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Abstract
Physically-based elastic body simulation has been appliedto medical image registration to enforce physical con-
straints, since each organ in the image can be viewed as an elastic body. However, it requires hand adjustment for
the material properties to achieve the desired output shape, and the boundary conditions (forces or displacements
on boundary nodes) cannot be acquired directly from the images. We present a general method for estimating these
parameters for a simulator automatically using an iterative optimization framework, given the desired (target) out-
put surface. During the optimization, the input model is deformed by the simulator, and an objective function based
on the distance between the deformed surface and the target surface is minimized numerically. The optimization
framework does not depend on a particular simulation methodand is therefore suitable for different physical
models. Besides matching the surface boundaries, our method guarantees the quality of the deformation fields,
as they are computed using a physics-based simulation. Compared to other FEM-based methods, our technique
can determine the elastic properties automatically and does not rely on explicit surface matching for generating
boundary conditions.

Categories and Subject Descriptors(according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Physically-Based Modeling I.3.8 [Computer Graphics]: Applications—Image Registration

1. Introduction

Physically-based simulations can help generate realistic
scenes or animations without requiring low-level control of
a 3D model. To achieve a particular appearance, however,
requires many iterations of adjusting simulation parameters,
simulating, and assessing the results. For a large number of
parameters and a complex, high-cost simulation, this adjust-
ment process becomes very tedious, making parameter es-
timation a topic of interest in the field of computer graph-
ics [BTH∗03,SB08]. Physically-based simulations can also
be used for 3Dimage registration, which is the process
of finding correspondence between two images. In medical
imaging applications, the images are taken using modalities
such as computed tomography (CT) or magnetic resonance
imaging (MRI), and human organs are the objects of interest.
An application of particular interest arises in radiation ther-
apy for cancer, in which treatment is delivered daily over a
series of weeks. With the newest technology, patients can be
imaged periodically in the treatment position. If the resulting

images can be brought into point-by-point correspondence,
the radiation dose delivered to different parts of the tissue
can be brought into a common reference frame and accumu-
lated. Because human organs consist of elastically deform-
ing tissues, a nonrigid registration is needed in addition to
a rigid registration (which finds a transformation matrix to
align fixed parts such as the bones).

When registering multiple images from the same patient,
it makes sense to use an elastic model reflecting actual
physical properties of the tissue. Provided with some in-
formation about correspondence, such as the locations of
selected organ boundaries (animage segmentation), such a
physical simulation can deform the moving image toward
the fixed image, which constitutes a nonrigid registration
through the implied correspondence [FWG∗99, FWN∗00,
LY03,HMC∗07]. However, there is no direct way to measure
the material properties (themodulus of elasticity, or Young’s
modulus, which is a measure of stiffness of the material,
andPoisson’s ratio, which is a measure of compressibility)
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and boundary forces acting on the organs within the patient.
Although some reference values of material properties have
been reported in the literature [KWK∗98,ZNC∗08], the val-
ues may vary significantly between patients. Surface match-
ing algorithms can provide approximate boundary condi-
tions in place of boundary forces [FWN∗00,HMC∗07], but
we do not know if the surface matching satisfies the physical
constraints, since they are not used in the surface matching
algorithms and the solution to the surface matching problem
is not unique.

In this paper we describe a physically-based registration
method that estimates these material properties as part of
the registration process. We minimize an objective function
based on the distance between the deformed surface and the
target surface, with the elasticities and boundary forces as
the parameters to the iterative optimizer. Our method avoids
the tedious manual parameter adjustment process and re-
duces the implicit error induced by surface matching meth-
ods which do not respect physicsl constraints. The general
optimization framework is suitable for different physical
models. Our technique is based on the surfaces of the models
at the rest state and the deformed state, and image intensity
information is not required after the segmentation bound-
aries are acquired. Therefore the method can be applied to
areas other than the image registration problem.

