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Abstract—Numerous network anomaly detection techniques
utilize traffic summaries (e.g., NetFlow records) to detecand
diagnose attacks. In this paper we investigate the limits asuch
approaches, by introducing a technique by which compromisa
hosts can communicate without altering the behavior of the
network as evidenced in summary records of many common
types. Our technique builds on two key observations. First,
network anomaly detection based on payload-oblivious trdfc
summaries admits a new type of covert embedding in which
compromised nodes embed content in the space vacated by
compressing the payloads of packets already in transit betaen
them. Second, point-to-point covert channels can serve as a
“data link layer” over which routing protocols can be run,
enabling more functional covert networking than previously
explored. We investigate the combination of these ideas, \idh
we term Summary-Invisible Networking (SIN), to determine
both the covert networking capacities that an attacker can
realize in various tasks and the possibilities for defendesr to
detect these activities.

I. INTRODUCTION

Due to existing router support for collectifigw records

attacker who compromises a collection of machines in an
enterprise, for example, can perform his activities in a way
that is undetectable in summary records. Because we can-
not foresee every potential approach to summarization that
might be employed, we take an extreme position to ensure
that the attacker’s activities will remain undetected dny
summarization technique that does not inspect application
payload contents. As such, the attacker is not permitted to
alter the flow-level behavior of the network, for exame,

all. The challenge, then, is to demonstrate what the attacker
can accomplish under this constraint.

To provide such a demonstration, we introd@&enmary-
Invisible Networking(SIN), a networking technique that
piggybacks on existing traffic to enable data interchange
among compromised hosts (SINners). SIN is designed to
be invisible in traffic summaries, in the sense that a log of
summary records collected in the infected network should be
unchanged by the presence of compromised hosts executing
SIN. To accomplish this, SIN must operate under stringent
constraints:

there is increasing attention being devoted to performing
network anomaly detection using flow logs. A typical flow e
record format (e.g., CISCO NetFlow) provides summary
statistics (numbers of packets and bytes) for packets shar-
ing the same addressing information (source and destina-
tion addresses and ports) in an interval of time. Other,
more fine-grained summarization approaches, suci-las
records [1], further reconstruct connections and charizete
their behaviors, e.g., as interactive, bulk file transfar, o0 e
web-like, on the basis of packet sizes and interleavings of
packets in each direction. Such summarization approaches
have proven useful for traffic classification (e.g., [2]) and e
diagnostics of various types (e.g., [3]), including of some
security-relevant anomalies. For example, even simple flow
logs have been shown to be useful for finding peer-to-peer
traffic masquerading on standard ports (e.g., HTTP port 80)
(e.g., [4]), various kinds of malware activities (e.g.,,[5]
[6], [7]), and even for identifying the origin of worms [8].
Indeed, a community of security analysts now holds an
annual workshop devoted to the use of flow records for such
purposes (http://www.cert.org/flocon/).

In this paper we explore the limits of analysis using
such traffic summaries for security purposes, by taking the
attacker's perspective and investigating to what extent an

The number of packets between any source and des-
tination must remain the same.Increasing the number
of packets between sources and destinations would be
evidenced in flow records that report packet counts, for
example. In order to avoid this, a SIN network must
perform all signaling and data exchange using packets
that the hosts would already send.

The sizes of packets must remain the saméncreasing

the sizes of packets would be evidenced in flow records
that contain flow or packet byte statistics.

The timing of packets must be preservedBecause
some summarization techniques (e.g., [1]) take note of
interstitial packet timings, the timing of packets must
remain essentially unchanged, and so a SIN network must
involve only lightweight processing.

SINners must transparently interoperate with uncom-
promised hosts.The behavior of SINners as observed
by uncompromised hosts must be indistinguishable from
that of uncompromised hosts, lest the different behaviors
induce uncompromised hosts to behave differently and,
e.g., send traffic that would not have otherwise been
sent. As such, a SINner must covertly discover other
SINners in such a way that does not interfere with regular



interaction with uncompromised hosts.

In order to meet these requirements, SIN builds from two
key observations: First, to preserve the size of each aigin
packet it sends, a SINner compresses the original apmicati

payload to make room to insert SIN data; the receiving ®
SINner then extracts the SIN data and restores the payload

to its original form before delivering the packet. Second,

mechanisms for discovering other SINners and embedding
data in packets already being sent enables the establishmen

of a “data link layer”, over which we can layer a routing
protocol, for example. This routing protocol will need to
accommodate the fact that SIN is purely opportunistic:

unless the host is already sending a packet to a particular
other host, data cannot be sent to that host. In this and other

respects, our work can build from prior routing protocols fo
delay-tolerant network§9], [10].

times (e.g., [1]). Using response-time measurements of
our organization’s main web server, we demonstrate
that this method of detecting SIN processing will be
unreliable, at best.

Though SIN is premised on payload-agnostic detectors,
our work provides an incentive to identify lightweight,
payload-sensitive measures to find SIN networks, and so
we explore what those might be. We show, for exam-
ple, that monitoring the byte-value distribution of DNS
packets permits the reliable detection of a DNS server
participating in SIN. However, we show that similar
monitoring of web server response packets is ineffective,
owing to the diversity of content served from web servers.
We further explore testing the compressibility of web-
server response packets, though this is not conclusively
effective, either, particularly if the SIN nodes restricet

show the following:

entropy of data they embed in packets. We conclude
that even payload-sensitive measures for detecting SIN
networks require further study.

Using these observations, we design a framework for SIN
networking and evaluate it in this paper. Specifically, we

e Using traces collected on our organization’s network, we 10 Summarize, the contributions of this paper include
measure the characteristics of SIN capacity in packetdntroducing SIN networking, a novel approach to hiding
i.e., the space available by compressing packet payloadf0m summarization-based anomaly detectors, and measur-
We demonstrate the extent to which SIN capacity isind both its capablht.les and its detectability in a modern_
asymmetric between SINners, and the ports (applicationéjework- Our evaluauon ;hows th{:\t SIN networks pose a vi-
that contribute the most SIN capacity to the network. able strategy for a sufficiently patient attacker to coaatén
We identify groups of nodes in our organization’s net_malf_easant activities among C(_)_mproml_sed nodes, but Fhat
work that, if compromised, could carry out a viable SIN routing protocols that better utilize available SIN capaci
network among them. For example, we identify a 114-could be_nefit .frqm further research. We also show that SIN
node group for which the available SIN capacity from r_1etworl_<|ng within some prqtocols can be detected through
any one member to any other is at least 700kB/day an§ightweight payload inspection, but that further reseaisch

as large as 20MB/day. required to do so in othgrs. _

We characterize the performance of broadcast and unicast 1€ rest of this paper is structured as follows. We discuss
routing algorithms run among such a group of SINnersrélated work in§ll, and our goals and assumptions in more
For example, we show that broadcast by flooding in thedetail in§lll. We present a framework for SIN net\_/vorkmg in
aforementioned 114-node group conveys a 1kB comman_éi'v- We then populate that framewor_k _v_\/lth particular rout-
(as if from a bot-master to his bots) to more than 80 ofing protocols, and evaluate the feasibility and perforneanc
the SINners in under 2 hours and to more than 100 off various attack activities using SIN KV. We study ways

the SINners in under 5 hours. To evaluate unicast, wd® detect SIN networks iffVl, and conclude ir§VII.

