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Abstract—Peer-to-peer (P2P) substrates are now widely
used for both file-sharing and botnet command-and-
control. Despite the commonality of their substrates, we
show that the different goals and circumstances of these
applications give rise to behaviors that can be distin-
guished in network flow records. Using features related to
traffic volume, persistence of network connections, amount
of “churn” among peers, and differences between human-
driven and machine-driven traffic, we develop a technique
for identifying P2P bots (the Plotters) and, in particular,
separating them from file-sharing hosts (the Traders).
Evaluations performed on traffic recorded at the edge of a
university network show that we can achieve, e.g.,87.50%

detection of Storm bots with a 0.81% false positive rate.
We also demonstrate the significant extent to which Plotter
behaviors would need to change to evade our techniques.

I. I NTRODUCTION

Peer-to-peer (P2P) networks have been used as botnet
communication channels as early as 2003 [1]. The
decentralized nature of these networks overcame the
single-point-of-attack limitation in centralized control,
making the botnet resilient to individual peer failures
and also harder to detect and take down. These mo-
tivations for using P2P substrates are similar to those
underlying the use of P2P protocols for file-sharing;
the takedown of Napster, for example, highlighted the
limitations of a centralized “command-and-control” in-
frastructure in that domain. It is thus not surprising that
P2P substrates now commonly support both activities.

A consequence of this common use of P2P tech-
nologies is that botnet command-and-control traffic will
tend to “blend into” a background of P2P file-sharing,
making it difficult to separate these two types of traffic.
In both cases, status information about available peers
needs to be maintained constantly to ensure the connec-
tivity of the network; peers experience a high connection
failure rate due to the dynamics of nodes joining and
leaving (i.e., “churn”); and peers participate in both
client and server activities, simultaneously receiving and
initiating connections. This commonality is punctuated
by the fact that one highly publicized and well-studied

P2P botnet, Storm, built its communication protocol
based on the Overnet network, whose distributed hash
table implementation [2] is incorporated in both eDon-
key 1 and BitTorrent2 file-sharing applications.

In light of this, the primary problem facing the detec-
tion of such bots is differentiating them from other P2P
hosts. In this work, we focus specifically on the problem
of P2P botnet detection given this challenge. We assume
the viewpoint of a network administrator who collects
flow records at the border of an enterprise network,
and who seeks to identify internal nodes that are P2P
bots. We construct a series of tests on network traffic
to separate P2P bots from P2P file-sharing hosts, to
which we will refer as Plotters and Traders, respectively,
throughout this paper. Our tests work exclusively on
traffic summaries (e.g., flow records) with no access
to individual packets (much less payloads), and so can
scale to very busy networks where per-packet logging
may not be cost-effective. Our techniques are thus also
unaffected by encryption of bot payload contents.

Given the varied nature of malware behaviors, we
focus on characteristics of the traffic that do not depend
on particular attack activities performed by the infected
hosts (e.g., spam forwarding, DDoS), but rather that are
basic properties of Plotters that operate over P2P net-
works. At a high level, these characteristics include:

• Volume: Since Traders generally perform large
multi-media file transfers (e.g., MP3, movies), but
Plotters almost never do, traffic volume should be
a good indicator of suspicious activity. However, as
we will show in §V, examining volume alone yields
many false positives.

• Persistence:Most Plotters are required to maintain
connectivity to their peers to receive and execute
commands from the botmaster. Moreover, since the
Plotter cannot control when network access would be
available, it is often opportunistic in communicating

1http://wiki.amule.org/index.php/FAQeD2k-Kademlia
2http://bittorrent.org/beps/bep0005.html



with peers, i.e., whenever it has a chance.
• Peer churn: The peer membership of a file-sharing

network is very dynamic, due to peers constantly
joining and leaving the network, the availability of
the desired file, and connections between hosts being
terminated soon after the completion of the file
transfer. Previous studies [3], [4], [5] also showed
that most Traders appear only once a day, and remain
connected for short durations (minutes). Plotters, by
contrast, are likely to experience less churn in peer
membership, since each individual host maintains a
list of known peers with which to communicate, and
also because they are more persistent than Traders,
as described above.

• Human-driven versus Machine-driven: Perhaps a
more basic difference between Plotters and Traders is
that, while file-sharing activities are mainly human-
driven, Plotters are almost entirely automated. This
causes much of their traffic to exhibit significant
regularity and periodicity that is rarely seen among
those from human activities. In a slightly different
context, previous studies on distinguishing humans
and bots in Internet chat rooms also observed that
human behaviors are more complex than bots [6].

We construct measures of each of these characteristics,
framing them into tests that distinguish Plotters from
Traders. To our knowledge, our work is the first to target
Plotters from the perspective of their commonality (or
the lack thereof) with other P2P protocols.

We use these tests to build a technique for separating
Plotters from Traders (and other hosts), and evaluate the
ability of our technique to identify Plotters within traffic
observed at the border of a university campus network.
Our results show that Storm bots can be identified with
up to 87.50% true positive rate and only0.81% false
positives, despite the fact that Traders using thesame
P2P substrate were present in our tests. We also perform
tests with Nugache bots, where we show that for the
same false positive rate, we can detect 30% of the bots.
We will explore the reasons behind our lower — though
still substantial — detection rate in this case.

