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Introduction

Many different forms of control systems exist, some being human-
engineered artifacts, but many are natural systems. This report focuses
on the control of a single variable in a plant (system) that can be repre-
sented in terms of linear ordinary differential equations (ODEs). ODEs can
describe the behavior of lumped constant components. In Newtonian me-
chanics these consist of springs, masses, and friction; in electrical circuits
they are resistors, capacitors and inductors, and there are counterparts in
other domains such as Thermodymanics, Chemistry and Biology.

The purpose of any control system is to evoke a predictable response
of a controlled variable to a reference input variable. In many cases the
goal is a linear response, which is what we will be considering here. Most
plants do not behave linearly. For example, the force needed to stand a
ladder upright is large to start with but decreases to zero as the (controlled)
angle approaches vertical. Moreover, there are often disturbing influences
affecting the controlled variable. An example of this would be the effect of
varying wind velocity on the speed of a bicycle.

Feedback is widely used to linearize the response of a controlled vari-
able to a reference input. If you can measure the difference between the
reference input and the controlled variable to obtain an error, you can ap-
ply a correction in opposition to the error (in the jargon, apply negative

feedback) to reduce it. You might think that the more vigorously you op-
pose it (increase the control gain), the smaller the residual error should be.
Conversely, positive feedback seems like it should increase the error. These
intuitions are correct up to a point. But a more accurate understanding of
feedback relies on (a relatively simple) mathematical model, which however
yields some non-intuitive results that are borne out in practice.

This report will present a simple static model and its behavior, then
will generalize it to the lumped constant dynamic case of a single-input-
single-output (SISO) plant with linear time invariant (LTI) components. In
particular, feedback stability will be treated.
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Model of a feedback control system

A mathematically workable treatment of feedback must account for the
time dependent dynamics of the plant and the control gain components. For
LTI systems this is most tractably couched in terms of a complex frequency
variable s = σ + iω. The time domain ODEs of the sytem are transformed
into frequency domain where they become ordinary algebraic equations.
The system variables take the form v(s) = a exp(st) = a exp(σt) exp(iωt).
This reveals that the real part σ represents exponential growth or decay of
v with time, according to its sign, while the imaginary part ω represents a
periodic variation in time, with a frequency f = 2πω.

Referring to Figure 1, let us model a control loop consisting of three
basic components:

• A plant, which is represented by a dynamical state variable C(s), which
responds to a plant control signal B(s) and various disturbing influences

D(s) according to C(s) = B(s)F (s) + D(s).

• A subtractor which compares C(s) to a reference input signal R(s) to
produce a difference ∆, or error signal E(s), which is to be minimized.

• A control gain component G which drives the plant control input with
B(s) = E(s)G.

Figure 1: Model of a SISO control loop
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Benefits and properties of feedback

Let’s first consider the static case s = 0, where we can drop all ref-
erences to complex frequency s. We have said above that C = BF + D
and B = EG, so C = EGF + D. Let us define the open loop gain

Ao(s) = G(s)F (s), i.e., the product of the transfer functions G(s) and
F (s) traversing the loop. We then have,

C = AoE + D. (1)

With feedback disabled (switch set to the “0” position), E = R, and the
controlled variable response to the reference input is simply C = AoR + D,
the open loop response. In this condition, the controlled variable is subject
to both disturbances D and non-linearities in Ao. In some cases, both D
and Ao can vary with time, and Ao can be seriously non-linear, all of which
makes precise control of C problematical.

With feedback enabled however (switch set to close the feedback loop),
E = R − C. Substituting into eq(1) we write, C = Ao(R − C) + D, and
solve for C to get,

C = R
( Ao

1 + Ao

)

+
( D

1 + Ao

)

. (2)

It is immediately apparent that the effect of D on C can be made arbi-
trarily small by picking a sufficiently large value of Ao. This is one of the
principal benefits of feedback: the suppression of noise and other spurious
disturbances.