Our method improves over previous simulation-based
registration methods by providing an automatic means of
finding the parameters that are missing in the images. Fur-
thermore, compared to other work on simulation parameter
estimation, our method does not require boundary conditions
and can therefore avoid the process of measuring the exter-
nal forces.

We discuss related work in Section2 and explain the elas-
tic model and the optimization scheme in Section3, followed
by experimental results using a synthetic scene and two pairs
of real CT images in Section4 to demonstrate the feasibility
of our method. We conclude with a summary and discussion
of future work.

2. Related Work

Physically-based deformable models have been applied to
computer graphics for more than two decades, and there
have been significant advances in many subareas such as nu-
merical partial differential equations, multi-resolution mod-
eling, modal analysis, and collision detection [NMK∗06,
THM∗05]. Some work in the computer graphics community
has explored parameter estimation for deformable model
simulation. For example, an optimization scheme has been
proposed to estimate cloth simulation parameters [BTH∗03].
The cloth model has stiffness and damping coefficients in
an in-plane stretch term, an in-plane shear term, and an
out-of-plane bending term, giving a total of six parame-
ters. The authors compared video of real fabric patches and

simulated images to compute the error metric based on the
orientation of each edge pixel, and the error is minimized
with the continuous simulated annealing method [Pre07].
Syllebranque and Boivin [SB08] used a similar optimiza-
tion method with a force capture device, so that the bound-
ary forces are known, to estimate the mechanical properties
of deformable solids. They used video-based metrics to op-
timize for Poisson’s ratio and used the errors in computed
boundary forces to optimize for Young’s modulus. While
these methods depend on the rendering and computer vision
algorithms, our technique directly uses the surfaces of the
deformed bodies to compute the error metric. In addition,
the boundary conditions are unknown in our problem.

Image registration is an integral part of image-guided ra-
diotherapy. In order to assess the progress of treatment over
multiple daily radiation fractions, it is important to be able
to trace the motion of points in the tissue with respect to
the radiation beams. Given a 3D moving image, generally
taken at the time of each treatment, and a 3D reference im-
age, typically taken initially to plan the treatment course, the
goal is to find the optimal correspondence from the moving
image to the reference image. A traditional nonrigid image
registration method treats the deformation field as parame-
ters and minimizes some image-based metric [Thi98,SD02].
Because the optimization occurs in a high-dimensional pa-
rameter space, a physically-based energy function, such as
the compressible fluid model [CRM96,FDG∗05] or the lin-
ear elasticity model [RRM83], can be used in the mini-
mization process to impose regularity on the deformation
field. Basis functions such as radial basis functions or B-
splines can also be used with methods that minimizes the
error in landmark positions [RSS∗01] or in surface tes-
selation [KBP∗07] to reduce the dimensionality. In these
optimization-based methods, the objective function to be
minimized consists of terms measuring image similarity and
terms measuring some physical energy, and a coefficient
needs to be chosen for each term carefully to balance their
effects. The balancing is essentially a trade-off between im-
age similarity and physical constraints. A survey of these
methods can be found in [Hol08]. Unlike the methods using
physically-based regularizations, simulation-based methods
[FWG∗99, FWN∗00, LY03, HMC∗07] enforce the physical
constraints exactly and take different material properties into
account. Boundary conditions are usually obtained from the
gradient of the image [FWG∗99] or from surface matching
methods [FWN∗00, LY03, HMC∗07], but they may induce
uncertainty to the simulation since the surface matching is
not unique. Material properties, on the other hand, are ad-
justed by hand. Recently, an optimization-based 2D regis-
tration algorithm has been proposed [AGP∗06], where the
boundary conditions and the material properties are opti-
mized with a gradient descent method, but it is applied only
to 2D images with a low-resolution triangle mesh. Unlike
previous methods, we simultaneously estimate body defor-
mation and elasticity parameters based on a full 3D lin-
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ear elasticity simulator. Physical constraints are enforced
with simulations and the material properties are recovered
through optimization. Our method uses surface matching re-
sults only as a means of generating the initial guess of forces
and does not fix any boundary node of elastic bodies during
the optimization.

