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Abstract—We present an efficient algorithm to solve the acoustic wave equation that is used to model the propagation of sound
waves through a material medium. Our approach assumes that the speed of sound is constant in the medium and computes an
adaptive rectangular decomposition(ARD) of the environment. We map the algorithm to many-core GPU architectures by performing
discrete cosine transforms (DCTs) inside each rectangular volume along with a sixth order interface handling at the boundaries. The
entire solution to the second order PDE is computed on the GPU and we highlight many techniques to accelerate its performance by
exploiting the features of GPU architectures. We highlight the performance of our algorithm in terms of computing impulse responses
and sound propagation in complex 3D models. In practice, we observe a performance gain of more than 500X over finite-difference
time-domain(FDTD) methods. The use of GPUs also results in almost one order of magnitude improvement over CPU-based ARD
algorithms. To the best of our knowledge, this is the fastest method for solving the acoustic wave equation.

Index Terms—Computational acoustics, GPU-based algorithms, adaptive decomposition.
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1 INTRODUCTION

Computational modeling and simulation of acoustic
spaces is fundamental in many scientific and engineering
applications [?]. The demands vary widely, from inter-
active simulation in computer games and virtual reality,
to highly accurate offline room acoustic computations
for musical halls and other man-made architectural or
computer-aided design structures. Acoustic spaces may
include large multi-room spaces or aircraft cabins with
complex geometric shape and material properties, as
well as outdoor spaces corresponding to urban models
and open landscapes. For example, airplane and jet man-
ufacturers deploy large noise engineering laboratories
for measurements related to aircraft noise [?]. Other
designers of man-made structures such as urban layouts,
habitation [?], and automobile manufacturers [?] utilize
acoustic simulation technologies for improving design
and reducing needs for physical prototypes.

Computational acoustics has been an area of active
research and has developed in conjunction with diverse
fields, such as seismology, geophysics, meteorology, etc.
for almost half a century. Nevertheless, achieving good
acoustics in large complex structures remains a ma-
jor computational challenge [?]. The most common ap-
proach to acoustic simulation is a two-stage process:
the computation of impulse responses (IRs) representing
an acoustic space, and the convolution of the impulse
responses with dry (i.e. anechoically recorded or syn-
thetically generated) source signals. The IR computation
relies on an accurate calculation for modeling the time-
varying spatial sound field. The sensation of sound is
due to small variations in air pressure and the variations
are governed by the three-dimensional wave equation

which relates the temporal and spatial derivatives of the
pressure field [31].
Computational Challenges: One of the key challenges
in acoustic simulation are the computational require-
ments of an accurate solver. Depending on the particular
method used (e.g. finite element or finite difference
methods), the spatial discretization to solve the wave
equation needs 6 − 10 nodes per wavelength in order
to resolve the frequencies faithfully [31]. If the entire
frequency range of human hearing needs be simulated
(i.e. up to 22kHz), then the spacing between the nodes
would need to be 1.5 − 2.5mm. As a result, a cubic
meter of acoustic space needs to be filled with 64− 300
million nodes and the complexity increases proportion-
ally with the volume of the acoustic space. As a result,
prior numerical solvers for the acoustic wave equation
are limited to rather simple or small spaces and are
often regarded as time-consuming. Most current acoustic
simulation systems use geometric acoustic techniques,
which are only accurate for higher frequencies and early
reflections and may not be able to model the diffraction
effects.

Main Results: We present a GPU-based algorithm
for numerically solving the wave equation that per-
forms adaptive rectangular decomposition (ARD) of the
acoustic space. Our approach assumes a homogeneous
medium in which the speed of sound is constant. Our
formulation based on ARD results in no dispersion
errors inside the rectangular cells, as compared to prior
methods that are based on FDTD (finite-difference time
domain) methods. We exploit the computational capabil-
ities of many-core GPUs to accelerate the computations,
by mapping all the component of the algorithm to cur-
rent GPU architectures by using a high number of par-
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allel threads. Moreover, we take into account the mem-
ory hierarchies of current GPUs to design appropriate
methods to obtain high throughput. The number of cells
used in ARD increases as the third power of frequency
and our algorithm is able to obtain a speedup of over
500X over FDTD methods on current high-end GPUs
(e.g. NVIDIA Quadro FX 5800), as long as the entire
decomposition can fit into GPU memory. Moreover, we
demonstrate that it is possible to effectively parallelize
all stages of such a simulator, including boundary layer
treatments, on current GPU architectures. In particular,
ours is the first algorithm that can run simulations on
scenes with volumes in the range of 14,000m3 and gen-
erate impulse responses on 1kHz sources for auralization
within 10 minutes on a desktop computer.

