliable traffic is vital to the set-up and tear-down of
games and game connections, but once play has begun, reliable messages are irrelevant for game
play. Types of messages the server sends reliably are in-game chat messages (both among players
and from the server itself), information about new players that have joined, and score updates, all
of which are relatively infrequent and purely informational, in the sense that their delivery does not
alter the permissible client behaviors. As such, we ignored them for the purpose of our analysis.

Third, klee is built upon llvm and requires the input executable to be compiled into the llvm

intermediate representation (IR). Like all software, XPilot does not execute in isolation and makes
use of external libraries; not all of these were compiled into llvm IR. Specifically, the graphics
library was not symbolically executed by klee, and instead any return values from graphics calls
that XPilot later needed were simply declared symbolic.
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Figure 3: Verification cost per round while checking a 2,000-round XPilot game log

5.3 Verification with Lazy Round Constraints

In this section we measure the performance of verification using lazy round constraints. As discussed
in §4, lazy round constraints are generated once the client-to-server and server-to-client messages are
known. Thus, the only unknown inputs to the game client when generating lazy round constraints
are the user inputs and time readings (and random coin flips, but these do not affect server-visible
behavior in XPilot).

In generating lazy round constraints, we departed slightly from the description of our approach
in §4, in that we inserted multiple breakpoints in the client event loop, rather than only a single
breakpoint. Each breakpoint provides an opportunity to prune accumulated constraints and, in
particular, to delete multiple copies of the same accumulated constraint. This is accomplished using
a variant of the algorithm in Figure 2, using constraints derived from prefixes of the loop leading
to the breakpoint, in place of full round constraints. Some of these extra breakpoints correspond
to the (multiple) send locations in XPilot’s loop. Aside from this modification, we implemented
our approach as described in §4.

We ran our lazy client verifier on a 2,000-round XPilot game log (about a minute of game-play
time) using a machine with a 3GHz processor. Figure 3(a) describes the per-round validation cost
(in seconds) using a box-and-whiskers plot per 125 rounds: the box illustrates the 25th, 50th, and
75th percentiles; the whiskers cover points within 1.5 times the interquartile range; and circles
denote outliers. The per-round verification times averaged 8.6s with a standard deviation of 2.74s.
As an aside, in every round, there was exactly one remaining satisfiable accumulated constraint,
indicating that, without client state, there is little ambiguity at the verifier about exactly what is
happening inside the client program, even from across the network.

By employing an XPilot-specific optimization, we were able to significantly improve verification
performance. After the trimming described in §5.2, the user input paths that we included within
our symbolic execution of the client each caused another client-to-server message to be sent, and
so the number of such sends in a round indicates to the verifier an upper bound on the number of
user inputs in that round. As such, we could tune the verifier’s symbolic execution to explore only
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paths through the client where the number of invocations of the input-handling function equals
the number of client messages for this round in the log. This optimization yields the graph in
Figure 3(b). Notice that there are three distinct bands in the graph, corresponding to how many
times the input-handling function within the game client was called. The first band contains rounds
which called the input handler zero times and represents the majority (90.1%) of the total rounds.
These rounds were the quickest to process, with a mean cost of 53.8ms and a standard deviation of
21.1ms. The next-largest band (5.1%) contains rounds which called the input handler only once.
These rounds took longer to process, with a mean of 3.26s and a standard deviation of 1.05s. The
final band represents rounds with more than one call to the input-handling function. This band
took the longest to process (12.9s, on average), but it was also the smallest, representing only 4.1%
of all rounds.

5.4 Verification with Eager Round Constraints

In this section we discuss verification of XPilot using eager constraint generation. Recall that eager
round constraints are precomputed from the sanctioned client software without knowledge of the
messages the client will process in any given loop iteration. However, we found this approach to
require moderate manual tuning to be practical, as we describe below.

