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Abstract—Numerous network anomaly detection techniques
utilize traffic summaries (e.g., NetFlow records) to detectand
diagnose attacks. In this paper we investigate the limits ofsuch
approaches, by introducing a technique by which compromised
hosts can communicate without altering the behavior of the
network as evidenced in summary records of many common
types. Our technique builds on two key observations. First,
network anomaly detection based on payload-oblivious traffic
summaries admits a new type of covert embedding in which
compromised nodes embed content in the space vacated by
compressing the payloads of packets already in transit between
them. Second, point-to-point covert channels can serve as a
“data link layer” over which routing protocols can be run,
enabling more functional covert networking than previously
explored. We investigate the combination of these ideas, which
we term Summary-Invisible Networking (SIN), to determine
both the covert networking capacities that an attacker can
realize in various tasks and the possibilities for defenders to
detect these activities.

I. I NTRODUCTION

Due to existing router support for collectingflow records,
there is increasing attention being devoted to performing
network anomaly detection using flow logs. A typical flow
record format (e.g., CISCO NetFlow) provides summary
statistics (numbers of packets and bytes) for packets shar-
ing the same addressing information (source and destina-
tion addresses and ports) in an interval of time. Other,
more fine-grained summarization approaches, such asa-b-t
records [1], further reconstruct connections and characterize
their behaviors, e.g., as interactive, bulk file transfer, or
web-like, on the basis of packet sizes and interleavings of
packets in each direction. Such summarization approaches
have proven useful for traffic classification (e.g., [2]) and
diagnostics of various types (e.g., [3]), including of some
security-relevant anomalies. For example, even simple flow
logs have been shown to be useful for finding peer-to-peer
traffic masquerading on standard ports (e.g., HTTP port 80)
(e.g., [4]), various kinds of malware activities (e.g., [5],
[6], [7]), and even for identifying the origin of worms [8].
Indeed, a community of security analysts now holds an
annual workshop devoted to the use of flow records for such
purposes (http://www.cert.org/flocon/).

In this paper we explore the limits of analysis using
such traffic summaries for security purposes, by taking the
attacker’s perspective and investigating to what extent an

attacker who compromises a collection of machines in an
enterprise, for example, can perform his activities in a way
that is undetectable in summary records. Because we can-
not foresee every potential approach to summarization that
might be employed, we take an extreme position to ensure
that the attacker’s activities will remain undetected byany
summarization technique that does not inspect application
payload contents. As such, the attacker is not permitted to
alter the flow-level behavior of the network, for example,at
all. The challenge, then, is to demonstrate what the attacker
can accomplish under this constraint.

To provide such a demonstration, we introduceSummary-
Invisible Networking(SIN), a networking technique that
piggybacks on existing traffic to enable data interchange
among compromised hosts (SINners). SIN is designed to
be invisible in traffic summaries, in the sense that a log of
summary records collected in the infected network should be
unchanged by the presence of compromised hosts executing
SIN. To accomplish this, SIN must operate under stringent
constraints:

• The number of packets between any source and des-
tination must remain the same.Increasing the number
of packets between sources and destinations would be
evidenced in flow records that report packet counts, for
example. In order to avoid this, a SIN network must
perform all signaling and data exchange using packets
that the hosts would already send.

• The sizes of packets must remain the same.Increasing
the sizes of packets would be evidenced in flow records
that contain flow or packet byte statistics.

• The timing of packets must be preserved.Because
some summarization techniques (e.g., [1]) take note of
interstitial packet timings, the timing of packets must
remain essentially unchanged, and so a SIN network must
involve only lightweight processing.

• SINners must transparently interoperate with uncom-
promised hosts.The behavior of SINners as observed
by uncompromised hosts must be indistinguishable from
that of uncompromised hosts, lest the different behaviors
induce uncompromised hosts to behave differently and,
e.g., send traffic that would not have otherwise been
sent. As such, a SINner must covertly discover other
SINners in such a way that does not interfere with regular



interaction with uncompromised hosts.

In order to meet these requirements, SIN builds from two
key observations: First, to preserve the size of each original
packet it sends, a SINner compresses the original application
payload to make room to insert SIN data; the receiving
SINner then extracts the SIN data and restores the payload
to its original form before delivering the packet. Second,
mechanisms for discovering other SINners and embedding
data in packets already being sent enables the establishment
of a “data link layer”, over which we can layer a routing
protocol, for example. This routing protocol will need to
accommodate the fact that SIN is purely opportunistic:
unless the host is already sending a packet to a particular
other host, data cannot be sent to that host. In this and other
respects, our work can build from prior routing protocols for
delay-tolerant networks[9], [10].

Using these observations, we design a framework for SIN
networking and evaluate it in this paper. Specifically, we
show the following:

• Using traces collected on our organization’s network, we
measure the characteristics of SIN capacity in packets,
i.e., the space available by compressing packet payloads.
We demonstrate the extent to which SIN capacity is
asymmetric between SINners, and the ports (applications)
that contribute the most SIN capacity to the network.

• We identify groups of nodes in our organization’s net-
work that, if compromised, could carry out a viable SIN
network among them. For example, we identify a 114-
node group for which the available SIN capacity from
any one member to any other is at least 700kB/day and
as large as 20MB/day.

• We characterize the performance of broadcast and unicast
routing algorithms run among such a group of SINners.
For example, we show that broadcast by flooding in the
aforementioned 114-node group conveys a 1kB command
(as if from a bot-master to his bots) to more than 80 of
the SINners in under 2 hours and to more than 100 of
the SINners in under 5 hours. To evaluate unicast, we
implement and measure the performance of a state-of-
the-art delay-tolerant unicast routing protocol. We show
that it falls far short of fully utilizing the available SIN
capacity, thus highlighting the need for unicast protocols
tailored to this domain, but still enables SINners to push
more than 52MB/hour to a designated drop-site (as if
exfiltrating data to it), for example.

We then turn our attention to approaches that might be
used to detect SIN networks. In this direction, we make the
following contributions:

• We analyze the possibility of detecting changes in in-
terstitial packet timings that come with the compression
and decompression steps intrinsic to SIN processing in
the network stacks of compromised computers, since
some traffic summarization approaches capture interstitial

times (e.g., [1]). Using response-time measurements of
our organization’s main web server, we demonstrate
that this method of detecting SIN processing will be
unreliable, at best.

• Though SIN is premised on payload-agnostic detectors,
our work provides an incentive to identify lightweight,
payload-sensitive measures to find SIN networks, and so
we explore what those might be. We show, for exam-
ple, that monitoring the byte-value distribution of DNS
packets permits the reliable detection of a DNS server
participating in SIN. However, we show that similar
monitoring of web server response packets is ineffective,
owing to the diversity of content served from web servers.
We further explore testing the compressibility of web-
server response packets, though this is not conclusively
effective, either, particularly if the SIN nodes restrict the
entropy of data they embed in packets. We conclude
that even payload-sensitive measures for detecting SIN
networks require further study.