We analyze the performance of our algorithm and
show that its various components map well to the
current GPU architectures and are able to exploit the
computational capabilities of high number of cores. Fur-
thermore, GPU-based ARD algorithm is about an order
of magnitude faster than CPU-based ARD algorithms.
Organization: The rest of the paper is organized in the
following manner. We give a brief overview of prior
work on different solvers for acoustic wave equations
and GPU-based numerical algorithms in Section 2. We
describe the adaptive rectangular decomposition (ARD)
algorithm in Section 3 and highlight its benefits over
prior acoustic solvers. Section 4 describes our GPU-based
algorithm to solve the acoustic wave equation based
on ARD. We describe our implementation in Section 5
and analyze its performance on different benchmarks in
Section 6.

2 RELATED WORK

Wave Equation The physics for room acoustics, as well
as many other areas, can be described with good ac-
curacy by the well known Wave Equation in the time-
domain, which we will henceforth refer to simply as the
Wave Equation –

∂2p

∂t2
− c2∇2p = f (x, t) . (1)

The Wave Equation models sound waves as a time-
varying pressure field, p (x, t). While the speed of sound
in air (denoted c) exhibits slight fluctuations within a
room due to changes in temperature and humidity, these
can be ignored to good accuracy for most cases [18], as
we do in this paper. We chose a value of c = 340ms−1

corresponding to dry air at 20 degrees centigrade. Vol-
ume sound sources in the scene are modeled by the
forcing field denoted f (x, t) on the RHS in the Equation
1. The operator ∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 is the Laplacian
in 3D. The Wave Equation succinctly captures wave
phenomena such as interference and diffraction that are
observed in reality.

Numerical solvers for the Wave Equation Accurate
high-frequency wave propagation is a very challeng-
ing computational problem because the smallest wave-

lengths govern the grid resolution and the scene can
be thousands of wavelengths long in each dimension
[39]. There is a large body of existing work on solv-
ing the Wave Equation developed over the past few
decades. These methods may be roughly classified into
Finite Element Methods (FEM) [38], [34], Boundary Ele-
ment Method (BEM) [7], Finite Difference Time Domain
(FDTD) [39], [32] and spectral methods [6]. Besides
acoustic spaces, the underlying numerical methods are
also useful for seismic forward acoustic modeling [22].

FEM solves for the field on an unstructured volumetric
mesh, which works well for conforming to the (possibly
complex) shape of the domain boundary. Mesh quality
is critical to the quality of the solution and generating
meshes of good quality is a central concern with FEM
methods. BEM, achieves a one-dimension reduction, re-
quiring only a discretization of the boundary of the do-
main. The field in the interior of the domain is expressed
in terms of a boundary integral formulation. FEM and
BEM have traditionally been employed mainly for the
steady-state wave equation, as opposed to the full time-
domain Wave Equation, with FEM applied mainly to
interior and BEM to exterior scattering problems [16].

In contrast, the FDTD method was explicitly designed
for solving the time-domain Wave Equation by Yee [37].
FDTD is an established technique for electromagnetic
simulation [32] and seismic forward modelling [8], [14].
The FDTD method for room acoustics solves for the
time-dependent pressure field on a Cartesian grid by
making discrete approximations of the spatial derivative
operators and using an explicit time-stepping scheme.
Initial work was limited to small scenes in 2D due to
computational limitations[4], [5]. Recently, FDTD has
been applied to medium-sized scenes in 3D for room
acoustic computations[29], [28], [30]. The implementa-
tion can take days of computation on a small cluster for
medium-sized 3D scenes.

Spectral techniques achieve much higher accuracy
than FEM/BEM/FDTD by expanding the field in terms
of global basis functions [6]. In the context of room
acoustics, the Pseudo-Spectral Time Domain algorithm
[20] has been proposed in the past. However, temporal
discretization errors are still present due to explicit time-
stepping.

Geometric methods for the Wave Equation In the
limit of infinite frequency, the Wave Equation can be
expressed in terms of the geometric approximation (GA)
– expressing wave propagation as rays of energy quanta.
The history of GA methods for acoustics goes back
roughly four decades [17], [1]. Most present-day room
acoustics software use GA [27].

2.1 GPU based algorithms

GPUs have been widely used to accelerate many scien-
tific, geometric, database and imaging computations [10],
[23]. These include numerical algorithms for FFTs [11],
[12] and Linear Algebra Computations [36], [3] on the
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GPU. Currently GPUs are being used to solve different
PDEs that arise in solving the electromagnetic wave
equation [15], the Navier-Stokes equation [33], FEM
simulation [19] and many other scientific applications,
including seismic simulations [22], fluid dynamics [35],
molecular dynamics [2], weather forecasting [21], etc. on
a desktop machine.

3 ADAPTIVE RECTANGULAR DECOMPOSITION
In this section, we give an overview of Adaptive Rectan-
gular Decomposition (ARD) solver [25] and highlight its
benefits over prior solvers for the acoustic wave equation
for uniform medium. Our GPU-based wave equation
solver is based upon the ARD solver.