5.4.1 Manual Tuning

A direct application of our method for generating eager round constraints for the XPilot client
loop would replace the user key press with symbolic input and any incoming server message with
a symbolic buffer and then use klee to symbolically execute the resulting client program. Such a
direct application, however, encountered several difficulties. In this section we describe the main
difficulties we encountered in this direct approach and the primary adaptations that we made in
order to apply it to the XPilot client. These adaptations highlight an important lesson: the eager
technique, while largely automatic, can require some manual tuning to be practical. Because our
technique is targeted toward game developers, we believe that allowing for such manual tuning is
appropriate.

PKT START header

PKT START data
...

PKT FUEL header

PKT FUEL data
...

. . .

PKT END header

PKT END data
...

Figure 4: XPilot frame layout

Frame processing In XPilot, messages from the server to the
client describing the current game state are called frames. Each
frame is formed of a chain of game packets (not to be confused
with network packets). The first and last packets in a frame
are always special start-of-frame and end-of-frame packets, called
PKT START and PKT END. Figure 4 shows an XPilot frame, contain-
ing a packet of type PKT FUEL and potentially others (indicated by
“. . .”). Packet headers are a single byte, followed by packet data
that can carry anything from a single byte to an arbitrary-length,
NULL-terminated string, depending on the packet type. Frames
may contain multiple packet types and multiple instances of the
same packet type.

Consider the client’s frame-processing algorithm. Given a
frame, it reads the packet header (i.e., the first byte), then calls
the handler for that packet, which processes the packet and ad-
vances the frame pointer so that the new “first byte” is the packet
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header of the next packet in the frame. This continues until the packet handler for PKT END is called,
the return of which signifies the end of the frame handling. Therefore, given a completely symbolic
buffer representing the frame, our symbolic execution would need to walk the client code for each
possible sequence of packets in a frame, up to the maximum frame size. But XPilot has dozens of
packet types, some of which include a very small amount data. As evidence of the infeasibility of
such an approach, consider the following (very conservative) lower bound on the number of packet
sequences: There are at least 10 types of packets that we considered whose total size is at most 5
bytes. The maximum size for a server-to-client frame in XPilot is 4,096 bytes, which means there
is room for over 800 of these packets. That gives at least 10800 possible packet sequences that
symbolic execution would traverse to generate constraints, which is obviously infeasible.

To make eager constraint generation feasible, then, we adapt our approach to generate round
constraints by starting and stopping symbolic execution at multiple points within the loop, as
opposed to just the beginning and end of the loop. In particular, we apply symbolic execution
to the frame processing and user input processing portions of the loop separately, to obtain user-
input constraints and frame-processing constraints, which in turn the verifier pieces together during
verification to construct the round constraints. Moreover, the verifier can construct the frame-
processing constraints on the basis of the particular frame the server sent to the client. It does
so dynamically from packet-processing constraints that characterize how the client should process
each packet in the particular frame. For example, if the only packet types were PKT START, PKT FUEL,
PKT TIME LEFT, and PKT END, the packet-processing constraints representing the processing of a single
packet would be

(p = PKT START) ∧ (constraints for(PKT START))
(p = PKT FUEL) ∧ (constraints for(PKT FUEL))
(p = PKT TIME LEFT) ∧ (constraints for(PKT TIME LEFT))
(p = PKT END) ∧ (constraints for(PKT END))

where p is a variable for the packet type and constraints for(PKT START) represents the additional
constraints that would result from symbolic execution of the packet handler for PKT START. With this
new model of packet processing, the verifier can build a frame-processing constraint to represent
any given frame from the logs. In this way, when the verifier checks the behavior of a given client,
it does so armed with the frames the server sent to the client, the messages the server received
from the client, and the frame-processing constraints that characterize the client’s processing of
each frame, which the verifier constructs from the packet-processing constraints.