implement and measure the performance of a state-of- Il. RELATED WORK

the-art delay-tolerant unicast routing protocol. We show SIN can be viewed as embedding a covert network within
that it falls far short of fully utilizing the available SIN . ) . ”
. S . another (physical) network, albeit where the “covertneds
capacity, thus highlighting the need for unicast protocols S . : e
. . g . the embedding is subject to the detector taking a limited
tailored to this domain, but still enables SINners to push . : - o AT
. . .viewpoint on the traffic (i.e., summarization). This lintitan
more than 52MB/hour to a designated drop-site (as if ; .
— . on the detector obviates the need to steganographically
exfiltrating data to it), for example. S ; .
i ) embed SIN communication in packets (with one exception,
We then turn our attention to approaches that might b@jiscussed in§IV-A). Nevertheless, SIN draws inspiration
following contributions: steganographically within another, e.g., a file systemiwish
e We analyze the possibility of detecting changes in in-file system [11], a file system or wiki within a media hosting
terstitial packet timings that come with the compressionand sharing service [12], [13], or communication within web
and decompression steps intrinsic to SIN processing irtounters [14].
the network stacks of compromised computers, since Because the opportunity to transmit packets between any

some traffic summarization approaches capture intetstitidwo SINners is sporadic and depends entirely on the shape



of the traffic in the legitimate network, the problem of occurrence of similar content (e.g., [23], [25], [27], [28]

routing in such a context can be modeled as a sort of delay@ur SIN network design necessitates no such byte-level

tolerant network (DTN) as described in [9], [10]. Since similarities, and so we do not expect that these approaches

that early work, there has been a reasonably large body afiould be effective at detecting SIN networking (nor were

work on routing in such environments. A number of routing they intended for this purpose). Other approaches thaestri

and forwarding services have been described, including # detect deviations from past byte-value distributionsaio

strategy based on Levy walks [15], a probability-of-defyve  application (e.g., [22], [24], [26]) may be more successful

based distance scheme [16], a likelihood-based schemg [1 @t detecting SIN networks. We will discuss these and other

and epidemic routing [18], to name several. approaches to efficiently examining payload contents that
It may be that all of these schemes can be shown to applgnight be more suited to detecting SIN networks;\l.

to SIN networking. There are, however, several significant

differences between the nature of the opportunistic madel i [1l. GOALS AND ASSUMPTIONS

the SIN context and the model used to develop and evaluate \we consider a network in which monitoring produces

these schemes. Those differences may have an impact ondgmmary traffic records. For our purposes, a traffic summary
what degree the mechanisms in the DTN literature can b any |og format that is insensitive to the byte values that
brought to bear. First, because we assume that the patiicipgomprise the application payloads of TCP/IP packets. More
ing nodes in the network have been entirely compromisegyecisely, define a characterizing feature veetpy defined

by the attacker, buffer space at the intermediate nodein thy, Tcp/Ip packets over a link such thép) = c(p') if p and

SIN network is not an issue. Many of the schemes assumg gitfer only in the contents of their application paylodds.
that buffer in an intermediate node is a constraining resaur £qr the purposes of this paper, we define this characterizing
A second difference is that the mix of contact opportunitiesteatyre vector most generally to be;) = (ti, s;, hi) Where
between any two nodes in the network is not based on either is the time the packet was transmitteds; is the size
mobility or the probability of two sensors choosing the sameys the packet, anch; is the header of the packet outside

duty cycle, but instead inherits the contact mix exhibitgd b ¢ the application payload. A summary recards defined
the legitimate traffic that drives the SIN network. One couldy,, ,. . fle(pr), ..., c(py)) for some functionf and for
reason that the entropy of the contact mix in the SIN networkyacketsp, . . ..., p,..

is probably lower than that of the existing models. A more 5 particularly common type of summary record iglaw
in-depth study on this qu.estion specifically is required t0racord A flow record summarizes a collection of pack-
know more. Finally, there is no control over how much cangts sharing the same protocol and addressing information
be sent for any given contact opportunity since the size®f th soyrce and destination IP addresses and ports) observed in
SIN payload is dependent on the compression ratio achievedshort interval of time. Such a record generally includis th
on the original payload content. o information, the number of packets observed, the number of
Our motivation for studying SIN networking is to under- pyies observed, a start time and duration of the flow. Addi-
stand the limits of network anomaly detection approachegona| header information could also be collected about the
that do not examine packet payload contents. We are nqfoy sych as the logical-or of the TCP flags in the packets
the first to examine these limitations. For example, Collinsyyat comprise the flow (as is available in NetFlow). However,
et al. [19] evaluated the extent to which five proposedye require that whatever is collected be invariant to the
payload-agnostic anomaly detectors — Threshold Randorgypjication payload contents of the packets that compinise t
Walk [20], server address entropy [21], protocol graphgqay (since our techniques change the payloads). Whenever
size and protocol graph largest component size [7], ang is convenient to simplify discussion, we will use flow
client degree (i.e., number of addresses contacted) — COUW\onitoring as an example of traffic summarization.
limit bot harvesting and reconnaissance activities on@elar  \ye assume that an adversary is able to compromise a
network while maintaining a specified maximum false alarm.|iection of computers, in such a way that the attacker’s
rate. Here we take a distinctly different perspective thiain a ,,1wvare on each such computer can intervene in that
such past studies of which we are aware, by designing thgomputer's networking functions at the IP layer. That is,
attacker's communication to avoid detectiondnyypayload- e presume that the attacker’'s malware can intercept each

agnostic detector, and then demonstrating the attackerg,iound 1P datagram and modify it prior to transmission.
ability to communicate under this constraint. ~~ gjmjlarly, a compromised machine can intercept each in-
While our motivation derives from examining limitations p5,nd 1P datagram and modify it prior to delivering it to

of payload-agnostic detectors, some efforts have embracggl ormal processing. On most modern operating systems,
the need to examine packet contents in order to identify malg, oo capabilities would require a compromise of the O/S
ware outbreaks, e.g., [22], [23], [24], [25], [26], [27],dR  kernel.

A significant class of this type of work focuses on finding
byte-level similarities in packets that suggest the frejue  *And, of course, their TCP checksums.