3.1 Background
Numerical errors in wave simulators arise from the
discrete approximation of the differential operators in
time and space. For finite-difference methods such as
FDTD, these errors manifest as numerical dispersion –
all frequencies don’t travel with the same speed leading
to accumulative errors that eventually destroy the wave-
form being propagated. The ARD technique avoids such
dispersion errors by decomposing the scene into non-
overlapping rectangular partitions. Within each partition,
the field is expanded in a spectral basis. Owing to the
rectangular shape, the basis can be chosen to satisfy the
Wave Equation directly. Assuming sound-hard walls for
the rectangles, the basis functions turn out to be Cosine
functions. Mathematically, the pressure field p (x, y, z, t)
on the rectangular region [0, lx] × [0, ly] × [0, lz] is ex-
pressed as –

p (x, y, z, t) =
∑

i=(ix,iy,iz)

mi (t) Φi (x, y, z) , (2)

where mi are the time-varying spectral (mode) coeffi-
cients to solve, and Φi are the basis functions, given by
–

Φi (x, y, z) = cos

(
πix
lx
x

)
cos

(
πiy
ly
y

)
cos

(
πiz
lz
z

)
.

The global solution is composed by coupling the inte-
rior solutions via sixth-order accurate, finite-difference
transmission operators at the artificial interfaces. These
operators are local to reduce computation and they can
lead to some small amount of low-amplitude, fictitious
reflections at the interfaces.

Due to the accuracy gained by solving the wave
equation analytically, ARD can propagate sounds for dis-
tances equal to thousands of wavelengths on very coarse
grids close to the Nyquist limit without destroying the
waveform. On the other hand, FDTD requires much
finer grids and is thus slower. Both FDTD and ARD
operate on a Cartesian grid in the volume of the scene –
the crucial parameter being the number of samples per
wavelength, s. The grid cell size is thus given by h = λ/s
where λ is the wavelength. To model absorbing scene
boundary, Perfectly Matched Layer (PML) [26] absorbing
layers are employed.

s # cells # steps # FLOPS Total cost
N = V/h3 t/dt per cell (TeraFLOPS)

FDTD 10 254 Million 17000 55 237.5
ARD 2.6 4.5 Million 4500 120 2.4

TABLE 1
FLOPS comparison of FDTD vs ARD on a scene of volume

V = 10, 000m3 with maximum simulation frequency vmax = 1kHz for
the duration t = 1 sec. Theoretically, ARD which uses s=10 is nearly

hundred times efficient than FDTD(s = 2.6) on account of using a
much coarser grid.

3.2 Accuracy and Computational Aspects

In this section, we highlight some benefits of ARD
over prior methods. A direct theoretical comparison of
performance of FDTD vs ARD for the same amount of
error is difficult since both techniques introduce different
kinds of errors. However, it is possible to compare them
by assuming tolerable errors with both the techniques.
Since the final goal in room acoustics is to auralize the
sounds to a human listener, it is natural to set these error
tolerances based on their auditory perceivability, as we
briefly discuss below.

For FDTD, we assume s = 10, as is common practice
in FDTD applied to room acoustics [29]. Using s = 2.6
with ARD [25], the fictitious reflection errors can be kept
at a low level of −40dB. This means that for a complex
scene with many interfaces, the overall loudness of the
fictitious interface errors is 40dB below the level of
the ambient sound field, rendering them imperceptible
as demonstrated with auralizations in [24]. Therefore,
tolerable errors are achieved with ARD with a much
coarser sampling (s = 2.6) compared to FDTD (s = 10).
Computational expenditure: Table 1 shows a theoret-
ical performance comparison of FDTD and ARD. For
illustrative purposes, we consider a point source that
emits a broadband Gaussian pulse band-limited to a
frequency of ν = 1kHz, corresponding to a wavelength
of λ = c/ν = 34cm. We further assume that the scene
has an air volume of V = 10, 000m3 and a 1 second
long simulation is performed. The number of cells with
either technique is given by N = V/h3. The simulation
time-step is restricted by the CFL condition dt ≤ h/c

√
3,

smaller cell sizes require proportionally smaller time-
steps. The performance thus scales as ν4, ν being the
maximum simulated frequency.

The update cost for sixth-order accurate FDTD in 3D
is about 40 FLOPS per cell (plus the cost of boundary
treatment (PML), which is the same as for ARD). The
total cost for ARD can be broken down as: DCT and
IDCT1 – 4NlgN , mode update – 9N, interface handling
– 300 × 6N2/3 and boundary treatment (PML) – 390 ×
6N2/3. The 6N2/3 term approximates the surface area of
the scene by that of a cube with equivalent volume. As
can be seen from Table 1, theoretically ARD is nearly 100
times more efficient than FDTD. In practise, the CPU-
based ARD is 50-75X faster than FDTD implementation,
as discussed in detail in Section 6. Also, ARD is highly

1. Assuming a DCT and IDCT take 2NlgN FLOPS each.



4

Fig. 1. Stages of ARD: In the preprocessing stage, the input domain is voxelized at grid resolution h and adaptively decomposed in rectangles.
Artificial Interfaces and PML absorbing layers are created between neighboring partitions and on the scene boundary respectively. During the
simulation stage, interface handling is first performed between neighboring partitions and the computed forcing terms transformed to the Cosine
spectral basis through DCT. These are then used to update the spectral coefficients (mode update) to propagate waves within each partition. Lastly,
the field is transformed back from spectral to spatial domain using IDCT to yield the updated field. Also, Perfectly Matched Layer (PML) partitions
might be used to model absorptive surfaces, as shown on the right wall.

memory efficient – ten times more so than FDTD – since
it requires fewer cells, as shown in col. 3 of Table 1. This
makes it possible to perform simulations on much larger
scenes than FDTD without overflowing main memory or
GPU memory.