Packet processing Certain individual packet types present their own tractability challenges as
well. For example, the payload for a certain packet begins with a 32-bit mask followed by one byte
for each bit in the mask that is equal to 1. The client then stores these remaining bytes in a 32-byte
array at the offsets determined by the mask (setting any bytes not included in the message to 0).
In the packet handler, the XPilot client code must sample the value of each bit in the mask in turn.
Since the payload (and thus the mask) is symbolic, each of these conditionals results in a fork of
two separate paths (for the two possible values of the bit in question). Our symbolic execution of
this packet handler, then, would produce over 4 billion round constraints, which is again infeasible.
We could have changed the XPilot network protocol to avoid the using mask, sending 32 bytes each
time, but doing so would increase network bandwidth needlessly. Instead, we note that the result
of this packet handler is that the destination array is set according to the mask and the rules of the
protocol. We thus added a simple rule to the verifier that, when processing a packet of this type,
generates a constraint defining the value of the destination array directly, exactly as the packet
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handler would have. Then, when symbolically executing the packet handlers, prior to verification,
we can simply skip this packet.

To avoid similar modifications to the extent possible, we pruned the packets the verifier considers
during verification to only those that are necessary. That is, there are several packet types that
will not alter the permissible behaviors of the client as could be witnessed by the server, and so we
ignored them when applying our technique. Most of these packet types represent purely graphical
information. For example, a packet of type PKT ITEM simply reports to the client that a game item
of a given type (e.g., a power-up or a new weapon) is floating nearby at the given coordinates.
These instructions allow the client to draw the item on the screen, but they do not affect the valid
client behaviors as observable by the verifier.1

User input The first part of the client input loop checks for and handles input from the player.
Gathering user-input constraints is fairly straightforward, with the exception that XPilot allows
players to do an extensive amount of keyboard mapping, including configurations in which multiple
keys are bound to the same function, for example. We simplified the generation of constraints by
focusing on the user actions themselves rather than the physical key presses that caused them.
That is, while generating constraints within the user-input portion of XPilot, we begin symbolic
execution after the client code looks up the in-game action bound to the specific physical key
pressed, but before the client code processes that action. For example, if a user has bound the action
KEY FIRE SHOT to the key ‘a’, our analysis would focus on the effects of the action KEY FIRE SHOT,
ignoring the actual key to which it is bound. However, as with other client configuration options,
the keyboard mapping could easily be sent to the server as a requirement of joining the game,
invoking a small, one-time bandwidth cost that would allow the verifier to check the physical key
configuration.

5.4.2 Eager Verification Performance

We ran our eager client verifier on the same 2,000-round XPilot game log and on the same computer
as the test in §5.3. Figure 3(c) describes the per-round validation cost (in seconds) using a box-and-
whiskers plot. As in Figure 3(b), we employed here an XPilot-specific optimization by observing
that the number of client messages in a round bounds the number of user inputs in that round. As
such, in piecing together round constraints, the verifier includes a number of copies of user-input
constraints (see §5.4.1) equal to the client sends in that round. Similar to Figure 3(b), Figure 3(c)
exhibits three bands (the third comprising a few large values), corresponding to different numbers
of copies. The large percentage of rounds contained no user inputs and were the quickest to process,
with a mean cost of 1.64s and a standard deviation of 0.232s. The second band of rounds — those
with a single user input — took longer to process, with a mean of 11.3s and a standard deviation
of 1.68s. Remaining rounds contained multiple user inputs and took the longest to process (34.2s,
on average), but they were by far the least frequent.

Comparing Figures 3(b) and 3(c), the times for the eager approach are substantially slower than
those for the lazy approach, when applied to XPilot. This performance loss is due to the fact that
a large portion of the XPilot client code is dedicated to handling server messages. And while the
verifier in the eager case has preprocessed this portion of the code, the resulting round constraints

1In particular, whether the client processes this packet is irrelevant to determining whether the client can pick up
the game item described in the packet. Whether the client obtains the item is unilaterally determined by the server

based on it computing the client’s location using the low-level client events it receives — an example of how nearly
all control is stripped from clients in today’s games, owing to how they cannot be trusted.
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are much more complex than in the lazy approach, where the the verifier knows the exact values
of the server messages when generating round constraints. This complexity results in constraint
solving in the eager case (line 305 of Figure 2) being more expensive.