In this setting, the goal of SIN networking is to implement one bit) and can be conveyed over the course of multiple
a functional overlay network among compromised machinepackets.
that is unnoticeable to traffic summarization techniques. When a SINner receives a packet in which it detects the
Specifically, collected traffic records must be unchanged byliscovery signal (or, for robustness, multiple packetsnfro
the presence of SIN, and consequently SIN should not altethe same source bearing the signal), it adds the source IP
the number or size of packets sent on the network, or thaddress of the packet to meighbor table If it has not
destination of any packet. Subject to this constraint,diéth  yet indicated its own participation in the SIN network to
enable communication among compromised computers tthis neighbor, it takes the opportunity to do so in the next
the extent enabled by the cover traffic into which thispacket(s) destined for that address, i.e., by embedding the
communication must be included. discovery signal in those packets. Since virtually allftcaf
elicits some form of response packet, the neighbor relasion
typically symmetric: if IP address; is listed in the neighbor

In this section we describe a protocol framework for SINtable at the SINner with IP address, thena; is (or soon
networking. We emphasize, however, that this is one passiblwill be) listed in the neighbor table at the SINner with
approach to SIN, and we believe a contribution of this papeaddressis.
is identifying SIN networking as a challenge for which  After discovering a neighbor, the SINner can estimate
improved approaches can be developed (and new defensis transmission capacity to this neighbor by observing the
can be explored). We will populate this framework with packets sent to it over time. To estimate this capacity,
particular routing protocols, and evaluate their perfanoea  the SINner compresses each application payload to that
on a variety of tasks, ifV. neighbor (possibly in the normal course of executing a

We begin in§IV-A with a description of how one SINner routing protocol, segV) and collects the sizes of the vacated
discovers its neighbors. We discuss naming SINners irspace in the packet. These per-packet capacities can be
§IV-B. We present data objects, their identifiers, and SINaccumulated over whatever interval of time is appropriate,
headers irgIV-C. Finally, we perform an evaluation of the say per day, to determine an estimate of the capacity to that
potential for SIN capacity in a modern network §i-D. neighbor on each day. Each node stores these estimates for
each neighbor in its neighbor table.

Each SINner augments the IP addresses and capacity

A “neighbor” of one SINner is another SINner to which estimates in its neighbor table with additional informatio
it sends or from which it receives IP packets directly.as described ir§IV-B. §V-A and §V-B discuss how this
Since our requirements for invisibility in traffic summagie information is used in particular routing protocols.
requires that a SINner send packets to only destinations to ]
which its host would already send, a SINner must discoveP- Naming
which of those hosts are also compromised. To do so, it When a host is compromised, the SIN malware generates
must piggyback discovery on those already-existing packedn identifier for the SINner that will permit other SINners
exchanges, in a way that does not interfere with the regulao name it (e.g., as the destinations for objects). While the
processing of those packets, in the event that the neigidpori SINner could adopt another, existing identifier for the host
host is not a SINner. (e.g., its IP address), we consider a different alterndtere.

To accomplish this, a SINner can employ any availableReusing an existing, well-known host identifier would erabl
covert storage channel, such as known channels in the IP @ny other SINner in the SIN network to potentially locate
TCP packet header (e.g., [29], [30], [31], [32], [33], [34]) all other SINners in the network, if coupled with a link-
Murdoch and Lewis [33] develop a robust implementationstate routing protocol as we exploregd. While we do not
based on TCP initial sequence numbers, for example. Thigcorporate robust defenses against SIN network infitirati
technique generates initial sequence numbers distribhideed  in our design (e.g., by law enforcement) or against learning
those of a normal TCP implementation, but that wouldother participants in the event of such infiltrations (in €on
enable SINners knowing a shared key to recognize as #@ast to membership-concealing overlays [36]), permyttin
covert signal. Moreover, since discovery need not be imeven a single infiltrated SINner to learn common identifiers
mediate, the signal could be spread over multiple packetdor all SIN participants would make SINner location just too
Another alternative would be to exploit any available cover easy. (Note, however, that we cannot prevent a SINner from
storage channels in application payloads, which would bé&nowing the IP addresses of its neighbors.)

IV. A SIN NETWORK FRAMEWORK

A. Neighbor discovery

undetectable in traffic summaries by definition. Couart- For this reason, the identifier that a SINner generates for
ing channels (e.g., [35]) would risk detection owing to theitself is a new random value of a fixed length. Since the
availability of timestamps,...,t, to the summarization SINner will transmit this identifier to others in a manner

function f (seeslll). They may nevertheless be effective described below and since, as we will seesi¥-D, trans-
since the information being conveyed is small (effectivelymission capacity is at a premium, we opt for identifiers



that are not too long, specifically of length 4 bytes (B).
Since identifiers are chosen at random, a 4B identifier should ‘ n;:e ‘ Eﬂ
suffice to ensure no identifier collisions with probability a ‘ ;
least1 —1/23272" in a network with up t@" SINners, e.g., = Lo
with probability at least).999 for a SIN network of up to Paylond &
21 = 2048 nodes. =
Once a SINner discovers a neighb®h\-A), it transmits e :a
its identifier to that neighbor in packets already destired t Payioad papiad

it. To do so, the sender compresses the existing application
payload, and uses the vacated space to insert the iderfifier.
small header precedes the identifier; it simply indicates th

OBJ OBJ
this packet holds the sending SINner's identifier. Each sent é_r B ‘Lé

packet is made to be exactly the same size of the original T oader (eaer)
packet, which is necessary to ensure that our approach is e )
summarization-invisible.
Upon collecting the identifier for a neighbor, the SINner
inserts the identifier into the neighbor table, so that it is
associated with the IP address of that neighbor.

[

THAE-

Figure 1. Transmission of an object in two SIN messages

C. Data object model
4 Bytes

Our design of a SIN network enables the transmission of I |
objectsfrom one SINner to another. The object is assumed
to begin with its length (e.qg., in its first four bytes), andiso
self-describing in this respect. An object is transmittethie Destination Identifier
SIN network using a collectlo_n of point-to-pointessages Object Identifer
each from one SINner to a neighbow. Each such message
is embedded in an imminent packet framto v. Figure 1
shows the transmission of one object in two SIN messages Length of SIN
(i.e., separate object byte ranges in each message), each i
embedded into separate IP packets to a neighbor. Note that
the neighbor may or may not be the ultimate destination ofigure 2. SIN header format in experiments (object lengthoistained
the object. in the first 4 bytes of the object itself)

An object has andentifier that will be included in each
SIN header for a message containing bytes of that object. ) o
Data objects are framed at byte granularity; i.e., arhjtrar the bytes in the message, and the source and destination
byte ranges can be sent, and so each SIN header alidentifiers for the object. Since, as will be showngiv-D,

includes the starting byte offset and the length of the byte>!N capacity is at a premium, we want to reduce the header
range being transmitted. size as much as is reasonable. The SIN header for an IP