A final contribution of our work is to examine how
much malware behavior would need to change to evade
our technique. We quantify for each of our component
tests the degree to which Plotters would need to alter
their behaviors to evade them. The results suggest
that evading our techniques would require significant
behavioral changes of existing botnets. Moreover, due
to the way in which our tests are constructed, it would
typically not be evident to the Plotters how much change
would be sufficient to evade them.

II. RELATED WORK

Much work to date has focused on detecting the
centralized command-and-control architecture utilized
by early botnets [7], [8], [9], [10], [11], [12]. But as
malware increasingly takes advantage of peer-to-peer
networks as their main communication channel, i.e., the
Plotters, these approaches become largely ineffective,
since their basic assumptions about the malware control
architecture or protocol no longer hold true. Recent
efforts from the research community on understanding
Plotters, including Storm [1], [13], [14], [15], Nu-
gache [13], Waledac [16], and Conficker [17], [18],
provided valuable insight to the operations of these
malware, but effective techniques to detect them and
future variants are still a subject of ongoing research.

Early work on disrupting Plotters (targeting Storm,
in particular) injected a large number of fake nodes
into the network to perform various Sybil attacks [15],
[19], [20], such as content-poisoning or eclipsing certain
nodes from the rest of the P2P network. These studies
showed that the effectiveness of the attack depends on
the attack duration as well as the number of Sybils.
Kang et al. [21] developed a P2P monitor that infil-
trated the Storm botnet to identify the IP addresses of
infected hosts. They showed that the monitor was able to
detect bots behind firewalls or NAT devices, achieving
a broader coverage than others that actively crawl the
network. Wurzinger et al. [22] constructed network
intrusion detection signatures to identify botmaster com-
mands by examining bot binaries running in controlled
environments. Their main observation is that changes
in the network behaviors of a Plotter are indications of
it having received commands from the botmaster. They
examine network traffic immediately preceding behavior
changes, and identify common substrings in the payload
that can be used as signatures. This approach is hindered
by Plotters that encrypt their communication, and may
miss previously unknown attacks.

Many approaches have also been proposed that detect
malware by examining the behavioral characteristics
of the network traffic. BotHunter [23] detects com-
promised hosts by identifying a series of events that
takes place when a vulnerable host is infected, and
which shows evidence of coordinated activities between
the infected host and the botmaster. However, since
they specifically focused on detecting events related to
certain suspicious behaviors, including scanning, binary
download, and control channel establishment, Plotters
not conforming to this profile would go undetected.
Other works correlated traffic characteristics to identify
hosts exhibiting similar network behaviors, such as per-
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forming suspicious activities (e.g., scanning, spamming)
and sharing common communication contents [24],
exhibiting similar traffic statistics and suspicious ac-
tivities [25], or contacting the same new destinations,
exchanging similar payload, and involving hosts of
similar software platform [26]. These approaches can
be evaded by changes in malware behavior, many of
which have already taken place, such as turning to
social engineering as an infection vector instead of
scanning, or using encryption to make payload analysis
difficult. Still others (e.g. [27]) use behavioral analysis
to identify certain P2P-bot behaviors exhibited over
non-P2P protocols.

In contrast to previous work, we focus specifically
on distinguishing Plotters, whose command-and-control
channel is overlaid on top of a P2P protocol, from
Traders. We do so by observing network-level charac-
teristics inherent to P2P applications, but that are able
to distinguish Plotters from Traders due to the different
goals and circumstances behind how they utilize the
P2P protocol. For example, Plotters communicate over
P2P networks mainly for subtlety and resilience, instead
of large file exchanges. They are also incentivized to
maintain persistent connections to other peers in the
network, in contrast to Traders, who have been observed
to go offline after the completion of file transfers [5].

Jelasity et al. [28] studied techniques that can be
deployed by Plotters to evade P2P traffic detection.
However, they only consider the case where traffic
dispersion graphs (TDGs) [29] are used to identify P2P
traffic. The TDG-approach assumes a global view of the
network, constructing a communication graph between
all nodes to check if the average degree and the fraction
of nodes with both incoming and outgoing connections
are above a threshold. To evade such detection, the
authors specifically focused on reducing the number
of peers each Plotter contacts, such that most of the
botnet’s traffic are routed through a few fixed nodes.
While this approach may limit the number of detectable
Plotters using TDGs, its impact on other methods for
identifying P2P traffic (that does not require the com-
munication graph) is not evaluated.

One of the characteristics explored in this work is the
difference between human-driven and machine-driven
traffic. This observation has also been applied in other
contexts, including cheat detection in online games [30],
distributed denial-of-service attack defenses [31], [32],
and chat bot detection in Internet chat rooms [6]. While
most approaches to identifying automated traffic were
host-based, Gianvecchio et al. [6] found that the network
traffic from human activities shows a higher entropy

than those from bots, for the case of Internet chat room
traffic. Lu et al. [33], [34] assume Plotter activities to
be more synchronized than human activities, and detect
Plotters by looking for hosts with similar byte frequency
distributions in their payload within the same time win-
dow, e.g., one second. This approach can thus be evaded
with encryption. Similar to our observation of the per-
sistence in Plotters’ traffic, Giroire et al. [35] proposed
a method to detecting centralized botnet command-
and-control traffic by monitoring persistent and regular
connections made to the same group of destination IP
addresses, i.e., the command-and-control server. Since
legitimate user traffic can also appear to be persistent
and regular, this approach requires whitelisting common
sites the user frequently visits, and is not suitable for
detecting Plotters that communicate over P2P.