Estimation of material properties of human tissues is also
important in the area of medical image analysis for detecting
cancerous tissues, since cancerous tissues tend to be stiffer.
Elasticity reconstruction, or elastography, is a non-invasive
method to acquire strain or elasticity images of soft tissues
[SE95]. Elastography is usually done by first estimating the
optimal deformation field that relates two ultrasound images,
one taken at the rest state, and the other taken when a known
force is applied to the skin. This estimate may be performed
using cross-correlation analysis [OAG∗99] or using dynamic
programming to minimize similarity of echo amplitude and
displacement discontinuity [RBF∗08]. Alternatively, a mod-
ified MRI machine in tune with a mechanical vibration of tis-
sues can be used to find the displacement field [ME96]. Once
the deformation field is known, the material properties can
be found by solving a least-squares problem [ZHJ03,BT07],
if the physical model is linear. Another type of methods
use iterative numerical optimization algorithms to minimize
the error in the deformation field [KB96,BCF08]. Although
these iterative methods are slower than directly solving the
inverse problem, they do not require linearity of the underly-
ing model and are therefore suitable for any physical model.
Our method also uses an optimization scheme to find out the
elasticity of an organ, but our problem is different from the
elastography in several ways. Firstly, image registrationis
done for a multi-organ system, assuming the material prop-
erty is constant within an organ, while elastography is used
to find out different material properties within a tissue. Sec-
ondly, the deformation field and external forces are consid-
ered known in elastography, while in image registration, de-
formation cannot be measured directly and is therefore in-
ferred from image information such as edges or corners.

3. Method

The idea of the algorithm is to optimize a function based
on the separation between corresponding organ boundaries.
In each iteration, the objective function is computed by first
simulating and deforming the surface using the current set
of parameters, and then computing surface distances.

Our current implementation of the simulator uses the
isotropic linear elasticity model because it is widely usedin
the medical image registration of the prostate. We consider
just the elasticity value (Young’s modulus) in this paper due
to the simplicity in computation and its importance in non-
invasive cancer detection techniques.

The inputs to the registration problem are two segmented
images: the fixed image with segmentationSf and the

moving image with segmentationSm. The bones are al-
ready aligned using a rigid registration method described in
[FDG∗05], and we focus on the nonrigid registration prob-
lem. Each segmentation is represented as a set of closed tri-
angulated surfaces, one for each segmented object. We con-
struct a tetrahedralization of the moving volume such that
each face ofSm is a face in the tetrahedralization, so that
Sm is characterized entirely by its set of nodes. Our reg-
istration algorithm is built on a physically-based simulator
that generates deformation fields withn unknown parame-
ters x = [x1, · · · ,xn]

T , and a numerical optimizer to mini-
mize an objective functionΦ(x) : R

n → R defined by the
deformation fields and image matching metrics. During the
optimization process, the physical model is refined in terms
of more accurate parameters and converges to the model that
can describe the deformation needed for the particular image
registration problem. We adopt the linear elasticity model
with a finite-element model. The flow chart of our algorithm
is shown in Fig.1 and will be explained in detail in this sec-
tion.

3.1. Linear Elasticity Model and Finite Element
Modeling

In the optimization loop, the deformation fieldu = [u,v,w]T

is always generated by a physically-based simulation, where
the finite element method (FEM) is used to solve the consti-
tutive equations of the linear elasticity model,
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(2)
whereL is the 6×3 matrix consists of the partial differen-
tial operators acting on the deformationu. Assuming linear
elasticity, we can writeσ = Dε, whereD is a matrix de-
fined by the material properties (assuming isotropic mate-
rial, the properties are Young’s modulus and Poisson’s ratio)
of the body. To solve Eq.1 numerically, we approximate the
derivatives of the deformation with the finite element method
(FEM) [ZT05], where the domain is subdivided into a set of
elements, and each element consists of several nodes. Fig5a
shows the finite element model used in one of our experi-
ments, where four-node tetrahedral elements are used. The
deformation fielduel for any pointp within an element is
approximated with a piecewise linear function