The object identifier for an application data object is Packet that we employ in the rest of our evaluation is 188
a hash of the object contents. In this way, it can servé" Iength: it includes a 4B objgct |dent|f!er for the object
as both a tag to identify bytes for the same object (i.e.Of Which the SIN payload in this packet is a part; the byte

for reassembly), and as a checksum to detect corruptiorfdSet (4B) in the object and length (2B) of the SIN bytes

(though this is admittedly probably unnecessary). A déffer I 'FhIS packet; the 45 |denf[|f|er for the source SINner of the

type of object that can be sent is an acknowledgment fopt_uect,_and the 43 identifier of the destination SINner for

(perhaps byte ranges of) another object. The identifier fofiS object. (See Figure 2.)

an acknowledgment for an object is a hash of: the identifier . .

for the object it is acknowledging, appended with a constanP' Available Capacity

string (e.g., “acknowledgment”). In this way, any SINner There is reason to be skeptical of the capacity that is

holding bytes of an object to forward can recognize anoffered by compressing packet payloads. Traffic that fadlow

acknowledgment for byte ranges of this object, and remova client-server pattern poses a challenge to two-way covert

any acknowledged bytes from its pending forwards. communication via this technique, since typically only flow
To summarize, a SIN header for a message consists @fi one direction (e.g., downloads from a web server, versus

the object identifier for the object for which bytes are beingrequests to the web server) are sufficiently large offer the

sent in the message, the starting byte offset and length gfossibility of substantial residual capacity after conggien.

Source Identifier

Byte Offset in the Object




Peer-to-peer traffic, on the other hand, does not suffer fronfrom the source host to the destination host, i.e., capacity
this limitation, but since it usually consists of media files available for covert payload due to compressing packets.
that are already compressed, its packets might not be vemyjigure 3(a) shows the distribution of these capacitiesh bot
compressible. unidirectionally (i.e., per edge) and bidirectionallye(j.the

In order to understand the capacity offered by moderrsmaller of the capacities of the opposing edges between
networks via this technique, we logged traffic on the networkwo nodes). Also shown in Figure 3(a) is the distribution
at our organization, in particular recording the size tockhi of the difference between the capacities of the opposing
each packet payload could be compressed using thé edges between each pair of nodes. As the difference plot in
library. We collected a dataset, referred to [2stasetl in Figure 3(a) shows, the difference distribution is very elts
this paper, over several week©nly packets that could be the unidirectional distribution, suggesting that our ititun
compressed were representedDiataset], as other packets regarding the constraining effects of common client-serve
are useless for our purposes. In particular, this discaatled patterns on two-way communication holds true.
encrypted packets, despite the fact that SIN capacity might
be available in the plaintext protocol (and could be utdize

by SINners at the encryption/decryption endpoints). & 0 q
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(&) Direct (all nodes, CDF) We have also evaluated what applications contribute the

most available SIN capacity. To do so, we recorded addi-
tional traces and found a{lP address, poyrtpairs that acted
17 nodes | as servers in our traces, in the sense of accepting initial
T | SYN packets in a three-way TCP handshake that went on to
| complete. For each pair, we calculated the payload sizes of

o
Q

o
e

all inbound packets, the sizes of those payloads compressed

g

Y

©

g

=3

830 45 ]

E= nodes (individually), the payload sizes of all outbound packetsd

§20* 198 13d6 nloldﬂ;ES - ] the sizes of those payloads compressed. By summing each

o 3 nodes  nodes 3 of these four categories of values over @ address, poyt

2 10 T T T |;| pairs with the same port value, we gain an understanding of

s = O E3 = = = how much available capacity each server port contributes.
100kB  200kB 400kB 700kB IMB  2MB The 15 ports contributing the most available SIN capacity,

Edge capacity threshold 6 . . .
summed over both inbound and outbound directions, are

shown in log scale in Figure 4. This figure also confirms the
Figure 3. Pairwise SIN capacities per dayDataset1. asymmetry of SIN capacities, in that for most of these ports,

there is at least an order of magnitude difference between

We usedDatasetl to build a graph consisting of ver- the SIN capacities in the inbound and outbound directions.
tices that represent hosts in the network, and directed Despite the limitations introduced by client-server com-
edges labeled by the average daily capacityDistasetl munication patterns, the possibility of substantial ollera
capacity remains for SIN networking since it need not rely

2Due to artifacts of our collection infrastructure, our aavere typically on bidirectional point-to-point communication. To illuste
not contiguousDataset1 contains data collected during the intervals Mon his. f . itv thresh deleted all ed f
Jun 22 15:19 — Wed Jun 24 00:51, Thu Jun 25 20:43 — Sun Jun 28,12:3 tis, for a given capacity threshoftiwe deleted all edges o

Tue Jun 30 19:07 — Wed Jul 1 04:55, Thu Jul 2 09:37 — Sat Jul 4817:1 capacity less thad in the above graph, and then computed
and Mon Jul 13 09:50 — Tue Jul 14 11:02, all in 2009. Note Datasetl . .
remained. Then, we re-inserted all edges between nodes

was collected during the summer, the time of lowest netwditkzation on :
a university network. in that strongly connected component, and computed the

(b) Max-flow (selected nodes)



maximum flow [37] sizes in this graph for each ordered paircomponent; this dataset was recorded afietasetl 2 and

of nodes, i.e., in which the first node is the “source” and thealso includes only compressible packets. So as to adjust for
second node is the “sink”. Intuitively, if exactly the nodes packet volume differences in these datasets, we will often
the strongly connected component were SINners, then theg®ot results as a function of packets processed from the trac
maximum flow sizes are theoretically the SIN capacity fromFigure 5 enables one to translate these results to real time.
one SINner to another.

Figure 3(b) shows the distribution of those maximum . ; .
flow sizes (over all ordered pairs of nodes in the strongly The available SIN capacity demonstrated §h/-D is
connected component) for different levelsfeach repre- practically a threat only to the extent that it can be redlize
sented as a box-and-whiskers plot. The box illustrates thBY actual routing protocols, and for tasks that an adversary
25th, 50th, and 75th percentiles; the whiskers cover point§ght wish to perform. In this section, therefore, we instan
within 1.5 times the interquartile range. In addition, abov tiate the framework described fiV with a state-of-the-art
each box-and-whiskers plot is the number of nodes in thélelay-tolerant routing protocol, namely the Delay Toléran
strongly connected component for that valuefofAs this ~ Link State Routing (DTLSR) protocol [10], [38]. We also
graph shows, the maximum flow sizes often far exceed!S€ trace-driven simulations to evaluate the performance i
the thresholdd, implying that there is much capacity to acr_ne_\_/es in tasks that we believe would be chargctensﬂc of
be gained by routing over multiple paths between pairs ofictivities an attacker might want to perform using a SIN
nodes. The extent to which this extra capacity can be udilize Network.

