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Abstract—Peer-to-peer (P2P) substrates are now widely
used for both file-sharing and botnet command-and-
control. Despite the commonality of their substrates, we
show that the different goals and circumstances of these
applications give rise to behaviors that can be distin-
guished in network flow records. Using features related to
traffic volume, persistence of network connections, amount
of “churn” among peers, and differences between human-
driven and machine-driven traffic, we develop a technique
for identifying P2P bots (the Plotters) and, in particular,
separating them from file-sharing hosts (the Traders).
Evaluations performed on traffic recorded at the edge of a
university network show that we can achieve, e.g87.50%
detection of Storm bots with a0.81% false positive rate.
We also demonstrate the significant extent to which Plotter
behaviors would need to change to evade our techniques.
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P2P botnet, Storm, built its communication protocol
based on the Overnet network, whose distributed hash
table implementation [2] is incorporated in both eDon-
key ! and BitTorrent? file-sharing applications.

In light of this, the primary problem facing the detec-
tion of such bots is differentiating them from other P2P
hosts. In this work, we focus specifically on the problem
of P2P botnet detection given this challenge. We assume
the viewpoint of a network administrator who collects
flow records at the border of an enterprise network,
and who seeks to identify internal nodes that are P2P
bots. We construct a series of tests on network traffic
to separate P2P bots from P2P file-sharing hosts, to
which we will refer as Plotters and Traders, respectively,
throughout this paper. Our tests work exclusively on
traffic summaries (e.g., flow records) with no access

Peer-to-peer (P2P) networks have been used as botngt individual packets (much less payloads), and so can
communication channels as early as 2003 [1]. Thescale to very busy networks where per-packet logging

decentralized nature of these networks overcame th
single-point-of-attack limitation in centralized coritro
making the botnet resilient to individual peer failures

may not be cost-effective. Our techniques are thus also
unaffected by encryption of bot payload contents.
Given the varied nature of malware behaviors, we

and also harder to detect and take down. These mdocus on characteristics of the traffic that do not depend
tivations for using P2P substrates are similar to thosen particular attack activities performed by the infected

underlying the use of P2P protocols for file-sharing;

hosts (e.g., spam forwarding, DD0S), but rather that are

the takedown of Napster, for example, highlighted thebasic properties of Plotters that operate over P2P net-

limitations of a centralized “command-and-control” in-
frastructure in that domain. It is thus not surprising that
P2P substrates now commonly support both activities.

A consequence of this common use of P2P tech-

nologies is that botnet command-and-control traffic will
tend to “blend into” a background of P2P file-sharing,
making it difficult to separate these two types of traffic.

works. At a high level, these characteristics include:

e Volume: Since Traders generally perform large
multi-media file transfers (e.g., MP3, movies), but
Plotters almost never do, traffic volume should be
a good indicator of suspicious activity. However, as
we will show in§V, examining volume alone yields
many false positives.

In both cases, status information about available peers,
needs to be maintained constantly to ensure the connec-
tivity of the network; peers experience a high connection
failure rate due to the dynamics of nodes joining and
leaving (i.e., “churn”); and peers participate in both
client and server activities, simultaneously receiving an
initiating connections. This commonality is punctuated
by the fact that one highly publicized and well-studied

Persistence:Most Plotters are required to maintain
connectivity to their peers to receive and execute
commands from the botmaster. Moreover, since the
Plotter cannot control when network access would be
available, it is often opportunistic in communicating

http://wiki.amule.org/index.php/FAQD2k-Kademlia
2http://bittorrent.org/beps/bePO05.html



with peers, i.e., whenever it has a chance. Il. RELATED WORK
e Peer churn: The peer membership of a file-sharing ,

network is very dynamic, due to peers constantly Much work to date has focused on detecting the
joining and leaving the network, the availability of centralized command-and-control architecture utilized
the desired file, and connections between hosts beingy €@y botnets [7], [8], [9], [10], [11], [12]. But as
terminated soon after the completion of the file malware increasingly takes advantage of peer-to-peer
transfer. Previous studies [3], [4], [5] also showed networks as their main communication channel, i.e., the
that most Traders appear only once a day, and remaiRlotters, these approaches become largely ineffective,
connected for short durations (minutes). Plotters bysince their basic assumptions about the malware control
contrast, are likely to experience less churn in pee'chitecture or protocol no longer hold true. Recent
membership, since each individual host maintains £10rts from the research community on understanding
list of known peers with which to communicate, and Plotters, including Storm [1], [13], [14], [15], Nu-

also because they are more persistent than Trader§@che [13], Waledac [16], and Conficker [17], [18],
as described above. provided valuable insight to the operations of these