Another line of work, orthogonal to ours, include
techniques for identifying behaviors involving certain
operations of Plotters. Ramachandran et al. [36] ob-
served that botmasters lookup DNS blacklists to de-
termine whether their Plotters are blacklisted. The au-
thors thus monitor lookups to a DNS-based blacklist
to identify infected hosts. Fast-flux is a technique used
by botnets to hide the backend control server [37]. It
operates by using dynamic DNS to establish a proxy
network based on the infected hosts, such that a single
domain is associated with many different IP addresses.
Methods for identifying fast-flux include observing the
geographic diversity in the IPs associated with a do-
main and the heterogeneity of those hosts [38], [39],
[40]. Since fast-flux networks are often used to host
spam campaigns or phishing websites, Hu et al. [41]
also proposed to detect hosts participating in fast-flux
networks by identifying HTTP redirection activity.

III. D ATA COLLECTION

In this work, we assume the role of a network
administrator that aims to identify Plotters internal to
her network, by observing only traffic crossing the
border of the network. The network traffic utilized in our
analysis is organized into bi-directional flow records by
Argus (http://www.qosient.com/argus), which is a real-
time flow monitor based on the RTFM flow model [42],
[43]. Argus inspects each packet and groups together
those within the same connection into one bi-directional
record. In particular, TCP and UDP flows are identified
by the 5-tuple (source IP address, destination IP address,
source port, destination port, protocol)3, and packets

3Since Argus records are bi-directional, the source and destination
IP addresses are swappable in the logic that matches packetsto flows.
However, the source IP address in the record is set to the IP address
of the host that initiated the connection.
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in both directions are recorded as a summary of the
communication, namely, an Argus flow record. The
fields contained in each Argus record include the source
and destination IP addresses and ports, the protocol, the
start and end times of the flow, the packet and byte
counts, and the first 64 bytes of the payload on the
connection. This payload is used solely for determining
ground truth for our tests, that is, determining whether
the host is a Plotter or a Trader.

We use the following datasets in our analysis:
CMU dataset:This dataset consists of anonymized

network traffic obtained from the edge routers of the
Carnegie Mellon University (CMU) campus network,
which has two /16 subnets. The rate of this traffic is
about5000 flows per second, and is collected daily from
9 a.m. to 3 p.m. over eight days in November 2007. We
focus on only TCP and UDP traffic in this dataset.

Trader dataset:We identified those hosts in the
CMU dataset that are participating in known P2P file-
sharing networks, i.e., the Traders, using the 64 bytes
of payload in each flow record available to us. Specif-
ically, we focus on the three popular file-sharing ap-
plications, Gnutella, eMule, and BitTorrent. Hosts run-
ning Gnutella were identified by the protocol keywords
“GNUTELLA”, “CONNECT BACK”, and “LIME” in
their payload.4 eMule hosts were identified by the
initial byte ‘0xe3’ or ‘0xc5’, followed by various byte
sequences as specified in the protocol specification [44].
BitTorrent hosts were identified by the protocol key-
word “BitTorrent protocol”, web requests to trackers
beginning with “GET /scrape” or “GET /announce”,
and distributed hash table control messages with the
substrings “d1:ad2:id20” or “d1:rd2:id20”.5

Plotter dataset: We also obtained Plotter traffic
traces gathered from honeynets running in the wild
in late 2007. These include a 24-hour trace of Storm,
which contains traffic from 13 bots, and a 24-hour trace
of Nugache, which contains 82 bots. Spamming and
scanning activities were blocked during the collection
of these traces, and so the remaining traffic consists
mostly of botnet control traffic, e.g., for peer discovery.
As we will describe in§V, these traces were used in
our evaluation, where they were overlaid onto the CMU
traffic by assigning them to randomly selected internal
hosts that are active in the CMU dataset.

IV. M ETHODOLOGY

Given network traffic observed at the border of an
enterprise network, our goal is to identify internal

4http://rfc-gnutella.sourceforge.net/src/rfc-06-draft.html
5http://wiki.theory.org/BitTorrentSpecification

Plotters, where the main challenge in doing so is to
distinguish them from Traders. We construct a set of
tests that quantify the characteristics described in§I:
volume, peer churn and persistence, and human-driven
versus machine-driven, which aim to take advantage
of the different goals and circumstances behind how
Plotters and Traders utilize P2P networks. Each test
takes as input a collection of traffic,Λ, which involves
a groupS of internal hosts over time windowD, and
outputs a subset of hosts inS that exhibit characteristics
for which the test evaluates. In the following, we detail
the rationale behind each of the characteristics, how
they can be useful indicators for distinguishing Plotters
from Traders in particular, and the construction of the
corresponding test functions. We then describe how
multiple tests can be combined to refine the results to
narrow in on Plotters within the local network.

A. Volume

The first distinguishing characteristic we consider be-
tween Plotters and Traders is the amount of traffic each
host contributes to the network. A common purpose
of Traders is to exchange data, and much of the data
found on popular P2P file-sharing applications, such as
Gnutella, eMule, and BitTorrent, are large multimedia
files (e.g., several MBytes in size [4]). By contrast, the
use of P2P architectures in Plotters is not so much for
the sharing of information as for resilience and subtlety.
Their traffic hence tends to be much lower in volume. In
fact, the Storm botnet has been observed to use the P2P
protocol only for exchanging control messages, while
file transfers were still performed over HTTP [1], [13].
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Figure 1. Cumulative distribution of the average flow size per host
in each dataset over one day.