state routing to DTNs. As is typical for link-state proto-

cols, DTLSR floods link-state updates (in our terminology,
neighbor-table broadcasts) through the network. Each node
uses these updates to maintain a graph representing its
current view of the network topology, and uses a modi-
fied shortest path algorithm to find the best path to the
destination. Unlike traditional link-state protocolsweyer,
the link-state information conveyed in DTLSR is used to
predict when links should become available and with what
—datasetl capacities (versus to remove unavailable links). Our @hoic
~dataset2 ] of DTLSR for our evaluation derives from our conjecture
‘ ‘ ‘ ‘ ‘ that it is well-suited to SIN networking, where we generally
50 100 150 200 250 300 A ;
Hours passed expect the connectivity in the cover network (and thus in
the SIN network) to be relatively predictable on the basis
Figure 5. Cumulative packets over time Datasetl and Dataset2 of history_ If true, then neighbor-tab|e broadcastS, which
between nodes in 114-node component include historically derived capacity estimates, shouéd b
useful for making routing decisions. We will briefly evalaat
For the experiments ifV, we will focus on the 114-node this conjecture later.
connected component determined #y= 700kB/day, for . ,
which the distribution of maximum achievable capacities be A+ Flooding and Neighbor Table Broadcast
tween nodes is shown in Figure 3(b). We caution the reader The neighbor tables described #iV-A-§IV-B support
that despite the significant capacities illustrated by thisa primitive form of broadcast communication in the SIN
distribution (e.g., some pairs with capacity tdMB/day),  network, i.e., by flooding. For any given broadcast, each
one cannot conclude that the latencies of communicatio®INner holds (i) the byte ranges (and byte values) of the
between any two of these nodes should be small. Théroadcasted object it has received — in the case of the
capacity realized by any particular routing protocol mightbroadcast sender, this is just the entire object — and (ii)
be far less. Moreover, the number of hops between the twor each of its neighbors, the byte ranges of the broadcasted
nodes might be large, and other workload effects, notablpbject that its neighbor should already have, because it
congestion (as we will see), can substantially increaseobbj previously either sent those bytes to or received those
transmission latencies. bytes from that neighbor. When an IP packet destined to a
As many of our experiments in subsequent sections wilneighbor is imminent, the application payload is comprésse
use this 114-node component, in Figure 5 we plot the packetnd the next available bytes of the broadcasted object (not
volume ofDataset1 over time, restricted to packets between ,_ _ , _
. . . Specifically, Dataset2 consists of records collected during 22:56 Wed
nodes in this component. A second datasdtaset?, IS 5y 15 22:28 Thu Jul 16; 18:04 Sat Jul 18 — 03:22 Tue Jul 21.08ntp
also shown, restricted to packets between nodes in thishu Jul 23 — 02:28 Sun Jul 26.

V. EVALUATION OF SIN FORATTACKER WORKLOADS

x 10°

[N
~

H
a%

H
Q

Q®

(o))

IN

Number of packets exchanged
N




already possessed by the neighbor) are included in thassuming that each SINner “awakens” at the beginning of
vacated space, preceded by the header describétd/i@ the trace and initiates its neighbor-table broadcast. As th
with the destination field set to a particular value desimgat graph shows, after abo® x 106 packets are exchanged
this as a broadcast. As always, any packet is always ensureanong those 114 SINners— or about two hours if translated
to be of the same length as the original packet, by paddingy using Figure 5 — the median number of SINners about
if necessary. which a SINner knows is over 100.

Neighbor-table broadcast In DTLSR, a key application There is, however, a “long tail”, with a few SINners

of flooding is to propagate the neighbor tables themselvebecoming known to the whole SIN network much later than
to all SINners. This is done by flooding each SINner'sothers. There are several reasons for this. First, there are
neighbor table periodically; we call this @eighbor-table several SINners who didn’t become active until a day or
broadcast The SINner's neighbor table consists of SIN so in the trace, resulting in a significant delay before their
capacity estimates to each SIN neighbor@eoch where an  neighbor-table broadcasts really began. The second reason
epoch is a specified time interval (e.g., 8-9am on weekdayss the asymmetric bandwidth of outbound and inbound
or on Mondays specifically) and the capacity estimate idirections for some SINners. The timeliness of neighbor-
derived from historical data for previous instances of thattable broadcast depends heavily on the outbound capacity
interval. Neighbor tables include epoch capacity updatesf a SINner. Since some SINners exhibit lower outbound
only for those that have changed significantly from thecapacities versus their inbound capacities, it takes eaeh o
estimates previously conveyed for them. Initially, beforelonger to send out a neighbor table, thus lengthening the
capacity estimates to a neighbor are determined, a SINneime required for others to learn of its neighbors.

simply includes the neighbor’s SIN identifier in its next

neighbor table update. Application broadcasts The above flooding mechanism

could also be used by applications to disseminate a broad-
cast message, and so we pause here to shed light on the

o — ‘
z o =—-_ " " = performance of such broadcasts as a function of their size.
2 D - ] Consider, for example, a workload in which we view the
& so (] 1 SINners as bots under control of a bot-master. We consider
2 - the latency required for a bot-master command to propagate
§ eor : ] from one SINner inside the network (presumably, the first
2 20 ] to receive it) to the remainder of the SINners. We select the
> initiating SINner of the broadcast at random, and consider
§ 20 ] the cases of a 1kB, 10kB, and 100kB broadcasts.

g gbl= . The command broadcast latency is shown in Figure 7(a).
z O er o i p;‘(’:iefso‘;x‘c‘ggng%% %)‘2020020%’802;500 These tests used the same 114 nodes identifigdVid, and
after neighbor-table broadcast disseminated neighbtegab

Figure 6. Neighbor-table broadcast latency, 114 SINnBestqset1) Each point on a curve in Figure 7(a) depicts the number of

SINners who received the complete command throughout

We stress that the IP addresses of a SINner's neighbothe trace-driven simulation. As the figure shows, in the
arenotincluded in this broadcast; only their SIN identifiers 1kB case, more than 100 SINners learned the command
and capacity estimates are included. Excluding these IRery quickly. The 10kB and 100kB commands take much
addresses is motivated by the desire to not disclose the IlBnger to broadcast because of their larger size. The slower
addresses of all participants to each SINner, so as to mak@wopagation to the last SINners may represent topological
it more difficult for an infiltrator to passively discover all effects of the SIN network, in that nodes farther away
SINners. Alternatively, IP addresses could be included, sérom the bot master take more time to receive the complete
as to short-circuit the discovery process in some cases, bebmmand than those who are closer. It may also be partially
here we employ the more conservative approach. explained by node “congestion” that flooding induces, which

In Figure 6, we demonstrate the progress of neighboris represented in Figure 7(b). More specifically, Figure)7(b
table broadcasts performed among the same 114 SINneskiows the distribution on SINnersend backlogver time,
identified in §IV-D and usingDatasetl restricted to these i.e., the sum of the sizes of all messages that the SINner
SINners as the cover traffic. This figure shows progress as laas pending to send. As Figure 7(b) shows, backlogs swell
function of the number of packets processed from the tracesarly and then slowly dissipate. Perhaps surprisingly,esom
The neighbor tables in this test included a capacity eséimatnodes continue to have forwarding obligations some 100
per hour of each weekday for each neighbor, i.e., 16&ours later, owing to a lack of traffic on which to piggyback
estimates per neighbor. This box-plot shows the distraouti the bytes they need to forward. This suggests that some form
of the number of SINners of which each SINner is awareof broadcast expiration would be appropriate.



to v in the hour at which the bytes would arrive atv (in

expectation) traveling along the existing tree. Theds/tes

are then queued for transmission to the first SINner on that

shortest path.

