
EriLex: An Embedded Domain Speci�c Language

Generator

Hao Xu

University of North Carolina at Chapel Hill
Chapel Hill, NC 27599, USA

xuh@cs.unc.edu

Abstract. EriLex is a software tool for generating support code for
embedded domain speci�c languages (EDSL). EriLex supports de�ning
the syntax, static semantics, and dynamic semantics of EDSLs desigined
in the method chaining style, the functional nesting style, or both. EriLex
supports various features of EDSLs that are commonly used in manually
written EDSL libraries, in addition to other less frequently used features
such as higher-order functions and simple types.

1 Introduction

An object-oriented (OO) software library usually provides an application pro-
gramming interface (API) which consists of elements such as objects, classes,
and methods that are related to the functionality of the library. There are two
roles involved in a software library, library writers and library users. Library
writers program the source code of the software library; library users use the
API and functionality provided by the library to write other programs.

Sometimes the API of a software library is designed in the Method Chaining
Style (MCS) so that consecutive method calls can be chained together according
to a set of rules. The MCS style of programming is used in several well-known
software libraries, such as jMock[1] and Hibernate Criteria Query[8]. When using
software libraries with API in the MCS, the method chains can be viewed as
programs written in an embedded domain speci�c language (EDSL) of which
the building blocks are method calls.

One of the advantages of MCS EDSLs in software library design is that it
helps grouping logically related method calls into one compact piece of code, as
illustrated by the following example in Java.

Example 1. An example of Hibernate Criteria Query EDSL program.[8]

1 List cats = sess.createCriteria(Cat.class)

2 .add(Restrictions.like("name", "Fritz%"))

3 .setFetchMode("mate", FetchMode.EAGER)

4 .setFetchMode("kittens", FetchMode.EAGER)

5 .list();

However, manually coding MCS EDSLs for software libraries that support
complex method chains and composition rules can be very tedious and error-
prone and few software tools are available that allow library writers to specify
these rules in a declarative language from which source code for the software
library can be automatically generated.

The main motivation of creating EriLex is to provide such a tool. EriLex
supports features of common EDSLs as shown in Example 1 in addition to other
features such as types and abstract syntax tree (AST) builders. Also, EriLex is
designed to support multiple code generation targets (host languages); currently,
the available code generation targets are Java, which will be used in this paper,
and (experimentally) Scala.

This paper is organized as follows: Section 2 brie�y overviews the tool. Section
3 presents features of the EriLex Speci�cation Language using a few examples;
Section 4 informally describes how the EriLex Code Generator works; Section 5
discusses tool reuse and improving the usability of generated EDSLs. Section 6
discusses related work. Section 7 summarized the paper.

2 EriLex Overview

Fig. 1. EriLex Work�ow

EriLex is composed of two main components, the EriLex Speci�cation Lan-
guage (ESL) and the EriLex Code Generator (ECG).

The high-level work�ow of EriLex is illustrated in Figure 1. The library writer
speci�es the rules and components, including the syntax and semantics, of an
MCS EDSL in a speci�cation in the ESL. Then the library writer selects a host
language and runs the ECG which generates from the speci�cation the source
code for the software library, called the support code, that implements these
rules and components as classes and methods in the host language, so that a

library user can write EDSL programs (as method chains of the host language)
according to the speci�cation. To run an EDSL program that a library user
writes, the library user only needs to compile the EDSL program and the support
code using the host language compiler and run the compiled program using the
host language runtime.

For every EDSL speci�cation, the ECG generates two methods: prog and run.
prog is used to start a EDSL program (method chain), and run is called at the
end of the EDSL program to run it. When the library user executes a chain of
methods that starts with prog and ends in run, the generated support code builds
up an AST of the EDSL program, and when the run method is executed, the
AST is evaluated according to the semantics de�ned in the speci�cation of the
EDSL. In the next section, we discuss how to specify the syntax and semantics
of an EDSL in the ESL.

3 EriLex Speci�cation Language

3.1 A Basic EDSL Example

A minimal speci�cation of an EDSL is composed of two sections for syntax and
dynamic semantics, respectively.