« Human-driven versus Machine-driven: Perhaps a malware, but effective techniques to detect them and

more basic difference between Plotters and Traders iliture variants are still a subject of ongoing research.
that, while file-sharing activities are mainly human-  Early work on disrupting Plotters (targeting Storm,
driven, Plotters are almost entirely automated. Thisin Particular) injected a large number of fake nodes
causes much of their traffic to exhibit significant INt0 the network to perform various Sybil attacks [15],

regularity and periodicity that is rarely seen among[lg]' [20], such as content-poisoning or eclipsing certain
those from human activities. In a slightly different nodes from the rest of the P2P network. These studies

context, previous studies on distinguishing humansshowed that the effectiveness of the attack depends on

and bots in Internet chat rooms also observed thafh€ attack duration as well as the number of Sybils.

human behaviors are more complex than bots [6]. Kang et al. [21] developed a P2P monitor that infil-
trated the Storm botnet to identify the IP addresses of

We construct measures of each of these characteristicg,fected hosts. They showed that the monitor was able to

framing them into tests that distinguish Plotters from yetect hots behind firewalls or NAT devices, achieving
Traders. To our knowledge, our work is the first to targety proader coverage than others that actively crawl the

Plotters from the p_erspective of their commonality (or yerwork. Wurzinger et al. [22] constructed network
the lack thereof) with other P2P protocols. intrusion detection signatures to identify botmaster com-
We use these tests to build a technique for separatinghands by examining bot binaries running in controlled
Plotters from Traders (and other hosts), and evaluate thenvironments. Their main observation is that changes
ability of our technique to identify Plotters within traffic in the network behaviors of a Plotter are indications of
observed at the border of a university campus networkit having received commands from the botmaster. They
Our results show that Storm bots can be identified withexamine network traffic immediately preceding behavior
up to 87.50% true positive rate and onlg.81% false  changes, and identify common substrings in the payload
positives, despite the fact that Traders using $hene  that can be used as signatures. This approach is hindered
P2P substrate were present in our tests. We also perfor@gy Plotters that encrypt their communication, and may
tests with Nugache bots, where we show that for themiss previously unknown attacks.
same false pOSitive rate, we can detect 30% of the bots. Many approaches have also been proposed that detect
We will explore the reasons behind our lower — thoughmalware by examining the behavioral characteristics
still substantial — detection rate in this case. of the network traffic. BotHunter [23] detects com-
A final contribution of our work is to examine how promised hosts by identifying a series of events that
much malware behavior would need to change to evadéakes place when a vulnerable host is infected, and
our technique. We quantify for each of our componentwhich shows evidence of coordinated activities between
tests the degree to which Plotters would need to altethe infected host and the botmaster. However, since
their behaviors to evade them. The results suggedhey specifically focused on detecting events related to
that evading our techniques would require significantcertain suspicious behaviors, including scanning, binary
behavioral changes of existing botnets. Moreover, duelownload, and control channel establishment, Plotters
to the way in which our tests are constructed, it wouldnot conforming to this profile would go undetected.
typically not be evident to the Plotters how much changeOther works correlated traffic characteristics to identify
would be sufficient to evade them. hosts exhibiting similar network behaviors, such as per-



forming suspicious activities (e.g., scanning, spamming}than those from bots, for the case of Internet chat room
and sharing common communication contents [24]traffic. Lu et al. [33], [34] assume Plotter activities to
exhibiting similar traffic statistics and suspicious ac- be more synchronized than human activities, and detect
tivities [25], or contacting the same new destinations,Plotters by looking for hosts with similar byte frequency
exchanging similar payload, and involving hosts of distributions in their payload within the same time win-
similar software platform [26]. These approaches cardow, e.g., one second. This approach can thus be evaded
be evaded by changes in malware behavior, many ofvith encryption. Similar to our observation of the per-
which have already taken place, such as turning tasistence in Plotters’ traffic, Giroire et al. [35] proposed
social engineering as an infection vector instead ofa method to detecting centralized botnet command-
scanning, or using encryption to make payload analysisnd-control traffic by monitoring persistent and regular
difficult. Still others (e.g. [27]) use behavioral analysis connections made to the same group of destination IP
to identify certain P2P-bot behaviors exhibited overaddresses, i.e., the command-and-control server. Since
non-P2P protocaols. legitimate user traffic can also appear to be persistent
In contrast to previous work, we focus specifically 2nd regular, this approach requires whitelisting common
on distinguishing Plotters, whose command-and-contro$ites the user frequently visits, and is not suitable for
channel is overlaid on top of a P2P protocol, from detecting Plotters that communicate over P2P.
Traders. We do so by observing network-level charac- Another line of work, orthogonal to ours, include
teristics inherent to P2P applications, but that are abldéechniques for identifying behaviors involving certain
to distinguish Plotters from Traders due to the differentoPerations of Plotters. Ramachandran et al. [36] ob-
goals and circumstances behind how they utilize theServed that botmasters lookup DNS blacklists to de-
P2P protocol. For example, Plotters communicate ovefe'mine whether their Plotters are blacklisted. The au-
P2P networks mainly for subtlety and resilience, insteadh0rs thus monitor lookups to a DNS-based blacklist
of large file exchanges. They are also incentivized tof© identify infected hosts. Fast-flux is a technique used
maintain persistent connections to other peers in th®Y botnets to hide the backend control server [37]. It
network, in contrast to Traders, who have been observe@iPerates by using dynamic DNS to establish a proxy

to go offline after the completion of file transfers [5]. Network based on the infected hosts, such that a single
domain is associated with many different IP addresses.