Now let’s explore another principal benefit, linearizing the response of
C. Let us define the closed loop gain as,

Ac =
Ao

1 + Ao

. (3)

Substituting this into eq(2), and for the moment ignoring disturbances by
setting D = 0, we get

C = AcR. (4)

By definition, for C to respond linearly to R, Ac must be constant. We have
already conceded that Ao may behave non-linearly, varying significantly
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with R. Nevertheless, if the minimum value taken by |Ao| is sufficiently
large, the value of Ac will remain arbitrarily close to unity, and therefore
constant.

Thus for better response linearity and disurbance suppression we wish
to provide a large value of Ao. Given some arbitrary plant response F , we
are free to increase the control gain G such that the lowest value of Ao is
sufficiently large to achieve the desired feedback benefits. There are limits
to this of course, which we will revisit later.

Example plots

To illustrate, consider an open loop gain 0 ≤ Ao ≤ 100. Figure 2 shows
Ac vs. Ao. For large values of Ao, the value of Ac approaches its asymptotic
value of unity. For Ao > 10 we see that any variation in Ac must be less
than 10%.

Figure 2: Closed and open loop gains vs reference input

This quite neatly fits our intuition as expressed in the introduction.
The greater the open loop gain, the more vigorously the feedback opposes
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any difference between R and S, leading to the asymptotic approach of Ac

to unity.
Consider however, if Ao goes negative. This is tantamount in Figure 1

to swapping the signs of the subtractor, resulting in positive feedback. In
this case, one would expect the error E to be magnified rather than reduced.
In fact this does occur, but to a significant degree only for small range of
negative values. Figure 3 extends the plot of Figure 2 to include negative
values of Ao to illustrate the behavior of this positive feedback.

Figure 3: Four quadrant plot of closed and open loop gains

Following the intuition valid for negative feedback, one might expect
positive feedback to cause Ac to become increasingly exaggerated (and neg-
ative) as the magnitude of (the negative) Ao is increased. Instead, we see
this behavior only in the range of 0 ≥ Ao > −1, where it blows up. For
Ao < −1, Ac flips sign, then asymptotically approaches (positive) unity
as Ao → −∞. Thus, for large values of |Ao|, feedback will cause Ac to
approach positive unity, regardless of the positive or negative sense of Ao.
Most people find this to be counterintuitive.
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In preparation for returning to the dynamical case, let us re-introduce
the complex frequency variable s = σ + iω, which results in complex values
of the plant dynamics function F (s). Consequently the open loop gain
Ao(s) = GF (s) is also in general complex. Evaluating eq(3) for Ao extended
into the complex domain fills out the picture suggested by Figures 2 and
3. Figure 4 plots the magnitude (height) and phase (color) of Ac(Ao) for
Ao ∈ (±10 ± 10i).

Figure 4: Complex closed loop gain vs. complex open loop gain

As before, we see Ac = 0 when Ao = 0. We also see that Ac → ∞ as
Ao → −1. In the jargon, these are known as a zero and a pole, respectively.
The most significant property to notice however is that Ac → 1 as |Ao| →
∞. This generalizes the notion observed in Figure 3 that large |Ao| provide
for Ac ≃ 1 irrespective of sign and variations in Ao. Here, the notion of sign
generalizes to phase φ where the special cases of φ = 0 and φ = π[radians]
correspond to signs of + and − respectively. It is an important property of
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the closed loop gain that its value is nearly +1 no matter what the open
loop gain is, provided it’s large.

Stability

Feedback systems are infamous for stability problems, and it is often
regarded as near black magic to implement them with high performance
while avoiding oscillation. This perception has developed because the un-
derlying mechanisms are not well understood. Instead, stability criteria
such as Routh’s and Nyquist’s are routinely taught and used which, while
entirely valid methods, are not particularly enlightening. In the same spirit
as in the previous section, I will attempt to make stability sensible in terms
of ordinary algebraic equations.

The problem can be couched in the form of finding values of C that can
exist in the loop when there are no disturbances or reference signals present.
The differential equations describing this situation are called homogeneous,
and represent the so-called unforced case. Any non-trivial (non zero) so-
lutions represent signals that are supported by the loop in the absence of
any other influences. It seems reasonable to regard any such signals as
potential instability, and all other signals as dependent on external forcing
factors such as R and D for their existence.