3.3 Computational Pipeline

ARD has two primary stages, Preprocessing and Sim-
ulation. In the preprocessing stage, the input scene is
voxelized at the grid resolution h, determined by the
maximum simulation frequency νmax. This is followed
by a rectangular decomposition step in which adjacent
grid cells generated during voxelization are grouped into
rectangles, as illustrated in Figure 1. We call these rect-
angles air partitions. Next, it creates artificial interfaces
between adjacent rectangles and PML absorbing layers
on the scene boundary. Partitions created for the PML
absorbing layer are referred to as PML partitions. This
one-time computation takes 1-2 mins for most scenes,
which is negligible in comparison to the cost of the
simulation itself.

During the simulation, the global acoustic field is com-
puted with a time-marching scheme. The computation at
each time-step is as follows (see Figure 1):

1) For all interfaces: Interface handling to compute
force f within each partition

2) For all air partitions:
a) DCT of force f to spectral domain f̃
b) Mode update for spectral coefficients p̃
c) IDCT of p̃ to pressure p
d) Normalize pressure

3) For all PML partitions: Update pressure field
During step 1, the coupling between adjacent partitions
(air-air and air-PML) is computed to produce forcing
values to be applied within partitions. In steps 2 and
3, these forcing values are used to update the pressure
fields within the air and PML partitions respectively.
While air partitions are updated in the spectral domain,
transforming to and from spatial domain using IDCT
and DCT, PML partitions employ a finite-difference

implementation of a fictitious, highly dissipative wave
equation [26] to perform absorption.

Parallelization considerations: Note that only step 1
requires communication between partitions (air or PML).
Thus, ARD exhibits a high level of parallelism – all
partitions (air and PML) in steps 2 and 3 can clearly
be processed in parallel. Also, all interfaces in step 1
could also be processed in parallel. In addition, all the
component steps are quite data parallel, as we discuss
below. For detailed equations, please refer to the original
paper [25].
DCT and IDCT (steps 2a and 2c) can be computed
through Fast Fourier Transform(FFT), which is known
to be highly data-parallel. Fast, efficient libraries are
available for exploiting GPUs to perform this task [13].
Mode update (step 2b) is trivially parallel, since all
mode coefficients are updated independently as –

p̃n+1
i = aip̃

n
i − p̃n−1

i + bif̃
n (3)

Here ai, bi are mode-specific constants, f̃n is the forcing
value calculated in step 2a and p̃ji is the mode coefficient
value of mode i at time-step j. The total number of
modes over all partitions is equal to the number of grid
cells (typically in millions) and all these modes can be
updated in parallel as above.
Interface Handling and PML (steps 1 and 3) both
compute spatial derivatives, which is performed by com-
puting the second derivative Di at a grid cell (indexed
i) by the application of a finite-difference stencil –

Di =

k∑
d=−k

β(d)pi+d (4)

Here β is the (constant) finite-difference stencil with
fixed width of 2k+ 1. For a sixth-order accurate scheme,
k = 3, corresponding to a stencil width of 7. While each
cell needs to read values from neighbors, it updates its
own pressure based on the computed value of Di. Thus,
this is a gather operation, which is very amenable to
GPUs. Additionally, since every cell only updates its own
values, there is no risk of race-conditions while writing
and all grid cells on interfaces as well as within PML
partitions can be updated in parallel.
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4 GPU-BASED ACOUSTIC SOLVER

In previous sections, we discussed computational ef-
ficiency and parallelization potential of ARD. In this
section we describe our parallel GPU-based acoustic
wave equation solver built on top of ARD. We discuss
key features of our approach and some of the issues that
arise in parallelizing our approach on many-core GPU
architectures.

4.1 Key Issues
Two levels of parallelism. ARD technique exhibits two
levels of parallelism a) coarse grained and b) fine grained.
Coarse grained parallelism is due to the fact that each
of the partitions(air or PML) solves the wave equation
independently of each other. Therefore, given enough
number of processors, each partition can be solved in
parallel at the same time. Fine grained parallelism is
achieved because within each partition all the grid cells
are independent of each other with regards to solving the
wave equation at a particular time-step. For solving the
wave equation at the current time-step, a grid cell may
use p, f, p̃, f̃ values of its neighboring cells computed
at previous time-step but is completely independent of
their p, f, p̃, f̃ values at the current time-step. Therefore
within each partition all the grid cells can run in parallel
exhibiting fine grained parallelism.