Example 2. Natural numbers.

1 syntax

2 e -> zero

3 e -> succ e

4

5 dynamic

6 evaluate: Integer

7 e -> zero {

8 return 0;

9 }

10 e -> succ e {

11 return evaluate(e)+1;

12 }

The syntax section (Line 1 to Line 3) starts with syntax and consists of a
de�nition of an LL(1) context-free grammar. Each line in this section of the form
nt − > t nt1 . . . ntn de�nes a production of the grammar, where nt, ntk are
nonterminals for k ∈ {1, . . . , n} and t is a terminal1. In the support code and
EDSL programs, the production de�ne a method t and the context-free grammar
de�nes how the de�ned methods can be composed to form valid method chains.

The dynamic semantics section (Line 5 to Line 12) starts with dynamic and
consists of de�nitions of evaluators. A de�nition of an evaluator starts with a
line of the form eval : htype, where eval is the name of the evaluator and htype
is the return type of the evaluator, following which are de�nitions of the form

1 This is also called the Greibach Normal Form.

P { host language code } which de�nes a component of the evaluator for terms
produced by production P . In the host language code, the nonterminals on the
right hand side of the production can be used as variable and eval can be used
as a method.

Running the ECG on this speci�cation produces several Java classes, one
of which is the Util class which has the prog method which is a class method.
For the nonterminal e, a class Ee is generated where E is the default pre�x for
generated classes for nonterminals. The Ee class has the zero, succ, and run

methods. An example of programs in this EDSL is prog().succ().succ().succ

().succ().zero().run().

3.2 A Simple Typed EDSL

Example 3. Adding booleans and conditional expression to the EDSL in Exam-
ple 2.

1 syntax

2 e -> zero

3 e -> succ e

4 e -> true

5 e -> false

6 e -> if e then e else e

7

8 dynamic

9 evaluate: Object

10 e -> zero {

11 return 0;

12 }

13 e -> succ e {

14 return (Integer)evaluate(e)+1;

15 }

16 e -> true {

17 return true;

18 }

19 e -> false {

20 return false;

21 }

22 e -> if e1 then e2 else e3 {

23 return ((Boolean)e1)?e2:e3;

24 }

Most of the speci�cation are similar to Example 2 except for the last com-
ponent of the evaluator, in which di�erent occurrences of the nonterminal e are
renamed to avoid ambiguity (Line 22 to Line 24). In general, ESL allows renam-
ing the occurrences of nonterminal on the right hand side of the productions to
new names.

The generated EDSL works but may cause a runtime type error at a type
cast such as on Line 23 when e1 is a natural number. To solve this problem, ESL

allows specifying types and typing rules for the EDSL. We add two types, bool
and nat, and typing rules to the speci�cation.

1 syntax

2 e -> zero

3 e -> succ e

4 e -> true

5 e -> false

6 e -> if e then e else e

7

8 static

9 type

10 ty -> bool

11 ty -> nat

12 ty -> t : var

13 typing e : t

14

15 ----------

16 e -> zero : nat

17

18 e : nat

19 ----------

20 e -> succ e : nat

21

22 ----------

23 e -> true : bool

24

25 ----------

26 e -> false : bool

27

28 e1 : bool

29 e2 : t

30 e3 : t

31 ----------

32 e -> if e1 then e2 else e3 : t

33

34 dynamic

35 evaluate: Object

36 e -> zero {

37 return 0;

38 }

39 e -> succ e {

40 return (Integer)evaluate(e)+1;

41 }

42 e -> true {

43 return true;

44 }

45 e -> false {

46 return false;

47 }

48 e -> if e1 then e2 else e3 {

49 return ((Boolean)e1)?e2:e3;

50 }

The types and typing rules are de�ned in the static section (Line 8 to Line 32).
The static section starts with static and has two subsections (in this example).