To summarize, the contributions of this paper include
introducing SIN networking, a novel approach to hiding
from summarization-based anomaly detectors, and measur-
ing both its capabilities and its detectability in a modern
network. Our evaluation shows that SIN networks pose a vi-
able strategy for a sufficiently patient attacker to coordinate
malfeasant activities among compromised nodes, but that
routing protocols that better utilize available SIN capacity
could benefit from further research. We also show that SIN
networking within some protocols can be detected through
lightweight payload inspection, but that further researchis
required to do so in others.

The rest of this paper is structured as follows. We discuss
related work in§II, and our goals and assumptions in more
detail in§III. We present a framework for SIN networking in
§IV. We then populate that framework with particular rout-
ing protocols, and evaluate the feasibility and performance
of various attack activities using SIN in§V. We study ways
to detect SIN networks in§VI, and conclude in§VII.

II. RELATED WORK

SIN can be viewed as embedding a covert network within
another (physical) network, albeit where the “covertness”of
the embedding is subject to the detector taking a limited
viewpoint on the traffic (i.e., summarization). This limitation
on the detector obviates the need to steganographically
embed SIN communication in packets (with one exception,
discussed in§IV-A). Nevertheless, SIN draws inspiration
from other works focused on embedding one type of service
steganographically within another, e.g., a file system within a
file system [11], a file system or wiki within a media hosting
and sharing service [12], [13], or communication within web
counters [14].

Because the opportunity to transmit packets between any
two SINners is sporadic and depends entirely on the shape



of the traffic in the legitimate network, the problem of
routing in such a context can be modeled as a sort of delay-
tolerant network (DTN) as described in [9], [10]. Since
that early work, there has been a reasonably large body of
work on routing in such environments. A number of routing
and forwarding services have been described, including a
strategy based on Levy walks [15], a probability-of-delivery-
based distance scheme [16], a likelihood-based scheme [17],
and epidemic routing [18], to name several.

It may be that all of these schemes can be shown to apply
to SIN networking. There are, however, several significant
differences between the nature of the opportunistic model in
the SIN context and the model used to develop and evaluate
these schemes. Those differences may have an impact on to
what degree the mechanisms in the DTN literature can be
brought to bear. First, because we assume that the participat-
ing nodes in the network have been entirely compromised
by the attacker, buffer space at the intermediate nodes in the
SIN network is not an issue. Many of the schemes assume
that buffer in an intermediate node is a constraining resource.
A second difference is that the mix of contact opportunities
between any two nodes in the network is not based on either
mobility or the probability of two sensors choosing the same
duty cycle, but instead inherits the contact mix exhibited by
the legitimate traffic that drives the SIN network. One could
reason that the entropy of the contact mix in the SIN network
is probably lower than that of the existing models. A more
in-depth study on this question specifically is required to
know more. Finally, there is no control over how much can
be sent for any given contact opportunity since the size of the
SIN payload is dependent on the compression ratio achieved
on the original payload content.

Our motivation for studying SIN networking is to under-
stand the limits of network anomaly detection approaches
that do not examine packet payload contents. We are not
the first to examine these limitations. For example, Collins
et al. [19] evaluated the extent to which five proposed
payload-agnostic anomaly detectors — Threshold Random
Walk [20], server address entropy [21], protocol graph
size and protocol graph largest component size [7], and
client degree (i.e., number of addresses contacted) — could
limit bot harvesting and reconnaissance activities on a large
network while maintaining a specified maximum false alarm
rate. Here we take a distinctly different perspective than all
such past studies of which we are aware, by designing the
attacker’s communication to avoid detection byanypayload-
agnostic detector, and then demonstrating the attacker’s
ability to communicate under this constraint.

While our motivation derives from examining limitations
of payload-agnostic detectors, some efforts have embraced
the need to examine packet contents in order to identify mal-
ware outbreaks, e.g., [22], [23], [24], [25], [26], [27], [28].
A significant class of this type of work focuses on finding
byte-level similarities in packets that suggest the frequent

occurrence of similar content (e.g., [23], [25], [27], [28]).
Our SIN network design necessitates no such byte-level
similarities, and so we do not expect that these approaches
would be effective at detecting SIN networking (nor were
they intended for this purpose). Other approaches that strive
to detect deviations from past byte-value distributions for an
application (e.g., [22], [24], [26]) may be more successful
at detecting SIN networks. We will discuss these and other
approaches to efficiently examining payload contents that
might be more suited to detecting SIN networks in§VI.

III. G OALS AND ASSUMPTIONS

We consider a network in which monitoring produces
summary traffic records. For our purposes, a traffic summary
is any log format that is insensitive to the byte values that
comprise the application payloads of TCP/IP packets. More
precisely, define a characterizing feature vectorc(p) defined
on TCP/IP packets over a link such thatc(p) = c(p′) if p and
p′ differ only in the contents of their application payloads.1

For the purposes of this paper, we define this characterizing
feature vector most generally to bec(pi) = 〈ti, si, hi〉 where
ti is the time the packeti was transmitted,si is the size
of the packet, andhi is the header of the packet outside
of the application payload. A summary recordr is defined
by r ← f(c(p1), . . . , c(pn)) for some functionf and for
packetsp1, . . . , pn.

A particularly common type of summary record is aflow
record. A flow record summarizes a collection of pack-
ets sharing the same protocol and addressing information
(source and destination IP addresses and ports) observed in
a short interval of time. Such a record generally includes this
information, the number of packets observed, the number of
bytes observed, a start time and duration of the flow. Addi-
tional header information could also be collected about the
flow, such as the logical-or of the TCP flags in the packets
that comprise the flow (as is available in NetFlow). However,
we require that whatever is collected be invariant to the
application payload contents of the packets that comprise the
flow (since our techniques change the payloads). Whenever
it is convenient to simplify discussion, we will use flow
monitoring as an example of traffic summarization.

We assume that an adversary is able to compromise a
collection of computers, in such a way that the attacker’s
malware on each such computer can intervene in that
computer’s networking functions at the IP layer. That is,
we presume that the attacker’s malware can intercept each
outbound IP datagram and modify it prior to transmission.
Similarly, a compromised machine can intercept each in-
bound IP datagram and modify it prior to delivering it to
its normal processing. On most modern operating systems,
these capabilities would require a compromise of the O/S
kernel.

1And, of course, their TCP checksums.