It is also important to recall that lazy and eager are not interchangeable, at least in terms
of game developer effort. As discussed in §5.4.1, achieving feasible generation of eager round
constraints required substantial additional manual tuning, and consequently greater opportunity
for programmer error. As such, it appears that eager is an inferior approach to lazy for XPilot.
Another comparison between lazy and eager, with differing results, will be given in §6.

6 Case Study: Cap-Man

Our client verification technique challenges the current game-design philosophy by allowing servers
to relinquish authoritative state to clients while retaining the ability to validate client behavior
and thus detect cheating. As a way of demonstrating this notion, we have written a game called
Cap-Man that is based on the game Pac-Man. In some ways Cap-Man is easier to validate than
XPilot was — it represents a considerably smaller code base (roughly 1,000 lines of C code) and
state size.

That said, Cap-Man is interesting as a case study for three reasons. First, whereas XPilot
was written with virtually no authoritative client state, we will see that Cap-Man is intentionally
rife with it, providing a more interesting challenge for our technique because it is so much more
vulnerable to invalid messages. Second, the size of its code base allows us to conduct a more direct
comparison between lazy and eager verification. Third, Cap-Man differs from XPilot in that the set
of possible user inputs per round is substantially larger than the set of paths through the client’s
event loop. That is, in XPilot, there is nearly a one-to-one correspondence between user inputs
and paths through the client event loop, which dampens the improvement that our technique offers
over, e.g., the verifier simply running the client on all possible inputs in each round. Cap-Man
demonstrates the scalability of our technique to many possible user inputs when this is not the
case, thereby separating our technique from other such possible approaches.

6.1 The Game

Cap-Man is a Pac-Man-like game in which a player controls an avatar that is allowed to move
through a discrete, two-dimensional map with the aim of consuming all remaining “food” items
before being caught by the various enemies (who are also wandering the map). Each map location is
either an impenetrable wall or an open space, and the open spaces can contain an avatar, an enemy,
pieces of food, a power-up, or nothing at all. When a player reaches a map location that contains
food or a power-up, he automatically consumes it. Upon consuming a power-up, the player enters
a temporary “power-up mode,” during which his pursuers reverse course — trying to escape rather
than pursue him — and he is able to consume (and temporarily displace) them if he can catch
them. In addition to these features (which were present in Pac-Man as well), we have added a new
feature to Cap-Man to invite further abuse and create more uncertainty at the server: A player
may set a bomb (at his current location), which will then detonate a number rounds in the future
selected by the user from a predefined range (in our implementation, between 3 and 15 rounds).2

2In our preliminary work [3], a bomb detonated in a fixed number of rounds. We changed the game to accommodate
a user-selected number of rounds to bomb detonation in order to demonstrate the ability of our technique to scale to
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When it detonates, it kills any enemies (or the player himself) within a certain radius on the map.
Players are not allowed to set a second bomb until the first bomb has detonated.

Cap-Man uses a client-server architecture, which we designed specifically to go against current
game-development best practices: i.e., it is the server, not the client, which has a minimum of
authoritative state. The client tracks his own map position, power-up-mode time remaining, and
bomb-placement details. Specifically, at every round, the client sends a message to the server
indicating its current map position and remaining time in power-up mode. It also sends the position
of a bomb explosion, if there was one during that round. Note that the client never informs the
server when it decides to set a bomb. It merely announces when and where detonation has occurred.
The server, in contrast, sends the client the updated positions of his enemies — this being the only
game state for which the server has the authoritative copy.

The design of Cap-Man leaves it intentionally vulnerable to a host of invalid-message attacks.
For example, although valid game clients allow only contiguous paths through the map, a cheating
player can arbitrarily adjust his coordinates, ignoring the rules of the game — a cheat known in
game-security parlance as “telehacking.” He might also put himself into power-up mode at will,
without bothering to actually consume a power-up. Finally, there is no check at the server to see
whether or not a player is lying about a bomb placement by, for example, announcing an explosion
at coordinates that he had not actually occupied within the past 15 rounds. In fact, the Cap-Man
server contains no information about (or manual checks regarding) the internal logic of the game
client.