ûel(p) =
4

∑
j=1

uel
j Nel

j (p), (3)
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Figure 1: Flow chart of the optimization loop; the deformation field generated by the simulator is used in the objective function
to update the parameters, which are fed back into the simulator, and so on.

whereuel
j is the deformation of thej-th node of the element,

andNel
j is the linear shape function that has value one at node

j and is zero at all other nodes and outside of the element.
After combining the approximated piecewise linear equation
for each element, the resulting linear system is

Ku = F, (4)

whereK is called the stiffness matrix, which depends on the
material propertiesE and the geometry of the elements;F is
a vector of external forces. For a 3D domain withNn nodes,
K is a 3Nn × 3Nn matrix. Notice that since bothK and F
are unknown, they can be scaled by the same factor without
changing the output deformation field. Therefore, unless we
know the exact values of the forces, only the relative values
of the material properties can be recovered.

To make the nodes deform, some boundary conditions
need to be enforced, either by assigning displacement val-
ues, or by assigning forces to some nodes. If all the bound-
ary nodes, including boundaries between two materials, are
assigned displacement values, the simulation is essentially
an interpolation of displacement field from surface matching
results, and the elasticity values only affects internal nodes,
and we do not know their target positions. Therefore the elas-
ticity cannot be recovered. Instead, we only assign boundary
conditions to a part of the boundary nodes, and other sur-
face nodes without boundary conditions will be affected by
the relative elasticities. For example, in a simulation of the
male pelvis area, the bladder and the rectum are usually the
organs that drive the deformation of the prostate, while the
pelvic bone is considered static. An intuitive choice is to ap-
ply Dirichlet boundary conditions on boundary nodes of the
bladder, the rectum, and the pelvic bone, and set all other en-
tries in the force vector to zero, as proposed in [HMC∗07].

3.2. Sensitivity Study

Since our method is based on the assumption that the de-
formed surface depends on both the elasticity and the exter-

Figure 2: A sliced view of the synthetic scene, which con-
sists of two concentric spheres; the inner and outer regions
have different stiffness values.

nal forces, we first conduct an experiment of forward simu-
lations using different parameter values to see how sensitive
the surface is to these parameters. The synthetic scene con-
sists of two concentric spheres that form two regions, one in-
side the inner sphere, and the other between the two spheres,
as shown in Fig.2. We fix the elasticity of the outer region
and alter the elasticity of the inner sphere, since only the ra-
tio of the two elasticity values matters. A force with a spec-
ified magnitude pointing towards the center of the spheres
is applied on each node of the outer surface, and no bound-
ary conditions (zero external forces) are applied on the in-
ner surface. Several simulations using different elasticities
of the inner region and force magnitudes are performed, and
the plots of the inner sphere radius versus the elasticity value
and versus force magnitude are shown in Fig.3.

In Fig. 3a, the slope is much higher when the elasticity is
low for each curve, which indicates that the shape of the in-
ner sphere is much more sensitive to the elasticity when the
elasticity value is low. In Fig.3b, the magnitude of the slope
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Figure 3: The plots of the radius of the inner sphere after de-
formation: (a) radius versus the elasticity value of the inner
region; (b) radius versus the magnitude of forces acting on
the outer surface. The radius before deformation is 3, and
the elasticity ratio between the inner and outer region is 10.
The Poisson’s ratios are fixed to 0.40 and 0.35 for the two
regions, respectively.

is higher for the lines with lower elasticity values, which in-
dicates that the shape is more sensitive to the forces when
the elasticity is low. Similar plots for the radius of the outer
sphere are shown in Fig.4, which also indicates that the
outer radius is more sensitive to the parameters when the
elasticity of the inner region is lower.

