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Eria is a meta language for embedded domain specific
languages (EDSLs) which combines object-oriented (OO)
programming with logic programming to enable usable em-
bedding of typed object languages in the method chaining
style. Most of existing research in EDSLs focuses on im-
proving the efficiency of EDSLs, and the usability of the
EDSLs has not been studied much. Eria is designed so that
a wide range of EDSLs can be encoded with high usability.
The key to high usability embedding of EDSLs is not only
type inference but also term inference in the host language.
Combining OO features with the Horn Logic, Eria allows
users to define rules in the form of Horn clauses on the type
level and uses the SLD resolution [19] to instantiate type
variables in a type and infer terms that inhabit the type. We
also created a decidable restriction of the SLD resolution.
In this paper, we introduce the Eria programming language,
show several examples of application of Eria, and formally
present FE, a core calculus of Eria based on the FGJ [15].

1. Introduction
The concept of embedded domain specific languages (ED-
SLs) [14] is closely related to software library interface de-
sign. A software library usually provides an application pro-
gramming interface (API) which consists of elements that
can be used to write other programs. If the API of a software
library is designed so that it mimics a new programming lan-
guage for a specific domain defined by the functionality of
the software library, then this new language is usually refer
to as an EDSL.

When discussing EDSLs, we usually use the notion of
"object language" and "host language". A host language is
a language in which EDSLs are implemented. An object
language is a language that is itself unrelated to any host
language. An embedding relates an object language to a host
language by mapping terms of the object language to terms
of the host language. We refer to the image of an object
language under an embedding as an embedded language. In
this notion, an EDSL is an embedded language.

The traditional ways of embedding are to encode ob-
ject language terms as host language terms constructed from
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nested calls to functions or constructors defined according to
the object language grammar productions, which we call the
functional nesting style (FNS). For example, given an object
language, the terms of the object language can be encoded
using generalized abstract data types (GADTs) and the dy-
namic semantics of the object language can be encoded as a
function on the GADTs.

The method chaining style (MCS) embedding encodes
terms of the object language as method chains of the host
language. In an MCS embedding, we view the set of terms of
the object language as a language accepted by an automaton
and encode this automaton as classes and methods in the host
language so that method invocations can be chained together
according to a set of rules. The dynamic semantics of the
object language can be encoded in the methods.

On one hand, although software libraries sometimes pro-
vide MCS APIs in practice, such as in jMock [2] and Hi-
bernate Criteria Query [10], the MCS embedding is studied
much less extensively compared the FNS embedding, prob-
ably because of lack of term and type inference in object-
oriented (OO) programming languages.

On the other hand, most of existing research in EDSLs
focuses on improving the efficiency of EDSLs and the us-
ability of the EDSLs has not been studied much. However,
usability is important in real world applications. Users who
program in a domain specific language (DSL) sometimes un-
derstand the application domain better than a general pur-
pose programming language. One of the usages of EDSLs is
allowing users not familiar with a host language to program
for specific application domains in the host language. When
they use an EDSL, they expect similar experiences to a stan-
dalone DSL. If the EDSL contains many host language con-
structs that are unrelated to the application domain, then the
EDSL could confuse the users. Therefore, to make an EDSL
usable, programs written in the EDSL should look similar to
their counterpart written in the standalone DSL (we formal-
ize this concept in Section 2.1).

Built on experiences gained from previous work on
formalizing MCS EDSL encoding [38] and implementing
EDSL generators [39], Eria takes a new perspective to lan-
guage design. The main contribution is the following:

• We proposed a definition of usable static language em-
bedding that captures an important aspect of usability of
EDSLs.
• Eria combines OO features with logic programming to

make it possible to embed typed object languages in Eria
in the MCS usably so that the embedded language has a
similar appearance to that of the object language.
• Eria allows defining customized error messages.
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• Eria allows users to define rules on the type level and
uses a decidable variant of the SLD resolution [19] to
instantiate type variables in a type and infer terms that
inhabit the type.
• We defined a core calculus FE based on FGJ.

This paper is organized as follows. Section 2 introduces
preliminaries and discusses motivations of Eria. Section 3
presents features of Eria. Section 4 presents examples of
Eria. Section 5 presents FE, a core calculus of Eria. Section
6 discusses related work. Section 7 discusses future work.

2. Preliminaries and Motivation
2.1 Usable Static Language Embedding
The usability of an embedding is a complex problem. We
focus on one aspect of usability, which we refer to as static
usability, and try to formalize it in this subsection. Intuitively
speaking, static usability of an embedding measures the leg-
ibility of a program written in the embedded language.

Definition 2.1. A language L is a 5-tuple

(TL, VL, SynL,StaL,DynL)

TL is the set of all tokens of L. VL is the set of all values of
L. The set of strings of L, written strings(L), is the set of
all finite sequences of elements of TL. SynL ⊂ strings(L)
is the syntax of L. StaL ⊂ SynL is the static semantics of
of L, DynL : StaL → VL is the dynamic semantics of L.
The set of well-formed and well-typed term of L, written
terms(L), is just the set StaL.

For a language L, SynL is usually specified by a gram-
mar, and StaL is usually specified by typing.

Roughly speaking, the components can be divided into
two groups. The first group, a combination of the syntax
and the static semantics, defines valid terms of the lan-
guage, while the second group, the dynamic semantics, de-
fines computation of valid terms. The first group is important
in the static usability of a language as it is the "interface" be-
tween the language and programmers and the second group
is hidden behind the interface of the language.

Definition 2.2. A static language L is a triple

(TL, SynL, StaL)

The components, strings(L), and terms(L) are defined in
the same way as in Definition 2.1.

Definition 2.3. Given an static language O and a static
language H, a static embedding eO,H of O into H is an
injection from strings(O) to strings(L) such that for
every term t ∈ terms(O), eO,H(t) ∈ terms(H) and
for every string t ∈ strings(O)\terms(O), eO,H(t) ∈
strings(H)\terms(H). We refer to O as the object lan-
guage, H the host language, and eO,H(t) the representation
of t. We also refer to the embedded object language in the
host language (TH, eO,H(SynH), eO,H(StaH)) as the em-
bedded language.

A static embedding of a language O into another lan-
guageH maps strings ofO to strings ofH such that a repre-
sentation of a string t ofO is a term ofH if and only if t is a
term.

Terms e → a | x | λx.e | (e e)
Types τ → α | τ → τ

Type environments Γ → • | Γ, x : τ

Values w → λx.e

Typing Γ ` e : τ

Γ ` x : Γ(x) Γ ` a : α
Γ, x : τ1 ` e : τ2

Γ ` λx.e : τ1 → τ2

Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1

Γ ` e1e2 : τ2

Computation e −→ e

e1 −→ e′1

(e1 e2) −→ (e′1 e2)

e2 −→ e′2

(e1 e2) −→ (e1 e
′
2)

(λx.e1 e2) −→ e1[e2/x]

Figure 1. Simply Typed Lambda Calculus

Definition 2.4. For every function f : TL1 → Tstrings(L2),
we define a lifting f∗ : Tstrings(L1) → Tstrings(L2) of f to
strings: f∗(a1 . . . an) = f(a1) . . . f(an), where ai ∈ TL1

for all i ∈ {1, . . . , n}.
A string a is a substring of another string b, written a ≺ b,

if there exist (possibly empty) strings u, v such that uav = b.

Definition 2.5. A usable static language embedding, or us-
able embedding, is an embedding eO,H such that there exists
a function f : TO → Tstrings(H) such that f∗(t) ≺ eO,H(t)
for every t ∈ terms(O).

A usable static language embedding may map an object
language token to a host language string or add a prefix or a
suffix to a host language string, but may not reorder, insert,
or delete host language strings representing object language
tokens.

We all know that when we learn a new natural language,
if the new language can be translated word by word, without
grammatical changes, to a known language, then it is easier
to learn. Similarly, an embedded language is easier to learn,
if it can be translated token by token, without grammatical
changes, to the object language, given that people know the
object language. An embedded language that is easier to
learn when people know the object language is more usable.
The definition of usable embedding reflects this intuition.

2.2 Simply Typed Lambda Calculus
The most commonly used object language in the literature
[3, 4, 28] for discussion of typed EDSLs is a variant of
the simply typed lambda calculus (STLC) – the STLC with
de Bruijn indices. We will use both as examples of object
languages in this paper. In this subsection, we present their
definitions used in this paper.

We use the variant of the STLC without type annotations.
The STLC with a primitive type α is defined in Figure 1.
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The terms include primitive values a, variables x, abstraction
λx.e, and application (e e). The types include a primitive
type α and function types τ → τ . The typing environments
are sequences of pairs x : τ , where the empty sequence is
denoted by •. We assume that the typing rules are used in
type checking, where we have an expected type for a term.
The dynamic semantics consists of β reduction rule where
the substitution automatically renames bounded variables in
e1 to avoid capture.

One of the variants of the STLC denotes the variables
using the de Bruijn notation and Peano numbers. We refer to
this variant as the STLC with de Bruijn indices. The terms
of the STLC with de Bruijn indices can be defined as

e→ i | λe | (e e) i→ z | s i

where i is a de Bruijn index in which z and s stand for
zero and successor, respectively, λe is an abstraction, and
(e e) is an application. In abstractions, variable names are
not explicitly specified; variables are referred to by a Peano
number n that refers to the nth closest enclosing lambda
binder. For example, the STLC term λx.x is represented
by the STLC with de Bruijn indices term λz and the STLC
term λx.λy.(yx) is represented by the STLC with de Bruijn
indices term λλ(z sz).

Next, we discuss how to type check STLC terms.
In the STLC with de Bruijn indices, we can model a

typing environment as a stack of types. If we denote the
sort of all stacks of types by S, the sort of all types by T ,
then stacks can be represented by an algebra with binary
constructor −,− :: S × T → S and nullary constructor
• :: S. Here, we use :: to denote the typing in the algebra
and reserve : to denote the object language typing. We also
have partial functions pop :: S → S and peek :: S → T ,
defined as pop(x, y) = x and peek(x, y) = y. There is a
correspondence between operators in this algebra and the
term constructors of the STLC with de Bruijn indices: λ
pushes a type onto the stack, s pops a type from the stack,
and z peeks the type on the top of the stack. For example,
suppose that we want to type check the term λλsz against
type α→ α→ α. The first λ binder introduces a type α and
push it onto an empty stack, resulting in a stack •, α. The
second λ binder introduces another type α and push it onto
the stack, resulting in a stack •, α, α. Then s pop a type from
the stack, resulting in a stack pop(•, α, α) = •, α. z peeks
the type on the top of the stack, given by peek(•, α) = α.
The whole expression is well-typed.

A typing environment of the STLC with names has to
take variable names into account. If we denote the additional
sort of all variable names byN , then the typing environment
can be represented by an algebra with tertiary constructors
−,− : − :: S × N × T → S and nullary constructor
• :: S. Now, suppose that we want to type check the STLC
term λx.λy.x against type α → α → α. The first λ binder
pushes α onto an empty stack, resulting in a stack •, x : α.
The second λ binder pushes α onto the stack, resulting in
a stack •, x : α, y : α. For x, we need to compare it with
every variable name on the stack, starting from the top of
the stack, and find the type that is associated with the first
matching variable name. As a result, we do not have the
nice correspondence between operators in this algebra and
the term constructors here.