In order to detect cheating in Cap-Man, we apply our technique in both its lazy and eager varia-
tions. Due to Cap-Man’s smaller size and simpler code structure, we can generate round constraints
over an entire iteration of the main loop in each case, without the need to compartmentalize the
code and adopt significant trimming measures as we did for XPilot.

6.2 Evaluation

Using our technique, we are able to detect invalid-command cheats of all the types listed above.
Below we present the results of client-validity checks on a game log consisting of 2,000 rounds
(about 6-7 minutes of game-play time), during which the player moved around the map randomly,
performing (legal) bomb placements at random intervals.

Figure 5 shows that the verification costs for Cap-Man were consistently small, with a mean and
standard deviation of 752ms and 645ms for verification via lazy round constraints (Figure 5(a)) and
a mean and standard deviation of 310ms and 193ms for verification using eager round constraints
(Figure 5(b)). The lazy method was (on average) roughly 2.5 times slower than the eager method,
owing to the overhead of symbolic execution to compute round constraints for each round individ-
ually during verification. While in the XPilot case study, eager verification required significantly
greater development effort (see §5.4.1), this additional effort was unnecessary with Cap-Man due
to its relative simplicity.

Figure 5(c) shows the number of satisfiable accumulated constraints during eager verification,
which did not trend upward during the run. In lazy verification, the number of satisfiable accu-
mulated constraints was virtually identical. (Variations in our pruning implementations caused
less than 1% of the rounds to differ, and then by at most 12 accumulated constraints.) In the
case of XPilot, the number of satisfiable accumulated constraints was always 1, but in Cap-Man

a larger number of possible user inputs.
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Figure 5: Verifying a 2,000-round Cap-Man game log

there were often multiple accumulated constraints that remained satisfiable at any given round.
This increase resulted primarily from state the Cap-Man client maintains but does not immediately
report to the server (e.g., whether a bomb has been set, and with what detonation timer). The
relationship between this hidden state and the number of satisfiable accumulated constraints is an
important one. Consider the verification of a Cap-Man game that is currently in round i, with no
bomb placements in the last 15 rounds (unbeknownst to the verifier). The verifier must maintain
accumulated constraints that reflect possible bomb placements at each of rounds i − 14 through i.
Upon encountering msg i+1 with an announcement of a bomb explosion, the verifier can discard not
only all current accumulated constraints which do not include a bomb placement in any of rounds
i− 14 through i− 2, but also those accumulated constraints which do include bomb placements in
rounds i − 1 through i + 1, because players can only have one pending bomb at a time. This rule
was not manually configured into the verifier— it was inferred automatically from the client code
itself.

7 Message Loss

Games today must be built to tolerate a range of networking conditions, including occasional
message loss. While there are standard approaches to recovering lost messages, such as message
retransmission at the transport level (i.e., using TCP) or at the application level, retransmission is
avoided in some games for two reasons. First, the importance of some messages diminishes quickly,
and so by the time the message would be retransmitted, the utility of doing so is lost. Second,
retransmission can introduce overheads that high-performance games cannot tolerate.

Lost server-to-client messages pose little difficulty to our client verification technique; all the
verifier requires is to know what server-to-client messages the client processed and when, which can
be communicated from the client efficiently (e.g., see Appendix A). Lost client-to-server messages
pose more difficulty, however. Intuitively, our technique can handle client message loss by instan-
tiating the constraint M for a missing round-i message msg i to simply M = “true” in Figure 2.
However, this has two negative consequences.
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First, from the server’s (and verifier’s) perspective, it is impossible to distinguish a lost message
from one the client only pretended to send. This can be used by a cheating client to gain latitude in
terms of the behaviors that the verifier will consider legitimate. For example, whenever a power-up
appears on the game map, an altered game client could collect it by reporting its player’s position
at the power-up’s location. So as to not be caught by the verifier, the client could alter its state to
reflect having sent messages that would have been induced by the player actually moving to that
location, even though these messages were never sent and so, from the server’s perspective, were
lost. We emphasize, however, that this attack will go undetected only if the client having sent
these messages is possible with the sanctioned client software. As such, a straightforward way to
mitigate this attack is to build the client software so that the number of messages it sends beyond
the last one acknowledged by the server is restricted.