We examine traffic volume for a host in terms of the
average number of bytes per flow that it contributes to
the network (i.e., uploaded by the host). Compared to
the cumulative byte count, this metric is less likely to be
biased by the number of flows generated by a host, since
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a Plotter that is chatty can accumulate a large byte count
over a short time window, while each individual flow
is quite light-weight. Figure 1 shows the cumulative
distribution of this value per host, plotted from a single
day of traffic from the CMU dataset, the Trader dataset,
and the Plotter traces. This figure shows that the amount
of data contributed by the Plotters (i.e., the Storm and
Nugache bots), is significantly smaller than Traders.

Tests on Volume:By quantifying a host’s traffic
volume using the average number of bytes sent per flow,
we can define a test functionθvol that uses this charac-
teristic to distinguish between Traders and Plotters. The
function takes as input a collection of traffic,Λ, which
involves a groupS of internal hosts over time window
D, and a thresholdτvol. Hosts whose average flow size
is less thanτvol are returned in the setSvol.

In practice,τvol can be set dynamically depending on
the current traffic makeup, for example, by setting it to
the median value observed across all hosts inS. This
can make it more difficult for a Plotter to manipulate its
traffic to masquerade itself as a Trader; e.g., the amount
of data it sends per flow needs to be larger than the
majority of the Traders in the local network, though the
Plotter would presumably be unaware of that amount
that it must exceed.

B. Peer Churn and Persistence

Peer churn refers to the dynamics of peers joining
and leaving the network, and is a common phenomenon
both among Traders and Plotters. This characteristic is
often reflected in the high ratio of failed connections
observed in P2P networks [45], [46]. Previous studies
on P2P file-sharing networks have shown that peers are
often connected for only short durations (a few minutes
on average) [3], [4], [5], and many of them leave the
network permanently after requesting a single file [5].

We hypothesize that even though the dynamics of
peer membership is present in both systems, peer churn
is less significant among Plotters compared to Traders.
This is because Plotters have motivation to keep up
persistent communications with each other and maintain
the connectivity of the botnet, since the botmaster needs
to be able to control her bots. The Plotter also cannot
control when network access would be available on the
infected machine, and so it is often opportunistic in ini-
tiating communications, i.e., whenever it has a chance,
making a Plotter’s network activities more persistent in
doing so. In addition, most Plotters store a list of known
peers with which it maintains communications, both
for bootstrapping itself into the network [1], [13], [14],
[15], [16] and to limit the number of active connections.
This allows the Plotter to remain stealthy, and also

limits the disclosure of other Plotters if one of them is
captured [13]. Such behaviors make it more likely for
Plotters to contact the same hosts than Traders, whose
set of peers is mainly determined by file availability.

This observation allows us to characterize peer churn
using the set membership of the destinations that a
host contacts. We quantify this by the fraction of new
IP addresses that a host contacts per day, or more
specifically, the ratio of (i) the number of IP addresses
that a host first contacts after its first hour of activity
on that day, and (ii) the total number of IP addresses
it contacts in that day. A higher percentage of new
contacts indicates a higher amount of churn. As an
example, we illustrate the percentage of new addresses
contacted by a Storm bot (from our Plotter traces) and
a Trader (in one-day’s worth of traffic from the Trader
dataset) in Figure 2. Clearly, churn is significant for
the Trader, where over55% of the IPs it contacted
appear to be new. In contrast, generally more than60%
of the peers contacted by the Storm Plotter have been
contacted previously by the same host.
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Figure 2. New IPs contacted by a Trader and a Storm Plotter over
one day.

Tests on Peer Churn and Persistence:Similar to
the tests for volume, we also approach the problem
of distinguishing Plotters from Traders using churn by
performing a coarse separation between the two sets
of hosts. In this case, the test function for peer churn,
θchurn, identifies hosts that have a relatively “low” churn
(which are likely Plotters) using a thresholdτchurn. By
taking as input a collection of trafficΛ involving hostsS
and a thresholdτchurn, the churn testθchurn(Λ, S, τchurn)
outputs a setSchurn of hosts that contact a percentage
of new IP addresses less thanτchurn.

In practice, a Plotter could attempt to evade being
grouped intoSchurn by increasing the fraction of new
hosts it contacts, for example, by performing random
scanning or initiating connections to different peers on
its peer list at every communication attempt. This ap-

5



proach is risky, since it could make the Plotter detectable
via other means (e.g., by identifying scanning activities)
and reduces the stealthiness of the Plotter. We discuss
evasion techniques that can be carried out by Plotters
and quantify their induced costs in§VI.

C. Human-driven vs. Machine-driven

Several works on botnet detection have studied the
difference between human and machine-driven activi-
ties [47], [24], [26], [25], [33], [34]. Only a few of these
previous works have applied their technique to detecting
P2P Plotters [24], [25]. However, these approaches rely
on the presence of specific attack activities performed
by the infected hosts, such as scanning.