] In order to evaluate the performance of DTLSR for unicast

—1kb command routing in a SIN network, we postulate various workloads

giggﬁbcg?mmgzgd | that might be characteristic of activities that an attacker
might desire to perform. The workload scenarios that we

e consider include point-to-point messaging, bot “respbtse

%500 1000 1500 2000 2500 3000 3500 40080‘55300 5000 a central controller SINner (e.g., a “bot-master” as evada

Number of packets exchanged (x 200! . . . .
P ged ( in §V-A) and data exfiltration to a drop site.
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Figure 7. Command broadcast to 114 SINndDatasetl)
Pairwise capacities The first test we perform using
) ) the DTLSR unicast protocol is to examine to what extent
B. Unicast routing it can achieve the pairwise potential capacities shown in

As in a broadcast, bytes of a unicasted object can b&igure 3(b). To do so, we computed a trace-driven simulation
inserted into the spaces vacated by compressing appficati®f DTLSR per pair of SINners in some of the connected
payloads of IP packets. In each such packet, the objec@mponents depicted in that figure. We focused on the
bytes are preceded by the header describgdrC. Upon smaller components since the number of needed simulations
receiving bytes of a unicast object (as an intermediatérows quadratically in the number of SINners in the compo-
SINner on the path), the SINner buffers these bytes fofent. So as to perform a fair comparison with Figure 3(b),
forwarding. in these tests we useddatasetl, though restricted to only

We implemented DTLSR routing to use the expected© its fi_rst two days of traffic, to reduce the time consumed
delay of message delivery as the objective to minimize. EacRer pair of SINners.. S _
SINner models the network as a graph for each hour of each The results of this test are shown in Figure 8. This
day of the week (e.g., 1-2pm on Mondays). (This granularityf'gure .mcludes both the phstnbuﬂon of potentlz_sll (.ma>.<f|ow)
is the default, though we will evaluate other granularitiescapacities taken from Figure 3(b) and the distribution of
of network modeling in selected tests, as well.) That grapi€alized SIN capacity using DTLSR. This figure shows that
is directed and weighted, where the weight on the edgéh€ average daily capacities realized by DTLSR are roughly
from SINneru to SINnerv represents the expected capacity@t 1east an order of magnitude lower than those shown in
directly fromu to v in the hour the graph represents, basedFigure 3(b). The reasons for this are (at least) two-fold:
on historical activity in the same hour on the same day of I'st, in DTLSR, a SINner forwards bytes for a particular
the week. Upon receiving bytes of an objecty computes ~ destination to only one of its neighbors in any epoch. (In
the path yielding the minimum expected delay for these Contrast, a maximum flow is calculated utilizing QII links
bytes to reach their destination, via a modified Dijkstra’sn€ighboring each node.) Second, due to cover traffic packets
algorithm that builds a shortest path tree franiteratively. ~ departing a SINner prior to SIN bytes reaching that SINner,
Specifically,v is added to the tree when the expected delayN@ny opportunities for transmitting SIN data are missed.
to reach it from anyw already in the tree is the minimum Bot response We next consider an attacker workload in
among SINners not yet in the tree, where this expecteavhich all SINners initiate messages (“responses”) simul-
delay is the ratio ofs and the estimated capacity from taneously to one SINner, which might be responses to a



120 : ‘ ‘ hides the fact that in many of these cases, a substantial
fraction of the 1kB unicast does arrive at the bot-master in
this time. Nevertheless, this latency is much larger, wich
I at least partially because the DTLSR unicast protocol does
not duplicate the message in the network like flooding does,
and so is not as aggressive in pushing SIN messages forward.
In addition, congestion forms at certain nodes “close t@’ th
destination node, resulting in delays.

To highlight another consideration in determining send-
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% 1690 5600 3000 2000 ing performance, we show in Figure 9(b) the impact of
Number of packets exchanged (x 200000) conveying capacity estimates of different granularities i
(a) Latencies irDatasetl and Dataset? tests neighbor tables, using thBatasetl test. As shown in that

figure, the best messaging latencies were obtained when
capacity estimates were computed and conveyed per hour of
each weekday (the default in this paper), though estimates
per 3-hour period of each weekday resulted in nearly the

same performance. The worst results occur when computing
estimates per hour but averaged over all days of the week.
This demonstrates a tradeoff between the size of neighbor
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broadcast sent by that SINner (e.g., as measured in Figure 7) S
In our experiment, we use the 114-SINner component from 5 10 20 40 80 100 200 400 100020004500

. . Number of packets exchanged (x 200000
§IV-D, and each SINner sends a 1kB object unicast. We umber of packets exchanged (x )
conS|der_two tests, one |n_wh|ch the cover_trafflé)nsasetl, Figure 10. Data delivered to drop site per sendpstbset2)
and one in whictDataset?2 is the cover traffic. In the second
test, there are differences between the capacity estirsates
in the neighbor tables (computed on the basi®efasetl)
and the capacities available during unicast routing (thcta

Data exfiltrated per source (bytes)

Data exfiltration  The third attacker workload that we
consider is one in which the attackers “stream” as much
data as possible to a single SINner by repeatedly performing
by Dataset2). 10kB unicasts. This workload might reflect a scenario in
As shown in Figure 9(a), there is a significant differencewhich the SINners are exfiltrating data covertly from an
between performance usirigatasetl and Dataset2. While  jnfected organization, using the unicast destination a®p d
this is partially due to differences between capacity esté®  sijte. This test used the same 114-SINner component, and the
from Datasetl and available capacities witDataset2, @  destination was the same SINner as was chosen as the bot-
closer look reveals that the massive spik®#utaset2 packet  master in the previous workloads.
volume in hours 14-16 (see Figure 5), occurs between only |n this experiment we witnessed an average throughput
two nodes and in a way that is not particularly useful forof 52.43MB per hour for the first 70 hours to the desti-
routing to the chosen destination SINner in this test. AthUC nation. That said, the amount of data received from each
this packet burst elongates tbataset2 curve in Figure 9(a)  sender varies dramatically. Figure 10 shows the log scale
to the right without facilitating its progress. distribution of the amount of data received per sender as
Another observation from this figure is that the response function of the packets exchanged among SINners. As
latencies generally exceed the latencies of the bot commarttlis chart shows, some senders fare far better than others in
shown in Figure 7(a) even in tH&atasetl test, and while the terms of getting their data to the drop site, and most data
bot-master receives responses from over 90 bots in the firsame from one outlier that had very large bandwidth to the
20 hours, the responses come slowly after that. Figure 9(ajrop site. This is primarily due to some senders being in