These results suggest that our ability to recover the param-
eters is limited by how stiff the object is. With a very high
stiffness, the shape of the object becomes insensitive to the
parameters. In this case, the shape can still be recovered, but
the resulting parameters may not be accurate.
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Figure 4: The plots of the radius of the outer sphere after de-
formation: (a) radius versus the elasticity value of the inner
region; (b) radius versus the magnitude of forces acting on
the outer surface. The radius before deformation is 3.75.

3.3. Distance-Based Objective Function

The parameters needed in the simulator arex = [E;F], where
E consists of the material properties, and we consider only
Young’s moduli in this paper, andF is the vector of exter-
nal forces on boundary nodes. The objective function to be
minimized is defined as the difference between the segmen-
tations in the moving and reference images,

Φ(x) =
1
2 ∑

vl∈Sm

∥

∥d
(

vl +ul (x),Sf
)
∥

∥

2
. (5)

Hereu(x) is the deformation field computed by the simulator
with parametersx, interpreted as a displacement vector for
each nodevl in the tetrahedralization. The notationd(v,S)
denotes the shortest distance vector from the surfaceS to the
nodev, and the sum is taken over all nodes of the moving
surface.
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The gradient of the objective function, which is needed in
the iterative optimization, is given by chain rule,

∇Φ(x) = ∑
vl∈Sm

[

∂ul

∂x

]

[

∂d
(

vl +ul ,Sf
)

∂ul

]

d
(

vl +ul (x),Sf
)

= ∑
vl∈Sm

JT
u JT

d d
(

vl +ul (x),Sf
)

, (6)

whereJu =
[

∂ui
∂x j

]

is the Jacobian matrix ofu(x) with respect

to the parameters, andJd =
[

∂di
∂uj

]

is the Jacobian matrix of

d with respect to the deformation vector. Here we use the
bracket[·] to represent a matrix and the curly braces{·} to

denote a vector. Each column ofJd, namely
{

∂d(vl +ul ,Sf )
∂uj

}

,

is essentially the derivative ofd
(

vl +ul ,Sf
)

with respect to
the j-th spatial coordinate (j = 1,2,3). The derivatives of
u with respect to the material properties are computed by
differentiating both sides of Eq.4,

[

∂K
∂E j

]

u +K
{

∂u
∂E j

}

= 0, (7)

Therefore we have
{

∂u
∂E j

}

= −K−1
[

∂K
∂E j

]

u. The Jacobian

matrix can then be computed by solving for each column of
Ju. The derivatives with respect to the boundary forces are
computed in the same manner; by taking derivatives of both
sides of Eq.4, we have

[

∂K
∂Fj

]

u +K
{

∂u
∂Fj

}

= ej , (8)

whereej is the j-th coordinate vector. On the right hand side,
only the j-th entry is nonzero sincedFi

dFj
= 0 when i 6= j .

And sinceK is independent ofFj ,
∂K
∂Fj

= 0. Therefore we

can solve for each column of the Jacobian with the equation

K
{

∂u
∂Fj

}

= ej . In practice,d
(

vl +ul (x),Sf
)

can be looked

up in the precomputed vector distance map of the fixed or-
gan, Sf , and the derivatives∂d/∂u j can be approximated
with a centered finite difference operator applied on the map.
Fig. 5b shows one of the distance maps used in our experi-
ments. Notice that the physical model can be different, as
long as the derivatives∂ui/∂x j can be computed.

In the experiments, however, we observed that the mag-
nitudes of gradients with respect to the material properties,
‖∂Φ/∂E‖, are about 1000 times smaller than that with re-
spect to the forces,‖∂Φ/∂F‖, and it caused the material
property to converge very slowly. To obtain a faster conver-
gence ofE, we use an alternating approach: first fixE and
optimizeF for a few steps (five steps in our experiments),
then fixF to optimizeE for a few steps, and then return to
optimizingF with the newE value fixed, and so on.