We approach this problem by directly using timing-
related information to characterize theregularity of
machine-driven activities, for example, periodic keep-
alive/status messages exchanged between peers or
scheduled checks performed by the Plotters to download
new commands, as well as the commonality between
the behaviors of Plotters belonging to the same botnet.
Specifically, for each host, we examine the interstitial
time distribution of its flows to the same destination
IP. This distribution is observed across all destinations
contacted by the host, since we do not know which ones
are P2P peers. Since Plotters in the same botnet are
likely to be running similar versions of the bot binary,
the timers used in triggering their activities should also
follow the same algorithm. From this observation, the
per-destination flow interstitial time distributions for
Plotters should not only stand out from those of Traders,
whose activities lack the regularity seen in automated
traffic, but also appear “similar” to each other.

Figures 3(a) and 3(b) show the patterns that appeared
in the per-destination flow interstitial time distribution
of two Plotters, a Storm bot and a Nugache bot, from
our Plotter traces. These Plotters exhibit significant peri-
odicity in their communications. For example, Nugache
can be observed to communicate at intervals of around
10 seconds, 25 seconds, and 50 seconds. By contrast, it
is not clear that the same pattern exists among Traders,
as shown in Figures 3(c) and 3(d) for a BitTorrent host
and a Gnutella host from the Trader dataset.

Tests on Human-driven v.s. Machine-driven:To
compare the per-destination flow interstitial time dis-
tribution between hosts, we define a function,θhm,
that uses a non-parametric approach to construct a
histogram that approximates the underlying distribution
for each host [48]. The Earth Mover’s Distance [49]
is then applied as the distance metric for comparing
distributions. This allows us to identify clusters of hosts
who exhibit similar timing patterns in their network

traffic, where hosts whose traffic are mainly machine-
driven, e.g., Plotters, should have different interstitial
time distributions from hosts that are human-driven,
e.g., Traders, and thus fall within separate clusters.

• Constructing Histograms. Given a collection of the
observed interstitial time samplesv(s) for a hosts,
we approximate its underlying distribution by con-
structing a histogram. The choice of histogram bin
width is critical in this approximation, since a large
value leads to over-smoothing, and a small value
increases the sampling error. Moreover, applying a
fixed bin width makes it straightforward for a Plotter
to manipulate its traffic to evade detection.
In this work, we follow a method proposed by
Freedman et al. [48] to identify the optimal bin
width, whose goal is to minimize the mean-squared
error between the true distribution and the histogram.
They show that the bin width can be computed as a
function of the sample size|v(s)| (i.e., the number
of observed interstitial time values for hosts) and
the “spread” of the samples, as represented by the
inter-quartile range of the sample values,IQR(v(s)).
Specifically, the bin widthbs is calculated bybs =
2 × IQR(v(s)) × |v(s)|−1/3.

• Clustering Histograms. One of the metrics for com-
paring distributions is the Earth Mover’s Distance
(EMD) [49]. Briefly, EMD is defined as the amount
of work that is required to change one distribution
into the other by moving “distribution mass” around.
It is based on the transportation problem [50], where
the challenge is to find routes that will minimize the
cost of shipping goods from a group of suppliers
I to a group of consumersJ . That is, find a set of
routesfij to minimize

∑
i∈I

∑
j∈J cijfij , wherecij

is the cost of shipping from supplieri to consumerj.
By definingcij as the distance between theith and
jth bins in the histograms, EMD is especially useful
in cases where the distributions are simply shifts of
each other, but otherwise identical.
This allows us to form clusters of hosts whose
histograms are “close”, which correspond to hosts
whose network traffic exhibit similar timing patterns.
Clustering is performed using an agglomerative hi-
erarchical algorithm, where each step merges the
two hosts with the closest distributions. This iterative
process constructs a hierarchical clustering tree (i.e.,
a dendrogram), with the weight of each link being
the average distance between the pair of nodes it
connects. The final set of clusters is formed by
cutting the top5% links with the largest weights.
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Figure 3. Interstitial time between flows to same destination in one day’s worth of traffic.

FindPlotters(Λ, S)

100: Svol ← θvol(Λ, S, τvol)
/∗ Returns hosts with low traffic volume∗/

101: Schurn ← θchurn(Λ,S, τchurn)
/∗ Returns hosts with low peer churn∗/

102: Shm ← θhm(Λ, Svol ∪ Schurn, τhm)
/∗ Returns hosts with similar timing patterns in their traffic∗/

103: return Shm

Figure 4. The algorithm used to find suspected Plotters by combining
the tests on volume (line 100), peer churn and persistence (line 101),
and human-driven versus machine-driven traffic (line 102),described
in §IV-A, IV-B, and IV-C.

θhm also takes as input a threshold parameter,τhm,
which filters out clusters whose diameters exceedτhm.
Similar to the two previous tests,τhm can be set dynam-
ically as a function of the diameters across all clusters.
The output from the human-driven versus machine-
driven test,θhm(Λ, S, τhm), is the union of the host
clusters not filtered out in this way.

D. Data Fusion

Each of the above tests,θvol, θchurn, and θhm, aims
to find Plotters using behavioral characteristics of a
host’s network traffic. Alone, each test provides only a
coarse way of separating Plotters from Traders, and may
not be an effective tool for identifying Plotters. In§V,
though, we show that when used in combination, they
can narrow in on the Plotters, while largely eliminating
the non-Plotter hosts.