Another consequence of message loss is that the performance of verification can be severely
impacted by it. The performance results in §5–6 did not reflect the loss of any client messages;
instead, the game logs that we validated included all messages that the client sent. However, in
practice message loss causes the accumulated constraints Ci to grow dramatically, since any path
through the client that causes a message to be sent is deemed possible in round i. As a result,
in experimenting with message loss in XPilot, we found that in the face of lost messages, the
performance of our technique decays very substantially.

As such, we propose a lightweight scheme to enable our technique to retain its performance in the
face of (limited) message loss. Rather than retransmitting messages, our technique communicates a
small amount of additional information per client-to-server message to enable the verifier to prune
accumulated constraints effectively in the face of message loss. Intuitively, the client remembers
the path through its event loop that it traverses in round i and then conveys evidence of this to
the server over the next several messages. The server records this evidence for the verifier, which
uses it to prune round constraints considered for round i.
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Figure 6: Verification (lazy) of
2000-round XPilot log with loss
of client-to-server messages at the
rate indicated on horizontal axis.

There are several ways to instantiate this intuition within
our framework. Here we describe one implementation that
works well in XPilot. In this implementation, the “evidence”
that the client conveys to the server for the path it traversed
in round i is a hash of the fields of the message it sent in
round i that are constant as a function of the path traversed.
Rather than send the entire hash in a subsequent message,
however, the client “trickles” this hash value to the server,
e.g., one bit per message, so that subsequent message losses
still enable the server to collect a number of hash bits for each
round. After the client’s messages are recorded at the server,
the verifier collects these bits and uses them to prune the round
constraints considered at each step of verification where it is
missing a message.

We have prototyped this approach in the context of lazy
verification, in order to validate the ability of the XPilot verifier to retain its performance in the
face of message losses. (Cap-Man uses TCP and so does not face message-loss issues.) The hash
we use is a 16-bit BSD sum, and the k-th bit of the round-i message hash is carried on the round
i + k message (1 ≤ k ≤ 16). As such, each message carries an extra 16 bits composed of bits from
the previous 16 client-to-server messages.
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Figure 7: Verification (lazy) of XPilot logs with randomly induced bursts of client-to-server message
losses. Shaded areas designate rounds in which losses occurred.

To demonstrate the effectiveness of this approach, we repeated the lazy verification of 2000-
round XPilot game logs using XPilot-specific optimizations (c.f., Figure 3(b)) but introduced client-
to-server message losses to show that our approach tolerates them seamlessly. We experimented
with two types of message loss. In the first, each client-to-server message is lost with a fixed
probability. Figure 6 shows box-and-whiskers plots that illustrate the per-round verification costs
that resulted, as a function of this loss rate. Note that a message loss rate of 4% earns a “critical”
designation at a real-time monitoring site like www.internetpulse.net. As Figure 6 shows our
technique can easily handle such a high loss rate.

A second type of loss with which we experimented is a burst loss, i.e., the loss of a contiguous
sequence of client-to-server messages. Figure 7 shows the verification costs per round in five different
message logs in which a burst loss of length 6, 10, or 14 client-to-server messages is introduced at
a random point between the 100th and 150th round. As these graphs show, the verification costs
do tend to spike in the region where the burst loss occurs, but the verification costs remain feasible
and recover after the burst to their original durations. Only when the burst length exceeds 16 (not
shown) do the verification costs become and remain sufficiently large to be considered impractical.
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8 Conclusion

The need to detect cheats in online games has heavily influenced game design for well more than
a decade. Cheating has driven game developers to minimize or eliminate the management of
authoritative state at game clients. These measures have direct impact on the game operator’s
bottom line, in particular due to the inflated bandwidth costs that result and to the manual and
heuristic (and hence ongoing) effort of programming server-side checks on client behaviors.