Our GPU-based acoustic solver exploits both these
levels of parallelism. We launch as many kernels in
parallel as there are partitions. Each kernel is responsible
for solving the wave equation for a particular partition.
Within each kernel, each grid cell corresponds to a thread
and we create as many threads as the number of grid
cells in that rectangle. All these threads are grouped
into blocks and grids and scheduled by the runtime
environment on the GPU.
Avoid host-device data transfer bottleneck. The host-
device data link via PCI express or Infiniband, is a pre-
cious resource that has a limited bandwidth. Many prior
GPU-based numerical solvers based upon the hybrid
CPU-GPU design suffer from data transfer bottleneck as
they have to transfer data between host-device at each
simulation step.

We have designed our GPU-based solver to ensure
that the data-transferred between the CPU-host and
GPU-accelerator is minimal. In our case, we avoid the
hybrid CPU-GPU approach and instead parallelize the
entire ARD technique on the GPU. The only host-device
data transfer that is done is for storing the pressure grid
p after each simulation step. Since the pressure grid is
stored at a much lower resolution for typical auralization
applications, typically 1/43, 1/83, 1/163 of the original
size, this cost is negligible. The only limitation is that
our simulation is limited to cases where the entire rect-
angular decomposition needs to fit into GPU memory.

To provide an intuition of host-device data transfer,
consider a room of volume 10, 000m3 for which we solve
the wave equation at νmax = 2, 000Hz. We consider

Scene Volume νmax # partitions # grid cells
(m3) Hz (air+pml) (in millions)

L-shaped room 13520 1875 424+352 22
Cathedral 13650 1800 7979+14303 21
Walkway 9000 1875 937+882 20

Train station 83640 1350 3824+4945 17
Living room 7392 1875 3228+4518 17
Small room 162 7000 3778+5245 20

TABLE 2
Typical values of scene parameters for all the benchmarks at different

values of νmax. Number of partitions are calculated by using our
computationally optimal decomposition. Number of pressure values

updated at each time-step is equal to the number of grid cells.

a hybrid CPU-GPU system of Raghuvanshi et al. [24]
where only the DCT/IDCT stages of the technique are
parallelized on GPU. In this case, at each time-step the
grid f is transferred from CPU to GPU for DCT, f̃ is
returned back by the GPU, p̃ is transferred from CPU to
GPU for IDCT and the final pressure p is return by the
GPU to the CPU. Since the size of all p, f, p̃, f̃ is equal
to number of grid cells, the total data transfer cost per
time-step is 4 x # grid cells x sizeof(float) = 4V

(
sνmax

c

)3
x 4 bytes = 4x10000x

(
2.6x2000

340

)3 x 4 bytes = 145 MB. As
a result, only 2-3X speedup is achieved by this approach
on the GPU. In our case, we only need to transfer
pressure grid p for storage at the end of time-step and at
lower resolution(1/83). Thus our data transfer per time-
step = 1/83 x # grid cells x 4 bytes = 3 kB. Data-transfer
for such a small size is almost immediate(< 1 msec). Our
GPU-based solver achieves a speedup of 6-14X.
Computationally optimal decomposition. Rectangular
decomposition proposed by Raghuvanshi et al. [25] uses
a greedy heuristic to decompose the voxelized scene
into rectangles. Specifically, they place a random seed
in the scene and try to find the largest fitting rectangle
that can be grown from that location. This is repeated
until all the free cells of the scene are exhausted. The
cost of DCT and IDCT steps implemented using FFT
depends on the number of grid cells in each partition.
FFT operations are known to be extremely efficient if
the number of grid cells are powers of 2. The proposed
heuristic may produce partitions with irregular number
of grid cells(not necessarily powers of 2) significantly
increasing the cost of the DCT and IDCT operations.

We propose a new approach to perform the rectan-
gular decomposition that takes into account the com-
putational expenditure of FFTs and its efficiency with
powers of 2. Specifically, while performing rectangular
decomposition, we impose the constraint that the num-
ber of grid cells in each partition should be a power of 2.
Similar to the original approach, we try to fill the largest
possible rectangle that could fit within the remaining
air volume of the scene. But instead of directly using
it we shrink its size in each dimension to the nearest
power of two and declare the remaining cells as free. We
repeat this step until all free cells of scene are exhausted.
This increases the efficiency of the FFT computations and
results in a speedup of 3X in the running time of DCT
and IDCT steps on the GPU.
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Our approach might produce higher number(2-3X)
of rectangular partitions, but since the total number
of grid cells in the entire volume of domain remains
constant(N = V/h3), it does not increase the total FLOPS
and thereby running time of the DCT, IDCT and mode
update steps. However, since more partitions results in
larger interface area, the interface handling cost increases
by 25-30%. But since DCT and IDCT are the most time-
consuming steps of the ARD technique(Figure 5), the
gain achieved by faster DCT and IDCT far outweighs
the increased interface handling cost.
4.2 Our GPU approach
Among ARD’s two main stages, the pre-processing is
performed only once in the beginning and its contribu-
tion to the total running time is negligible, we keep this
stage on the CPU itself and parallelize the simulation
stage on the GPU. We perform the voxelization and
rectangular decomposition on the CPU. Once we have
the rectangular decompositions, we create the corre-
sponding pressure p, force f , spectral pressure p̃, spectral
force f̃ data-structures on the GPU. The simulation stage
has 5 main steps(see Figure 1) and each of them is
performed in sequential order. In other words, the step
i+ 1 only starts after step i is finished. We now discuss
the parallelization of all these steps on GPU in detail.
Interface handling. This step is responsible for comput-
ing forcing terms f at the artificial interfaces between
air-air & air-PML partitions. These forces account for
the sound propagation between partitions. As briefly
discussed in Section 3.3, this step is quite data parallel –
to compute the forcing term at a cell, only values in its
spatial neighborhood are needed. The overall procedure
consists of iterating over all interfaces, applying the
finite difference stencils to compute forcing values and
additively accumulating them at the affected cells. Thus,
all interfaces could potentially be processed in parallel
as long as there are no collisions and no two partitions
update the forcing value at the same cell. This can
happen at corners, as shown in the figure below.