Jelasity et al. [28] studied techniques that can b . e : . :
deployed by Plotters to evade P2P traffic detectionq.\/leth()ds for identifying fast-flux include observing the

However, they only consider the case where trafﬁcgeographic diversity in the IPs associated with a do-

) ; . . main and the heterogeneity of those hosts [38], [39],
dlsp.er5|on graphs (TDGs) [29] are used to |dgnt|fy PZP40]. Since fast-flux networks are often used to host
traffic. The TDG-approach assumes a global view of th ' s .

. - spam campaigns or phishing websites, Hu et al. [41]
network, constructing a communication graph between

all nodes to check if the average degree and the fractioﬁISO proposed to detect hosts participating in fast-flux

of nodes with both incoming and outgoing connectionsneworks by identifying HTTP redirection activity.
are above a threshold. To evade such detection, the I11. DATA COLLECTION
authors specifically focused on reducing the number |, this work. we assume the role of a network

of Peers each Plotter contacts, such that most of thgqministrator that aims to identify Plotters internal to
botnet's traffic are routed through a few fixed nodes.,q, network, by observing only traffic crossing the

While this approach may limit the number of detectableyger of the network. The network traffic utilized in our
Plotters using TDGs, its impact on other methods forgnaysis is organized into bi-directional flow records by
identifying P2P traffic (that does not require the com- oy (http://www.qosient.com/argus), which is a real-
munication graph) is not evaluated. time flow monitor based on the RTFM flow model [42],
One of the characteristics explored in this work is the[43]. Argus inspects each packet and groups together
difference between human-driven and machine-drivenhose within the same connection into one bi-directional
traffic. This observation has also been applied in otherecord. In particular, TCP and UDP flows are identified
contexts, including cheat detection in online games [30] by the 5-tuple (source IP address, destination IP address,
distributed denial-of-service attack defenses [31], [32] source port, destination port, protochland packets
and chat bot detection in Internet chat rooms [6]. While
most approaches to identifying automated traffic were 3Since Argus records are bi-directional, the source andrueisin
host-based, Gianvecchio et al. [6] found that the networlﬁlf addresses are swappable in the logic that matches paoias.
owever, the source IP address in the record is set to the dRessl
traffic from human activities shows a higher entropy of the host that initiated the connection.



in both directions are recorded as a summary of thePlotters, where the main challenge in doing so is to
communication, namely, an Argus flow record. Thedistinguish them from Traders. We construct a set of
fields contained in each Argus record include the sourcgests that quantify the characteristics describedlin
and destination IP addresses and ports, the protocol, thelume, peer churn and persistence, and human-driven
start and end times of the flow, the packet and byteversus machine-driven, which aim to take advantage
counts, and the first 64 bytes of the payload on theof the different goals and circumstances behind how
connection. This payload is used solely for determiningPlotters and Traders utilize P2P networks. Each test
ground truth for our tests, that is, determining whethertakes as input a collection of traffid,, which involves
the host is a Plotter or a Trader. a groupS of internal hosts over time windoWw, and

We use the following datasets in our analysis: outputs a subset of hosts $nthat exhibit characteristics

CMU dataset: This dataset consists of anonymized for which the test evaluates. In the following, we detail
network traffic obtained from the edge routers of thethe rationale behind each of the characteristics, how
Carnegie Mellon University (CMU) campus network, they can be useful indicators for distinguishing Plotters
which has two /16 subnets. The rate of this traffic isfrom Traders in particular, and the construction of the
about5000 flows per second, and is collected daily from corresponding test functions. We then describe how
9 a.m. to 3 p.m. over eight days in November 2007. Wemultiple tests can be combined to refine the results to
focus on only TCP and UDP traffic in this dataset. narrow in on Plotters within the local network.

Trader dataset:We identified those hosts in the
CMU dataset that are participating in known P2P file-
sharing networks, i.e., the Traders, using the 64 bytes The first distinguishing characteristic we consider be-
of payload in each flow record available to us. Specif-tween Plotters and Traders is the amount of traffic each
ically, we focus on the three popular file-sharing ap-host contributes to the network. A common purpose
plications, Gnutella, eMule, and BitTorrent. Hosts run- of Traders is to exchange data, and much of the data
ning Gnutella were identified by the protocol keywords found on popular P2P file-sharing applications, such as
“GNUTELLA’, “CONNECT BACK”, and “LIME” in Gnutella, eMule, and BitTorrent, are large multimedia
their payload.* eMule hosts were identified by the files (e.g., several MBytes in size [4]). By contrast, the
initial byte ‘Oxe3’ or ‘Oxc5’, followed by various byte use of P2P architectures in Plotters is not so much for
sequences as specified in the protocol specification [44the sharing of information as for resilience and subtlety.
BitTorrent hosts were identified by the protocol key- Their traffic hence tends to be much lower in volume. In
word “BitTorrent protocol”, web requests to trackers fact, the Storm botnet has been observed to use the P2P
beginning with “GET /scrape” or “GET /announce”, protocol only for exchanging control messages, while
and distributed hash table control messages with théile transfers were still performed over HTTP [1], [13].
substrings “d1:ad2:id20” or “d1:rd2:id20°.