Specifically, we combine the tests into an algorithm,
FindPlotters, shown in Figure 4. The algorithm takes as
input a collection of trafficΛ involving a set of hostsS
observed within a time windowD (e.g., one day), and
outputs hosts who pass our various tests, indicating that
they are likely to be Plotters.

V. EVALUATION

We present an evaluation of the tests described in§IV,
using traffic from Plotters overlaid onto flow records
recorded at the edge of the CMU campus network (the
CMU dataset). For each day of traffic in the CMU

dataset, we overlay the bot traces by assigning them to
randomly selected internal hosts that are active during
that day (including possibly Traders). This makes our
testing scenario more realistic, since the internal hosts
still exhibit their normal connection patterns, in addition
to Plotter activities.

A. Initial Data Reduction

To serve as an initial data reduction step in our
analysis, we first deploy a simple method to filter out
hosts that are unlikely to be running P2P applications at
all, by considering only hosts that have relatively high
failed connection rates. Failed connection rate has been
utilized in previous works on identifying P2P traffic
(e.g., [45], [46]), and here we use it simply as a coarse
data-reduction step for eliminating hosts that are likely
not running P2P applications at all, i.e., that are neither
a Trader nor a Plotter.

Figure 5 shows the cumulative distribution of the
percentage of failed connections per host, plotted from
a single day of traffic from the CMU dataset, the
Trader dataset, and the Plotter traces. Only hosts that
initiated successful connections within that day were
included. There is a clear distinction between the curves
for the CMU\Trader and Trader datasets, pointing out
that P2P hosts do exhibit significantly higher failed
connection rates compared to non-P2P hosts. A closer
examination of the Traders with a small percentage of
failed connections (e.g., less than10%) revealed that
they are BitTorrent hosts downloading Torrent files from
trackers over HTTP, but that are not otherwise involved
in P2P file-sharing activities.

Surprisingly, the Plotter traces also exhibit very dif-
ferent failed connection rates. In particular, many of
the peer discovery messages sent by Nugache Plotters
in our trace were unsuccessful, because the remote peer
was either not active or not responding. This causes
almost all Nugache Plotters to have more than65%
failed connections. Note that the curves for Storm and
Nugache in Figure 5 are generated from the Plotter
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Figure 5. Cumulative distribution of the percentage of failed
connections per host in each dataset over one day.

traces only. When they are overlaid onto the CMU
dataset (§V-B), the percentage of failed flows can be
biased by the traffic from the CMU host to which we
assigned the Plotter traces.

As a data-reduction step to filter out those hosts who
are likelynot involved in P2P activities—while retaining
all hosts that are in fact running P2P applications—we
use the median value among hosts in the CMU dataset
with Plotters overlaid (and that initiated successful
flows) as the threshold for deciding which hosts to
remove from consideration. This value is determined
anew for each day of traffic. For example, for the case of
Figure 5, the threshold for failed connection rate would
be roughly 25% (i.e.,25.74%, the median value for the
CMU dataset, then adjusted due to the overlaid Plotter
data). Hosts with failed connection rates higher than the
threshold are selected as “possibly P2P”. This approach
not only allows us to eliminate half of the hosts that are
not likely to be Plotters, but is also more difficult for a
Plotter to evade compared to setting a fixed threshold.

B. Identifying Plotters

We overlaid the Storm and Nugache Plotter traces
onto each day of traffic in the CMU dataset by assigning
them to originate from randomly selected internal hosts
in the CMU campus network observed to be active on
that day (i.e., the detection windowD is one day). This
combined traffic is then given as input to the tests, where
each returns a set of hosts that survived the test.

Figures 6, 7, 8 show ROC (Receiver Operating Char-
acteristic) curves for the volume, churn, and human-
driven vs. machine-driven tests. The input to the volume
and churn tests is the setS of hosts that passed the
initial data reduction step described in§V-A. The ROC
curves are generated by setting the thresholdτvol to be
the 10, 30, 50, 70, or 90th percentile of the average
bytes sent per flow per host, andτchurn to be the 10,

30, 50, 70, or 90th percentile of the fraction of new IP
addresses contacted per host. The input to the human-
driven vs. machine-driven test,θhm, are those hosts that
were retained by one of the volume or churn tests (i.e.,
Svol ∪ Schurn) with their respective thresholds set at the
50th percentiles (and by the initial data reduction step).
To generate the ROC curve in Figure 8, the threshold
τhm for θhm is set to be the 10, 30, 50, 70, or 90th
percentile of the cluster diameters. We emphasize that
each ROC curve plots the true and false positive rates
relative to its input set(i.e., S for θvol and θchurn,
and Svol ∪ Schurn for θhm), as opposed to the overall
CMU dataset with Plotters overlaid, in order to highlight
the independent discriminating power that each test
contributes.
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Figure 6. ROC curves for the volume testθvol when the Storm
and Nugache traces are overlaid onto hosts in the CMU dataset, after
filtering as in§V-A. Results are averaged over the eight days in the
CMU dataset.
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Figure 7. ROC curves for the peer churn testθchurn when the Storm
and Nugache traces are overlaid onto hosts in the CMU dataset, after
filtering as in§V-A. Results are averaged over the eight days in the
CMU dataset.