In this setting, the goal of SIN networking is to implement
a functional overlay network among compromised machines
that is unnoticeable to traffic summarization techniques.
Specifically, collected traffic records must be unchanged by
the presence of SIN, and consequently SIN should not alter
the number or size of packets sent on the network, or the
destination of any packet. Subject to this constraint, it should
enable communication among compromised computers to
the extent enabled by the cover traffic into which this
communication must be included.

IV. A SIN N ETWORK FRAMEWORK

In this section we describe a protocol framework for SIN
networking. We emphasize, however, that this is one possible
approach to SIN, and we believe a contribution of this paper
is identifying SIN networking as a challenge for which
improved approaches can be developed (and new defenses
can be explored). We will populate this framework with
particular routing protocols, and evaluate their performance
on a variety of tasks, in§V.

We begin in§IV-A with a description of how one SINner
discovers its neighbors. We discuss naming SINners in
§IV-B. We present data objects, their identifiers, and SIN
headers in§IV-C. Finally, we perform an evaluation of the
potential for SIN capacity in a modern network in§IV-D.

A. Neighbor discovery

A “neighbor” of one SINner is another SINner to which
it sends or from which it receives IP packets directly.
Since our requirements for invisibility in traffic summaries
requires that a SINner send packets to only destinations to
which its host would already send, a SINner must discover
which of those hosts are also compromised. To do so, it
must piggyback discovery on those already-existing packet
exchanges, in a way that does not interfere with the regular
processing of those packets, in the event that the neighboring
host is not a SINner.

To accomplish this, a SINner can employ any available
covert storage channel, such as known channels in the IP or
TCP packet header (e.g., [29], [30], [31], [32], [33], [34]).
Murdoch and Lewis [33] develop a robust implementation
based on TCP initial sequence numbers, for example. This
technique generates initial sequence numbers distributedlike
those of a normal TCP implementation, but that would
enable SINners knowing a shared key to recognize as a
covert signal. Moreover, since discovery need not be im-
mediate, the signal could be spread over multiple packets.
Another alternative would be to exploit any available covert
storage channels in application payloads, which would be
undetectable in traffic summaries by definition. Coverttim-
ing channels (e.g., [35]) would risk detection owing to the
availability of timestampst1, . . . , tn to the summarization
function f (see §III). They may nevertheless be effective
since the information being conveyed is small (effectively

one bit) and can be conveyed over the course of multiple
packets.

When a SINner receives a packet in which it detects the
discovery signal (or, for robustness, multiple packets from
the same source bearing the signal), it adds the source IP
address of the packet to aneighbor table. If it has not
yet indicated its own participation in the SIN network to
this neighbor, it takes the opportunity to do so in the next
packet(s) destined for that address, i.e., by embedding the
discovery signal in those packets. Since virtually all traffic
elicits some form of response packet, the neighbor relationis
typically symmetric: if IP addressa2 is listed in the neighbor
table at the SINner with IP addressa1, thena1 is (or soon
will be) listed in the neighbor table at the SINner with
addressa2.

After discovering a neighbor, the SINner can estimate
its transmission capacity to this neighbor by observing the
packets sent to it over time. To estimate this capacity,
the SINner compresses each application payload to that
neighbor (possibly in the normal course of executing a
routing protocol, see§V) and collects the sizes of the vacated
space in the packet. These per-packet capacities can be
accumulated over whatever interval of time is appropriate,
say per day, to determine an estimate of the capacity to that
neighbor on each day. Each node stores these estimates for
each neighbor in its neighbor table.

Each SINner augments the IP addresses and capacity
estimates in its neighbor table with additional information,
as described in§IV-B. §V-A and §V-B discuss how this
information is used in particular routing protocols.

B. Naming

When a host is compromised, the SIN malware generates
an identifier for the SINner that will permit other SINners
to name it (e.g., as the destinations for objects). While the
SINner could adopt another, existing identifier for the host
(e.g., its IP address), we consider a different alternativehere.
Reusing an existing, well-known host identifier would enable
any other SINner in the SIN network to potentially locate
all other SINners in the network, if coupled with a link-
state routing protocol as we explore in§V. While we do not
incorporate robust defenses against SIN network infiltration
in our design (e.g., by law enforcement) or against learning
other participants in the event of such infiltrations (in con-
trast to membership-concealing overlays [36]), permitting
even a single infiltrated SINner to learn common identifiers
for all SIN participants would make SINner location just too
easy. (Note, however, that we cannot prevent a SINner from
knowing the IP addresses of its neighbors.)

For this reason, the identifier that a SINner generates for
itself is a new random value of a fixed length. Since the
SINner will transmit this identifier to others in a manner
described below and since, as we will see in§IV-D, trans-
mission capacity is at a premium, we opt for identifiers



that are not too long, specifically of length 4 bytes (B).
Since identifiers are chosen at random, a 4B identifier should
suffice to ensure no identifier collisions with probability at
least1−1/232−2n in a network with up to2n SINners, e.g.,
with probability at least0.999 for a SIN network of up to
211 = 2048 nodes.

Once a SINner discovers a neighbor (§IV-A), it transmits
its identifier to that neighbor in packets already destined to
it. To do so, the sender compresses the existing application
payload, and uses the vacated space to insert the identifier.A
small header precedes the identifier; it simply indicates that
this packet holds the sending SINner’s identifier. Each sent
packet is made to be exactly the same size of the original
packet, which is necessary to ensure that our approach is
summarization-invisible.

Upon collecting the identifier for a neighbor, the SINner
inserts the identifier into the neighbor table, so that it is
associated with the IP address of that neighbor.

C. Data object model

Our design of a SIN network enables the transmission of
objectsfrom one SINner to another. The object is assumed
to begin with its length (e.g., in its first four bytes), and sois
self-describing in this respect. An object is transmitted in the
SIN network using a collection of point-to-pointmessages,
each from one SINneru to a neighborv. Each such message
is embedded in an imminent packet fromu to v. Figure 1
shows the transmission of one object in two SIN messages
(i.e., separate object byte ranges in each message), each
embedded into separate IP packets to a neighbor. Note that
the neighbor may or may not be the ultimate destination of
the object.

An object has anidentifier that will be included in each
SIN header for a message containing bytes of that object.
Data objects are framed at byte granularity; i.e., arbitrary
byte ranges can be sent, and so each SIN header also
includes the starting byte offset and the length of the byte
range being transmitted.

The object identifier for an application data object is
a hash of the object contents. In this way, it can serve
as both a tag to identify bytes for the same object (i.e.,
for reassembly), and as a checksum to detect corruptions
(though this is admittedly probably unnecessary). A different
type of object that can be sent is an acknowledgment for
(perhaps byte ranges of) another object. The identifier for
an acknowledgment for an object is a hash of: the identifier
for the object it is acknowledging, appended with a constant
string (e.g., “acknowledgment”). In this way, any SINner
holding bytes of an object to forward can recognize an
acknowledgment for byte ranges of this object, and remove
any acknowledged bytes from its pending forwards.