Fig. 2. Interfaces 1 and 2 update forcing values of cells lying in their
neighboring partitions. There is a Concurrent Write(CW) hazard in the
hatched corner region (labeled ”Collision”)

Interfaces 1 and 2 both update the forcing values
3-cells deep of their shared partitions. However, for
partition P, cells lying in the hatched region (marked
“Collision”) are updated by both interfaces 1 and 2.
These corner cases need to be addressed to avoid race
conditions and concurrent memory writes. The GPU and
its runtime environment places the burden of avoiding
concurrent write (CW) hazards on the programmer.

CW hazards can be avoided by running the interface
handling step one interface at a time and synchronizing
all the threads after each step. But for an arbitrary
scene, the number of interfaces can run into thousands,
making this approach very inefficient. Another possible
approach is to use AtomicAdd instruction supported by
many GPUs. AtomicAdd(m, c) adds a value c to the value
at shared memory location m in a single instruction in
a thread-safe manner. However, the AtomicAdd instruc-
tion for floating point values is not supported on most
GPUs.

Fortunately, CW hazards can be avoided completely
by using a conceptually simple technique – All interfaces
are grouped into 3 batches consisting of interfaces with
normals in the X, Y and Z directions respectively. Since
all partitions are axis-aligned rectangles, every interface
has to fall into one of these categories. By processing all
interfaces within each batch in parallel and separating
batches by a synchronization across all threads, all CW
hazards in the corners are avoided completely. Our
approach is an order of magnitude faster than the one
kernel per interface approach and at least as fast as using
AtomicAdd but more general and well-supported on all
GPUs.
DCT(f ) . The DCT step converts the force f from the
spatial domain to the spectral domain f̃ . DCT’s are ef-
ficiently computed using Fast Fourier Transforms(FFTs).
Typical FFT libraries running on GPU give are an order
of magnitude faster than optimized CPU implementa-
tions. Since DCT and IDCT steps are among the slowest
steps of the technique, parallelization of these steps have
a drastic improvement in the running time of the entire
ARD technique.
Mode update p̃ . The mode update step uses the
pressure and force in spectral domain p̃, f̃ of previous
time-step to calculate p̃ at the current time-step. This
step consists of linear combinations of p̃, f̃ terms (see
Equation 3) and can be trivially parallelized. We spawn
as many threads as the number of modes in the scene
and perform the computations of Equation 3 on the GPU.
Normalize pressure p. This step multiplies a constant
value to the pressure p and similar to mode update step,
this is also trivially parallelizable.
IDCT(p̃). This step converts the pressure in spectral
domain p̃ back to pressure in spatial domain p. Similar to
DCT, the IDCT are also efficiently computed using FFTs.
PML absorption layer. The PML absorbing layer is re-
sponsible for sound wave absorption by the surfaces and
walls of the 3D environment. It is applied on a 5-10 cell
thick partition depending on the desired accuracy [26],
[25] and uses a 4th order finite-difference stencil for
computation. Based upon the distance of the grid cell
from the interface, PML performs different computations
for different grid cells. Due to this, there are a lot of
inherent conditionals in the algorithm. An efficient im-
plementation of PML depends on minimizing the effect
of these conditionals. We achieve this by moving the
conditionals out of the kernel and launching separate
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kernels for different execution paths of the algorithm.

5 IMPLEMENTATION

The original CPU-based ARD solver uses a serial version
of FFTW library [9] for computing DCT and IDCT steps.
The CPU code uses two separate threads - one for air
partitions and other for PML partitions, and performs
both these computations in parallel. For simplicity of
comparison with our GPU-based implementation, we
measure the sequential performance of the CPU-based
solver with only a single thread.