Two observations from Figures 6–8 are evident. First,
the true positive rates for Storm are higher than Nugache
across all three tests, often reaching100%. We will
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Figure 8. ROC curves for the human-driven vs. machine-driven
test when the Storm and Nugache traces are overlaid onto hosts in
the CMU dataset, after filtering as in§V-A and by θvol and θchurn.
Results are averaged over the eight days in the CMU dataset.

explore the reasons for this difference at the end of
this section. The second observation is that alone, each
of the tests would be too coarse to be effective at
identifying Plotters, producing high false positive rates
that can reach to90% (e.g., the volume test).

In combination, however, they can be powerful at
extracting Plotters from Trader-like hosts. To show
this, we utilized the tests together as in the algorithm
FindPlotters (Figure 4). To strike a balance between the
true positive and false positive rates, we use the 50th
percentile among the hosts as the threshold for bothτvol

andτchurn, and the 70th percentile of the cluster diame-
ters forτhm. Figure 9 shows how the results are refined
at each step, where the false positive rate is reduced
to 0.81%, while maintaining a87.50% true positive
rate for Storm and30% for Nugache. The percentage
of Traders (from the Trader dataset) that remain after
each test (averaged over all trials) is also shown for
comparison. On average,5.40% of the Traders remained
after applying the tests, which comprises7.11% of all
the hosts returned byFindPlotters.

We now return to the differences in detection rates
between Nugache and Storm. As shown in Figure 9,
most false negatives for Nugache resulted fromθhm.
Further investigation into these results showed that
each test, but particularlyθhm, tended to filter out
less communicative Plotters, as shown in Figure 10.
Since these Plotters generated fewer connections, their
behaviors were more obscured by traffic from the CMU
hosts onto which they were overlaid. At present, we
have been unable to confirm a reason behind the large
variance in the activity levels of the Nugache bots in
our trace, though those who originally recorded the trace
suggested that this may be due to the limited viability of
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Figure 9. Results after applying the tests in sequence. The numbers
are averaged over eight days in the CMU dataset with overlaidPlotter
traffic.

the Nugache botnet at the time this trace was recorded.6

This variability, and the generally lower rate of Nugache
flows in comparison to Storm, rendered all of our tests
less effective, as shown in Figures 6–8.
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Figure 10. Cumulative distribution of the number of flows generated
by the Nugache Plotters that remain after each test, in base-10 log
scale. Results are accumulated over the eight days in the CMUdataset.

VI. EVASION

A Plotter could attempt to change its network be-
haviors to evade our tests, e.g., by increasing its traffic
volume so that it will escape the volume test. However,
since the thresholds used in our tests are not fixed at
set values, but instead are dependent on traffic statistics
from all hosts observed to be active in the local network
(specifically, the hosts that remain after the initial data
reduction step described in§V-A), a Plotter would have
difficulty in determining the precise thresholds that will
allow it to masquerade as a Trader.

Figures 11(a) and 11(b) show, for the volume testθvol

and churn testθchurn conducted on each day of traffic

6Guofei Gu, personal communication, October 2009.
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(a) The thresholdτvol in the testθvol compared to values
observed from hosts with overlaid Plotter traffic.
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(b) The thresholdτchurn in the testθchurncompared to values
observed from hosts with overlaid Plotter traffic.

Figure 11. Challenges for Plotters to evadeθvol or θchurn.

in the CMU dataset, the detection threshold used (i.e.,
the median among the hosts) versus the median value
among the Plotters, once assigned to hosts. To evade the
volume test,θvol, the median Storm Plotter would need
to generate more thanfive times its original traffic vol-
ume per flow. The corresponding multiplicative factor
for the median Nugache Plotter is roughly 1.3. To evade
the churn test,θchurn, a Plotter can either refrain from
contacting hosts it had previously communicated with,
or generate connections to a large number of new hosts
it talks to only once. As an example of the latter case, a
Plotter who wants to raise its percentage of new IPs to
90% (a typical value ofτchurn), while still maintaining
communications with the same number of peers, would
need to increase the fraction of new hosts it contacts
by a factor of 1.5 or more. Such evasion attempts from
Plotters that increase their traffic volume or the number
of new hosts (such as through random scanning) can
compromise their stealthiness, making their presence in
the network observable through other means (e.g., scan
detection) or even by the owner of the infected machine.
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Figure 12. Challenges for Plotters to evadeθhm. The y-axis is the
true positive rate averaged over eight days of the CMU dataset with
overlaid Plotter traffic.

The human-driven vs. machine-driven test,θhm, clus-
ters hosts based on the distribution of their per-
destination interstitial flow times, and identifies hosts
that have the similar timing patterns in their commu-
nications. Plotters belonging to the same botnet can
avoid falling into the same cluster or increase the cluster
diameter, for example, by having each Plotter select a
different frequency at which to contact peers. This could
affect our choice of bin width in histogram construction
— which is dependent on both the number of interstitial
time samples observed and the inter-quartile range of
the samples (see§IV-C) — and therefore alter the Earth
Mover’s Distance (EMD) between Plotters.

To quantify the operational cost for Plotters that want
to evade detection byθhm, we simulated Plotters who,
instead of initiating communications at regular intervals
(see§IV-C), always add (or subtract) a random delay
before making each connection. By manipulating the
distribution from which the flow interstitial times are
drawn, the Plotters may be able to disrupt our histogram
construction and clustering algorithm, such that they no
longer fall within the same cluster, or that the cluster
diameter exceeds the thresholdτhm.