2.3 MCS Encoding of Labeled State Transition
Systems

To understand the motivation of Eria, we need to understand
the idea of MCS encoding of labeled state trasition systems.
(Automata can also be viewed as state transition systems.)
In this subsection, we briefly discuss how MCS encoding of
state transition systems works using examples in Java.

In constract to algebraic data types, state transition sys-
tems are coalgebraic structures. In an MCS encoding, we
use object types to represent states and methods to represent
transitions. For example, the following class definitions in
Java model two statesA andB, and a transitionm : A→ B.
In the following examples, we are showing only the method
signatures.

1 class A { B m(); }
2 class B { ... }

Given an object o of type A, invoking the method m at o
returns an object of type B, which models transition labeled
m from state A to state B.

Given a static language (TL, SynL, StaL), we view all
tokens in TL as labels of transitions, and construct a state
transition system with an initial state and certain final states
so that the labels on a finite sequence of transitions for the
initial state to one of the final states corresponds to strings in
StaL.
Example 2.6. Suppose that we want to encode a language
with integer, addition, and subtraction in the MCS. The cor-
responding state transition system has two states, Term and
Op, and three labels of transitions, val, add, and sub, as
shown in the following class definitions.

1 class Term { Op val(int i); }
2 class Op { Term add(); Term sub(); }

Both the initial state is Term and the final state is Op. The
encoding of the term 1 + 1 looks like

1 new Term().val(1).add().val(1)

As every method invocation corresponds to a token of the
object language, it is obvious that this embedding is a usable
embedding.

By generalizing this example, it is obvious that determin-
istic finite state automata (dfa) can be easily encoded in Java.
In fact, a subclass of pushdown automata (pda) called de-
terministic stateless realtime pushdown automata can be en-
coded directly in Java using generics.
Example 2.7. Modeling a deterministic stateless realtime
pda for the language defined by the following grammar.

A→ a B B | z B → b

The pda has two stack symbols, A and B, and three input
symbols, a, b, and z. We define generic classes

1 class A<S> { B<B<S>> a(); S z(); }
2 class B<S> { S b(); }

The method a represents transitions that consumes a, popsA
from the top of the stack, and pushes two B’s onto the stack.
The method z represents transitions that consume z and pops
A from the top of the stack. The method b models transitions
that consume b and pops B from the top of the stack. In this
embedding, every method invocation corresponds to a token
of the object language. Hence this embedding is a usable
embedding.
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Typed languages put more restrictions on what valid
terms in the language are – not only do they need to conform
to the grammar, but also be well-typed. The corresponding
state transition systems need to include not only the parser
states, but also the states of the type checker.

In particular, we can model some typed languages using
pdas with storage. The state of such an automaton is a com-
bination of a stack (the parser state) and storage (the state
of the type checker). The following example shows how to
encode a typed language in Java.

Example 2.8. We encode a very simple typed language con-
sisting of two type, string and integer, two binary operators,
eq and neq and the typing requirement that the operands of
an operator have the same type. In a pda with storage for this
language, the “storage” stores the type of the first operand.
In the following class definitions, the storage is represented
by the type parameter T.

1 class A1<T> { B<T> val(T x); }
2 class B<T> { A2<T> eq(); A2<T> neq(); }
3 class A2<T> { Bot val(T x); }
4 class Bot { ... }

The method val of A1 introduces the first operand, the type
of the operand goes into the type parameter T, which is then
carried over through the type parameters of B and A2, and
unified with the type of the second operand. For example,
the following compiles without errors.

1 new A1<Integer>().val(1).eq().val(1);

while the following does not

1 new A1<Integer>().val(1).eq().val("1");

This embedding is still a usable embedding, but in gen-
eral, MCS embedding in Java may not be a usable embed-
ding. We will see an example of this in the next subsection.

It is obvious that most languages have corresponding
state transition system that models the languages. When
encoding such a state transition system, we need to ask the
following questions:

1. What are the states?
2. What are the transitions?

(a) What are the source states and target states of a tran-
sition?

(b) What are the rules for when this transition is applica-
ble?

Answers to these questions determine types and typing con-
straints needed in an encoding of the state transition system.
For example, for dfas, the states are finite, and have no fur-
ther structure, and so do the transitions; the applicability of
transitions are solely based on the source state. Therefore,
classes without any type parameter and methods without pa-
rameter are enough. For pdas, however, the states have stack
structures, and the transitions may modify the stack. There-
fore, more complex types are needed to encode pdas.

2.4 Comparison between GADT and MCS Encoding
Let’s start from the GADT encoding of the STLC with de
Bruijn indices. We encode the STLC with de Bruijn indices
terms as GADT terms in Java. We can write the following
interfaces and classes.

1 interface push<E,t> { }
2 interface emp { }
3 interface fun<S,T> { }
4 interface Term<E,t> { }
5 class Z<E,t> extends Term<push<E,t>,t> {
6 Z();
7 }
8 class S<E,t,t1> extends Term<push<E,t1>,t> {
9 S(Z<E,t> i);

10 }
11 class Abs<E,t1,t2> extends Term<E,fun<t1,t2>> {
12 Abs(Term<push<E,t1>,t2> e);
13 }
14 class App<E,t1,t2> extends Term<E,t2> {
15 App(Term<E,fun<t1,t2>> f,Term<E,t1> e);
16 }

These classes encode a GADT in which only representations
of (well-typed) STLC with de Bruijn indices terms can be
constructed.1

Suppose that we want to encode the term λλ(z sz). Let
us assume for now that it is possible to improve the type
inference of Java so that the type parameters are inferred,
and see if we can get a usable embedding with powerful type
inference. The encoding looks like

1 Abs(Abs(App(Z(),S(Z()))))

But this is not a usable embedding of λλ(z sz), because of
the the representation uses host language delimiters such as
parentheses and commas to delimit constructs of the embed-
ded language. A usable embedding would map the STLC
term to something like the following.

1 Abs Abs App Z S Z End

The trailing End is not a problem. However, this code is
inherently ambiguous without further language level rules
such as those in function programming languages because
the parser does not know the arity of the constructors, which
is part of the types of the constructors.

MCS embeddings do not have this problem, as in an
MCS embedding, the host language parser is used as the
embedded language lexer and the host language type checker
is use to parse the embedded language instead.

In the MCS, we use a combination of ideas of Example
2.6 and Example 2.8.

First, let us recall the syntax and typing of the STLC
with de Bruijn indices from Section 2.2. In a state transition
system for this language, a state is a pair consisting of a
stack and a (current) position in a term of the EDSL (a host
language method chain). In the stack, every stack symbol
has its own storage that stores the typing environment and
type of some subterm. The storage of the top stack symbol
stores the typing environment and type of the subterm at the
current position. This state transition system is a variant of
pdas with storage.

There are two kinds of stack symbols in this automaton,
represented by class Term and class EOA, respectively. When
they are on the top of the stack, Term represents states where
the expected token in the current position is a λ, an opening
bracket, a constant, or a variable. The second one is states
where the expected token in the current position is a closing
bracket.

1 The functional representation of this GADT is commonly used in the
literature.
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The type parameter K represents the next symbol on the
stack. The type parameters t and E represent the storage at-
tached to the corresponding stack symbol, where t repre-
sents the type of the subterm at the current position, and E
represents the typing environment of that subterm.

1 interface push<E,t> { }
2 interface emp { }
3 interface fun<S,T> { }
4 interface eq<S,T> { }
5 class re<T> impliments eq<T,T> { }
6 class Term<K,E,t> {
7 K z(eq<E,push<E1,t>> p);
8 <E1,t1> Term<K,E1,t> s(eq<E,push<E1,t1>> p);
9 <t1,t2> Term<K,push<E,t1>,t2> abs(eq<t,fun<t1,t2

>> p);
10 <t1> Term<Term<EOA<K>,E,t1>,fun<t1,t>> app();
11 }
12 class EOA<K> { K end(); }

Again, we assume that we have type inference that can infer
all type parameters. The encoding could be written as

1 new Term().abs(new re()).abs(new re()).app().z(new
re()).s(new re()).z(new re()).end()

We still have a problem: the method arguments.
Why do we need these method arguments? As the names

of their types suggest, these method arguments are proofs
that two types are equal. For example, the method abs re-
quires that the type t be a function type, otherwise an ab-
straction would not be well-typed. Why can not we express
this property as in the GADT encoding, where the Abs con-
structor did not require any argument like this? The answer
lies in the type of the abs function. The type can be written
as

1 Term<K,E,t>→eq<t,fun<t1,t2>>→Term<K,push<E,t1>,
t2>

while what we want is

1 Term<K,E,fun<t1,t2>>→Term<K,push<E,t1>,t2>

However, this can not be achieved in Java because the first
parameter of a method is always implicitly bound to this
which has type Term<K,E,t> where the type parameters K, E,
and t are universally quantified.

To summarize, even if we have strong type inference, the
GADT encoding still needs the host language delimiters be-
cause it utilizes the host language parser to parse the embed-
ded language and host language parsers do not know type
information; the MCS encoding utilizes the host language
type checker to parse the embedded language, but needs the
method arguments for proofs of type equality. The MCS en-
coding example is a usable embedding according to Defini-
tion 2.5, only if we have perfect type inference that infers all
type arguments (which we do not in Java, Scala, or C#) and
the method arguments are all new re() which is not the case
for more complex EDSL such as those examples in Section
4.

2.5 The Challenges
Type Markers By "type markers", we refer to host lan-
guage constructs such as method arguments or type argu-
ments that are not part of an object language but are required
in host language terms representing terms of the object lan-
guage for the purpose of type checking those terms only,
such as those in the previous subsection. As discussed in the

previous subsection, the main obstacle to usable embedding
of typed object languages in the MCS is type markers. How-
ever, it is very difficult to get rid of them in Java or similar
OO programming languages.

Nameless Representation Although the STLC with de
Bruijn indices has its theoretical significance, it is very diffi-
cult to write large programs in it, especially when a function
has a long list of parameters. In contrast, in real world pro-
gramming languages, parameters can be given meaningful
names to help programmers remember their roles in the pro-
gram. Usable embedding of the STLC with named variables
is a step forward towards usable EDSLs.

The main difficulty of encoding the STLC with named
variables is that in the STLC with named variables, we do
not have the nice correspondence as in the STLC with de
Bruijn indices, as discussed in Section 2.2. Automatic gen-
eration of proofs of type equality is not enough. Therefore,
the host language needs to be "smart" enough to encode the
rules for looking up variable types in typing environments.
For generality, these rules should not be built into the host
language, but the host language should allow defining user
defined rules. It turns out that, in many OO programming
languages, usable encoding of these rules is very difficult.

Complexity Encapsulation Apparently, if we can design a
language whose type system can model more complex and
more powerful state transition systems, then it is possible
to encode a wider range of EDSLs in the language. When
combined with the usability constraint, this means that the
type and term inference algorithm of the host language needs
to be power enough to encapsulate the complexity and hide
them from the EDSL users. We do not want to require EDSL
users to write explicit proofs in their EDSL programs.