A. Volume

Plotter dataset: We also obtained Plotter traffic 108
traces gathered from honeynets running in the wild
in late 2007. These include a 24-hour trace of Storm, 08

which contains traffic from 13 bots, and a 24-hour trace

of Nugache, which contains 82 bots. Spamming and oe

scanning activities were blocked during the collection 04 YTTE e
of these traces, and so the remaining traffic consists - - ~Traders
mostly of botnet control traffic, e.g., for peer discovery. 02 +Ztormh
As we will describe in§V, these traces were used in ‘ ‘ o THgacne
our evaluation, where they were overlaid onto the CMU 0 2000 ~ 4000 ~ 6000 = 8000 10000
) ) X R Average Bytes Sent Per Flow
traffic by assigning them to randomly selected internal
hosts that are active in the CMU dataset. Figure 1. Cumulative distribution of the average flow size Ipest

in each dataset over one day.
IV. METHODOLOGY

Given network traffic observed at the border of an We examms trafp;volume f?lr a hr?St n term_z of the
enterprise network, our goal is to identify internal average numboer o ytes per flow that it contributes to
the network (i.e., uploaded by the host). Compared to

“http://rfc-gnutella.sourceforge.net/src/rfc® draft.html the cumulative byte count, this metric is less likely to _be
Shttp://wiki.theory.org/BitTorrentSpecification biased by the number of flows generated by a host, since



a Plotter that is chatty can accumulate a large byte courlimits the disclosure of other Plotters if one of them is
over a short time window, while each individual flow captured [13]. Such behaviors make it more likely for
is quite light-weight. Figure 1 shows the cumulative Plotters to contact the same hosts than Traders, whose
distribution of this value per host, plotted from a single set of peers is mainly determined by file availability.
day of traffic from the CMU dataset, the Trader dataset, This observation allows us to characterize peer churn
and the Plotter traces. This figure shows that the amounising the set membership of the destinations that a
of data contributed by the Plotters (i.e., the Storm anchost contacts. We quantify this by the fraction of new
Nugache bots), is significantly smaller than Traders. IP addresses that a host contacts per day, or more
Tests on VolumeBy quantifying a host's traffic  specifically, the ratio of (i) the number of IP addresses
volume using the average number of bytes sent per flonthat a host first contacts after its first hour of activity
we can define a test functidh, that uses this charac- on that day, and (ii) the total number of IP addresses
teristic to distinguish between Traders and Plotters. Thdt contacts in that day. A higher percentage of new
function takes as input a collection of traffi, which  contacts indicates a higher amount of churn. As an
involves a grougb of internal hosts over time window example, we illustrate the percentage of new addresses
D, and a threshold,,. Hosts whose average flow size contacted by a Storm bot (from our Plotter traces) and
is less thann,, are returned in the sé&. a Trader (in one-day’s worth of traffic from the Trader
In practice, o can be set dynamically depending on dataset) in Figure 2. Clearly, churn is significant for
the current traffic makeup, for example, by setting it tothe Trader, where oves5% of the IPs it contacted
the median value observed across all host$.iThis  appear to be new. In contrast, generally more i
can make it more difficult for a Plotter to manipulate its of the peers contacted by the Storm Plotter have been
traffic to masquerade itself as a Trader; e.g., the amourdontacted previously by the same host.
of data it sends per flow needs to be larger than the

majority of the Traders in the local network, though the 100

Plotter would presumably be unaware of that amount ",

that it must exceed. € gl

B. Peer Churn and Persistence e s,
g | o,

Peer churn refers to the dynamics of peers joining § %0

and leaving the network, and is a common phenomenon < to----e-n . .
o 401 N
=z

both among Traders and Plotters. This characteristic is

. . . . . ——Trader N
often reflected in the high ratio of failed connections - @ - Storm Plotter A

observed in P2P networks [45], [46]. Previous studies 20) 2 3 2 5 6

on P2P file-sharing networks have shown that peers are Hour Index

often connected for only short durations (a few minutesgigure 2. New IPs contacted by a Trader and a Storm Plotter ove
on average) [3], [4], [5], and many of them leave the one day.

network permanently after requesting a single file [5].