In this paper we have developed a new approach to validate the server-visible behavior of game
clients. Our approach validates that game-client behavior is a subset of the behaviors that would
be witnessed from the sanctioned game-client software, in light of both the previous behaviors from
the client and the game state sent to that client. Our technique exploits a common structure in
game clients, namely a loop that accepts server and user inputs, manages client state, and updates
the server with information necessary for multiplayer game play. Our technique applies symbolic
execution to this loop to produce constraints that describe its effects. The game operator can then
check the consistency of client updates with these constraints offline, in an automated fashion. We
explored both lazy and eager approaches to constraint generation and investigated the programmer
effort each entails, as well as their performance in two case studies.

In our first case study, we applied our validation approach to XPilot, an existing open-source
multiplayer game. We detailed the ways we adapted our technique, in both the lazy and eager
variants, to allow for efficient constraint generation and server-side checking. While this effort
demonstrated the application of our approach to a real game, it was less satisfying as a test for
our technique, in that XPilot was developed in the mold of modern games — with virtually no
authoritative state at the client. We thus also applied our technique to a simple game of our own
design that illustrated the strengths of our technique more clearly.

We believe that the technique developed in this paper can change how game developers address
an important class of game cheats today, and in doing so opens up new avenues of game design that
permit lower bandwidth utilization and better performance. We plan to examine the application
of this technique to other types of distributed applications in future work.
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A An XPilot Acknowledgement Scheme

As discussed in §5.2, an efficient acknowledgement scheme allows the server (and hence verifier)
knowledge of the order (and loop iterations) in which the client processed server messages and sent
its own messages. Below we describe one such scheme that is optimized for messages that arrive at
the client mostly in order.
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In this scheme, the XPilot client includes a sequence number c2sNbr on each message it sends
to the server, and similarly the server includes a sequence number s2cNbr on each message it sends
to the client. Each message from the server to a client also includes the largest value of c2sNbr
received from that client. In each client message, the client includes c2sAckd , the largest value
of c2sNbr received in a server message so far; a sequence lateMsgs [] of server message sequence
numbers; and a sequence eventSeq [] of symbols that encode events in the order they happened at
the client. The symbols in eventSeq [] can be any of the following. Below, s2cAckd is the largest
sequence number s2cNbr received by the client before sending message c2sAckd , and similarly
loopAckd is the largest client loop iteration completed at the client prior to it sending c2sAckd .

• Loop denotes a completed loop iteration. The j-th occurrence of Loop in eventSeq [] denotes the
completion of loop iteration loopAckd + j.

• Send denotes the sending of a message to the server. The j-th occurrence of Send in eventSeq[]
denotes the sending of client message c2sAckd + j.

• Recv and Skip denote receiving or skipping the next server message in sequence. The j-th oc-
currence of Recv or Skip in eventSeq [] denotes receiving or skipping, respectively, server message
s2cAckd + j. Here, a message a skipped if it has not arrived by the time a server message with
a larger sequence number arrives, and so a series of one or more Skip symbols is followed only
by Recv in eventSeq [].

• Late denotes the late arrival of a message, i.e., the arrival of a message that was previously
skipped. The j-th occurrence of Late in eventSeq [] denotes the arrival of server message
lateMsgs [j].

As such, lateMsgs [] contains a sequence number for each server message that arrives after
another with a larger sequence number, and so lateMsgs [] should be small. eventSeq [] may contain
more elements, but the symbols can be encoded efficiently, e.g., using Huffman coding [21] or
another coding scheme, and in at most three bits per symbol in the worst case. Note that the
server can determine s2cAckd and loopAckd based on the previous messages received from the
client.
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