3. Eria
3.1 Design Guidelines
We would like to design a nonfunctional2 OO programming
language in which we can create a general framework that
allows constructing usable static language embedding of a
wide range of object languages.

Given the challenges, we set the following high-level
design guidelines for the current version of Eria:

1. Flexibility: we want to provide EDSL designers with the
flexibility of customizing the type inference of Eria by
enabling EDSL designers to defined rules on the type
level to express EDSL syntax and typing rules.

2. Usability: EDSL programs should be easy to read and
"type markers" free, so that the EDSLs can be usably
embedded.

3. Generality: Eria should be a general purpose program-
ming language. The new features should be useful in both
EDSLs and programming in general.

The following is an example of what the encoding of the
STLC looks like in Eria.

Example 3.1. In Eria, we can construct a usable static lan-
guage embedding of the STLC with named variables such
that terms such as (λx.x 2) can be encoded as Eria terms
that look like [ λ#x:#x 2 ], while Eria strings representing

2 In fact, we do not need the host language to directly support higher-order
functions.
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STLC strings such as (λx.x λx.x) (which is not typable in
the STLC) or (λx.y 2) (which is open) are not typable.

3.2 Overview
Eria is very similar to Java or Scala. Eria supports types
defined as interfaces and classes in a similar way as Java.
Every value in Eria is an object, which is similar to Scala.
Basic types, such as integers, floating point numbers, and
booleans, are supported as predefined classes. There is also
a null value that inhabits every type. Eria supports most
expressions and statements that are supported in Java. The
syntax and semantics of statements, such as the if statement,
the while statement, and the return statement, are very
similar to Java and are not elaborated in this paper. Eria has
several important extensions. In this section, we informally
introduce features of Eria, focusing on those that are not
present in Java.

The code examples follow the following conventions un-
less otherwise specified: D, E, F are class or interface names;
S, T are type variables; m is a method name; f is a field name;
Int is the type of integer objects.

3.3 Interfaces and Classes
Let us first look at interfaces and classes. Apart from the
syntactical differences, interface definitions in Eria are es-
sentially the same as those in Java.

In an interface, a method declaration starts with the def
keyword, followed by a method signature and an optional
where clause. We postpone the discussion of the where
clause to Section 3.7.2.

The method signature starts with an optional type pa-
rameter list, followed by a method name, a parameter list,
a colon, and a return type. For example,

1 def {T} m{x:E}:F

The equivalent Java method declaration is

1 <T> F m(E x);

An interface definition may contain method declarations.
For example, the following Eria code defined an interface
with a method.

1 interface D {
2 def {T} m{x:E}:F
3 }

The equivalent Java definition is

1 interface D {
2 <T> F m(E x);
3 }

Class definitions in Eria are also very similar to those in
Java. A class definition may contain field definitions, con-
structor definitions, or method definitions. A field definition
starts with the var keyword. For example,

1 var f:T

The equivalent Java definition is

1 T f;

A constructor definition starts with the def keyword. For
example,

1 def D{x:T} { f = x; }

The equivalent Java definition is

1 D(T x) { f = x; }

A method definition also starts with the def keyword. For
example,

1 def {S} m{x:S}:S { return x; }

The equivalent Java definition is

1 <S> S m(S x) { return x; }

To put them together, for example, the following Eria
code defines a class with a field, a constructor, and a method.

1 class D<T> {
2 var f:T
3 def D{x:T} { f = x; }
4 def {S} m{x:S}:S { return x; }
5 }

The equivalent Java definition is

1 class D<T> {
2 T f;
3 D(T x) { n = x; }
4 <S> S m(S x) { return x; }
5 }

Eria has a special kind of methods called the E methods.
The E methods are declared in an interface without a method
name and only one parameter, parenthesized. For example,

1 interface D {
2 def (x:Int):Int
3 }

The E methods are defined in a class without a method name
and only one parameter, too. For example,

1 class D {
2 def (x:Int):Int { return x * x; }
3 }

Unlike a regular method which is invoked by the method
name, an E method can not be invoked by a method name.
(more on this later)

Eria also allows using operator strings as method names,
following the Scala convention. For example,

1 class D {
2 def &&{x:Int}:Int { return x * x; }
3 }

3.4 Object Creation
Constructors are invoked in Eria in a way similar to in Java,
except that arguments of constructors are surrounded by
braces. For example, suppose that we have class definition

1 class D<T>{
2 def m{x:T}:T { ... }
3 }

We can create an object of this class using the following
expression

1 new D<Int>{}

The type argument of the type constructor can be omitted.
For example,

1 new D{}

The equivalent Java expression is

1 new D<Int>()
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Eria also support Java-style anonymous inner class. For
example,

1 new D<Int>{} { def m{x:Int}:Int { ... } }

The types in a method of the inner class can be omitted if the
method overrides a method that can be uniquely determined
by its method name in the super class. For example,

1 new D{} { def m{x} { ... } }

The equivalent Java expression is

1 new D<Int>() { Int m(Int x) { ... } }

3.5 Method Invocations
Methods are invoked in Eria in a way similar to in Java,
except that type arguments and arguments of methods are
surrounded by braces. For example,

1 e.{Int}m{1}

The equivalent Java expression is

1 e.<Int>m(1)

The type parameters may be omitted in method invoca-
tions. For example,

1 e.m{1}

Unlike a regular method which is invoked by the method
name, an E method is invoked by just writing the method
argument (without needing the parenthesis). For example,
suppose that we have class definition

1 class D {
2 def (x:Int):Int { return x * x; }
3 }

Given a variable a of type D, to invoke the E method defined
in the class, we just write a.1.

If the parameter is a variable or a complex expression,
then the expression should be enclosed in parentheses. For
example, in order to invoke the E method on 1+1, we should
write a.(1+1), but not a.1+1.

3.5.1 Dotless Form
In the discussion so far, method invocations are written in
full, which we call the "regular form". For example, e.{Int}
m{1}.n{}. In Java, the equivalent method chain looks like the
following: e.<Int>m(1).n(). To provide more flexibility,
Eria allow another form of method invocation, called the
"dotless form". In the "dotless form", the same method chain
is written as e m{1} n, where the type parameter, the dots,
and the empty braces of method invocations are omitted. In
the "regular form", the dots play a central role in a method
chain as delimiters of method invocations. Without the dots
the association of the arguments may be ambiguous. For
example, in e m {X} n, {X} may be either a type argument
of n or an argument of m. To eliminate ambiguity, Eria allows
only arguments, but not type arguments in the dotless form.
3

The "dotless form" and the "regular form" can be mixed
in one method chain. For example, e.{Int}m{1} n.

3 Because Eria does not allow directly accessing fields from outside an
object, there is no ambiguity between methods with on parameters and
fields.

In comparison, Scala also allows omitting parentheses
of method invocations that have some arguments, where
ambiguity is resolved with additional rules, as illustrated
by the following example: without the additional rules, the
expression e m n can be parsed as both e.m().n() and e.m
(n); but in Scala it is parsed as the latter. To let Scala parse
the expression as the former, we need to write e m() n. One
of the purposes of the Scala style parsing is allow defining
binary operators as methods.

The Eria way of parsing makes long method chain more
succinct. For example, a b c d e means a.b(c).d(e) in
Scala but a.b{}.c{}.d{}.e{} in Eria. The equivalent to a
.b().c().d().e() in Scala is a b() c() d() e().

Eria also supports defining binary operators as methods,
by using E methods. For example, we can define

1 class Int {
2 def +{}:Int2 { return new Int2(this); }
3 }
4 class Int2 {
5 var a:Int
6 def Int2{x:Int} { a = x; }
7 def (Int x):Int { return x * x; }
8 }

Given the definitions, we can write 1 + 2, which is parsed
as 1.+{}.2 where the second method invocation invokes the
E method.

3.5.2 Discussion
The use of braces, parentheses, and angled brackets clarifies
the roles of the three sets of symbols.

Braces in Eria expressions represent modifications. Each
method invocation in Eria can be though of as a endocentric
construction in linguistic terms, with the method name be-
ing the head, and the expression or types between the braces
being the modifiers. In particular, type arguments are pre-
modifiers, while arguments are post modifiers. In a chain of
methods, the dots delimits endocentric constructions and a
type or an expressions between braces modifies the method
name next to it.

Using braces to delimit modifiers frees parentheses from
being both representing modification and precedence. Paren-
theses in Eria expression represents only precedence. Ex-
pressions between the parentheses has higher precedence
then those outside the parentheses.

Similarly, angle brackets are used only after type con-
structors. They are a coherent part of a type. In contrast,
braces are used in method invocations. They delimits type
parameters which are modifiers of a method name.

3.6 Labels
Labels are a special type of values in Eria. (Not to be con-
fused with labels in a labeled state transition system. Unless
specified otherwise, this is default meaning of "label" in the
following discussion.) Eria supports two label constructors:
creating an empty label, written ε, and appending a label
character l to a label L, written L##l. Eria allows using dig-
its, letters, and underscores in labels. These characters are
called label characters. Because the basic syntax for creat-
ing long label are quite cumbersome, Eria provides syntax
sugar for long labels and appending multiple characters to
a label: #l1 . . . ln and L##l1 . . . ln. For example, #abc123 and
#abc##123.

In Eria, labels have their own small type system. The type
of a label depends on its value. Each label #l1 . . . ln has type
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#l1 . . . ln which is itself. This makes every label type in Eria a
singleton type. Label types can contain variables, written ?X
, which may occur only in the prefix position. For example,
?X##l. Label type variables can only be substituted by label
types. Label types, however, can be part of a larger type that
are not label types. For example, C<#l1 . . . ln> where C is a
normal type constructor.

Labels can be passed around as method arguments. For
example, we can define a class representing a variable whose
constructor takes in a label.

1 class Var<?L> {
2 var ?L:label
3 def Var{l:?L} { label = l; }
4 }

The expression new Var{#x} has type Var<#x>. The ex-
pression new Var{#y} has type Var<#y>. They have different
types.

Appending can be used to generate fresh labels, as shown
in the following method definition.

1 def {?L} gen{l:?L}:?L##1 { return l##1; }

3.7 Programmable Inference
OO programming languages such as Java and Scala sup-
port customized inference on the type level to some extent:
programmers define the subtyping relation when defining
classes and interfaces. Programmable inference in Eria com-
plements it with a more powerful form of customized infer-
ence based on the Horn Logic.

3.7.1 Implicit functions
Eria allows users to defined implicit functions, which are de-
fined outside any class and similar to static methods in Java.
The implicit functions are defined using the implicit key-
word. Otherwise the syntax is just like method definitions,
as demonstrated in the following examples.

Types of implicit functions are analogous to facts and
rules in a Prolog [31] program. If an implicit function does
not have parameters, then it corresponds to a fact. The type t
of the implicit function corresponds to the literal in the fact,
for example, the following

1 implicit z{}:nat<zero> { ... }

can be used to represent the fact that zero is a nat.
If an implicit function has one or more parameters, then

it corresponds to a rule. The codomain of the function type
corresponds to the head of the rule, and the domain of the
function type corresponds to the goals of the rule. For exam-
ple, the following

1 implicit {N} s{p:nat<N>}:nat<succ<N>> { ... }

can be used to represent the rule that succ<N> is a nat if N is
a nat. There can be multiple parameters, which corresponds
to multiple goals.