Accordingly, let us seek such solutions. We start with eq(4) which
represents the loop behavior with D = 0. Substituting eq(3) into it and
solving for R we have C(1 + Ao)/Ao = R. Then setting R = 0 we have the
homogeneous case,

C
(1 + Ao

Ao

)

= 0. (5)

There are two possible solutions to eq(5): C = 0, and 1 + Ao = 0. The
non trivial solution is Ao = −1, where C can assume any finite value. It is
only under this condition that the feedback loop can support a value of C
independent of R and D. This mathematics is simple to follow, yet gives
results that are magically deep. This magic emerges when we introduce
explicit time dependence arising from the dynamics of the plant, and an
equivalent frequency dependence of Ao,

Ao(s) = −1. (6)
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Understanding the plant model

As mentioned in the introduction, the components of the plant are
described by ODEs. This report avoids the complexity of differential equa-
tions by invoking the Laplace transform which converts time domain ODEs
into ordinary algebraic equations in frequency domain. I shall forgo exposi-
tion of the transform itself: you will just have to trust me that it works. It
is worth summarizing some of its properties however, and how the physics
of the plant components lead to a structural model in s domain.

The Laplace transform:

F (s) =

∫

∞

0

f(t)e−stdt (7)

converts a time dependent function f(t) in the domain 0 ≤ t ≤ ∞ into a
frequency dependent function F (s) in the complex domain C (n.b. use of F
here is not the same as the plant dynamics F above!). It has the following
properties:

• df(t)/dt ⇒ sF (s)
•

∫

f(t)dt ⇒ F (s)/s
• f(t) + g(t) ⇒ F (s) + G(s)
• af(t) ⇒ aF (s), a ∈ C

Finally, s = σ + iω defines a frequency having a corresponding time domain
behavior est = e(σ+iω)t = eσteiωt. The identity eiωt = cos(ωt) + i sin(ωt)
shows that ω represents an oscillatory frequency, while σ represents an
exponantial growth or decay rate, according to its sign.

The plant dynamics:

As a conceptual aid, let us imagine a plant comprising masses, springs,
and “dashpots,” the latter being an abstract linear frictional device one
could think of as a piston in a cylinder which pumps an ideal viscous fluid
through an orifice. This has the property that the harder you push, the
faster the piston moves; its force law is Fb = bv where b is the frictional
coefficient and v is the velocity. Masses behave according to Newton’s
Second Law, Fm = ma, where m is the mass and a is acceleration. Ideal
springs behave according to Hooke’s Law, Fk = kx where k is the spring
constant and x is the length, or position of one end relative to the other.
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Now velocity is the rate of change of position, v = dx/dt, and acceler-
ation is the rate of change of velocity, a = dv/dt = d2x/dt2. We can thus
express these behaviors in time domain and transform them into frequency
domain as follows:

• Fk(t) = k x(t) ⇒ fk(s) = k x(s),
• Fb(t) = b dx/dt ⇒ fb(s) = b s x(s),
• Fm(t) = m d2x/dt2 ⇒ fm(s) = m s2x(s).

The plant can be composed of an arbitrarily large number of such com-
ponents connected such that each connection sums forces or sums positions.
Without going into detail, the behavior of such a connected network of com-
ponents can always be represented in terms of ratios of polynomials P and
Q in s.

Applying a force (or motion) B(s) at some place in the plant (cf. Figure
1) will result in a force (or motion) C(s) = P (s)/Q(s) at some other place.
It is necessary that C(s) → 0 as s → ∞, otherwise velocities s x(s) and
accelerations s2x(s) would also have to become infinite, a clearly unphysical
situation. Consequently, the degree of Q(s) must always exceed that of P (s)
for a physical system.