We hypothesize that even though the dynamics of  Tests on Peer Churn and Persistencgimilar to
peer membership is present in both systems, peer chutthe tests for volume, we also approach the problem
is less significant among Plotters compared to Tradersf distinguishing Plotters from Traders using churn by
This is because Plotters have motivation to keep upperforming a coarse separation between the two sets
persistent communications with each other and maintaif hosts. In this case, the test function for peer churn,
the connectivity of the botnet, since the botmaster needé..m, identifies hosts that have a relatively “low” churn
to be able to control her bots. The Plotter also cannofwhich are likely Plotters) using a threshotd,,.,. By
control when network access would be available on thdaking as input a collection of traffit involving hostsS
infected machine, and so it is often opportunistic in ini- and a threshold.,m, the churn tesécnum (A, S, Tchurn)
tiating communications, i.e., whenever it has a chancegutputs a seb.. Of hosts that contact a percentage
making a Plotter’s network activities more persistent inof new IP addresses less thamem.
doing so. In addition, most Plotters store a list of known In practice, a Plotter could attempt to evade being
peers with which it maintains communications, both grouped intoS...., by increasing the fraction of new
for bootstrapping itself into the network [1], [13], [14], hosts it contacts, for example, by performing random
[15], [16] and to limit the number of active connections. scanning or initiating connections to different peers on
This allows the Plotter to remain stealthy, and alsoits peer list at every communication attempt. This ap-




proach is risky, since it could make the Plotter detectabldraffic, where hosts whose traffic are mainly machine-
via other means (e.g., by identifying scanning activities)driven, e.g., Plotters, should have different interdtitia
and reduces the stealthiness of the Plotter. We discugsne distributions from hosts that are human-driven,
evasion techniques that can be carried out by Plotters.g., Traders, and thus fall within separate clusters.

and quantify their induced costs §VI.

C. Human-driven vs. Machine-driven .

Several works on botnet detection have studied the
difference between human and machine-driven activi-
ties [47], [24], [26], [25], [33], [34]. Only a few of these
previous works have applied their technique to detecting
P2P Plotters [24], [25]. However, these approaches rely
on the presence of specific attack activities performed
by the infected hosts, such as scanning.

We approach this problem by directly using timing-
related information to characterize ttregularity of
machine-driven activities, for example, periodic keep-
alive/status messages exchanged between peers or
scheduled checks performed by the Plotters to download
new commands, as well as the commonality between
the behaviors of Plotters belonging to the same botnet.
Specifically, for each host, we examine the interstitial
time distribution of its flows to the same destination
IP. This distribution is observed across all destinations
contacted by the host, since we do not know which ones
are P2P peers. Since Plotters in the same botnet are
likely to be running similar versions of the bot binary, e
the timers used in triggering their activities should also
follow the same algorithm. From this observation, the
per-destination flow interstitial time distributions for
Plotters should not only stand out from those of Traders,
whose activities lack the regularity seen in automated
traffic, but also appear “similar” to each other.

Figures 3(a) and 3(b) show the patterns that appeared
in the per-destination flow interstitial time distribution
of two Plotters, a Storm bot and a Nugache bot, from
our Plotter traces. These Plotters exhibit significant-peri
odicity in their communications. For example, Nugache
can be observed to communicate at intervals of around
10 seconds, 25 seconds, and 50 seconds. By contrast, it
is not clear that the same pattern exists among Traders,
as shown in Figures 3(c) and 3(d) for a BitTorrent host
and a Gnutella host from the Trader dataset.

Tests on Human-driven v.s. Machine-driveTio
compare the per-destination flow interstitial time dis-
tribution between hosts, we define a functidi,,
that uses a non-parametric approach to construct a
histogram that approximates the underlying distribution
for each host [48]. The Earth Mover’s Distance [49]
is then applied as the distance metric for comparing
distributions. This allows us to identify clusters of hosts
who exhibit similar timing patterns in their network

Constructing Histograms. Given a collection of the
observed interstitial time samplegs) for a hosts,

we approximate its underlying distribution by con-
structing a histogram. The choice of histogram bin
width is critical in this approximation, since a large
value leads to over-smoothing, and a small value
increases the sampling error. Moreover, applying a
fixed bin width makes it straightforward for a Plotter
to manipulate its traffic to evade detection.

In this work, we follow a method proposed by
Freedman et al. [48] to identify the optimal bin
width, whose goal is to minimize the mean-squared
error between the true distribution and the histogram.
They show that the bin width can be computed as a
function of the sample siz&/(s)| (i.e., the number

of observed interstitial time values for hast and

the “spread” of the samples, as represented by the
inter-quartile range of the sample valug@R (v(s)).
Specifically, the bin widthb, is calculated by, =

2 x IQR(v(s)) x |v(s)|~ /3.

Clustering Histograms. One of the metrics for com-
paring distributions is the Earth Mover’s Distance
(EMD) [49]. Briefly, EMD is defined as the amount
of work that is required to change one distribution
into the other by moving “distribution mass” around.
It is based on the transportation problem [50], where
the challenge is to find routes that will minimize the
cost of shipping goods from a group of suppliers
I to a group of consumerg. That is, find a set of
routesf;; to minimize Y., 3" . ; ¢ij fij, wherec;;

is the cost of shipping from suppliéto consumey.

By definingc;; as the distance between tifé and

4" bins in the histograms, EMD is especially useful
in cases where the distributions are simply shifts of
each other, but otherwise identical.