These types clearly correspond to the following Prolog
program.

1 nat(zero).
2 nat(succ(N)) :- nat(N).

In this program, the first line is a fact. The second line is
a rule, with nat(succ(N)) being the rule head, and nat(N)
being the rule body.

3.7.2 Implicit Parameters
Methods may take in implicit parameters. Implicit param-
eters are defined in a where clause at the end of a method
signature. An implicit parameter may have a function type.
Such an implicit parameter can used as a function. How-
ever, higher-order function types are not supported. As syn-
tax sugar, if the function type has arity one, then the param-
eter types need not to be enclosed by braces. For example,

1 class D {
2 def m0{x:String}:String where
3 p:{}→String { return p{}+x; }
4 def m1{x:String}:String where
5 p:String→String { return p{x}; }
6 def m2{x:String,y:String}:String where
7 p:{String,String}→String { return p{x,y}; }
8 }

Unlike a regular parameter which is provided by the users
when a method is invoked, an implicit parameter is not pro-
vided by the users but inferred by the compiler by viewing
its type as a Prolog query and its value as a proof. Implicit
functions are used to construct inferred arguments for im-
plicit parameters. For example, given the implicit function
definitions from Section 3.7.1 and a class definition

1 class D {
2 def m{} where p:{}→nat<zero> { ... }
3 }

where we defined an implicit parameter p of type {}→nat<
zero>, the value of the implicit parameter inferred from its
type is z.

For another example,
1 class D {
2 def {N} m{} where
3 p:nat<N>→nat<succ<succ<N>> { ... }
4 }

The inferred argument is a function that takes in some argu-
ment x and returns s(s(x)).

There is a special binary predicate, the equality predicate
≡, that is true if two types are unifiable with each other. For
example,

1 class D {
2 def {S,T} m{} where p:S≡T { ... }
3 }

In this example, the argument p, if found, will always be an
identity function and will have type S→T.

In Prolog, there can be more then one goals in a query.
Analogously, there can be more than one implicit parame-
ters in a method definition in Eria. The implicit parameter
declarations can be connected using either a comma or a
semicolon.

A comma allows backtracking to the implicit parameter
that precedes the comma if no solution is found for the
implicit parameter that follows the comma. For example,

1 class D {
2 def {N} m{} where
3 p:nat<N>,q:succ<zero>≡N { ... }
4 }

The first solution for p makes N=zero. However, this falsifies
succ<zero>≡N. Eria backtracks and makes N=succ<zero>,
which satisfies succ<zero>≡N.

A semicolon does not allow backtracking, which corre-
sponds to a cut in Prolog. For example,
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1 class D {
2 def {N} m{} where
3 p:nat<N>;q:succ<zero>≡N { ... }
4 }

The first solution for p makes N=zero, which falsifies succ<
zero>≡N. Eria does not backtrack and type checking fails.

The algorithm used in Eria to infer arguments for im-
plicit parameters is based on the SLD resolution [19], the
same algorithm behind Prolog. In Eria, the inferred argu-
ment, if any, is always the first solution found by the SLD
resolution, even though there may be more than one solu-
tions to an implicit parameter. Eria always infers arguments
for implicit parameters locally when it type checks a method
chain, which means that there is no backtracking between
two method calls, or equivalently, that there is always a semi-
colon at the end of each where clause.

Implicit parameters are useful in various occasions, such
as user defined coercion.

Example 3.2. Automatic dereferencing.

1 implicit {T} deref{r:Ref<T>}:T { ... }
2 class Number {
3 def {T} get{l:T}:Number where p:T→Number {
4 return p{l};
5 }
6 }

The number of dereferences is not limited to one. For ex-
ample, we can write new Number{}.get{new Ref{new Ref
{new Ref{1}}}}. Then p has type Ref<Ref<Ref<Number>>>
→Number, whose value may be inferred to be a function that
takes in a parameter x and returns deref{deref{deref{x}}}
. One of inconveniences is that subtyping is not considered
in the inference, in order to obtain decidable inference. How-
ever, we can easily workaround this by adding subtyping as
implicit functions. For example, if we defines

1 class RefImpl<T> extends Ref<T> { ... }

then we can define

1 implicit {T} up{r:RefImpl<T>}:Ref<T> { return r; }

The presence of semicolons generally means that we
could fail even if a solution can be found. If we were to solve
a set of constraints, then this is not a desirable side effect.
However, this feature has some important usage scenario in
EDSL design, as demonstrated by the following example.

Example 3.3. Suppose that we model an object language
typing environment as an algebra with the following sorts:
stacks S, types T , and names N , and constructors: push :
S × N × T → S and emp : S. We allow repeated names
in a stack and the type of the topmost matching name is the
current type of the name. We can encode lookup as specified
by the following rules of the object language using implicit
parameters.

lookup(E,N) = t

E ` var(N) : t
(VAR)

where lookup is defined by

E = push(E1, N, t)
lookup(E,N) = t

E = push(E1, N1, t1) N1 6= N

lookup(E,N) = lookup(E1, N)

First, let’s translate the rule (VAR) to a state transition by
answering Question 2 in Section 2.3. Given a stream of
tokens t1 t2 . . . tn . . . representing an object language
program, each transition consumes one of the tokens in the
state transition system. Suppose that the tokens t1, . . . , tn−1
are consumed and the next token is tn and a state is a
stack of nonterminals, with "storage". (a) On the top of the
originating state’s stack, there should be the nonterminal
that produces the subterm s that starts at tn with its storage
being the expected type and the typing environment of that
subterm; the targeting state’s stack should has nonterminals
for the subterms of s on the top with their storage being types
and typing environments for those subterms. (b) A transition
var(N) can only be applied if the name N has the expected
type, according to the typing environment.

In a first attempt, we may be tempted to encode them as
the following, where the three type parameter of class Ee, K, t
, and E, model, as described above, the stack of nonterminals,
the expected type, and the typing environment, respectively.

1 implicit {t1,E,N} pop{e:push<E,N,t1>}:E { ... }
2 class Ee<K,t,E> {
3 def {?L,X} var{l:?L}:K where
4 p:E→push<E1,?L,t> { ... }
5 }

However, this encoding is incorrect. Suppose that we have
an expression o with type Ee<...,D1,push<push<emp,#X,D1
>,#X,D2>. When translated in to the object language, this
type means that the current type of #X is D2, and we are
expecting an expression of type D1. Therefore, o.var{#X}
should not be typable. However, o.var{#X} generates no

type error. To see why, because E→push<E1,?L,t> is not
directly solvable with E=push<push<emp,#X,D1>,#X,D2>, ?
L=#X, and t=D1, the implicit function pop is automatically
applied, generating type push<emp,#X,D1>, which makes E
→push<E1,?L,t> solvable. Intuitively, we are looking up
by both name and type, not just by name. Therefore, the
encoding is incorrect. A semicolon comes in handy here.

1 class Ee<K,t,E> {
2 def {?L,X,t1} var{l:?L}:K where
3 p:E→push<E1,?L,t1>;q:t1≡t { ... }
4 }

Now, we are just looking up by name. Indeed, o.var{#X}
generates a type error, because solving E→push<E1,?L,X>

generates the following solution t1=D2, which will fail the
second constraint t1≡t because t1=D1 but t=D2.

There is another subtlety that needs more explanation
here.

Example 3.4. Suppose that we want to write a method that
adds a variable to a larger EDSL term. The following

1 def {K,t,E} append{s:Ee<K,t,E>}:K {
2 return Ee var{#x};
3 }
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is not typable, because we assume that this method is ap-
plicable for all K, t, and E, which is apparently false. The
typable method is the following

1 def {K,t,E,v,G} append{s:Ee<K,t,E>}:K where
2 p:Ee<K,t,E>→Ee<K,t,push<G,#x,v>>;
3 q:Ee<K,t,push<G,#x,v>>≡Ee<K,t,push<G,#x,t>> {
4 return q{p{s}} var{#x};
5 }

Here, we use the where clause to lift the requirements of the
var method to requirements of the append method.

3.7.3 Order
There is another issue: decidability of type checking. With-
out any restriction, SLD resolution on Horn clauses, which is
used for inferring implicit arguments, is semidecidable. Eria
allows a simple restriction based on well-founded order to
make implicit argument inference decidable, which we de-
scribe in this section.

We require that for any implicit function of type (S1, . . . ,
Sn) → T , the number of type constructors and variables
in T is less than or equal to that in Sk for some k. For
example, in Example 3.2, the function deref has type Ref
<T>→T, where Ref<T> has two symbols in it and T has one
symbol in it.

For types of same size, Eria tries to construct a dictionary
order of types, such that every non nullary implicit function
reduces some type to a smaller one. If such an order can not
be constructed, then type checking fails.

To add more flexibility, Eria allows some type parameters
of a type constructor to be counted zero or more than one
times when counting the number of symbols. This is useful
when we want to defined functions that model upcast such
as upcast{a:String}:Comparable<String>. The number of
symbols in String is always less than the number of symbols
in Comparable<String>, unless we count the type parameter
of Comparable zero times. We can specify this in Eria by

1 order Comparable<T> {}

As another example, assuming that we want to count the
parameter twice when counting the number of symbols, we
could write the following.

1 order Comparable<T> {T,T}

We postpone formal discussion of how this restriction
leads to decidability to Section 5.2.3.

3.7.4 Interaction with other OO Features
The interaction between implicit parameters and subclass-
ing is similar to method parameters – when a method with
implicit parameters is overridden, the overriding method
should have the same list of implicit parameters with the
same types.

In the current version, implicit parameters are used to
restrict type arguments, but not to determine which method
to dispatch. Inference happens only after all normal type
checking are finished and a unique candidate is determined
for a method invocation.

3.8 Customizable Error Messages
When using a general purpose programming language as the
host language for an EDSL, error messages produced by
the host language compiler are usually less relevant to the
EDSL, which usually results in error messages that do not

match errors in EDSL terms. Customizable error messages
bridge the gap between the host language and EDSLs.

Customized error messages are defined using the error
keyword or the onerror keyword. We demonstrated their

usage using the following examples. The error keyword is
used to defined error messages for invoking methods that are
undefined. For example,

1 class D {
2 def _ error ("message "+_)
3 }

In this form of error messages, the variable _ is bound to
the method name that is undefined. The variable can be con-
catenated with strings to form error messages. The onerror
keyword is used to define error messages for parameters or
implicit parameters. For example,

1 class A {
2 def {T} var{l:T onerror ("message "+T)}:T where
3 S→T onerror ("message "+T) { ... }
4 }

The type variables can be concatenated with strings to form
error messages.

Next, we look at some examples in EDSLs. The following
code defines error messages for unexpected tokens, unde-
fined variables, and type mismatch of variables in an EDSL.

1 class Ee<K,t,E> {
2 def _ error ("unexpected token "+_)
3 def {E1,?L}var{l:?L}:K where
4 E→push<E1,?L,t1> onerror
5 ("undefined variable "+?L);
6 t1≡t onerror
7 ("type mismatch for variable "+?L) { ... }
8 }

4. Examples
4.1 Well-typed Code Generator
Example 4.1. A well-typed code generator guarantees that
the generated code is well-typed statically, which is useful
when, for example, the code is generated on the fly on a
server. We look at a well-typed code generator for the STLC.