To summarize, a SIN header for a message consists of
the object identifier for the object for which bytes are being
sent in the message, the starting byte offset and length of

Figure 1. Transmission of an object in two SIN messages

Figure 2. SIN header format in experiments (object length iscontained
in the first 4 bytes of the object itself)

the bytes in the message, and the source and destination
identifiers for the object. Since, as will be shown in§IV-D,
SIN capacity is at a premium, we want to reduce the header
size as much as is reasonable. The SIN header for an IP
packet that we employ in the rest of our evaluation is 18B
in length: it includes a 4B object identifier for the object
of which the SIN payload in this packet is a part; the byte
offset (4B) in the object and length (2B) of the SIN bytes
in this packet; the 4B identifier for the source SINner of the
object, and the 4B identifier of the destination SINner for
this object. (See Figure 2.)

D. Available Capacity

There is reason to be skeptical of the capacity that is
offered by compressing packet payloads. Traffic that follows
a client-server pattern poses a challenge to two-way covert
communication via this technique, since typically only flows
in one direction (e.g., downloads from a web server, versus
requests to the web server) are sufficiently large offer the
possibility of substantial residual capacity after compression.



Peer-to-peer traffic, on the other hand, does not suffer from
this limitation, but since it usually consists of media files
that are already compressed, its packets might not be very
compressible.

In order to understand the capacity offered by modern
networks via this technique, we logged traffic on the network
at our organization, in particular recording the size to which
each packet payload could be compressed using thezlib
library. We collected a dataset, referred to asDataset1 in
this paper, over several weeks.2 Only packets that could be
compressed were represented inDataset1, as other packets
are useless for our purposes. In particular, this discardedall
encrypted packets, despite the fact that SIN capacity might
be available in the plaintext protocol (and could be utilized
by SINners at the encryption/decryption endpoints).
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Figure 3. Pairwise SIN capacities per day inDataset1.

We usedDataset1 to build a graph consisting of ver-
tices that represent hosts in the network, and directed
edges labeled by the average daily capacity inDataset1

2Due to artifacts of our collection infrastructure, our traces were typically
not contiguous.Dataset1 contains data collected during the intervals Mon
Jun 22 15:19 – Wed Jun 24 00:51, Thu Jun 25 20:43 – Sun Jun 28 12:38,
Tue Jun 30 19:07 – Wed Jul 1 04:55, Thu Jul 2 09:37 – Sat Jul 4 17:18,
Mon Jul 6 19:07 – Tue Jul 7 15:22, Thu Jul 9 04:11 – Sat Jul 11 11:56,
and Mon Jul 13 09:50 – Tue Jul 14 11:02, all in 2009. Note thatDataset1

was collected during the summer, the time of lowest network utilization on
a university network.

from the source host to the destination host, i.e., capacity
available for covert payload due to compressing packets.
Figure 3(a) shows the distribution of these capacities, both
unidirectionally (i.e., per edge) and bidirectionally (i.e., the
smaller of the capacities of the opposing edges between
two nodes). Also shown in Figure 3(a) is the distribution
of the difference between the capacities of the opposing
edges between each pair of nodes. As the difference plot in
Figure 3(a) shows, the difference distribution is very close to
the unidirectional distribution, suggesting that our intuition
regarding the constraining effects of common client-server
patterns on two-way communication holds true.
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Figure 4. Server ports that contributed the most SIN capacity over 14:56
Thu Sep 3 – 14:06 Sat Sep 5; left bar is inbound traffic, right bar is
outbound; bar height denotes total bytes, black area denotes SIN capacity

We have also evaluated what applications contribute the
most available SIN capacity. To do so, we recorded addi-
tional traces and found all〈IP address, port〉 pairs that acted
as servers in our traces, in the sense of accepting initial
SYN packets in a three-way TCP handshake that went on to
complete. For each pair, we calculated the payload sizes of
all inbound packets, the sizes of those payloads compressed
(individually), the payload sizes of all outbound packets,and
the sizes of those payloads compressed. By summing each
of these four categories of values over all〈IP address, port〉
pairs with the same port value, we gain an understanding of
how much available capacity each server port contributes.
The 15 ports contributing the most available SIN capacity,
summed over both inbound and outbound directions, are
shown in log scale in Figure 4. This figure also confirms the
asymmetry of SIN capacities, in that for most of these ports,
there is at least an order of magnitude difference between
the SIN capacities in the inbound and outbound directions.

Despite the limitations introduced by client-server com-
munication patterns, the possibility of substantial overall
capacity remains for SIN networking since it need not rely
on bidirectional point-to-point communication. To illustrate
this, for a given capacity thresholdθ, we deleted all edges of
capacity less thanθ in the above graph, and then computed
the largest strongly connected component in the graph that
remained. Then, we re-inserted all edges between nodes
in that strongly connected component, and computed the



maximum flow [37] sizes in this graph for each ordered pair
of nodes, i.e., in which the first node is the “source” and the
second node is the “sink”. Intuitively, if exactly the nodesin
the strongly connected component were SINners, then these
maximum flow sizes are theoretically the SIN capacity from
one SINner to another.

Figure 3(b) shows the distribution of those maximum
flow sizes (over all ordered pairs of nodes in the strongly
connected component) for different levels ofθ, each repre-
sented as a box-and-whiskers plot. The box illustrates the
25th, 50th, and 75th percentiles; the whiskers cover points
within 1.5 times the interquartile range. In addition, above
each box-and-whiskers plot is the number of nodes in the
strongly connected component for that value ofθ. As this
graph shows, the maximum flow sizes often far exceed
the thresholdθ, implying that there is much capacity to
be gained by routing over multiple paths between pairs of
nodes. The extent to which this extra capacity can be utilized
by an intelligent a routing protocol is discussed in§V.
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Figure 5. Cumulative packets over time inDataset1 and Dataset2

between nodes in 114-node component

For the experiments in§V, we will focus on the 114-node
connected component determined byθ = 700kB/day, for
which the distribution of maximum achievable capacities be-
tween nodes is shown in Figure 3(b). We caution the reader
that despite the significant capacities illustrated by this
distribution (e.g., some pairs with capacity of10MB/day),
one cannot conclude that the latencies of communication
between any two of these nodes should be small. The
capacity realized by any particular routing protocol might
be far less. Moreover, the number of hops between the two
nodes might be large, and other workload effects, notably
congestion (as we will see), can substantially increase object
transmission latencies.