3.4. Numerical Optimization

We use a line search scheme for optimization: in each itera-
tion k, first find a descent directionpk, find an optimal step

(a) (b)

Figure 5: Input to our algorithm: (a) a sliced view of the
tetrahedral model of the moving image; (b) a slice of the
vector distance map of the prostate in the reference image.

sizeα in the direction with a line search algorithm, and then
update the parameters withxk+1 = xk + αpk. The descent
direction can be computed with the Newton’s method solv-
ing the equation∇Φ = 0: pk = −B−1

k ∇Φ(xk), whereB is

the Hessian matrix,
[

∂2Φ
∂xi∂x j

]

. A modified Newton’s method

has been used in elasticity reconstruction [KB96], but the
Hessian matrices can only be approximated and are usually
ill-conditioned. Alternatively, the Hessians can be approxi-
mated with the BFGS formula [NW99],

Bk+1 = Bk +
ykyT

k

yT
k sT

k

−
Bksk (Bksk)

T

sT
k Bksk

, (9)

whereyk = ∇Φ(xk+1)−∇Φ(xk) andsk = xk+1 − xk. The
main idea of the BFGS formula is to approximate the Hes-
sian with the secant equation,Bk+1sk = yk, while keeping
Bk+1 symmetric and close toBk. Quasi-Newton methods
can reduce the computation yet still retain a super-linear con-
vergence rate. A line search enforcing the curvature con-
dition (sT

k yk > 0) needs to be performed to keep the ap-
proximate Hessian positive definite. In our case, the num-
ber of parameters can be up to thousands, therefore we use
a limited-memory quasi-Newton method known as the L-
BFGS method [NW99], combined with the line search al-
gorithm proposed in [MT94]. Instead of storing the entire
3Nn×3Nn Hessian matrix, the L-BFGS method saves only
mmost recent vectors pairs{si ,yi} , i = k−m, . . .,k−1 and
construct the approximateBk+1 by applying Eq.9 m times.
Intuitively, the L-BFGS method reduces the memory usage
by storing curvature information of the objective function
from only the most recent steps.

3.5. Initial Guess of Parameters

A good initial guess can prevent the optimizer from get-
ting stuck in a local minimum. In the case of medical im-
age registration, the initial guess of the elasticity is chosen
based on the knowledge of the simulated organs. Our exam-
ple images involve two materials: the prostate and the sur-
rounding tissue. There have beenin vitro experiments on
the prostate using different elasticity models. Krouskop et.
al. [KWK∗98] reported the elastic modulus of 40-80 kPa for
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normal prostate tissue and 80-270 kPa for cancerous tissue.
They also reported 10-30 kPa for the breast fat tissue. Based
on these numbers, we chose the values 100 for the prostate
and 10 for the surrounding tissue as the initial guess of elas-
ticity, since all the patients for our example application have
prostate cancer, and only the ratio between the two elasticity
values matters.

Initial guess of forces are based on the distance field of the
target surface: each node requiring a boundary condition is
moved according to the distance field to compute a Dirich-
let boundary condition. A forward simulation is performed
using the set of boundary conditions and the initial guess of
elasticities, and the output deformation is used to compute
the corresponding external forces, which is used as the ini-
tial guess, using Eq.4.

To further reduce the risk of wrong initial guess of the
elasticity, we employ a two-trial scheme: we run the opti-
mization once, and use the resulting elasticity values as the
initial guess for the second trial of optimization, while the
initial guess of forces is generated in the same way as in the
first trial. This scheme has helped to reduce errors in elastic-
ity in our experiments.

4. Experiments

We tested our algorithm on two sets of surface data. Firstly,
we tested the accuracy of the optimization scheme using syn-
thetic target surfaces generated by forward simulations. We
then applied the technique to a medical image registration
problem to show the physical accuracy with real data. Given
the moving surfaces in the form of triangle meshes, the tetra-
hedral model for the entire domain is built with the software
TetGen [Si], and the library ITK [Ins] is used to compute the
vector distance maps of the target surface. The FEM simula-
tor uses the linear algebra library PETSc [Mat].