First, we define Eria types representing STLC typing
environments, where the typing environments are modeled
as a stack of pairs of labels and types.

1 interface push<E,?L,t> {
2 def pop{}:E
3 }
4 interface emp { }

Next, we define an Eria type representing function types of
the EDSL.

1 interface fun<t1,t2> { }

We use the following utility class to build the generated
code.

1 class Builder {
2 var prefix:String
3 def Builder{} { prefix = ""; }
4 def append{s:String}:void { prefix = prefix+(s);

}
5 def toString{}:String { return prefix; }
6 }
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Next, we define classes that represent an automaton that
accepts terms of the EDSL, similar to Section 2.4. A state
of this automaton is also a pair consisting of a stack and a
(current) position in a term of the EDSL (a host language
method chain). In the stack, every stack symbol also has
its own storage that stores the typing environment and type
of some subterm, with the storage of the top stack symbol
stores the typing environment and type of the subterm at
the current position. In Section 2.4, the automaton had only
two stack symbols. For the STLC, we have four kinds of
stack symbols in this automaton, represented by class Ee,
class Er, class Ev, and class Ed, respectively. When the first
symbol is on the top of the stack, the expected token in the
current position is a λ, an opening bracket, a constant, or a
variable (except those following a λ). For the second one,
the expect token is a closing bracket. For the third one, the
expected token is a variable following a λ. For the fourth
one, the expected token is a colon. The type parameter K
represents the next symbol on the stack. The type parameters
t and E represent the storage of the stack symbol, where t
represents the type of the subterm at the current position,

and E represents the typing environment of that subterm.
The applicability of transitions are more complex than a pda,
because now we need to lookup a name from the typing
environment, which means that we need to infer a term that
may pop arbitrary number of names from the stack. Here we
use the technique from Example 3.3.

1 implicit {E,?L,t1} pop{env:push<E,?L,t1>}:E {
2 return env pop;
3 }

Next, we define a super class for all states.

1 class State<K> {
2 var next:K
3 var b:Builder
4 def State{n:K,b0:Builder} { next = n; b = b0; }
5 }

Next, we define the class that represents the first stack sym-
bol.

1 class Ee<K,t,E> extends State<K> {
2 def Ee{n:K,b0:Builder} { super{n,b0}; }

In this class, we define four methods. Variable:

1 def {?L,t1,E1} (l:?L):K where
2 p1:E→push<E1,?L,t1>; p2:t1≡t {
3 b append{" "+(l toString)};
4 return next;
5 }

Constants:

1 def (c:t):K {
2 b append{" "+(c toString)};
3 return next;
4 }

Opening bracket:

1 def {t1} [{}:Ee<Ee<Er<K>,t1,E>,fun<t1,t>> {
2 b append{"["};
3 return new Ee{new Ee{new Er{next,b},b},b};
4 }

λ:

1 def {t1,?L,t2} λ{}:
2 Ev<Ed<Ee<K,t2,push<E,?L,t1>>>,?L> where

3 p1:t≡fun<t1,t2> {
4 b append{"λ"};
5 return new Ev{new Ed{new Ee{next,b},b},b};
6 }
7 }

We define the class that represents the second stack symbol.

1 class Er<K> extends State<K> {
2 def Er{n:K,b0:Builder} { super{n,b0}; }
3 def ]{}:K { b append{"]"}; return next; }
4 }

We define the class that represents the third stack symbol.

1 class Ev<K,?L> extends State<K> {
2 def Ev{n:K,b0:Builder} { super{n,b0}; }
3 def (l:?L):K {
4 b append{l toString};
5 return next;
6 }
7 }

We define the class that represents the fourth stack symbol.

1 class Ed<K> extends State<K> {
2 def Ed{n:K,b0:Builder} { super{n,b0}; }
3 def :{}:K { b append{":"}; return next; }
4 }

We define the class that represents the end of a STLC term.

1 class Bot {
2 var b:Builder
3 def Bot{b0:Builder} { b = b0; }
4 def toString{}:String { return b toString; }
5 }

We define a utility class that is used in the user code.

1 class Utils {
2 def {t} prog{}:Ee<Bot,t,emp> {
3 var b:Builder = new Builder{};
4 return new Ee{new Bot{b},b};
5 }
6 }

Finally, we can write code that generates a string represent-
ing for some STLC term. We can define an embedding that
maps λ to λ, dot to colon, parentheses to square brackets,
and every variable x to #x. Clearly, this is a usable embed-
ding according to Section 2.1. For example,

1 class Main {
2 def main{}:void {
3 var program:String;
4 program = new Utils{}
5 prog λ#x:λ#y:[#y #x] toString;
6 }
7 }

4.2 Typed Abstract Syntax Tree Builder
Example 4.2. A typed abstract syntax tree (AST) builder for
the STLC. To simplify the code, we consider only abstrac-
tion and variables here.

We reuse the following definitions from the previous ex-
ample.

1 interface push<E,?L,t> {
2 def pop{}:E
3 }
4 interface emp { }
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5 interface fun<t1,t2> { }
6 implicit {E,?L,t1} pop{env:push<E,?L,t1>}:E {
7 return env pop;
8 }

Next, we define the classes for objects representing AST
nodes.

1 interface Term<E,t> { }
2 class Abs<E,?L,t1,t2> implements
3 Term<E,fun<t1,t2>> {
4 var l:?L
5 var e:Term<push<E,?L,t1>,t2>
6 def Abs{l0:?L,e0:Term<push<E,?L,t1>,t2>} {
7 l=l0; e=e0;
8 }
9 }

10 class Var<E,?L,t> implements Term<E,t> {
11 var l:?L
12 def Var{l0:?L} { l=l0; }
13 }

Next, we define the interface for functions.

1 interface Func<S,T> {
2 def @{x:S}:T
3 }

Next, we define classes that represent an automaton that
builds an AST. A state of this automaton is a triple consist-
ing of a stack, an AST builder, and a position in a term of
the EDSL. The classes representing stack symbols are al-
most the same as the previous example, with an extra type
parameter S which represents the AST builder of the current
state. Note that the field n which stores the next state has type
Func<S,K>. The reason that it has type Func<S,K> instead of
K is that we want to pass the AST builder from the current
state to the next state.

1 class Ee<K,t,E,S> {
2 var n:Func<S,K>
3 var b:Func<Term<t,E>,S>
4 def Ee{n0:Func<S,K>,b0:Func<Term<t,E>,S>} {
5 n=n0; b=b0;
6 }
7 def {?L,t1,E1} (l:?L):K where
8 p1:E→push<E1,?L,t1>; p2:t1≡t {
9 return n app{b @{new Var{l}}};

10 }
11 def {t1,?L,t2} λ{}:Ev<Ed<Ee<K,t2,push<E,?L,t1

>>>,?L,Func<Term<t2,push<E,?L,t1>>,S>> where
12 p:Term<E,t1→t2>≡Term<E,t> {
13 return new Ev{
14 new Func{} {def@{b1}{
15 return new Ed{Ee{n,b1}};
16 }},
17 new Func{} {def@{l}{
18 return new Func{} {def@{e}{
19 return b @{p{new Abs{l,e}}};
20 }};
21 }}
22 };
23 }
24 }
25 class Ev<K,?L,S> {
26 var n:Func<S,K>
27 var b:Func<?L,S>
28 def Ev{n0:Func<S,K>,b0:Func<?L,S>} {
29 n=n0; b=b0;
30 }
31 def (l:?L):K { return n @{b @{l}}; }

32 }
33 class Ed<K> {
34 var n:K
35 def Ed{n0:K} { n=n0; }
36 def :():K { return n; }
37 }

We define a utility class that is used in the user code.
1 class Utils {
2 def {t} prog{}:Ee<Term<emp,t>,t,emp,Term<emp,t>>

{
3 return new Ee{
4 new Func{} {def@{e}{
5 return e;
6 }},
7 new Func{} {def@{e}{
8 return e;
9 }}

10 };
11 }
12 }

Finally, we have the user code. The user code builds a typed
AST representing a term of the EDSL and stores it in the
variable ast.

1 class Main {
2 def main{}:void {
3 var ast:Term<fun<Int,fun<Int,Int>>,emp>;
4 ast = new Utils{}
5 prog λ#x:λ#y:#x;
6 }
7 }

4.3 Embedded Query
Example 4.3. Embedded Query. This example demon-
strates how to encode an EDSL which allows us to write
queries like the following.

1 select from{list} where #genre=="classical"

First, we define an interface for classes with getter methods.
1 interface get<T,?L> {
2 T get(?L l)
3 }

Next, we define the class CD whose instances are used to store
CD informations.

1 class CD implements
2 get<String,#title>,
3 get<String,#genre>,
4 get<String,#artist> {
5 var title:String
6 var genre:String
7 var artist:String
8 def get{l:#title}:String { return title; }
9 def get{l:#genre}:String { return genre; }

10 def get{l:#artist}:String { return artist; }
11 }

Next, we add subtyping to the logic of implicit parameters.
1 order get<T,?L> {}
2 order Comparable<T> {}
3 implicit u{c:CD}:get<String,#title> { return c; }
4 implicit u{c:CD}:get<String,#genre> { return c; }
5 implicit u{c:CD}:get<String,#artist> { return c; }
6 implicit u{s:String}:Comparable<String> {
7 return s;
8 }
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Next, we define the interfaces representing the state of an
automaton that accepts the embedded query EDSL. Here we
are showing the interface only. The from clause:

1 interface Eselect {
2 def {t} from{l:Collection<t> onerror
3 ("select from a non collection")}:Ewhere<t>
4 }

The where clause:
1 interface Ewhere<t> { def where{}:Ecrit<t> }

A criterion in the where clause:
1 interface Ecrit<t> {
2 def {t1} (l:?L):Ecmp<Eexp<Bot,t1,t>> where
3 p:t→get<t1,?L> onerror
4 (t+" does not contain property "+?L);
5 p2:t1→Comparable<t1> onerror
6 ("Uncomparable type of property "+?L+":"+t1)
7 }
8 interface Ecmp<K> {
9 def =={}:K

10 def !={}:K
11 def <{}:K
12 def >{}:K
13 def <={}:K
14 def >={}:K
15 }
16 interface Eexp<K,t1,t> {
17 def (l:t onerror
18 ("type mismatch")):K
19 def (l:?L):K where
20 p:t→get<t1, ?L> onerror
21 (t+" does not contain property "+?L+":"+t1)
22 }

Next, we define a utility class as in the previous example.
1 class Utils {
2 def select{}:Eselect { ... }
3 }

Finally, we have the user code which constructs a query that
selects all CDs whose genre is classical. Unlike LINQ,
no preprocesser is needed to translate the user code to a
desugared form. Here, we also demostrate a technique that
can be used to hide the initial object creation expression.