We implemented our GPU-based wave equation
solver using NVIDIA’s CUDA API with version 3.0 and
require minimum compute capability 1.0. Both the orig-
inal CPU-based ARD code and our current GPU-based
ARD code are sufficiently accurate in single precision.
The following compiler and optimizations options are
used for our GPU code:

nvcc CUDA v3.0 : Maximize Speed (/O2)

Our DCT and IDCT kernels are based upon the FFT
library developed by Govindraju et al. [13]. We use
CUDA routine cudaThreadSynchronize() for synchronizing
threads during interface handling and after each step of
the simulation stage. The performance of the GPU-based
ARD algorithm described in Section 4 can be improved
by means of following optimizations. These include:
Batch processing. Interface handling, DCT, IDCT, mode
update and pressure normalize kernels form the main
components of our GPU-based solver, where each kernel
corresponds to a step of the simulation stage. Launching
a new kernel for each individual rectangular partition,
PML absorbing layer partition and interface can be very
inefficient, especially when the number of partitions
and interfaces run in thousands. This is typically the
case for complex models like the cathedral, train station
etc. Each kernel launch has an associated overhead and
launching thousands of kernels can have a drastic impact
on the overall running time. To avoid this overhead we
perform batch processing, i.e. group together partitions
and interfaces into independent batches and launch a
kernel for each batch. Therefore, instead of launching
P + I kernels where P is the number of partitions and I
is the number of interfaces, we launch as many kernels
as there are the number of batches.

For DCT and IDCT kernels, partitions are grouped into
batches by using the BATCH FFT scheme of the GPU-
FFT library [12]. Mode update and normalize pressure
steps have no dependency between different partitions,
and can be grouped in a single batch resulting in just one
kernel launch. Interface handling, as discussed before,
can have data dependency among different interfaces
while updating the pressure values. For interface han-
dling, we group the interfaces in separate independent
batches with one kernel launch for each batch followed
by a call of cudaThreadSynchronize(), for synchronizing all
the CUDA threads.

Maximizing coalesced memory access. Global memory
on the GPU is not cached and the access pattern can
have a huge impact on its bandwidth. Global mem-
ory accesses are most efficient when memory accesses
of threads of a half-warp can be coalesced in a single
memory access. Our p, f, p̃, f̃ data-structures and their
memory access patterns for the mode update and nor-
malize pressure kernels are organized in a way such that
each thread of index i accesses these single precision
float data-structures at position i itself. Thus the memory
access pattern of a half-warp is perfectly coalesced. DCT
and IDCT kernels based upon FFT library [13] use
memory coalescing as well. Our PML handling kernel
achieves for thread i accesses memory at locations α+ i
where α is constant. This kind of access results in a
coalesced memory access on device with compute ca-
pability >= 1.2 but not on 1.0 and 1.1. The interface
handling step can access p, f from many partitions de-
pending upon the rectangular decomposition and there-
fore achieving coalesced memory access for this kernel
is difficult.
Minimize path divergence . The impact of conditionals
on the performance of the GPU kernel can be very
severe. The interface handling and the PML absorbing
layer steps of the simulation stage have conditionals that
are based upon the distance of the grid cells from the
interface. In our implementation, we take specific care in
minimizing these effect of conditional branching. Instead
of launching a single kernel with conditional branching,
we launch separate small kernels corresponding to dif-
ferent execution paths of the code.

6 RESULTS

We compare our GPU-based acoustic wave equation
solver with the CPU implementation provided by the
authors of ARD [25]. We use Nvidia Quadro FX-5800
graphics card with a core clock speed of 650 MHz,
graphics memory of 4 GB with 240 CUDA cores. We
also profiled our algorithm on other GPU’s with 128
and 32 CUDA cores, to evaluate scaling of our algorithm
with number of cores. CPU timings are reported for Intel
Xeon X5560 with processor speed of 2.8 GHz. Timings
are reported by running the simulation over 100 time-
steps and take the average.

In Figure 3(a), we compare the performance of the
CPU-based solver with our GPU-based solver with vary-
ing maximum frequency νmax of simulation. As can
be seen, GPU-based solver performs better as νmax in-
creases. Figure 3(b) shows the speedup achieved by
our GPU-based solver over the CPU. For smaller fre-
quencies, the amount of work available is considerably
less, resulting in nominal speedup. But as the frequency
increases above 1300 Hz, our GPU-based acoustic solver
outperforms its CPU counterpart by a factor of 6-13X
on different scenes. Rectangular decomposition of simple
scenes like L-shaped room gives fewer air partitions(see
Table 2 column 4) resulting in fewer batches(Section 5)
of larger size. Fewer batches means fewer kernel calls
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over the CPU-based solver with varying νmax for the different test scenes. For vmax > 1300Hz, we achieve a speedup of 6-13X.
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Fig. 4. a) (Left) Simulation time(in msec) per time-step of CPU-based and GPU-based ARD solver with varying scene volume for the
walkway scene with fixed νmax = 472Hz. b) (Right) Speedup(=CPU time/GPU time) achieved by our GPU-based ARD solver over the CPU
implementation with varying scene volume for the different test scenes. vmax values used are as follows- L-shaped room(450Hz), Cathedral(412Hz),
Walkway(472Hz), Train station(285Hz) and Living room(487Hz). For both figures, we scale the original volume of the test scenes by the Scaling
Factor. As the scene volume increases, we achieve a higher speedup and for 64 times the original volume, the speedup becomes 6-14X.

reducing the total overhead of kernel launches. Even
the DCT and IDCT based on GPU-FFT are much more
efficient on large sized inputs. This results in higher
speedups for simpler scenes.