We use the same Plotter traces that were used in the
evaluation for this simulation, but add (or subtract) a
random delay before every connection a Plotter makes
to a peer with which it had previously communicated.
The delay is drawn from a uniform distribution over
the interval±d, for each connection. Figure 12 shows
the decay in the true positive rate as a function of
d, ranging from 30 seconds to three hours. The slight
increase at 30 seconds for Nugache is due to the Plotters
being separated into multiple clusters of small diameter,
resulting in their retention byθhm. While they were
able to cluster better (i.e., being grouped together into
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fewer clusters) before adding the random delay, these
larger clusters often had larger diameters and so were
filtered out byθhm. This figure suggests that Plotters
must randomize their connections to other Plotters by
minutes in order to evade detection via this test, po-
tentially slowing the responsiveness of the botnet (c.f.,
Figure 3(b)). Moreover, the per-destination interstitial
flow time distribution of other machines in the local
network affects the needed value ofd, which may be
difficult for Plotters to measure.

Since our tests focus on characteristics that describe
differences in Plotter and Trader behavior, a limitation
of this approach is in identifying Plotters that only
affect Traders, e.g., a Plotter binary that spreads through
P2P file-sharing networks. In this case, the Plotter
traffic could be obscured by activities from the Trader,
if the Trader is a heavy file-sharing user generating
high volumes of traffic, for example. One method of
distinguishing between Plotter and Trader traffic on a
host might be to separate traffic by application, such
as determined using port numbers. Traffic from each
port, or a group of associated ports, can then be applied
individually to the tests in§IV. While in our evaluations
the hosts to which we assigned bot traces were some-
times Traders, and were still effectively identified by the
FindPlotters algorithm, a more comprehensive study as
to how Plotters can selectively infect only Traders that
will obscure its traffic is part of ongoing work.

VII. C ONCLUSION

In networks where P2P file-sharing is commonplace,
a challenge in identifying bots managed via P2P infras-
tructures is the similarities that their network behaviors
share with P2P file-sharing applications. In this paper
we developed a series of tests for separating the two
classes of P2P applications, and in particular for iden-
tifying bots within a network prior to their engaging in
overt attacks. Our tests work on flow records, without
access to packet payloads or packet interstitial times.
As such, our techniques are scalable to busy networks
where packet capture (or even packet header capture) is
not cost-effective. For the same reason, our techniques
are immune to bot payload encryption.

Using bot traces and traces of traffic collected at the
edge of a university network, we showed that our tech-
nique enabled the identification of Storm and Nugache
bots with a false positive rate of only 0.81% on average.
At this false positive rate, our techniques identified
87.50% of the implanted Storm bots, and 30% of the
Nugache bots. Our lower detection rate for Nugache
derives from the low and variable activity of the bots in
our data (see§V-B), and so we believe this number to

be conservative. We further evaluated the changes in bot
behavior needed to evade our detection technique in our
tests, and found that bots would need to increase their
average flow size by roughly a factor of 1.3; increase the
fraction of new IP addresses they contact by a factor of
1.5 or more; or randomize their interstitial connection
times significantly (e.g., in a range of minutes) in
order to avoid detection. Moreover, the bots would need
to accomplish such changes despite other traffic from
the host it occupies, and since we defined our tests’
thresholds relative to the background traffic (e.g., the
median), the behavior necessary to evade detection in
any given network would typically be unknown to the
attacker.

REFERENCES

[1] J. Grizzard, V. Sharma, C. Nunnery, and B. Kang, “Peer-
to-peer botnets: Overview and case study,” inWksh. Hot
Topics in Understanding Botnets, 2007.

[2] P. Maymounkov and D. Mazieres, “Kademlia: A peer-
to-peer information system based on the xor metric,” in
Intern. Wksh. Peer-to-Peer Systems, 2002.

[3] D. Stutzbach and R. Rejaie, “Understanding churn in
peer-to-peer networks,” inACM SIGCOMM Internet
Measurement Conf., 2006.

[4] S. Saroiu, P. Gummadi, and S. Gribble, “A measurement
study of peer-to-peer file sharing systems,” inMultime-
dia Computing and Networking, 2002.

[5] K. Gummadi, R. Dunn, S. Saroiu, and S. Gribble,
“Measurement, modeling, and analysis of a peer-to-peer
file-sharing workload,” inACM Symp. Operating Systems
Principles, 2003.

[6] S. Gianvecchio, M. Xie, Z. Wu, and H. Wang, “Measure-
ment and classification of humans and bots in internet
chat,” in USENIX Security Symp., 2008.

[7] J. Binkley and S. Singh, “An algorithm for anomaly-
based botnet detection,” inWksh. Steps to Reducing
Unwanted Traffic on the Internet, 2006.

[8] E. Cooke, F. Jahanian, and D. McPherson, “The zombie
roundup: Understanding, detecting, and disrupting bot-
nets,” in Wksh. Steps to Reducing Unwanted Traffic on
the Internet, 2005.

[9] J. Goebel and T. Holz, “Rishi: Identify bot contaminated
hosts by IRC nickname evaluation,” inWksh. Hot Topics
in Understanding Botnets, 2007.

[10] C. Livadas, B. Walsh, D. Lapsley, and T. Strayer, “Using
machine learning techniques to identify botnet traffic,” in
IEEE LCN Wksh. Network Security, 2006.
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