1 class Main extends Utils {
2 def main{}:void {
3 var lst:List<CD>;
4 . . .
5 var q:Eprog;
6 q = select from{lst} where #genre=="classical";
7 }
8 }

5. FE: A core calculus for Eria
5.1 Internal Language
5.1.1 Syntax
The syntax of the internal language of FE is given in Figure
2. In order to make it easier to understand, we follow FGJ’s
conventions instead of directly using Eria’s concrete syntax.

We focus on new features of Eria, by making a few sim-
plifications in FE. We do not model fields, interfaces, bounds
on type variables, method overloading, or constructors that
take in parameters in the core calculus. FE has the follow-
ing new language constructs (which will be explained in the

following paragraphs) that are not in FGJ: label types A, im-
plicit parameters types C, implicit functions i, implicit argu-
ments p, implicit function definitions I , empty label ε, and
appending e#l (a label character l to an expression e).

We define metavariables in a similar manner as FGJ. The
metavariables D and E range over class names; m and n
range over method names; x ranges over variables; e ranges
over expressions;L ranges over class declarations;M ranges
over method declarations;X , Y , and Z range over type vari-
ables; W ranges over nonlabel type variables; ?X ranges
over label type variables; S, T , U , and V range over types;
N , P , and Q range over nonvariable, nonlabel types; A and
B range over label types; l ranges over label characters; p
ranges over implicit arguments; C ranges over implicit pa-
rameter types; i ranges over implicit function names; and
I ranges over implicit function definitions. We assume that
the set of variables includes the special variable this, which
is implicitly bound in every method definition. We denote
an empty sequence by •. We abbreviate M1 . . . Mn to M
andX1, . . . , Xn toX , and similarly for other metavariables,
with an exception that we abbreviate C1 ⊕ . . . ⊕ Cn to C,
where ⊕ may be a comma or a semicolon. We denote the
length of a sequence M by |M |. We denote the concatena-
tion of sequences with comma, with the exception that se-
quences of implicit parameters (types) can be concatenated
with either a comma or a semicolon. We abbreviate oper-
ations on pairs by writing T x for T1 x1, . . . , Tn xn, etc.
We assume that sequences of (implicit) parameter names and
type variables contain no duplicate names.

There are two groups of types. The first group T are
types that may occur in a definition or a term. The second
group C are implicit parameter types. There are two kinds
of implicit parameter types, equality types S ≡ T and first
order function types (S) → T . We allow (S) → T to be
abbreviated as S → T . In typing rules, τ ranges over the
union of T and C.

classD〈X〉 C N{M} introduces a class namedD with
supertype N and type parameters X . The type variables that
appear in N should also appear in X . The class has methods
M . If a method ofD overrides (has the same parameter types
as) some method with the same name that is present in N ,
they should have the same return type and implicit parameter
types.〈

X
〉
T m(T x | C y){return e; } introduces a method

named m with return type T , parameters x of types T , and
implicit parameters y of types C. The type variables that
appear in the return type or the parameter types must be in
X or type parameters of the enclosing class definition. The
body of the method is the statement return e;. The variables
x, y and the special variable this are bound in e.

implicit
〈
X

〉
S i(T x){return e; } introduces an im-

plicit function named i with parameters x of type T and re-
turn type S. The type variables that appear in S and T must
appear in X . The body of the implicit function is similar to
that of a method, with the statement return e;. The vari-
ables x are bound in e.

order D
〈
X

〉
{X} defines the ord list for type construc-

tor D. (Section 5.2.3)
There are three kinds of terms in Eria, the p-terms, the

q-terms, and the e-terms. e-terms are just regular terms. ε
introduces the empty label. e#l appends a label character
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Types T → X | N | A
X → W |?X
N → D

〈
T

〉
A → ε |?X#l | A#l

C → S ≡ T | T → T

τ → T | C
Definitions L → class D

〈
X

〉
C N{M}

M →
〈
X

〉
T m(T x | C x){return e; }

I → implicit
〈
X

〉
T i(S x){return e; }

O → order D
〈
X

〉
{X}

Terms q → x | i〈T 〉(q)
p → (x)q

e → ε | e#l | x | new N() | e.m〈T 〉(e | p)
| i〈T 〉(e) | x(e) | x . (e)

Environments Γ → x : T

Values a → ε | a#l

w → new N() | a

Figure 2. The Internal Language

l to a label e. x introduces a variable. new N() creates an
object of type N , e.m〈T 〉(e | p) invokes a method m with
type arguments T , arguments e, and implicit arguments p at
object e. i〈T 〉(e) applies an implicit function i to type argu-
ments T and arguments e. x(e) applies an implicit parame-
ter x with a function type to arguments e. x . (e) applies an
implicit parameter of an equality type S ≡ T as a term of
type S → T to argument e. Implicit arguments are p-terms,
which are abstractions of the form (x)q, where the variables
x are bounded in q. q-terms include variable x and applica-
tion i〈T 〉(q) of an implicit function i to type arguments T
and arguments q.

5.1.2 Auxiliary Definitions
We assume a fixed class table DT , a mapping from class
names D to class definitions L, a fixed implicit function ta-
ble IT , a mapping from implicit function names i to im-
plicit function definitions I , and a fixed order table OT , a
mapping from class names D to lists of integers. A program
is a quadruple (DT, IT,OT, e) of a class table, an implicit
function table, an order table, and an expression. We have
a predefined class object whose definition does not appear
in the class table. We also have a predefined implicit func-
tion implict 〈T 〉 id(T x){return x; }. We assume that the
class table DT satisfy the sanity conditions similar to FGJ,
which is not reiterated here.

We need a few auxiliary definitions for the typing rules,
as shown in Figure 3. The rules are very similar to FGJ.
m /∈ M stands for that the method definition of m is
not included in M . Application of type substitution [T/X]
to a term e, written [T/X]e, is defined as simultaneous
substitution of type variables X by types T . The type of
method invocation m at type N , written mtype(m,N), is
a type of the form

〈
X

〉
U | C → U , in which the variables

X are bound in U , U , andC. The body of method invocation
m at type N , written mbody(m,N), is (x)e, where x is
a sequence of parameters bound in e which is an e-term.

Method type lookup

class C〈X〉 C N{M} 〈Y 〉 U m(U x| C y) {. . .} ∈M
mtype(m,C〈T 〉) = [T/X](〈Y 〉U | C → U)

class C〈X〉 C N{M} m /∈M
mtype(m,C〈T 〉) = mtype(m, [T/X]N)

Method body lookup

class D〈X〉 C N{M}
〈Y 〉 U m(U x| C y) {return e; } ∈M

mbody(m〈V 〉, D〈T 〉) = (x)[T/X, V /Y ]e

class D
〈
X

〉
C N{M} m /∈M

mbody(m〈V 〉, D〈T 〉) = mbody(m〈V 〉, [T/X]N)

Overriding

mtype(m,N) = 〈Z〉U | C′ → U0

T0, T , C = [Y /Z](U0, U, C′)

override(m,N, 〈Y 〉T | C → T0)

Implicit function type lookup

implicit 〈X〉 T i(S x) {. . .}
itype(i) = 〈X〉S → T

Implicit function body lookup

implicit 〈X〉 T i(S x) {return e; }
ibody(i〈V 〉) = (x)[V /X]e

Figure 3. Auxiliary Functions

The type of implicit function i, written itype(i), is a type
of the form

〈
X

〉
U or the form

〈
X

〉
U → U , in which the

variables X are bound in U and U . The body of implicit
function i, written ibody(i), is (x)q, where x is a sequence
of parameters bound in q which is a q-term. In a type of the
form

〈
X

〉
U → U or

〈
X

〉
U | C → U , U or U | C is called

the domain, and U is called the codomain.

5.1.3 Typing
A typing environment Γ is a finite mapping from variables
to types, written x : T . (Figure 2)

A typing environment Γ is well-formed if all types ap-
pearing in Γ are well-formed. The type object, a type vari-
able, or a label type is always well-formed. If the definition
of a classD begins with classD〈X〉, then a type likeD〈T 〉
is well-formed if T are well-formed. A first-order function
type is well-formed if its domain and codomain are well-
formed. An equality type is well-formed if its left hand side
and right hand side are both well-formed. A substitution is
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Subtyping

T <: T
S <: T T <: U

S <: U

class D
〈
X

〉
C N{. . .}

D
〈
T

〉
<: [T/X]N

Figure 4. Subtyping

well-formed if it substitutes a regular type variable with a
well-formed typed and a label variable by a label type.

Judgments include subtyping S <: T and term typings
Γ `I p : τ , Γ `I q : τ , and Γ ` e : T . A sequence of
judgments of the same kind is abbreviated in the same way
as FGJ. For example, S1 <: T1, . . . Sn <: Tn to S <: T .

The subtyping relations S <: T are defined in Figure 4.
Type parameters are invariant w.r.t. subtyping. For example,
in order for D〈S〉 <: D〈T 〉, we must have S = T .

The typing rules for p-terms and q-terms are defined in
the first section of Figure 5. The (ITVAR) rule says that a
variable has the type assigned by the typing environment.
The (ITAPP) rule models application. The (ITABS) rule
models monomorphic abstraction. The (ITEQ) rule says that
id〈T 〉 can be used as an implicit argument of equality type
T ≡ T . In fact the only inhabited equality types in FE are
types whose left hand side and right hand side are defini-
tional equal, and the only value inhabiting an equality type
T ≡ T is id〈T 〉.

The typing rules for e-terms are shown in the second sec-
tion of Figure 5. (The differences between FE and FGJ in
the typing rules are highlighted.) The (FTVAR) rule says
that the type of a variable is that declared in the typing en-
vironment. The (FTEMP) rule says that an empty label ε
has type ε. The (FTAPND) rule says that appending a la-
bel character l to an expression e of label type A results in
an expression of type A#l. The (FTINV) rule says that for
a method invocation in a method chain, the method invoca-
tion should satisfy the common requirements for parameter
types and return type, as well as that p should have the types
C. The (FTAPPIMP) rule says that to apply an implicit func-
tion to some expressions, the types of the expressions should
be subtypes of the domain of the type of the implicit func-
tion. The (FTAPPFUNC) rule says that to apply an implicit
parameter of a function type to some expressions, the ap-
plication should satisfy the requirement that the types of the
expressions are subtypes of the domain of the type of the im-
plicit parameter. The (FTAPPEQ) rule says that an implicit
parameter x of type S ≡ T can be used as a function of type
S → T .

The typing rules for classes, methods, and implicit func-
tions are shown in the rest of Figure 5. The (FTMETH) rule
says that a method is well-typed if given its parameter types,
the type of the enclosing class, and implicit parameter types,
the return value has a type that is a subtype of the return
type. The (FTCLASS) rule says that a class is well-typed if
its methods are well-typed. The (FTIMP) rule says that an
implicit function is well-typed if given its parameter types,
the return value has a type that is a subtype of the return type.