This allows us to form clusters of hosts whose
histograms are “close”, which correspond to hosts
whose network traffic exhibit similar timing patterns.
Clustering is performed using an agglomerative hi-
erarchical algorithm, where each step merges the
two hosts with the closest distributions. This iterative
process constructs a hierarchical clustering tree (i.e.,
a dendrogram), with the weight of each link being
the average distance between the pair of nodes it
connects. The final set of clusters is formed by
cutting the top5% links with the largest weights.
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Figure 3. Interstitial time between flows to same destimatio one day’s worth of traffic.

FindPlotters(A, S) N
100: Syt — Ouoy (A, S, 7o) dataset, we overlay the bot traces by assigning them to

/ Returns hosts with low traffic volume/  fandomly selected internal hosts that are active during
101: Schurn < Ochurn (A, S Tehurn) _ that day (including possibly Traders). This makes our
102: Spy By (A, S U éthifﬂ’:ns) hosts with low peer chumttesting scenario more realistic, since the internal hosts
/+ Returns hosts with similar timing patterns in their tratic  Still exhibit their normal connection patterns, in additio

103: return Sy, to Plotter activities.

Figure 4. The algorithm used to find suspected Plotters bybgung A. Initial Data Reduction
the tests on volume (line 100), peer churn and persisteiree 1D1), )

gnd human-driven versus machine-driven traffic (line 1@2jcribed To serve as an initial data reduction step in our
i §IV-A, IV-B, and IV-C. analysis, we first deploy a simple method to filter out
hosts that are unlikely to be running P2P applications at
all, by considering only hosts that have relatively high

which filters out clusters whose diameters exceggl fa!lgd connection rates. Failed connection rate has l:_)een
utilized in previous works on identifying P2P traffic

Similar to the two previous tests,,, can be set dynam- 2
m Wo previou Shm y (e.g., [45], [46]), and here we use it simply as a coarse

ically as a function of the diameters across all cIusters.d ta-reducti tep for eliminating hosts that likel
The output from the human-driven versus machine- ata-reduction step for eliminating hosts that are fikely

driven test, Bpm (A, S, 7hm), is the union of the host not running P2P applications at all, i.e., that are neither
’ m k) Y m/s

clusters not filtered out in this way. a Tr-ader nor a Plotter. . T
Figure 5 shows the cumulative distribution of the

D. Data Fusion percentage of failed connections per host, plotted from
Each of the above testf,q, Ocum, and b, aims & single day of traffic from the CMU dataset, the
to find Plotters using behavioral characteristics of altader dataset, and the Plotter traces. Only hosts that
host's network traffic. Alone, each test provides only aihitiated successful connections within that day were
coarse way of Separating Plotters from TraderS, and ma%ﬂcluded. There is a clear distinction between the curves
not be an effective tool for identifying Plotters. fv, ~ for the CMU\Trader and Trader datasets, pointing out
though, we show that when used in combination, theythat P2P hosts do exhibit significantly higher failed
can narrow in on the Plotters, while largely eliminating connection rates compared to non-P2P hosts. A closer
the non-Plotter hosts. examination of the Traders with a small percentage of
Specifically, we combine the tests into an algorithm,failed connections (e.g., less than%) revealed that
FindPlotters, shown in Figure 4. The algorithm takes as they are BitTorrent hosts downloading Torrent files from
input a collection of trafficA involving a set of hosts  trackers over HTTP, but that are not otherwise involved
observed within a time windowd (e.g., one day), and N P2P file-sharing activities. N _
outputs hosts who pass our various tests, indicating that Surprisingly, the Plotter traces also exhibit very dif-

Onm also takes as input a threshold parametgf,

they are likely to be Plotters. ferent failed connection rates. In particular, many of
the peer discovery messages sent by Nugache Plotters
V. EVALUATION in our trace were unsuccessful, because the remote peer

We present an evaluation of the tests describéthin ~ was either not active or not responding. This causes
using traffic from Plotters overlaid onto flow records almost all Nugache Plotters to have more th&iv
recorded at the edge of the CMU campus network (thdailed connections. Note that the curves for Storm and
CMU dataset). For each day of traffic in the CMU Nugache in Figure 5 are generated from the Plotter



30, 50, 70, or 90th percentile of the fraction of new IP
addresses contacted per host. The input to the human-
driven vs. machine-driven test,,, are those hosts that
were retained by one of the volume or churn tests (i.e.,
Svol U Schurn) With their respective thresholds set at the
50th percentiles (and by the initial data reduction step).
To generate the ROC curve in Figure 8, the threshold

—— CMU \ Traders .
- - -Traders
0.8| —— Storm :"
—e— Nugache !
0.6
;
0.4 ’
0.2
0 : : ——o :
0 10 20 30 40 50
Percentage of Failed Flows (%)
Figure 5. Cumulative distribution of the percentage of efail

connections per host in each dataset over one day.