The �rst subsection (Line 9 to Line 12), which starts with type, speci�es the
grammar of types in the typing rules in a similar fashion as in the syntax section.
Here not only do we need to specify the types of the EDSL, which are bool and
nat, but also meta variable t used in the typing rules. A meta variable is not
part of the type system of the EDSL, but a placeholder for types of the EDSL in
the typing rules; in general, all meta variables used in the typing rules need to
be de�ned. The : var construct following a production de�nes a meta variable.

The second subsection (Line 13 to Line 32), which starts with typing e : t,
consists of typing rules. e : t indicate that an EDSL program can have any
type. Alternatively, we may specify that an EDSL program must have the nat

type by e : nat. In general, one can write nt : C, where nt is a nonterminal
de�ned in the syntax section, and C is a type de�ned in the types subsection.

A typing rule de�nition consists of zero or more lines of antecedents, a line
of dashes, and one line of postcedent. The line of postcedent has the form P : C,
where C is de�ned as before and P is a production from the syntax section. Each
line of the antecedent has the form B : C, where C is de�ned as before and B is
a nonterminal that occurs in P . Each typing rule is written in the ESL similar
to the way they are usually written as shown in Figure 2.

e : nat

succ e : nat

18 e : nat

19 -----------

20 e -> succ e : nat

Fig. 2. Comparison of a Typing Rule and Its Speci�cation

ECG generates the support code so that only well-typed EDSL program can
be compiled. (cf. Section 4.3)

3.3 Native Values and Types

The ESL allows using native types in an EDSL speci�cation.

Example 4. Native values and types.

1 syntax

2 e -> int(i)

3 e -> bool(b)

4 e -> if e then e else e

5

6 static

7 i = Integer

8 b = Boolean

9 type

10 ty -> t : var

11 typing e : t

12

13 ----------

14 e -> int(i) : Integer

15

16 ----------

17 e -> bool(b) : Boolean

18

19 e1 : Boolean

20 e2 : t

21 e3 : t

22 ----------

23 e -> if e1 then e2 else e3 : t

24

25 dynamic

26 evaluate: Object

27 e -> int(i) {

28 return i;

29 }

30 e -> bool(b) {

31 return b;

32 }

33 e -> if e1 then e2 else e3 {

34 return ((Boolean)e1)?e2:e3;

35 }

Recall that each production in the syntax section de�nes a method. On Line
2 and Line 3, two methods are de�ned. Unlike in previous examples where the
methods do not have any parameter, each one of these two methods has one
parameter, whose type is given on Line 7 and Line 8, respectively. A method
chain looks like if().bool(true, BOOLEAN).then().int(1, INTEGER).else().int

(0, INTEGER), where BOOLEAN and INTEGER are generated constants used to mark
the EDSL type of the subterms. A type marker is required for any subterm whose
typing rule has a postcedent in which the type is not a meta variable as shown
on Line 13 to Line 17. We discuss how the requirement of these type markers
may be eliminated in Section 5.2.

3.4 Typing Environments for Higher Order Functions

In this section, we use the simply typed lambda calculus (STLC) with de Bruijn
indices as an example to show how to specify a typed EDSL with higher order
functions in the ESL.

Example 5. STLC terms can be written in a nameless form using de Bruijn
indices. For example, the STLC term λx.x can be written as λ0, and the STLC

term λxλyλz.x(yz) can be written as λλλ.2(10). Furthermore, de Bruijn indices
can be represented by Peano numbers, in which the z constructor represents
number 0 and the s constructor represents the function f(x) = x+1, so that the
term λxλy.yx can be written as λλ.z sz. Next, we specify a simple MCS EDSL
so that we can write the term λλ.z sz as a chain of method calls to the following
methods: abs, abs, app, z, s, and z.