5.1.4 Computation
The rules for value and computation is given in Figure 7.
The rules are similar to those of FGJ. We leave out the
congruence rules, which are standard, because of space limit.

p-term and q-term typing Γ `I q : τ and Γ `I p : τ

Γ ` x : Γ(x) (ITVAR)

itype(i) = 〈X〉T → T Γ ` q : [V /X]T

Γ ` i〈V 〉(q) : [V /X]T
(ITAPP)

Γ, x : T ` q : T

Γ ` (x)q : (T )→ T
(ITABS)

Γ `I id〈T 〉 : T ≡ T (ITEQ)

e-term typing Γ ` e : T

Γ ` x : Γ(x) (FTVAR) Γ ` ε : ε (FTEMP)

Γ ` e : A

Γ ` e#l : A#l
(FTAPND) Γ ` new N() : N (FTNEW)

Γ ` e0 : T0 mtype(m,T0) = 〈Y 〉U | C → U

Γ ` e : S • `I p : [V /Y ]C S <: [V /Y ]U

Γ ` e0.m〈V 〉(e| p) : [V /Y ]U
(FTINV)

itype(i) = 〈X〉U → U

Γ ` e : S S <: [T/X]U

Γ ` i〈T 〉(e) : [T/X]U
(FTAPPIMP)

Γ(x) = U → U Γ ` e : S S <: U

Γ ` x(e) : U
(FTAPPFUNC)

Γ(x) : U ≡ T Γ ` e : S S <: U

Γ ` x . (e) : T
(FTAPPEQ)

Method typing

x : T , y : C, this : D〈X〉 ` e0 : S

S <: T class D〈X〉 C N{. . .}
override(m,N, 〈Y 〉T | C → T )

〈Y 〉 T m(T x| C y){return e0; } ok in D〈X〉
(FTMETH)

Class typing

M ok in D〈X〉
class D〈X〉 C N{M} ok

(FTCLASS)

Implicit function typing

X;x : S ` e : T0 X ` T0 <: T

implicit 〈X〉 T i(S x){return e; } ok
(FTIMP)

Figure 5. Typing Rules
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Computation e −→ e′

mbody(m〈V 〉, N) = (x | y)e0

(new N()).m〈V 〉(d | p) −→ [d/x, p/y, new N()/this]e0
(FRINV)

ibody(i〈V 〉) = (x)e0

i〈V 〉(d) −→ [d/x]e0
(FRAPPIMP)

(x)q0(d) −→ [d/x]q0 (FRAPPABS)

id〈T 〉 . (d) −→ d (FREQ)

Figure 6. Computation

5.1.5 Properties
We can define a compiling function ‖ − ‖ that transform
an FE program to an FGJ program so that for every FE
type in the FE program there is a unique FGJ type in the
FGJ program. Because of space limit, we demonstrate the
compiling function using a few examples. We assume that
new class names are fresh, omit empty constructors, and
abbreviate return (T )new object(); to ⊥.

For example, labels can be compiled as follows. We de-
fined

class ε{}
for the empty label and

class l〈T 〉{T f ; l(T f0){f = f0; }}

for each label character l. The empty label type can be
compiled to

ε

and every label type #l1 . . . ln can be compiled to

ln〈. . . 〈l1〈ε〉〉 . . .〉

The empty label can be compiled to

new ε()

and every label #l1 . . . ln can be compiled to

new ln〈. . . 〈l1〈ε〉〉 . . .〉(. . . new l1〈ε〉(new ε()) . . .)

For another example, equality types can be compiled as
follows. For equality types, we define

class eq〈S, T 〉{T app(S x){⊥}}

and

class id〈T 〉 C eq〈T, T 〉{T app(T x){return x; }}

If an implicit parameter x has type S ≡ T , then x . (e) can
be compiled to

x.app(‖e‖)
It is obvious that the compiling function in the example

is an injection from FE terms and types to FGJ terms and
types. Using this compiling function, the following proper-
ties follow from the properties of FGJ.

Terms e → ε | e#l | x | new D() | e.m(e) | x(e) | x . (e)

Figure 7. The External Language

Theorem 5.1. (Preservation) If Γ ` e : T and e −→ e′, then
Γ ` e′ : T ′ for some T ′ such that T ′ <: T .

Theorem 5.2. (Progress) Suppose that e is a well-typed e-
term.

1. If e includes new N0(e).m〈V 〉(d) as a subterm, then
mbody(m〈V 〉, N0) = (x)e0 and |x| = |d| for some x
and e0.

2. If e includes i〈V 〉(d) as a subterm, then ibody(i〈V 〉) =
(x)e0 and |x| = |d| for some x and e0.

3. If e includes (x)q(d) as a subterm, then |x| = |d|.
Theorem 5.3. (Type soundness) If • ` e : T and e −→∗ e′
with e′ a normal form, then e′ is a value w with • ` w : S
and S <: T .

5.2 External Language
5.2.1 Syntax
The only difference between the internal language, which
is the language in Figure 2 and the external language is that
the external language does not have type parameters, implicit
arguments, or implicit function applications in the terms, as
shown in Figure 7.

5.2.2 Implicit Parameter Inference
Implicit parameter inference is the key feature of Eria that
enables usable encoding of typed object languages. In con-
trast to type inference which infers a type given an untyped
term, implicit parameter inference infers a term given a type.
The term inferred has a type that is an instance of the given
type obtained by applying some substitution to the given
type.

We let θ range over substitutions, and denote composition
of substitutions θ1, θ2 by θ1 ◦ θ2, defined as θ1 ◦ θ2(x) =
θ1(θ2(x)).

Formally speaking, implicit parameter inference infers an
argument p and a substitution θ given implicit parameter
type C and a typing environment Γ, written Γ `Fθ p : C.
We will show in Theorem 5.5 that the inferred argument p
has the following typing θΓ `I p : θC. The algorithm is
given in Figure 8.

These rules are explained below by analogy with Prolog.
Variables and their types in a typing environment Γ corre-
spond to local facts (assumptions). They do not correspond
to rules because they do not have function types. For exam-
ple, a variable x with type nat〈zero〉 in a typing environ-
ment may correspond to a local fact that zero is a natural
number. The implicit functions and their types correspond to
global rules and facts. For example, an implicit function with
type () → nat〈zero〉 corresponds to a global fact (where a
fact can be thought of as a rule with an empty rule body),
and an implicit function with type nat〈N〉 → nat〈succ〈N〉〉
corresponds to a rule.

In the following rules, the function mgu computes the
most general unifier.
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Implicit parameter inference Γ `Fθ q : C and Γ `Fθ p : C

θ = mgu(S, T )

Γ `Fθ id〈θS〉 : S ≡ T
(IIEQ)

T 6∈ T ′ θ = mgu(Γ(x), T )

Γ `Fθ x : T
(IIVAR)

itype(i) = 〈X〉(U)→ U

θ0 = mgu(U, T ) θ0Γ `Fθ q : θ0U

Γ `Fθ◦θ0 i〈θθ0X〉(q) : T
(IIAPP)

Γ, x : T `Fθ q : T

Γ `Fθ (x)q : (T )→ T
(IIABS)

Γ `F[] • : • (IIEMPTYSEQ)

Γ `Fθ0 p : T θ0Γ `Fθ p : θ0T

Γ `Fθ◦θ0 p, p : T , T
(IICOMMA)

Γ `Fθ0 p : T cut θ0Γ `Fθ p : θ0T

Γ `Fθ◦θ0 p; p : T ;T
(IISEMICOLON)

Figure 8. Implicit parameter inference

The rules is a variant of the SLD resolution. Like the SLD
resolution, the rules maintain a list of goals and generate a
substitution. Unlike the standard SLD resolution, these rules
also construct proof terms from the goals. Given an implicit
parameter type (T ) → T , the (IIABS) rule adds the types
T into the typing environment, which corresponds to adding
T to a list of local facts and set T as the initial goal. The
(IIAPP) rule picks a rule, the rule head of which unifies
with one of the goals, and replaces that goal with the rule
body of the rule picked, where the 6⊂ denotes that a list is
not contained in another list regardless of order of elements.
The (IIVAR) rule picks a local fact that unifies with one of
the goals, and deletes that goal. The (IIDELETE) rule deletes
a repeated goal from the list of goals. The (IIEQ) rule unifies
the two sides of an goal, if the goal is an equality type. Given
a goal, the obtained substitution θ corresponds to values of
the type variables that make the goal succeed, and the term
p is a proof that the values do do so.

The (IICOMMA) rule and the (IISEMICOLON) rule deal
with consecutive goals in a query that allow and do not allow
backtracking, respectively. The premises of these two rules
should be read as searching. The cut in the (IISEMICOLON)
rule prevents the rule from backtracking, similar to the "cut"
in Prolog.

The order is apparently very important, as difference
search order would result in different constructed term. We
perform depth-first search and when multiple rules are ap-
plicable. We always select the first applicable rule to the
leftmost goal in the following order: first (IIVAR) in the or-
der that variables are arranged in the typing environment
and then (IIAPP) in the order that the implicit functions are
defined.

Order <sl

|c| < |d|
c <sl d

|c| = |d| c1 <l d1

c <sl d

|c| = |d| c1 = d1 c2 . . . c|c| <sl d2 . . . d|d|

c <sl d

Order string str(τ)

str(X) = X str(A) = A

order D〈X〉{Xi1 , . . . , Xik}
str(D〈T 〉) = Dstr(Ti1) . . . str(Tik )

Order <sig

str(T1) <sl str(T2)

T1 <sig T2

Figure 9. Orders

By induction on the derivation of Γ `Fθ0 p : C and
Γ `Fθ q : C, we can prove the following.

Lemma 5.4. If Γ `Fθ0 p : C, then Γ `Fθ1◦θ0 θ1p : C for all
substitution θ1; if Γ `Fθ0 q : C, then Γ `Fθ1◦θ0 θ1q : C for all
substitution θ1.

Theorem 5.5. (Soundness of implicit parameter inference)
If Γ `Fθ p : C, then θΓ `I p : θC.

We do not need a completeness theorem. Because of
(IISEMICOLON), completeness is not guaranteed.

5.2.3 Decidable Implicit Parameter Inference
We discuss how to make Γ `Fθ p . C decidable in this sub-
subsection. In general, SLD resolution on Horn clauses is
semidecidable: it may not terminate if no solution can be
found, which is undesirable for a type checker. Finding a de-
cidable implicit parameter inference algorithm corresponds
to finding a decidable logic and its decision procedure.

The approach Eria takes is based on a well-founded order
on types.

Let us assume for now that we have a well-founded
order <l on symbols such as type constructors and vari-
ables. We can define another well-founded order on types:
the sizelexicographic order <sl, defined in the Figure 9.
When computing the order of types, we view types as a
sequence of symbols, or flatterms, by removing all angle
brackets and commas from its representation. For example,
the type D 〈E1, E2〉 is written DE1E2. We denote flatterms
by c, d, . . .. A subscript i selects the ith symbol in a flatterm.
Intuitively, the sizelexicographic order orders flatterms first
by size and then by dictionary order with regard to <l. This
allows the ordering such as DX <sl EX given D <l E,
and DX <sl EXY .