Thm fOr Onm is set to be the 10, 30, 50, 70, or 90th

percentile of the cluster diameters. We emphasize that
each ROC curve plots the true and false positive rates
relative to its input sef(i.e., S
and S,o; U Schurn fOr 6hm), as opposed to the overall
CMU dataset with Plotters overlaid, in order to highlight

for 9vo| and Gchurnu

the independent discriminating power that each test

tracesonly. When they are overlaid onto the CMU
dataset {V-B), the percentage of failed flows can be
biased by the traffic from the CMU host to which we
assigned the Plotter traces.

As a data-reduction step to filter out those hosts who
are likelynotinvolved in P2P activities—while retaining
all hosts that are in fact running P2P applications—we
use the median value among hosts in the CMU dataset
with Plotters overlaid (and that initiated successful
flows) as the threshold for deciding which hosts to
remove from consideration. This value is determined
anew for each day of traffic. For example, for the case of
Figure 5, the threshold for failed connection rate would

True Positive Rate (%)

be roughly 25% (i.e.25.74%, the median value for the gigyre 6.
CMU dataset, then adjusted due to the overlaid Plotteand Nugache traces are overlaid onto hosts in the CMU datzftet
data). Hosts with failed connection rates higher than thdiltering as in§V-A. Results are averaged over the eight days in the

threshold are selected as “possibly P2P”. This approac
not only allows us to eliminate half of the hosts that are
not likely to be Plotters, but is also more difficult for a

Plotter to evade compared to setting a fixed threshold.

B. ldentifying Plotters

We overlaid the Storm and Nugache Plotter traces
onto each day of traffic in the CMU dataset by assigning
them to originate from randomly selected internal hosts
in the CMU campus network observed to be active on
that day (i.e., the detection windo is one day). This
combined traffic is then given as input to the tests, where
each returns a set of hosts that survived the test.

Figures 6, 7, 8 show ROC (Receiver Operating Char-

True Positive Rate (%)

contributes.
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ROC curves for the volume tef, when the Storm
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acteristic) curves for the volume, churn, and human-Figure 7. ROC curves for the peer churn tégf,», when the Storm

: e : and Nugache traces are overlaid onto hosts in the CMU dataset
driven vs. machine-driven tests. The input to the V()Ium%ltering as in§V-A. Results are averaged over the eight days in the

and churn tests is the sét of hosts that passed the cmu dataset.

initial data reduction step described §i-A. The ROC
curves are generated by setting the thresh@jdto be

Two observations from Figures 6—8 are evident. First,

the 10, 30, 50, 70, or 90th percentile of the averagehe true positive rates for Storm are higher than Nugache

bytes sent per flow per host, and,.., to be the 10,

across all three tests, often reachib@%. We will
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Figure 8. ROC curves for the human-driven vs. machine-drive Figure 9. Results after applying the tests in sequence. Thears

test when the Storm and Nugache traces are overlaid onts hrost
the CMU dataset, after filtering as §V-A and by 6, and Ocpyrn-

are averaged over eight days in the CMU dataset with oveRHitter

Results are averaged over the eight days in the CMU dataset.

the Nugache botnet at the time this trace was recotded.
f'I'his variability, and the generally lower rate of Nugache

explore the reasons for this difference at the end o ows in comparison to Storm. rendered all of our tests
this section. The second observation is that alone, eactrl\ WS | mparl R u
ess effective, as shown in Figures 6-8.

of the tests would be too coarse to be effective atl
identifying Plotters, producing high false positive rates

that can reach t60% (e.g., the volume test). ir _A”‘N h‘
In combination, however, they can be powerful at ol ———Nug:cghaecafeterinitial data reduction
extracting Plotters from Trader-like hosts. To show «o Nugache in S, 0 Sy,
this, we utilized the tests together as in the algorithm ol Nugache in Sy,
FindPlotters (Figure 4). To strike a balance between the
true positive and false positive rates, we use the 50th 0.4f
percentile among the hosts as the threshold for bgth
and7hum, and the 70th percentile of the cluster diame- 0.2t
ters form,,. Figure 9 shows how the results are refined
at each step, where the false positive rate is reduced 07 15 2 95 3 35

to 0.81%, while maintaining a87.50% true positive log(Number of flows)

rate for Storm and30% for NuQaChe' The perce_ntage Figure 10. Cumulative distribution of the number of flows gexted
of Traders (from the Trader dataset) that remain afteby the Nugache Plotters that remain after each test, in badeg
each test (averaged over all trials) is also shown forscale. Results are accumulated over the eight days in the GAfaset.
comparison. On average40% of the Traders remained
after applying the tests, which comprised1% of all
the hosts returned blindPlotters.