1 syntax

2 e -> z

3 e -> s i

4 e -> abs e

5 e -> app e e

6 i -> z

7 i -> s i

8

9 static

10 type

11 ty -> t : var

12 ty -> t1 : var

13 ty -> t2 : var

14 ty -> fun ty ty

15 environment

16 env -> E : var

17 env -> emp

18 env -> push env ty

19 typing emp |- e : t

20 -----------

21 push E t |- e -> z : t

22

23 E |- i : t

24 -----------

25 push E t1 |- e -> s i : t

26

27 push E t1 |- e : t2

28 -----------

29 E |- e -> abs e : fun t1 t2

30

31 E |- e1 : fun t1 t

32 E |- e2 : t1

33 -----------

34 E |- e -> app e1 e2 : t

35

36 -----------

37 push E t |- i -> z : t

38

39 E |- i : t

40 -----------

41 push E t1 |- i -> s i : t

42

43 dynamic

44 ...

Let us take a closer look at the static section. A new subsection (Line 15 to
Line 18) starting with environment is added to specify the grammar for typing
environments in the type rules. In this example, a typing environment is modeled
as a stack of types. The typing rules include typing environments. A postcedent
has the form A |− P : C and a line of an antecedent has the form A |− B : C,
where A is a typing environment and C, B, and P are de�ned in the same
manner as in Section 3.2.

3.5 Parametrized Grammar

The functional nesting style (FNS) is frequently used in functional programming
languages. In the FNS, EDSL programs are embedded into host languages as
nested functions or constructors. An example of the FNS is sub(add(cons(1),

cons(2)),cons(4)). The example in Section 1 also uses FNS on Line 2. EriLex
supports specifying EDSLs that have both the MCS and the FNS, by utilizing
"parametrize grammars".

Let z, z1, . . . , zn denote nonterminals and a denote terminals.

De�nition 1. A parametrized grammar is a context-free grammar in the Greibach
Normal Form, equipped with an arity function that maps every production z →
az1 . . . zn in the grammar to an integer p between 0 and n; z1 . . . zp are parame-
ters (of a). A parametrized grammar also requires that nonterminals be divided
into two disjoint groups, the parameters and the nonparameters: nonterminals
that are not parameters are nonparameters. Terminals appearing in productions
of (non)parameters are (non)parameters.

We usually write z → a(z1 . . . zp) . . . zn if z1 . . . zp are parameters. Disjointness
means that a nonterminal can not be both a parameter and a nonparameter.

Example 6. For example, e → var(i), i → z, i → s(i) a parametrized grammar,
while e→ var(i), i→ z, i→ s i is not.

In the generated support code, parameters are translated to formal arguments of
methods instead of methods as nonparameters are, as illustrated in the following
example.

Example 7. An EDSL in the FNS.

1 syntax

2 prog -> expr(e)

3 e -> int(n)

4 e -> add(e e)

5 e -> sub(e e)

6

7 static

8 n = Integer

9

10 dynamic

11 evaluate:Integer

12 prog -> expr(e) {

13 return evaluate(e);

14 }

15 e -> int(n) {

16 return n;

17 }

18 e -> add(e1 e2) {

19 return evaluate(e1) + evaluate(e2);

20 }

21 e -> sub(e1 e2) {

22 return evaluate(e1) + evaluate(e2);

23 }

The ESL supports parametrized grammar through a simple form as demon-
strated on Line 2 where the nonterminal e is made a parameter. We have seen
this form in Example 4, where the int method has a parameter i which has type
Integer. As shown on Line 4, the ESL also supports more than one parameters.
An example of programs in the EDSL is prog().expr(sub(add(int(1),int(2)),

int(4))).run().

3.6 Name Embedding

EriLex is designed to be able to generate code for multiple host languages. One
of the problems of code generation for di�erent languages is that they have
di�erent sets of reserved words and naming conventions. For example, val is not
a keyword in Java, but is one in Scala.

To alleviate this problem, the ESL supports de�ning "name embeddings" in
an EDSL speci�cation which map symbols used in the speci�cation to di�erent
symbols in the host language. Name embeddings are de�ned in a separate op-
tional section at the beginning of a speci�cation. For example, if the EDSL uses
val and we are generating code for Scala, we can add the following section.

1 embedding

2 val=`val`

Name embeddings can also be used to resolve di�erence in naming conven-
tions. For example, in Java, the type of integer objects is Integer, while in Scala
it is Int. We can write the following when we are generating code for Scala.