Stability of the physical loop

Thus we can write, Ao(s) = GP (s)/Q(s) where G, P (s) and Q(s) are
derived from the plant and control gain. Substituting from eq(6) we find
potentially unstable conditions when GP (s)/Q(s) = −1. The roots sk of
this equation represent k discrete frequencies where C(s) can occur indepen-
dent of R(s) and D(s). Recall that the real parts σk of these roots represent
exponentially growing or decaying signals, according to their signs.

All roots having σ < 0 represent components of C(t) which decay
with time, and are, while perhaps in some cases a bother, not considered
unstable. Any root with a positive real part however, grows exponentially
with time, oscillating at a frequency corresponding to its imaginary part.
This represents an unstable condition where the oscillation increases to the
maximum level the system can support. In this state, the system is entirely
out of control.

As long as |Ao(s)| is large, of course, this condition can be avoided.
However because the degree of Q(s) must exceed that of P (s), Ao(s) → 0
as s → ∞. As we have seen, in its useful working range of frequencies
|Ao(s)| must be large to be effective. Accordingly we pick a control gain
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providing |Ao(s)| ≫ 1 over some prescribed domain in s. Now holding
Ao(s) fixed, let us expand the boundaries of the domain. As each point on
the boundary is displaced outward, if Ao(∞) = 0, it must encounter at least
one value of s where |Ao(s)| = 1. Thus, there is (at least one) expanded
domain in s having a contour along which |Ao(s)| = 1. This cannot be
avoided. The phase of Ao(s) of course may vary along this contour, and
any location where the phase φ = π radians, we have the condition eq(6)
where instability may occur. If this occurs in the right (positive) half the s
plane, σ > 0 and the system is indeed unstable.

So the trick is to select a control gain which provides a sufficient open
loop gain over the desired frequency domain, while ensuring the roots of
eq(6) remain in the left half s plane by monkeying around with the number
and locations of the poles and zeros of eq(6). The synthesis of Ao(s) from
physical components is beyond the scope of this report, but I can point out
a few useful abstract properties. First, the poles and zeros of Ao are due
to zeros of Q(s) and P (s) respectively. The locations of the poles and zeros
in the s plane uniquely determine Ao(s) to within a scale factor. Thus, the
phase φ of Ao(s) depends only on the pole and zero locations. Traversing
any closed contour around a zero in s accumulates a phase shift of 360◦;
around a pole, it’s −360◦. Thus, a contour encircling an equal number of
poles and zeros accumulates no phase shift, although the phase may vary
substantially at various locations on the contour.

To help visualize this, two plots of typical open loop gains are shown,
both having four poles and no zeros. These are nearly identical in that
they have the same open loop gain Ao(0) = 80 (“DC gain” in electrical
engineering lingo), and the same three poles at s = −10 and s = −800 ±
800i. In Figure 5, a fourth pole is located at a relatively fast damping
rate of s = −2000, while in Figure 6, this pole is shifted to a slower rate
of s = −500. In these plots, height represents the magnitude, while color
represents the phase of Ao(s). A black contour of x = 0 is overlaid to
distinguish the left and right halves of the s plane. The contour where
|Ao| = 1 is shown in white, and the contour where φ = 180 degrees is
shown in blue. The potentially unstable points occur at intersections of the
white and blue contours. As previously mentioned, any of these that occur
in the right half s plane are unstable.
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Figure 5: A stable four pole open loop gain function

Figure 6: An unstable four pole open loop gain function
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As a final remark, let me observe that the mechanical example is not
the only physical domain where these principals apply. Lumped constant
LTI electrical circuits behave in exactly the same way. In fact, chemical
and biological processes that can be expressed in terms of ODEs and com-
position rules that result in rational polynomial transfer functions will all
behave according to these rules. For example, diffusion transport and reac-
tion rates may well be so modeled. If economic and population dynamics
could be validly modeled in this fashion, they would also work. The trick in
any domain is to find a model that composes in terms of lumped constant
LTI structures that can in fact accurately describe the system in which feed-
back occurs. Cell Biology appears to be a domain where these techniques
are not yet widely used. I hope this tutorial may promote the use of these
well developed and powerful techniques by Cell Biologists.
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