advantageous positions relative to others in the topology, 1

but the fact that some SINners have much smaller outbound
capacities than others also contributes to this dispdhiyte o8
that since the medians for the first four boxes are zero, they 06
are not displayable on the log scale. So, the first four boxes _
show only the 75th percentile.) 04 [—0 " gﬂ;ﬂgﬂ@;'ﬁéme
VI. DETECTION OFSIN NETWORKS .l
Exploration of SIN networks naturally raises the question 0 5 T N

as to what can be done to defend against them. Our design

in §IV presents several avenues for detecting a SIN networkrigure 11.  Responsiveness of our organization’s main webesavith
For example, one approach would be to try to exploit theand without request decompression and response compressio
covert discovery signal discussed§i/-A: a host could be

set up to passively inspect received packets for the signal,
or to actively probe hosts with candidate such signals in o . )
the hopes of eliciting a response. In either case, the othe rgangtmns main web SErver as we useght FO retrieve
communication endpoint would be detected as a SINnelI. e entire contents of that site, i.e., by requesting each,UR

This approach, however, presupposes knowledge of whzﬁnd timing the delay to receive the first_ packet of each
the candidate signals are, and in this respect is a forrRerver's response. These requests were issued from a host

of signature-based intrusion detection. A new variant of" the_campus wired network. We then added to each of
SIN malware could employ a new signal that would gothe tlmlngs_the costs of decompres_smg the payload of the
undetected until discovered and reverse-engineered. corr_espondmg request packet (after it had been gompressed

Below we report preliminary results on two more gen- as if the server were a SIN node decompressing it) and

eral approaches to attempt to detect SIN networks, an§empressing the payload of the corresponding first response

specifically that try to detect the compression of packetspacket (as if the server did o). To ensure that our tests

As such, even if these approaches detect SIN networks were conservative, we did these tests on a campus holiday
explored in this paper, they may not detect SIN network‘thgeptember 7, 2009, which was Labor Day in the U.S.) so

' - o Shat the network and server were lightly loaded; we used
built from primitive covert communication channels of athe L )
o an inferior machine (a 2.2GHz MacBook Pro laptop, versus
types (e.g., timing channels).

the 2.4GHz dual-core AMD Opterons that support the web
server) for calculating the compression and decompression
costs; and we measured the most aggressive compression
No matter what SIN routing algorithm is employed, a supported by ! i b. The CDFs of the resulting timings (with
basic property of SIN networking as we have exploredand without compression and decompression overheads) are
it here is compression of packet payloads to insert SINshown in Figure 11. The similarities of these CDFs suggest
data, and corresponding decompression to reconstitute thRat detecting the web server as a SIN node using server
original packet payload prior to delivery. This compressio responsiveness would be unreliable.
and decompression adds processing delays to the network )
stacks of the SINners between which the communicatiofs- Using Payload Analysis
occurs, and so one avenue of detection might be to try to While SIN networking is premised on the notion that
notice these extra delays. network defenders collect only summary information about
To measure the capability of this detection approach, weheir networks, it is worthwhile to consider what degree of
performed an experiment that a defender might utilize topayload inspection is useful to detect it. For example, the
detect a SINner, namely by monitoring the delay apparentlynetwork monitoring could scan in a signature-based way,
associated with a node’s packet processing. Consider, fa.g., for something that might look like our SIN header in
example, a network defender that recoedb-trecords [1]  application payloads. However, due to the random selection
on his network; unlike most payload-agnostic summariratio of identifiers and since object identifiers would typically b
approaches, these records include packet timings. Suppobash values, there is perhaps less structure in our header to
the defender builds a model of the typical responsivenesexploit in this way than it first appears. Moreover, a change
of a server to queries, and monitors for a change in thef header format or location would also likely sidestep this
responsiveness that might be indicative of the extra delaydetection.
associated with decompression of each query and compres-Instead, in this section we consider ways of analyzing
sion of each response. We would like to determine whethepacket contents to detect a change in the byte-value dis-
such a detector would be effective. tribution for a particular application’s communicationuiO

To test this, we measured the responsiveness of our

A. Using Packet Processing Delays



compression of application payloads and insertion of SINtype) to make it a useful detector. Instead, for web server
data risks changing the byte frequency distribution, andesponses we borrowed an approach used in Anagram [39],
so it would seemingly be detectable by mechanisms than which we simply record which n-grams occurred in the
monitor this distribution [22], [24], [26]. In order to test training data for that site, rather than tracking a distiimu

this, we built a detector similar to PayL [24], an intrusion- for them.

detection system that detects attempts to infect a server To conduct this test, we usedjet to retrieve the contents

by monitoring byte-value n-grams in server query packetsof our organization’s main web server, and built training
Instead of limiting our attention to server queries, howgve and testing data from server response packets. The results
we considered building byte-value n-gram distributions fo reported below are the average of five tests, each using a
query packets and response packets independently, to seenibnoverlapping 20% of these response packets as testing
the insertion of SIN payloads within those packets woulddata and the remaining 80% for training. Our decision to
alter the byte-value n-gram distributions of either type ofuse 80% for training (vs. 100%) reflects two observations.
packets in a detectable way (without inducing a large numbefirst, training a network-based SIN detector, even one with

of false alarms). different model per server IP address and port, on the entire

DNS traffic  To provide a test of this, we utilized a DNS contents of every server that it withesses, would likely be
trace collected over two weekérom a university wireless Untenable; more likely, it would train on what is actually

network used by approximately 50 clients. This dataset comtetrieved from each site during the training period, which

prises approximately 3 million packets amounting to 450MBWould typically be less than the entirety of the site. And

of data. We separated this dataset into request and resporicond, for a site that is more frequently updated than
packets, and treated these separately. For each type gtequeur organization's, there will be a gap between the current
of these response packets as testing data and the remainitgined.