1 embedding

2 Integer=Int

3.7 Interoperability

An EDSL that supports functions can use native methods in the host language
as shown in the following example.

Example 8. Interoperability.

1 syntax

2 e -> cons(n)

3 e -> app e e

4

5 static

6 n : var

7 type

8 ty -> t : var

9 ty -> t1 : var

10 ty -> fun ty ty : fun

11 typing f : t

12

13 n : t

14 -----------

15 e -> cons(n) : t

16

17 e1 : fun t1 t

18 e2 : t1

19 -----------

20 e -> app e1 e2 : t

21

22 dynamic

23 evaluate:Object

24 e -> cons(n) {

25 return n;

26 }

27 e -> app e1 e2 {

28 return ((Method)e1).invoke(null,evaluate(e2));

29 }

On Line 6, the : var construct marks n as nonterminal that can produce
anything. On Line 10, the production is marked using : fun, which make ECG
generate wrapper methods wrapfun1, wrapfun2, etc. that wrap (unary, binary,
etc.) host language methods into EDSL functions. For example, given variable
max which holds a reference to a re�ection object representing the Maths.max

(Double,Double) method in Java, wrapfun2(max) returns an EDSL function of
type func Double func Double Double so that we can write method chain such
as <Double>app().cons(wrapfun2(max)).cons(0).

4 EriLex Code Generator

4.1 ECG Overview

The ECG takes in an EDSL speci�cation and generates an in memory language
independent data structure that represents the support code from which the
actual code of the host language is generated. There are two kinds of classes
that are generated by EriLex.

� Utility classes such as Util, which provides utility methods and data struc-
tures that are largely the same for di�erence EDSLs.

� EDSL-speci�c classes consisting of

• classes that represent syntax and typing rules of the EDSL,
• classes for ASTs, and
• evaluators.

The ECG requires that the generation target support basic OO features such
as classes and methods and generics to the level of Java. Most mainstream OO
programming language would qualify.

In this section, we focus on the classes that represent syntax and typing rules
of the EDSL. Other kinds of classes are straightforward to construct.

4.2 Generated Support Code for Untyped EDSLs

(a) by κ a() (b) by ez1 〈ez2 〈κ〉〉 b()

Fig. 3. Transitions from ez 〈⊥〉

The general idea of code generation is that for each grammar of EDSL de�ned
in the ESL, there is a correponding stateless deterministic realtime pushdown
automaton (pda for short) that is equivalent to the grammar, and that for that
pda, the ESL generates a set of classes representing its transition rules. By
transitivity, methods in the generated classes can only be composed in the way
that is speci�ed by the grammar.[15]

The pda can be constructed by taking the nonterminals to be the stack
symbols and viewing a production nt → t nt1 . . . ntn as a transition rule
that pops nt, pushes nt1, . . . , ntn, and is labeled t, so that each transition rule
corresponds to a production. To represent transition rules, the ECG generates
for each nonterminal a generic class that has a type parameter and is used to
construct types for representing the stacks of pda con�gurations. The ECG also
generates a special class, written ⊥ (Java name Bot), for representing the empty
stack. For example, suppose that for nonterminal z, z1, and z2, the generated
classes are ez 〈κ〉,ez1 〈κ〉, and ez2 〈κ〉, where κ is the type parameter. The type
ez 〈ez1 〈ez2 〈⊥〉〉〉 represents the pda con�guration with z, z1, and z2 on the stack.

Now, onto the representation of the transition rules. In general, a generated
method represents a transition rule of the pda. The method name represents the
label; the class type in which the method is de�ned represents the originating
con�gurations; and the return type of the method represents the target con-
�gurations. For example, suppose that ez 〈κ〉 has two methods with signatures
shown below

1 public κ a();
2 public ez1<ez2<κ>> b();

Method a represents a transition rule z→ a (that pops z and is labeled a), and
method b represents a transition rule z→ bz1z2 (that pops z, pushes z1, z2, and
is labeled b). Suppose that the originating con�guration of the pda is represented
by ez 〈⊥〉. Calling method a (resp. method b) on an object of this type transits
the pda to the con�guration ⊥ (resp. ez1 〈ez2 〈⊥〉〉) as shown in Figure 3(a) (resp.
3(b)).