We also analyze the performance of our solver with
varying scene volume. We take the Cathedral scene and
scale its volume uniformly in the range of 1X to 64X. In
Figure 4(a), we observe again that as the amount of work
increases with increasing scene volume, the performance
of GPU-based solver scales better compared to the CPU
solver. Speedup achieved by our GPU-based solver for
varying scene volume also shows a similar behavior(see
Figure 4(b)). Scaling the volume by 16X gives a speedup
of 4-8X and as the scaling factor increases to 64X, we
achieve a speedup of 6-14X on different scenes.

Figure 5 shows the breakup of the time spent on
various steps of the simulation stage. In the original
CPU-based ARD solver, the DCT/IDCT steps and the
Perfectly Matched Layer(PML) heavily dominate the
computation time. But for the GPU-based solver, as can
be seen, all the stages of the pipeline are more or less
balanced except mode update and normalize pressure,
whose costs become negligible compared to other steps.
We investigate the speedup of our GPU acoustic solver
in detail, by measuring the individual speedup achieved

by different stages of the ARD technique on the GPU
(see Figure 6). Our DCT & IDCT kernels implemented
using FFT library [12], give us a speedup of 7X on
the GPU. Mode update stage and normalize pressure
both of which are trivially parallel and PML without
conditionals, achieve a higher speedup of 14X, 10X and
9X respectively on the GPU. The last stage of ARD,
interface handling, involves a lots of uncoalesced mem-
ory accesses resulting in a nominal speedup of 2X. But
since the contribution of interface handling to the overall
running time is far less than DCT, IDCT and PML(see
Figure 5), it does not become a bottleneck.

We tested our algorithm on three different GPUs each
with different number of CUDA cores : Quadro FX 5800,
GeForce 8800GTX and GeForce 9600M GT each with
240, 128 and 32 CUDA cores respectively. We performed
scalability analysis of our solver with different number
of CUDA cores. Figure 7 shows the performance of our
solver on the cathedral and the small room scene with
varying νmax as the number of CUDA cores increase. As
can be seen, our GPU-based solver scales linearly with
the number of cores available. Increasing the number
of CUDA cores 4 times from 32 to 128 results in a
speedup of 3− 4X and from 32 cores to 240 cores gives
a speedup of 7 − 8X. As the amount of work increases
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with increasing νmax, the performance scaling becomes
perfect. This shows that our GPU-based ARD solver is
compute-bound rather than by memory bandwidth.

We also perform a performance comparison of FDTD
solver, CPU-based ARD solver and our GPU-based ARD
solver with varying maximum frequency of simulation
νmax(see Figure 8). As can be seen, CPU-based ARD-
solver achieves a speedup of 50-75X over the FDTD.
Our GPU-based ARD solver achieves a speedup of over
500X over FDTD for the same scene. Since FDTD runs
out of memory for νmax > 3750Hz, we use the timings
below 3750Hz and the fact that simulation time varies as
fourth power of νmax, to calculate the projected timings
for FDTD above 3750Hz

7 CONCLUSION AND FUTURE WORK

In this paper, we have presented an efficient GPU-based
solver for acoustic wave equation. Our formulation is
based on adaptive rectangular decomposition of the
acoustic space and we present methods to map all the
steps of the algorithm to GPU architectures. We observe
more than two orders of magnitude improvement over
prior solvers based on FDTD. Moreover, the use of GPUs
can accelerate the computation by almost one order of
magnitude as compared to the CPU-based ARD solver.
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Fig. 8. We plot speedup achieved by CPU-based ARD solver and
our GPU-based ARD solver over FDTD with varying νmax for the
small room (6.1mx7.8mx3.4m) as our benchmark. We calculate the
speedup of ARD solvers over FDTD as (simulation time per time-step
for FDTD)/(simulation time per time-step for ARD). FDTD runs out of
memory from νmax > 3750 Hz for this scene. We use projected time
to calculate FDTD timings above 3750 Hz. Our GPU-based ARD solver
achieves a maximum speedup of 550X over FDTD compared to CPU-
based ARD which only achieves a maximum speedup of 75X.

Our approach has some limitations. The ARD formula-
tion assumes uniform medium and does not model the
variations in the temperature. Moreover, we assume that
the entire spatial decomposition fits into GPU memory
and the approach may not work well over very large
acoustic spaces. Moreover, our current implementation
is based on single precision arithmetic. Future GPUs are
expected to support double precision arithmetic, though
it may reduce the speedup.

In terms of future work, we would like to overcome
these limitations. We would like to apply our approach
to more complex acoustic spaces such as CAD models.
It would be very useful to extend our approach to multi-
GPU clusters.
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