4.1. Synthetic Target Surface

To verify the accuracy of our method, we test the algorithm
with synthetic target surfaces generated by a forward simu-
lation, so that we know the true elasticity values. We use the
same base model as used in the sensitivity study (Fig.2) and
apply inward Dirichlet boundary conditions of magnitude
0.75 cm on the outer sphere. The initial guesses and resulting
errors for each elasticity value, along with the total number
of optimization iterations, are shown in Table1. The opti-
mization process is terminated when‖∂Φ/∂E‖ < 10−7‖E‖
and ‖∂Φ/∂F‖ < 10−4‖F‖, or when the optimizer cannot
find a direction in the parameter space that reduces the
value of the objective function. The results showed that our
method recovers the elasticity value to under 7% of error
when the value is under 400, which corresponds to a ratio
of 40 between elasticities of the inner and outer region, and
the relative error is within 3.5% for elasticity values below
300. The result of higher errors for higher elasticity values

is consistent with the sensitivity study presented in Section
3.2, where we showed that the sensitivity of the radii of the
spheres with respect to the elasticity is considerably lower
when the elasticity of the inner region is high.

4.2. Segmented CT Images

We experimented on two pairs of 3D CT images of the male
pelvis area with the main structures (bladder, prostate, rec-
tum, and bones) segmented manually, and each image pair is
from one patient on different days. The bladder and the rec-
tum are made hollow to reflect the actual structure, and the
bones are fixed during the simulations, as shown in Fig.5a.
Since only the relative values of material properties can be
recovered, we fix the Young’s modulus of the surrounding
tissues (the region outside all organs and bones) to 10 and
optimize that of the prostate. Since the prostate is the main
organ of interest, we apply forces only on the boundaries of
the bladder and the rectum to reduce the uncertainty on the
prostate, which will be moved by surrounding tissues. The
setting also reflects the fact that the bladder and the rectum
are the organs that have larger deformations due to different
amount of fluid and gas, and the prostate is usually deformed
by their movement.

The optimization process is terminated when‖∂Φ/∂E‖ <
10−7‖E‖ and‖∂Φ/∂F‖ < 10−3‖F‖, or when the optimizer
cannot find a direction in the parameter space that reduces
the value of the objective function. The convergence graphs
(plots ofΦ and‖∇Φ‖ versus iteration number) for the ma-
terial property and for boundary forces from the first trial of
the first patient are shown in Fig.6 (convergence graphs for
other trials are similar). Note that the optimization is done in
the alternating way, and the convergence graphs shown are
the result of concatenating the steps for optimizingF and for
optimizingE separately.

The final elasticity ratio between the prostate and the sur-
rounding tissue is 12.08 for the first patient and 35.63 for the
second patient. From the elasticity values of the prostate and
breast fat tissues reported in the literature [KWK∗98], we
have a speculated range of elasticity ratio, and the recovered
value for first patient is within the range while that of the
second patient is above the range. The final values of the ob-
jective function are 1.53 and 1.12, corresponding to an RMS
error of 0.076 cm and 0.065 cm, respectively, for the two
patients. The RMS errors are within the image resolution,
0.1× 0.1× 0.3 cm. The moving images of the first patient
before and after registration are shown in Fig.8, with the
segmentations of the reference image (red) and the prostate
in the moving image (blue) superimposed on the image. No-
tice how the prostate in the images moves from the blue con-
tour to the red contour. Fig.7 shows a 3D close-up view of
the deforming surfaces for the second patient, where the yel-
low surfaces denote the boundaries with external forces ap-
plied, and the target and moving surfaces of the prostate are
shown in red and blue, respectively. We also compared our
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True Values of Elasticity 50 100 150 200 250 300 350 400 450

Initial Guess of Elasticity 100 200 200 300 300 400 400 500 500
Recovered Elasticity 51.76 98.89 146.98 202.14 243.16 292.07 330.81 373.47 369.07

Relative Error of Elasticity +3.5% -1.1% -2.0% +1.1% -2.7% -2.6% -5.5% -6.6% -18.0%
Number of Optimization Iterations 100 33 11 8 5 6 4 5 4