VI. EVASION

) ) . A Plotter could attempt to change its network be-
We now return to the differences in detectlo_n ratesy aviors to evade our tests, e.g., by increasing its traffic
between Nugach_e and Storm. As shown in Figure 9y, me so that it will escape the volume test. However,
most false negatives for Nugache resulted 6.  gjnce the thresholds used in our tests are not fixed at
Further investigation into these results showed thakes yqiyes, but instead are dependent on traffic statistics
each test, but particularighm, tended to filter out = qm gy hosts observed to be active in the local network
less communicative Plotters, as shown in Figure 10qhecifically, the hosts that remain after the initial data
Since these Plotters generated fewer connections, thelLq ction step described {V-A), a Plotter would have
behaviors were more obscured by tr§ﬁ|c from the CIV|Udi1‘ficulty in determining the precise thresholds that will
hosts onto which they were overlaid. At present, We,llow it to masquerade as a Trader.
have been unable to confirm a reason behind the large Figures 11(a) and 11(b) show, for the volume test

variance in the activity IeveIs_o_f the Nugache bots in,44 churn tesbenum conducted on each day of traffic
our trace, though those who originally recorded the trace

suggested that this may be due to the limited viability of 8Guofei Gu, personal communication, October 2009.
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% oo o ] ters hosts based on the distribution of their per-
E g2 TIB--0 "'0",5‘\ ] destination interstitial flow times, and identifies hosts
2 s, -7 L that have the similar timing patterns in their commu-
z 40"' L N | nications. Plotters belonging to the same botnet can
= % __(;__Tsct';urr% vedian | | avoid falling into the same cluster or increase the cluster
-B8- Nugache Median| D~ _ / diameter, for example, by having each Plotter select a
2 3 4 5 6 1 8 different frequency at which to contact peers. This could

Day Index affect our choice of bin width in histogram construction

(b) The threshold-pr, in the testcp.urm compared to values — which is dependent on both the number of interstitial

observed from hosts with overlaid Plotter traffic. . . .
time samples observed and the inter-quartile range of
Figure 11. Challenges for Plotters to evafilg Or Ochurn- the samples (sedV-C) — and therefore alter the Earth

Mover’s Distance (EMD) between Plotters.

To quantify the operational cost for Plotters that want
in the CMU dataset, the detection threshold used (i.e.to evade detection b§,,, we simulated Plotters who,
the median among the hosts) versus the median valu@stead of initiating communications at regular intervals
among the Plotters, once assigned to hosts. To evade tfigee§IV-C), always add (or subtract) a random delay
volume testg,.;, the median Storm Plotter would need before making each connection. By manipulating the
to generate more thdive times its original traffic vol-  distribution from which the flow interstitial times are
ume per flow. The corresponding multiplicative factor drawn, the Plotters may be able to disrupt our histogram
for the median Nugache Plotter is roughly 1.3. To evadeconstruction and clustering algorithm, such that they no
the churn testfc.m, a Plotter can either refrain from longer fall within the same cluster, or that the cluster
contacting hosts it had previously communicated with,diameter exceeds the threshalg,.
or generate connections to a large number of new hosts We use the same Plotter traces that were used in the
it talks to only once. As an example of the latter case, avaluation for this simulation, but add (or subtract) a
Plotter who wants to raise its percentage of new IPs todandom delay before every connection a Plotter makes
90% (a typical value ofrehurm), While still maintaining  to a peer with which it had previously communicated.
communications with the same number of peers, wouldThe delay is drawn from a uniform distribution over
need to increase the fraction of new hosts it contactshe interval+d, for each connection. Figure 12 shows
by a factor of 1.5 or more. Such evasion attempts fromthe decay in the true positive rate as a function of
Plotters that increase their traffic volume or the numberd, ranging from 30 seconds to three hours. The slight
of new hosts (such as through random scanning) caimcrease at 30 seconds for Nugache is due to the Plotters
compromise their stealthiness, making their presence ibeing separated into multiple clusters of small diameter,
the network observable through other means (e.g., scaresulting in their retention by,,,. While they were
detection) or even by the owner of the infected machineable to cluster better (i.e., being grouped together into
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fewer clusters) before adding the random delay, thesbée conservative. We further evaluated the changes in bot
larger clusters often had larger diameters and so werbehavior needed to evade our detection technique in our
filtered out by#,,. This figure suggests that Plotters tests, and found that bots would need to increase their
must randomize their connections to other Plotters byaverage flow size by roughly a factor of 1.3; increase the
minutes in order to evade detection via this test, po{raction of new IP addresses they contact by a factor of
tentially slowing the responsiveness of the botnet (c.f.1.5 or more; or randomize their interstitial connection
Figure 3(b)). Moreover, the per-destination interstitial times significantly (e.g., in a range of minutes) in
flow time distribution of other machines in the local order to avoid detection. Moreover, the bots would need
network affects the needed value @&f which may be to accomplish such changes despite other traffic from
difficult for Plotters to measure. the host it occupies, and since we defined our tests’
Since our tests focus on characteristics that describthresholds relative to the background traffic (e.g., the
differences in Plotter and Trader behavior, a limitationmedian), the behavior necessary to evade detection in
of this approach is in identifying Plotters that only any given network would typically be unknown to the
affect Traders, e.g., a Plotter binary that spreads throughttacker.
P2P file-sharing networks. In this case, the Plotter
traffic could be obscured by activities from the Trader, REEERENCES
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