As many of our experiments in subsequent sections will
use this 114-node component, in Figure 5 we plot the packet
volume ofDataset1 over time, restricted to packets between
nodes in this component. A second dataset,Dataset2, is
also shown, restricted to packets between nodes in this

component; this dataset was recorded afterDataset1
3 and

also includes only compressible packets. So as to adjust for
packet volume differences in these datasets, we will often
plot results as a function of packets processed from the trace.
Figure 5 enables one to translate these results to real time.

V. EVALUATION OF SIN FOR ATTACKER WORKLOADS

The available SIN capacity demonstrated in§IV-D is
practically a threat only to the extent that it can be realized
by actual routing protocols, and for tasks that an adversary
might wish to perform. In this section, therefore, we instan-
tiate the framework described in§IV with a state-of-the-art
delay-tolerant routing protocol, namely the Delay Tolerant
Link State Routing (DTLSR) protocol [10], [38]. We also
use trace-driven simulations to evaluate the performance it
achieves in tasks that we believe would be characteristic of
activities an attacker might want to perform using a SIN
network.

Very briefly, DTLSR is a modification of classical link-
state routing to DTNs. As is typical for link-state proto-
cols, DTLSR floods link-state updates (in our terminology,
neighbor-table broadcasts) through the network. Each node
uses these updates to maintain a graph representing its
current view of the network topology, and uses a modi-
fied shortest path algorithm to find the best path to the
destination. Unlike traditional link-state protocols, however,
the link-state information conveyed in DTLSR is used to
predict when links should become available and with what
capacities (versus to remove unavailable links). Our choice
of DTLSR for our evaluation derives from our conjecture
that it is well-suited to SIN networking, where we generally
expect the connectivity in the cover network (and thus in
the SIN network) to be relatively predictable on the basis
of history. If true, then neighbor-table broadcasts, which
include historically derived capacity estimates, should be
useful for making routing decisions. We will briefly evaluate
this conjecture later.

A. Flooding and Neighbor Table Broadcast

The neighbor tables described in§IV-A–§IV-B support
a primitive form of broadcast communication in the SIN
network, i.e., by flooding. For any given broadcast, each
SINner holds (i) the byte ranges (and byte values) of the
broadcasted object it has received — in the case of the
broadcast sender, this is just the entire object — and (ii)
for each of its neighbors, the byte ranges of the broadcasted
object that its neighbor should already have, because it
previously either sent those bytes to or received those
bytes from that neighbor. When an IP packet destined to a
neighbor is imminent, the application payload is compressed
and the next available bytes of the broadcasted object (not

3Specifically,Dataset2 consists of records collected during 22:56 Wed
Jul 15 – 22:28 Thu Jul 16; 18:04 Sat Jul 18 – 03:22 Tue Jul 21; and05:12
Thu Jul 23 – 02:28 Sun Jul 26.



already possessed by the neighbor) are included in the
vacated space, preceded by the header described in§IV-C
with the destination field set to a particular value designating
this as a broadcast. As always, any packet is always ensured
to be of the same length as the original packet, by padding
if necessary.

Neighbor-table broadcast In DTLSR, a key application
of flooding is to propagate the neighbor tables themselves
to all SINners. This is done by flooding each SINner’s
neighbor table periodically; we call this aneighbor-table
broadcast. The SINner’s neighbor table consists of SIN
capacity estimates to each SIN neighbor perepoch, where an
epoch is a specified time interval (e.g., 8-9am on weekdays,
or on Mondays specifically) and the capacity estimate is
derived from historical data for previous instances of that
interval. Neighbor tables include epoch capacity updates
only for those that have changed significantly from the
estimates previously conveyed for them. Initially, before
capacity estimates to a neighbor are determined, a SINner
simply includes the neighbor’s SIN identifier in its next
neighbor table update.
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Figure 6. Neighbor-table broadcast latency, 114 SINners (Dataset1)

We stress that the IP addresses of a SINner’s neighbors
arenot included in this broadcast; only their SIN identifiers
and capacity estimates are included. Excluding these IP
addresses is motivated by the desire to not disclose the IP
addresses of all participants to each SINner, so as to make
it more difficult for an infiltrator to passively discover all
SINners. Alternatively, IP addresses could be included, so
as to short-circuit the discovery process in some cases, but
here we employ the more conservative approach.

In Figure 6, we demonstrate the progress of neighbor-
table broadcasts performed among the same 114 SINners
identified in §IV-D and usingDataset1 restricted to these
SINners as the cover traffic. This figure shows progress as a
function of the number of packets processed from the trace.
The neighbor tables in this test included a capacity estimate
per hour of each weekday for each neighbor, i.e., 168
estimates per neighbor. This box-plot shows the distribution
of the number of SINners of which each SINner is aware,

assuming that each SINner “awakens” at the beginning of
the trace and initiates its neighbor-table broadcast. As this
graph shows, after about8 × 106 packets are exchanged
among those 114 SINners— or about two hours if translated
by using Figure 5 — the median number of SINners about
which a SINner knows is over 100.

There is, however, a “long tail”, with a few SINners
becoming known to the whole SIN network much later than
others. There are several reasons for this. First, there are
several SINners who didn’t become active until a day or
so in the trace, resulting in a significant delay before their
neighbor-table broadcasts really began. The second reason
is the asymmetric bandwidth of outbound and inbound
directions for some SINners. The timeliness of neighbor-
table broadcast depends heavily on the outbound capacity
of a SINner. Since some SINners exhibit lower outbound
capacities versus their inbound capacities, it takes each one
longer to send out a neighbor table, thus lengthening the
time required for others to learn of its neighbors.

Application broadcasts The above flooding mechanism
could also be used by applications to disseminate a broad-
cast message, and so we pause here to shed light on the
performance of such broadcasts as a function of their size.
Consider, for example, a workload in which we view the
SINners as bots under control of a bot-master. We consider
the latency required for a bot-master command to propagate
from one SINner inside the network (presumably, the first
to receive it) to the remainder of the SINners. We select the
initiating SINner of the broadcast at random, and consider
the cases of a 1kB, 10kB, and 100kB broadcasts.

The command broadcast latency is shown in Figure 7(a).
These tests used the same 114 nodes identified in§IV-D, and
after neighbor-table broadcast disseminated neighbor tables.
Each point on a curve in Figure 7(a) depicts the number of
SINners who received the complete command throughout
the trace-driven simulation. As the figure shows, in the
1kB case, more than 100 SINners learned the command
very quickly. The 10kB and 100kB commands take much
longer to broadcast because of their larger size. The slower
propagation to the last SINners may represent topological
effects of the SIN network, in that nodes farther away
from the bot master take more time to receive the complete
command than those who are closer. It may also be partially
explained by node “congestion” that flooding induces, which
is represented in Figure 7(b). More specifically, Figure 7(b)
shows the distribution on SINners’send backlogover time,
i.e., the sum of the sizes of all messages that the SINner
has pending to send. As Figure 7(b) shows, backlogs swell
early and then slowly dissipate. Perhaps surprisingly, some
nodes continue to have forwarding obligations some 100
hours later, owing to a lack of traffic on which to piggyback
the bytes they need to forward. This suggests that some form
of broadcast expiration would be appropriate.
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Figure 7. Command broadcast to 114 SINners (Dataset1)

B. Unicast routing

As in a broadcast, bytes of a unicasted object can be
inserted into the spaces vacated by compressing application
payloads of IP packets. In each such packet, the object
bytes are preceded by the header described in§IV-C. Upon
receiving bytes of a unicast object (as an intermediate
SINner on the path), the SINner buffers these bytes for
forwarding.