Table 1: Error in recovered modulus of elasticity in the synthetic scene

Figure 7: Close-up view of the deforming surfaces; the red surface shown in wireframe is the target surface of the prostate.
Notice how the blue surface move towards the red surface. Yellow surfaces are those with external forces applied.

registration results with a popular image-based approach,the
Demons method [Thi98], by looking at some landmarks in-
side the prostate. In most cases, the image intensity is almost
constant inside an organ, but a small number of patients have
some calcium accumulated in the prostate, resulting in bright
spots of diameters about 0.2−0.6 cm that can be observed
in the CT image. The distance between the target and the de-
formed landmark positions from the two methods are shown
in Table 2. The estimated diameters of the spots are 0.25
cm in the first patient and 0.6 cm in the second patient. For
regions with nearly uniform intensity, the deformation com-
puted by the Demons method is entirely governed by the reg-
istration regularization terms, which do not need to be phys-
ically meaningful for the image-based method. Our method
enforces physically-based constraints and results in errors
within the diameter of the spot. Notice that we did not re-
move the bright spots in the images for the Demons method,
so the intensity and gradient information from the landmarks
is also utilized in the image-based registration, while our
method is based purely on the physics-based simulation and
does not take advantages of the landmarks, which are not
always present in most of the other applications. For exam-
ple, the spot in the second pair of CT images is considerably
larger and brighter, therefore the intensity and gradient in-
formation is much stronger, enabling the Demons method
to register well very quickly. Without the bright spots, the
Demons method cannot guarantee the integrity of the defor-
mation field.

5. Conclusion and Discussion

We have presented a novel physically-based method for si-
multaneously estimating the deformation of soft bodies and
determining the unknown material properties and boundary

conditions. Our method is especially well suited for 3D med-
ical image registration using a pair of scanned images to au-
tomatically determine the patient-specific material proper-
ties during the registration. The resulting deformation field is
enforced to be physically-plausible, since it is computed by
the 3D FEM simulator with appropriate contact constraints
among organs. The observed error on the boundary due to
our physically-based image registration method is within the
resolution of segmented images, i.e. no larger than the seg-
mentation error, and the error on the internal bright spots as
landmarks in the prostate is comparable to the diameter of
the spots.

The optimization framework is general. It is not limited
to deformable image registration and could be used for more
sophisticated physiological models than the linear elasticity
model we chose for simplicity in our current approach. As an
image registration technique, our method is reliable in terms
of the registration error; as a parameter estimation method,
our system can save the enormous amount of work adjusting
the simulation parameters by hand. Furthermore, since only
the 3D surfaces are used in our algorithm, applications other
than image registration could also adopt our algorithm.

In the future, we would like to further improve the perfor-
mance of the iterative scheme and apply it to more compli-
cated physical and geometric models, such as the situations
with complex material property distributions [NKJF09]. For
the application in image registration, we would like to de-
fine the objective function directly with the information in
the images, such as the intensities and local features, thereby
further reducing the amount of work and the human error in-
duced by hand segmentation in the image registration pro-
cess. Virtual surgery [FLA∗05, SHG∗06, WBG07,MTG03]
is another area that needs the estimation of material proper-
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CT Images from Patient 1 CT Images from Patient 2
Landmark 1 Landmark 2 Landmark 3 Landmark 4 Average Landmark 1

Rigid Registration 0.5594 0.5580 0.5180 0.3585 0.4985 0.3336
Demons 0.2793 0.2791 0.2036 0.2033 0.2413 0.0807

Our Method 0.1971 0.2830 0.2294 0.0513 0.1902 0.2865

Table 2: Error of landmark positions (distance in cm) insidethe prostate
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Figure 6: Convergence graphs (plot ofΦ and‖∇Φ‖ versus
iteration number) and optimization history of the elasticity
for the first CT image data: (a) convergence of the external
forces; (b) convergence of the elasticity.

ties and may be combined with our framework. We would
also like to explore the possibility of applying our technique
to control the animation of general deformable bodies in
graphics applications.
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