A method chain represents a sequence of transitions in the pda. The type
of any pre�x of the method chain represents the con�guration of the pda as a
result of the transitions represented by the pre�x. Next, we look at a concrete
example.

Example 9. We look at a generated class for Example 2. Here we show the
method signatures only.

1 public class Ee<K> {

2 public K zero();

3 public Ee<K> succ();

4 public Integer run();

5 }

It is obvious that int val = prog().succ().zero().run(); does not generate
error messages, while int val = prog().zero().zero().run(); generates an error
message that says that the second zero method is not de�ned.

4.3 Generated Support Code for Typed EDSLs

Pdas are not expressive enough for representing both syntax and typing rules.
Instead, we utilize pdas with storage[6]. A pda with storage is an extension of
a pda that allows attaching "storage" to the stack symbols. For example, in a
pda with storage where the stack symbols are exactly the nonterminals, we may
attach to them "storage" that are the typing environments and types of the
subterms produced by those nonterminals.

The general idea of code generation is that for each set of typing rules (which
subsumes the grammar since they are syntax-directed) of an EDSL de�ned in the
ESL, there is a correponding pda with storage that is equivalent to the typing
rules, and that for that pda with storage, the ESL generates a set of classes
representing its transition rules.[15]

Each typing rule can be viewed as a transition rule of the pda with storage,
where the postcedent corresponds to originating con�gurations while the an-
tecedents correspond to target con�gurations. The production that is subsumed
by the typing rule governs the label and the stack while the types and typing
environments govern the storage.

To represent a transition rule, the ECG generates a method. The method
name represents the label; the class type in which the method is de�ned repre-
sents the originating con�gurations; and the return type of the method represents
the target con�gurations.

Example 10. Now we look at some of the generated classes for a typed EDSL
based on Example 5 extended with a cons construct that introduces a native
value.

1 syntax

2 e -> cons(n)

3

4 static

5 n : var

6 typing

7 E |- n : t

8 ----------

9 E |- e -> cons(n) : t

10 ...

Here we show the method signatures only.

1 public class fun<t1, t2> {}

2 public class push<t1, t2> {}

3 public class emp {}

4 public class Bot {}

5 public class Util {

6 public static <t> Ee<Bot,t,emp> prog();

7 }

8 public class F<S,T> { ... }

9 public class ID<S> extends F<S,T> { ... }

10 public class Ee<K,t,E> {

11 public t cons(t n);

12 public <E1> Ei<K,t,E> z(F<push<E1,t>,E> cast);

13 public <E1,t1> Ei<K,t,E1> s(F<push<E1,t1>,E> cast);

14 public <t1> Ee<K,t2,push<E,t1>> abs(F<fun<t1,t2>,t> cast);

15 public <t1> Ee<Ee<K,t1,E>,fun<t1,t>,E> app();

16 }

17 public class Ei<K,t,E> { ... }

For each terminal symbol that appears in the type and environment section of
the speci�cation, a class is generated as shown on Line 1 to Line 3. But no class is
generated for meta variables. The fun, push, and emp classes serve as constructors
of host language types that represent EDSL types and typing environments. The
Bot class represents the empty pda stack. The F<S,T> utility class and the ID<S>

utility class which extends F<S,S> are used in some of the generated methods
such as abs to encode EDSL typing constraints.

The generated class Ee has three type parameters. The �rst type parame-
ter is same as in the support code generated for an untyped EDSL. The other
type parameters represent the "storage", where the second type parameter rep-
resents the type of (the subterm produced by) the nonterminal and the third
parameter represents the typing environment of (the subterm produced by) the
nonterminal.