We implemented DTLSR routing to use the expected
delay of message delivery as the objective to minimize. Each
SINner models the network as a graph for each hour of each
day of the week (e.g., 1-2pm on Mondays). (This granularity
is the default, though we will evaluate other granularities
of network modeling in selected tests, as well.) That graph
is directed and weighted, where the weight on the edge
from SINneru to SINnerv represents the expected capacity
directly fromu to v in the hour the graph represents, based
on historical activity in the same hour on the same day of
the week. Upon receivings bytes of an object,u computes
the path yielding the minimum expected delay for theses
bytes to reach their destination, via a modified Dijkstra’s
algorithm that builds a shortest path tree fromu iteratively.
Specifically,v is added to the tree when the expected delay
to reach it from anyw already in the tree is the minimum
among SINners not yet in the tree, where this expected
delay is the ratio ofs and the estimated capacity fromw

to v in the hour at which thes bytes would arrive atw (in
expectation) traveling along the existing tree. Theses bytes
are then queued for transmission to the first SINner on that
shortest path.

In order to evaluate the performance of DTLSR for unicast
routing in a SIN network, we postulate various workloads
that might be characteristic of activities that an attacker
might desire to perform. The workload scenarios that we
consider include point-to-point messaging, bot “response” to
a central controller SINner (e.g., a “bot-master” as evaluated
in §V-A) and data exfiltration to a drop site.
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Figure 8. Realized pairwise daily SIN capacities (Dataset1)

Pairwise capacities The first test we perform using
the DTLSR unicast protocol is to examine to what extent
it can achieve the pairwise potential capacities shown in
Figure 3(b). To do so, we computed a trace-driven simulation
of DTLSR per pair of SINners in some of the connected
components depicted in that figure. We focused on the
smaller components since the number of needed simulations
grows quadratically in the number of SINners in the compo-
nent. So as to perform a fair comparison with Figure 3(b),
in these tests we usedDataset1, though restricted to only
to its first two days of traffic, to reduce the time consumed
per pair of SINners.

The results of this test are shown in Figure 8. This
figure includes both the distribution of potential (maxflow)
capacities taken from Figure 3(b) and the distribution of
realized SIN capacity using DTLSR. This figure shows that
the average daily capacities realized by DTLSR are roughly
at least an order of magnitude lower than those shown in
Figure 3(b). The reasons for this are (at least) two-fold:
First, in DTLSR, a SINner forwards bytes for a particular
destination to only one of its neighbors in any epoch. (In
contrast, a maximum flow is calculated utilizing all links
neighboring each node.) Second, due to cover traffic packets
departing a SINner prior to SIN bytes reaching that SINner,
many opportunities for transmitting SIN data are missed.

Bot response We next consider an attacker workload in
which all SINners initiate messages (“responses”) simul-
taneously to one SINner, which might be responses to a



0 1000 2000 3000 4000
0

20

40

60

80

100

120

Number of packets exchanged (x 200000)

N
um

be
r 

of
 r

es
po

ns
es

 r
ec

ei
ve

d

 

 

test on dataset1
test on dataset2

(a) Latencies inDataset1 andDataset2 tests

0 500 1000 1500 2000 2500 3000 3500
0

20

40

60

80

100

120

Number of packets exchanged (x 200000)

N
um

be
r 

of
  r

es
po

ns
es

 r
ec

ei
ve

d

 

 

7day/per hour capacity estimates
7day/per 3 hour capacity estimates
1day/per hour capacity estimates

(b) Latencies inDataset1 tests with various capacity estimation gran-
ularities

Figure 9. 1kB response (to broadcast) statistics

broadcast sent by that SINner (e.g., as measured in Figure 7).
In our experiment, we use the 114-SINner component from
§IV-D, and each SINner sends a 1kB object unicast. We
consider two tests, one in which the cover traffic isDataset1,
and one in whichDataset2 is the cover traffic. In the second
test, there are differences between the capacity estimatessent
in the neighbor tables (computed on the basis ofDataset1)
and the capacities available during unicast routing (dictated
by Dataset2).

As shown in Figure 9(a), there is a significant difference
between performance usingDataset1 andDataset2. While
this is partially due to differences between capacity estimates
from Dataset1 and available capacities withDataset2, a
closer look reveals that the massive spike inDataset2 packet
volume in hours 14–16 (see Figure 5), occurs between only
two nodes and in a way that is not particularly useful for
routing to the chosen destination SINner in this test. As such,
this packet burst elongates theDataset2 curve in Figure 9(a)
to the right without facilitating its progress.

Another observation from this figure is that the response
latencies generally exceed the latencies of the bot command
shown in Figure 7(a) even in theDataset1 test, and while the
bot-master receives responses from over 90 bots in the first
20 hours, the responses come slowly after that. Figure 9(a)

hides the fact that in many of these cases, a substantial
fraction of the 1kB unicast does arrive at the bot-master in
this time. Nevertheless, this latency is much larger, whichis
at least partially because the DTLSR unicast protocol does
not duplicate the message in the network like flooding does,
and so is not as aggressive in pushing SIN messages forward.
In addition, congestion forms at certain nodes “close to” the
destination node, resulting in delays.

To highlight another consideration in determining send-
ing performance, we show in Figure 9(b) the impact of
conveying capacity estimates of different granularities in
neighbor tables, using theDataset1 test. As shown in that
figure, the best messaging latencies were obtained when
capacity estimates were computed and conveyed per hour of
each weekday (the default in this paper), though estimates
per 3-hour period of each weekday resulted in nearly the
same performance. The worst results occur when computing
estimates per hour but averaged over all days of the week.
This demonstrates a tradeoff between the size of neighbor
tables and the resulting performance of the unicast protocol.
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Figure 10. Data delivered to drop site per sender (Dataset2)

Data exfiltration The third attacker workload that we
consider is one in which the attackers “stream” as much
data as possible to a single SINner by repeatedly performing
10kB unicasts. This workload might reflect a scenario in
which the SINners are exfiltrating data covertly from an
infected organization, using the unicast destination as a drop
site. This test used the same 114-SINner component, and the
destination was the same SINner as was chosen as the bot-
master in the previous workloads.