66% for training. In each test, we built a byte-value 1-

gram distribution of our training packet payloads. Then, 1

for each testing packet, we built a 1-gram distribution for

that packet, computed the L1 distance between the trained 08

distribution and this packet’s distribution, and then edis &

an alarm if the L1 distance exceeded a threshold. We did 506/ BiHigh Entropy SIN data
this test for each testing packet in its original form, each B Okow Entropy SIN data
testing packet compressed with low-entropy SIN payload Qo4

added (all zeroes), and each testing packet compressed with é

high-entropy SIN payload added (random bytes). In these 0.2r

tests, we found an equal error rate of zero — the SIN packets

were perfectly identifiable using the 1-gram detector — (e 0 07 06
because DNS is a protocol in which the bytes of many fields False Detection Rate
typically range over a relatively restricted subset of ealu
Even bytes of domain names can include only letters, digits
between “0” and “9”, and “-". For this reason, it is likely
that compressing a DNS packet will introduce byte values
that would otherwise be highly uncommon, resulting in a —normal packets

large L1 distance between a SIN packet and the distribution 0.2r ... normal packets with SIN data (high entropy)
for normal DNS packets. --'normal packets with SIN data (IQW entropy)

Web responses To illustrate a type of packet in which
SIN data is more difficult to detect, we turned to web traffic, 0.1
as we conjectured that the richer content and media types 0.05
available on web servers would make it much more difficult
to identify individual SIN packets. For web sites hosting a % 02 04 06 _ 08 1
variety of media formats (videos, images, text), the byte- Compression ratio

value n-gram distribution calculated over all response&kpac  (b) CDF of compression test

ets would generally differ too much from that of individual
packets (which typically include content of only one media

0.8 1

(a) ROC curve for 4-gram detector

0.25¢

0.15¢

Figure 12. Detection of SIN packets from our organizatiomain web
server

4This trace was collected in 2007 between Sat Aug 11 11:16 amd S ) ) )
Aug 26 20:48. For testing, we determined the number of n-grams in a



response packet that was not seen during training, andlraisérowsing, it is difficult to project what sort of aggregate
an alarm on that packet if a threshold number of such nmeasure might work, however.) The results, shown in Fig-
grams had not been seen in training. Typically all possiblaure 12(b), suggest that a web server that sends high-entropy
1-grams, 2-grams and 3-grams were observed in trainingsIN data might be detectable, though it is more questionable
rendering the model useless, and so we conducted testghether a server sending low-entropy SIN data would be.
using 4-grams. We tested on both response packets froifhis presents a tradeoff to the adversary between conveying
our organization’s web server drawn from our corpus asnformation as compactly as possible and keeping its traffic
described above, and on these packets after SIN contendés undetectable as possible. We plan to further investigate
were added. For the latter, in one test we embedded lowthis tradeoff in future work.
entropy SIN data (all zeroes) and in one test we embedded
high-entropy SIN data (random bytes). The ROC curves for
these tests are shown in Figure 12(a). It is evident from this In this paper we introduced Summary-Invisible Network-
plot that SIN detection based on 4-gram detection was quiténg (SIN), a type of covert networking that strives to remain
poor when tested on high-entropy SIN data — the equainvisible to anomaly detection systems that examine traffic
error rate is approximately 20% — and is abysmal whensummaries. To be undetectable by such detectors, we set a
tested on low-entropy SIN data. stringent requirement for a SIN network, namely that it kav
The failure of our 4-gram detector suggests perhaps tryinginchanged the results of any network monitoring that is
5-grams, as was done in Anagram [39]. Anagram, howevegblivious to the application payload content. Conseqyeat!
recorded 5-grams fromequestgo an academic web server; SIN network is not permitted to initiate new packets or even
since such requests are far less varied in content typelter the timing or size of additional packets. To acconiplis
than web responses, it was feasible to record the 5-grantbis while implementing a functional network, SIN builds
witnessed in requests. For web responses, we project th&tbm two key observations. First, network anomaly detectio
well more than 100GB would be needed to record thebased on payload-oblivious traffic summaries admits a new
5-grams witnessed, which would require on-disk storagdype of covert embedding in which compromised nodes
for any computer available to us. Such an architecturembed content in the space vacated by compressing the
would preclude monitoring efficiently, however. A second payloads of packets already in transit between them. Second
deterrent is that any benefit gained from using higher npoint-to-point covert channels can serve as a “data link
grams to detect SIN data would presumably trigger falsdayer” over which routing protocols can be run, enabling
positives on any new high-entropy data object not seemore functional covert networking than previously exptbre
during training. As such, it is unclear whether using n-gram We presented a framework for SIN networks and showed
analysis would effectively detect SIN communication forthe potentially achievable networking capacity that this
servers with dynamic content. framework permits V). We then considered instantiat-
As such, we turned to another natural idea for detectingng this framework with particular routing protocols and
SIN traffic in web-server responses: a SIN network presumevaluated these protocols on tasks suggestive of what an
ably is required to increase the entropy of the applicatioradversary might like to attempt with a SIN networkVj.
payloads on which it piggybacks, since packets carry botfThis study demonstrates that while latencies and throughpu
the information of the original application and the SIN on a SIN network are orders of magnitude worse than
information. We are unaware of research on evaluatingxisting networks today, the network is adequately fumetio
application payload entropies at line speetisi a pragmatic  that a sufficiently patient attacker might find the covertnes
alternative is to monitor the compression ratios of paysoad of this approach worth the performance price. We believe
To explore this avenue, we repeated the above tests, excemiir work opens up new research directions in improving the
calculating the compression ratios of the packet payloadperformance of SIN networks.
from our organization’s web server, both without and with We also examined approaches to detect SIN networks
SIN data embedded (and in the latter case, for both low{§VI). We first tested the possibility of using the timing
entropy and high-entropy SIN data). Since we do not believg@erturbations resulting from SIN processing at SINnerd, an
a per-packet detector is feasible for this measure — e.g., Bund this to be unreliable. Second, we considered efficient
single video response packet will be uncompressible — weaneans of payload analysis to detect SIN packets, with mixed
plot the CDF of the compression ratios to gain insight intoresults. For a protocol like DNS, we found that monitoring
whether a monitor that computes an aggregate compressidayte-value n-gram distributions of packets can effecyivel
ratio might work. (Because our dataset does not reflect realetect SIN packets, but neither this nor monitoring com-
pression rates of packets produced compelling results for
5In contrast, entropies of header fields (which our approasés chot detecting a web server sending SIN payloads. As such, we
affect) have been used to monitor for anomalies (e.g., [4Q], [42]) and . . . . .
streaming algorithms have been proposed for estimatingetlemtropies believe there is much more to Investigate Iin how to detect
(e.g., [43], [44], [45)]). SIN networking in general.

VII. CONCLUSION



Finally, as an initial paper in SIN network, this paper [7] M. P. Collins and M. K. Reiter, “Hit-list worm detectiomd
introduces at least two additional directions for subsatjue
research. First, the SIN network protocols we proposed will

not scale to a very large SIN network. Scaling these systems

might involve the creation of an inter-SIN-domain routing [8]
protocol, i.e., an analog to BGP for our SIN networks. Scale
may also bring the need for the attacker to better monitor
the viability of his SIN network, along with analogs of other
challenges of network operations. Second, we have taker|9]
an extreme position in stating the requirements of a SIN
network, namely that it cannot change traffic summaries at
all. Even small relaxations of this requirement may provide
substantial benefits for the SIN network, though any suchi0]
relaxation must be carefully considered to determine wdreth
it opens a practical method of detection.
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