Figure 4 shows the correspondence between the method signature and the
typing rule (transition rule) for production e -> abs e, where the corresponding

Fig. 4. Encoding of Typing Rules

parts of the typing rule and the method signature are connected by connectors. In
a pda with storage, the applicability of a transition rule depends on not only the
top stack symbol of the originating con�guration, but also the "storage" attached
to that symbol, which in our application, is the type and typing environment
given in the postcedent of the typing rule (recall that the postcedent corresponds
to the originating con�guration). The encoding of this dependency is a little
complex when the type in the postcedent is not a metavariable, as shown in (a)
where, when translated to the transition rule, the requirement is that the type in
the "storage" attached to the top stack symbol be fun t1 t2 as speci�ed in the
postcedent. Because Java does not support a straightforward way of specifying
the structure of a type parameter of the class, the ECG has to generate the
cast parameter and require the library user to pass in an instance of ID when
abs is called, which says, intuitively, that the type parameter t should have the
structure fun<t1,t2>. 2

As an example showing how this encoding works, suppose that we have a
pre�x of method chains <Integer>prog() with type Ee<Bot,Integer,emp> which
represents a stack with only one symbol e with attached storage Integer,emp

, which means that the type of the stack symbol be Integer. If we append a
method call to app to the pre�x, the type of the new pre�x <Integer>prog()

.<Double>app() becomes Ee<Ee<Bot,Integer,emp>,fun<Double,Integer>,emp>, as
shown in Figure 5, which represents a stack with two symbols which are both e

with attached storage, respectively, fun<Double,Integer>,emp and Integer,emp,
which means that the type of the top stack symbol (resp. second stack symbol)
is fun Double Integer (resp. Double). Therefore, the following

1 <Integer>prog().<Double>app().cons(1).run();

does not compile and has a type error. In contrast, the following compiles without
any type error.

2 Because of space limit, we do not elaborate the formalized general encoding[15] in
this paper.

Fig. 5. Encoding Pda with Storage

1 ID<fun<Double,Integer>> tyF = new ID<fun<Double,Integer>>();

2 <Integer>prog().<Double>app().abs(tyF).cons(1).cons(2).run();

5 Discussions

5.1 Tool Reuse

Reuse is one of the fundamental goals of software design. EriLex takes a �rst step
towards editor reuse. Why is editor reuse important? According to the online
report from Netbeans Quality Dashboard[2]3, the Netbeans Integrated Develop-
ment Environment (IDE) has over 4,000,000 line of code. While developer tools
such as IDEs are an important factor in the popularity of a programing lan-
guage, the workload for programming a tool for a new programming language
can be prohibitively heavy. Therefore, both the expertise and e�orts in the ex-
isting tools are simply too large a resource to be left unreused. Three kinds of
common tool support � syntax checking during typing, type checking during
typing, and auto-completion � are provided in the semantic editor of Netbeans
for Java. The MCS e�ectively establishes the mappings as shown in Table 1,
which allows MCS EDSLs to reuse functions provided by the semantic editor
without any modi�cation to the IDE.

5.2 Improving Usability of EDSLs

It is obvious that the usability of an EDSL is highly dependent on the capabilities
of the host language. The previous examples also show some drawbacks of using

3 Data may change as Netbeans is an open source software under active development.

Table 1. Mappings

Tool Support auto-completion MCS checking during typing

EDSL parser state next tokens syntax type

host language class type methods syntax/type type

Java as a host language for EDSLs that cause usability issues for some kinds of
EDSL, such as:

1. The symbols "()." can not be omitted.
2. Operators can not be use as method names.
3. Without type inference, type arguments such as those for app in Example 8,

need to be written explicitly.
4. Overloaded methods can not have the same parameter type but di�erent

return type. This restricts all grammars to LL(1).
5. Error messages are very di�cult to parse or translate to those of EDSLs. If

an error occurs, it is very di�cult to locate the error.

The usability of the EDSL can be improved with the following improvements of
the host language.

1. Make the syntax �exible.
2. Infer type parameter for methods such as the app method automatically.
3. Support the where construct[10] with which the ECG can generate code with-

out cast, for example, public <t1> Ee<K,t2,push<e,t1>> abs()where fun<t1

,t2>=t;

4. Support (nondisjoint) union types so that we can simulate nondeterminism.
5. Provide an interface for writing customized error message generator.