In this experiment we witnessed an average throughput
of 52.43MB per hour for the first 70 hours to the desti-
nation. That said, the amount of data received from each
sender varies dramatically. Figure 10 shows the log scale
distribution of the amount of data received per sender as
a function of the packets exchanged among SINners. As
this chart shows, some senders fare far better than others in
terms of getting their data to the drop site, and most data
came from one outlier that had very large bandwidth to the
drop site. This is primarily due to some senders being in



advantageous positions relative to others in the topology,
but the fact that some SINners have much smaller outbound
capacities than others also contributes to this disparity.(Note
that since the medians for the first four boxes are zero, they
are not displayable on the log scale. So, the first four boxes
show only the 75th percentile.)

VI. D ETECTION OFSIN NETWORKS

Exploration of SIN networks naturally raises the question
as to what can be done to defend against them. Our design
in §IV presents several avenues for detecting a SIN network.
For example, one approach would be to try to exploit the
covert discovery signal discussed in§IV-A: a host could be
set up to passively inspect received packets for the signal,
or to actively probe hosts with candidate such signals in
the hopes of eliciting a response. In either case, the other
communication endpoint would be detected as a SINner.
This approach, however, presupposes knowledge of what
the candidate signals are, and in this respect is a form
of signature-based intrusion detection. A new variant of
SIN malware could employ a new signal that would go
undetected until discovered and reverse-engineered.

Below we report preliminary results on two more gen-
eral approaches to attempt to detect SIN networks, and
specifically that try to detect the compression of packets.
As such, even if these approaches detect SIN networks as
explored in this paper, they may not detect SIN networks
built from primitive covert communication channels of other
types (e.g., timing channels).

A. Using Packet Processing Delays

No matter what SIN routing algorithm is employed, a
basic property of SIN networking as we have explored
it here is compression of packet payloads to insert SIN
data, and corresponding decompression to reconstitute the
original packet payload prior to delivery. This compression
and decompression adds processing delays to the network
stacks of the SINners between which the communication
occurs, and so one avenue of detection might be to try to
notice these extra delays.

To measure the capability of this detection approach, we
performed an experiment that a defender might utilize to
detect a SINner, namely by monitoring the delay apparently
associated with a node’s packet processing. Consider, for
example, a network defender that recordsa-b-t records [1]
on his network; unlike most payload-agnostic summarization
approaches, these records include packet timings. Suppose
the defender builds a model of the typical responsiveness
of a server to queries, and monitors for a change in the
responsiveness that might be indicative of the extra delays
associated with decompression of each query and compres-
sion of each response. We would like to determine whether
such a detector would be effective.

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

milliseconds

 

 

    normal delay time
    SIN delay time

Figure 11. Responsiveness of our organization’s main web server with
and without request decompression and response compression

To test this, we measured the responsiveness of our
organization’s main web server as we usedwget to retrieve
the entire contents of that site, i.e., by requesting each URL,
and timing the delay to receive the first packet of each
server’s response. These requests were issued from a host
on the campus wired network. We then added to each of
the timings the costs of decompressing the payload of the
corresponding request packet (after it had been compressed,
as if the server were a SIN node decompressing it) and
compressing the payload of the corresponding first response
packet (as if the server did so). To ensure that our tests
were conservative, we did these tests on a campus holiday
(September 7, 2009, which was Labor Day in the U.S.) so
that the network and server were lightly loaded; we used
an inferior machine (a 2.2GHz MacBook Pro laptop, versus
the 2.4GHz dual-core AMD Opterons that support the web
server) for calculating the compression and decompression
costs; and we measured the most aggressive compression
supported byzlib. The CDFs of the resulting timings (with
and without compression and decompression overheads) are
shown in Figure 11. The similarities of these CDFs suggest
that detecting the web server as a SIN node using server
responsiveness would be unreliable.

B. Using Payload Analysis

While SIN networking is premised on the notion that
network defenders collect only summary information about
their networks, it is worthwhile to consider what degree of
payload inspection is useful to detect it. For example, the
network monitoring could scan in a signature-based way,
e.g., for something that might look like our SIN header in
application payloads. However, due to the random selection
of identifiers and since object identifiers would typically be
hash values, there is perhaps less structure in our header to
exploit in this way than it first appears. Moreover, a change
of header format or location would also likely sidestep this
detection.

Instead, in this section we consider ways of analyzing
packet contents to detect a change in the byte-value dis-
tribution for a particular application’s communication. Our



compression of application payloads and insertion of SIN
data risks changing the byte frequency distribution, and
so it would seemingly be detectable by mechanisms that
monitor this distribution [22], [24], [26]. In order to test
this, we built a detector similar to PayL [24], an intrusion-
detection system that detects attempts to infect a server
by monitoring byte-value n-grams in server query packets.
Instead of limiting our attention to server queries, however,
we considered building byte-value n-gram distributions for
query packets and response packets independently, to see if
the insertion of SIN payloads within those packets would
alter the byte-value n-gram distributions of either type of
packets in a detectable way (without inducing a large number
of false alarms).

DNS traffic To provide a test of this, we utilized a DNS
trace collected over two weeks4 from a university wireless
network used by approximately 50 clients. This dataset com-
prises approximately 3 million packets amounting to 450MB
of data. We separated this dataset into request and response
packets, and treated these separately. For each type (request
or response) and each test, we used a nonoverlapping 33%
of these response packets as testing data and the remaining
66% for training. In each test, we built a byte-value 1-
gram distribution of our training packet payloads. Then,
for each testing packet, we built a 1-gram distribution for
that packet, computed the L1 distance between the trained
distribution and this packet’s distribution, and then raised
an alarm if the L1 distance exceeded a threshold. We did
this test for each testing packet in its original form, each
testing packet compressed with low-entropy SIN payload
added (all zeroes), and each testing packet compressed with
high-entropy SIN payload added (random bytes). In these
tests, we found an equal error rate of zero — the SIN packets
were perfectly identifiable using the 1-gram detector —
because DNS is a protocol in which the bytes of many fields
typically range over a relatively restricted subset of values.
Even bytes of domain names can include only letters, digits
between “0” and “9”, and “-”. For this reason, it is likely
that compressing a DNS packet will introduce byte values
that would otherwise be highly uncommon, resulting in a
large L1 distance between a SIN packet and the distribution
for normal DNS packets.