To add a little more flexibility to <sl, we allow type
parameters to a type constructor to be ignore or reordered
in the order <sig . Suppose that for an nary type construc-
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Decidable implicit parameter inference Γ `FDθ q : C and
Γ `FDθ p : C

T 6∈ T ′ Γ(x) = θT

Γ `FDθ x : T
(DIIVAR)

itype(i) = 〈X〉()→ U U = θ0T

Γ `FDθ◦θ0 i〈θX〉() : T
(DIIAPPFACT)

itype(i) = 〈X〉(U)→ U U 6= •
θ0 = mgu(U, T ) θ0Γ `FDθ q : θ0U

Γ `FDθ◦θ0 i〈θθ0X〉(q) : T
(DIIAPPRULE)

Figure 10. Decidable Implicit parameter inference

tor D, we have a list of integers between 1 and n, writ-
ten ord(D). Note that we use a list instead of a set to al-
low repetition. The string of a type D〈T1, . . . , Tn〉, writ-
ten str(D〈T1, . . . , Tn〉), is defined as Dstr(Ti1) . . . str(Tik),
where ord(D) = i1, . . . , ik. The order <sig is defined as
T1 <sig T2 if and only if str(T1) <sl str(T2). It is obvi-
ous that if <l is a well-founded order, then <sig is a well-
founded order.

Next, we look at how to use <sig to guarantee termina-
tion of term inference. We make the following two restric-
tions. First, an implicit function that has at least one param-
eters should have type (T1, . . . , Tn) → T s.t. θT <sig θTi
for some integer i ∈ [1, n] and all substitutions θ. Second,
we modify the rules of implicit parameter inference to re-
strict where unification can occur. We denote the modified
inference by Γ `FDθ p : C. We show only the rules that are
modified in Figure 10.

In this version, the facts may not be instantiated but rules
may be instantiated, unlike in Γ `Fθ p : C where both can be
instantiated. Because of this distinction, we split the (IIAPP)
rule into two rules: (DIIAPPRULE) and (DIIAPPFACT). The
main modification is that in the rules (DIIAPPFACT) and
(DIIVAR), the variables in goals can be instantiated but the
variables in the fact can not be instantiated.

It is clear now how these restrictions guarantee the de-
cidability of Γ `FDθ p : C. By the ordering requirement,
in the rule (DIIAPPRULE), we have T = θ0T

′ <sig θ0Si
for some integer i, which means that every time the rule
(DIIAPPRULE) is applied, we generate a goal that is strictly
larger than one of the existing goals w.r.t. <sig . On the other
hand, we have finite number of local and global facts that
can be used to reduce the number of goals, by either the
rule (DIIAPPFACT) or the rule (DIIVAR). Since in the rules
(DIIAPPFACT) and (DIIVAR), the variables in the fact can
not be instantiated, there is a bound on the size of the goal
that can be deleted. By the well-foundedness <sig , the num-
ber of goal that can be deleted is bounded. If all goal are
deleted, then the algorithm succeeds; if any of the goals goes
over the bound, then it fails.

Theorem 5.6. If Γ `FDθ p : C, then Γ `Fθ p : C.

Theorem 5.7. (Decidability of decidable implicit parameter
inference) Γ `FDθ p : C is decidable.

The order<l may be constructed as follows. We construct
a directed graph. For each implicit function of type (S)→ T
such that for all integer k ∈ [1, |S|], |str(θSk)| ≤ |str(θT )|
for some θ, we nondeterministically choose a k such that
|str(θSk)| = |str(θT )| for all θ. If we can not find such a
k, then inference fails. Otherwise, we choose the smallest
n such that the nth symbol in str(Sk) differs from the nth
symbol in str(T ). If any of the two symbols is a variable,
then try another k. Otherwise, we add an edge from the
symbol in str(Sk) to the symbol in str(T ). If the resulting
graph is cyclic, then delete the edge and try another k. After
all edges are added, we obtain <l by topological sorting on
the graph. Although not complete, this algorithm works for
all the examples in Section 4.

5.2.4 Type Inference
The algorithm is based on local type inference [30] with the
addition that substitutions obtained from implicit parameter
inference are also used to instantiate type variables. We do
not elaborate here but list the rules for completeness.

Type inference is given by Γ `θ e : T ⇒ e′, where the
input is a term e in the external language, a typing environ-
ment Γ, and the output is a term e′ in the internal language, a
type T , and a substitution θ. The internal language term e′ is
well-typed and has the following typing θΓ ` e′ : θT if type
inference succeeds. The algorithm is given in Figure 11.

The type inference algorithm invokes the subtyping con-
straint solver, which we denote by Γ `θ S <: T , from local
type inference. Γ `θ S <: T returns a substitution θ, given
subtyping constraints S <: T and typing environments Γ,
such that θΓ ` θS <: θT .

6. Related Work
Object-Oriented Programming Eria is based on Java [11].
There are many similarity between Eria and Scala [26].
However, there are many features of Eria that are in Scala, as
Eria is designed as a meta language for EDSLs while Scala
is not, even thought it is easy to defined some EDSLs in
Scala. The difference in design objectives results in some
subtle differences between Eria and Java or Scala. Implicit
parameters in Eria is very different from implicit parameters
in Scala. Implicit parameter in Scala are inferred from a spe-
cific set of rules as defined in the Scala Language Specifica-
tion [26]. In Eria, the argument is inferred from its type and
types of implicit functions, which is one of the central ideas
in Eria design for supporting complex EDSLs. The differ-
ence between implicit functions in Eria and views in Scala
is subtler. Only one view can be involved in one application
of implicit conversion and views are applied implicitly ac-
cording to a set of rules as defined in the Scala Language
Specification [26]. Multiple implicit functions can be com-
bined and their application is controlled by the programmer.

The equality type for implicit parameters is inspired by
a similar typing constraint proposed for C] [17]. Implicit
parameter types differ from typing constraints in that they
are not only constraints that need to be solved but also
specifications from which implicit arguments are inferred.

Predicate dispatch [5, 7, 23, 27, 33] is a mechanism for
determining the code to be executed upon a method invo-
cation, by user defined predicates. Languages that support
predicate dispatch usually have specialized logic that incor-
porates the OO concepts. In comparison, programmable in-
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Type Inference Γ `θ e : T ⇒ e′

T = Γ(x)

Γ `[] x : T ⇒ x
(FIVAR) Γ `[] ε : ε⇒ ε (FIEMP)

Γ `θ e : A⇒ e′

Γ `θ e#l : A#l⇒ e′#l
(FIAPND)

class D〈X〉 {. . .} Y fresh

Γ `θ new D() : D〈Y 〉 ⇒ new D〈Y 〉()
(FINEW)

Γ `θ0 e0 : T0 ⇒ e′0
mtype(m, θ0T0) = 〈Y 〉U | C → U

θ0Γ `θ1 e : θ0S ⇒ e′

θ1θ0Γ `θ2 θ1θ0S <: θ1θ0U • `Fθ p : θ2θ1θ0C

Γ `θ◦θ1◦θ0◦θ2 e0.m(e) : U ⇒ e′′0 .m〈T 〉(e′′ | p))
where e′′0 = θθ2θ1e

′
0, T = θθ2θ1Y , e′′ = θθ2e′

(FIINV)

Γ(x) = U → U Γ `θ0 e : S ⇒ e′

θ0Γ `θ θ0S <: θ0U

Γ `θ◦θ0 x(e) : U ⇒ x(e′′)

where e′′ = θe′

(FIAPPFUNC)

Γ(x) = U ≡ T
Γ `θ0 e : S ⇒ e′ θ0Γ `θ θ0S <: θ0U

Γ `θ◦θ0 x . (e) : T ⇒ e . (e′′)

where e′′ = θe′

(FIAPPEQ)

Figure 11. Type Inference

ference does not interfere with method dispatching, and does
not directly incorporate any OO concepts.

Logic Programming The SLD resolution is what Prolog
[31] is based on. In Prolog, a proof that a query is satisfiable
is usually less relevant, while in Eria, the argument for the
implicit parameter, the counterpart of the proof, can be used
as functions in the method body.

Type classes [12] in Haskell incorporate logic program-
ming into a functional programming language, which is
probably one of the reasons why Haskell is often used as the
host language for EDSLs. Eria incorporates logic program-
ming into an OO programming language. The rules used
in Haskell are designed to replace ad hoc polymorphism,
hence are more complex and not based on SLD resolution.
As a result, sometimes type markers are needed in EDSLs.

Dependent Types There are functional programming lan-
guages that support explicitly the notion of proofs [8] (and
references therein) through dependent types. A dependently
typed language usually either has a type language that is sep-
arate to the term language, or has only one language for both
its types and its terms. The expressibility of languages that
support dependent types lies in the power of the dependent
type theory [21]. A language that supports dependent types
is usually capable of statically guaranteeing various prop-
erties such as length preservation and permutation in a sort
algorithm and has the potential of being practical host lan-

guages for EDSLs, if it has a strong type inference algo-
rithm.

EDSL Most of the research on EDSLs is in the functional
setting. There are proposals for embedding typed languages
into typed host languages, based on GADT [16, 36], de-
pendent types [8, 28, 37], ordinary functions [4], or higher
order abstract syntax [29]. Research is usually focused on
creating tagless interpreters, which avoid tags, an overhead
in EDSL implementations. MCS encoding does not have
tags, but there might be other overhead such as object cre-
ation. There are also proposed ideas that can be used for em-
bedding names, based on modal logic [6, 24, 25], or envi-
ronment classifiers [32]. The design of labels is based on
lightweight dependent type [1]. It can be viewed as syn-
tax sugar for light weight dependent types that guarantees
uniqueness through label type variables. Type equality is
trivially equivalent to the equality of the desugared form
in the nondependent type system. Similar concepts are also
studied in extensible records [9, 20], but none of them are
directly applicable in EDSLs. Implementing EDSLs in OO
programming languages are less popular [13, 38].

Meta Languages Many programming languages support
defining EDSLs to some extent. However, designing ED-
SLs in these languages usually needs to deal with many
restrictions of the host language. On the other hand, many
DSL systems provide meta languages for the specific do-
main of DSL definition [22, 34]. In these tools, the meta
languages are themselves domain specific languages. Pattern
languages, such as OMeta [35] and π [18], allows defining
patterns and their semantics and can be also used as meta
languages for EDSLs.

7. Discussion and Future Work
Library Code Generation The EriLex code generator sup-
ports generating library code that encodes the syntax and se-
mantics of EDSLs from EDSL specifications written in the
EriLex Specification Language (ESL). [39] Although the tar-
get language of EriLex is Java, it can be easily modified to
generate code for Eria.

Usability In this paper, we demonstrated how Eria can be
used to construct usable static language embeddings. There
are other aspects of usability that needs to be studied fur-
ther. Part of future work is to study how the current design
works in EDSLs that are more complex than the STLC and
formalize other parts of usability.

Proof We did not formally prove that our examples are us-
able embeddings, although it is clear that these examples are
usable embeddings. However, for more complex languages
or a general embedding framework [38], proving that the
embedding is a uasable embedding is necessary. Also, given
FE, we can prove that a general language embedding frame-
work preserves the semantics of object language specifica-
tions.

Runtime Efficiency Improving the runtime efficiency of
EDSLs in Eria is part of future work. We discuss a few op-
tions to improve the efficiency. The first option is to intro-
duce the final keyword that functions in a similar way to
Java. If a method is declared as final, than we can inline the
method and perform further reductions. For example, we can
eliminate unnecessary creation of intermediate objects. The
second option is to construct an AST and partially evaluate
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it. The third option is to use a well-typed code generator such
as that in Example 4.2 and compile the generated code.
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