Improvement 1 to 3 are already partially or completely supported by Scala.
Improvement 4 has also been shown to be feasible in C][10]. Combining just these
improvements would result in much more legible EDSL code. Improvement 5 may
be di�cult to implement because of the interaction with other features in Java.
Improvement 6 can also be implemented in the following manner. We can write
a external tool that reads and parses the output of the Java compiler and output
the translated error messages. However, because there lacks a "speci�cation" for
compiler output, maintaining the tool would not be very easy.

6 Related Work

Many methods have been proposed for developing EDSLs, a subclass of DSLs[14,12],
in languages such as Haskell[4], MetaOCaml[13], and Scala[9], to name a few.
EriLex tries to incorporate some of the techniques and experiences gained from
functional programming languages and provides a tool for automatic generation
of support code for a range of EDSLs in an OO setting. EriLex carries over
some of the techniques for typed representation of EDSL programs[3] developed

for optimization in a functional setting and uses them in a software tool that
improves automation and productivity for OO software library design. Com-
piler compilers[7] generate compilers from formal speci�cations of programming
languages, while EriLex generates support code for EDSLs that reuses tools
designed for the host language where extra restrictions are placed. Intentional
programming[5,11] generates tools such as editors from language speci�cations,
taking a generative approach, while EriLex takes a reusing approach.

7 Summary

EriLex is software tools for generating support code for EDSLs. The ESL has
very few constructs yet is expressive enough for a range of EDSLs, which makes
EriLex easy to learn and use.

References

1. jMock. http://www.jmock.org/.
2. Netbeans quality dashboard. http://quality.netbeans.org/sourcelines/summary-

teams.html, 2009.
3. Arthur I. Baars and S. Doaitse Swierstra. Typing dynamic typing. In ICFP '02,

pages 157�166, New York, NY, USA, 2002. ACM.
4. Jacques Carette, Oleg Kiselyov, and Chung-chieh Shan. Finally tagless, partially

evaluated: Tagless staged interpreters for simpler typed languages. J. Funct. Pro-
gram., 19(5):509�543, 2009.

5. Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative programming: methods,

tools, and applications. ACM Press/Addison-Wesley Publishing Co., New York,
NY, USA, 2000.

6. J Engelfriet and H Vogler. Pushdown machines for the macro tree transducer.
Theor. Comput. Sci., 42(3):251�368, 1986.

7. Yoshihiko Futamura. Partial evaluation of computation process�an approach to
a compiler-compiler. Higher Order Symbol. Comput., 12(4):381�391, 1999.

8. Max Rydahl Andersen Emmanuel Bernard Gavin King, Christian Bauer and Steve
Ebersole. Hibernate reference documentation 3.3.2.ga, 2009.

9. Christian Hofer, Klaus Ostermann, Tillmann Rendel, and Adriaan Moors. Poly-
morphic embedding of dsls. In GPCE '08, pages 137�148, New York, NY, USA,
2008. ACM.

10. Andrew Kennedy and Claudio V. Russo. Generalized algebraic data types and
object-oriented programming. In OOPSLA '05, pages 21�40, New York, NY, USA,
2005. ACM.

11. Christian Lengauer, Don S. Batory, Charles Consel, and Martin Odersky, editors.
DSPG '03, Revised Papers, volume 3016 of LNCS. Springer, 2004.

12. Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and how to develop
domain-speci�c languages. ACM Comput. Surv., 37(4):316�344, 2005.

13. Emir Pasalic, Walid Taha, and Tim Sheard. Tagless staged interpreters for typed
languages. SIGPLAN Not., 37(9):218�229, 2002.

14. Arie van Deursen, Paul Klint, and Joost Visser. Domain-speci�c languages: an
annotated bibliography. SIGPLAN Not., 35(6):26�36, 2000.

15. Hao Xu. A general framework for method chaining style embedding of domain
speci�c languages. UNC Technical Report, 2009.