Web responses To illustrate a type of packet in which
SIN data is more difficult to detect, we turned to web traffic,
as we conjectured that the richer content and media types
available on web servers would make it much more difficult
to identify individual SIN packets. For web sites hosting a
variety of media formats (videos, images, text), the byte-
value n-gram distribution calculated over all response pack-
ets would generally differ too much from that of individual
packets (which typically include content of only one media

4This trace was collected in 2007 between Sat Aug 11 11:16 and Sun
Aug 26 20:48.

type) to make it a useful detector. Instead, for web server
responses we borrowed an approach used in Anagram [39],
in which we simply record which n-grams occurred in the
training data for that site, rather than tracking a distribution
for them.

To conduct this test, we usedwget to retrieve the contents
of our organization’s main web server, and built training
and testing data from server response packets. The results
reported below are the average of five tests, each using a
nonoverlapping 20% of these response packets as testing
data and the remaining 80% for training. Our decision to
use 80% for training (vs. 100%) reflects two observations.
First, training a network-based SIN detector, even one witha
different model per server IP address and port, on the entire
contents of every server that it witnesses, would likely be
untenable; more likely, it would train on what is actually
retrieved from each site during the training period, which
would typically be less than the entirety of the site. And
second, for a site that is more frequently updated than
our organization’s, there will be a gap between the current
content of the site and the content on which the detector was
trained.
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Figure 12. Detection of SIN packets from our organization’smain web
server

For testing, we determined the number of n-grams in a



response packet that was not seen during training, and raised
an alarm on that packet if a threshold number of such n-
grams had not been seen in training. Typically all possible
1-grams, 2-grams and 3-grams were observed in training,
rendering the model useless, and so we conducted tests
using 4-grams. We tested on both response packets from
our organization’s web server drawn from our corpus as
described above, and on these packets after SIN contents
were added. For the latter, in one test we embedded low-
entropy SIN data (all zeroes) and in one test we embedded
high-entropy SIN data (random bytes). The ROC curves for
these tests are shown in Figure 12(a). It is evident from this
plot that SIN detection based on 4-gram detection was quite
poor when tested on high-entropy SIN data — the equal
error rate is approximately 20% — and is abysmal when
tested on low-entropy SIN data.

The failure of our 4-gram detector suggests perhaps trying
5-grams, as was done in Anagram [39]. Anagram, however,
recorded 5-grams fromrequeststo an academic web server;
since such requests are far less varied in content type
than web responses, it was feasible to record the 5-grams
witnessed in requests. For web responses, we project that
well more than 100GB would be needed to record the
5-grams witnessed, which would require on-disk storage
for any computer available to us. Such an architecture
would preclude monitoring efficiently, however. A second
deterrent is that any benefit gained from using higher n-
grams to detect SIN data would presumably trigger false
positives on any new high-entropy data object not seen
during training. As such, it is unclear whether using n-gram
analysis would effectively detect SIN communication for
servers with dynamic content.

As such, we turned to another natural idea for detecting
SIN traffic in web-server responses: a SIN network presum-
ably is required to increase the entropy of the application
payloads on which it piggybacks, since packets carry both
the information of the original application and the SIN
information. We are unaware of research on evaluating
application payload entropies at line speeds,5 but a pragmatic
alternative is to monitor the compression ratios of payloads.
To explore this avenue, we repeated the above tests, except
calculating the compression ratios of the packet payloads
from our organization’s web server, both without and with
SIN data embedded (and in the latter case, for both low-
entropy and high-entropy SIN data). Since we do not believe
a per-packet detector is feasible for this measure — e.g., a
single video response packet will be uncompressible — we
plot the CDF of the compression ratios to gain insight into
whether a monitor that computes an aggregate compression
ratio might work. (Because our dataset does not reflect real

5In contrast, entropies of header fields (which our approach does not
affect) have been used to monitor for anomalies (e.g., [40],[41], [42]) and
streaming algorithms have been proposed for estimating these entropies
(e.g., [43], [44], [45]).

browsing, it is difficult to project what sort of aggregate
measure might work, however.) The results, shown in Fig-
ure 12(b), suggest that a web server that sends high-entropy
SIN data might be detectable, though it is more questionable
whether a server sending low-entropy SIN data would be.
This presents a tradeoff to the adversary between conveying
information as compactly as possible and keeping its traffic
as undetectable as possible. We plan to further investigate
this tradeoff in future work.

VII. C ONCLUSION

In this paper we introduced Summary-Invisible Network-
ing (SIN), a type of covert networking that strives to remain
invisible to anomaly detection systems that examine traffic
summaries. To be undetectable by such detectors, we set a
stringent requirement for a SIN network, namely that it leave
unchanged the results of any network monitoring that is
oblivious to the application payload content. Consequently, a
SIN network is not permitted to initiate new packets or even
alter the timing or size of additional packets. To accomplish
this while implementing a functional network, SIN builds
from two key observations. First, network anomaly detection
based on payload-oblivious traffic summaries admits a new
type of covert embedding in which compromised nodes
embed content in the space vacated by compressing the
payloads of packets already in transit between them. Second,
point-to-point covert channels can serve as a “data link
layer” over which routing protocols can be run, enabling
more functional covert networking than previously explored.

We presented a framework for SIN networks and showed
the potentially achievable networking capacity that this
framework permits (§IV). We then considered instantiat-
ing this framework with particular routing protocols and
evaluated these protocols on tasks suggestive of what an
adversary might like to attempt with a SIN network (§V).
This study demonstrates that while latencies and throughputs
on a SIN network are orders of magnitude worse than
existing networks today, the network is adequately functional
that a sufficiently patient attacker might find the covertness
of this approach worth the performance price. We believe
our work opens up new research directions in improving the
performance of SIN networks.

We also examined approaches to detect SIN networks
(§VI). We first tested the possibility of using the timing
perturbations resulting from SIN processing at SINners, and
found this to be unreliable. Second, we considered efficient
means of payload analysis to detect SIN packets, with mixed
results. For a protocol like DNS, we found that monitoring
byte-value n-gram distributions of packets can effectively
detect SIN packets, but neither this nor monitoring com-
pression rates of packets produced compelling results for
detecting a web server sending SIN payloads. As such, we
believe there is much more to investigate in how to detect
SIN networking in general.



Finally, as an initial paper in SIN network, this paper
introduces at least two additional directions for subsequent
research. First, the SIN network protocols we proposed will
not scale to a very large SIN network. Scaling these systems
might involve the creation of an inter-SIN-domain routing
protocol, i.e., an analog to BGP for our SIN networks. Scale
may also bring the need for the attacker to better monitor
the viability of his SIN network, along with analogs of other
challenges of network operations. Second, we have taken
an extreme position in stating the requirements of a SIN
network, namely that it cannot change traffic summaries at
all. Even small relaxations of this requirement may provide
substantial benefits for the SIN network, though any such
relaxation must be carefully considered to determine whether
it opens a practical method of detection.
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